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Abstract

The influern.:e o f the acute inflammatory phase protein human Ccreactive protein (CRP) on the

adsurpt ioo (If porcine pul monary surfactant from a subphase into the air-water interface with

"011withuut dynamic surface compression has beeninvestigated. CRt>was show n to detract

Imm the ahlthy of sur factant to rapidly ad sorb to the air-water interface at a molar ratio of

II.OJ : I . protein to phospholipid (weight rat-io. 0.5 : I). On a weight basis. CRP was found to

he more effective than fibrinogen or globulin at reducing the adsorption rate o f surfac tant

The c rrccr of CRI' req uired the presence of calcium. and was reversed by the addition of

phmrhtlchlliinc. in a conccntrauon dependent manner. The inhibition of surfactant adsorpt ion

hy CRI' WiIS effectively eliminated by the addition of phosphocholine at a molar ratio o f 300 ;

I. pbo sphocholi nc : CR I'. hUI it was not diminished by the addition of identical molar ratios of

o-phosphoct hanolaminc or DL-u-gl)'CCrophosphale at the same molar ratios . These da ta

sutg l.."'l Ihal the potent inhibition of surfac tant adsorption by CRP is primarily a result of a

s[ll'Cilic Interaction betwee n CR r and the phosphocholine headgroup of surfactant lipids in the

subphase and !hal it can be reversed by the water-soluble CRP ligand, phosphoc holine .

EltlJCrimcnts were performed to determine the ef fect of the addition of the complemen t protein

C lc:: (In I h~ adsorption of porcine lipid extract pulmonary surfactant from the subphase to the

air-water interface with and without dynamic compression. Cl q, at a weight ratio of 10 %

(('hi: 1'1.), when added to lipid extract surfactant, which is void of SP-A, increased the

adsorp tam rare of the lip id extract surfactant 10 approach the rate at which whole surfactant,

whit-h contains 5-7 % SP-A . by weight. C lq at this weight ratio d id not detrac t from the

ahility of lipid extract surfactant from atta ining a minimum surface tension unde r dyna mic



compression. Albumin, when added to lipid cxuacr sl.rf'II$1I11 at the idenli!..; ll wcigju r,llin .u

which Clq was a added, de tracted from the abililYuf lipid extra ct surfactantto adsorb III the

air-water interface. Albumin, also detracted fromthe abiluy of this mtnu rc in '11l'l i Tl ill ~ "

minimum surface tension under dynamic compression . Thissugges ts Ihal C tq, whic h shar es

quaternary struct ural homology with SP·A, increases the adSCll'J'lion of lipid l'llr..ICI"urrollol,ml

by a simila r molecular interaction as that of SP-A. Serum CRI' lev ers. elpn......sed 11~/ 1ll1 ;lIlt! ;j_~

percentage of total protein, were elevated in patlcnrs with ARDSand mosc "alienls ,II risk IIf

ARDScompared 10normals. A weak correlation exists between theserum CHI' in leU

patients, expressed as percentage of total protein and the APACHE II score. ·1l1is s\l ~:~es ls

that CRP levels may be useful in the clinical evaluation of p utcnu in lite IClI o



Iut rod uctfon

Surfuct nm Iutrodncthm

Pulmonary surfactant, a biologically complex mixture of lipid and proteins, is essential for

nonnallung functio n. The terminal air-filled sacs arc coated with this substance which reduces

the surfac e tension of the alveolar air-water interface to very low values. The function of

pulmonary surfactant, which results its physical characteristics. is to reduce the potentially large

energ y requirement needed to expand the alveolar surface and enable the alveoli 10 resist the

co llapsing fo rces which exist at physiological transpulmonary pressures. In addition. surfactant

may have other roles iuthc lung such as preventing pulmonary edema formation (Paule , 1965;

Clcmcnts, IlJfil) and aiding the pulmonary de fence system to resist and combat infection (e .g.

LaForce et :II., 197.1). Deficiency of pulmonary surfactant in prematurely born infants can

contribute to respiratory distress syndrome. In the adult , the inhibition of pulmonary surfactant

function can lead to adult respiratory distress syndrome (AR DS). 801h o f these syndro mes can

lead \0 similar complicationswith respect to respirato ry pathophysiology, and they arc assoc iated

with significant morbidi ty and mortality.

AI\'cnlar Str ucture and Puhuc nary Surfact ant Composltlon

A1vcnli arc the terminal air-spaces through which respiration occurs. The adult lung

contains • .1{Xl million alveoli which have an average diameter of - 25 « m. The alveoli are not

closed sacs in lin ana tomical sense. rather, they are interconnected by fluid-filled pores called

alveolar pores of Kohn (Basmcky, 1994). Histological examination using electron microscopic



techn iques has revealed lhat the alveolar -capillary mcmbr-mc consists ( 11' four componcm s:

contiguous tissue clemen ts in the intercalated inte rstitial space, l';Jllill,\ry endothelium .11111 its

basement memb rane, alveolar epithelium and its bascmcm membrane. and a surfuctam Iin i l1 ~

(Murray , 1986) , Figure I.

The interstitial space which separates the alveolar epithel ium and capillar y endothelium

base ment memb ranes is anatomic ally divided nuo two regions. T he thin portion of the septum

is co nside red to be the air-blood exchange region and is the area in which the two hasl' llwnl

membranes appea r 10 be fused. The thick portion is l{lC:lled where the lmscmcm membrane s il l .'

separated by an interstitial space containing clastic fibres, collagen fibres and sll;lrS\,' lihf\ lhl,l.sl.s.

Pulmonary capillaries weave throughout the interstitial space. T he capillar y endothelium is

primarily com posed or cytoplasmic extensions or endothelial cells which form thin vasrulur tubes .

These cells allow gas and liquid exchange aud carry-out imrlOfI,lIlt I1\lI\-respi"lllnry I"unelillils of

the lung. The alveo lar epithelium consists ora continuous layer Il l' tissue m", le lip IIf, princip:\lly,

two cell types. Type I celts. or squamous pucumocytcs . have broadthin cKlensilllls and cove r

93% or the alveo lar surface. They possess few cy toplasmic organel les, arc highly dif fcre nti"ted

and do not divide. Alveolar type II cells, or granular pncumucytes, a rc more numerous than type

I cells, but because of their cuboidal shape they occupy - 7% of lhc alveolar sur face . 'I'hesc cel ls

are the primary sur factant producing and surfactant storage cells of the lung aud ;1150 play a key

role in recyclin g of pulmonary surfactant. They arc easily identi fied by their microvilli :UlII

osmio philic lamellated inclusion bodies which conta in pulmonary surfacta nt.

T he co mposition or pulmonary surfactant has been determined hy an:tlysis of mate rial

which has been obtained Irom brc nchoalvcolar lavage (HAL) or hmg hnlllllgcna tcs afte r



I'igurc I. Ucpmduclion of an electron micrograph of a cross-section of an alveola r
mcmnr anc. From Murray. 1986. with permission.
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purification hy centrifugation in sucrose or sodium bromide. Any review of the studies of the

compositionalanalysisof lungsurfactantquicklyreveals that the exact content of each component

varies,however,this variabilityis smalland is partially dependenton which method of extraction

is employed. The lavagemethod of surfactantrecovery is most common, and Tanaka and Takei

(1982) have suggested that surfactant made fromthe lung lavage method should contain fewer

contaminants from blood and tissue than surfactant material made by other methods. There has

also been criticism of the HAL method with respect to how accurately the recovered surfactant

represents theactualsurfactantof the lung. Harwood eral. (1976) suggested that lung surfactant

obtained by the lavage method may becontaminated with material from the upper airways or it

llIayrepresenta partial rec overy of the total extracellular surfactant pool. Also, the lung lavage

process may promote the release of intracellular surfactant; therefore, the BAL may contain

surfactant from hoth the intracellular and extracellular pools (Shelley et al., 1982). In spite of

this, most biochemical analyses of lung surfactant yield similar results te.g. King & Clements,

1972; Harwood et aI., 1975; Shelley er at.. 1982).

Pulmonarysurfactantis composedof lipids and specifically associated proteins in a weight

ratioof - 9: I, lipid to protein, Phospholipids, comprise nearly 90% of the totallipid content.

One distinguishing characteristic of pulmonary surfactant is the high content of

phnsphatidy1cholinc, comprising - 80% of the phosphoglyceride content. of which nearly 40%

is dipalmitoylplrosphatidylcholine (DPPC). Surfactant contains the acidic phospholipids

phosphatidylglycerol, - 8%. and phosphatidylinositol, - 1%, along with sphingomyelin, - 2%,

Iysophosphatidylcholine, - 2%, and a small amount of free fatty acids (Shelley et aI., 1982).

Surfactant also contains cholesterol, in amounts up to 7-8% by weight, which on a molar basis



constitutes a significant proportion , (up to 15 lllol%) (King & Clements. 19721.

Macklin (1954) was first 10 suggesr ihat alveolar type 11cells synthcsi1c, store and secrete

surfactant. Since then, evidence which suggests that alveolar type II pncumocyrcs a rc till ' primary

sites of synthesisof surfactant and storage of lipids has accumulated. For eX:1I1l11k, biochemical

and pulse-chase studies of lung phcsphaudylcboline have shown that lamellar hnd ies {If alvctllar

type II cells are the main storage sites of surfactant in the lung (Cheva lier & Co llen, 11)71;

Baritussio et al., 1981), The phospholipid content of lavage fluid was found ttl he nearly identic:11

to that which was found in lamellar bodies (Robertson cr aI. , 1984). Dnhhs ct :11. (l98:!)

sUPP011ed thisconclusion by studying the physical and chemical properties o f the lipid :md protciu

mixture o f lamellar bodies and dete rmined them to be very similar to thatof extracellular

surfactant They have also incubated alveolar type II cells with (CI~ I·accla tc. and found that the

distribution of secreted material was very similar to the phospholipid content o f surfactant isulatetl

from lung lavage.

Almost 10% of me total weight of pulmonary surfactant is compose d or the spec ifically

associated proteins, These proteins are named surfactant pmtc in-A (S\l-A) , surfactant protcin-ll

(5P -B), surfactant crcreo-c (SP-C), a nd surfactant prctein-D (5 1'-1J) accord ing to I'nssmayer

(198 8). In the 1980' s a large body of research was focused o n elucidating the gc[mlllic "ml

structural organization of these proteins, as well as , on determining their bio logical functhms. 'tu

this end, the genomic organiza tion of these proteins has been identified and their aminoacid

sequences have been determined from genomic and eDNA libraries; howeve r the precise role of

these proteins in the complete biological function of pulmonary surfactant remains Iu he

deli neated.



The largest and most abundant surfactant protein by mass is the hydrophillic surfactant

protein-A. SI'·A has a monomeric molecular weightof 28000·36 (XX), depending on its extent

of glycosyilltilmand species of origin. Each monomer co ntainsa collagen-like Ncterminal, which

is rich in the gly-X-pro(OH-prol sequence. The C·terminal regions of SP -A form triple helices

through non-covalent protein-protein interactions, as in collagen (Flores et aI. , [985). T he

monomers are linked by disulfide bridges ncar the N-terminal which stabifizes the molecule by

cross-linking adjacen t polypeptidechains within and between the triple helices (Voss et al., 1988).

Six tamers associate to form the native octadccamericstructure which has a molecular weight of

- 7IXI,(XIO. SI'·i\ containsa large globularglycosylercd non-collagenous carboxy-terminal region

which is essential for the correct quaternary structure of the molecule (Sp issinger et al.. 1991).

T he flower bouquet-like structure of SP·i\ resembles that of the quaternary structure o f the

complement protein C tq (Voss et a t. , 1988 and rcCcited within).

Surfactantis ideally suitedto play a role in the host defence system of the lung because it

covers the entire lung surface. which is polentiallyexposed to many pathogens. S P·A has been

implkalt'tl in thehost defence syslClll of lhc lung (e.g. Te nneret aI., 1989 ; Van Iwaarden et al.,

199tl: Weber at al., 1990: Manz-Keinke cl al. , 1992; Wrightand Youmans, 1993). The abi lity

of SI'·A to bbxlro carbohydratesand lipids enables lnc attach10the surface of seve ral pathogens,

including the herpessimplex typeI virus (Van Iwaarden et al., 1991), the opportunisticpathogen

Plll'lIm{/f :\'.~Ji.f mrinti (Zimmermanet al. , 1992) andseveral types of bacteria (e.g . McNee ly &

Coonrod. 199.\). It has also been shownthat SP·A can stimulate chemo taxis of macrophages

(Hoffman ct OIl.. 1987) and stimulate the phagocytic act ivity of monocytcs and macrophages to

sheep erythroc ytes which have previously beenopsonized with (gO or IgM (Tenner et al.• 1989).



SP-A canstimulatethe production ofoxygen free radicals by nucrophngcs(Va n lwaardcnl'l nt. ,

1990) and it can bind 10 C1qreceptors of U937 ce llsand uprcgutatc Clq receptor produrtion by

these cells (Malhotra er al.• 1992) . Therefore. SP-Ais homologous tonrc complemcnl pnucin

C lq with resp ect to these functions. howe ver, SP-A can not subslitute (or C lq ill the fomuuion

of hem olytically active CI (Tenncr ct al.• 1989),

Immunocytoche mistry experiments have revealed tha t 51'-/\ is present in alveolar type II

cells. alveolar macrophagesand in a suopoputation of bronchiolar epithelial , ells {Clara , dls)

(Wa lke r et aI., 1986). 1/1 ,s;w hybridizat ionexperiments have loc ated the presenc e of SI'-A

mRN A in alveolar type II cells andin Clamcells bUI not in alveolar macrop hage."; (l'hdjls &

Flore s. 1988). Ultrastructurally, in both alveolar typeII cellsand Claru eel Is, SP-A hilS been

detec ted in the endoplasmic reticulum. the Goigi bodies, so nic multt vcstcular bodies uudon the

cell membran e (e.g. Williams & Benso n, 1981; Walker ct al.. 1986; deMa li1l 1..'1 al., IlJlJJ ).

Evid ence suggests that SP-A sec retionfromthese cellsoccurs via two diffe rent routes, one ill

which it is secretedalong withsurfactant in lamellar bodies. andvia a route wh ich is indcpcndcn t

of these organelles, It wasshown byFroh et al. ( 199:\) that thekinetlexof secretion t )f SI'·A arc

different Imm thoseof lamellar bodiesand the concentration of SP·I\. ill tubular myelin i ~ higher

than that in lamellar bodies. In alveolar macropbagcs. SP-A is located in ly sosuncs "ndnlhcr

organell es associated wi th catabo lism(Williams & Benson, 19MI; Walker ct al., 19R6 j.

SP·A sharessome sequence homology with another hydwphillic surfactant protein, which

wasini tially identified hy Nget al, (1983) and referred10as a class D surfactantprotein (I'help s

& Taeusch, 1985). The two proteins are functionally dissimilar. SP· J) isa co llagcnolls 4~ kD<l

glycoprotein with fewer irregularities in the collagen-likeregion than SP-A. Unlike SP-A, SI'-J)



co ntains no cysteine residues in the collageno us domain thus p reventing interhcli cal disu lfide

cross-linking . SI'-D possesses intrahelica l glycosylauon in the Ncterminus whereas in SP-A it is

located in the carbo xyterminus. SP-D has been located in nonla mellarsec retory compartme nts

of a lveola r type II cells and in the ap ical electron dense secre to ry granules of the Clara cells

(C rouchct al. , 1992) and it has been shown to be synthes ized by alveola r type II cells (Pe rsson

c l al. . 1988 ).

Pulm onary surfactant a lso conta ins two hydrophobic protei ns both of which are extrac ted

from surfac tantalong with lip ids by or ganic solventsand are re ferredto as proteo lipids. TIle

larger nf lhe twn is Sp· ll. It has 79 amino acids witha monomeri c molecular weig ht of - 8 000

and existsas a bomodimcr (CUTslCdler a l., 1990). SI'-R is relatively high in cysteine residues and

it was suggestedthat di ~lI llidc bridges may be important in stabiliz ingthe conformat ion of Sp ·S

(H<lwgond , 1989). The loca tion of the disulfide-bridges have been deter mined an d they were

shown toresult inthe mature S P-Bmolec ule appearing as three loop s, a cent ral loop surrounded

hy twn smaller loops (Johansson et al. , 1991 ).

Theother hydrophobic surfaclant protein is SP-C. It has35 amino acids with a molecular

weigh t of - 5 000. Mature SP· C is an a-helica l membrane-spanning molecule (Wari ng et al.,

1(9 0) and it also belongs to thai class of prote ins known as proteotiplds which are soluble in

urgsmicsolvents. SP-C is a hydrophobic molecule with two cysteine residues near the Nter minal

which are co valently linkedto palmitic acids by unoeste r bonds (C ursiedt e t al., 1987).

SP-B has been localized , lnununohtsochemlcatly. and its mRNA has been detected in

alvculart ypc IIcells andinClara cells (Phelps& Ploros. 1988; Stahlmonet al . , 1992 ) , SP-C and

its mRNA has been observed exclusively in the alveolar typeII ce lls (Phelps & Floras, 199 1).
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The surfa ctant system of the lung is in a slate of constant nux . The calculations of Wri~h l

and C lements (1987) suggested that the re is not a large intracellular OT c xtmrctlular pOllI of

surfac tant. Th ey have estimatedthat the type II cells must secr ete appmxlunuely 11 1\,47% of

the lamellar body poo l per hour and in a steady stare. an equal amou nt (11' surfactant mnsr be

removed per hour. Although several assumptions were requiredfor Ihcirc slimal1uCl (If surfactant

poo l turnove r time, surfactant production . secretion . and catabolism :lPIll'i1TS hi he l ightly and

accuratelycon trolled by several mechanisms so that theamount of surfactant a ihc a IVt'tll;,r air­

water interface remains constant under var ying con ditions, such as e xercise . There a rc severa l

elegant review s on this subject (e.g. Wrig ht & C lemcnts, 1987; Wri ght & Dohhs, 1(91) .

PUlm o nary Surfacta n t Life-Cy cle

It is tho ught that the fusion of the lame lla r body limiting membrane with the plnsmn

membrane is the prim ary step in sur fac tant secretion . Electron microsc o pic studies have

demonstrated the presence of lamellar bodies in alveo lar type II cells which appeared to he ill the

processofexocytosis (Ryan et al •• 1975; wtlnams & Benson, 1981). Lamellar hodiex Iransfrmu

into a complex lanice-llke structure known as tubu lar myelin when they enter lhe ex tracellula r

space (Williams , 1977). Thefactors which arc respon siblefor this conv ersion a rc nul know n. hu t

it has been shown to requi re the presence o f calcium [Sander s et at. . 1980; Noucr ct .11., IIJK6;

Suzuki etal., 1989).

The c lea rance of pulmo nary surfactant can occur via three mechanism s. Stud ies (e.g .

Hallmanet al.• 1982) showed that alveola r type II cell s can degrade sur factant l ipids, a fter heing

internal ized, pro bably by endocytosis (Williams , 1977). Surfactant lipids can he recycled , without
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intracel lular dcg nl.dalioo thlllugh rci rcorporauoe into lamellar bodies and resecrerion (Jacobs.

19K3,. Uq ;rddat ion o f pho~pholipidli. such as pOOiphalidy1cholinc. occu rs in alveolar

macrop hagcs (S te rn et al., 1986) and in al veolar type II cells (Chander et al. , 1981) . When

s urracta m is deg raded by these cell s. it appears to be associated with catabol ic or ganelles . such

as tysosomcs, where Ihcactionof phospbotipases takes place. It appears that little catabo lism of

~\Ir f;lc lanl OI.x nrs in the alveolar subphase in the healt hy sta te (Ozarzun & Clements. 1977).

Ahcmalivcly, instead or bcing rccyc!oo, surfactant can be cleared from the lung by movement up

themuco-cdary escalatorto theoesophagusw herelt could be swallowed or expec torated, It has

i.lsn been suggested than a vcry small amo unt of su rfactant could be transferre d acro ss the

cpilhdialle ntlulheli al barrier into the blood o r lymph an d subsequent ly transported 10the kidney

or live r and lISL't.I to synthesize new lipids or excret ed (Wrig ht &. Dobb s, 1991 and ref. cited

within).

1'h)'!"H:1I1 rrapt'rtics of l'ul mululry Surfa ct a nt

Pulmunary physiologists have been aware of the roleo f surface forces in lung mec banics

andthe impoo;ll)ccof the lung air-water inlerfa eial film since the semina l work of VOfl Neer gaard

in 1929 (von Nccrgaanl, 1929). Von Neergaard attribute d the differe nce in the recoil forces

between the fluid and air·lillcd lung to the action of surface tension at the alveo lar air -water

interface . He (vo n Ncerg aard, 1929) sugges ted tha t a special materia l which lo wered surface

tensionexisted in the lung. Paille ( 1955, 1958 ) provided evidence for this materi a l in the bubbles

uf foam whichwas expelled from lungs. The subsequent work o f many investigato rs has shaped

o er currcnt andincomplete understandingof the physical propertiesof pulmonary surfactant (e.g.
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Cleme nts. 1977; Bang ham el al.. 1979).

Central to the studyof the physical properties of lung surfactant is the contention 111,,1 tlu­

phys ical ch a racteristics of the alveolar air-wa ter interface strong ly Inn ocncc the llK'c!mllil'a l

propertie s of the lung (Radford, 1954, 1957) . Therefore. the physical cha racteristics or

pulmonary surfactant. as theyrelate to physiological function. 11111.'4be rele vant In lung mechanical

properties.

Morpho metric studies o f rabbitlun gs have show that the surface area of the l U ll g.~ var ies

with lung volume (Gil ct at., 1979). Spontaneously -formed surfactant mills a rc ,\hk to [own rbc

surface tension of an aqueous snbphase to - 25 mN . rn'. This equilibrium sprcild ing IITCSSUTC

occurs when the components of pulmonary surfactant arc in equilibrium with CnlIl JltJ l\C I I I.~ in the

subphase. Th e minimu m surface tension of the lung at functional residual capacity was

determined to be less than 9 mN . 111"1(Schiirch ct a l . • 1976). Comp ression o f surfact a nt IiIllls in

leak-free balances produced extre mely low surface tensions which approached () mN . III I (c.g ,

Klau s et al. , 1961). T his value of minimum surface tension is in good agrccmcn: w ith in viva

measured values obtained from cat lungs by Scnurch (1982). Further, ~chiirch (19K::!) lias shown

that the cat lung , held at 40% of tctat capac ity maintai ned a surface tension of less tha n I mN .

m'' for more than one ho ur. Experiments such as this revealed that fil ms of 1l1llmon;lry surfuctan r

must not on ly be able to reduce surface tension to near zero values hut they shou ld he "hie In

maintain this value for an extended periodof time at low lung Of alveolar volumes. T he unusual

compo sition of pulmonary surfacta nt enab les it to possess seve ral srecialphysicat cha rac teristics

whic h in turn enable sur factant to perfor m its physiologica l role in lung mechanics (King &

Cl emen ts, 1972 ).
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Stud ies hy Cleme nts (1962). Brown (1964), and C lements (1967) were subs ta ntiated and

cxp.mdcd en hy others who have indicated that DPPC is the component of pulmonary surfactant

which enables it [0attain sustained low surface te nsion upon compression. Films o f DPPC must

he helow the phase transition temperature (Tc) 10 atta in a low surface tension. The phase

transition te mperature is the temperature at wh ich phospholipids undergo a chan ge from an

ordered gel phase to a disordered liquid-crystalli ne phase, which for hydrated DPPC is 41_42 °C

(Ladlm Klkc c tat.. 1968). At temperatures above the Tc, the acyl chains of phospho lipid possess

too much intramolecular motion for it [0 be ab le to be compressed into a high ly o rdered rigid

state. Unde r most situations. this docs not pose a proble m since core body tempe ra ture rare ly

exceeds :\7"C . and surfactant is high in DPPC content. Monolayers of DPPC, at te mpera tures

below the Tc , arc able In sustain high surface pressures (e.g. Hawco et al. , 1981 ). Dur ing

compress io n . a monolayer of DPPC undergoes a change from a fluid state, a liqu id expanded

phase, III a mure orde red state. a liquid conde nsed phase , via the main phase tran sition. At

extremely high surface pressures, a less compressi ble solid phase of DPPC is formed (Mohwald .

19( 0). Mon olaycrs o f unsaturated lipids, such as DOPC , 011temperatures below the Tc, do not

withstand vflry high surface pressures, and co llapse a t a lower surface pressure than DP PC

(Tchorcloff', 1991; Nag & Keough, 1993), Surface pressure isotherms of monolaye rs o f mixtures

of DI'I'C and DOpe show plateau regions at low to inte rmediate surface pressures w here liq uid

expanded-liquid condensed transitions occur in pure DPPC monolayers (Nag & Keoug h, 1991).

Using elec tron microscopy (fchoreloff, 1991) and fluoresence microscopy (Nag & Keough. 1993)

it has teen visualized that domains of condensed lipids coex ist with domains of partia lly ordere d

lluid lipids and it has been suggested that the co ndensed domains of mixed lipid mo nolayers of



DPPC and POPC are enriched in DPPC (Nag & Keough. 199 .' ). Therefore, i t llli~1 1l 11..,

speculatedthat uponcompression of mixed lipid monolaycrs. rcorganiauion Il l"the lipid sl'l'l.'i\'s

in the monolayer may occur such that DPPC rich and DP I'C poor rCl:iOllS ar c formed .

Athigh er surface pressuresa process of selectiveexclusion or squeeze-om is hl.'l k'wll to

occur whereby non-DPPC lipid and nrotein components orsurfactant arc displaced fnuu til\'

interface to produce a monolayer which is enriched ill DPP C. The sqccczc -our \II" IUln·I)I'I'( '

lipidsfrom mixed lipid monolayers hasbeen invcstlgntcdby several groups (c.g. watkins. 1% <1 ;

Bangh am, 1979; Hawco et al., 1981a,b: Keough, 1985; Boonmanct al., l 1JH7; 1 ~l: bcrt s ct "I. ,

1989;Mendelsolm, 1993). Another possible mechanismfo r the protuctlon u f I>I'I'C- rich lilln.s

of pulmonarysurfactant is that duringdynamic compression anti expansion.selective inscrtiun III'

DPPC into surfactant lilms may occur. r-owevcr, there is little direct evidence for Ihis , Schilruh

er al, (1989), using the captivebubble technique. have found Ihill initial compression i.~tlt he rllls

of lipid extrac t surfactant films, adsorbed fromthe subphasc . resembled those of SOIVCllH llf\:ml

mixed filmsof saturated and unsaturated phospholipids. Repeated cycling Ill' these allsorhcd Iilrns

produced Isoth erms which mimicked the behavio r of pure DPI'e more c1(I.~e ly uum the inilial

isotherm. Scbu rcn et al , (1989) have interpreted this IlPPC-like behaviorof repeatedly cycled

surfactant film s as occurring because of the squeeze-nutof nnn·DPPC lipill.S and hyd rollhnhie

surfactantprote ins.

Non-D PPC components of serfactant may not he squeezed-om Ill' the monolayer

independently. The unique compositionof pulmo nary surfactant may lead to a more effective

selectiveexclusion of non-DPPC components than that observed withsimple mi xe dlipid l1ItKlds .

This may not o nly be promoted by its speciallipid composition, but it may involvethe prcsencu
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(If surfac tant proteins (Curstcdt ct at. , 1987). Yuand possma yer (1991) have shown tha t SP-B

enhances the surface refine ment charac teristics of PO and that SP·" may facilita te this property

ufS P-H. The resu l ts of Perez-Gil et 11.1 . (1991) supported the inv olvemen t of SP-B in the se lec tive

rcmnval of I'G fro m surfactant monolaycrsand haveshow n that SP·C may also be involved in this

process. Therefo re, further experi ments w it h complex lipid and protein mixtur es, which more

closely re semble natural sur factant, arc nece ssary to ac quire:a comprehensive understandi ng of

possible synergistic effects with respect 10 selective e xclusion of non-DPP C co mponent s form

surfacta nt monolay crs.

The PTlI(;CSS of fonuationof a monolayer ettbe air-water interface from lipid s and pr o teins

in the bul k phase will he referred 10 as adso rption. Adsorpti on of surfactant to the ai r- water

intcrfiln~ has been shown to occur ve ry rapidly (e.g. Kob ayash i & Rober tson. 19 83 ; Holm et al..

1911j and ref. cited within; Keough et at , 19 89). Th is is nece ssary to maintain a adequa te level

o f surfa c tant at the air-wa ter interface since there is not a large surfac tant poo l in the alveolar

interstitia l space (Dobbs & Wright. 199 1). Th e calcula tions o f Goerke a nd Gonza les (198 1) and

KL'(lUgh ( 1985) suggested that since dispersio ns of su r factant lipids in the subphas e can fo rm a

monolaye r in secon ds, sur factant m ust adsorb as as semblages of lipid s and no t as ind ividual

surfactan t compone nu .

P hosphol ipids with rigid acy l chains adsorb more ra p idly to the air-wa ter inter face at

rcnpc nuu rcs above the trans itionicmperaiures than belo w them (e.g . Gers hfeld & Taj ima, 1979).

Therefore . the pro pert ies w hich make DPPC ideal for reducing surface tension to - 0 mN . rn",

namely a high ge l-to-liq uid transitio n tempe rature and its ab.nty to pack tightly in a ge l stale,

dL'C1l'aSC its ability to adsorb with facilit y. Add ition o f the maj or non-DPPC lipids, unsaturat ed
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PC (Tinker & Low. 1982; Egbcrtset al.. 1989) nndunsaturated PG (Flcmilll:& Kc\\u~h . ll/RR;

Egberts e t al ., 1989), in amo unts which are found in surfactant, broadens and !I,was the rransulon

temperature from of that of DPPC. [I has been shown that the udditiuu o f uusaluT;lll'd

p hosphatidylglyccrol (Meban, 1981; Nolter cr at.. 1982: Not ter cl ill .• I lJH.l: Yu ctal., 1<»):14),

unsaturat ed phosphatloyttnosnol (Mcban. 1981), phosphandylcthanolaminc (YII cr :'1.• 19 K.!;

Noller et al., 1983) and cholesterol (Meban. \981) to aq ueousdispersionsof DI'I'C enhanced the

adsorptio n of the lipid mixtures to the air-water interface . There fore. U IlC Ill' the blophyslcat

functionsof thenOl1-DPPC lipid components of surfactant mayhe 10Fluidize the rigid acyl chains

of DPPC at body te mperature which increases adsorption of surfactant lipids 10 the air-wa ter

interface. The fluidizing behavior of non-DPPC lipids of surfactant hasanother effect till the

behaviorof DPPC; that is to increasethe respreading of the IWPC rich film after surfactant Illm

collapse. There is evidence that the addition of unsaturated P C and cholesterol increases the

respreading or a mixture of DPPG and POPG; however. unsa turated PC and chulcstcml were

shown to increase the minimum surface tension compared to the more simple lipid mixtures

(Fleming& Keough. 1988). Theincrease in minimum surfacetension which is produced by these

lipids in rnonolaycrs of more simple lipid mixtures may not have as deleterious allcrfc<;1 in

monolayers of whol e surfactant (SL'Cabovediscussion).

Freeze-fracture studies of foam from calf lung surfactant have dc utoustr atcd vesicles and

funnel-like structures in contact withthe interface. and tubular myelin-like structures at and very

near the air-waterinterface (Sen et al. , 1988). Tubular myelin is an unusual structure wnsi.~tjng

of arraysof long tub es of squarecross-sectionswith bilayer sides (e.g. Williams, 19711) and a

body of circumstantial evidence suggeststhatit is the prec ursor of surfactant fllms . The presence
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of tubularmyelin Hppn; to hecoincidentwith the rapid adsorption of surfactant (Magoonet al..

1911.1; ucnson ct OIL , /9R4; Efral i 1:1 al., 1987). Gil and Reiss ( 1973) have found tubula r myel in

to he rich in protein compa red til o ther forms of surfactant , such as lamellar bod ies whic h aTC the

precursorof luhular myelin (Ostcrlak..m-Dijksterhuis er al., 1991). Others have shown that tubular

myelinis rich in SI'·A {Wright ct al., 19841, and presumablySP-Band SP-C as well, since these

prnlcin.~ lire pre-em in lamellar bodies. The formation of tubu lar myelin requires DPPC and PG ,

calc ium and ill ICilSISP-A and SP-B (although tubular myel in is for med when SP-A, SP· S , and

SI' -C arc present with the surfac tantlipids and calciu m) (W illiams et aI. , 199 1).

Therefore. l1on-DPI'C surfactant components facilitate the adsorption. initial spreading.

,11111 rC .~ flrcilding unc r surfactant film cottapsc while not impeding til<': surface tension lowering

ability of surfactant DPPC upon compression. This orchestra of biophysical behaviours of

individual components of surfactan t is necessary for the proper function of pulmonary surfactant

When the surfactant system of the lungis impeded from functioning properly lung dysfunction can

recur and k at! 10 life-threatening illnesssuch as ARDS .

Adull Resplrntnry nisln'SsSpldrnl1l(,

In 1% 7. Ashh<1llgh ct at. (1967)described the development of acute respiratory failure in

twelve pillients with tachypnea. hypoxemia. and a loss of lung compliance. Post-mortem

examination of the lUllgs of scvenl' of the patients revealed areas of atelectasis, haemorrhage.

ocdcmu and hyalinemembrane formation. Theyhavepostulated that lung surfactant function was

,lhmmnal and thnt it contributed to the pathophysiology of the condition. Shortly thereafter. this

condition was referred to as Oldult respiratory distress syndrome (ARDS) (Petty & Ashbough,
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1971), ARDS is estimated to affect - l:m 000 peopleper year in tnc Ituitcd St,I Il'S ;\llll has a

mortality rate of 50·70% despite advances in the supportive therapy tVill<lT & Slutsky. lll};'l).

ARD S is a well -known cause of acute respirator y failure wh ich can cncct prcviulisly

healthy adults and children. ARDS can OCCUTafter a variety of pulmonary ur sysll'mic insults.

These include pulmonary and non-pulmonary sepsis. shock. inhalation of smoke or toxic gasl's .

oxidant injury. liquid or gastricaspiration, and thoracic and nnnthoracic lr,llIl11a xurh as rracturcs

and burns (e.g. Royall & Levin, 1988).

Sepsis is the most co mmon clinical condition ass ociated with Alt US with 20·40% 0 1

pat ients with sepsis developi ng ARDS (Wicncr·K ronish c ' ;11.. ]lJ9(I). At postmortem

examination, the source of infection wasusuany in the abdomen in patients with clinical evidence

of infection and positive bloodcultures. In contrast. in patients with negative hllllld cultures, the

origin of infection was more likely 10 be in the lung (Bell cr 'II., 1981 ).

ARDS has three phases. During the first 5 days, the early phase. the patiem typlcally has

severe alveolar oedema, with a large number of inflammatory cells accumulating in the hlll~.

primarily neutrophils in the lung interstitium (wiener-Kronish et at.. 199(J). The pathtllo~y of the

second phase occurs at approximately 5-10days after initial onset and primarily involves the

interstitium of the lung. Some patients develop an accelerated fihroxing a lw(l l i l i .~ ;wd

ultrastructural studies have shown proliferation of alveolar type /I cells {Matthey, 19W)j. 'rnc

highest risk of superimposedinfectionappearsto be within6- 10days after initiation of ventilation

(Langer et al., 1989). At this stage. lung damage can result frem Impairment of hlood ;md

lymphatic drainage and the presence of plasma in the airways. This, <l l()n(~ with impairmcnt of

muco-ciliary transport is believed to contributeto the developmentof nosicomtal pneumonia which



19

iscommon at this stage of ARDS (Wicner-Kronish ct al. , 1990). The final stage of ARDS, the

chronic stage, lasts 10-14 days after the initial onset of the syndrome and is characterized by

varying degrees of lung dysfunc tion , emphysema, pulmonary vascular obl iteration and areas of

pulmonary Fibrosis (Wicncr-Kronisbct al. , 1990).

The treatment of ARDS can be considered 10be aggressively supportive. Continuous

positive airway pressure (CPAI~) and pcsutvc-cnd expiratory pressure (PEEP) are believed to

decreaseprogressivealveolarcollapse. reduceinterstitial oedema, and increase functional residual

capacity (Wcigcll, [987), thus limiting the severity of hypoxia. Further, PEEP may prevent

surfac tant aggregation (Wysazog rodski CI al.. 1975) and reduce oxygen toxicity by reducing

inspired oxygen requiremcnts (Petty & Ashbough, 1971), The d iffe rence in oncotic pressure

between thc pulmonary capillaries and interstitia l space is co rrelated with the amount of

pulmo nary oedema formed (wiencr-Krcnis h et al.. 1990). Therefore. fluid managemen t is

Important to maintain low capillary pressures. thereby reducing the hydrosta tic transcapi llary

pressure gradient. Corticosteroids have been the pharmacologic agents most widely used to treat

ARDS because oftheir anti-inflammatory properties (Weigelt el ar. , 1985); howeve r, a large scale

study Lucc cr al. (1988) have failed 10demonstrate their benelicial effects in terms of prevention

or imp roving the outcome of ARDS. indeed showing increased morbidit y in the treated group.

T he current treatmen t and prevention of ARDS has not been partic ularly successful.

Effective therapeutic strateg ies :.viII be faci litated by a more comp re hensive understand ing of the

under lying factors which govern the pathologies of ARDS.

T he ear ly pathology of ARDS typically shows severe pulmonary edema. This resu lts from

pulmonary microvasculature injury which can vary from an increase in permeab ility of the
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pulmonary capillary bed10 lola! disruptionof portions of thc I lI n~ microvasculature. t.tany ~l r , Ik'

mediators of A RD S areprimarily responsiblefor the." destruction of uucnwascular inIL·~ ri ly .

Unlike the pathologic and cardiorespiratory c ha nges Ilf AR I>S . thc 1II11.krlying lI",...liilh'U

whicharebelievedto beresponsible (or ARDS have not been fully dclin....atcd. ARI>S can h,'lillh

f rom an alteration of several homeostatic mechanisms which occur simullanl'o llsly . ;\tU\ oucn

synergistically, 10 produce the clinica1conditions of ARDS. Leukoc ytes. Illillclcts. fl'd hk"'ll l

cells, macrcphages, OJ, free radicals. proteolytic enzymes, Iysosonws. CI111l1, lc lIl CIlI. lihrin mid

fibrindegradation products, histamine. antiendotoxinnrc included inthis list (,f llll,<lialnrs ( I{uyan

& Levin, 1988).

There is considerable evidence to implicate leukocyll'Sas pillying a key role in uc I I;lIl1;,~e

10 the pulmonary capillaries seenin ARDS. Tale and Repin 1191B) have shown 11M .'lCriphcral

leukopenia is assoctaed with ARDS and complement-activated ncutrophils accumulate in the lung

(Hammerschmidtet aI., 1980). The complement componentsCJa and C5a which arc IIL'utn)(JI'i1

chemocactic stimulantsare elevated in the BAL of patients with ARIJS (Rohhins et al., 11J7K) and

thedegree of complement activalion,whichcan result in leukocyteaggrcgatiun has been rcpunl'C l

10bea predictive factor of the development of ARDS (Ducbatcau ct OIL , 19114).

For lhe survivors of ARDS the prognosis of full recovery IIf pulmonary Irmctiun is gUild

(e .g. Lakshminarayan & Hudson, 1978; Alberts cr at., 19113); however, the literature is nul

co mprehensive with respect 10 long term recovery of ARDS survivors. Most palienls are

asymptomatic or have minor dyspnea upon exertion. Lung volumes tend tn improve during

recovery and become normal within 6 to 12 months after initial recovery although .. 30... ul

patients demonstrate hypoxemia at rest and have abnormalities in the diffusing eapacity 1)( CO.
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1'lIlmollar y Surfllclanl lind ANUS

In the inililll ucscrtpuo n o f ARDS, Ashbough et al. ( 1967) sugges ted that surfactant

nbnormalitles may he partially responsible for the pathological conditions of this syndrome in their

patients. They reported an increase ill the minimum surface tension of surfactant recovered from

mincedlungs of ARDS patients at autopsy. Contrary to this finding. Petty et 31. (1977 , 1979)

reponed thaI the surfactant obtained from lungs of'patients with ARDS pro duced normal minimum

surface tension upon com pression hut the compress ibility of the film was 5- 10 tiIlles highe r than

normal. They suggestedthai the loss of film elasticity may contribute to the abnormal pressure­

volume characteristics of the lungs of these patients.

Several groups have provided additional evidence that surfactant function is abnormal in

ARDS. In a number of studies using a flexible bronchoscopy,I3AL samples were obtained during

differentxtagcs of the syndrome. Gregory ct at. (1991)and Hallman et al. (1982) noted a 2-4 fold

inCI'C<L'iC in minimum surface tension of patients with ARDS compared to normals. On the other

hand, Pison et al. (1989), in agreement with the data of Petty et al. (1977, 1979) did not observe

abnormal minimum surface tension in such patients. They (Pison er al., 1989) did observe

decreased hysteresis of the surface tension-surface area relationship in ARDS patients compared

to normals.

Measurement of surfactantfunction has also beencorrelated with the degree of respiratory

failure of patients with ARDS. In a study by Pison et al. (1989), serial HAL samples were

collected prospectively from patients who subsequently developed ARDS. They showed that

dec rease in hysteresis area was markedly morepronounced in groups of patients with high overall

ARDS scores than in patients with mild pulmonary dysfunction. Gregory et al. (1991) found a
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2-fold increasein the minimumsurface tension of patients who were at risk of developingARDS

compared to normals. Others (e.g. Seeger er ar. . 1990) have noted a signilic:l1ltcorrcfuuon

betweenthe levelof surfactant function and severity of hmg dysfunction ill ARDS "••ticms . II is

clear that surfactant abnormalitiesexist in patients with ARI)S and that tin.' degree Ill' impairment

of surfactant function is correlated with severity of lung dysruucttcn.

Accurate quamitation or atvcolar surfactant pool size ill patients with ARDS is not feasihle

becausesamples consist of relatively small amounts of HALand the techniques (If .~t <l nd"n1i t.i n~

the recovery of BAL have not yet beenes tablished. Also. variabilities in the mcuuxt (If surfactanl

isolation such as different centrifugation forces mayalter rncasurcmcmof surfactant poul .~ it,c.

Given this, it is not surprising that there arc inconsistencies in reports of surfuctnnt poo! si/c and

surfactant composition in patients with ARDS and in animal models of h RDS.

Hallman et a1. (1982) and Pison 1.'1 a!' (1989) have reported no change in the total

phospholipid pool size recovered from patients with ARDS compared to a control group. Th ree

groups, Gregory er a!. (1991), Seeger et <1.1. ( 1990), ami Pixnn et <II. (il)l)() . however . have

reported decreased phospholipid content in such samples. In animalmodels when AltUS W:lS

induced by intravenous injectionof oleic acid (Casals ct al., 1989) and bilateml V<lgtl\(1111Y (Bcrry

et al. , 1986) no change in surfactant pool size was reported. A decrease ill surfactant pool sil:c

was reported when the lung was exposed to 100% oxygen (Holm et al., 19H5). In another study,

ARDS was induced by exposure to 85% oxygen and an increase in surfactant [l(MII si/.e was

reported (Low et al.• 1988). These differences lIlayresult from variation in the level or damage

to alveolar type II cells with severe damage resulling in decreased surfactant pool size while more

mild form s of damage may produce a hyperplastic response and a concomitant increase ;/1
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surl"<lctant pool size (Royall & Levin, 1988).

Allered phospholipid composition has consistently been reported in human studies and

animal models of AROS. Typically, decreased quantities of saturated phosphatidylcholinc and

phosphalidylglyccrol arc associated whh increased amounts of phos phatidylinositol,

phosphaudylcthanolammc, sphingomyelin, and lysophosphatidylcholine (Hallman el al., 1982;

Gregory or al., 1989; Pisoncr al., 1 9~9) . Additionally, Gregory et al. ( 199 1) reported that, when

compared to normals, the levelsof SP-A and SP-B are decreased in BALof patients at risk of

ARDS and in those with ARDS. These surfactant composition ebnom.nntcs became more

pronounced as the severity of lung injury increased. Save for the abnormal levels of

phosphatidylglyccrol, the relative concentrations of the surfactantconstituents returned to normal

as the lung recovered fmm injury. Modification of the amountof phosphatidylglycerol and

phosphntidylinositol in rabbit surfactant by dietarymeansseemednot 10 interfere with the function

or surfactant(Bcppu ct at , 1983;Hallman eraI., 1985; Liau ct al. , 1985). Although the decrease

in the amount of DPPCand pbosphatidylglycerol is associated with ARDS, an abnormal amount

of phosphatidylglyccrol and phosphatidylinositcl in the lung may not negatively affect surfactant

function in vinn, especially if the level of phosphatidylserine, another acidic lipid with a

polyhydroxy head-group. increases as phcsphatldylglyccrcl decreases.

Gregory et al. (1991) have stated that the decreased levels of SP-A and SP-B in the

surfactant<,I'patients withARDS maybedue to altered synthesis or damage or both of surfactant

in the alveolar interstitium. Also, the changes in surfactant phospholipid composition may be

relaid til altered surfactant uptake and synthesis by alveolar type " cells. It seems especially

likely thai the decrease in phosphalidylglycerol and increase in phosphatidylinosftol is due to
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abno rma l metabolism o f these lipid s by alveol ar type II cdl s tH O\lhno\n k Gluck. 11I7tl}.

Add j(ionally. these changes may bedue to contamination (<<' m rucmhranc (lht.sphlllil'ids which

resu lts from da maged alveolar type II cells. lung tissue or ;nOal1l miuury ccus « (in.~ll!Y ct at.,

199 1). Compared to normals. the aCli vily o f phospholipasc A was not me rezaSl.'1I in the IIAI . llf

the plasma of rabb its (Hallman et at ., 1982) or patients (Ca....' 15CI al., 19K?). both ti l" whidl had

respiratory failur e. Plasma contain s a higher concentr ation (If IYS<IJlhnsphatillykholillc than that

which is foundin the lung (Holm et al. , 199 1). Therefore. increa sed lyS{'plmsplmtidykhnlinc in

the BAL of pat ients with ARDS may not result Innu an increase d breakdown of

phosphalidy lcholine but probably results from the extensive pulmonary edema which h 1I1l'

hallmark of ARDS . Leakage of protein-rich edema inlO the alveola r space and subscqucm

aneraroo of lung surface tensioncaused by detrime ntal sur factant- plasma protein inter,u;liulls has

been suggested to be important in UK:pathophysiologyof RDS Ic.g . Taylttr & Ahrams. 1%6) mul

ARDS (e .g . Ash baugh et at ., 1967).

Measurement of the protein contcnt of RAL samples from AKDS pancnts ha.\ s1MIWIl

significantly increased levels compared to those of normal ccneors (l'i J;l.ln\..1 011., 19KIJ). ·111ey.

(Pisoo et aJ. , 1989) instilled 5 consecutive 20 ml volumes oro.IS M NaCl lind withdrew it under

negative pressure with an overall recovery of 60-70%. In a multkcnrrc xtudy , Circgury ct 011.

( 1991) determined that HAL samples from patients with AlmS had significantly tower

phospholipid to protein ratios than samples obtained from healthy volunteers. Further, the

phospholipid to protein ratio of AKDS patients was .\ignificantly lower than in patients who were

determined 10 be at risk of developing "KDS . Therefore, IC<lk..gc of plasma proteins inlo the

lung, an early event in thepathogenic sequence of " RDS, appears to he rcl31cdIn the severity (If
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lung dysfunction which is associa ted with this syndrome.

Many inves tigators have determined the effects of blood some of and its protein

compo ne nts on the function of pulmonary surfactant in \'ifm . To investigate the effect of

inhibitors on the adsorptio n facility of surfactant . investigators have used the surface adsorpt ion

appara tus (King &.Clements, 1972) and the pulsating bubble sur factometer (Enho ming, 19TI ).

Tahle I is a brief list of protein inhibitors o f pulmonary surfactant adsorption.



I.uhihil nrM orSlIl'hrl ' llll Ads nr n lhm

,.

pulmonary edema fluid

CRI' fib rinogen

alb umin fibrinogen hm:lllog lohin

fibrinog en

albumi n fib rinogen glnh illin

Ti erney and Johnson (1965)

Hol m er a1. (1985)

Fuchimukai et al. (1987)

Ho lm and Nolter (1987)

Ho lm et a1. (1988)

Keough et al. (1989)

Kob ayashi et al. (1991)

Am irkanian and Taeusch (1993)

Seeger et al. (1993)

Seeger et al. (1993)

Coc kshutt er al. ( 1993)

Tab le 1.

blood

albumin

albumin

hacmogtob!o

albumin

albumi n

fihrinogcn

fihri nogen hacrnogtotnu

fibr inogen globulin
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I':vllhmtiollll r IIIncs...

T here is a recognized need for a system which standardizes informa tion on patients

admitted and treated in intensive care units(ICUs) (Griner, 1972). The inability to classify groups

of p atients based on severity of illness has limited both the evaluation of intensive care and

assessment of new therapies (Knaus et at . 1981. and ref . ci ted within), A widely accep ted index

for determining the severity o f illness is a scale which assesses the probabilit y of mortality

tKrtchcr , 1976). Several systems have been designed to serve this purpose (e.g. Cu llen et al.,

1977). The li rsl widely accepted scoring system to classify groups of acutely ill patients based

tin severity of illness was the APACHE I (acute physiology and chronic health evaluation) system

(Knaus ct al.. 1981). TIle APACHE disease classification system is based on the hypothesis that

me severity of ac utedisease can be measured by quantifying the degree of abnormality of multiple

pbyslulogical variables. TIle APACHE I system is composedof two parts: a physiology score

representing thc degree of acute illness and a preadmission health evaluation indicating health

status before acute illness. The APACHE I index was used to prognoslically stratify acutely-ill

patientsand assist investigators in comparing the success of new and different forms of therapy.

This systems can be used to classify all ICU patients, save those with myocardial infarction or

hums for whom another classffication scheme exists. The physiological portion of the APACHE

I SC(lrjng systemwasdcslgucdto measure objectively the degree of acute illness by surveying 34

physiological measurements. the sum of which yields an acute physiology score. These

physiological measurements arc performed within the first 24 hours of patient admission to ICU.

Knaus et al. (198 1) suggested that the degree of physiological abnormality alone docs not
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accurate ly reflect severi ty of illness. For example. the same degr ee uf hypcrcupnin in a patie nt

with chronic obs tructiv e pulmon ary disease is less alarm ing, clin ically. limn in " previously

healthy patient. Therefore. the chronic healthevaluation serves 10 mudify the ;II.:IIICIlhysilllllgy

score by considering patient history.

Refinemen t of the APACHE I scoring system with the intent Il l' de veloping a more

simpli fied and more clin ically useful yet statistically accurate and valid, patient dassili t'lltiull

system, has lead 10the development of the APACHEII scoring system (Knaus ct al. . 19H; ). T ill'

APAC HE II scoring system has been revised in an attempt 10 improve the risk prediction hy

reevaluating the selectionand weighting of physiologicalvariables whichexamine how differences

in patient selection for and timingof admission10 le U relates 10outcome i.CruSS several hospitaLs

(Knaus et at., 1991). The use of clinical judgment and documented physiological relationships

to choose variables and assign weights serves as a basis of the APACHE (I <lS it did for the

APACHE I. Ageand severe chronic health problems have been incorporated into the AI'ACUIi

II. T he number of physiological measurements taken in the rlrst 24 hours of le U ndmixxiou ,

however, has been reduced from 34 10 12. This was accomplished hy omnuulng physiological

variables which were measured infrequently, had little explanatory p ower, or were rcdundcm.

Also. unlike the APACHE I system, the APACHE II scoring index can provide the clinician with

a systematic evaluation of how an individual patient's severity of disease lnf'lucnccs outcome

(Knaus et al. , 1985).

Acut e Phase Response

A number of the body' s homeostaticmechanismsarc altered following various types or
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tissue injury and infection. The body has developed man)"ways to counteract this imbalance and

return the body to a normal homeostatic slate. One such mechanism is known as the acute phase

response. The term "acute phase" was introduced in 1941 by Avery and colleagues (Albemaethy

& Avery, 1941; MacLeod & Avery, 1941) to refer to patients who were acutely ill wit h infection .

I\ I.';()included in this original definition was a finding of the presence , in (he patients ' sera, o f C­

reactive protein (eRr), a protein which had been previously discovered in the sera of acutely ill

individuals by Tillett and Francis (1930). They. Avery and colleagues, found that CRP existed

only in acute phase sera. As new techniques of detection and quantitation were developed it

bL'C3.mC clear that the acute phase response involves adjustment in the serum concentrations of

several proteins, and that e RP exists in the sera of healthy individuals, albeit, at much lower

concentrations (c.g , Pcpys & Baltz, 198J).

Today the acute phase response is defined as a characteristic pattern of alteration in the

plasma concentration of a number of proteins, which include protease inhibitors, coagulation

proteins, lipoproteins and proteins with other functions (Pepys & Baltz, 1983). The

concentrations of most of these proteins increase by varying amounts during the acute phase

response while some decrease. Theseare referred 10as positiveand negative acute phase proteins,

respectively.

There are many types of stimuli which are known to elicitthe acute phase response in man,

such as surgery and other types of physical trauma; for example, bone fractures, burn injuries.

and tissue infarctions. This response can alsobe initiated by chemical trauma, ischemic necrosis,

malignant neoplasiaand inflammatory stimuli such as bacterial, viral, fungal or parasitic infection

(Kushner , 1982). Experimentally, in animal models such as the rabbit, the acute phase response



m

can be inducedby the injectionof turpentine, a local inflammatory substance. or nhcnuuivcty. by

the injection of a small amou nt of'bacterinl lipopolysaccharide which cun provoke a major acute

phase response without causing other clinical evidence of toxicity (Kushner, I1J1l2),

Production of Oreacttve Protein

Plasma CRP is synthesizedexclusivelyby hepatocytes[Hurfimannd al. . I% hl. II;salsu

synthesized by a subset of peripheral blood lymphocytes. hut this CRI' remains hound It>tIll'

surfaceof thesecells (Ikuta et al. , 1986; KUla& Baum, 1986). Recently, EgenhtJfer ct at. ( 1Il'I.l)

have shown that CRP is synthesized by monocytcs ami macrophagcs. and II1l1t lill'sc cells, <IS well

as naturalkiller cells, do not secrete CRP intogeneral circulation. CRI' i.s knuwn II' cxi.st ill IWI'

antigenically distinct conformations, either as a native pentamer in general circulntinn lIT as a

neoantigentc determinant which is bound to certain cells, nenCI~1' {I'lemp;. ct ;iI.• IIJX.t, .

Kushner and Feldmann (1978) , Baltz ct al. (1"80), Benson and Kleiner ( ]l>XO I, ami

Connery el al. (1981) haveshown that increasedcirculating concentrations or acute philsc IImlt'ins

of hepatic origin result from an increase in the number or hcp atoc ytcs hein~ rec ruited tor

synthesis. Theseauthors have shownthaI initial synthesis is located in the per iportal di sfribnuuu,

but as acute phase stimuli increase, most hepatocytcs become recr uited til produce acute ph,lSt'

proteins. The experiments of Courtaryct al. (19KI) have shownthat most hcpatoc ytcv arc cilp,thk

of synthesizing acute phase proteins and arc able to simultaneously increase the h:vcls of sever;tl

acute phase proteins.

Thecascade of events whichlead to the production of acute phase proteins bcuin with the

activation of severalcells types suchas macrophagcs, epithelial (el ls, keratinocyll:s and m,tst cell,
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in rc~pon'>C m thc hroad rdngc of .~t i mul i which elicit the a~:J IC ph ase response. It is the activation

uf Illill:roph,tgcs and concomitant cy toklnc release which is prima rily responsible for the increa sed

pruducnon of acu te phase proteins Irom heparccytcs during this response (AkiTact al. , 1990).

It W<lSori ginally suggested that the cytokines 11-1 and T NFu were primarily responsible

fur :llt eri ng li lt' synthesis of acute phase pro teins which causes the maj ori ty of the physio logical

and hiochemica l features of the acute phase response (Dinarello. 1984; Boulter et al.• 1986;

Oppcmhcim. I lJX6). Indeed, Perl mutter ct al . (1986) have shown that these cyto klnes aTCable

ttl regul ate the expression ofac ute phase proteins in human hepatoma cells. Others, however,

~ lI gge~led that a n additio na l factor (hepatocyte stimulating factor) was necessary for co mplete

contro l of hepatic acute ph ase protei n production te .g. Richie & Fuller , 1983). Then in 1987,

(i;llIldie ctal. (l qH7) idcnlili ed the additional potent hepatocyte stimulating factor as the cytokine

11.·6.

The myriad of eve nts which occur dur ing the acute phase response are primarily a result

of the change in plasma conccnrrattons of the acute phase proteins (Kushner & Pepys, 1983). This

is an attemp t ttl bolster a ho meostati c response to infect ion or trauma due to the broad spec trum

{If hiolo gical acti vities o f the acute phase proteins.

niodwmil"ul l'rup4.'r1iI'S of eRr

C-r~'act ivc protein belongs to the pcntraxin fa mily of p roteins and as the name implies,

~'l 'nsist s orlive identical subunits with an molecular weight of - 23 000 (Gotschllch et al., 1965).

Ead l sllhuilil is synthesized as a 2 14 amino acid prec ursor of which an 18 amino acid stre tch is

,Isign;d peptide {Tucci cr al., 1 98~) . e RP subunits are non-g lycosytated . contain one d isulfide
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bridge (Olivera et at.. 1977) a-id associate non-covalcrnty 10 limn the pcmanu-ric ring molccuh­

(GotschHck& Edleman. 1965: Osmand et al., 1977). Ken ct al. (1990) n\lt~d tlmt th~ funl,tiulml

stale of circulating CRP may be related to its cunformatiou, whether it is ,\gl::r~gat~tl, cleaved, \1T

in its native pentamcric form. Pepys and Baits (198.\) stated that CKP would IITtl!l;lhly lu­

aggregated or cleaved during a local response to inflammation . In general. however . l'ircillatillj:

CRP is most likely to be in the native pentamcric form in both healthy individuals and lh(l.~~'

expe riencing the acute phase response.

CRP was initially characterized and purified from sera by its ahility to hind In il1l1[

precipita te with pneumococcal C-polysaccharide in the p resence of calcium (Tillett & l-rnucis,

1930). The work of Gotschlick ami Edelman (1967) have shown that CRP binds cntclum with a

stoic hiometry of l ~2 moles per subunit. this was la ter suppo rted and expanded upon hy S liidil'.~ ,

using circular dichroism, which have shown thatcalcium binding caused n conformational change

in eRP (Young & williams, 1978) and by the use of monoclonal antibodie s (Kilpatrick cr ul.,

1982). The site at c-hich eRP hinds calcium consists of a highly-conserved amino acid stretch,

residues 133-147. and it is thought to bind calcium via fo ur acidic residues (Liu cl al.. 19K7).

The first to explore the ligand binding prope rties of CRI' , beyo- j precipitation with C.

polysaccharide from different sources, were Gotschlich and Edelman (llJt'l5). T heir work wa_~

in itiated by earlie r findings by Hornung and Berenson (1%3) who found thai urid ine

monophosphate could inhibit the binding of CRP 10Opolysaccharidc. Gutschlich & Edelman ,

(1965) tested a numbe r of potent ial inhibitors in ord er to dete rmine which groups were required

to inhibit the binding of CRP to C-polysaccharide. Their conclusion. thai phosphate monocsrcrs

wen- oecessary 10 block the binding to Ccpolysaccbaridc. preceded the work Ilf vnlanakix and
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Kilpatri ck (197 1) who dete rmined the rela tive inhibitory powers of seve ral phosp hate mono este rs

lCI perform this function . Volanakis and Kilpatrick, (1971) have shown that phosphocholine was

cspcciajty inhibitory and thaI DL- " -glyceroph ospha te and O-phosphoc thanolam ine posse ssed less

inhibitory power with respect to binding of eRP 10Ccpolysaccharide and they have shown that

ihc association constant of eRP for phosphocholine was 2 x 1O~ M·I at S~C.

till c t al. (19 87) sugges ted that phosphocholin e bindin g occurs at the highly conserved

residues 51·66 with residues Lys-57-Arg-S8 binding to the PO/" moiety and the cationic residues

ASI'··(lfJ-Glu-62 binding 10 the cho line moiety. Thi s hypothesis was supported by the wor k of

Swanson and Mortensen (1990) who found that a synthetic peptide cor responding to amino acid

residuc.'l47-6J of e RP boundphosphocholinc and reacted with a monoclonal antibody which was

specific for the phosphocholine binding region of CRP. The phosphocholine binding region is

thought to be located nearly perpendicular to the plane of the CRP molecule l.e. , facing away

Iroru the edge (Roux CIal., (987) .

The binding of CRr to Cctypc and type 27 polysaccharides is explained by a binding to

phosphocholinc moieties in these polysaccharides. eRP has also been shown to bind to

dcpyruvylatcdtypc 4 capsuleswhich do not c....ntain phosphochcline (Higginbotham et al. , 1970).

This was subsequently explained by the binding of CRP to polymers of galactose (Pepys et al. ,

(977). Also. in the absence of ca lcium, CRP binds to a number of polycaticns. such as poly-L.

serine and poly-Ll yslne (DcCamelli et al ., 1980). The binding of e RP to phosphocholine and

togatactosyl polymers explains the large number of endogenous and exogenous ligands for CRP

(e.g. Kolb-Backcfcn , 1991).

The biological roles which CRP are believed to play in the host defence system is in pari
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reflected by its ligand specific ity. Once e RP is attached to most of its ligands, il is also ulrlc III

activate the classica l complement pa thway via an interaction with the first component Ill' this

pathway, Cl q (Kaplan & Vclanakis , 1974). In the abscncc cr additional sign"ls. however, C\{l'

unlike immunoglobulins. is unable to lyse ce lls through the for mation of the 1I1cmhr.mc all,!t'k

complexvia an interaction with the components C5 through C9 (Berman ct ar. , 19116). The sill.'

OIl which Cl q binds CRP was proposed in 1991by Jiang and GCWUfZ (199 1) and has since be en

delineated to involve two cationicdomainson thecollagen-like region of Ctq (Jiang cl .11.. 1(92).

Int eraction of Oreacuve Protein with Lip ids

Variousgroups have investigated the bindingof CRi' 10 suspensions of phmllhnlipids and

pho spholi pids plus cholesterol. vo tanakis and Wirtz ( 1979) have shown that with liflmol1le.~

formed from phosphatidy1choline alone or with phosphatldylcbolinc plus c1l1Jlcstc rnl (15 mul%)

no binding occurred between eR P and these structures. They have also shown that the

incorporation of stearylamine (10 mo l%) into the phosphatidylchollne-coutalning Iiposomcsdill

not cause CRP binding. Subsequently, in 1981, Mold et at. (1981) have shown that the

incorporat ion of increasing amounts of cholesterol (up to 33 mol%) to Iiposomcs composed uf

dimyristoylphosphatidylcholine (44 mol%), stearylarmne(15 mol%) and galactosylccrumidc(II

mol%) did net increase CRP-binding. They have demonstrate that the incurperannn uf

stearylamine and galactosylceramide into liposomcs of phosphatidylcholinc plus cholesterol

resu lted in binding of C RP which was ca lcium independent anti was nut inhibited hy

phosphocholine nor wasit affectedby the substitution of dimyristoyiphosphat idylcthllllol,llllinc for

dtmydstoylphospbatldylchollnc. The ligand to which CRP was binding in the Mold ct at. (/9KI )
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studywas the positively chargedstcarylaminc(Tsujimoto et aI. , 1981).

Th e incorporation of lysophosphalidylcholine into phosphati dylchotine-ccntaining

liposomes has been shown to be a ve ry effective method of inducing the bi nding of e RP to these

vesicles(volanakis & Wirtz, [979; Volanakis & Narkates. 1981; Anderson et al . • 1982). This

binding is calcium-dependent and is inhibited by free phosphocholine. TIle incorporation of

Iysophosphatldylcboline into phosphatidylcholine-ccntaining Iiposomes is thought 10 disrupt the

molecular organizationof the bilayer by causing membraneirregularities (weluien. 1979 and ref.

ci ted wit hin) and this may consequently increase exposure of phosphatidylcholine to eRP

(Volanakis & Wirtz. 1979). Kushner and Kaplan (1961 ) reported that CRP is in close association

with membranestructuresof alteredand necroticcelts but notwith normalce lls. Indeed, Narkates

and Volanakis (1982) have shown that treatment of erythrocyles with pho spholipase A2• which

cleaves phosphatidylcholine to produce lysophosphatidylcholine or lysis of the cellular membranes

by osmes is, causes lhe bindingof CRP to the erythrocytes. It has been suggested that this may

he relevant to the biological function of CRPsuch thatdamaged cells or foreign pathogens which

have been opsonizedwithCRP maybe more attractive to phagocytic cells (Kaplan & Volanakis,

1974).

Therefore, despitethe potentially large number of endogenousligands to which CRP can

hind il appears to do so under special circumstanceswhich are facilitated by a disruption of cell

membranes. This requirementof eRP for an exposed ligand appears to protect most membranes

o f thebody from the destructiveimplications of eRP binding.

C li llital Usefulness of Measu ring Serum e RP Levels
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Since the discovery of eRP in the serum of patients withpneumonia in 19.' 0 (Tillett &

Franci s, 1930) interest in the acute pha se response and whether detecti ng changes in the

concenuadons of acute phase proteins could provide clinically useful information has increased.

The first of several researchers to investigate the possibility that e RP may he useful in the

clinical managementof diseasewere Kroop and Shackman(1954). T hey detected clcvan..xl serum

eRP levels in patients with myocardial infarction. Shelter cr at. (1955) in a study of 113cases,

including normalcases and patients with a variety of diseases. found IIml CRP was c1C VlIICd In a

majority of instancesof tuberculosis, Hodgkin's lymphoma. Ewing' s sarcoma, multiple myeloma

and other malignancies. The usefulness of dete rmining the levels of serum Cit!' compared hI

other measurements madeduring thc acute phase response was noted as early as 1957 (Yocum &

Doerner, 1957). They notedthat anelevated CRP level was a good indication of the presen ce (If

innammation. or necrotic processes. Subsequently, Hedlund ( 1961) found that serum CRI '

increased in cases whereelevated temperature was associated withinflammation. Two years later .

Belfrage (1963) found that in over 900cases, serum eRP level was a better ind icator of infection

Ihan fibrinogen, haptoglobin, a- globulin and erythrocytesedimentation rate. Asmore work was

completedit becameclear thatmajor elevations in serumCRP corccmrauons oc cur in most severe

infections (e.g . Kennyet al., 1981; Pepys, 1981; Gcwurz et al., 1982). It has been shown that

the degree of elevation of CRP corresponds reasonablywell with the sever ity of infection(c.g .

Sabel & Hanson, 1974; Kushner & Feldman 1978; Sabel & wadsworth, 197<); Macintry ct a l.,

1982) andseverity of tissue damage (Kushner et al., 1978; de Beers cr31. , 1982).

Elevation of CRP levels in the serumof individuals afflicted with o neor more of the

stimuli which often lead to an acute phase response also occurs in those who suffer from ARDS.
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P rev iously , Kcw c t al. (1990) haveinvestigated thepossible corrclauon b etween e levated CRP

levels in the serum of individuals inan intensive careunit andthestagesof p ulmonary dysfunction

whichlead 10 1l1<D5 . They de termined !hal sera of patients at high-riskof de veloping ARDS and

those with ARDS contained significant ly elevated levels of CRP compared to that of normal

suhjcds. The y delined patie n ts at high -risk of ARDS as those who failed to meet the crite ria of

ARD S, but possessed one o r more o f the foll owing: sepsis sy ndrome. requiring pulmo nary

aspira tion, ncmboracic trauma or hypote nsion. Sepsis sy ndrome req uired the prese nce of tw o of

the followin g crtcrta: temperatu re >3 9°C or < 36"C; peripherial white blood cell count < 3000

or > 12000 cells' mm'',positi ve bloodculture fo r a commonly recognized pathogen or a stro ngly

suspectedsou rce for systemic infection from w hich a known pathogen had been identi fied. The

fo llowing we re also necessa rily prese nt: a delet erious systemic response to infec tion suc h as

meta bolicac idosis, systemica rterial hypotension with systolic blood pressure of <80 mm Hg for

morc than two hours, or sys temic vasc ular res istance o f <800 dy nes ' sec'' , crn" . Pulmo nary

as p iration required a witnes sed even t with or without the suction of gastri c contents from the

tra chea. T rauma and hypote nsion required acute no nthoraci c trauma , including su rgical

ope rations. associated with bl ood loss and systemic systolic blood pressure of < 80 mm Hg for

morcunn two hours or the req uirement of vasso pressor agents fro longer t han two hours. They

(K c w cr al., (990) defined pat ients with ARDS as those having roentgeno graphic evidence of

bilateral alveolar infil trates. po ssessing a pulmona ry cap illary wed ge pressure of < 15 mm Hg,

and a total static pulmo nary co mpliance of <5 0 ml' e rn" H10an d a PaOzfFi~ ra tio of < 200

white the pa tient was receiving positive end exp iratory pressure from the mechanic al ventilator,

The levels o f eRP in the BAL obtained from patients with ARDS were found to beelev ated
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compared10 those of normals ( Li erat. , 1989). Li et at. (1989) idcurificdpatients with ARllS

as those who required imubation andmechanical ventilation withposi tiveend expiratory pressure

of > 5 em H20. had di ffuse radiographic infiltrates andsevere hypoxemiainjury. and a Flq {II'

>0.40 in order to maintain a PaOI > 50. Th ey atso had reduced total respirato ry system

comp liance«SOce/em H10) and a pulmo nary capillary wedgepressure of < 16 Illlll Hg.

Com p lement Protein Clq

Theco mplement system iscompo sed of a group o f proteins , found in hodyFluidsor on

cell me mbran es, whic h when activated. lead to specific sequentia l interaction s whic h produce

many physiological effe cts. Co mplement playsa major role in the mediation or inll arnnHll ioll ,

in the regulation of phagocytic activity, and in the metabolismo f immune complexes ( I.(I(I.~ ,

1983) . Complement activation may be init iatedby chemical activators le.g. liptlJllllysaccimritlc ),

byinte ractions with cert ainclasses and subclassesof immunoglobulins or hy <In interaction with

CRP. Therefore, complement servesas an effector system for antibod iesand C RII whe n they a rc

bound to substrates.

Clq is the first component orme classical complement pathway and possesses a " flower

bouquet-like" quaternary structure which is similar to that of SI'-A. IgMand IgCi subsets I , 2,

and 3 have receptors for Clq in the constant region of their heavychains(Shulmanct al., 19K? )

which become exposed once the immunoglobulin hasattached to a specifica ntigen. Activation

of C l q is dependent upon cross-linking of at least two of the six b inding sites with

immunoglobulin receptors. At leastt womolecules of IgGor onemoleculeof the pcntamcrlc IgM

arenecessaryfor fhisto occur. In addition , upon binding to a substrate,the pe ntamer, ClUJ, can
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init iate C lq activation. Once activated, Clq activates C IT, which in turn cleaves C[~ by an

intramolecular, autocatalyt ic mechanism (Weisse! ct at., (986). The resulting molecule C1

esterase, may continue the pathway by caulyst ng the assemblyof C3 con vena se , or it may be

inactivated by the binding of C ! esterase inhibitor \0 CIT and C is . causing them to loose their

attachment 10 Clq , thereby slopping the pathway .

Clq is synthesizedprimarily by macrophages (Laos, 1983), which not only secrete Clq

hut also have Cfq associated wi th their surface (Loo s et al. , 1980). The molecular weig ht ofClq

is - 4 ](J000 (Ziccardi & Coope r, 1977). The no rmal mean value for Clq in sera was shown to

be - 127 1-/1 • ml-I (Dclarna rcbc c l al., 19 8 8) and serum C lq hasbeen show n to range between 70

to 276 /J1' mr' (Ziccardi& Cooper, 1977). Clq, unlike several other complement proteins, such

as C is, is not an acute phaseprotein. Therefore. its serum concentration is not expected to be

altered by inflammation, injury or stres s.

Sta tement of tile Probl em

The relevant literature wifh respect to surfactant dysfunction by circulating protein

inhibitorshas beenreviewed. ARDS. affect thousandsof peoplea year and has a mortality rate

of 50 -70%. The early stages of this synd rome are associatedwith severe pulmonary edema and

it is thought that the inhibition of surfactant function by plasma proteins contributes to the

developmentof ARDS . Manyof theetiologies whichcommonly cause ARDS also result in the

acute phase response. CRP, an acute phaseprotein, can increase in serum concentration up to

IOOO-foldduring this response. CRP has beenshownto be elevatedin the lung of patients with

ARDS compared 10 normals and CRP binds phosphocholine. CRP also binds

pbosphocthanolamine and glycerophosphate, alt hough with less avidity than phosphochcline.
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These water soluble eR P ligands constitute the hcadgroups (If thn•.-e or the phosphol ill ills of

pul mona ry sur factant . with pbosphochotine being the most abundant. The compl eme nt protein

C lq is homologous 10 the hydrophilic surfactant protein SP-A in it 's quaterna ry structure. SI' -A

has been shown to have beneficial effec ts on the physica l behavior of pulmonary surfactant.

Therefore, this thesis is put forth 10 seek answers to the following qucst iuus which have nlll been

fully addressed in the literature.

Docs eR P affect surfac tant adsorp tion?

ls the effec t calciu m-dependent?

Is the effect of CRP spe cific for certain surfac tant co mponent( s)'!

Can the effect o f CRP be dimin ished and is the effect rever s ible"

Does the level of CRP in the serum and sputu m o f acutely ill patient s correlate with the severity

of pulmonary dy sfunct ion which is associated with ARDSand docs it co rrelate wifh the AI'A( ' I-I I ~

II sco res of these indiv iduals?

Cansome the beneficial effects of 5.P-A on surfactan t adsorption be substituted fur hy the ;ultlilitlll

of the complement protein C lq to surfactant which is void of SP-A'!

DoesCl q affect the min imum surface tens ion of lipid extrac t surfactan t?

Research Plan

The ab ility of surfactant to adsorb rap idly to the air-w ater interface was tes ted in the

presence and abse nce of eRP. calcium . and in co mbinations of CRP and three C R)' ligands.

phosphochoJine (Cl'), O-phosphoet hano lamine, and Dl. -v-gly cerephoxphate uxing it surface

adsorption apparatus (Keough et al. , 1987). The effe ct of CHI' was compared to that of other
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knownserum protein inhibitors of surfactant function. Adsorption experiments were performed

with C l q and lipid extract surfactant which was void of SP-A , using the surface adsorpt ion

apparatus. Adsorption along with theability of this mixture 10obtain a minimum surfacetension

was tested using a pulsating bubble apparatus.

Sera and sputumsampleswere collected serially frompatients inan leu. and sera was also

he cotlccrcd from healthy volunteers. Thesesampleswere assayed to determine the e RP and total

protein levels. v alues arc expressed as eRP as a percent of total protein and were reviewed in

relation to severity of lung dysfunction associated with ARDS and the APACHE II score of

patlems in th e leu.
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Matl'riflls a nd Ml'lhods

PUlmonary Surfact ant lso1a1ion

Sur facta nt w hich was used in these experiments w as isola ted from porcine I lI ng~ which

we re obtain ed from the abattoir of Newfound land Farm products. St. John's. The laV; Ij;l'

proced ure was employed as a method to obtain initial ma terial for surfactant ;SUI'llilll\ .

Only lungs whichdidnot appear bloody, were without areasof extensive h:ICl\lorrh,ll:c ;lI1d

did not co ntain large lacerations, were lavagcd . The lungs from freshly xlauglucrcd pigs were

pac ked in ic e at the abattoir so that the tracheas were extended above the icc In I\linillli :lc

contaminat ion of the inner sur face of the lung by blood or melting icc. In the lahur:llnry. the

lungs were remove d from the ice and the external surfaces were washed with cotd water . Any

accompanying tissueor debrisaround the tracheas or lungs was removed 10 Iaciliutte handling of

the lungs and lavage extraction.

The la vage procedure consistedo f first inser ting a Tygnn tub e Into the trachea so that n ile

end of the tube was nea r the bronchial jun ction. Th is was secured by a nylon cahle lie which W; IS

placed around the trachea. The lungs were distended with 0.15 M Nael at 4 "C until the surface

became fir m, and the lungs were gently massag ed. T his proce ss was intended to facilitale

suspension o f surfactant in the saline solution in the lung. Any minor curs on thes u r face of the

lungs were pin ched between the fingers. Thelavage wasext racted through the Tygon tuhe which

was connected 10a re se rvoir and a water aspirato r via a three way valve. Lavage was collected

in the reservoi r which was surrounded with icc. Lavage from eac h pair of hmg.swas handled

separately 10 m inimize the chance of contamination of lavage fluid fro m one lung with potential ly

inhibitory material of another. Also, lavage fluid wh ich appeared red or "blood y" in colour, was
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discar ded.

The lava ge fluid was proc essed by a modificat ion of the met hod of Ki ng and Clements

(1972) (append ix I). T h is procedure cons is ted of four centr ifugations. the third being in sodium

bromide. It was noted that with each ce nt rifugatio n, the sur factant material became w hiter in

colour and it was assumed that cnraaminating m aterial such as blood prote ins and cells o r

compo nents th ere of were removed from the surfactant rich m aterial.

The ph o spholipi d content of the s ur factant was calc ulated from the p hos phorus content

which was obta ined by a modificat ion of the method of Bartlett (1959) , as desc ribed by Keough

am! Ka ricl (1987) (appe ndix 2). Surfactant protein co ntent was detennined by a modifi cat ion o f

the meth od of L owry et al. (195 1) (append ix 3).

Prepa ra tion of Surfactant for Interfa cial Property Measurement

Analiquot or sur factant was removed from s torage at ·70·C an d wasequilibrated at room

tempe rature. It was briefly vo rtexed (5 seconds duration), sonicated and vonexed again.

Sonicat ionconsisted of two sets of 10sho rt bursts (0.5·1.0 seconds duration) at a powe r of 30

Walts using a Branson so nificr which was equipped witha tapered rnicrotip. The suspension was

cooled on ice for two m inutes between the two sets of sonication bu rsts. T he surfac tant was

diluted in 0. 15 M Nne l, in the presence or absence of 0 .005 M Caell • briefl y vortexed and

incubated over night at 4 °C.

preliminaryexpe riments werecondu cted to determine which.method used for fin al stages

of sur factant preparation prior to its use in exper iments was most conduci ve to o btaining

consistent results . After theovern ight incubation, th e surfactant was vortexed thoroughl y (20-30



seconds) and the surface behaviour was tested using the surface adsorplillll appar;ltlls and thc

pulsating bubble su rfactometer. Consistentresultscould llOI he ntsainedwith identical surfactant

preparations when they were finally mixed only by vortcxing, nor did water halh sonication

(Bransonic 220) for 2 minutes yield consistent surface behaviour. 11 W;IS assumel! that the

surfactant suspensions were not homogeneous with respect 10 the distribution IIf surfacmru or

certain components thereof and that this produced inconsistent results. Therefore. it was

necessary to probe sonicate the surfactant in the ma nlier dcscrihcd above prim h' the firsl

expcrimemal test of the day and before every third experimental test thcrc:lne\" .

Lipid extracts of surfactant were prepared by the method o( Bligh ,IIIU Dyer \ IllS'}) All

aliquot of surfactant was removed from storage at -70'C, equilihrntcd IIIroom temperature.

vortexed, probesonicated and vortexed ill the manner described above. A volume Ill' surfactant

was chosen for lipid extraction such that the amount of lip id cxrrncr liurf,lclilUl which was

produced was sufficient for approximately 30 expcrlmenutics ts. This volume was uesigllated as

0.8 volume. To this, 1.0 volumeof chlorofonnand2 .0 volumes of methanolwere 'l(ld ~'l..I amltlie

phases were vigorouslymixed. Anotbcr 1.0 volumeof chloroformand 1.0 vohnuc nf water were

added, the phases wen: mixed andallowed to separate . The top aqueous layer was removed and

discardedandthe remaining organic layer, whichcontained the hydrophobic sur!"act;1Il1lipills and

hydrophobic proteins was evaporated to dryness under a stream of nitrogen. This surtacuuu \V ,l S

suspended by vortexing in a small volumeof 0.15 M NaCIso that Ihe ccnccnrrnnon111'the Jipiu

extractsurfactant was similar to that of the naturalsurfactant. It wasimmediately sillfeu at -70-<:

with an aliquot being assayed for phosphorus content by (Keough & Kadel, 19K7) (apJlcnlli x 21

and protein conce ntration by a modification of the method of Lowry ct al. (]951J (iIJlPCIKliJ(J).



45

1" 'I' I';II':lIiUII uf I'hl'mll I'rn lrim; and eRP Liglllld.~

Human C1<I'. from ascites Ill/ill. was obtained in a solution composed of the follow ing

1M): NaC'l, 0,15: ('aC ll • IUX)2; Iris, 0.020; pH = 7.5, in 0 . 1% NaN\. According to the supplier

(C;ilhitll.:hclIl. I ~I Jolla. CAl. the C R!' was 95% pure by SDS-PAGE . T his purity was con firmed

hy Sf)S · I'A<jE. T he concentrat ions of Ihe eR P solutions which were mixed with surfactant

Wl"C det erm ined by an ELlSA (ap pendix 4) .

When necessa ry. calcium was removed from the eRr sol ution using Cen tricon 3

microconccuu. on (W . I{ . Gr.ICC& Co" Beverly. MA). This procedu re consi sted of filling the

top IIf a concentrator chambe r with CR.!' solution, to which EGTA had been added for a final

HiT A conccnrculon of 0 ,002 M. The lop and bouom cha mbers of the concentrato r were

~P<lril lcd hy a membrane with a ::mOODa exclusion limit. This apparatus, containing the CRP

solutiouW;l S centrifuged for thirty minutesat 3020 K g •• • The top chambe r was refilled with the

xume :;oltllioll, S<IW the CRI'. and centr ifuged and this procedu re was repeat ed. EGTA was

SUhSL'<lucntly removed by threethirty-mi nute centrifugations. as described above. in the presence

of 0. 1:'\M N;ICland O.lXJ5 M tris-HC1, pH= 7.4. The concentration of the resulting CRP solution

was dete rmined by an ELISA (appendix 4).

'I'll prCll;lrc stock solutions of human fibrinogen and C lq, CaC ]1was added to lyophiliz ed

fihrinogen (l)'lle I. fract ion Ill. - 70 % clonable protein, 12% Na ci trate. 18 % NaCl) and to

I Y\lph i l i /~'(1 human complement co mponent Ctq (0.5 M NaCl. 0. 05 M tris. pH = 7.3) so that the

c..tlrium W'l~ present at a final concentration or 0.005 M. Solutions or human albu min (essentially

l;ltly ad d Free . fractjon V) and globulin (Cohn Fraction IV) were prepared by the addition of NaCJ
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and Cael z in do ubly distill ed water so that the tinal concentration of these ions W; IS 0. 15 M and

0.005 M, respectively. These proteins were solubilized by gentle shaldllt: ami wcrc slnrt' d in

aliquots at ·20' L. An aliquot of eac h solution was used ttl assay the protein conccmrauon h)' a

modifica tion of the method of Lowry cr ul. (195 1) (appendix 3).

Th e water soluble eRP ligands were dissolved ill sim ilar so lutions as thaI uf the Illasm;l

proteins and surfactant mixtures. The concentrationof ligand was determined from the wciglu

of ligand which was added.

Surfa clanl Adsorp tion i ll a Slirrcd Snbphnsc

Dispersions of whole and lipid extract surfactant were mixed with solutionsof pnuciuor

protein + ligand so that the concentrationof surfactant in each experiment remained consuun.

In control dispersions, identical concentrationsof surfactant alone or mixtures of surfuctam +

protein were mixed wilh buffer solution to achieve final conccntmrirmswhich were idenliealw

their respective test mixturesof surfactant+ protein,or surfactant + JlTlllcin + ligand. SnlUliuns

of CRP, fibrinogen or globulin were added to the surfactant suspension immediately suh'iL"quel1l

to sonication. Solutionsof Clq or albumin were addedto the lipid extract surf"ctanl in (l simil",

fashion. Surfactant suspensions, and mixturesof surfactant + protein. and surfactant + protein

+ ligand were briefly vortexed (5 seconds)and incubated at room tcmpcnuurc ror two minutes

prior to measurement of their interfacial properties. Surfactantwas diluted such that when it W,IS

mixed with volumesof solutionswhich mayor may nuthave contained plasma protemsor plasma

protein + ligand, consistent concentrations of each of the componentswere obtained OI l similar

volumes. Surfactant concentrations are reported as phospholipid concentrations hy multiplying
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the phosp horus concentration by 25.

Surface tension versus lime adsorptio n experiments were per for med using an adsorption

appa ratus which was similar to that of King and Clements (1972) as previously described by

l'crcz-( jil ct al. ( 1990), (figure 2). Briefly, - 120 ii I of surfactan t or an equal volume of mixtures

of surfactant + protein, or surf actant -I- protein -I- ligand were injected slowly (requiring a time

period of ··5 seconds) iruo 5 rnlof stirredscbphase whic.. ...~ contained in a Tenon beaker. The

subphasc, which contained 0.15 M NaCI with or without 0.005 M CaC12• was stirred

continuously . Subphasc temperature was maintained at 37"C ± re. Surface tension. measured

with a platinum dipping plate that had been roug hened by scratch ing with emery pap er, was

monhorcd as II function of time. With the platinum dipping plate suspended above the subphase.

the surface adsorpt ion apparatus was zeroed according to the operat ing instruc tions of the TSAR·)

computerized transducer readout (Torrance , CAl. The flag was sub merged into the subphase and

raised so the that only the bottom 1/4 was submerged. This process was repeated before every

experimentaltest.

The amount of surfac tant uSC(! in these experi ments was chosen as the am ount o f surfactant

which, in the pre sence o f 0.005 M CaC I!, adsorbe d to the air -water inte rface rapidly enough so

UliII it reduced the interfacial surface tension to 25 ± 3 mM ' rn" within 5 minutes. ln the absence

ofca1ciul1l. the amount of surfactant used was that which reduced the surface tension to the same

value wit hin 20 minutes. Surfac tant adsorp tion in the presence of calcium is poor . T here fore .

the amo unt of surfactant req uired to meet these conditions was greater than that used for the

adso rption ~lf surfactant in the presence of calcium . If the criterion for an eq uilibrium sprea ding

Ilrcssurcof - 25 mN ' m' in 5 minutes were to be achieved in the absence of calcium , a ver y large
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Figure 2. Diagram of a surface adsorpt ion apparatus .
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amount of surfactant and a unreasonably costly amount of CRI' wuukl Ill.' fI..'tluirl'l! ror till'

experiments. Results are expressed as surface tension versus timeami symbols represent nW,l11

± I SO.

S urfactant Propert ies in a PU I~lt i ll~ Buhble SlIrfnclllllll'l('1'

Dispersions of surfactant were prepared in an identical manner fur U.'iC with the jlulsatiul;:

bubble surfactomctcr (Enhorning, 1977 ) as were those which were te.~h..'(1 using rho slIrfa.x'

adsorption apparatus. Lipid extract surfactant was mixed with the C 1(1or albumin .~(J l u l illns suctr

that the concentration of surfactant remained constant and Clq was presentlit either 5 'N, or 10 %

and albumin was present at 10% of the phospholipid content, by weight. Cen tro! mixtures were

preparedfrom whole or lipid extract surfactant were mixed with solutions uf saline and calcium

to achieve the same surfactant concentration as that or the test mixtures and final conccmrutiuns

of 0. 15 M NaCI and 0 .005 M c acr;

Two phenomena canbe studied using me pulsating bubble surracromcrcr (ligurc :\J. The

pulsating buhble surfactometer can be operatedin a pulsating mode. The principle of the pllhaling

bubble surfactorncrer. in this mode, is 10 record the pressure which is required 1t1funn a huhhle

which is pul sated between maximum (0.55 111m) and minimum bubble radii «(JA(J mill). This

pressure is equal to the pressure difference (LIP) across the bubhlc interface. The pressure

difference is relatedto the surfacetensionby the LaPlace Law, 1l1'=2 y/ r (r is the huhhle radius),

so that, in the absence of surfactant, where the surface tension is constant. the hIghest pressure

differenceoccurs when thebubbleis at its smallest size, lI P~,... The presence of well-functioning
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Figure J . Diagramof a pulsatingbubble surfactorneter , after Enhorning, 1977.
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pulmunary surfactantcausesthe surface tension to be very Iowan compression to a smallsurface

area (sma ll bubble radius) and , thus "Inverts" the behavior of loP so tha t ...P is lowest at minimum

bubble size . The pulsating bubble surfactomete r provides a mechanical model of an alveolus

wherein the bubble. like an alveolus, undergoes cyclic compression and expansion. Therefore,

the effect of inhibilors of sur factant adsorption can be investigated simultaneously with thei r effect

on surface refining of surfactant at the air-wate r interface. Surface adsorpt ion alone can be

monito red when a bubble is formed and it is not pulsated. In this respect, the pulsating bubble

surfaclomclcr is similar to the surface adsorption apparatus, however, since surface tension

(rcla ted to ~ I') is not measured with a dipping plate the possibility of contac t-angle arti fact is

avoided (H ills, 1984). The complication of such studies is that the subphase is not stir red and

there may be diffusion grad ients influencing the properties of surfactant adsorpti on. Pressure

difference across the bubble interface was used to express the data instead of surface tension

because is was not assumed that the bubbles always had a spherical shape, especially when they

have very low surface tensions.

Whole surfactant, lipid extract surfactant and mixturesof lipid extract surfactant + 5% and

10% Cl q a nd 10% albumin. by weight , were assayed for surface activity accord ing to the

procedur es outlined for use o f the pulsating bubble surfactometer. (appendix 5). The samples

were assayed for 180 pulses or until the pressure difference across the bubble interface at

minimum bubble radius became approximately zero. Results are expressed as pressure difference

across the bubble interface al maximum and minimum bubble radii versus pulse number, and

symbols repre sent means ± I SD.



Colk'c lion lind P'rt pa rnli oll or Seru m a nd Sputum

Blood and sputum samples were obtainedas discards from routine management of piltil'flIS

in the Intensive Care Unit of the General Hospital. 51. John ·s. N.:wfol.looland mKkr Ihe

supervisioo of Dr. S. Peters. An application to the Human Invest igations Committee, f\.kmnr ial

University o r Newfoundland-Faculty o f Medicine was submillcd on December 14. 11)1(1) .

application # 798 titled "Protein Inhibition of Pulmonary Surfactant in Airway Sl-'Crctinn i l l Se m

of Pati ents Req uiring Mechanical Venti lation. · Full approval wasgnmlcd \111January II. 1')<)1

from the viewpoint of ethics as defined in tenus of reference of lhe faculty committee. llIulld aml

sputum samples were obtained as discards during routine procedures .md personal idcnlificmiull

was not used to identify the samples. therefore. informed consent for the samples was dl'Cull'tl nut

nece ssary by the co mmittee.

Blood samples were collected from patients via an arterial catheter. T he procedure i_\

outlined in The General Hospital Nursing Unit Departmental Manua l Proced ure fur Arterial

Ca the te r- Blood Sampl ing, Number 111-20. revised 1991-02. Sputum samples were t!htaincd

acco rding to TIle General Hospital Nurs ing Unit Departmental Manual I' rocodurc fur the

CollectionofS pururn by TrachealAspiration in a Patient wilh a TrachcoslOiny. Num ber IV-h·20.

re vised 1990-02. Blood was also collected from the brachial artcry of hcahhy volumec rx hy a

qualifi ed technician .

Blood . sputum and samples were labelled with a patient number. a sample number , the

da te on which the samples were collected . and the sample type. Sample labe ls enabled the

cor rela tion of the level of lung dysfunction and the APACHE II index of a patien t with CUI'

expressed as a perce ntage of total protein for each sample. Befon: and during the time at which
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the samples were assayed 110 details of the physiological status of the patient were discussed. All

samp les were refrigerated immediately after collect ion, and blood was allow ed to clot at 4 °C .

BJu(xl and spuuun were centrifuged in a bench top centrifuge at maximum velocity for 5 minutes

"t roo m temperature. Serum and the fluid portion of the sputum (which was ab le to be di splaced

hy a 200 p.1autoptppcuc) were divided mtc small aliqucts. labelled and frozen at ·20 Ge.

Blood and sputum were collected from the time that mechanical ven tila tion was required

until it was no longer necessa ry or the patient expired. Blood samp les were also collec ted from

the index finger of normal hcallhy volunteers using the Glucolet 2 automatic lanc ing device

(E lkhilrl , IN) and Fingerstfx lancets (Elkhart, IN). No distinc tion was made between blood

ohtained hy this method or via the brachial arte ry. Sera which was ob tained fro m capilla ry blood

was handled in an identical manner as that from pat ients in the ICU. The C RP conce ntrat ion of

these samples was determined by an ELISA (appendix 4) and total protein concentrat ion was

determined by a modi fication of the method o f l owry ct al . (1951) (appendix 3).

C RP-depletcd serum from a patient in the IC U was produce by phosphocholi ne­

scpharosc (PC-sepharose) affinity column chromatography, The PC-sepha rose was obta ined from

Sig ma Chemical (St. Louis, MO). Prior to usc , the colu mn, which contai ned - 20 ml of PC­

scphnmsc was washed by eluting 500 ml of buffer solution, 0.15 M NaCl; 0.0 1 M Iris-base: 0.0 1

M tris-He l; 0.00 2 M CaCll ; pH= 7.5 which co ntained 0.002 M phosphocholi ne (C I'). Thi s

ensured 111<\1any residual CRll or other contaminants which may have been reta ined on the column

were removed. The opt ical density of Ihe e1uled buffer solution at 280 nm at the beginning and

<It the end of the PC-wash was 0.00. To remove non-solid phase phosphocholine, the co lumn was

washed with 500 rul of the same buffer solution as above which did not conta in phcsphochoh ne .
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Again the opt ical densit y at 280 om before and after the second wash was 0 .00 . Approxinuucly

2.0 ml of serum was loaded on the column and enucd whh buffer sohulonwhich (lid not contain

phosphocholinc. The dilution of this serum as il rcsun of the COI UI1111 chromaltJ~ raphy was 1111\

determined. however, an effort was made to min imize the dilut ion by lIxill!: on ly those fractions

which appeared st raw-coloured, presumably con taining the eluted serum. Toan alitjllnl of this

se rum, a minimum volume of concentrat ed diluent was added Ml that the serum wou ld contain

similar amounts of diluen t componen ts as lest sera. Also , a known conccutnulon of (' KI' in a

minimal vo lume of concentrated di l I1Cl~( was added 10 another aliquot . A maximum dihnlun uf

15 has bee n calc ulated for th is serum. The actua l final di lution was most likely lower than lhis .

A known con centrat ion of CRP was added to seru m from another patient in the ICi r whic h harl

not been exposed to phosphocholinc-afflnity column chrcm atog mphy ami assa yed hy the ELISA

(appendix 4) . Human serum with a known amount of CRr {Lnt No. 191232) wax purchased form

Behring Dia gnostics (Marburg. German y). T he CRP content (If these scm were assnycd hy

ELISA (appendix 4). The CRP concentration of the standard whi ch was 11.'>L't1in the I:IJ SA and

that which was added to two sera samples was determi ned by the method describe d Lo wry ci ,11 .

(1951) (appendix 2).

Statlsllca l Analysis uf CRP Ccucentmucns versus IIhll'!is

Sera samples obtained fro m 19 patient s in the le u were analy...ed 10 determine if a

correlation existed between eRP expressed as % total prote in in the sera and APACH I ~ II SCO TCS.

A Pearson correlatio n coefficient was calculated for these data . The Pear son cor relat ion

coe fficient is a meas ure of the degree to which two variables are correlated .
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leu patientswere also classified into two groups; those at risk of developing ARDS; and

those who deve loped ARDS. Patients were defin ed as being at risk of developing ARD S or

having I\ /H)S if they required mechanical ventilation for more than 48 h and had conditions

;L'i.'iOcilllcd with an increased risk of ARDS or indicative of this syndrome. such as those stated in

the int roduction. Thesedata arc expressed as serum %CRP/total pro tein and as serum e RP

l ~gJm1) . Wilcoxon rank sum tests was used to analyze these data. Th is method of statistical

analysis is the non-parametri c analogue of the two sam ple r-te st which is suitable for use with

5111<111 sample sizes and employs random sampling of two independent populations.

Many of the sputum samples contained solid material whic h was likely composed of clotted

bloodand tissue. Often, uponcentri fugation, this mater ial did nol separate from the less viscous

port ion o f the sputum. Therefore, too few sputu m samples were assayed to be ap propriate for

statistical anal ysis.



Rrsult!'i

Th e Eff rtt or C-lTacl il'e Pr ol rin on th e Ad"nrp liull ami SlInll fl: '1'I' II, itlll 1.llft l' ri lll:,Ahili l,

or ~'lmonary Surfacta nt

Before fhe effect of plasma proteins M p orcine surfal'tmt hll ll.1;un \w n' inw s(i;:;lll'(I, ll'lll):.

either the pulsating bubble surfactometcr (Ir the surface ;\tl!.l.lrpti{1I1 "ppi.rOltu.\, nllllWl lhsl'Il.'Jsil.n,

of surfactant alone were tesll..'d to dcicnninc the sur face behaviour Ilf eac h , ur l;II'I,1I11 Iln 'll;lrilliull .

This allowed the se lection of surfactantprcpamnons wh ich pll.\scs\I..'( l llll' physil',i1llropl' rl il" which

are considered 10 be associated with uonual hlOct ionin~ pulmon.uy vurfurnuu, i.v. r;11"11

adsorptionand the ability to lower surface tension to ncar lC W U[lUll 1'lll1lprcssillll. 'Il ll'rl'! oh' , h)'

selecting surfactant preparations which behaved in lhis manner, it is likd y tlMtt h\.'y wi ll m.. J\.'

closely resemble the normal in lim surfactant system uf the lung. Eml)ltlyill~ isu];.Il"(1!'iurl;Il.'I;rnl

preparations which functioned well atso cnabled lhe usc I1f lower surfuctam l'lllll-,: ntr;u iun"

thereby sparing the surfactant preparations and protei ns and ligands which were adrh..1 III lit\.'

surfactant and there fore minimizing time and expense .

11'Icconcentration of surfactant usedwith the snrracc adsurptilll i <lppil r.Jlu\ w:rs ddihcr.lldy

chosenso as 10 obtain a measurable rate of change in surface tension with time which WOlS 1101 ~

saturating~ or ~ instantaneous" as is sometimes used in such ll<lsnrillillil experiments. S llllil;lTly,

the concentration of surfactant used in experiments with the pulsaling hubhle surlilchlllleler was

also chosen in the same manner as not to he ~salU ral i llg ~ with res[1'\:c t III the rare 01'c ll,lI1ge ill

surface tension with lime duringdynamic compression and expansion Ilf the surfactant fi lm. This

allowed iIlIly positive or negativeinnlJCl1CCS orpmtcins or OI~cr addiuvcs lin the rate (If iul\l lrpticlll



59

alone on the rare of adsorption during dynamic compression and expansion to be easily

observable.

Figure 4 showsthat whenporcine surfactantat O.781~g . mt' of phospholipidwas injected

in the subphase which co ntained 0.15 M NaCI and 0.005 M CaCI2• even 25 minutes after

inject ion, the surface tension o f the subphase was reduced by only 2 mN . rn''. A higher

cenccntnnion of surfactant (l6.4 ~g . rnl') reduced the subphase surface tension to 33 mN . nr'

in 25 minutes. These amounts of surfactant were inadequate to allow a sufficiently rapid rate of

adsorption. An aliquot o f surfacta nt at 36.7 ~g ' ml-' reduced the subphase surface tension to 30

mN . 11]"1 in less than I m inute. W ithin 5 minutes af ter inject ion, that concent ration of surfac tant

lowered the surface tension of the saline and calcium subphas e [0 near 25 mN . rn''. Thi s limit

i~ in keeping with the equilibrium spreading pressure of phos pholipids ie. It- 45-48 mN . m ol,

Surfactant lit this concentration. whilehaving a sufficiently rapid adsorption rate, was "saturating"

with respect to the subp hasc concentration because a lower concentration of surfactant (27 .5 J'g

' ml" ) hudan initial ndsorpnon rate which was almost a rap id and also approachedequilibrium

spreadingpressure in 5 minutes, Therefore. a surfactant ph ospholipid concentration of 27.5 /Jg

, ml' I W:tS used in studies with the surface adsorption apparatus.

Im'"t't of C-ft>;tclh'l' Proreln on Pulmo nary Sur fa ctant Adsorption

Tlw effect of e RP on the rate of adsorpuon of porcine pulmonary surfactant was

invcstig:ltcll (figure 5), Within 5 minates after injection, surfactant alone lowered the surface

lension of the saline and calcium subphase to 25 mN ' m". When the surfactant was mixed with

eRr and injected into the subphase. however, the adsorption rate was substantially decreased, so
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Figure 4. Change in surface tension with lime after injection ,If f'lUf ditfcrcm ~{ll\l\.'nl r;\l i{ll\ s

of porcine surfactant into a stirred subphasc. • , l'orcinc surfactant (0. 71'1 I'~ mIL

PL, n= )) ; » , (16.4 I"g' ml' PI., n=J I: " , (27.5 Ilg ' mI L1'1.. n= j4\: o . t.\h.7

I-I g ' mt' PL , n=3) . Subphasc and incubation mixu.rcs clllll;lincd O. [.5M Nil!']

and 0 .005 M Cae] !. In this and subsequent Figu res which exp ress daur whic h was

ob ta ined using the surface adsorption apparatus or the JlII J~ll il1g hllhhlc

sur factomete r, concentrations arc expressed as Iinal Mlh llha sc conccntmtions .

Value s arc expressed as mean ± 1 SD; standar d de viations arc shown for every

second measurement arc net shown when they fall within the runge denoted hy the

symbols.
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Figure 5. Changein surfacetCflsion with timeancr injl'CliOll nf porcine surfacnuu. C"KI' anti

,. mixture o f CIU' + porc ine surfactant inln a lolirrl'tJ suh llt1OlSI:. o . I'on-ine

surfactant (:\9.0 IJg • rn t PL, n =22): o . Cit!' (11).5 /J~ - mi l , n= Jl : . , ("1( 1' -I

porci ne surfac tant (19.5 iJg ' ml ' CR.!' : .'9.0 pg' rnt \' 1., n ".I ). Subpha x-,

sur factant and CRP solutions contained Ill' 0.15 M Nan ami O.0Il5 M (' ,,( 'I...

Since the variability in the rate of adso rpt ion of su rfactan t alone be tween ditfcrcm

sets of experi ments was small the mean and stand an l dcviatiu mi fur l"nnlml

surfac tant mix tu res were ca lcula ted for enti re dat a 'iL1uh lailM:d (ru llll lll' l"IMlln,1\

in the series ot espcrtrrcnu shown in Iigun..'!i S. 6, 7, In, 12. and I.' .
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that at 25 minutes after injection, the surface tension was reduced to only 50 IIlN . nr'. The

adsorption of an amount ofCRP alone , which was equivalent to that used in the tes t conditions.

was slow under these conditions since it did not contr ibute substantially ttl the lowering of

interfacialsurface tension in the interface. The variabilityin the rate of adsorption of surfactant

alone between different sets of experiments was small. The mean andSO for the ad sorption of

control surfactantmixtures whichwere usedin each experimentwerecalculated for the entirel.I,tl"

set obtained fromthe control for a number of experiments and the averaged values lirereported

in figures 5. 6,7, 10. 12, 13.

The inhibitory effect ofCRP on theadsorptionrate of porcine surfactant, in the presence

of calcium, was compared to thai of two concentrations of human fibrinogen (fig ure 6). II is

evident that CRPinhibitedthe adsorption of surfactantmore extensively than an identical weight

of fibrinogen. In fact, for fibrinogen to approach theinhibitorycapacityof e RP, it was necessary

for fibrinogen to be present at six times the concentration at which CRl' was present. The

molecular weight of CRP is - 110 000 and that of fibrinogenis - 340 000. Therefore , nnu molnr

basis it requiredat least twice as mueh fibrinogen to approachthe inhibitory capacity of CRI' with

respect to surfactant adsorption. Subphasc injectionsof fibrinogen alone at finalco ncentrations

of 19.5 and 117.0 ~g . ml' decreased the surface tension of the subphase, 25 minutes after

injection, by -5 mN· m-' and - 12 mN · rn', respective ly .

The inhibitory effect of CRP on porcine surfactantadsorption was compared 10Ihat of

globulin (figure 7). Globulin, when present with surfactantat twice theweight ut which CRP was

present, produceda substantial inhibitory effect onsurfactantadsorption to the air-water interface.

This effect of globulin, however, was not as potentas that of CRP. Figure 7 also showsthat in
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Fig ure 6. Effcc t of CRP and the effect of fibrinogen on the rate of adsorptio n of po rcine

stlrfac t.1.nl. -. Po rcioc su rfactant (39.0 ~g ' ml' PL. n:::22 ); . , fio rinogen ( 19.5

Jlg . mi l, n= 3); h. fib rinogen (117.0 ~g ' '[nl • n=3 ) ; e , CR P + po rcine

surfac tant 119.5 fJg' mil CRP : 39.0 I1g· rnl' PL. 0 = 3);" . fibrinog en + porcine

surfac tant (19.5 jig • rnl" fib. : 39.0 .ug ' lhl PL, n= 3); v, fibrinogen +

surfac tant (177. 0 jig . mr' fib. : 39.0 Jig' 'In ) PL. n = ) . Su bphase and

incuba tioo scspcnsees o f surfacta nt andsu rfactant + inhibito rs used (or injec tion

into the scbpba sc conta ined 0.15 M NaCI and 0.005 M Cael:.
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Figure 7 . Brfcctor C RPand globulin on theadsorption rateorporcme surfactan t, - , Porcine

surfaclant 09 .0 pg· ml'' PL, n =22); . , eRP + porcine surfacta nt (19.5 .ug' ml'

CRP: 39.0 " g . mt" PL, n = 3); Y. g lobulin + porcine surfactan t (39.0 Pg . ml"

g lobulin : 39.0 pg · ml'PL. n=3); O,globu lin (390~g ·ml· ' . n =3). Subphase

and incubation mixtures containedO. IS M NaCI and O.<Xri M eaq .
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the absence o f surfactant, subphasc injections of globulin (39.0 pg . rut') considerab ly reduced

surface tension by23 roN· mol over a 25 minute time period.

Effect of Ca lcium on the Inhibition of Pulmonary Surfactant Adsorption by C- reactive

Pro tein

The effect of calciumon the inhibition of surfactant adsorption by CRP was investigated

andthe results are shown in Figure 8. In the absenceof added calcium, the rateof adsorption of

surfactant was lower than in its presence. eRP had only a small effect on the rate of surfacta nt

adsorption (comp are figures 5 and 8). Therefore . calcium was necessary (or the inhibit ory effect

of eR Pon surfactant adsorption .

ErflOCI uf Calcium on the Inhibi tion of Pulmon ar y Surfactant Adsorption by Fibrinogen

It has previously been shown that the proteolyt ic cleavage of fibrinogen into fibrin

monomers is calcium dependent and Seeger er al. (1993) have shown that polymerizing desAABB­

fihrin, induced by thrombin, associates with surfactant phospholipids. Therefore. calcium was

omlued from the subp hase and from suspensions of porcine surfactant, porcine sur factant +

fibrinogen. and fibrinogen solution (figure 9). Th is ensured that cleavage of fibrinogen into fibrin

monomers did not occur in the presence of res idual thrombin which may have bee n retained

during thc iso lationof fibrinogcn . In the absence of added calcium, fibrinogen. when pre sent with

surfactant at an identi cal weight at which CRP was pres ent in F igure 8, did not inhibit Ute

ndsorpticn of surfactant. This was a much lowe r concentration of fibrinogen than that which

inhihited sur factant adsorption in theabove fibrinoge nexperiment in which calcium w as present.
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Figure 8. Adsorption cfpcreine surfactant and a mixture o f porcine surfacuuu + ( :K I' in the

absence of calcium. 0, Porcine surfac tant (78.1 Pg ' ml' 1'1., 11 =:5): - . ( 'RI' +

porcine surfactanl (39 .0 lAg • mr' CRP : 18.1 ~g ' ml' " L, n= ] ). Subl)h ilM· iU....J

incubation suspensions and solutionsco ntained 0.15 M N;lCI.
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Figure 9 . Adsorption of porcine surfactant, fibrinogen and a mixturenf Iihriullgcn + porctnc

sur factant in Ihe absence of calci um. • • Porcine surfac tam (51th I~~ . 11I11 1'1.,

0 = 5 ) ; D, fibri nogen (29.3 vg' ml", 0=5); v, fibri nogen + Ikircilll..' surf'u.:l;1Il1

(29.3 #g ' mt"fib.: 58.6 pg · ml' PL. 0 = 5). SuhpllOl'IC;md in l' lnolli nll nli ~lllrl's

contai ned 0.15 M NaC!.
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This figure also shows that, in the absence of added calcium, fibrinogen alone reduced the

subphasesurfacetensionby 15 mN· mol, 25minutesafter injection.

Effect of Three C-react ive Protein Ligalld.~. pnosphechottn c, DL-«-G1)"Ccr(lllhu.~Jlhah' . and

e-Pbosphce tbanotam tne on the Inhibition of Pulmon ary Surfactant Adsoqllioll lJ~' Ccrcacnvc

Protein

To better understand the nature of the inhibition of surfactant m.lsorplillll hy CIU',

surfactant was mixed w ith CRP:\1 the same weigh t ratios as those in Itlgurc 5 . Three diITcn,:lI1

concentrations of the water-soluble CRP ligand phosphochclinc , which is the hcad~rnl1r Ill'the

most abundant surfactant lipid. phosphatidylchollnc, wereadded to the CRP + surfactant mixtures

(figure 10). The additlcnof phosphocholine to the CRP + surfactant mixture at a phosphlld lolinc

: CRP molar ratio of 300 : 1. almost completely eliminated the inhibitory effect of Cit!' on

surfactant adsorption. Addition of phosphocholinc at the lower molar muos of phosphOl.:hulillc

: CRP of 225 : I , and 150 : I . did not decreased the inhibitory capacity of CRI' 1111 surtactnnt

adsorption as effectively as phosphocholinc at a 300 : 1 ratio. A comparison of the clfcct III

adding three different concentrationsof phosphocholinc to CRP + surfactant mixtures re veals that

phosphocholinc reduced the inhibitory effect of e RPon surfactant adsorption in a concerurunon

dependent manner.

Pulmonary surfactant also contains phosphaudylgfyccrcl anti phosphalidylclhallolilluilll,:

which contain beadgroups to which CRP is known 10 bind although with less avidity than with

phosphocholine. To further probe the mechanism by which '-;'{P decreases the ruteof adsorption

of pulmonary surfactant to the air-water interface, two water-soluble CRP ligilllds, lJl. -·· ·
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Figure 10. Effec t o f phosphochoJinc on the adsorption of mixtures of e RP + porcine

surfactant. - , Porcine surfactant(39.0 Jig' rnr' 0 .. 22); 0, phosphocholine (5.86

K 1O ~ M. 0 =3) ; CR ll + porcinesurfactant+ pOOsphochol inc (19 .5 JJg • ml' eRP

: 39.0 Jig • ml' + phosphocholinc at molar ratios of phosphocholine : e RP; 0 .

300 ligand : I CRP; . , 225 ligand: I e RP; v 150 ligand: I CR? ). n= 3 for each

of the e RP + porcine surfactant + phosphocholine. Subphase and incubation

mixlures contained O.IS M NaCIand 0.005 M o cr,
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Figu re '1 . Bffcc t (If three CRt' ligand s on the adsorpt ion of mixtures of CRP + porcine

surfactant. - , Porcine surfactant (27.0 ~g ml' PL. n=1 4); - , 0­

phospoocthanolamine (5.861 IO"~ M); u , DL-u-glycerophosphalc (5.86 x lO's M);

e RP + porcine surfactan t + ligand (13.7 IJg ' mr' CRP: 27.0 JIg' mt' PL +

ligands; v. phosphocholine; e , o-phosphoethanolamine; 0. DL·a·

glycerophosphate). e RP ligands were present with e RP and surfac tant at molar

ratios of JOOligand : I C RP and 0 = 3 for eac h ur the C RP + surfactant + ligand

rnil(luT\.-s. Subphase and incubation nnxturcs contatned 0 . 15 M NaCI and 0 .005 M

Cael }.
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glycerophosphate and e-pnosphoethanolamlnewere added to CRP + surfactant mixtures. The

effect of these CRP ligands on the capacity of CRP to inhibit porcine pulmonary surfactant

adsorption were compared 10 that of phosphocholine(figure 11). While phosphocholine at a

molar ratio of 300 : 1 phosphocho linc : CRP almost completely eliminated the inhibitory effect

of eRP on surfactant adsorption. identical molar ratios of the other two CRP ligands, 0 ­

phosphoethano!amincand DL-a-glycerophosphate did notnoticeably decrease the capacityof CRP

(0 inhibit surfactant adsorption (compare figures 5 and 11). In the absence of surfactant, these

e RP ligands alone. like phosphocholine alone, did not substantiallyreduce the subphase surface

tension over the 25 minute time period.

To determineif the inhibitory effect of CRPon porcine surfactantadsorption is reversible

by the additionof phosphochcllnc, surfactant incubatedwith CRP was injected into the subphase

in an identical manner as thatof thai in Figure 5 (figure 12). At 8.5 minutes after injectionof the

CRP + surfactant mixlure, analiquot of phosphocholine, at a final subphase concentration of 5.86

x I(r~ M (molar ratio of phosphocholine : CRP of 300 : 1) was Injected. This concentration of

phosphocholinereversed thc eRr effecton surfactant adsorption. enabling the CRP -I' surfactant

+ phosphochotine mixture 10attain a surface tension 25 mN . m" within 25 minutes while the

negative control CRP + surfactant mixture required approximately75 minutes to achieve this

value for surface tension,

The effect of the addition of phosphocholineon the adsorption of porcine pulmonary

surfactant, in the absence of CRP, was investigated(figure 13). This figure shows that the

addition of phosphocholineat a concentration of 5.86 x lO·sM did not affect the adsorptionof

surfactant to the air-water interface. This is the same concentration of phosphocholine which,
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Figure 12 . Change in surface tension with time for porcine surfactant. ;1 mixture of C it !' +

porcine surfactantalone and a mixture of CRP + porcine surfactant In which ,lI1

aliquot of phos phocholinc was added at 8.5 minutes anc r injection of 'he CN!' +

porcine surfactant mixture . 0. Porci Ie surfacta nt (39 .0 JIg ' ml' 1'1., n=22); -,

CRP + porcinesurfactant (19.5 p g' ml' eR r : 39.0 IJg . lIl !, l PI. , 11 = 3): v . CRI'

+ porcine surfactant (19.5 I1g . ml" eRr : 39.0 IJ& • till Pl ., III which

phosphcc holine (5.86 x io- M, finals ubphasc concen trat ion. 11= :l ) W<lS injected

at 8.5 minu tes. Incubation mixt ures, phosphocholinc solution and subph ..sc

contained 0. l5 M Nael and 0.005 M CaCI1_
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Figure 13. Effector phosphocholine on theadsorption of porcine putmonarysurfactant , in the

absence of eRP. 0 , Porcine surfactant (39.0 ~g • ml I, n - 22); . , po rcine

surfactant (39.0 ~ g ' ml") + phosphocbotn.c (5.86 x IU' M, n = ~) . Suhphasc.

surfactant suspensions and surfactant + pnospnocnortnc:tliJ!urcs curnaincd 11.15

M NaCI and O.OOS M CaCIJ •
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when mixed with CRP + sur factant prior to injection into thc subpbasc. almost comp lctcty

eliminat ed the inhib itory effect of CRP on surfactant adsorption . Also. this conccntnulou (If

phosph ochol ine, wh en injected afte r the adsorption of CRP + sur factant h;ld be gun . partiatly

reversed the inhibitory effec t of CRP on surfactant adsorpt ion.

Effect of Ccreacttvc Protein on the Adsorption of Pulmonary Surfactant nuril1~ nruamlc

Surface Compression

The pulsating bubble surfactome rer prov ides a rm..x hanicat mood of the alveolus wherein

the bubble, like the alveolus , undergoes cyclic co mpress ion and expans ion. Therefore. the effec t

of inhibitors of surfactant adsorption can be investigated slmunnneously with lhe effect of sur face

refinin g of surfactant and inhibit ory components at thc air-wate r imcrface. Surface adsorp tion

alone can be monitored when a bubble is formed but not pulsated . During cxpe runeuts using the

pu lsating bubbl e surracromerer, the surface beh aviour of surfacta nt, protein . anti surf:lcl:l1lt +

protei n mixtures was monitored using the pulsatin g bub ble techni que.

Whole surfactant w as initially tested at seve ral conce rnrmions to dcterruinc which

concentration would reduce thevalue of liP",. to approximately ze ro ur an appro priate nile, which

was not instantaneous (see above). Figure 14 shows that porcine surfac tant III 0 .5 mg . 1111.1

requir ed - 6 minutes (120 pulses) to reduce the lI.J' ", .. to ap prnxtm.uc fy zer o. A hi~her

concentrat ion of surfac tant reduced liPmin to near zero more quickly. Surfactant, howeve r, at thi.~

concentratio n was "satu rating" because at a lower conce ntration of I mg . ml'. reduce d AI',"", ttl

approximately zero in the same time amount of time (figure 15). T herefore, the ccnccntrauon of

surfactant wa s chosen to be used throughout the ex periments using the pulsat ing huhhle



Figure 14. Reductions of data from bubble surfactometer tracings for suspensions of porcine

surfactant ill a concentration of O.S mg . ml' PL, n= 3. Surfactant mixtures

contained0.15 M NOlCI and 0.005 M CaCII . In this and subsequent ligures, which

express data which were acquired using the pulsating bubble surfactnmeter,

pressure differences were read from the traces at maximum and minimum bubble

se es at certain timesafter pulsation was initialed. Pressure differencesare ploued

a, a function of purse number. Solid circles represent the pressure differences at

maximum bubble size (6P-.. ) and the open circles represent pressure differences

at minimumbubble size (6P_ ). In all cases data from the first bubble fanned is

shown. Values an:expressedas mean ± I SO; standard deviations are shown for

every second reading and are not shown when they fall within the range denoted

hy the symbols
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Figure 15 . Pressure difference versus pulse number for p orcin e ~urf;.c t;Ult III a C\l II\."cnU'lt iun

of 1.0 mg . ml" PL. " =8. Surfactam suspcnsion contained 0. 15 M N;.CI lll1ll
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surfactomee r was 1.0 mg . ml-'.

Theeffect of CRP on surfactant adscrption during dynamiccompression ard cxpanslon

was investigated (figure: 16). While wrfaclanl alone m10ccd ..P_ IOncar zero in -4 nnrancs (Sl.1

pulses) , surfactant, when mixed with CRP at the samc weighl rano as Ihmc prcvi{lU.~ly rep orted,

could noI attain this low value of ...p.... even after 8.5 mimlles (170 1l1l1~1 (eolll[lo1re fi~llrl's 15

and 16).

Figure 17 shows a series of typical tracings from the pulsating buhble surfucunucrcr.

Tracings from pulsated a bubble fonned in a suspension of porcine pulmonary surlll(;lan{and a

suspension of CRP + surfactant at a weight ratio of (0.5 : 1.0, ClUJ : 1'1.) arc prcscmcd, I'or

comparison purposes, a tracing obtained from a bubhle formed in " solution of CRI) alone is

included. Normal surfactant showed a trace in which tnc IOWCSI pressure difference, ,,1'...

occurred at or very near the point at which the bubble radius was at a minimum, whic h is

indicaled by a tick (figure 17.1.). This is a behavior which is eharaclcri.<;tic of buhhlC'lfllmll."t!in

suspension of well-functioning surfactant. Uponin;:ial bubhle formation, the pressure difference

across the bubble interfacedecreased quickly because of the rapid adsorption of surfactant ro lhe

air-water interface. Pulsation of bubbles formed in solutions of surfactant, is believed to ICluJ Itl

a process of surface refinement of the surfactant film to leave filmof msoluble matcrml, cnrct e d

in DPPC. This enables the surfactant film, upon successive I;ompress im~~, 10 the reduce the

surface tension (measured as ...P) across the bubble interface til very low values. Therefore, the

lowest ...P occurs at minimum bubble radius.

A solution of water soluble CRP, however , showed a behavior which was nppositu to lhlll

of surfactant (figure 17b). The initial pressure tracing shows thaIthe ...P is largest at minimum



Figure Ifl. Red uctions of data from bubble surtactorncier tracings for a mixture of porcine

surfactant + CRP. CRP was at a concentration of 0.5 mg • ml'' and porcine

surfactant was at 1.0 mg ' ml' PL. n=<t CRP + Surfactan t mixture contained

0 .15 M NaCI and 0.005 M CaCI: _
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Figure 17. Typical pressure tracings of bubbles of porcine surfactant, eRP. porcine surfactant

+ CR P from the pulsating bubb le surfactometer. Tracings are from the first

bubble and represent .6. P, measured in -cm H20 as the bubble is pulsated between

maxim um and minimum bubble radii. a) Porcine surfactant (La rng ' mt'); b)

CRP (0.5 mg . rnr') : c) eRP + porcine surfactant (0.5 mg ' ml' : 1.0 r ug . ml").

Minimum bubble radius is indicated by a tick and the bubble was pulsated at a rate

of 20 pulses per minute. Subphase contained 0. 15 M NaCI and 0.005 M CaCI,.
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bubble radius, 11 behavio r expected for a bubble with a constant surface tension . After a period

of pulsation, a bubble formed in a solution of eRP underwent a reversal in Ihe relation of tiP

versusbubble radius such thatAPbecamelowest at minimumbubble radius. Keoughet al. (989)

suggested that, with fibrinogen, which is water-so luble like eRP, some adsorbed protein material

maybecomeinsoluble and remain in Utesurfaceduring dynamiccompressionso 11m! the density

of Iihrinogen in the interface increases and the surface tension decreases. The behavior of eRP

in the pulsating bubblesurfactomcter suggests thatCRP eventually becomesinsoluble and remains

1lIthe surface during dynamic compres sion but this has only a minimal effect on tiPmin (figure

17h). The tracing from a pulsated bubble of a mixture of CRP + porcine pulmonary surfactant

(0.5 e RP : 1.0 PL, w/w) is shown (figure 17c). Pulsated bubbles of this mixture show that the

phase or charac ter is typical of surfactant, where boPmin occurred at or near the point where the

bubble is at minimum rad ius.

The Effe ct of th e Complement Protein Cl q on th e Adsorpti on and Sur face Tension Lower ing

Abilit y of Pulmonary Surf acta nt

It is known that the hydrophillic surfactan t protei n SP-A increases the rate of adso rption

of pulmonary surfactant . Estimates of the amount of SP-A in whole surfactant range from 4·7%

of the toral phospholipid content, by weight. Expe riments were undertake n to determi ne what

effect the co mplement protein Clq has on the adso rption rate of a dispe rsion of lipid extract of

porc ine surfactant which was void of SP-A. but whichcontained SP-B and SP·C .

T he effe ct of 10% C lq (w/w) on the adsorption rate of lipid extract surfac tant was

investigated using ,'~ , surface adsorp tion apparatus (figure 18). Whole porcine surfactant attained
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Figure 18. Cha nge in surface tension with lillie after injectiouuf whole porcine surfactant,

Clq, porcine lipidextract surfactant, and a mixture of Clq ( 111% CI<I : 1'1., w/w )

+ porcine lipid extract surractam into a stirred s llhpll;l~ . ", Porcine slI rr;u.:loI111

(39.0 JJg • mt' PL. n=3); o , porcine lipid extract surf actan t (:N.O I/ J!. • Ill!' \'1.,

n= 5); v , C lq (3.90 ~g ' ml" , n= ) ; - . C lq + porcine lipid enract surf,u': I;1ll1

(39.0 ~g ' mt' Cfq : 3.90 11&' mr PL, n= 3): ", the cumulative effect s or Cl4 +

porcine lipid extract surfactant (39.0,..g· ml' C lq : 3 .90 ji g - rul ' 1'1.) wh ich have

been added independent ly. All mill.lu~ . wen: in water which cunl"illl.:d lJ. l ~ M

NaCI and0.005 M cso,
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a minimum surface tension of25 roN · m' within 5 minutes after injection. Suhphasc injections

of an identical concentrationof a dispersionof lipid extractof the samesurfactant. whichwas void

of SP~A. required 50 minutes [Q reduce the suhphase surface tension 10J] mN . nr'. Comrot

injections of C lq (3.90 ~g -ml-') minimally reduced subnhnse surface tension. Lipid extract

surfactant, which contained the hydrophilic surfactant proteins Sp· B and SP-C. hut not SI'-A,

when incubated with 10% Clq (w/w) and injected into the subphase. reduced subphasc surface

tension 10 approximately 25 mN . m' within 25 minutes after injection. The nne of adsorption

of this mixture was greater than that for the lipid extract surfactant suspension alone. This

adsorption rate was also greater than when the cumulative effects of Cl q and lipid extract

surfactant on subphasesurfacetension were addedtogether, Therefore, Figure 18 shows that the

complement protein C1q increased the adsorption rare of porcine lipid extract surfucraut.

Effect of Clq on the Surface Adsorption During Dynamic Compression of Porcine l.illid

Extra ct Pulmonary Surf actant

Theeffect of removingSp·A on the adsorption rateof porcine pulmonary surfactant during

dynamic compression was investigated using the pulsating bubble surfactomcter(figure 19). II

required ~ 8 minutes (160) pulses for the lipid extract surfactant to reduce the surface tension nf

the bubble so that "Pm1ft to approach zero . Ao identical concentration of the snme .surract,ml,

which contained SP·A, required -4 minutes (80 pulses) to decrease 4P"0I" to ncar zero (com pare

figures15 and 19).

The effect of the addition of Ctq on the surface behaviour of porcine lipid extract

surfactant, which was void of SP-A. was investigated, The effect of adding 5% C tq (w /w) on
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FigufC 19. Pressure difference versus pulse number (or a suspension of porcine lipid extract

surfactant (1.0 mg : ml"' PL) which was in water which contained 0 . 15 M NaCI

and 0.005 M Cae l, • n>::5.
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the adxorpuon fmc of porcine lipid extract surfactantduring dynamic compression and expansion

is shown in Figure 20. Lipid extract surfactant required 8 minutes for .ol.P"""to approach zero.

however, when 5% C jq (wfw) was added to an identical concentrationof the same surfactant.

" Pn"" approached zero in - 6 minutes (120 pulses) (compare ligures 19 and 20). The addition o f

a higher concentration of Clq (10 % w/w) enabled the porcine lipid extract surfactant to reduce

"P",,,, 10 ncar zero in -4 minutes (80 pulses). Thiswas approximatelyequal to the rare at which

on identical concentration of the same surfactant. whichcontained SP·A, reduced ....Pmin (compare

ligur es 15 and 21).

Control experiments . which involved the incubation of lipid extract surfactant with 10%

(w / w) albumin. were pcrfon necJand the results are shown in Fig ure 22. Unlike the addition of

10% (w/w) C l q to lipid extract surfactant, which increased the rate at which "Pmi• approached

zero, the addition 10% (w!w) albumin did not increase the rate at which "P.'inapproached zero

(compare figures 21 and 22). Instead, the addition of alhumin decre ased this rate so that ...p,.;. was

approxrrnarcly -0.25 ern liP - 8 minutes (160 pulses) after bubble formation . This is consistent

with the inhibitory effect of albumin 0:- the surface adsorption of surfactant during dynamic

compression which was observe d by Keough et at. (1989).

A series of typical tracings from the pulsating bubble surfactometer are shown in Figure

B . Results from :I suspension of whole porcine pulmonary surfactant, lipid extract surfactant

alone , and lipid extract surfactant + two amounts of Clq and albumin are presented. For

comparison purposes, tracings obtained from a bubble fonned in a solution of Clq and albumin

atone ~r" included . A suspension of whole (figure 23a) or lipid extract surfactant (figure 23b),

whe n present hy itself or with Clq (figure 23c,d) or albumin (figure 23e) shows that the phase
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Figure 20. Reductions of bubble surfacternctcr tracings for a sllspens ion of ( :lq ({UI50 111 ~ .

ml") + po rcine lipid extrac t sur factant (J. () mg : :l ~ ) which was suxpcndcd in

water which container. 0. 15 M Nac l and 0.005 M Cael />11= 5.
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Figure 21. Pressuredifference versus pulse number for a suspension tlr( : !q (0. 10 1II~ ' rnt')

+ porcine lipid extract surfactant 0 ,0 mg . ml-I) which wall; susfJL'll11L't! in water

which contained 0 .15 M NaCi and 0 .005 M CaCI1• 0=5.
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F igure 22. Reductions of bubble surfactometc r tracings for a suspension Il f :,U)l l illi n (0 . III m~

. ml "') + porcine lipid extract surfactant (1.0 m g ' mil) wh ich was suspended in

wate r which contained 0. 15 M NaCl and 0.005 M Cae l}> n= 5.
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Figure 23. Typica l tracings of bubbles of who le porci ne surfactant. lipid caract porcine

surfact ant , and o f mixtur es of li pid enract porcine surfactan t + two amomu of '

C lq an d album in anti th e serum pro teins alone from the ]lu!s;,ting lmhhlc

surfacto merer. Tracings arc from the fi rst hubble formed and represent h I'.

measuredin-em HJl as the bubble was pulsated between maxim um<nul nnniuunn

bubble radii, a) Whole porcine surfactant( 1.0 mg . 1111-'): b) lip id cnr ac r porcine

surfacta nt (1.0 rng : ml" ) ; c) C l q (0.050 mg : inl ) + lip id euruct porcine

surfacta nt (1.0 mg . rnl') : d) C Iq (0.10 mg . i\li ) + lillid cnrac t porcine

surfactant (1.0mg ' mr') : c) albumin (0. 10 mg: rnl ) + lipid eu racr porcine

surfactant (1.0 m g ' ml") f) Clq (0 .10 mg ' mIl ); g ) albumin (O,l(J m g ' 1111 ) .

Minimum bubble radius is indicated by a lick and the bubblewa s pulsated OIl il rate

of20 pulses per minute, Su bphasccontained 0.15M Nilel and (J.1I0:" M CilCJJo
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or character of the suspensions is typical of surfactant . whe re liP ",i n occurs at or near the po int at

whichthe bubbleis at a minimumradius. Figure (23f) showsthat Clq alone, at a concentration

of0.10mg. ml" has no effect on liPof thepulsated bubble. The tracingshown in figure (23g)

indicates that albumin, at a concentrationof 0.10 mg. m!" reduced theminimumsurface tension

(measured as liP) upon compression. This tracing also shows that, at this concentration of

albumin, the phase or character is typical of a water soluble material which does not become

insoluble at the inte rface .

Investigation of 'roC-reactive Protein/Total Pr otein with the Level of Lung Dysfunction and

the APACII E II Score

The bestantibody sa ndwich conditions for determ iningCRP concentration were estab lished

after cons ideratio n of two parameters: antibody and substrate co ncentrat ion. Each of the two

polyclonal antise ra and the alkaline phosphatase conjuga te wer e individually titred to determine

the optimal diluti on for th is assay. This involved se r ially diluting each antiserum individually

while maintaining the others, including the CRP standard, at a constant amount in excess . The

two potyc lonal a nt isera and the po lyc1onal antibody conjugate were u sed in the ELISA at a

dilution which gave absorbances wh ich were well above background (figure 24). This ensured

lh al an excess or r-abbit antihuman eRP was present to bind to the solid phase and an excess or

goat antihuman eRP was present to bind to immobili zed CRP. This pr ocess was repeated with

the polyclonal antibody conjugate . It is interes ting to note that the each of the three ant isera

showed a prozone-like effect at hig h concentrations. T he prozone effec t is frequently observed

in haemagglutina t ion titrat ions. It occurs when the re sponse o f wells Whichcontain the highest
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Figure 24. Absorbance versus dilution for potyclonal antisera o f 0, rabhit anti-human C RI';

. , goat anti-human CRP, and ". rabbit a nti-goat alkaline phosphatasc . ELIS A

proced ures which wereerr.picyed to determine these va'ues wer e Ihe same <I.~ muse

outline d in appendix 4,0 == 8 for each antibody species .
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concentration of antisera fail to agglutinate test cells while hig.hcr dilutions a~g.lllt illale

successfully. Several concentrations of the CRP standard were titrcd to determine which initial

concentration of CRP became limiting at appropriate dilutions, which corresponded IIIwells {If

columns 8 to 12 of a (8 rows x 12 columns) EL!SA plate .

The ELISA wascalibrated by two means. one which used the sera of tWII acutely ill

individuals in the ICU and onewhich used a commercially available human serum witha known

concentration of CRP. In one control experiment, the eRP-deplctcd serum III which nil CR1' W,IS

added showed absorbance values which were equal to those of the hhmk wells. A kuuwu

concentrat ion of CRP was added to the CRP-deplcted serum and the corccmmuon of ('RI', as

determinedby the ELISA. was 87 % of that whichwas expected (dcrenuincd independently nl the

ELISA). Also. a known concentration of CRP was added to another serum snmplc which was

obtained from a patient in the leu and had not been CRP depleted . The recov ery (If CRi' was

107% of that which was calculated fromaddingthe initialeRP corccmrauonor thc serum hethrc

addition of cxogenousCRP, asdeterminedby the ELISA, to UI C concentrationof added em', as

determined independently of the EUSA.

Assigned values of the commercially available human se rum CRP standard were

determined by the supplier by Nephalometry, TurbiTimeSystem, and Turbidimctry and were

indicated to be 26.7 ± 4 .0 mg ' 1.1, 22.4 ± 3.4 mg · 101, urtd 21.0 ± 3.1 mg : I ' , rcsrccnvciv.

and represented means ± 95% co nfidence intervals. Tin: CRP concemrauoo 01'thls serum. as

determinedby the EUSA was 24.8 ± 6.35 mg. \.1. The co ncentradons otCk p in the tests era

as determined by this assay were within the range of those which have 1)(;1:n delermined fer

healthy and ill individuals (e.g. Shine et al., 1981). Threese ra samples were assayed repeatedly
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for CR.Pby the ELISA to determinethe reproducibilityandsimilar values werefound; sample (I )

294,311. 281, 303. 273 mg vl": sample (2) 74. 90,81,51. 72 mg· !·I;·sample (3)54, 38,42,

29, 23 mg · [.J. Consrtcnng that the ELISA technique involves serially dilution of the analyze10

extremely low concent rations. where one seria l di lut ion represents a concentration difference of

2 these results suggc.sllhat the ELISA is beth accurate and reproducib le .

figure 25 shows a plot of seru m e RP as a propor tion of tota l se rum protein versus the

AI 'AC IIE II which wnscalculated from measurements which were perform ed in the first 24 hours

of admission of 19 patients. A Pearson correlation coefficient of 0.24 wascalculated for these

data . This low correlation coefficient suggests that a weak correlation existed between elevation

of se rum CIt]>in relation 10 total serum protein and increased acute physiology score.

Figure 26 shows the serum CRP concentrations in two groups of ICU patients and in

healthy volunteers. It shows that the levels of CRP in the sera of ICU patients at risk of ARDS

and those who had this syndrome were higher than that of healthy volunteers. Since the CRP

levels in the sera of the all healthy volunteers were below that of the leu patients who are at risk

of AROS and are also below that of the ICU patients with ARDS. statistical analysis was

inappropria te . A Wilcoxon rank sum test was performed, however. to determine if statistical

significance d id exist between the serum e RP levels of patients at risk of ARDS and those who

had i\RD S. The results arc presented in Table 2a. The calculated cri tical T value was higher

than the tabutneu critical T value , therefore no significant difference existed between the serum

CRP levels ofthesc two groups .

The data presented in figure 26 indicated mat t'1c maximun serum CRP concentration

[)htaincd was 1.02 mg/ml . This is an extremely high level of CRP , however . the next highest
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concent ra tion of CRP in the sera of any of the ICU patients or of healthy volunteers was .!JO

~g/ml . Kew et at. (1990) found that patients at risk of ARDS and patients with ARDS had serum

CRP concentrations of up to approximately 400 itS/ ill!. Therefore. thc levels of CI{1' Ul."tecleu

in the sera of acutely ill individuals in this thesis was similar to thm which has bee n published

elsewhere. save for one extreme measurement.

Serum CRP expressed as a percentage of total serum protein of three groups; hCillthy

volunteers, ICU patients at risk of ARDS. and lCU patients with AlmS is shown in figure 27.

Th is figu re shows that patients at risk of developing ARDS and those whu have dcvclupcd this

syndrome possessed elevated levels of serum CRP in relation to total serum protein compared to

that of normal healthy individuals. Statistical analysis was not used to evaluate differences

between the CRP levels expressed as a percentage of total serum protein of the healthy volunteer

group and the Iwo groups of ICU patients because the %CRP/total serum protein of all healthy

volunteers was below that of the le U patient at risk of ARDS and those who had ARDS. A

Wilcoxon rank sum test was per formed 10 determine if the %CRP/lClwl serum protein nf the

patients who were at risk of ARDS was difference from that of patients who hiltj Alms in the

ICU. see Table 2b. The calculated critical T value is larger than the tabulated critical T value.

therefore the %CR P/total serum pro tein of these two groups was not significantly different.
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Figure 2,. CRP expressedas a percentage of total serum protein versus APACHE H score of

/9 reu patients, A Pearson correlationcoefficient of 0.24 was calculated for tht:

level of correlation of these two variables. eRP concent ration was determined by

an ELISA (appendix 4) and total serum protein was determined by a modification

of the melhodof lowry et al. (19' I) (appendix J). Samples were obtained within

tile ti rsl2 4 hoursofl CU.
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pig urc 26. Serum eRP concentrations of leu patients who were divided into two groups ;

thuse who were at risk of ARDS (0;; 13) and those who had ARDS 0=6). Also

included is the serum e RP concentration s of9 healthy voluntee rs, the symbols of

which overlap. These data were statistically analysis using a Wilcoxon rank sum

lest, secTable 2a. e RP concentrationwasdetermined an ELISA (appendix4) and

total serum protein was determined by a modification of the method of Lowry et

al. (1951) (appendix 3).
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Figure 27. eRPexpressed as a percentage of total serum protein for leu patients who were

divided into two groups; those who were at risk of ARDS (0= 13) and those who

had ARDS n=6). Also included is the %CRP/lola[ serum protein of9 healthy

volunteers, the symbols of which overlap. These data were statistically analysis

using a wilcoxon ranksum test, sec table 2b. e RP concentration was determined

an ELISA(appendix4) and total serum protein was determined by a modification

of the method of Lowry er al, (1951) (appendix 3).
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a) ". = 6, le u patients with ARDS
oJ ... 13, leU patients at risk of ARDS
calculated cri tical T value = 77.0
tahulated critical T value at a 95~ confidence level = J7
variable measured is seru m eR P (~g/ml )

h) "I ... 6, le u patients wi th ARDS
n, = 13. ICU patients at risk of ARDS
calcula ted critical T value =74.5
tabulated critical T value at a 95 % confidence level = 37
variable measured is serum %CRP/lolal serum pro tein

Tab lt' 2. Wilcoxon rank sum tests.

'"
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DISCUSSIO N

Mechan ism by which Orencuve Protein Illhibils Pul mona ry Sur factant Ads tlr lliinu

Several of these studies were designed to determine what effect CRI' h;..~ on tilc ability til'

natural porcine pulmonary surfactant to adsorb to the air-water interface and to heill elucidate the

mechanism by which it occurs and how it might be overcome.

Previous studies have demonstrated that fibrinogen and fibrin monomers and globulin

inhibi t the adsorp tion of pulmonary surfactant to the air-water inter face. Fuchinlllklli ct al.

(1987) , using a pulsating bubble surfactometer, showed that fihrinogen W<lS a more lllllcnl

inhibitor or the adsorption o f artificial surfactant than albumin, serum. serum lipids, or hiliruhiu.

Holm et al. (1988) , using a surface adsorption apparatus. similar 10that described hy King ;111\1

Clements (1972), found that fibrinogen, albumin , and haemoglobin possessed similar capacities

to inhibit surfactant adsorption . Keough et al. (1989) , also investigated Ihe enc ct of lihrillllgen

on surfactant adsorption and compared it with the effect of albumin and glohulin. They showed

that fibrinogen was a more potent inhibitor of surfactant adsorption than albumin, however. it was

not as potent as globulin. Cocksbuu et a1. (1991) showed that globulin. along with afbuuun ,

inhibited the adsorption of artificial surfactant. Seeger ct at. (1993), using the pulsating bubble

surracromerer, showed that fibrinogen was a more potent inhihitor of uic adsorptlnn of calf lung

lipid extrac t on the surface activity of three kinds o f artificial surfactant than albumin or

haemog lobin, These results are consistent and suggest thai fibrinogen and globulin arc potent

inhibitors of surfacta nt adsorption.

Our data agrees with that of others that calcium increases the rate of adso rption or
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pulmonary surfactant to the air-water interface (e.g . Kobayashi & Robertson, 1983; Hawgood et

at , 1985;Noller ct aI., 1986; Schnrch etal. , 1992). The mechanism by which calcium enhances

sur factant adsorpti on has not yet been fully elucidated, its ef fect co uld be exert ed throu gh

interactions with surfactant phospholipids, or with SP-A, or both.

Haegsman er a1.(1990) have shownthat SP-A binds two to three calcium ions per 35 KDa

subunit in the carboxy-tcrminal ligand bindingportion and that occupancy of a single high-affinity

hinding site by calcium induces a significant conformational change in SP-A. Haagsman er al.

(1990) have alsodemonstrated that occupancy of both low- and high-affinity calcium binding sites

was necessary for SP-A self-association. SP-A has been shown to induce a calcium-dependent

aggregation of phospholipid vesicles prepared from surfactant extracts and from simple

phospholipid mixtures (King & MacReth, 1981; Hawgood, 1985). The formalion of tubular

myelin has been shown 10 be reversibly dependent on the presence of calcium (Gil & Reiss, 1973;

Benson. 1984) and phospholipid aggregation has been speculated to be a prerequisi te for the

formation of tubular myelin (Efratiet al. , 1987). More recent work by Suzuki et al. (1989) have

supported the role of SP-A and calcium in the formation of tubular myelin. Lowering Ihe pH

From 7 10 4.4, in the absence of caJcium, resultedin increased aggregation of liposomes composed

of DPPC and PG, in the presence of SP-A (Efrati et aI., 1987). They have shown that this

process produced structures which were similar to tubular myelin, and that it increased the rate

uf adsorption of these structures to the air-water interface. The pH at which the protein-induced

changes in lipid aggregation and increasedrate of adsorption occurred was similar to the pi of sp ­

A [Efrati er al., 1987). The similarity of decreasing pH and addition of calcium suggest that

charge neutralization of the carboxy-terminal of SP-A may be necessary to facilitate SP-A
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aggregation (Efrati et al. , 1987). It is likely that a significant conformation change or charge

neutralization or a combination of both may be necessary to facilitatethe self-association of SI' ·A.

This, in the presence of calcium may promote the formation of tubular myelin-like structures

which are associated with rapid adsorption of surfactant to the air-water interface.

The effect of calcium on lipid adsorption may not only involve its effect on SI'·A

aggregation but it may also involve an interaction with the hydrophohic surfnctrmt-assccintcd

proteins, SP-B and SP-C, or surfactantphospholipids. It has previously been shown uuu calcium

is requiredfor optimaladsorption of lipid extract surfactant which is void of SP-A (Kuh;IY;I.~h i &.

Robertson, 1983; Weber & Possmayer, 1984). TIle extent of ion binding to phospholipid head

groups, especially to acidic phospholipids such a PG, is one important determinant IIf lipid bilayer

aggregation (Ekerdt & Papahadjopoulos, (982). Calcium has been shown ttl neutralize surface

charge and decreasesurfacehydrationof lipid vesicles and thus reduce swelling of lipid structures

in water. Decreasedsurfacehydration increases the tendency of lipid vesicles to orient at the air­

water interface (Rand, 1981). Kingand Clements ( 1972) suggested Ihat adsorption of pulmonary

surfactant is rate limited by the energy barrier associated with hydrocarbon-water interactions

occurringduring the release of phospholipidsas aggregates from the subpnasc Into the air-water

interface. Calcium binding to SP-A directly or to anionic pbcsphohplds or to hoth would

potentially decrease lipid bilayer stability (£:.kerdt & Papahedjcpoutos. 1982). Therefore, the

binding of calcium to SP-A, hydrophobic surfactant proteins. or surfactant phosphtllipids. lIT a

combination thereofmay facilitate the adsorption of pulmonary surfactant to the air.water interface

via theformationof tubular myelin-like structuresor via a pathway which is independent of such

unique structures.
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Several investigators have suggested thai plasma proteins impede the surface tension

klWCring ability of pulmonar y surfactant by competing with surf4ICLant for space at the air -water

interface:. Plasma proteins may integrate lnio the interface thereby impeding the surface tension

lowe ring ability of surfactant (Holm CIaI. , 1983; Keough er aI. , 1989; Seege r et aI. , 1993).

Experiments. performed by Holm et al. (1988), using a surface adsorption apparatus, showed that

the administration of albumin prior to or with the "njection of surfactant resulted in substantial

inhibition of surface adsorption. The injection of albumin into the subphase after surfactant film

for mation, howeve r, had a much reduced inhibitory effect on surfactant functio n (Holm et al..

198!!). 1\\ the concentrat ions used in the ex periments prese nted he re, water soluble CRP and

Ilbrinogc n adsorbed to the air-water interface at similar rates. The results presented he re show

that eR P inhibits the adsorptio n of porcine pulmonary surfactant to the ai r-water inter face.

Therefore. in the presence of surfactant, CRP, like fibrinogen. may adsorb with surfactant. enter

tl\c interface . and compe te with surfactant for space. This may be one of the mechani sms by

which CRr decreases the adsorption rate of surfacta nt. When milled with sur factant , howe ver.

eR r had a higher capac ity to inhibit the adsorpt ion of surfactant to the air-water interface lhan

fibrinogen . In Iact, 10 approac h 1I1e inhibitory capac ity o f CRPon surfactan t adsorpt ion in the

presence o f ca lcium. it was necessary for fibrinogen 10 be present with surfactant at twice the

tlMllar ratio and 5 10 6tilllcs Ihe weight at which CRP was present Therefore , there may bean

;uldit innal mechanism by which e RP decreases surfactant adsorption to the air-water in terface.

'1111S is supported by the observat ion that, in the absence o f surfactant, glob ulin adsorbed 10 the

interface more quickly than CRr or fibrinogen, yet CRP was a more poten t inhibitor of sur factant

adsorpeon than globulin.
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It has also been suggested that the inhibition of surfactant adsorption hy plasma pwteins

might be, at least partially, the result of molecular interactions between plasma proteins with

components of surfactant in the subphase (Holm el al. • 1983; Puchimnkai cr "I., It)1l7: S~'l't:c r cr

al.• 1993). These interactions might increase thestability o f surfactant structures in thc sllh llhas~' ,

thereby preventing sur factant phospholipids front spreading as they app ronch the imcrfacc III

respreading after surfac tant film collapse [Fuchirnukai IIIal. , 1987; sccgcr ct aI " 1\}tUl.

Our results support previous observations that in the absence of plasma proteins. IIptilllill

adsorption of surfactant requires calcium (see above discussion). 't herefo re. if'a protein inhihil.s

surfactant adsorption primar ily by competing with surfactant for surface space. then IInc would

expect surfactant to more effectively resist the dclcrcrfoux cuccts or that protein in tile presence

o f calcium then in its absence . Such an occurrence has been shown for the inhihitory effect o f

albumin on surfactant adsorption (Holm et al. • 1983). It has been shown here that . in the presence

o f CRP, however, ca lcium did not enable surfactant 10 more effectively resist ,l(hnrptitlll

inhibition. In fact. calc ium was required for the potent inhibitory effect of CRI' on surfactant

adsorptio n. This sugges ts that the potent inhibitory effect of CRI' nn surfactant '1llsnrp1iutl is

primarily the result of a calcium-depe ndent interaction between C RI' and .1 surfact'1Il1

co mponent(s) in the subpbase.

Recent studies using solid phase-immobilizedlipids have shown that the reactivity of CR I'

for phosphatidylcholine was higher than that for phosphaliJy lclhanolamine or phlJ.sph'ltidylglyl.:ernl

(A, Szalai , personal communication), At the concentration used in the presented experiments,

phosphocholine almost completely eliminated the inhibitory capacity o f CRt' with rc sl M,~C I til

surfactant adsorption. The addi tion of lower concentrations of phosphochnlinc to mixturev 01
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surfactant + Cit !' caused a co nce ntration dependent reduction of thc inhibition of surfactant

adso rpnen by e RP. Also, the add ition of phosphocholine [Q a mixtu re of CRP and surfactant,

which was alre ady in the subpbasc , was shown to partially reverse the inhibitory effect of CRP

nn sur factant adsorptio n . These results arc consistent with the idea that a specific interaction

occurs between e RP and the phosphocholine hcadgroup of surfactant lipids. Since

phosph atidylcholin c is the major surfactant lipid, this is not an unreaso nable suggestion.

CRP may also bind to phosphatid ylglycerol and phosphatidy1cthanolamine, two other

phospholipid:- which are present in pulmonary surfactant, albeit at lower concentrations than

phos phaudy lchohne. Phosphocholine was able to decrease the inhibitory effect of CRP on

surfactant adsorption while the o ther two CRP ligands were relatively ineffect ive in this respect.

If C RI' docs interact with these phosphatidylglycerol and phcspharidylethancl amine. it is likely

that Ihe hinding would not he as strong as a binding to phophatidylcholine because of the relative

ebundance of phospharldylchollnc and thc high affini ty with which it binds to CRP compared to

the other two surfactant phosphol ipids.

Phospholipids may not be the only "targets" of inhibitory proteins. II has been suggested

fibr inogen may imped e the sur face acti vity of pulmonary surfactant by interacting wirh a

.~lI r r;IC fanl protein (See ger et at . . 1993). Studies with SP-B peptides suggested that thcy may

part ilitll\ with in the phospholipid bilayer in contact with both polar head groups and acyl chains

(Cochrane& Revak. 199 1), thus being pa rtially exposed 10 the aqueous environment. Recently ,

it has been suggested that the tert iary struc ture of SP·B may contain krm gle-like structures which

arc known [0 interact strongly with fibrin ogen (Johanson et al., 1991). Seeger et a1. (1993)

suggcSll'd that a specific interacti on between fibrinogen or its degradati on produces, anti SP-B may



be one mechanism by which such proteins impair the adsorption of sur factant to the air-water

interface.

Although the precise biological role of CRP rema ins unclear. its functional similarities to

antibodies in terms of its ability to aCI as a precipitin. an agglutinin , an opsonin, and as nn

activator of the classical complement system are well documented (e.g . Kaplan & Yolanakis,

1974). CRP has been shown to bind to phosphocb otine (e .g. votanakis& Kilpatrick, 1971) and

Kilpatrick & Volanakis (1974) have shown that CRP also binds to C lq . The CRP hinding sires

for phosphochoune (Liu et aI., 1987) and the sites at which Clq binds CRP have been delineated

(Jiang et al., 1992). Binding of CRP (0 phosphocholine residues of Ccpo lysaccbnride has hccn

shown to activate ear ly part of the classical complement cascade (Kaplan & Volanakis. 1974) vi"

an interaction with Clq (Claus et al., 1977). Therefore , CRP can bind to phosphochulin e and

Clq simultaneously, presumably via distinct binding sites . Although SP-A can rsu substitute for

Clq in the formation of haemolytically active Cl (Tenner er al., 1991), it can bind 10 Ctq

receptors of U937 cells and upregulate Cl q receptor production of these cells (Malhotra ct nl. .

1992). Therefore, it is possible that CRP may bind 10the hydrophilic surfactant protein SI'~A,

although more research needs to be undertaken to explore this possibilit y. If an interaction

between CRP and SP-A does occu r, it is likely not to be as strong as that between CRi' lllld

phosphatidylcholine since the addit ion of a sufficient quantity o f phosphocholine almost

completely eliminated the inhibitory effect of CRP on surfactant adsorp tion.

The pressure tracing of a bubble formed in a solution of CRi' alone showed a behavior

which was similar to that whieh Keough et al. (1989) have shown for albumin, fibrinogen, and

globulin, ",P is largest at minimum bubble radius. This eventually reversed such that ,,1',","
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occurred at minimum bubble radius. It has been shown here that, even after 8 minutes (160

pulses), e RP reduced the ...P of the bubble air-water interface at minimum bubble radius by a only

small degree. When the bubbles were initially formed in a mixture of CRP + surfactant, the

initial pressure differenceacrossthe bubble interface at minimumbubble size washigher than that

of a suspension of surfactantalone. Thisdifference . however. is not large. Thisindicates that

a small amount of eRP adsorbs. along with surfactant, to the bubble surface. Therefore. CRP

may prevent surfactant from entering the air-water Interface and lowering the surface tension by

competition for surface space. Keough et al. (1989) Slated that if an inhib itory protein

competitively adsorbed with surfactant for surface space, then the initial pressure tracing should

resemble those of the protein alone. The experiments of presented in thi s thesis show that the

initial pressure tracing of mixtures of CRP + surfactant, however, resembled that of surfactant

alone. Thi s suggests that, at the concentration of CRP and pulmonary surfactant used in these

exper iments, the inhibitory effect of CRP on the surface tension lowerin g ability of surfactant

upon compression most likely does not occur primarily because of competition with surfactant for

surface space . Two mechanisms may beprimarily responsible for the inhibitory effect of CRP

on surfactant adsorp tion during dynamic compression. A small amount of CRP which has

adsorbed to the air-water interface may be remove from the inter face dur ing dynamic

compression. As this occurs CRP may remove some surfactant phospholipid s (DPPC in

pani cular) from the interface thus inhibiting the surface tension lowering ability of the adsorbed

sur factant film upon compression. Alternatively . CRP. in the subphase, may preve nt surfactant

from spreading or respreading at the air-water interface thus inhibiting the initial opening and

imreding the surface tension lowering ability of surfactant upon compression. A combination of
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both mechanisms may be involved . These results suggest that the mechanism by which CRP

inhibits surfactant adsorption durin g dynamic compression occurs primarily because uf an

interactionwith eRP and the phosphatidylcholinecornporcnt of surfactant. They alsosuggcstthm

theinhibitory effectof CRP on the performanceof pulmonary surfacta nt inthe PUIs.11 ing bubble

surfactometer is not exclusively due 10 phy sical competition with surfactant for surface space.

These results arc inkeeping with those obtainedfrom the surface adsorp tion appanuus , ami arc

consistent with the main mode of inhibition of surfactant by CRPas bei ng through its blnding10

thelipids ofsurfactant. The fact that theCRP inhibitioncan bereversed byphosphocho lincmay

have th erapeutic implicat ions.

The Effect or Clq on the Adsorption of Lipid ExtractPu lmonary Surfactant

Several investigators have shownthat thesurfactant protein$P-A facilitates theadsorption

of pulm onary surfactant to the air -water interface. SP-A has been shown to alterthe stateof

phosph olipiddispersions in thepresenceof calcium. andthe hydrophilic surfactant prote insSP-D

andSP·C (e.g. King & MacBeth, 1981; Hawgood, 1985). The presence ofSP-A has been shown

to enhance the rate of formation of adsorbed filmsof surfactant mixture s which were composed

of phospholipids, SP~B and SP-C (King & MacBeth, 1981; Suzuki. 1982; No ttcr er al . , 19B3;

Wright et al., 19i54; Hawgoodet al ., 1985; Efrati et aI., 1987). Atcalciumconcentrations which

are comparable to that found in the alveolar suhphase, Iiposomes of DPPC and I~G. in the

presence of the surfactant proteins Sp-Band SP·C. but not SP-A. aggre gate minimally and form

films at the air-water interface more slowly thanin the presenceofSP-A (Neilso n, 1984). Efrati

et al. (1987) have speculatedthat phospholipidaggregation is a prerequisite for tubular myelin

fonnation, and Suzukiet al. (1989) and Williamset al. (1991) have further supportedthe role of
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SP-A in the formation of this uniq ue stru cture. Using freeze-fracture electron micros copy of

mixtu res of pul monary surfactant, Sen ct a l. (1988) have de monstrated that tubu lar myelin-like

structure s exi st at and very near the air-wa ter inter face. Th e prese nce of tubu lar myelin-like

structures lias beenshownto beassociatedwithrapid adsorption ofpulmonarysurfactant (Magoon

et al., 1983; Noncr et al., 1986; Benson el al., 1984; Efrati et aI., 1987). Th erefore,

circums tantial evidence suggests that the p resence of SP-A is a prereq uisite fo r tubula r myelin

format ion, and tubular myelin is believed to facilitate theadsorption of pulmonarysurfactant to

shea ir -water interface.

Someauthors. however. have show n that the presence ofSP-A and tubular myelin arenot

ahsolu lely necessary for the rap id adsorptio n of lipi d-extract pulmonary surfactant. Met calfe et

al. (1980) have shown that calf lun g lipid ext ract adsorbed to the air-water interfa ce as rap idly a s

whole calf lung surfactant. Later , Notte r et al. (1986) have shown that calf lung lipid extract ,

which is void of SP-A. adsorbed rapidly to the air-water interface. A queous s uspensions ct this

surfac tant did not conta in structures which resembled tubular myelin . Nolter et al. (1986) have

show n . howe ver. that surfactant suspens ions wh ich adsorbed rapidly conta ined thin -walled

surfac tnntflpo somesalong with less ordered open mi crostructu res. The y speculated that , although

tubular myelin was not present , these open struc tures facili tated the delivery and sp reading o f

surfac tant lipid s to the air-water interface. We do not know what type of microstructur es were

present in the surfactant suspens ions stud ied here .

We hav e shown that in the presence of calcium, lipid extract surfactant , which is void of

SP-A, did not adsorb as rapidly as whole surfactant. The concentra tion of S P-A in pulmonary

surfac tant has beenestim atedto be 5% to 10%of the phospholipid con centration, by wei ght. Th e
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addition of Clq to lipid extract surfac tant, at 10 % of the phospholipid content . by weight. has

been show n here to increase the adsorpti on rat e of surfactant lipids to the air-water hscrf nce.

com pared to the lip id extrac t alone. It has also been shown that this mix ture of C lq and lipid

ex tract surfac tantad sorbed more quickly men that which would have occurred if the Ctq and lipid

ex tract surfactant were injected independently. T his suggests that Clq interacts with Ctl l11(lnllc nls

in the lipid extrac t surfactan t in the subphase and facilitates the delivery and spreading of

surfactant lipids at the air-wa ter inter face. Also . Clq did not reduce the equilihrium spreading

pr essure of adsorbe d surfactant films . In these ways C lq is fuoctionally hemologouxto SP-A .

Th e results of exper iments with the pulsa ting bubblesurtactomcter support the suggestion

that Clq increases the adsorp tion rate of lipid ex tract surfactant by an inter action w ith surfactant

components. They also de monstrate that Ct q , unlike globulin, increases the adsorption rate of

lipid extra ct surfactant. Also . Clq does not interfere with the ability of the adsorbed surfactant

film attaini ng a low surface tension upon compression.

Bu bbles wh ich were formed in solutions of lipid extract surfactant + 5 and 10 % C14 hall

higher pre ssure di fferences across the bubble interface upon initial bubble formation than bu bbles

which were created in lipid extract surfactant a lone. C IQ.by itself, however . did oo t measurably

red uce the subphase surface tension. Also. bub bles in a dispers ion containing 5% Clq lind lipid

e xtract surfactant had higher pressur e difference s acros s the bubble interface upon initial buhhle

formed in suspens ions of lipid extract surfacta nt -'- 10% Clq .

The effect of 5% and 10% C Iq on the adsorption of lipid extract surfactant to theair- water

interface suggests that an interaction occurs between Clq and compo nent'; o f lipil.! e xtract
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surfactant. It required 160 pulses(8 minutes)for the: lipid extract surfactant. which is voidof SP­

A bUI contained the hydrophobic surfactant proteins SP-B and SP-C . to attai n a llP min of

approximatelyzero. Tenpercent Cl q increased theadsorption rate (and rate of surfacerefining,

see below) of lip id extract surfactant such that this mixture adsorbed as rapidl y as whole

surfactant, which contains SP-A. Th e additio n of 5% Clq to lipi d extract surfactant produc ed an

adsorption ratewhich was intermediate between thaI of thelipid extract surfactantaloneand that

of lipid extractsurfactant + 10% Clq . The increased adsorption Tateof lipidextractsurfactant

which wa s dependent on the concen tration o f Clq, suggests tha i an interaction occu rs between

Clq and lipid extract surfactant components.

The exper iments presented here show that the effect of Clq on the adso rption of lipid

extractpulmonary surfactant maybe unique. compared 10 thatof other serum proteins. crq.via

a tertiary and quaternarystructural homology withSP -A. may increase the rateof adsorpt ion of

lipid extr act surfactant to the air-water inter face. A n idemical amount of gtcbu tln. however.

decreased the adsorptionrate of the lipid extract surfactant. Othershave shownthat globulin and

other se rum proteins such as albumin and fibrinogen . inhibit the adsorptionof surfactant to the

air-water interface during dynamic compress ion (e.g. Keough erai., 1989). In th is respect , the

behaviou r of Cl q is different from that of oth er serum proteins.

Ano ther mechanism . howev er, may be partially respons ible for the more rapid low ering

of the ~pmill across the interfaceof bubbles formed form lipid extract surfactant in the pre sence

of Clq than in its absence. Schurch et al. (19 89) have shown that repealed cyclingof films of

pulmonary surfactant produced films with pre ssure-area hysteresis curv es which more closely

resembled thatof DPPC than theor iginal surfactant film. They interpreted thisas resulting from
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the selective ex clusion of non-DPPC film components . It has beenpreviously suggested that SP-A

may increase the removal of no n·DPPC components from surfactant films durin~ compression

(e.g. Cockshutt er al., 1990). There fore, in our experiments . it is possible mm Ctq may not only

be inc reasing the rate of adsorption of lipid extract surfactant but it may also facilitate the rae a t

which non-DPPC film components are remo ved from the interface. in a simi lar manner as that

which has been speculated to occur for SP-A . This would more quickly produce a Dppe-rich

surfactant film which has been shown to be necessary for the low surface tension which

pulmonary su rfactant is capable of attain ing. Therefore. a molecu lar interac tion(s) would he

necessary if C lq does increase the rate at which non·DPPC com ponents arc removed from

surfactant films, which are void of SP-A. It is not possible from these experiments to determine

the quantity ofClq at the bubble interface. although fromcont rol experiments, the amount (If C Iq

at the air-water interface would not appear 10be very large since n till.! not reduce the surface

tension of lhe bubble interface by a subs tantial amount. Even if interactions do occ u r between

Clq and componentsts) of the lipid extract surfactant in the air-water interface any CI q molccules

at the bubble interface must not interfere with the removal of non·DPPC surf actant compcnems .

Also. Clq itself must be effectively disp laced from the interface, and it must not remo ve D)lPC

from the sur face.

The precise mechanism by which Cl q facilitates the adsorption of lip id extract surfactnm

is not clear . Clq may interact withsu rfactant lipids, hydrophobic surfactant proteins, or bot h .

in the subphase thereby incre asing the rate of adsorption of lipid extract surfacta nt. Such

inte ractions may facilitate the delivery of surfactant lipid s to the air-water interface or il may

produce: surfactant structures which more easilyspread or respread at the air-water interface. In
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addition to this mechanism,Cl q may also increa se therate atwhich non*DPPC sur factant film

componentsarc removed from the bubble surface. Ifihis secondmechanism does not occur, C lq

must be effectivelysqueezed-out of the interface withoutremoving anyof the DPPC component

of the surfactant film. Perhaps someof the beneficialeffects of SP-A with re spect to the surface

adsorptionand surface tension lowering ability of pulmonarysurfactant are related in aspects of

its structure which are reflected in Clq.

Serum C-reactive Protein Levels and Adult Resptr atory Distress Syndrome

Many of the etiologies of ARDS suchas infection, sepsis. andtrauma (e.g, Bernard &

Brigham. 1985) have also been shown to produce the acute phase response. T herefore . it is likely

that serum eRP will be elevated in a numberof instances where patients have ARDS or at ri sk

of developing this syndrome. Indeed. Kewet at. {l990} haveshown that . in serum of sera of

patients with ARDS. e RP is elevated co mpared to normals and it is alsoelevatedin thesera of

pat ients who are at risk of ARDScompared to that of normals. Our data supports the work of

Kcw ct al. ( 1990)in showingthat ihelevel ofseru mCRP is elevated in patientswith ARDS and

patientswho areat risk ofthis syndrome compared tothat of normal heallhy volunteers . We were

not ableto confirm. however. thatserum CRPlevels of pauentswith ARDS is elevated compared

to patients who were at risk of this syndrome. This may be a result of the small samplesize of

this saudy.

Pulmonary ede ma is the hallmark of ARDS. II has beensuspected s incethe 1960's that

the impaired surfactant function results fromthe presence plasma proteins in thelung andthis is

thought to co ntribute 10 the pathophysiology of RDS (e.g . Taylor & Abrams, 1966) andARDS

(Ashbaugh et al., 1967). The pulmonary vascula r damage which occursduring the d evelopment
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of ARDS. varies from increased permeability of the pulmonary vasculature to are as \ ll'

haemorrhage (e.g . weirer-Kronisn et al., 1990). Theref ore. the relative corccrnrations of serum

proteins in the seru m should bereflectedin the corcentrauon of the theseproteinsin the alveolar

space. Duringthe acutephase response, the concentra tionof CRP in the serum can increase up

to tOOO-fold, therefore, ir is likely that CRP will alsobe increased in the ntvc.uer l1uidof ARns

patients andthose who are at risk of thissyndrome. This prem ise was investigated hy Li ct nl.

(1989) who show ed that the concentration of CRP in the BAL of patients with ARDS was

signiflcantlyeleva tedcompared to that of normals. They (Li c! ul., 1989) found that this level

of CRP in patients with ARDS can increase fromO.4% of iotaI lavage protein in normal adul ts III

approximately 10 % of totallavage protein in patients withARDS. The ratioof 101011prot ein to

total phoshphlipid in BAL obtained from pateints with ARDS has been determined 10 he

approximately 6 : 1 by weight (T. J . Grego ry, personal communication). Ther efore. a CIU' ;

surfactant phospholipidratio of approximately 0.6: 1 (wfw) may exist in the edematous lung ill

vivo.

Tillett and Francis (1930) were the first to discover CRP in the sera of patients with

pneumonia. Since ihcn, many investigators have been interested in the acute phase response ;111(1

how knowledge of changes in the concentration of acute phase proteins could provide clin ically

sueful information . ARDS is a well known causeof acute resp uaroryFailure that canoccu r lifter

a variety of pulmonaryor systemic insults. This includes pulmonary and non-pulmonary sepsis.

shock. thoracic and ncn-rhoracic trauma(e.g . Rogers & Levin, 1983). In fact, sepsis is the most

commonclinical condition associated with ARDS with 2040% ofpatientswith sepsisdeveloping

ARDS (wiener-Kronish et at , 1990). It has been shown that the degree of elevation n fC IU'
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corresponds reasonably wellwith theseverityof infec tion(e.g. Sabel & Hanson, 1974; Kushner

& Feldman. J978; Sabel & wadsworm. 1979; Macintry et aI., 1982) and with the seve rityof

tissue damage (Kushner ct at., 1978; deBeer et at., 1982).

Serum C-reac tive Pro tein Levels and Chronic Health Eva luation

Griner (1972) has suggestedthat there is a needfor a system which standardizes infonnat ionof

patients admit ted and treated in I.e.u.s. This wo u ld facili tate both the evaluation of in tensive

care andassessmentof new therapies (Knaus eta1., 1981, and referencescited within). A widely

acceptedindex: fordetermining the severity of illness isa scale which assesses theprobability of

mortality (Krickcr, 1976) . Thefirst widelyacceptedscoring systemto classify groupsof acutely

ill patientsbased onseverity of illness was lheAPAHCE I scoringsystem (Knauset aI. , 1981),

Simplification of the APACHE I system withthe intention of providing a more elinc ially yet

stOlsticallyaccurate and validpatientclassification system, the APAHCE II scoringsystem (Knaus

ct al. , 1985).

Our res ults show that a weakcorrelation exists between the level of CRPin the sera of

l.C.U patients andthe APAHCE II scores whichthe patients receive. A larger samplesize would

more accurately represent tileactual populationand allow the use of more powerful pa rametric

stastical analysis , Therefore, these results suggest thata larger investigation be undertaken to

more accurately determine if the measurementof CRP levels should includedin a scoring system

for t.c. tr. patients such as the APAHCE II.
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CONCLUSION

T he results which are presented here show that eRP, at physiohlgical1y plausablc

concentrations, is a potent inhibitor of pulmonary surfactantadsorption. This inhihitory e ffect

required the presence of calcium, and waseliminated and reversedhy the additiull {If the water

soluble CRP ligand phosphocbcline, at a molar ratio of 300 : I, phosphecholine : (, RI'.

Phosphocholine at this molar ratio, approximately 2 mM, did not influence the adsor ption

characteristics or the equilibrium spreading pressure of porcine pulmonary surfactant.Therefo re,

an interaction may occur be tween CRP and the headg roupof dillalmiloylplmsphatitlylchu line,

predominantly in the subphase and possiblyat the air-water interface. The results presented here

suggest that CRP may contributesubstantially to the lung dysfunction which is nssociarcd with

ARDS. They also suggestthat theadditionof a smallamount of phosphochollnc ttl p nncnts with

ARDS may bea ben eficial therapeutic treatment for this syndrome,

Thesedata showthat thecomplementprotein Cl q , increases the adsor ption us lipid ex tract

pulmonarysurfactant whichis voidofSP-A. It is likely that this eHcctof Cl q is due to a similar

molecular mechanis m as that which occurs between SP·A and and the other components of

pulmonary surfactant.

It has been shownthat serum CRPlevelsweresignificantlyelevated in patients with AHI>S

and in patients at risk of ARDS compared to normals. It has also t een shown that il weak

correlation exists between the level of CRP in the serum of leU patients and the AI'A(: HI: 11

score. Therefore. further researchshouldbe undertaken to moreaccuraltcddetermine the cl inical

usefulness of measuring serum CRP levels in patients in the ICU .
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APPENI>CES (~ Ict hods a nd Proloctlld

(I) l\Iodilicalion or th e MMhod or King lind Clements (1972) Ior-Surfac tuu t R{'('IU·C'r) · h"

La vage

All procedures were performed at ,J°C.

I. Lavage was centrituged al 8OO:w. g.. for 10 minutes, (Sorvall RC· .' ; Sorvan H(i-4 l. nl l\lr; 1115(1

rpm).

2. The supernatant of (I) wascentrifuged at 8(XX) x g•• for I hour. (StlrVilll Rl'2-1J; Survall {i!-i •.1

rotor or a Beckman n -21; Beckman JA- IO rotor; 7000 rpm}.

3. Whit: portions of the pellets From (2) were homogenized with the <lid of a l:1;ISS tissue

homogenizer (with a ground glass pestle) anti s esrended in thefol1owin~ (M): Nile l , (I . IS; M l:l :l,

0.035; NaBr, 1.64; Trill-HCLO.OOS; pH= 7.35. The pellets, houlI\\t.' nin 'll in the MlI:lialll hwm illc

solution, were centrifuged overmgtuat 81 500 x L. - {Beckman L'i-5UU; Beckman SW-2R rouu ;

25 000 rpm}. If pellicles did nOlIorm because of a high lipidcontent of the s odiumhm mitlc

gradient the lipid content was d iluted by one hair and centrifuged ag;lin.

4 . The resultant pellides were homogenized and suspended in the fullowing 1M): NllCI,lI, I:'i;

Tri s·HCL, OolXIS; pH = 7.35. The suspension was cemnfuged 311lI t)()ll x g.,. fur 2 hllurs.

(Beckman Lj ·50; Beckman 60 Ti rotor; 3 1000 rpm).

5. Pellets fro m (4) were homogen ized and suspended in .. minimal volume III"O. IS M NaCl ,

placed in Nalgene Cryovials (- I 111 1per tube) and stored at · 70"C.
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(2) I ·h u~phorus Ildcnninalioll by u Modification of the Method of Bartlett (1959) as

Ilcscdhcd hy Kcoug b and Karie! (1987).

Materials:

chromic acid washed glass tubes

phosphorus standard (2 I-Ig . mt" , KH 1P04)

pcrchloric acid (70%)

ANSA (l -am ino-2-napth ol-4-sulfonic acid) , (0 .25 %)

am monium molybd ate (5 %)

an ti-bumping granules

Methud :

I. I ml of pcr chlor ic acid and anti- bu mping granules were added to all tube s.

2 . The phosphorus standard (2 to'g/ ml) and surfactant sample s (I - 1O,Ltg/ml phosphoru s) were

added 10 the respectiv e tubes. The tubes were vor texed well.

3. The samples were digested hy boiling for 12 minutes and were allowed to cool. Water was

added so that thc final volume of each tube was 9 m!'

4. 0.5 ml ammoni um molybdate was added to all tubesand vortexed well.

5. 0.5 IlII ANSA was added 10 all tubes and vortexed well.

6. The tube s were immersed in boiling water for 12 minutes, removed and were allowed to coo l.

7. Optical density was measured with a spectrophotometer (LKB Biochrom. 4049 Novaspec) at

HI5 11I11 which had been calibrated with water. Samples were assayed in triplicate and the

phosphorus concentration of the sample was determined from the average of these values. The

phosphorus concentration or the surfactant suspensions was converted into phospholipid



concentratio n by multiplying by 25.
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(J) Preteln Dcrermlnauon by a Modlfl cat lon of the Method of Lowry et al. (1951).

Materia ls:

disposab le test tubes

pro tein standard (crystaline bov ine serum albumin)

sod ium uodccyl sulphate (5 DS) , ( 10% )

Folin & Cioc altcau's phenol reagent (2 .0 N)

reagent A : JOO g of Na,CO I in 0.5 M NaOH, H10 was added for a fina l vol ume of I I and was

protected from light.

reagent B: I g of CuS0 4"5Hp was added 10 HID with a final volume 100 mt. and was pro tected

from light.

reagent C : 2 g of sodiu m potassium tartra te wa s added to HID with a final volume of IDO m!.

Method:

I. Protein standard (2.0 mg/ml) and samples ( 1-10 mg/mltotal protein) were added to respective

glass culture tubes.

2. If required. 100 til of 10% 5DS was added to all tubes.

:\. The volumeof liquid in each lube was brought to 1.0 ml by adding an appropriate amount of

H10 and vor tcxcd well.

4. 15 111 1of reagent A, 0.75 1111 of reagent B and 0.75 nil of reagent C were mixed and 1 ml of

nc resultant solution was added to each tube and vortexed well.

5. The tubes were incubated for 15 minutes at room temperature.

7. While the tubes wert' incubating, 5.0 ml of2 N Folin & Ciocalteau's phenol reagent was mixed

with 50 11\1 of H!O.
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8. At theconclusionof the incubation period, 3.0 Ill!of the solutionwhich was made in (7) was

forcibly pipetted into eachlubeandhnmcdiatelyvcrtexedbefore prccccdingtuth e next rube. 'l'his

step was executedas quickly as possible.

9. Samples were incubated at room temperature for 45 minutes then the optical (!cllsity is

determinedspectrophotometricatly(LKB Biochrom, 4049 Novaspec)at 540 11m. Samples Weft'

assayed in triplicate and the sample protein concentrationwas determined from till: averageor

these values.
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(4) Em yme. linket'l Inununosorbenl AMay (ELISA): a Polyd onal Double Antibody Sa ndwkh

Materials:

96 well (8 rows II; 12 columns) nat bouom polystyrene microdtraticn plates (Linbro Tltertek ,

Horsham , PAl

8 channel ELISA manual plate washer (Com ing , New York , NY )

8 channel 100 ti l pipette (Costar, Cambridge. MAl

ELISA plate reader (BID-RAD, Richmo nd . CAl

phosphate buffered saline: (PBS)

NaN l 0 .20 g; Nael 8. 0 g: KHI PO~ 0 .20 g; NalHPO~ 1. 15 g; KCI 0 .20 g: add ~O for a final

volume of 1 I; pH=7.4

coating buffer : (carbonate -bicarbona te)

Na1CO, 1.59 g: NaHCOJ 2.93 g; NaN) 0.20 g: add HlO for a final volume of I I; pH=9.6

blocking solution: PBS-gelatin (O.5 ~)

diluent sn lulion: PRS-gelatin (O.2S ~ )-Tween (0 .05'1)

washing solu tion: PBS-Twee n (O.OS'l)

substrate buffer : (diethanolaruine buffe r)

NaN., 0.20 g; MgCII '6H,D 0.10 g: 97 ml of diethanolamine (epprox . 98 %); add H,D for a final

volume of I I; pH= 9.8

l\ lka l i n~ phosphatase substrate :

n-ult roph enol phosphate, (40 mg per table!)

protein stan dard : human CRP , ( > Q5% pure by SDS· PAGE) (Calbicchem, La Joll a . CAl

polyclonal antisera :
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rabbi t ant i-human CRP (Sigma , ST . Louis , MO)

goat anti -human e RP (Sigma . ST. Louis. MO)

immunoglobulin :

rabbit anti-goa t (lgG) alkaline phosphatase (Sigma, ST. LOllis. MO)

Method:

1. Microti trat ion plates were coated with \00 p lfwell of rabbit anti-human CRi' (1 : 4DOOdilu tion)

in carbonate coating buffer and incubated overnight at 4 ~C. All subsequent procedures We TI.'

performed at room temperature .

2. The solution of (I) was removed by inverting the plates andshaking. The plates were dri cil

by tapping on a paper towel. The plates were blocked wit h I'BS-gd <llin (200 IIl fwcl l) :nltl

incubated for I hour .

3. The plates were washed 3 times and dried. l~ III of serum or e RP standard was adtk d In the

appropriate wells, serially diluted and incubated for I hour.

4. The plate s were again washed 3 times and dried. 100 JJI of goat an ti-human CRI' (I : 4<KXI

dilution) was added to each well, and incubated fo r I hour.

5. After washing the plates 3 times and drying , 100 p I o f rabbit anti-goa t alkali ne rho sphal;lsc ( I

: 5000dil ution) was added to each well and the plates were again jncubntcd for I hour.

6. While tile plates were incubating the substrate solution was made by atltling I 4() mg tahlcl of

phosphatase substrate to 40 rnl of substrate buffer. This W,IS stored in the dark, The plates were

then washed 5 times and dried. 100 ,u1o f substrate solution was added to each well ,tod stored

in the dark until the reaction was completed. The reaction was determine d 10 he comple te when

color development in each well which contained the samples and standard was more intense than
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the blank wel ls. Due 10 viannbility in the handling of each plate, with respec t to rate of color

development. each plate contained 3 rows in which a standard was assayed.

7. Colour development was Slopped by adding 2 M NaOH to each well.

8. Absorbance was measured at 405 nm and the background was subtracted .



,.,
(5) Instructions for Op perarl ng the Pulsaling Bubble Surfarlo llwt rr (Enhonli ll~ . 1977)

I. The power was turne d on and the heater switch was en gaged ( I~mr-:rature was Sl.'t a t JrC).

2. lbe pislOOchamber, which is in connected hydraulically 10 the sample which is being OIS....')'V

was cleaned by flushing me water bath 3 times with distilled water which has been hoik'd .md

placed in a Travenol Viallex I(X)() mlcapacity mud container and conoccrcd to the water nllshin~

mechanism. The water was removed using a Pastieur pipette. The WOller hath was 11I1l'(1to the

full mark which is a po int which is just below a piece of filter (lil pcr which is held down un 11\1:

top of the water bath chamber by a spring. The filler pa~r is used \0 absorh excess Hp . The

bath chamber was raised and covered by rotating the plastic lid oyer the chamber.

3. With the pressure transduces in (he off position, the recorder turned tin to the low Sl"'-'(,'([ (25

mmls) and the pen wasplaced in tbe zero position on the chart pa~r wilh the pen position knob.

4 , With the pressure transducer on, the calibration knob "':M pressr..'tl (the signal il pmdlk:e.\ is

proportional to -2 em HP ). The sensitivily knob wasused to place the penat the -2 em of water

on the chart paper. The pressure transducer and the chart recorder weretumed orr and the WOller

was removed.

5, The water bath chamber was lowered and locked into place.

6, Usinga 50 /-I I Hamilton syringe, a sample chamber was filled with the surfactant, protein, or

surfactant + protein mixtures to be tested while making sure that there were no air bubbles in the

chamber. With the bubble adjustment knob in Ihe full counterclock wise position, the sample

chamber was placed over the piston and clamped in place.

7. Thebubble adjustment knob was rotated fully clockwice ami Ihe excess fluid nn the top of the

sample chamber was absorbed with tissue paper. The water bath was rai.....'d and c overed . 'Illc
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\;Imr ie WdS <lI1UWL'tIto equilibrate to ) 7"C.

8. The chart recorder was turned on, lhen the pressure transducer and the pulsator. and the bubble

iltlj u.~ l mcn t knub was rolah.'d so that the initial bubble radius was0 .55 mm. The bubble was

!oubSl.:qucfIIly pulsatedbetween minimum and miniman bubble radii at a rate of 20 pulses/minute.

I( Afl"'"fthc tb.i red number of cycles. the recorder. pulsator and pressure transducer were turned

off. The water hath was lowered . the sample chamber was re moved . The water hath was raise

the piston chillllhcr was washed J limes (see above). These steps Were executed during every

experimentaltext .










	001_Front Cover
	002_Inside Front Cover
	003_Blank Page
	004_Blank Page
	MM17619_page_0000
	MM17619_page_0001
	MM17619_page_0003
	MM17619_page_0004
	MM17619_page_0005
	MM17619_page_0006
	MM17619_page_0007
	MM17619_page_0008
	MM17619_page_0009
	MM17619_page_0010
	MM17619_page_0011
	MM17619_page_0012
	MM17619_page_0013
	MM17619_page_0014
	MM17619_page_0015
	MM17619_page_0016
	MM17619_page_0017
	MM17619_page_0018
	MM17619_page_0019
	MM17619_page_0020
	MM17619_page_0021
	MM17619_page_0022
	MM17619_page_0023
	MM17619_page_0024
	MM17619_page_0025
	MM17619_page_0026
	MM17619_page_0027
	MM17619_page_0028
	MM17619_page_0029
	MM17619_page_0030
	MM17619_page_0031
	MM17619_page_0032
	MM17619_page_0033
	MM17619_page_0034
	MM17619_page_0035
	MM17619_page_0036
	MM17619_page_0037
	MM17619_page_0038
	MM17619_page_0039
	MM17619_page_0040
	MM17619_page_0041
	MM17619_page_0042
	MM17619_page_0043
	MM17619_page_0044
	MM17619_page_0045
	MM17619_page_0046
	MM17619_page_0047
	MM17619_page_0048
	MM17619_page_0049
	MM17619_page_0050
	MM17619_page_0051
	MM17619_page_0052
	MM17619_page_0053
	MM17619_page_0054
	MM17619_page_0055
	MM17619_page_0056
	MM17619_page_0057
	MM17619_page_0058
	MM17619_page_0059
	MM17619_page_0060
	MM17619_page_0061
	MM17619_page_0062
	MM17619_page_0063
	MM17619_page_0064
	MM17619_page_0065
	MM17619_page_0066
	MM17619_page_0067
	MM17619_page_0068
	MM17619_page_0069
	MM17619_page_0070
	MM17619_page_0071
	MM17619_page_0072
	MM17619_page_0073
	MM17619_page_0074
	MM17619_page_0075
	MM17619_page_0076
	MM17619_page_0077
	MM17619_page_0078
	MM17619_page_0079
	MM17619_page_0080
	MM17619_page_0081
	MM17619_page_0082
	MM17619_page_0083
	MM17619_page_0084
	MM17619_page_0085
	MM17619_page_0086
	MM17619_page_0087
	MM17619_page_0088
	MM17619_page_0089
	MM17619_page_0090
	MM17619_page_0091
	MM17619_page_0092
	MM17619_page_0093
	MM17619_page_0094
	MM17619_page_0095
	MM17619_page_0096
	MM17619_page_0097
	MM17619_page_0098
	MM17619_page_0099
	MM17619_page_0100
	MM17619_page_0101
	MM17619_page_0102
	MM17619_page_0103
	MM17619_page_0104
	MM17619_page_0105
	MM17619_page_0106
	MM17619_page_0107
	MM17619_page_0108
	MM17619_page_0109
	MM17619_page_0110
	MM17619_page_0111
	MM17619_page_0112
	MM17619_page_0113
	MM17619_page_0114
	MM17619_page_0115
	MM17619_page_0116
	MM17619_page_0117
	MM17619_page_0118
	MM17619_page_0119
	MM17619_page_0120
	MM17619_page_0121
	MM17619_page_0122
	MM17619_page_0123
	MM17619_page_0124
	MM17619_page_0125
	MM17619_page_0126
	MM17619_page_0127
	MM17619_page_0128
	MM17619_page_0129
	MM17619_page_0130
	MM17619_page_0131
	MM17619_page_0132
	MM17619_page_0133
	MM17619_page_0134
	MM17619_page_0135
	MM17619_page_0136
	MM17619_page_0137
	MM17619_page_0138
	MM17619_page_0139
	MM17619_page_0140
	MM17619_page_0141
	MM17619_page_0142
	MM17619_page_0143
	MM17619_page_0144
	MM17619_page_0145
	MM17619_page_0146
	MM17619_page_0147
	MM17619_page_0148
	MM17619_page_0149
	MM17619_page_0150
	MM17619_page_0151
	MM17619_page_0152
	MM17619_page_0153
	MM17619_page_0154
	MM17619_page_0155
	MM17619_page_0156
	MM17619_page_0157
	MM17619_page_0158
	MM17619_page_0159
	MM17619_page_0160
	MM17619_page_0161
	MM17619_page_0162
	MM17619_page_0163
	MM17619_page_0164
	MM17619_page_0165
	MM17619_page_0166
	MM17619_page_0167
	MM17619_page_0168
	MM17619_page_0169
	MM17619_page_0170
	MM17619_page_0171
	MM17619_page_0172
	MM17619_page_0173
	MM17619_page_0174
	MM17619_page_0175
	MM17619_page_0176
	MM17619_page_0177
	MM17619_page_0178
	MM17619_page_0179
	MM17619_page_0180
	MM17619_page_0181
	MM17619_page_0182
	MM17619_page_0183
	MM17619_page_0184
	MM17619_page_0185
	MM17619_page_0186
	MM17619_page_0187
	MM17619_page_0188
	MM17619_page_0189
	MM17619_page_0190
	MM17619_page_0191
	MM17619_page_0192
	Z001_Blank Page
	Z002_Blank Page
	Z003_Inside Back Cover
	Z004_Back Cover

