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In Ihis study, lipid classes, fany acids, free amino acids (FAA) and protein content

in caplive Atlantic halibut (Hippoglossus hippogiossus) eggs were measured to

invesligate the relationship between biochemical composition of the eggs and egg quality,

the ~ffect of the physiological condition of broodstock females on egg biochemical

composition. and changes in the biochemical composition ofeggs and larvae in both the

embryonic and early larval stages.

High neutral lipid (Nt) le\'el and low (n-6) and (n-3) polyunsaturated fany acid

(PUFAllevels seem 10 be associated with low egg quality. For eggs with a fertilization

success ~ 75%. there were significantly lower amounts of total NL and sterol (ST) per

~gg (P<O.OI. P<O.05, respectively) compared to eggs with a fertilization success < 75%,

For eggs that produce larvae with survival time:::: 15.9 days. the amount oftriacylglycerol

(TAG) was significantly lower than in eggs that produced larvae wid, survival times <

15.9 days W<O.OI). For eggs with a fertilization success:::: 75%. the proportion of (n-6)

PUFA in TAG (P<O.OI), the proportion of 20:5 (n-3) in phosphatidylethaoolamine (PE)

(P<O.OS), and 18:2 (n-6) (P<0.05) in the total lipid per egg. were significantly higher than

for eggs with fertilization success < 7S%.

The average dry weight of eggs followed a pattern similar to that of the average

food intake of the broodstock female, while the average egg lipid content did not change.

The spawning rhythm of the females also affected egg composition, The ash free dry

weight and total protein of the eggs decreased as the spawning season proceeded

(P<O.05). [n TAG, the levels of 18:0 and 20:4 (n-6) per egg, and in PE, the level of(n-6)



PUFA per egg decreased significantly over the spawning season (P>O.OS). The maturity

of the spa\'VTlers affected egg quality and egg lipid composition as well. Repeat spawners

produced eggs with significantly higher fertilization success than firsHime spawners

{P<O.OS). The total neutral lipid (TNL) and ST were significantly lower for eggs from

repeat spawners than for eggs from first-time spawners (P<O.OI, P<O.OS, respectively).

Total FAA decreased continuously (p<O.01) over the embryonic and larval stages

investigated. TAG decreased significantly for the larval stages (P<O.OS). When hatching

occurred. there was a significant increase in all lipid classes except ST. [t is suggested

that FAA may be the source ofcarbon skeletons for lipid synthesis at hatching.

Thus, this study has shown that lipid and fany acid composilion in eggs from

captive Atlantic halibut is associated with egg quality; however, FAA are Ihe biochemical

components that are mOst utilized during embryonic and early larval stages. At the end of

embryonic stage and early larval stage, these amino acids appear to be directed towards

lipid synthesis and Ihen towards protein synthesis.
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Chapter 1. Introduction

1.1. Background

Reports of the benefits of seafood rich. diets in reducing the risk of cardiovascular

disease. rheumatism, and diabetes have led to marked changes in our eating habits (Castell.

1988). The demand for seafood in the market is increasing (Aluned & Anderson. 1994), but

the fishery resources are severely depleted. mostly as a result of overexploitation. According

to Banabe 11994 J. since the \970's. fishing world wide h.as removed 90 millioo toMeS of the

100 million tonnes ofseafood that could be supplied by the world's oceans. Thus. aquaculture

has been accorded a new importance as a method of producing seafood Moreover. since both

finfish and shellfish. are subjected 10 contamination in !heir natural habitat. aquaculture can

reduce the risk of contamination since the fish are raised in a more controllable environment

(Ahmed & Anderson, 1994). As far as economic aspects are conccmed., compsmj 10

livestock farming, the investment needed for aquaculture, especially marine aquaculture. is

much lower (Arrignon. 1982).

Canada commands an enormous divmity of freshwater and saltwater aquatic

resources. Canada is also the largest exporter of fish product to USA, one of the largcsI and

fastest growing seafood markets in the world Manci (\990) estimated that job opportUnities

in the aquaculture industry could increase from the 1988 level of 1.500 full·time positions to

over 5.000 by the year 2000. not inchxlingjob creation in associated industries. Aquaculture

is especially imponant to the economy of Newfoundland. an economy traditionally very



much dependent on the fishery, wtrich is now heavily burdened by unemployment due to the

disappearance of fishery rt:SOUl'tCS.. Research aimed at a better undemanding of the:

potentially profitable species., and u1timaJely atim~ of aquaculture teehNques., is

now very active in Canada due to increasing government funding.

Atlantic halibut (Hippoglwsus hippoglossw) has been the: focus ofa vast amount of

research during the past decade because of its high po(entiaI as a candidate for aquaculnare.

This species belongs to the family Pleuronectidae. It is the: largest of tile: flatfish: it can grow

to a length of 2.5 meters and a weight exceeding 300 kilograms (lwanenberg, 1986). The

area otfNewfoundland coast is a good habitat for Atlantic halibut

Atlantic halibut commands the highest price of all flatfish. The European market sells

about 4,000 toMeS offtozen halibut annually, and it has been estimated that the demand for

fresh halibut on the Ewopean rnan::et could reach 20,000 tOMeS lWtt the ne:<1 20 years. U.S.

market trends art expected to be similar (Brown &. Keough, 1994~ High fishing intensity

caused by a high demand in the market. has resuJted in a significant and continuous dcaeasc:

of the S10ck in its natural habiw since the 1960s (Haug. 1990). Therefore, the high market

value of this species and il$ low supply from the commercial fishery make aquaculture of

Atlantic halibut both necessary and poIentially profitable. MOfeOVef, its good swvivaJ after

metamorphosis, fast growth. and late maturity in captivity promises commercial feasibility.

1.2, Biochemical 4:OmpositioDS iD qp.DeI yolk-Me '-rvH of...riDe (ISh

The major obstacle fot Atlantic halibut aquaculture so far has been the mass mortality



v.fuch occurs during me yolk+Sat and the: first feeding stages (Lonning et aJ., 1982; Ingram.

1987). This is due to the fact that the larvae hatch at a very premature stage with a poorly

developed muscle system. and mouth and eyes that~ not functional (Blax1c:r et uJ.• 1983:

Helvik & Whalthcr. 1993). Halibut larvae are unable to ingest exogenous food unal about 3S

days after hatching depending on rearing temperature. The whole yolk-sac stage lasts about

250 dcgree-days (i.e.• rearing temperature in °C rimes the number ofdays), one of tile longest

of all marine fish. species. Providing appropriate feed to the first feeding larvae will gJUt1y

improve their viability. An tmdemand:ing of biochemical changes during the embryonic and

yolk-sac larval stage. will be of great help in imPfO\'ing the production of high quality food

for first feeding larvae. and in reducing the monaJity of larvae at this crucial stage.

Another difficulty associated with halibut aquaculture is that efficient methods for

determination of egg and IarvaJ quality are not available. During the: endogenous feeding

Slage (i.e. the embryonic and "",·feeding Jarvalstagol, SllIVivai and development ... soIcIy

dependent on nuuients stored in the yolk. Therefore. the biochemical composition may be a

significant determinant ofegg quality for this species. The fonnation ofme yolk is completed

in the ovary. and its biochemical composition is closely relarcd to the dietary and

ph.ysiological conditions of the broodstock. In order to procb:e tUgh quality eggs. it is also

important to investigate the: relationship between the biochemical composition of eggs and

the condition ofbroodstock.



1.2.1. Lipids and fanyacids

Lipids and fany acids are involved in energy production. membrane fonnation and

synthesis of biochemically active substances such as some steroid hormones and

prostaglandins. Extensive research has been dil'e(;ted to elucidate the imponance of lipids and

fany acids during embryonic and larval development of marine fish.

Polyunsaturated fatty acids (PUFA), especially 22:6(0-3) (docosahexaenoic acid,

DHA) and 20:5(n-3) (eicosapentacnoic acid, EPA), are abundant in marine fish eggs, and are

actively involved in the modulation of membrane fluidity. (n-3)pUFA as well as (n-6)PUFA.

predominantly 20:4(n-6) (arachidonic acid, AA), are the precursors for eicosanoid synthesis.

Due to the limited activities of elongase and desaturase in marine fish, (n-3) and (n-6)PUFA

especially 20:5(n-3), 22:6(0-3), and 20:4{n-6) cannot be synthesized in vivo from 18:3 (n-3)

(a-linolenic acid) or 18:2(n-6) (linoleic acid) as in mammals. Therefore, when the issue of

lipid metabolism in marine fish is addressed, emphasis is placed on 20:5(n-3), 22:6(n-3), and

20:4(n-6), fatty acids that are defined as essential fany acids (EFA) for marine fish, meaning

that they must be supplied in the diet

Dietary deficiencies ofEFA in broodstock fish may adversely affect the viability of

eggs and larvae. However, due to the complexity of lipid metabolism, and its susceptibility to

biological and environmental factors, the quantitative relationship between essential fany

acids and eggs and larval quality (fertilization success, hatchability, and larval survival) in

marine species is rather obscure (Bruce et a1., 1993; Peleteiro et aJ., 1995; Watanabe et oJ.,

1985; Wiegand et aJ., 1991). Thus lipids and fatty acids have not been recommended for use



as an index to determine the quality ofeggs and 1.arvK (Kjorsvik et aI.• 1990). However. this

does not eliminate the importance of lipids especially (n-3) and (~) PUFA in the

development of tish embl'yos and larvae.

1.2.1.1. Lipid and fany acid composition of marine fish eggs

The lipid class and fany acid compositions of total lipid from Atlantic halibut eggs

\veR first ~ed in 1986 by Falk-Petmon and ~worlcers. The total lipid aa::ounIed for

12'10 of egg dry vmght Approximately 71". of toW liptd \WS polar lipid and 29% V,las

neutral lipid. Phosphatidylcholine (PC) \WS by far the largest component (62% of total lipid),

followed by lriacylglycerol (TAG) (13%), and sterol (Sn (10%). Phosphatidylethanolamine

(PE), anolher major phospholipid, accoWlted for about 7010 of the total lipid.

In the polar lipid (PL), (n-3) PUFA were the major fatty acids (44% ofweigftt), wilh

31.S% of 22:6(n-3) and 10.90/. of 2O:S(n-3). There were 27.8% of saturated fatty acids and

18.9"A. ofmonoenoic fatty acids in the: polar lipids.. In oeuaaJ lipids (NL), thcTt was as much

as SS.8% monoenes. while saturatesllCli:OUnted for 21%, and (n-3)PUFA for 16.7'4 As in the

PL, 22:6(n-3) (10.9';') and 2O:S{n-J) (3.S'I.) \\CTe the two major PUFA in Nt. Anod1er

imponant PUFA. 20:4(~)(2.7%) was found mainly in the PL

These lipid class and fany acid profiles of Atlantic halibut eggs agree well with

values obtained with eggs of Olher marine species as documented by Tocher & Sargent

(1984), especially those eggs wilhour: oil globules (i.e. cod, haddock, whiting, and saithe). All

these species pnxIuce eggs with IG-IS% of dry ......eight as liptd. PL and NL make up about



71>-'1. and )0% of total lipid (Tt) respectively. with PC and PE being the major PL, and TAG

and STbeing Ute majorNL About 4W. offatty acids present in PL are (n·3) PUFA. while in

NL. monoenes are the major component, ranging from 3Q-4ODIo.

Considering the large amow'lts of vitellogenin taken up by the growing oocyteS, it

seems reasonable to assume that lipids bound 10 vitellogenin contribute significantly to the

TL composition of the eggs tSilversand & Haux, 1995). especially for the species like

Atlantic halibut that do not have any oil g\obu.Ies in the c:ggs. The ratio of phospholipid to TL

is similar in halibut viteUogenin and in egg yolk <Norbe'rB. 19(5). The characteristically high

levels of(n-3) PUFA in egg yolk are also present in viteUogenin. Abo!.n SO% of the IOtal fany

acid in vitellogenin :lie 22:6(n-3) and 20:5(n-3), and this high level is fairly conservative in

..ilellogenin from different species (Silversand & Haux, 19(5). Although vitellogenin is the

major vehicle for lipid allocation to the oocytes. lipids can also be transponcd by other

plasma lipoproteins such as VLDL (Babin & Vernier. 1989; WallaeT1 & Babin, 1994).

In female nonhem pike. during the time of ovary recrudescence, the weight

percemage of (n-3)PUFA. especially 22:6(n-3), declined significantly in liver. muscle and

adipopancreatic tissue as well as in ovary newnllipid. wftile the weight pcn:emage: of (n­

3}PUFA in ovary Pl increased signi6cantly(Sc;hwal.me f!loJ.• 1993). This sugests a specific

selection of (n-))PUFA during the process of vitellogenesis and emphasizes the imponance

ofthese fatty acids in the development of the fish embryos.



1.2.l.2. Biological condition of the broodstock and lipid and fatty acid composition ofeggs

Although there are reports indicating the unifomtity of lipid and fatty acid profiles in

marine fish eggs, there are also reports suggesting that the lipid and fatty acid composition in

marine fish eggs is highly variable, even among eggs produced by individual females of the

same species kept under the same environmental conditions and fed with identical diets

(Peleleiro er 01., 1995). This high variability elClends to eggs produced by a single female in

one spawning season (Kjorsvik er at., 1990; Parrish et at. 1994a).

According to Wiegand (1996), three sources of lipid can be incorporated into the egg

yolk during vitellogenesis (i.e., production of egg yolk): dietary lipid ingested by the

broodstock during vitellogenesis, lipid reserves that are stored prior to vitellogenesis and de

novo synthesis of lipid in the liver or ovary of the broodstock. The laner two sources are

apparently closely related 10 dietary lipid ingestion. Dietary and stored lipid may be modified

in the liver prior to incorporation into vitellogenin. Among the constituents of broodstock

diets, Iipills are the chemical components that affect the composition ofeggs most (Wawtabe

eta!.,1985).

A direct effect ofbroodstock diets on fany acid composition in eggs has been found

in gilthead sea bream (Spana auTOta) (Mourente & Odriozola, \990). The eggs produced by

broodstock fed a diet with lower (n·3) PUFA contained a lower weight percentage of (n·.])

PUFA in both TAG and PC, but had higher levels of20;4 (n-6) and moooenes compared with

eggs from the broodstock taking a (n-3)PUFA rich diet. The saturated fatty acid levels

changed only slightly. The fatty acid composition in TAG was affeaed to a larger e.'aent than



that in PC. The 20:5(n-3) level in both lipid classes was more consistant than was the 22:6I'n-­

31 level. Lipid class composition was unaffected (MoW'tnte & Odriozola., 1990).

Administration of a (n·3)PUFA deficient diet to trout for three months prior to

spawning, resulled in a decrease in (n-3)PUFA levels in adipose tissue. total lipoproteins.

vitellogenin, Iipovilellin (which contains yolk lipid). and the oil globule. The le-.·el of total (n-­

6)PUFA increased. but in contrast to gilthead sea bream. 22:6(n-3) was linle affected (Leger

i!lul., 1981).

Wiegand (1996) concluded that there is a sttong selection pressure 10 mainwn the

proportions offn-3)PUFA. especially 22:6(n-3), in yolk PL within a relatively narrow range.

However. the effect of a long-Ienn (n-3)PUFA deficieny in diet may be severe and

detrimental to both the \vellness of the broodstock and the development of embryos and

larvae.

As shown by the two studies mentioned above, the decline of (n-3)PUFA is often

accompanied by an increase of (n-6)PUFA In mammals, it is accep{ed that (n-3)PUFA,

principally 20:5(n-3), have a physiologtcal role in modulating the formation of eicosanoids

from 20:4(n~) by competing with the enzymes which conven 20:4(n~) to eicosanoids

(Sargent, (995). A similar modulation mechanism apparently exists in fi~ the adverse effect

of(n-3)PUFA deficient diets may not result directly from less (n-3)PUFA in the diet, but from

a lower ratio of20:5(n-3Y20:4(n-6). The elevated (n-6)PUFA level during embryogenesis and

larval development is likely to increase the susceptibility of the resulting larvae to extemal

sttessors (Sargent. i 995).

Besides diet, other biological conditions may also affect the composition of lipid in



egg. Some species (e.g.. halibut, turbot) flSl during spawning, thai is, they stop feeding during

spa\\ning. McEvoy et al. (1993) found thai in captive tllrbot.late--season eggs contained less

long chain tn-3)PUFA. such as 22:6(n~3), 22:5(003). and 20:5(003), in phospholipids than in

l:ggs produced early in me season. Tbey relate this 10 me cessation of feeding during

spawning. However. lhis reduced (Oo3)PUFA level may result from the change of lipid

composition in the ovary with the development of lhis tissue (Wiegand k Idler. 1985). which

in twn may be regulated by honnone levels.

In halibut. the levels of estradiol-171l. testosterone. and ..itellOK'tnin flllCtUlle in

females during the SpI.",ning season along with ovulation of sl.ICCCSSive batches of eggs.

(Methven et W.. 1992). Lipid and fany acid composition of eggs varied among belches

spawned by the same female in the same spawning season (Parrish et al.. 1994a). However,

whether the Iluctuation of hormone and vitellogenin will affect the bKw;hemicaJ eunposilions

of the eggs in different ba1ches is ~1l Srivastava and Bro....n (1993) re:pom:d. that

testosterone-treated females produced eggs with less lipid, carbohydrate. and protein than

those produced by the conuel group. Funher investigations in this area arc needed Variation

in lipid in eggs can also be found among eggs produce by femaies of different age (Kim..

1974: KuznetsoV &. KhaJitov. 1978: Evans e1 ai.• 1996).

Timing of ovulation for Atlantic halibut is crucial fOf the vimility of the eggs

produced. Deferred stripping of eggs after ovulation will lead to ovenipening eggs (Norberg

t!t al.. 1991), but knowledge of changes in biochemicaJ composition during the pnx:ess of

overripening is poor. Devauchdie ~t ai. (1988) found overripe eggs oftwboc. contained more

lipid than viable eggs..



1.2.1.3, Metabolism of lipids and fany acids in embryos and larvae

(n marine fish embryos and larvae at the endogenous feeding stage, yolk lipid is

mobilized for development, since endogenous synthesis of lipid is limited Lipid is

catabolized to produce energy, and to release (n-3) and (n-6)PUFA for synthesis of

biologically active eicosanoids. The PUFA moiety in phOSpholipids may also be essential in

maintaining membrane fluidity under low environmental temperatures.

[t is established that in addition to free amino acids, lipids are also catabolized as an

energy substrate. Different species use different strategies as to which lipid class is the

preferred energy substrate and as to the timing of lipid catabolism. In species v.ith oil

globules, such as turbot (Finn & Fyhn, 1995)and gilthead sea bream (Ronnestad et aJ., 1994),

lipid is used mainly after hatching, while in species without an oil globule such as cod, lipid

is catabolized following the completion of epiboly, i.e. when the syncytium layer completely

covers the yolk-sac (Finn d aJ., 1995b).

[n the gilthead sea bream, TAG is more abundant than PC in the egg due to the

presence of an oil globule, and it is catabolized more than PC (Ronnestad el al., 1994). The

absolute amount of all fatty acids decreased, and saturates and monoenes were utilized to a

greater extent than PUFA. No transfer of PUFA between PC and TAG occurred (Ronnestad

et al., (994). [n cod embryos and larval stages, PC is the predominant lipid component and it

is used more than TAG. The relative fatty acid composition in PC changed little, but in TAG,

there "''as a greater depletion of the monoenes compared to PUFA and saturates. No mass

transfer of PUFA from PC to TAG \W.S detected (Fraser et ai., 1988; FiM et ai., 1995b).



Preferential catabolism of PC 1M!' TAG was also reponed in embrymic and early larval

development of Atlantic herring (Tocher et ai., 1985b). The levels of (0-3) and (~)PUFA

increased in Pacific halibut (Whyte et ai., 1993), Atlantic naJibut (Falk-Pc1men et oJ., 1989)

and Atlantic herring (Tocher el 01.• 1985a) dwing embryonic and larval devdopnent.

implying a sparing mechanism of these PUFAs for non-cnergctic functions. Gener.llly, in

species without oil globules., PC is the predominant lipid class to be eataboliztd in embryonic

and yolk-sac larval stages. While there may be net depletion ofPUFA, the relative content of

these fany acids is maintained or even increased

As mentioned above, it is genet'a1ly believed that lipogenesis in embryonic and larval

stages is limited. but T~ et ai. (1968) discovered a lipid synthesis capecity in trOUt

embryos incubated \\-ith 1_I~C-acetate. Cena and Capuzzo (1982) also reponed an increase of

lipid mass in \\-inter flounder embryos. l'herefore. it is reuonable to view me afomnentioncd

decrease in lipid as a net outcome ofcasaI::JoIism and synthesis.

The metabolic panem of lipids in embryonic and IatvaI fish can be affected by

...arious enviroMlental factors. Fraser et ai. (1987) reponed that when pre-feeding herring

larvae were released into a large enclosure containing live prey, resembling me condition in

the wild, larval TAG content initially decreasc:d more rapidly than in those larvae held in an

enclosure without any prey. The 1aIcr is the normal situation for pre-feeding larvae in cuitun:.

The difference in TAG catabolism is presumably because of greater activity of larvae living

in an envirorunent containing live prey. The temperature at which different species normally

develop could play an imponant role in lipid utilization in the embryo and larva. It is known

that piolcilotherms increase the ratio of polyunsaturated to saturated fany acids in membrane
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lipids in response to lowered ambient tempenlture. Since changes in envil'OllJl'lental

temperature an: large enough to pertUrb sttueture:s such as cell membranes (reviewed by Bell

.:t al.. 1986: Williams & Hazel. I99S). it would be reasonable to suggest that lipid

metabolism and other biochemicaJ procc:ssc:s of early developmental stages may be atfeaed.

by rearing temperature. BuddingtOn et aL (\993) suggested that in white sturgeon. the

capacity for homeoviscous adaptation was acquired after hatching, and the embfyo is

incapable ofadjusring PUFA composition property to adapllO the temperature change in the

I,!nvironment In addition to lemperatW"e. pH and salinity may also influence PUFA

composition (Belle/al.. 1986: Hazel & Williams. \990).

1.2.\.4. Functions of lipids and fatty acids

PC is the main component in the lipid membrane: bilayer mautx. and it is the Iargcst

lipid component (comprising about 60% of toW lipid) in eggs of most marine species

Investigated.. especially in eggs without oil globules. Although PC was genetally n:garded as a

sourc:e of metabolic energy for developing fish eggs and larvae. the preference for PC

calabolism is probably related to other rolc:s. such as the release ofessential PUFA (20:4(n-O).

20:S(n.)). and 22:6(n-))), phosphorus and choline (Fraser et ai.• 1988). PhosphonJs is an

~ssential component in nucleic acids and ATP. Choline may be involved in newaI transmitter

s~nthesis (Tocher et at.. 1985b). Both phosphorus and choline are imponam nutriencs in fish

meal (Ogino etal., 1919: Millilcin. 1982~ As a component oflipoproteins. another role of PC

may be associated with the transfer ofNL from the yolk sac to the developing embryo (fraser
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I!raJ., 1988).

PE is the second largest phospholipid component in Atlantic halibut and cod eggs. PE

is a lipid class rich in PUFA (Bell, 1989). The proportion ofPE in goldfish inle5rine and trout

liver increased at low environment temperarures (Miller et oJ.• 1976; Hazel. 1979). suggesting

a role for this lipid class in homeoviscous adapwion. PE is the only lipid classes containing

plasmalogens in fish eggs (RanUl2O et oJ., 1992). In bovine brain. PE contains about Soelo

plasmalogens. suggesting an important rote of PE in the neural sysrem (Bell, 1989). Ranuzzo

et ul. (1992) foLmd ~ small amount of p{asmoIogens in PE in cod eggs. Bell (1989)

reported that PE p{asmalogens were nol JXeSCnt in eggs ofcod, preswnably because the 1xain

is not present at this early embcyonic stage.

Sphingomyelin (SM) is a major component of mammalian membranes. Its level

increases with age at the expense of PC. This PfOCesS appears in all venebrates and is likely

to cause increased membrane microviscosity. SM and its derivatives art also involved in

cellular signal transduction (Kolesnick. 1991). The function of SM in fish has rarely been

stu<ticd

TAG is considered to be a reserve liptd since cellular memtnnes contain only \'eT)'

small amount$. However, TAG probably plays a double role. storing large amoums of

saturated fany acids for energy PJI'PDSC and serving as a temporary reservoir of

physiologically imponant PillA.

Cholesterol seems to be the major sterol in fish, it is the precwsor for some

hormones. and it has been suggested 10 fonn a complex. with phospholipids which is why it is

an important component ofbiological membrane:s{Ranuzm et oJ.• 1992).
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Almost all fatty acids in fish eggs and Larvae an: ptCSeI1ted as fany acyl moieties of

phospholipid and NL and only vesy small amounts of free fatty acids an: found. Monoenes

art SUggesied to be a preferred substtaIe for cacabol.ism by some authors (Wiegand., 1996).

The functions of (n-3) and (n~)PUFA could be as energy soW'Ces. as precursors for

enzymatic oxidation to produce eicosanoids and prostaglandins or in phospholipids as

sttuctural components (Ackman & Kean-Howie. 1995).

The di-22:6(n-3) species in cod mini. phospholipids are strilcirtgty h.igh (30-/0 in PC.

75% in PE. and 60-/. in PS), suggesting a role of 22:6(n-3) in the normal function of eyes

(Bell & Dick. 1991). Recently Bell el ai. (1995b) found that a dietary deficiency in 22:6(n-3)

impaired vision at low Iigtll iNenSities in juvmile herring (C1upea harengus). The role of

10:5(n-3) is to modulate the formation ofeicosanoids from 20:4(n-6). A high (n~)I(n-3) ratio

is thought to have an adverse effect on embryo and larval development (Sargent, 1995).

Although 20:4(n-6) is only present in very small amounts, the oxidation derivatives of ttUs

fany acid are very active in modulating various biochemieal IXQCCSS such as rcprodUC'tion.

inflammatory reactions. stress reactions., walCrtrallSpOft,and~etC.

There an: reports that 22:6(n-3) and 2O:S(n-3) enriched diets have improved larval

survival under normal conditions (Watanabe. 1991. 1993: Mourmte f!l aI.• 1993) and IDler

stressed conditions as well (Kanauwa, 1995). However, excessive (n-3) PUFA may cause

negative effects on larva (Fernandez-Palacios el aJ., I99S; Rodriguez. 1994) and matw'e fish

(Ackman & Kean-Howie. 1995; Watanabe. 1982). Recent advances in EFA research

emphasize the ratio of 22:6(n-3)12O:S(n-3) and (n-3Y(n-6l. rather than absolute amounts of

these fany acids (Cure elo/.• 1995: Abi-ayadelaJ.• 1995; Belt el ai.• 1995a.: Sargent. 1995).
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1.2.2. Amino acids

free amino acids (FAA) and proo::in bound amino acids (PAA) are abundant in

marine teleost eggs and larvae. The majority of the research on their roles as osmolytes and

~nergy substrates in early developmental stages of marine teleost has been carried out in

Norway during the past decade.

1.2.2.1. AbWldance of FAA in marine fish eggs

Atlantic halibut eggs contain 2300 mnoVegg of FAA (Finn et oJ., 1991; Ronncstad

1992), and thus have the largest FAA pool among all the species examined. In mack.erel

(Scomber scomhru..f) eggs, only 30 nmoVegg was detected. Although the absolute amowlt of

FAA is highly variable among different species. after being adjusted for egg volwne. the

resulting range ofconccmrarion is narrowed 10 lSO-I70 mM (Ronnestad. 1992). This high

FAA concentration compared to that in terresaiaI vmd:nscs, and its stability in differenl

species of pelagic teleost eggs sugem a role for FAA in osmoregulation in the byperosmotic

marine environment. The FAA pool represents 20% 10 SO% of the total amino acids

(FAA+PAA) in pelagic fish eggs It spawning (Ronnestad. 1992; Ronneswtet oJ., 1993). The

fAA pool also comprises a large portion of the local dry weight of newly spawned eggs. FAA

make up almost half of the dry weight of the haddock. (Melanogrammus aeglefinw) egg celts

lRiis-vestergaard, 1987) and 18% of the dry weight of Atlantic haJibut eggs (Fim et oJ.,

1991) and SW. of tile yoIkconstituems in marine: fish larvae are in the form of FAA (Fyhn..
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1989). Most of tile FAA pool art almost depleted when the larvae first start feeding.

In marine teleost fish, the spectrUm of FAA in the egg is very similar among spec;ies

l:xamined by Ronncstad (1992), since the FAA pool orig:inares from the breaking do'Mt of a

same yolk protein. phosvitin, which has a nearly conswu composition of amino acids.

However. as development proceeds. variation may occur since the FAA pool may be utilized

differently in differenc:e species.

1.2.2.2. FAA and protein as imponantenergy substrates in developing embryos and [8JVlIe

In adult tislt. protein (i.e. amino acids) plays a ptvoW role in energy production

(Mommsen & Walsh., 1992). As reviev.'ed by van Waarde (1983), with respect to their

primary sources of energy, fish appear to be quite differenl from mammals. In mammals,

carbohydrate is the major immediate substrate for energy production. and. excessive

carbohydrate is COO\-erted to Nt.; while in fish such as carp., dietary amino acids art 001 only

used directly for energy production. they are also the major prec;ursors for synthesis of lipid

and carbohydrate. During routine activity, the conmlMion of procein catabolism to energy

production is usually over 4QlI1o. and basal aerobic metabolism seems 10 be almost oomplelely

covered by protein catabolism. Carbohydrate is poorly utilized in fish. and seems 10 be used

mostly under anaerobic conditions. Under nanua1 conditions, most fislllive on a protein-ricll

carnivorous diet. and they art able 10 use ingested amino acids predominantly as an energy

source. One stlould not be surprised by this distinctive metabolic trait, since amino acids have

easy access to the tricarboxylic acid cycle following deamination to o.-keto acids (Fyhn.
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\990). From there they can either be catabolized to produce energy. or anabolized to

synthesize fatty acid or glucose. Fish eggs and yolk-sac larvae seem to have patterns similar

to those in adult fish for energy production. especially in those species without visible oil

globules in the yolk (Ronnc:stad, 1992; FiM et aJ., t99Sa, t99Sc). One of the differences is

that a significant amount of the amino acids catabolized is from the FAA pool rather than

fromPAA.

FAA are consistently depleted during the egg and larval stage till the end of yolk

resorption (Holleland & Fyhn. 1986; Mangor·Jensen & Fyhn, 1987; Fyhn, 1989; Ronnestad et

uf., 1993: Finn el ul.• I99Sa, 1995c), both for species with and without oil globules. The

majorities of FAA reside in the yolk., and need to be transferred to the embl)'o and larval body

compartment before they can be used. In species without oil globules (cod. halibut, and

lemon sole: Ronnestad, 1992; FiM et ai.• 1995a) the resorption of the FAA pool did not

occur until after the completion of epiboly when the syncytium layer is formed. The area of

the yolk S)1lcytiwn layer reaches its maximum and becomes equal to the yolk surface area at

completion ofepiboly. This tissue contains abundant mitoeOOndria and endoplasmic reticula

Therefore, it is believed to be the main site of metabolism during the early embryonic stage.

The rate of yolk resorption is a function ofthe surface area (Hemming & Buddington. t988).

In cod eggs, before epiboly is completed. the energy may come from the catabolism

ofcarbohydrate (Finn et ai. 1995al. No carbohydrate data for Atlantic halibut eggs has been

reported. Whyte el aJ. (1993) reported a continuous increase in total carbohydrate content in

Pacific halibut (Hippoglossus srenolepir) which ;s closely related to the Atlantic halibut

From after epiboly 10 hatch. FAA usually conmbutes more than 60% of the substrates used to
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fuel metabolism. After hatch. with the depletion of FAA. procein is carabolized to produte

.:nergy, still making amino acid (FAA+PAA) the dominant energy substr.uc (FYM &:

Serigstad. 1987: Finn et aI.• 1991: 1995a; 1995c). By measuring the total NH} production

(NH",Nl-L- in egg and larva plus NH)I'NJ-L- excreted to ambient environment) and O:!

conswnption. these authors conclude that: FAA and PAA are involved in aerobic energy

metabolism. while anaerobic metabolism. if present in the egg and liU'VllI stage. is not

important

In cod eggs that have just been spawned. essential amino acids (EM) complised

about 55% of the lotal FAA pool. nonessential amino acids (NEAA) comprised 45% (Finn et

al.• 1995a). With NEAA being used more rapidly than EAA. the composition changed such

that EAA% increasc:d and NEAA% decreased during egg and early larval stages (tim two

days post hatch) in cod (Finn f!t aI.• 1995a). By using the calculated value from FiM"s data

(1991) and Ronnestad's data (1992). a similar uend was found in halibut eggs and early

larval stageS. The trmd MS fC\'mcd as lim feeding approached. with EAA being used mort

rapidly than NEAA (Ronnc:Nd, 1992; FiM et aI.• 1995a).

Individual amino acids in the FAA pool decreased, with two exceptions: taurine

remained constant through all developnental stages studied, while phosphoserinei~

(Ronnestad, 1992). The timing and extent of the dc:creasc varies with different amino acids

and different species. Generally speaking, the most abundant amino acids are the ones most

used

Aside from energy production. a large portion of FAA is directed to protein symbesis

(Ronnestad f!t al.• 1993). FAA and PAA should not be viewed as two completely sepamcd
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amino acid groups and dynamic exchange between these two amino acid pools can not be

ruled out It is probably more appropriace to see protein as the storage form of FAA (Finn el

01.,1995a).

The use of FAA as prtCUBOrs for gluconeogenesis and lipogenesis in the egg and

larval stages has hardly been studied. Finn elol. (1995a) reported an increase of glyeogen as

well as glucose after epiboly in cod eggs, and attributes the increase to gluconeogenesis from

FAA. The significance of this metabolic pathway was not discussed In his reviews (1983,

1988), van Waarde included some reports on coupling of amino acid catabolism to fatty acid

chain elongation in perch embryos and adult carp under anoxic condition. and synthesis of

neutral lipid from injected glutamate.

1.2.2.3. The role of FAA in osmolality and buoyancy regulation

The FAA pool serves an osmotic function as it is being built up, i.e.• even before the

~gg is released. Significant amounts offAA in the eggs occur at the final maturation stage of

oocytes. shonJy befoo: ovulation (Thorsen el oJ., 1996). Phosphoprotein in the oocyte: is

~xtensively hydrolyzed, resulting in a dramatic exransion of the FAA pool (Cr;lik & Harvey,

19&4). The vitelline membrane becomes permeable to salt and water concurrently. This

increase in osmotically active molecules drives a massive uptake of water and K" &om the

extraeelluar tissue. The vitelline membrane becomes almost impermeable to water and

solutes upon spawning and fertilization (Potts & Eddy, 1973). The mechanism behind this

permeability change is still unknown.. The hydration process produces eggs with a volume



three to five times larger than the originating vttellogenic oocyte and a water content of 90­

94% (Thorsen et al., 1996; Craik & Harvey, 1987). The water reserroir in the eggs is the only

source of water needed for metabolism in the embryo before drinking is initiated, and more

imponantly, it enables embryos to cope wilh the small but inevitable osmotic water loss after

spawning (Riis--Vestergaard, 1987). Buoyancy is determined primarily by this high water

content (Craik & HaJvey. 1987).

In newly spawned eggs. FAA makes up about SOOIo of the osmolality ;n the eggs of

herring, marine and brackish waler cod and Atlantic halibut (Holleland & Fyhn, 1986;

Thorsen el ul.• 1996; Riis-Vestergaard, 1982). In an osmotic stress environmem such as

seawater. high intracellular ionic strength is needed. High concentrations of FAA (except

basic amino acids arginine and lysine) in marine fish embryos lIJl: more suitable to build this

high ionic strength than inorganic ions, because FAA will not penurb the fwlction of

macromolecules such as enzymes. Also since most of amino acids are zwitterionic at

physiological pH's.nansmembrane potential is mainwned(Yancey.u al., 1982).

As stated above. after activation of the development of the embryo by fertilization,

the FAA pool is continuously depleted during the egg and larval stage until the end of yolk

resorption. The depleted. FAA are catabolized as substrates that produce the energy needed

for development, maintenance. and homeostasis (Fyhn, 1989). or polymerized into body

protein. Smaller amounts of FAA are also used as precW'SOrs for the synthesis of nucleic

acids, glycogen, lipid. and some biologically active substances. By participating in these

metabolic processes. FAA are depleted and the total amount of osmolyle is decreased to

counteract the continuously decreasing yolk volwne and water loss (Riis·Vestergaard., 1982;



Ronnestad el aI.• 1993}. Despite: the waIer loss. the yolk osmolality ofhaJibut eggs and larvae

become even lower wbc:n development procc:cds. largely because of the sharply dccrcascd

concentration of FAA after hatch.

The major nitrogenous end product of FAA metabolism. NHy'Nl-L-. accumulates in

the yolk at the egg stage and decreases after hatching occurrs (FiM et al.. 1991; Fyhn &

Serigstad.. 1987). Before hatching, the e:tccssive inorganic osmolyte K" that has accumulated

before spa'Mting decreases (Riis-Vestergaard, 1982; ThofSen et aI., 1996). The accumulated

Nl4- is believed to substitule for this heavier ion, 50 that the density ofme eggs is dl::crQSClf

to increase the buoyancy (Tllonen et ai., 1996). The change of buoyancy may be irnponan:

for the developing egg and larva 10 ~choose~ a suitable depth in the water coIwnn where there

is the proper salinity, light conditions, temperatwe, oxygen concentration. and for feeding

larvae, ~ble food. The role of FAA and NHyNlL· as osmolality and buoyant substances is

especially important for the early developmental stages, when the orglW l't:Sp()mible for

osmolality and buoyancy regulation are not yet functioning.

Although there ~ reports of marine embryos Wing up small molecule nuaient:s

from the environment, due to the low permeability ofme vitelline membrane, those marients

taken up are quantitatively unimponam (Romesud, 1992). Thus one still can make: the

statement that the yolk is the sole nutrient resource fOf" the embryos and ~feedinB larvae.

For those species, such as Atlantic halibut, which have a prolonged pre-feeding stage,

efficient urilization ofthe' limited nutrient is crucial. FAA is a less efficient energy substrate

compami to lipid The combustion value is 21.00kJ/g for FAA, and 3S.S6kJ/g for lipid (Finn

et aI.. 1995b). However, its importance in osmolality and buoyancy regulation mayovmide
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its comparatively low efficiency in energy production.

1.2,2.4. End products ofamino acid metabolism: Ammonia and urea

(n adult· fish, ammonia is the principal end product of nittogenous metabolism.

although urea may comprise as much as 20-46% of total nitrogenous outpUt (Mommsen &

Walsh, 1992: Sayer & Davenpon, 1987; Wright et al., 1995). In fish, ammonia mainly comes

from the catabolism of protein and nucleic acids. Production of ammonia requires little

metabolic expenditw"e. and the end product un-ionized NH) is a small lipophilic molecule

that can diffuse easily across lipid membranes. As an ion, Nl-L~ is also substantially

permeable. NH) is highly toxic if accumulated in the cell. However. in fish eggs and larvae.

although NH, accumulated before hatching, NH) is trapped in the yolk that has pH<5

(ROMestad, 1992). [n mammals. the ornithine-urea cycle is the main route for W'tOgeneSis.

while according to Mommsen & Walsh (1992), urea production in adult fish is through

uricolysis following turnover of nucleic acids. AJthough this process has considerable

metabolic cost, the product, urea is a substance with no toxicity to the living organism.

Read (1968) found ornithine carbamoyltransfcmse and arginase activity in early

embryos of the dogfish (SqllQ/w suckJeyi) and the skate (Raja binocuJata), suggesting that a

functional omithine-urea cycle occurred in the early embryo stages of these two

dasmobranch species. Depeche et al. (1978) detected I~CO::! incorpoJation of urea in rainbow

Q"Out (5. gairdneni) embryos at a late stage. In a recent study Wright et aI. (I99S) found the

expression of carbamoyl phosphate synthetase and ornithine transcarbamylase (two enzymes
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in ornithine-urea cycle) activities in rainbow trout (Oncorhynchus mykw) after halch., aDd

these continued to increase until 17 days after the onset of first feeding. Adult liver enzyme:

activity ofthis species was sevcntl-fold lower.

As discussed above. the NH) contem of halibut eggs and larvae and its excretion 10

ambient water is well documented, but the production of urea has not been studied in

embryonic and larval stages of this species. Finn et al. (1995c) found that in halibut laJVae

after 14 days post hatch, the NH) value ca1cu1ared from FAA catabolism is slightly higher

than that actually detected; they annbuted this discrepancy 10 the formation of urea in liver.

since the liver is fully developed at this stage. [n embryos. urea was not taken into

considemtion (Ronnestad, 1992). Enzyme and iSOIOpe studies are needed so that definite

conclusions on this issue in halibut larvae can be dJawn.

1.3. Summary

It can be concluded from the above studies that both lipid (including fatty acids) and

amino acids (FAA and PAA) are extensively catabolized as energy substrates during

embryonic and pre-feeding larval sIageS of marine fish. The pattern of the catabolism may

differ among different species, but generally speaking, the most abundant compxacnt is

usually the one that ends up being used the most. In addition 10 energy production. both lipids

and amino acids are also actively involved in biochemical and biophysical processes. Free

amino acids are imponant factors in osrnoreguIation. (n-3)PUFA are involved in the

maintenance of membrane stability at low enviromnentaI ternpe13tures. (n-6)PUFA are
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preferred precursors for the synthesis ofeicosanoids which~ important signal transduction

chemicals in biological system.. These biochemical components arc important for the normal

functioning ofdeveloping embryos and larvae. but the correlation between these biochcmical

compositions and the viabtlity of eggs and larvae is poorty defined. The effect of

physiological condition ofbroodstock fish (age. ovulation rhythm. hormone leYel etc.) on the

biochemical composition ofeggs has been studied less than dietary factors.

L.4.0bjectives:

I. To investigate the cOtTelation between the quality of Atlantic halibut eggs and biochemical

composition.

1. To investigate physiological condition of broodstoc.k females thai. may affect the

biochemical composition ofeggs.

3. To investigate the changes in biochemical composition in different embryonic and Iarva1

"



Chapter 2. Ylaterials and Methods

2.1.ADimlls

2.1.1. Broodstock

All Atlantic halibut eggs were obtained from captive broodstoclc. The halibut were

kept in covered tanks with a diameter of 5 m and depth of 1.25 m. The temperature in the

tank was kept between 5·IO°C. The tanks were filled with a continuous flow of seawater

(70Umin) from Logy Bay. Newfoundland. The fish were fed herring, mackerel, squid,

anificial pellets and vitamin supplemcms twice a week except during the spawning season

(Danieletal.• 1993).

Spawning of the fish was predicted by monitoring the level of cstradiol-17j3 and

vitellogenin in blood (Methven et aJ.. 1992). Eggs and sperm were obtained by gentle

stripping of the fish. The eggs are stripped within 6 hours of ovulation (release of eggs into

abdomen) (Brown & Keough, 1994).

2.1.2. Detennination offertiliution success

To obseTVe the fertilization ofttle eggs., 3 mt of eggs with owrian fluid were mixed

with 10 ~l of milt. and seawater was added immediately. Fertilization was carried out

immediately after stripping of the eggs. The motility of the sperm was observed under the
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microscope before fertilization Fertilization success was determined by counting the number

of eggs that had successfully completed two divisions (4-ce1l stage) or three divisions (lk:ell

stage). To ensure the stability of the quality of the spenn, the milt used in fertilization was a

mixture of the milt from two males.

2.1.3. Rearing of larvae

Fertilized eggs were kept in 200 l upwelling incubators with a flow rate of 0.4-0.75

Vmin. The temperature was maintained at -5"C and the salinity at 34.6 %0. All incubators

were kept in the dark. About 1000 newly hatched larvae were IJ'llru;ferred to 5 petri-dishes (IS

em of diameter) containing filtered seawater with penicillin-G (60 mgfl) and strq:ltOmycin

sulfate (100 mgtL). The water was changed and dead larvae were rmlOved every two days.

All pelri-dish.es were kept in a dark cold room with a temperature of SOC. All larvae used in

this study were feeding endogenously. In \99'· 1993, viability of the larvae was dccennined

by the length of time <days) from just hatch to the time when 100% mortality of the larvae

occurred. In 1995, viability was dctennlnecl when 95% monality occurred.

2.2. Aoalye of biodtemiall COIIIpoDaIlS

2.2.1. Storage ofsamples

Eggs or larvae for lipid and fatty aeid analysis were rinsed and dried on soft tissue
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paper. stored in 10 ml vials containing 2 m.I ice co4dCHCI). The vials wm: filled with N2 gas.,

sealed with Teflon tape and S1Ora:Iat·2ffC until analysis.

Samples for procein and free: amino acid analysis were put into cryovials and saored in

a.20°C freezer.

2.2.2. Lipid e:macrion

Total lipid was elttraCted by the method of Bligh and Oyer (1959). A predctenn.ined

amount of ketone (3·hexadccanonc) was added inlo each sample as an intemal staneiard.. The

eggs or luvae were ground up using a glass rod, the rod was rinsed thoroughly with methanol

and chloroform (I: 1 vlv) after grinding. and I ml of distilled water was added. The vial was

then filled with N1 gas. scaled with Teflon tape and soniared in an ice wacer bIIh for J

minutCS. The vials were left in a ·2<tc Ii'ee:zer overnight. allowing the water and chklrofonn

layers to separate. The c:hlorofonn layer was uansfemd to a clean vial. filled with N2 ps and

storedat·20"'C until analysis.

2.2.3. Lipid class analyses

Lipid class analyses was canied out using an latrosean Mark V TI.CIFID analyzer

(Iatron Laboratories. Tokyo. Japan) (Parrish. 1987). The lipid extract was applied 10 silica gel

coated Chromarods-Sm (RSS Inc.• CA. USA) and developed in four solvent systems. After

being focused twice in acdOnl:; and conditioned in a humidity chamber for 5 minUlCS, the:
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rods were put into the first development solvent. hexane : diedl:yl ether : fonnie acid

199:1:0.05. vivlv). A double de\'dopment "'35 used to sepua1t the first group of Nt:

hydrocarbon. sterol. ester and ketone. After development. the rods v.ere partially scanned to

the position after the ketone: peak. The second group of NL \lIU'e~ in the second

solvent system. hexane :dicthyl ether : fonnie acid (80:20:'. vlvfv~ The rods wert developed

in this solvent system for 40 minutes, and the peaks of TAG. free fatty acids (ITA). akOOoI

(Ale) and ST were scanned. The peak of acetone mobile polar lipid (AMPL) was acquired

by developing in the third solvent. acetone. twice. for 12 and 10 minutes. respectively. To

separate the phospholipids PE, PC. and SM. the rods were focused in the last solvent,

chlorofonn : methane{ : water (70:35:3.5. v/vtv). conditioned in a humidity cbamber and

developed twice in this solvent for 35 and 30 minutes. The chromatograms of the four scans

were combined, and the area of each peak was calcWa&ed \LSing TSCAN DATA so~

(RSS Inc.• CA., USA). The peak of each component was identified by comparison with the

chromawgram of standards acquimi concum:mly with the samp&es. The relation belwccn the

weight of the lipid component on Chromarods and the area of the com::sponding peak

obtained was calibrated by applying kno'MI amount of swdanis on the Chromarod and.

canying out the development lI1IlXr the same conditions ali descnbed above. All the orpnK:

solvents used were from EM Science (Gibbstown. NJ. USA).

2.2.'1. Fatty acid analyses

The fatty acid compositions of three lipid classes PE. PC. and TAG wereanal~on
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a Hewlett Packard 5890 series ngas chromatography with a flame ionization detector (FlO)

lHewlen Packard, Palo AJto. CA, USA).

PE, PC and TAG were separated on silica·gel60 plates (Fisher. Fair Lawn, NJ. USA).

Lipid extracts containing -2 mg of lipid were blo\m dry under N2 gas and dissolved in 20 ].11

of chlorofonn : methanol (2:1. vlv) mixture. AJI of the sample was applied to the silica-gel

plate. dried and put into a development tank. PL were separated in chlorofonn : methanol:

acetic acid. fonnic acid: W8lCf (70:30:12:4:2. vivlvlv). NL were separated in hexane: ethyl

ether acetic acid (85:15:2. vlvfv). Standard TAG (uiolein). PC

(dipalmitolphosphatidylcoline) and PE (DL-o.-phosphatidylethanolamine. dipalmitoyl) were

also sIXlned on the plate 10 indicate the position of each. lipid class. The spots representing

TAG, PC and PE were scraped off inlO rransmethylanon vials, and hexane was added to

extract the lipid from the silica gel powder.

Fany acid methyl esters (FAME) were prepared by the official method of the

A.G.e.S. (the American Gil Chemists' Soeiety, 1989, Celb-89). 0.5 N NaOH in methanol

was added to the transmethylation vial containing TAG, PC or PE. The vial was then filled

with N~ gas, sealed and. heated at 10ItC for 7 minutes. After the vial was cooled 10 30 - 4O"C,

14% BFiMethanol (Pierce, Rockford, n.. USA) was added., the vial was filled with N2 gas

and h.eated again at 10000C for 5 minutes. FAME were extracted with hexane. The hexane

layer was taken out and dried under Nl gas. Extracted FAME were dissolved in 10 j.ll of

carbon disulfur (Fisher. Fair Lawn, NJ, USA), 0.2 jJ.1 ofme scHution was injected. in to the Ge.

The column used was a 30 m Supelcowax-IO with a internal diameter of 0.53 nun (Supelco

Inc., Bellefonte. PA, USA). The oven, injc:clOr and de1eaortemperanues were set at 20S, 225



and 225"C, respectively. Helium was used as the carrier gas (5 mUmin).

The peaks on. the chromalogram were idmtificd by comparison with a marine oil

FAME,;tandan! PUFA-I (2S mglml) (Mattoya Inc., Pleasant Gap, PA. USA, The wright

pelttntage of each fany acid ....lLS calcu1ated according to percentage of peak area using

Hewlen Packard Chern Station software.

All organic solvents used~ from EM Science, Gibbstown. NJ, USA; and all lipid

class standards were from Sigma Chemical Co., Sl Louis, MO, USA.

2.2.5. Protein assay

Total protein was analyzed by me method of Lowry (1951). BSA (I mglml) was used as

a standard. The ~ggs or 1arvae were homogenized in 0.$ N NaOH. The standard was

dissolved in 0.5 N NaOH. Bach the standan:I and the hornoserwe were healed at 8O"C for 30

minutes. Measurements were carried out on a LKB Biochem NOVASPEC 4049

spectrophotometer at 660 om.

2.2.6. Free amino acid and NH) analyses

The method for FAA analyses is adopted from Gorden & Comcct (1987). Halibut eggs

and larvae were homogenized in Hp. A known amount of AEC (S-2-amino ethyl-L-cysteinc

in HCI, Beckman. Fullerton, CA. USA) was added at this stage as internal swdard. The

homogenate was deproteinimd using 0.4 M perchloric acid. The sample was left at room
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temperature for 20 minutes. The mixture was then centrifuged at 12,000 g for 10 minutes.

The supernatant was separated, the pH was adjusted to 2.2 with 3N KOH, and mixed with

equal volume of lithiwn ciU1lte buffer with 0.3M Li~, pH 1.1 (Beckman. Fullerton, CA,

USA).

The contents of free amino acids and the level of NHJ was analyzed on a Beckman

121MB amino acid analyzer, using a Benson o.X8.15 cation exchange resin with a bed size

of200 X 2.8 mm and a single~lwnn·1hree-buffer method. Quantitation of the results was

achieved using a Hewlett Packard Computing lntegrator Model 3395 A (see Gorden &

Cornect... 1987 for details).

1.1.7. DIy weight...:1Sh content, and ash free dry weight

For measurement of egg dry weight, 10 eggs randomly selected from each balCh of

eggs spawned were dried overnight in a forced-air oven at 105 "C. Ash content was

determined by charring the eggs in a weighed clUCible over a Bunsen burner and then heating

in a muffle furnace at 550 "c Witil the ash had a white appearance (Srivastava et al., 1993).

Ash free dry weight was calculated from subtracting ash weight from dry weight

2.J.Statistics

Statistical analyses were performed using Minitab release IOXua (Minitab Inc., State

College, PA, USA). The normality ofdata distribution was tested using the Anderson-Darling



test. Significant differences were tested by single factOr analysis of variance (ANOVA).

Duncan multiple comparison test, or~ Student-t test. Prob&bility levels of5% and 1% were

taken as significant levels.
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Chapter 3. R......

3.1.1. General characteristics

The average: diameter of unfertilized Atlantic halibut eggs was about 3 mm. therefore.

the calculated volume of the egg was about 14 )11. The average dry weight (OW) of the

unfertilized egg was about 1.52 mg(Table I). Ash constinncd 9% of the OW. The volume of

the egg was significantly correlated with egg OW (n· 51. ( .. 0.431, P<O.OJ) and egg n. (n

~ 51. r-0.256. P<O.OI).

The sum of lipid. protein. and FAA made up about 88010 of OW and 96% ofthc ash

free dry weight (AFDW). Protein was the: most abWldam biochemical component in

unfertilized eggs, making up abouI6O% of OW. The: weight ofFM was a calcu1alcd. value

obtained by multiplying the a-mage molar mass of toW FAA per egg by an a\'aaBC

molecular weight of 130 Dalton (Fim el 0/., 1995). The resulting weight of FAA was aboul

one fourth oflhe total amino acid pool (FAA+PM). The totallipidaceounted for aboI.a 10-/.

ofOW.

3.1.2. Lipid classes and fatty acids

Pl and NL constilUlCd 76.7'/. and 22.9% oflhc total lipid ~vely(Table 2). PC
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Table I. Biochemical contents of unfertilized Atlantic halibut eggs. Eggs were from two

brood stocks (OW: dry weight: AFDW: ash free dry weight: FAA: free amino acids; S.D.:

standard deviation).

spawning season sample size mean
(l;1g!egg) S.D. OW%

OW 1993-1995 n=23 1522.6 120.8

AfDW 1993-1995 n~22 1393.7 117.3 91.5

Ash 1993-1995 n=22 139.9 50.0 9.2

Lipid 1993-1995 n=25 154.4 27.9 10.1

FAA 1995 n~10 287.3 43.2 18.9

Protein 1994-1995 n=12 898.3 94.5 59.0
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Table 2. Lipid classes ofunfenilized Atlantic halibut eggs. Data are average of25 batches

of eggs of two brood stocks spawned from 1993 to 1995 seasons. and for each batch. a

sample of 15 eggs are selected. (TAG: ttiacylglycerol; ST: sterol; PE:

phosphatidylethanolamine; PC: phosphatidylcholine; SM: sphingomyelin: NL: neutral

lipids; PL: polar lipids: Wt: weight; S.D.: standard deviation).

mean (l:I&'egg) S.D. mean (Wt%) S.D.
TAG \8.5 2.7 12.2 I.l

ST 13.9 2.1 9.3 1.6

PE 14.8 4.8 9.8 2.4

PC 91.0 \9.1 60.2 4.\

SM 9.4 1.6 6.5 1.2

rNL 34.1 4.9 22.9 2.9

r PL 118.8 23.8 16.1 2.1

Total \54.4 28.0
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was by far the largest component among all the lipid classes present in unfertilized eggs.

accounting for 6Q0/., of total lipid. TAG was the largest NL and the second largest ofall lipid

classes ([ 2% of Iota! lipid). The amowlts of ST and PE were about the same (9% of total

lipid). SM was about 6.5% of Iota! lipid In addition to the lipid classes mentioned above.

hydrocarbon and AMPL could also be detected in some samples. The amounts of these two

quantitatively unimpor.am lipid classes were about 0.2 and 2.51li'egg respectively.

The fatty acid compositions (Wtolo) of PC, PE and TAG were determined separately.

Sevenleen batches of eggs produced during 1994 and 1995 spawning seasons were used.

Allhough lhe fany acid profiles of the three lipid classes were different tFigure I), they shared

some similarities: 16:0, 18:I(n-9) and EPA+DHA were the most abwtdant fatty acids in each

of lhe saturates, monoenes and polyunsaturates categories. In PC, saturaleS were the major

comJXments (56% of PC fany acids), the levels of PUFA (21% of PC fany acids) and

monoenes (17% of PC fany acids) were similar. In PE fany acids, total saturates were slighlly

higher than monoenes, but their levels were very close (38% and 33% respectively). Polyenes

were 23% of PE fany acids. Among TAG fany acids, the levels of monoenes, saturates, and

polyenes were about 48%, 35%, and 13% respectively. The (n-3Y(n.6) ratios in PC, PE and

TAG were 10.5, 14.6, and 4.5 respectively. PE had the highest percentage of (n-3) PUFA

(about 20%) among the three lipid classes (Figw-e 1).

3.1.3. Free amino acids

Total free amino acids were about 2300 nmoVegg (Table 3). Using the calculated egg

36



Figure I. Faay acids profiles of PC, PE and TAG in Atlantic halibut eggs.

Each bar represents the average ± S.D. of 17 batches of eggs produced. by two females

during the 1994 and 199.5 spawning seasons. For each batch. triplicates samples of 1.5

eggs were collected randomly.

PC: phosphatidylcholine: PE: pbosphatidylethanolamine: TAG: triacylglycerol: SAT:

saturated fatty acids: MUFA: monDlU'tSanuated fatty acids: PUFA polyunsaturated fatty

acids: S.O: standard deviation..
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T:1ble 3. Free amino acids in unfeniliz:ed Atlantic Halibut egs. DaI.a arc means of 10 bacches of
eggs produced by two brood Slocks in 1995 spawning season. for each balch. a sample of IS or 30
eggs ate randomly selected. (EAA: essenriaillUino acids: SEAA: nonessential amino~ FAA:
free ammo acids: S.D.: standard de\-iabon).

<moll... mol"

SO SO.

EAA
Threonine 95.13 14.SO 415 016

Valine 162.02 2.3.18 7.06 023

~tetluonine .. 22 782 2.63 011

Isoleucine 120.56 18.49 526 0.25

Leucine 237.23 35.62 10.34 0.37

Tyrosine 51,60 926 2.25 0.10

Phenylalanine 52.12 ... :.27 0.09

l~'sine 19717 29.83 8,59 0.26

Histidine 40.86 66' 17' 014

Arginine 9454 15.05 4.12 OIS

;.rEAA

C~"5teicacid&Phosphoserine 7.10 117 0.31 002

Twrine 67.17 10.11 Z,93 0.11

.o\s.puticacid 11..2 15.31 '" 0.30

S<ri~ 26915 -12.17 11.73 0.48

A<p4n'" 9118 16.12 4.27 0.49

Gllllamicacid 144.25 21.3) 629 0.10

Glutamine I3SS2 IUS 5.91 037

Proline 65.79 11.95 2.87 0.26

G1~ne 7921 12.23 HS 0.1.

Allfline 221.59 34.S) 966 0.41

a-;r.miooburyricacid 0.61 016 OOJ 0.01

Cysteine 3.04 1.19 0.13 0.05

Tryptoplwl 10.33 2.49 0.45 006

!::EM 1111.45 166.42 48.45 136

!::NEM 1182.70 179.62 5US 10'
!::FAA 2294.1-1 J4s.n

NH, 4492 13.19
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volwne (14 Ill). the concentration of FAA was about 160 mM. FAA were distributed almost

equally between essential amino acids (EAA) and nonessential amino acids (NEAA1.

although the amoUni of the latter was slightly higher. Leucine. lysine. valine. and isoleucine

(in descending amounts) comprised 65% of essential free amino acids. Serine. alanine.

glutamine. and glutamic acid (In descending amounts) constituted about 70% of the

nonessential free amino acids. In unfertilized eggs. NHi was a comparatively minor

component accounting for 45 runoVegg. Urea was not detectable.

3.2. Egg biocbemical composition in rellltioa. 10 rt:rtiliZlltioD success aDd Ia",al viability.

For Atlantic halibut eggs, a fertilization success :<!: 75% usually indicates a IUgh egg

quality. while a percentage lower than 75% indicates poor egg quality (Dr. J. A. Brown.

Ocean Science Centre. Memorial University of Newfoundland, personal communication). To

find quantitative differences in the biochemical components of bener eggs and of poorer

eggs. the biochemical contents of the unfertilized eggs that gave IUgher fertilization success

(:<!:75%) was compared with those that gave lower fertilization success (<75°/,).

Larval viability was detennined by the survival time of unfed larvae, i.e.• the length of

time between hatclUng and 1000/, monaiity. The average: sW'Vival time was l.S.9 days. Lower

larval viability was defmed as a sW'Vivai time shaner than 15.9 days, while a survival time ~

15.9 days was defined as IUgher viability. The biochemical compositions of unfertilized egg.-;

that subsequently fertilized and produced higher and lower viability larvae were compared.

Lipid classes data was obIained from eggs produced from the 1991 to 1995 spawning
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seasons, and fatty acid data were collected from eggs produced in the 1994 and 1995

spawning seasons.

In order to accentuate differences between ··better" and "poorer" eggs, the same data

sets were also examined statistically after removing the middle third of the data set when

ordered according to fertilization success or swvival time. However, the comparison of lipid

class and fany acid data between the upper 1/3 and lower 1/3 showed similar results., as did

the comparison between the upper 112 and lower 112 of the data sets.

3.1.1. Lipid classes and fatty acids

As shown in Figure 2, the .:ggs with a higtler fertilization success had significantly

lower $T (16.77:, 5.10 J..LWegg verSUS" 20.311: 5.78 ~egg, P<O.05) and Nt (40.00 1: 10.00

lJ8Iegg versus 49.10: 12.80 ,ug'egg, P<O.OI) than those with lower fertilization success rates.

Among TAG fatty acids (Figure 3a) in ··better" eggs, there was a significantly higher

level of ~(n~) PUFA (P<O.05), and a significantly lower level of 16:1(n-7) (P<O.05)

compared to "poorer" eggs. Of the PE fany acids., 20:5 (n·3) was significantly higher

(P<0.05) in "bener" eggs than in "poom-" eggs (Figure 3bl, while 14:0 was significantly

lower in the fanner than in the latter (P<0.05). PC fatty acid profiles between "'better" and

"poorer" eggs were not significantly different (P>O.05). The molar mass of individual fatty

acids in total lipid was calculated by adding the molar mass ofeach fatty acid in PC, PE and

TAG. "Better" eggs had a significantly higher molar mass of 18:1(n~) (ronal) in total lipid,

and a significantly lower 14:0 than "poorer" eggs (Figure 4).



Figure 2. Comparison of lipid classes in Atlantic halibut eggs with fenilization success

above and below 75% (n = 19, n '" 33, respectively)

Each bar represents the average:: S.D. of measurements on on" batches ofeggs. For each

balch. triplicate samples of 15 eggs were selected randomly

TAG: triacylglycerol; ST: sterol; PE: phosphatidylethanolamine; PC:

phosphatidyicholine; SM: sphingomyelin; TNL: total neutral lipid: TPL; total polar lipid:

TI: total lipid: S.D.: standard deviation.

.. P<O.05, .... P<O.OI.
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Figure 3. Comparison of TAG and PE fany acids in Atlantic halibut eggs with

fertilization success above and below 75%.

la) Comparison offany acids in TAG (n=ll, n=6, respx:tively). (b) Comparison offany

acids in PE (n=11, n=6, res~tively). Each bar represents the average =-5.0. of "n"

batches ofeggs. For each batch. triplicate samples of 15 eggs were coll~ted randomly.

TAG: triacylglycerol: PE: phosphatidyle1hanolamine; Fert fertilization; SAT: saturated

fany acids; MUFA: monounsaturated fany acids: PUFA: polyunsaturated fatty acids; S.D.:

standard deviation.

• P<O.05,·· P<O.OI.
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Figure 4, Comparison of the sum of the principal fany acids in r (TAG+PC+PE) in

Atlanlic halibul eggs with fenilization success above and below 75% (n-II. n-16.

respectively).

Each bar represents the average ~ S.D. of ~n" batches ofeggs. For each batch, triplicate

samples of 15 eggs were collected randomly.

PC: phosphatidylcholine: PE: phospharidylethanolamine: TAG; triacylglycerol; SAT:

sarurated fany acids: MUFA: monounsatunlCd fany Kids; PUFA polyunsannted fany

acids: 5.0: standard deviation.

• P<O.05.
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As sho n in Figure: 5, the eggs that prodlliCed larvae with higher viability contained a

significantly IO 'eI" (P<O.05) amown ofTAG (20.80 ± 4.04 lJIIegg) than eggs that produced

less viable larvae (24.25 ± 3.69 ~egg). No significant differences were found in fany acid

compositions in higher viability eggs and lower viability eggs, presumably duc: to insufficient

larval viability data in the 1994 and 1995 spa.....ning season.

When lipid classes data was expressed as a percentage of egg dry weight, results were

similar as those expressed as ~egg.

JJ. Condicion or broodslode. and varililioo ia biochemical composilioa orcas

3.3.\. Food intake ofbroodscock and total lipid in eggs

The lipid and dry weighl of eggs from one fish ("Aj were followed in 5UtCeSSive

spawning~ from 1991 to 1995. The samples in 1991 and 1992 were fertilized eggs,

while the samples from \993 to \995 splW1Ung seasons were W'lfertilized eggs. Lipid c1asscs

in fertilized eggs were noc: significantly different &om those in unfertilized eggs (data nol

presented). Food intake of the: broodstock was expressed as percentage: of body weight per

day.

Atlantic halibut usually spawn in late winter and early spring (i.e., from December to

March). therefore. the biochemical composition of the: eggs produced in a specific s~wning

season may be affected by the food intake of the broodstock during the previous year. The

food intake offemale "A" decreased continuously from \990 to 1992. In 1993. there was a

..



Figure 5. Comparison of lipid classes in Atlantic halibut eggs that produce larvae with

higher and lower viability (n""19, n""18 respectively).

Each bar represents the average :: S.D. of "n" batcltes of eggs. For each batch, triplicate

samples of 15 eggs were collected randomly.

TAG: trlacylglycerol; ST: sterol; PE: phosphatidylethanolamine; PC:

phosphatidylcholine; SM: sphingomyelin; TNL total neutral lipid: TPL; total polar lipid;

n; total lipid; S.D. standard deviation.

•• P<O.OI.
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large increase of food intake compared to 1992. Food intake decreased again in 1994 (Figure

6al. The variarion of dry weight of eggs produced in 1991-1995 shared a similar trend with

the change of food intake in 199()..1994 (Figure 6b). The lipid content in eggs decreased

concurrently with egg dry weight from 1991 to 1993 (Figure 6c). The increase in egg dry

\veight in 1994 following the elevated food intake level in 1993 was not accompanied by an

increase in egg lipid. On the contrary, the total lipid content continued to drop in 1994. The

increase in egg lipid was delayed Wltil 1995, despite the decrease in food intake in 1994

(Figure 6c). Despite the variation of food intake. the body weight of female "A" increased

continuously from 1990 to 1994 (Table 4).

3.3.2. Spawning rhythm and biochemical composition ofeggs

Atlantic halibut is a multi-batch spawner, usually producing several batches ofeggs in

a spawning season, thus the variation of biochemical composition of eggs from different

batches over the spawning season was investigated.

As presented in Figure 1, the AFDW of eggs decreased over spawning seasons (n ..

23. P<0.05). There was also a strong negative correlation (n = 12, P<O.OI) between the

protein content of the unfertilized eggs and time since the first batch was suipped (Figure 8).

No significant correlation was found between lipids or FAA and the time ofbatch stripping.

Although variation of lipids did not show a consistent trend over the spawning season,

some fany acids did change. 18:0 and AA in TAG (Figure 9a, b) decreased continuously over

the season (n "" 14, P<O,OI; n "" 6, P<O.OS respectively). Total (0-6) PUFA level (Figure 9d) in

"



Figure 6. Changes in dry weight and total lipid content in Atlantic halibut eggs in relation

to food intake ofbroodstoek fish.

(a) Variation of food intake of broodstock fish in successive years, (b) Variation of

average dry weight in eggs over successive spawning seasons, (c) Variation of average

total lipid in eggs over successive spawning seasons.
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Table 4. The body weight, food intake and fecoundity ofbroodst()(;k "A". (BW: body

weight: S.D, standard deviation).

Body
__~~ _~_~~~t(K~)

Food intake
Mean(BWO/O/day) S.D.

No. of
batches

Total No. of
eggs

1990 43.90 1.51 0.46

1991 45.82 1.23 0.33 354,750

1992 47.90 0.67 0.20 623,700

1993 50.04 1.48 0.39 229.350

1994 58.07 1.23 0.35 178,860

1995 330,000
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Figure 7. Changes of AfDW in unfenilized Atlantic halibut eggs over the spl"""ing

The suaight line represents the linear regression (y - 1.462-o.0073x. n "" 23, r - 0.176,

P<O.05), the doned lines are the 95% confidence levels. The open symbols are data from

eggs produced by broodstock female"An, solid symbols are data from eggs produced by

broodstock female -or. Circles are data froml993, squares are data from 1994, and

mangles are data from 1995.
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Figure 8. Changes in protein content in different batches of unfertilized Atlantic ttalibul

eggs over the spawning season.

The straight line represents the linear regression (y" 986.001-9. 148x. n" 12. ~ .. 0.554,

P<O.O I), the dotted lines are the 95% confidence levels. The open symbols are data from

eggs produced by broodstock female ""A". solid symbols are data from eggs produced by

broodstock female "J". Circles are data from 1994. squares arc <fu.a from 1995.
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Figure 9. Changes in fany acids in unfertilized Atlantic halibut eggs over the spawning

(a) 18:0 in TAG (Regression: y "" 2.514 - 0.105x. n=(4. ~=O.617. P<0.05), (b) 20:4(n-6)

in TAG (Regression: y'" 0.0968.0.0032". n-6. rsO.832. P<0.05), (c) 16:1(n-7) in PC

(Regression: y = 9.738 + 0.486x, n=14. r=O.402, P<0.05), (d) !(n-6)PUFA in PE

(Regression: y = 1.27 - 0.0376x, n:.15, ,"=0.327, P<0.05). The straight line represents the

linear regression. the dotted lines are the 95% confidence levels. The open symbols are

data from eggs produced by female broodstoek "A", solid symbols are data from eggs

produced by female broodstock "J". Circles are data from 1994, squares are data from

1995.
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PE also detreased (n=IS. P<O.OS). 16:1(n-7) in PC (Figure 9c) showed a significant increase

over the season (n z: IS, P<O.OS).

3.3.3. Manuity of the broodslock and lipids in eggs

As indicated in Figwe 10. the fertilization success of repeat spawner eggs (68.8 ::

17.2%. n = 37) was significantly tugber (P<O.OS) than that offim-time spawner eggs (50.9::

27.2%. n:: IS).

In order to observe the effect of maturity of broodstock females on lipid content of

eggs. the lipid classes of unfertilized eggs produced by three first-time spawners and (W()

repeat spawnm in different years were compared (Figure II). Repeat spawner eggs

contained significantly lower (P<O,OS) amoWltS of ST (18.0 .:: S.4 ~egg, n=36) than first­

time spawner eggs (22.2 ±6.8 J.l&'egg. n=16). Total NL in eggs from repeat spawners (42.8:­

11.1 ~egg. n=36) was signifitantly less (P<O.OJ) than in eggs from flJ'St-time spawners

(53.9! 13.8 ~egg, n=16). Repeal spll'Mler eggs contained a significantly higher amowrt of

PE (IS.5,± S.2 ~egg. n=\7) than first-time spawner eggs (12.1 ± 1.91-li'egg, n:5). When

lipid classes were expressed as a percentage ofegg dry weight. similar results were obtained

No significant differences were foWld in other lipid classes.

3.4. Cbanges in b~bemiall COlllalt dariag devdopmeat ofeat aDd larvae

Changes in biochemical content in Atlantic halibut eggs and larvae over six

61



Figure 10. Comparison of fenilization success of Atlantic halibut eggs from first-time

spawners and repeat spawners (n = 16, n =36 respectively).

• P <0.05.
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Figure \ I. Comparison of lipid classes in Atlantic halibut eggs produced by repeat srawners

and first-time spawners (n=36, n=16, respectively).

Each bar represents the average :: S.D. of "n" batches of eggs. For each batch, triplicate

samples of 15 eggs were collected randomly.

TAG: triacylglycerol; ST: sterol; PE: phosphatidylethanolamine; PC:

phosphatidylcholine; SM: sphingomyelin; TNL: total neutral lipid; TPl; total polar lipid;

TL; lotallipid; S.D.: standard dev1ation.

• P<O.05, •• P<O.Ol.
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developmental stages were investigatod. These stages were: unfertilized (samples were

collected immediately after SlMwning). fertilized (eggs were fertilized within 8 hours after

spa",ning). half-way to hatch (112W) (samples were collected at 7 da)'5 post feniliDtion)'just

hatched larvae lhatetUng usually look place at 14 days post fertilization), 7 days post hatch

\DPH) and 14 DPH.

Lipid and AFDW data of eggs and larvae in different developmental SlagCS were

obtained from samples produced in the 1993. 1994, and I99S SJMwning seasons. Protein and

fany acid data were obtained from samples in the 1994 and 1995 spawning seasons. Free

amino acid data were from the samples in the 1995 sp8Wlling season.

3.4.1. Ash~ dry weight and the sumofpnMein, FAA and lipid

Both AfDW and I(proIein ... FAA - lipid) were used to approlfinwe the toW

biochemical contents in the eggs and larvae. Analysis of variance (ANOVA) indi<::ate:s that

both AFDW (P<O.OS) and ~\_in + FAA + IipHl) (P<O.OI) dccr<ascd lhrotlg!lout the

developmental stageS investigated (Figure 12~ The steepeSt decrease occurred from '1la.If­

way 10 hatch"' stage: to hatching. The discrcplncies of AFDW and I(protein ... FAA + lipid) at

stages II2W and 14 DPH may be caused by the different sample sizes used.

3.4.2. Lipid classes

The changes in each major lipid class over the developmental stages are shown in

..



Figure 12. Changes in AFDW and !(protein'" FAA + lipid) in developing Atlantic halibut

eggs and larvae.

Circles and solid line represent the changes of AFDW, squares and dotted line represent

the changes of ~(protein ... FAA ... lipid). Open symbols represent egg stages. solid

symbols represent larval stages. Each data point is the average ± S.D. of "n" bathes of

eggs/larvae. For eactl batch., triplicate samples of 10 or 15 individuals were collected

randomly. For the AFDW data. 0-16 at the unfertilized. stage, n-17 at the fertilized stage.

0=12 at the half-way to hatch stage, 0=11 at hatch, n=8 at 7DPH, n=4 at 14DPH. For the

!:(protein+FAA+lipid) data. n=8 at the unfenilized stage. 0=8 at the fertilized stage, 0-3

at the half.way to hatch stage. 0=4 at hatch., n"2 at 7DPH, 0=2 at 14DPH.

AFDW: ash free dry weight; S.D.: standard deviation: DPH: days post hatch; indiv.:

individual.
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Figure 14 and 15. As indicated in Figure 15 (a), PE decreased in the 1/2W stage compared to

the fenilized stage (P<O.05), making it the only lipid class to decrease in the egg stages (i.e.

among unfeniHzed. fenilized, and II2W stages). No differences (P>O.05) were found in other

lipid classes before hatching occurred. Each lipid class except: ST increased (p<O.05) from

L'2W to hatching. After hatching, TAG decreased (P<0.05. Figure 14al, and all other lipid

classes showed a decreasing trend. except for PE and SM. As one would expect, the change of

total lipid showed the same panern (Figure 13). Total lipid increased about 25.5 }.l8 in larvae

at hatch compared to egg at II2W stage. After l\atching, total lipid decreased. but it is not

significant IP>O.05)

3A.3. Fatty acids

Total saturates In TAG at hatch stage were higher (P<O.05) than during the egg

stages, i.e. unfertilized, fenilized, and half way to hatch. Total saturates in TAG did not differ

{P>O.05) in the larval stages investigated (Figwe 16). In TAG, two saturates 16:0 and 18:0

changed over the developmental stages. At hatching, TAG 16:0 was higtler (P<O.OS)

compared to the level in all other stages. 18:0 was higher (P<O.OS) at 7 DPH than. at

fertilization.

3.4.4. Protein

Total protein content of eggs and larvae was measW'ed (Figure 18). Pnxein content
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rigwe 13. Changes in total lipid in developing Atlantic halibut eggs and larvae.

Open circles represent egg stages, solid circles represent larval stages. Each data point is

the average:!: S.D. of"n" batches of eags/larvae. ror each batch. triplicate samples of IS

individuals were collected randomly. Data points without the same letter are significantly

different (P<0.05). At the unfertilized stage (day 0) n"'17, at the fertilized stage (day 0.3)

n=17, at the half-way to hatch stage (day 7) n-12, al hatch (day 14) n=II, at 7DPH (day

21) n=8, at 14DPH (day 28) n=4.

S.D.: standard deviatio"l.; DPH: days post hatch; indiv. individual.
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Figure 14. Changes in neutral lipids in developing Atlantic halibut eggs and larvae.

(a) TAG, (b) ST. Open circles represent egg stages, solid circles represent larval stages.

Each data point is the average:: S.D. of '"n" batches eggsllarvae. For each batch.

triplicate samples of 15 individuals were collected randomly. Data points without the

same letter are significantly different (P<O.05). At the unfertilized stage (day 0) n=17, at

the fertilized stage (day 0.3) 8""17, at the half-way to hatch stage (day 7) n=12, at hatch

(day 14) n=ll, at 7DPH(day 21) n=8. at 14DPH(day 28)n=4.

TAG: triacylglycerol; ST: sterol; S.D.: standard deviation; DPR days post hatch; indiv.:

individual.
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Figure IS. Changes in polar lipids in developing Atlantic halibut eggs and larvae.

(a) PE. (b) PC. tcl SM. Open circles rept'eSeIlt egg stages, solid circles represent larval

stages. Each data point is Ihe average:: S.D. of "n" batches of eggs/larvae. For each

batcn, triplicate samples of 15 individuals were collected randomly. Data points without

the same lener are significantly different (P<O.OS). At the unfeniliml stage (day 0) n-11.

at the ferolized stage (day 0.3) p17. althe half-way to halCh sage (day 7) n-12. at batch

(day 14) n=ll. al mPH (day 21) n""8.11 14DPH(day 28) n:z4.

PE: phosphatidylethanolamine: PC phosphatidylcholine: SM sphingomyelin: S.D.:

standard deviation; DPH: days post balCh; indiv.: individual.
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Figure 16. Changes in total saturated fatty acids in TAG in developing Atlantic halibut

eggs and larvae.

Open circles represent egg stages, solid circles represent larval stages. Eaclt data point is

the average!. S.D. of"o·' batches of eggstlarvae. For each batch.. triplicate samples of IS

individuals were collected randomly. Data points without lite same lener are significantly

different (P<0.05). At lite unfertilized Stage (day 0) 0=17, at lite fertilized stage (day 0.3)

"'"'16, at the ha1f·way to hatch stage (day 7) 0=12. at hatch (day 14) n=ll, at 7DPH (day

21) n=8. al 14DPH(day 28) n=l.

TAG: triacylglycerol; S.D.: standard deviation; OPR days post hatch; indiv. individual.
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declined (P<O.OS) from unfenilizedeggs 10 halching stage. with a total of 133.2 J.l& ofprotein

being lost After hatching then: was an incr=sing trend wtUc:h was not significanl: (P>O.OS).

3.4.S. Free Amino Acids

Tolal fiee amino acids (FAA), total essential frte amino acids (EAA). and toW

nonessential free amino acids (NEAA) were continuously depleted throughout the

developmenlal stages (Figure 17 & Table S). About SOO!e of the FAA in unfertilized eggs

disappeared when the 14 DPH stage was reached. However. the depletion was not significant

until alter the ll2W stage. As indicated in Table S and Figure 17, the depletion of FAA did

nol occur equally among the EAA and NEAA; NEAA was more utilized than EAA Of the

depleted FAA... 57.90'/. was NEAA. this pero:ntage: was higher dian the original molar

percentage (SU%) ofNEAA in FAA of unfertilized eggs (Table 3). All amino acids in the

EM category dccteascd (ANOVA, P<O.OI~ The most dcpIClCd EM (in a des«ndinc order

ofdepletion) were leucine, lysine, arginine, and isoIeucioe (Table S). Mostofthc: amino acids

in the NEAA group dccteascd (ANOVA, P<O.OIl, excepl_a~ ICid,

cysteine and ttypeophan (ANOVA, P><l.OS~ The most dcpIClCd NEAA (in cies=din& order

ofdepletion) were serine, alanine, g1U1amM: acid, and glutamine (Table S).

3.4.6. Ammonia and urea

Compared to the value reponed by Finn et aI. (1991), NH) was low in unfertilized



Figure 17. Changes in free amino acids in developing Atlantic halibut eggs and larvae.

Open symbols represent egg stages, solid symbols represent larval stages. Circles are total

free amino acids. squares are essential amino acids, and triangles arc nonessential amino

acids. Each data point is ,he average :: S.D. of "n" batches of eggsllarvae. For each batch.,

15 or 30 individuals were collected randomly. At the Wlfenilized stage (day 0) n-IO, at

the feltilized stage (day 0.3) n-IO, at the half-way to halCh stage (day 7) n-5, at halCh

(day 14) n=6, at 7DPH (day 21)n=4, at t4DPH (day 28) nz4.

FAA: free amino 8(id.$; NEAA: nonessential amino acids; EAA: essential amino acids;

S.D.: standard deviation: DPH: days post hatch; indiv.: individual.
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Table 5. The changes or free amino acids over dt:vdopmenlal slages. Samples an: from 10 balches of eggs produced by lwo brood
slocks in 1995 spawning season. For each balch, a sample or 30 or 15 indi\'o were collecled randomly. (EAA: essentiul amino acids:
FAA: free amino acids; NEAA: nonessenlial amino acids; 112W; hiM-way 10 hatch; 7DPH: 7 days POSI haleh; 14DPH: 14 days POSl
halch; S.D.: standard deviation; indi\'.: individual.' Proponion ufthe lolnl FAA decrease.)

Unrcrtiliad fCflil.ad I/IW H'" lOPII I~ DPIt
M~ SO. M~ S.D. M,. SO M~ so M'M so M~ so 4FAA ~~fAA'

EAAlnmollindiv)
Thr~ne '" ,.. W" ." IOU 111.$ lU OIl ." III lSl I,' .liOU "Valine 1620 2J9 "" n, 1S6,3 23.1 IH3 ". IIIl 12.3 11121 '0 .$'JII "Mcthioninc 60.2 " '1< 7.' ... 2" .11 " 7" '.2 ", .. .H3 2.l
Isoleucine 120. 11,$ I2U.I 17' 109.') 19(, 9U '" 7" '" '77 67 ~" ..,
l.cucine 231.l )$.6 23$1 2,. 13S.6 '10 IIIll '" 1121 20l '" "0 .I·UO ,..
TyrosillC '16 " $2,S " '2,6 10' SO,I " '" '.0 "' 2.' -2311 ,.,
Phenylalanine ," '.0 BJ ,., $1,4 ,., 4S.2 " ". .., ", )) ·27.3 "Lysine 1\11.2 29.' 199.1 26.) 116.' 11.0 ISS $ 2UI '09' 110 '61 10.6 .121) I.'
lfiSiidine 40,9 66 42.1 6l .06 .. 31,9 ,. 11.1 l.l 12,3 " .21.6 I.,

" Arginine 940$ !S.U '" ,.. 110.1 '" 6U " n.\I '.l 21.6 l.' ·129 ..
'EAA 11114 166,4 1122.7 147) 1063.0 202.6 .1113 1114 ..,. '" 4702 '46 0641.2 42.1
NEAA(MIOIIind,v)
CYllcic acid It. " I.' 7.l I.l ,., Il II '" II 0.7 ,., 0.1 ".6
.......,..,.,n~

TlMlrinc 612 10' 6Il " 700 ,)) 61.1 III 4 ".. II 7l' '16 II .US

"&pIJ1iclcid III .• ID '" 14.1 11.1 '" '" 100 211-l ,., 19,' " .fIt\l ..
S<ri~ 26'11 '" 26\1] '" "" 41.9 111.OJ 1I0 60. 19.2 llO III _231.1 '""'p....gine \ll,'} '" '00' "' '}..~ ",7 67' to, 16.2 " 1.0 1.7 -'X,'J 6.'
(ilullmic.cid IH,] 21.3 I.... 211 .9.11 M' \lS.2 '" '" '.0 m 21 ·1Jl.ll 1,'1

GlulJrninc m, '" 14H 207 IH.1 1\1.1 91.11 ". '" 77 177 .., .97M ..
Protinc 6S.' 12,0 ,.. ," 76,~ '69 .., 10' 77' 14' 211 " ·377 H
Glycine 19.2 12,2 '" '" 11.1 IU 61.4 SO Jill ,.. 211 6l .$64 l.'
""nine 221.6 '" 2235 l49 2124 lSl ISH 2" "., ",$ '" 'J.D ·174.0 '"o-JrIIino 02 .. "' 06 U Il '.2 II .. 0.' U OS 10 ""·bulyric:acid
CyJlcine l.o Il 30 10 " " l.' ,., 2.' Il " U.1 ·(12 11.0
TrypcophJn 10.3 ,., '"' II ,.. 1I '.l II I.' II '.0 16 ·OJ 0.'
tNEA" 11112.7 1~,6 mo.o Ui,1 112G.3 2lU 121.9 119.7 4262 69.' 301.9 ..., .110.1 !I7.'J
[FAA 2Z'J~ I 3UI 2312.7 )117 2113) 4231 111$2 BOI 101.,6 162,2 7722 '" .1$1211



Figure 18. Changes in total protein in developing Atlantic halibut eggs and larvae.

Open symbols represent egg stages. solid circles represent larval stages. Each data point

is the average::. S.D. of "n" batches. For each batch. a sample of 15 or 30 individuals

were collecled randomly. Data points without the same lener are significantly different

(P<0.05). At the unfertilized stage (day 0) n"'12. at the fertilized stage (day 0.3) n=ll, at

Ihe half-way to hatch stage (day 7) n=IO, at hatch (day 14) n~. at mPH (day 21) n"'3, at

l·mPH (day 28) n=2.

S.D.: standard deviation; OPH: days post hatch; indiv. individual.
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eggs and at fertilization (about 45 nmol), but was continuously increased during the egg

stages (Figure 19). The contem ofNHl at hatch was about 6 fold higher than in unfenilized

eggs. After hatching, NHl did not change (P>O.05). Only in vivo NH1 was detected, NHl

excreted to the outSide \vas not measmed. Urea was ROC detectable in any of the six.

developmental stages investigated.

3.4.7. Energy

Table 6 indicates the change ofenergy during development The toW energy ofeggs

and larvae were calculated by the swn of energy derived from lipid, FAA and protein.

Combustion values of2l.oo kJ/g, 20,14 kJ/g, and 35.56 kJ/g were used for FAA, protein and

lipid (Ronnestad f!/ ai., 1995). The total energy decreased during development (ANOVA,

P<O.Ol), largely due to the decrease of FAA. From the unfertilized stage to the 14 DPH stage,

the decrease of energy associated with FAA accounted for about 68% of the decrease of the

total energy.
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Figure 19. Changes in ammonia in developing Atlantic I\alibut eggs and larvae.

Open circles represent egg stages, solid circles represent larval stages. Each data point is

the average:: S.D. of"n" batches. For each batch., a sample of IS or 30 individuals were

collected randomly. Data points without the same letter are significantly different

(P<0.05). At the unfertilized stage (day 0) n-IO, at the fertilized stage (day 0.3) n=IO, at

the half-way 10 hatch stage (day 7) n""'5, at hatch (day 14) n=6, at 7DPH (day 21) n=4, at

14DPH (day 28) 0=4.

S.D.: standard deviation; DPH: days post hatch; indiv.: individual.
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Table 6. Changes of energy over the developmental stages of Atlantic halibw embryos
and larvae. unit: J/indivldual (1I2W: half.way to hatch; FAA: free amino acids; 7DPH:
7days post hatch; 14DPH: 14 days post hatch).

Source Developmental Stages
ofenergy Unfel'1ilized Fertilized II2W Hatch 7DPH 14DPH
Lipid 5.37 5.55 SAl 6.05 5.75 5.62
FAA 6.28 6.37 6.32 5.49 3.86 2.93
Protein 17.n 17,31 16.61 15.04 15.82 16.25
Total 29.54 29.34 28.51 26.45 25.61 24.63
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ChipIer 4. Discuuioa

4.1. Lipid clus • .et '.tty.cidCMl~ i. tIP i. rdatio. to eel fft1ilizltiH

success aad larnl v.bilit)'

A 75% fertilization SUlXCSS was used as the egg quality index in this study. This

method is quick and easy to perfonn and the: egg q..-lity can be dctennincd at a very early

embryonic Stage. Fertilization success appeared to be positively correlated with the larval

survival time. however. the correlation was not significant (P>O.05) in this study. This

indicates limitations to the value of fertilization suc«ss as an index. and sugcslS other

factors within the egg might be sought as determinants of egg and larval viability. The

biochemical composition of a healthy ea: reflects both the qtantiWi~ and cpiiwive

demands for nuuients by devdoping embryos and larvae., thus this method may be used IS M

index to determine egg and IaIval \oiability.

Lipid, espccia1ly~ is regarded as an important enersY subsnlc in fish eggs.. and it

is continuously depleced throu&hout the endogenous feeding stqr: in -differmt marine

species. There arc rqxxt:s that a tligh fat content in the cas is associaIcd with high viability

ofthe larvae (Kjorsvik et aI.• 1990).Ho~. there appeared to be a Ioweflevel oftorallipid

(P>O.05) in better eas (ferti1ization ::: 75%) and in eas that produce more viable larvae

(survival time ?: 15.9 da~) (Figure 2 and Figure 5). In better quality eggs there were lower

amount of ST (P<O.OS) and 1NL (P<O.OI). In _ dial produce ..... vUobIe Iarwe. there

were lower amount of TAG (P<O.OS). Parrish et aL (l994b) also documemcd, in a small
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sample of eggs nom captive halibut, that a high fertilization success was associated with a

low !olallipid contenl Dcvauchelle et al. (1988) found that there was a nigher lipid content

in overripening trout eggs. Devauchelle el al. (1982) indicated. that a nigher lipid level was

generally associated with lower viability of the eggs of turbot, sole and seabass. As indicated

by Kamler (1992), during the period of intensive growth of fish ovaries. there is a rapid

increase in the percentage of proteins in ovarian matter and a decrease in the percentage of

lipids. Decreased fertilizability of eggs containing an augmented percentage of lipids was

attributed to incomplete maturation of the eggs. Kjorsvik er al. (1990) and Kamler (1992)

both mentioned the high concentration of cholesterol in eggs produced by young and old

females. as welt as in overripening eggs. Bruce er al. (1993) also reponed a significantly

higher percemOlge of cholesterol in non-viable Atlantic halibut eggs. Both incomplete

maturation and overripening may cause excessive lipid accumulation in the egg. The low

viability of eggs and larvae may not result direttly from the high lipid content, but from the

insufficiency or deterioration ofother nuuients in the eggs.

The average (n·3) and. (n-6)PUFA levels in this study (Figure I) were much lower

than the levels reponed by Falk-Petmen el ai. (1989), Rainuzzo el ai. (1992) and Bruce er al.

(1993). This low level is possibly the cause of the poor luval survival observed in this study.

Since fany acids elongase and desatunse activities are limited in marine fish. (n-3)PUFA and.

In-6)PUFA levels are essentially dependent on food ingestion. In this conte.xt. the impact of

dietary fany acids is larger in marine teleost species compared to lTeshwater fish (Silversand.

1996). (n·3)PUFA (especially 22:6(n-3) and 20:5(n-3)) and (n-6)PUFA (especially 20:4(n-6))

are defined as EFA for marine fish. Although some authors (Wiegand, 1996) ltave reponed
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that there is a strong selection pressure to maintain the proportions of (n.3)PUFA in yolk

polar lipids within a relatively nanow range, broodstock fed with (n·3)PUFA deficient diets

may produce eggs with decreased (n-3)PUFA levels (Leger et ul.. 1981; Mourente &

Odriozolar. 1990; Harel et 01.. 1994). There are also some reports of significant differences

between (n·3)PUFA levels in domestic and wild fish eggs (Abi·ayad et 01., 1995; Harrell &

Woods ill. 1995; Silversand et 01.. 19(6), with significantly higher amounts of (n.3)PUFA,

and higher (n.3Y(n-6) ratios, in wild fish eggs. This difference may be associated with the

difference between wild and artificial food intake of broodstoek. However, in the present

study, due to limited time and manpower, no fatty acid data on the broodstock diet were

collected.

It is well documented that in marine species (Watanabe, 1991, 1993; Harel et at.•

1994), higher (n.])PUFA (especially 22:6(n·]) and 20:5(n·3)) levels are usually associated

with higher egg and larval quality. However. Bruce et 01. (199]) reponed no difference in

fatty acid composition of viable and non·viable halibut eggs, although the levels were higher

than the present study. In this stUdy we fOWld that in better quality eggs there tended to be

higher levels ofPUFA, especially higher levels of (n-6}pUFA in both TAG. PE. as well as in

the I(PC"'PE+TAG) which approximated the fatty acid profile of me total lipids (Figure 4).

[n better eggs, 20:5(n·3) was significantly higher in PE (P<O.05) (Figure3b). [n poorer eggs.

there ....'ere higher amounts of 16:1(n-7) in TAG (p<O.OS), and higher amounts of 14:0 in PE

and total lipid (P<O.05).

Our results indicate that (n-6)PUFA sufficiency may have been important to egg

quality. in TAG of better quality eggs, 1:(n-6)PUFA was significantly higher (P<O.OI)
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(Figure 3a). The level of 18:2(n-6) in totalliptd of better eggs was also significantly higber

than in poorer eggs (Figure 4, P<O.05). The (n-6)PUFA are preclJJ'SOfS for the synthesis of

eicosanoids or prostaglandins which are involved in cell signal transduction. water transpon,

and osmoregulation. However. the minimum requirement of(n-6)PUFA in fish is not as well

defined as that of (n-3)PUFA. As reponed by Sargent (1995), excessive amowtts of (n·

6)PUFA will have a negative effect on fish larvae. Since some (n·3)PUfA., especially 20:5(n­

3) (which itself is an eicosanoid pRCursor), can modulate the synthesis of eicosanoid, the

ratio of(n-3Y(n-6) may be more imponant than the absolute amOWlt of each PUFA. Sargent

(1995) suggested a (n-3y(n-6) ratio in the range of 5:1-10:1 is ideal. In this study, the average

(0·3)/(n-6) ratio in rtPC+PE+TAG) was about 8.2. but the standard deviation was as high as

4.3 due to the effects of compound errors in this calculation. No conelation was found

between this ratio and egg fertilization success or larval. viability.

We did not find significant differences in egg fany acid profiles between It'Kln: viable

and less viable larvae. This indicates that yolk-sac larvae survival may not be a very precise

egg quality index. since larvae: often develop high rates of malformations although survival

may be high (Kjorsvik k HolmefjOfd, 1995).

4.2. Condition of the female broodstock..ad ea biodtemic:al composition

4.2.1. Food intake of female broodstock and eggtotaJ lipid

Atlantic halibut spawn several hundred thousand eggs in one single spawning season
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(Table 4). The calculated total weight of these eggs accoWltS for about 20% of the body

weight of the female broodstock. Therefore the broodstock allocates a large amount of the

energy ingested to gonad maturation and oogenesis. It is known that food availability is one

of the main factors affecting reproductive processes in fish.. and that food restriction

generally reduces total fecWldity (Cerda el ai., 1994). "The reduction in food ingestion in 1991

and 1992 may cause a decline in the nwnberofeggs produced in 1993 and 1994. but did not

seem 10 slow down the increase ofbroodsrock body weight (Table 4). [n order to maintain

the increase in body weight under conditions of low food intake. there had to be less energy

used in reproduction. Bromage (1995) states that. fish age appears to be less imponant in

detennining fecundiry than food intake. "Therefore the decrease of fecundity reponed here is

not likely 10 be caused by aging ofthe broodstock. Not only did the broodstock food intake in

the previous year appear to affect the total nwnber ofeggs produced in the following yeus, it

also seemed to affect the average OW and amount of lolal lipid in eggs. The change of

average egg OW in successive years shared a similar trend with the fluctuation offood intake

(Figure 6a & b). The average tolallipid in eggs declined from 1991 to 1993, corresponding to

the continuous decrease of food intake from 1990 to 1992. However, the drastic increase in

food ingestion in 1993 was not followed by an increase in egg lipid in 1994. The increase in

egg lipid was delayed to 1995, and was unaffected by the food intake decrease in 1994. The

discrepancy between the changes of egg DW and lipid over the spawning season suggests

that the allocation of lipid into oocytes may involve a mechanism that is different from that

ofother biochemical contents. The lipid in eggs might be affected by the storage of lipid in

the body of maternal fish as well as the food. intake of the fish., while the amown of egg



protein is probably more affected by the food intake.

4.2.2. Changes ofegg biochemical composition over the spawning season

As shown in Figures 7 and 8, egg AFDW (P<O.OS), and lotal protein (P<O.OI),

decreased significantly over the spawning season. Vilellogenin is generally considered to be

the precursor of major biochemical substances such as protein and lipid in the oocytes. The

uptake of radiolabelled vilellogenin in rainbow trout and killifish oocytes is correlated with

the oocyte size, being highest in the largest oocytes, even when the rate was expressed

relative to surface area (Silversand. 1996). According to Kjomrik and Holmefjord (1995),

egg size decreases during the spawning season. In this study, egg diameter decreased over the

spawning season, although the decrease is not significant (P:>Q.OS). Plasma estradiol-1713

declined in female Atlantic halibut as the season progresses (Methven er aI., 1992; Hyllner el

ul., 1994). Kjesbu et ai. (1996) suggests that this decline of estradiol.17~ is the result of a

decrease in the nwnber of ovarian follicles. i.e. steroid producing cells. as spawning

proceeds. As maternal Atlantic halibut do not ingest food during the whole spawning season,

the body deposition will be depleted at late stages in the sfRwning season. This may result in

a lower amount of protein and lipid being allocated into the oocytes. However, total lipid in

the egg did not change significantly over the spawning season.

The fany acids in eggs changed over the spawning season (Figure 9). The level of

18:0 and 20:4(n-6) in TAG, and I(1Hi)PUFA in PE decreased significantly (P<O.OS). In a

smaller study of Atlantic halibut eggs, Parrish et ai. (l994b) also foamd there were significant
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decreases in 20:5(n-3) and. I(n·3)PUFA in n and 14:0 in 1Ft \vith the progress of the

spawning season. McEvoy et aI. (1993) reponed a similar significant decrease of20:5(n-5) in

turbot eggs over the season. Like halibut, turbot fast while spawning. The decrease of these

fatty acids reflects their depletion in the ovary and other body lipid deposition sites in late

season as a result of selective incorporation into oocytes (Schwalme et al.• 1993; Silversand

& Hall\(, 1995). In this study, the significant decrease (P<O.05) ofI(n-6)PUFA in PE (Figure

9d) and the significantly higher level (P<O.OI) of (n-6)PUFA in TAG (Figure 3a) in better

qualiry eggs suggests that (n-6)PUFA may be important in embryonic and larval

development. No significant decrease of!(n-3)PUFA were found.. probably because of the

large variabiliry in these components. The increase of 16:I(n-7) in PC (P<O.05) (figure 9<:)

may be a compensation for those depleted fany acids.

"'.2.3. Matwiry of spaYmel'S

II is generally accepted that middle aged fish produce eggs of the best quality and

!XlOrer egg quality is found in first time spawners (Kjorsvik et ai.• 1990). In the presem study

the fenilization success of eggs produced by repeat spawnm was significantly higher

{P<O.05) than that ofeggs produced by first time spawnen (Fipe 10). The significant lower

amount ofST (P<O.05) and TNt (P<O.OI) found in the eggs produced by repeat spawnen

(Figw-e II) is in agreement with the aforementioned lower ST and TNt. in better eggs. The

eggs of repeat spawners contained significantly higher amQWltS of PE (P<O.05). The

importance of PE in embryonic and larval stages will be discussed laler. The poorer quality
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ofeggs produced by first time srawnm may relaIC 10 under«veloped reproduction systemS

in first time spawners.

".3. Bioc:bemteal tulIpS i.~Nlbt'yos • .ct larwe

.1.3.1. Protein.. FAA and ammonia

During prefeeding developmental stages. i.e., endogenous feeding stages. all nuaients

needed for development, growth and. homeostasis of the embryos and larvae come from the

yolk. and very Iinle amount of exogenous nutrients are ingested. Therefore a continuous

dec:rease in organic nutrientS is expected. This theory is consistent with the data pre:semed in

Figure 12. Both AFDW and !(Protein ... FAA ... Lipid) decrcl.scd significantly as

~Iopment pR>C<Cdcd (ANOVA P<ll.O1 and 1'<0.05 respcctively~ The__

found between emblyos II half way to hatch and larvae that had just hatched may be: relared

to the loss ofchorion and pcrivitillinc rolloids during the hatching pnxcss. According 10 Finn

Itl al. (1991). in Adantic halibut eggs, the dry weight ofchorion is about 120;. of the ea: dry

weight. and 84% of the chorion dry weight is composed of protein. TherefOf'e the loss of

:\FDW al hatch is mostly the loss ofpro1Cin

Protein is the l;qest caloric component in eggs (Table Il, accounting for ca. 60% of

total dry ....-eight There is a significanl difference (P< O.OS) in protein comem: between just

hatched larvae and unfertilizm eggs (Figure (8). Protein comem:~ about 133 ~

This wlue is veryclosc 10 the thorion protein value of ISS j.1g reported by FiMet aJ. (\991),
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especially considering that the average diameter of the egg samples used in this study were

smaller than eggs used in their study. The total protein content decreased during

embryogenesis. This decrease, though not significant (P>O.05), may reflect the partial

digestion of chorion protein before hatching occurred. Whether the breakdown products of

choriolysis are utilized by the embryo is controVmial. FiM et al. (1991) reponed that in

Atlantic halibut, the dry weight of chorion decreased significantly before hatching, and they

suggested that the breakdown products were retained in the perivitelline space. AJthough the

biochemical composition of perivitelline fluid is not knoYin in halibut eggs, the data from

tertilized Atlantic salmon eggs suggests that perivitelline contains substantial amount of

protein (22.7% oftota! protein), lipid (1.7% of total lipid), and carbohydrate (46% of total

lipid) (Hamor &. Garside, 19n). On the other hand. thl:re is an indication of the choriolysis

product being used by winter flounder embryos (Cena &. Capuzzo. 1982).

The average FAA content in unfenilizcd eggs was 2294 nmoVindiv (Figure 11), this

value is similar to that reponed by Finn et 01. in 1991 (D08 nmoUindiv). Total FAA

decreased about 88 nmoUegg at half way to hatch stage (the tim week after fenilization)

compared to the unfertilized stage. The differences were not statistically significant (P>O.05)

in unfertilized. fenilized, and half way to hatch stages. However, the average level of NH]

/Nl-L", which is believed 10 be the onlyN~ product in the embryonic stage (Ronnestad,

1992), increased significantly (P<O.05) from -45 nmollindiv. in unfertilized eggs 10 -145

nmoVindiv. in fertilized eggs at the half way to hatch stage (Figure 19). According to

Ronnestad (1992), I mole of average amino acid molecules in the FAA poc:H contains 1.34

mole of N, therefore catabolism of 88 nmol of amino acid should produce a toW of 117
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nmol ofNHy'Nl-L~. Since the secretion of the NHyNI-L~ to the ambient water by the embryos

at this early stage (I- 5.5 day) is less than 20 nmol (Finn et ai.• 1991), the increase of 100

nmol ofNH I in Ihe embryo (Figure 19) is in good agreement with the calculated value. The

cause of the large standard deviation in the NH)INl-L ~ value at the half-way to hatch stage is

not known.

Ronnestad (1992) and FiM et ai. (1995c) suggested that, in embryos of turbot, lemon

sole, and cod. FAA are metabolized after the half way to hatch stage. i.e., after the

completion of gastrulation stage, when the vitelline syncytium layer is fully developed. This

tissue is believed to be responsible for the utilization of yolk nutrients. Ronnestad (1992)

suggested that in Atlantic halibut, FAA were not used Wltil after hatch. The present study

indicated that FAA and/or protein weTe possibly catabolized in the early embryonic stages,

before completion of the gastrUlation stage.

The FAA pool decreased significantly (P<O.OS) in just-hatched larvae compared to

the embryos at half way to hatch (Fi~ 17). The decrease of 466 nmol in FAA was

accompanied by a 155 nmol increase in NH,INH..' (Figure 19). which is only one fourth of

the calculated 10tai NH;INl-L" production. assuming that the FAA that have disappeared are

completely deaminized. The NH~" secreted during this period of time would be - 100

nmoVindiv. as calculated by Finn et ai. (1991). Taking the sum of these two values from the

lotal calculated value still leaves a residue as high as - 370 ronol of NHyNH.." However.

since the NHy~" level in the later emtxyonic stages in this study was much higher than

the level reponed by FiM e( ai. (1991), the NHl"'Nl4" excreted to the media must be higher

than the reported - 100 nmollindiv. The discrepancy may arise from the different methods
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used in NH~~ measurement and differences in experimental conditions such as

temperarure and size of the container.

The depleted FAA can be used both as energy substrates., and precursors for the

synthesis of lipid. glucose. protein and some other quantitatively wtirnponant N·rich

substances (polyamines. nucleic acids etc.). There is no net increase of [XOtein before

hatching (Figure 18), and total protein content decreased significantly (P<O.05) at hatch.

Therefore the depletion of FAA pool may not be a result of protein synthesis, although there

is probably an active exchange of amino acids between FAA and PAA pools. According to

Finn er al. (1995a), in cod embryos, both glucose and glycogen increased as hatching

approached then decreased shortly before hatching. Whyte el ai. (1993) repJrted total

saccarides increased in Pacific halibut embryos as well. FAA is believed to be the precur.;or

for gluconeogenesis. However, carbohydrate is a minor component in marine fish eggs,

accounting for about 1% of dry weight in Pacific halibut eggs (Whyte I!t aI., 1993).

Therefore. it is unlikely that gluconeogenesis will utilize subswttial amounts of FAA. The

possibility of FAA as substrates for lipid synthesis will be discussed later.

There was a net increase of - 60 J!& prolein in larvae from jUSl ha1ched to 14DPH

(Figure 18). At the same lime, FAA decreased significantly fiom Ino nmoVindiv. at hatch to

806 nmoVindiv. at 14DPH (Figure 17), resulting in a difference of 960 runol. Taking 130 Da

as the approximate average molecular weight oflhe tree amino acids (Finn er aI., 1995c),

\000/0 polymerization of 960 runel of FAA would produce 107.5 J.lg of protein. Then:fore.

less than 60% of the FAA pool that disappeared was polymerized in newly synthesized

protein. This finding is similar to that reported by FiM et al. (199Sc). Pittman et 01. (1990)
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also concluded from the RNNDNA ratio that each cell's capacity for protein synthesis

increases during the first two week after hatching. The synthesis of protein dwing the first

two weeks after hatching can be further substantiated by the total NHyNl-L" production of

the larvae during this period of time, since FAA channeled to protein synthesis will not go

through deamination. When FAA is used as the carbon soW'ce for energy metabolism,

lipogenesis or g1ucogenesis, NH]INH.... production will be increased Unfortunately,

NH;INl-LP secreted into the system was not measured in this study. Both systems used 10 rear

eggs and larvae make the measurement of NH]INH.. P level very difficult The egg incubator

is not a stagnant system, but one with a constant flow of seawater which makes the

concentration of NH]INH..~ too dilute to be measured. The larvae are reared in peai-dishes.

Although water in petri-dishes is changed and bodies of dead larvae are removed regularly,

the v"ater is easily contaminated with NHYNl'L ~ released from decomposed bodies in

between changes.

As shown in Figure 17 and Table 5, the utililation of the FAA pool is not distributed

evenly between EAA and NEAA. The NEAA level is slightly higher than EAA level during

the embryonic stage, but since NEAA are utilized more than EAA, a revmal of the ratio is

found during the larval stage. In body protein and yolk protein, EAA were more abundaDt

than NEAA, and the ratio of the two did not change throughow the larval stage (Finn et aI.,

1995c). It is possible that EAA in the FAA pool are retained for protein synthesis. The higher

depletion rate ofNEAA is due to the selective utilization of serine, alanine and g1uwnic acid

(Table 5). Among EAA, valine is selectively retained in the FAA pool. Ronnestad (l992)

also reponed a similar preferential upcake ofthesc amino acids.
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The initial level ofNH)INH.· in unfenilized and fertilized eggs (45 and 35 nmoVegg,

Figure 18) is substantially lower than the level reponed by Finn etal. in 1991 (-149 and 157

nmol/embryo). This large discrepancy may be the result of differen1 methods used in

collecting eggs and in NHy'NH/ analysis. The NHy'NH; level increased continuously

throughout the embryonic stage from 45 nmol/indiv. in unfertilized eggs 10 -300 nmoVindiv.

in newly hatcned larvae. In 1his study (Figure 18) as well as that of Finn et ai. (1991),

NH,INl-L· did no1 decrease substantially after hatch., unlike the sbaJ'p decrease ofNH:INH....

occurs in newly hatcned larvae of other species such as cod (Finn et ul., 1995a), turbot,

lemon sole (Ronnestad. 1992), and gil1head sea bream (Ronnestad et 01.• 1994). This may be

relaled to the fact that Atlantic halibut larvae hatch at a relatively undeveloped stage

compared to other species studied, therefore, the scc;:retion of NHyNl-L· is slower. The

mechanism ofNH/Nlii· secretion in embryonic and early larval stages is 001 clear. As the

gill is not developed a1 this stage,!he skin may be the site for NHyNl-L· secretion.

The role of FAA and the end product, NH)INl-L" as osmoly1eS in invenebn.te and

marine fish eggs and larvae is well documcmed (Riis-VCS1ergaard, 1987: Fyhn, 1990).

Marine invenebrate execrete FAA imo the seawater for the purpose of osmoregulation. In

contrast, marine fish larvae regulate the concentration of FAA by using i1 in energy

production and biosynthesis. Ronncstad (1992) docwnemed tha1 there was no significant

amount of FAA excreted by Atlantic halibut larvae. Finn et al. (1995a, 1995c) found thai: in

cod and Atlantic halibut larvae the resorbtion of FAA was linearly cooelated with the yolk

volume. so that the FAA concentration remained stable and the osmolality equivalence was

maintained.
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·U.2. Lipids and fany acids

Total lipid did not change significantly (P>O.05) in the early embryonic stages. i.e.•

before the half-way to hatch stage (Figure 13). PE is the omy lipid class that decreased

significantly (P<O.05) at the half-way to hatch stage (Figure 15a). Falk-Petersen et ai. (1989)

also found a sharp decrease ofPE in 4-10 day old halibut embryos compered. to the 0.3 day

old embryos. This selective metabolism ofPE may be related to the release of (n-3) PUFA in

order to synthesize or regulate biochemically active substances such as eicosanoids at the

early embryonic stage when rapid cell division and differentiation occurs,

Total lipid increased (P<O.OS) ca 16% in newly hatched larvae compared to the

embryo at the half way to hatch stage (Figure 13). All the major lipid classes except for ST

Increased significantly at halching. The observed increase of lipid at hatch is in contrast to

the continuous decrease of total lipid in embryos and larvae of herring (Tocher et al..

1985b), cod (Freaser et al.• 1988; FiM et al.• 1995b). Pacific halibut (Whyte et al.• 1993). and

goldfish (Wiegand, 1996). However. Cena and Capuzzo (1982) found that in winter flounder.

lipid Increased ca 51.1% at the end of the embryonic stage compared to the initial level at

fertilization. After deamination. the carbon skeleton of FAA can be used as carbon units in

lipid synthesis in adult fish (Henderson & Tocher. 1981). In rainbow trout liver. more

radioactivity from 14C-alanine than from 14C_g1ucose was incorporated into fany acids

(Henderson & Sargent, 1981). In the FAA pool of unfenilized Atlantic halibut eggs.

ketogenic amino acids 8CCOWI!ed for more than halfofthc lotal FAA (Table 3). These amino
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acids can produce acetyl.coA after dcamination. Acetyl-CoA can be used as a precursor of

fatty acids and lipid synthesis in trout embryos (Temer et at.• 1968) or it can enter the

tricarboxylic acid cycle (TCA) to produce ATP by combining with oxaloacetate to form

citrate. The calories assoc;alcd with the increase of lipid accounted for -71% of the total

calories associated with the decrease of FAA from unfertilized eggs to the hatch stage (Table

6).

Under conditions ofanoxia or hypoxia. amino acids can also be directed to fany acid

chain elongation. van Raaij et at. (1994 a&b) suggested amino acids as acetyl donors for

lipid synthesis. and found fany acid elongation as well as incorporation of I-I~C-acetate into

free fatty acids. TAG, and polar lipids in anoxic goldfish. Metabolism of 1_I~C-aeeweand \­

I~C-leucine in anoxic goldfish both produce l~C~ in an amount higher than one would

expect from ethanol production (van Raaij et aJ.• 1994b). It is suggested that the excessive

I~CO~ may come from the TCA cycle. Under normoxia the TCA cycle is tightly coupled to

the operation of the electron transport chain, where the reducing equivalents produced by the

TCA cycle (mainly NADH) are transferred to O~. and the energy released leads to the

production of ATP. In anoxic fish, excessive NADH may accumulate due to lack of O~. The

reverse reaction of fatty acid IHlxidation in mitochondria leads to fatty acid elongation, and

consumes NADH at the same time, so lhat TCA cycle operation under anoxia becomes

possible (van Waarde. 1988). When there is excessive succinate, another form of reducing

equivalents produced by the TCA cycle. FADH2. can be directed to the formation ofNADH

through. the reversal of the respinuory chain (van Waarde. 1988).

In the case of fish embryos. under normal culture conditions anoxia or hypoxia is
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unlikely to happen. Although the gill may not become fimctional until near the end of the

larval period, the skin remains a major site of gas exchange throughout the embryonic and

larval periods. In many species microv1lli in early embryonic stages and the well-developcd

vascular networks thai fonn just under the skin during early organogenesis may assist

respiralOry gas exchange. 11 is believed that the chorion and perivitelline fluid are not the

major barrier to diffusive gas exchange during embryonic life (Rombough, 1988). During the

process of hatching. the hatching enzyme, a chorion specific proteinase, is excreted to the

perivitelline space by the embryo. and the chorion is degraded extensively from within.. The

mature embryo exhibits vigorous muscular activity afterward to tear open the chorion. A

hypoxic condition may result from this intense movement associated with the hatching

process. Hypoxia is involved in the natuJal hatching process of Atlantic salmon larvae, and

can be used as an artificial method 10 induce hatching in the hatchet)' (Oppen.Bem1sen. et ai.,

1990). Helvik and. Whalther (1992) suggested thai hypoxia did not affect hatChing in halibut

However. the rate of~ uptake increased with the development of halibut embryo (Finn er

ai., 1991). Pelagic embryos such as halibut embryos arc susceptible to hypoxia. Since they

are usually fowld in well-oxygenated waters, they lend to have a relatively poorly developed

capillary plexus near the body surface compared 10 demersal embryos (Rombough, 1988).

Therefore when hatching occurs, it is possible that parts of the embryo may experience

hypoxia, and stimulate the processoffatty acid chain elongation An increase of lipid content

has been observed in anoxic perch embryos (van Waarde, 1988).

There were no significant changes in fatty acid profiles associaled with the increase

of PC and PE at hatch. These two lipid classes are rich in (n-3)PUFA compued to TAG.
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Since the ability of(n-J1PUFA synthesis is limited in marine fish. the maintenance of fany

acid profiles in PC and PE requires the transfer of(n-3lPUFA from other lipid clas.ses. There

is a net increase oflotal saturated fany acids in TAG (Figure 16) al hatch largely doe 10 lhe

increase of16:O and 18:0.

Total lipid decreased during the larval stage lFiguR: 13). TAG is the: only lipid class

lhat decreased significantly (P<O.05). At 14 DPH, there was -17"1. decrease in TAG

compared lojusl hatched larvae (Figwe 14a). PC showed a decttasing trend. but this was not

significant (P>O.05). PE remained at a constant level after hatching. No significant change in

limy acids was found during the larval stages studied. This agrees with FiM el ai. (I995b),

who suggested that there was a non-selective utilization of lipid classes between hatch and

200 degree-days post hatch. Towards first-feeding, they found a selective catabolism of PC

and a net synthesis ofPE. Synthc:sisor retention ofPE in larvae prior to first feeding was also

found in Atlantic herring, cod, Atlantic halibut, plaice. turbot. and Senegal sole (Tocher tr

ai.• 1985b; Fraser el aI., 1988; Vazquez et aJ•• 1994). PE is the only phospholipid containing

p1asmalogens in fish roe (Tocher et aJ., 1984). Pltimalogen-linked phospholipids seem to

playa role both as membrane: components and as cellular mcdialOl'S (Snyder, 1985). Some

ether lipids appear 10 have the captCity to serve as protective storage resctvion for PUFA

The prOlecti"e nature of ether·linked. group is due to thar ability to retard the l'tt of

hydrolysis of acyl moities at the sn-2 position in the same molecule by phospholipase At

(Snyder. 1985). In Atlantic halibut larvae, 38% ofthe DHA released from PC catabolism was

retained. by PE (RonnesQd el ai., 1995). Therefore, the plasmalogens in PE may serve as

protectors of the PUFA rc:servior. The rete:otion and synthesis of PE in diffemn: species
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suggests its importance in marine fish larvae. Sargent (1995) has suggested that the high

levels of PE and its constituent fany acid, DHA, in the brain and eye assemblage of fish

indicates a primary role for these compounds during embryonic and larval development

which might involve both structural and behavioral functions.

·404. Conclusions aDd dil'C'CtioDs for future raalrch

From this study, it was fowtd that lipid and fatty acid composition in eggs from

captive Atlantic halibut was associated with egg quality. Higher TL content, especially higher

NL content, was associated with poorer egg quality. Whether there is a cause and effect

relationship between high neutral lipid content and poor egg quality requires further

investigation. In bener quality eggs, there tended to be a higher amount of(n-3)PUFA as well

as (n..6)PUFA. There was a positive correlation (although not statistically significant)

between egg protein and FAA and larval viability. A larger data set is needed to dctcnnine if

this correlation isreal.

The biochemical content of eggs can be affected by the food intake of broodstock

temale, maturity of the matemaI fish, and the time the egg batch was spawned during the

sea50lt The more experienced spawners produce better quality eggs than ftrn·time spawners..

and egg from the fonner contain less lipid than the latter. Reduction of food intake by the

spawner resulted in decreased average egg dry weight and average egg lipid. But these

changes did not seem to affect the egg quality. No change: ofegg quality could be found over

[he spawning season, although total protein and several fany acids changed significantly with
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the progress of the spa\Vt\ing season.

FAA are the biochemical components that are most utilized during the embryonic

and early larval stages. 'W'hile significant amounts of FAA may be catabolized to produce

energy, a larger pan of the depleted FAA may be directed to lipogenesis (70% of~eted

FAA during the-embryonic stage andjust·hatched larvae), or protein synthesis (60% in the

larval stage before 14 DPH). Lipids accumulated during the embryonic stage, and were

utilized after hatch. The increase of lipids around hatching may be a biochemical adapmtion

10 hypoxia induced by embryo muscular movement when hatching occurred.

The role of yolk lipids and fatty acids as energy substrates has been well studied in

fish embryos and larvae. However. the connection between yolk lipid composition and the

role of lipid and fatty acids as biomembrane components is not fully understood. Lipid

molecular species and fatty acid composition analyses of plasma membranes ofembryos and

larvae will help greatly in understanding the connection between lipid and fatty acid

composition and egg quality, especially for species which live in a low temperanue and. high

salinity environment like Atlantic halibut.. In Uris type of environment, the struetun: of the

biomembrane may be equally imponant or even more important than the energy content in

the yolk.

To understand the direction of FAA metabolism in developing embryos andlarvac

more completely, an experiment designed spetifically to measure NHJi'NHI~ excretion to the

ambient water should be undertaken. Use of radio-labeled amino acids would also be useful

in future studies.
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