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ABSTRACT

Laboratory and field trials have validated liver mixed

function oxygenase (MFO) induction as a sensitive biomonitor

for petroleum hydrocarbon exposure. However, basal enzyme

levels are known to vary seasonally ahd the usage of extra­

hepatic tissues for biological monitoring has received

little attention. Laboratory experiments were conducted

in the summer of 1985 to determine the induction pot~ntial

of ethoxyr~",orufin O-deethylase (EROD) in liver, kidney,

gill, and heart tissues of cunners (Tautogolabrus adspersusl

exposed to no. 2 fuel oil (diesel oil) during the repro­

ductive se:;ason. Although basal levels varied, induction

was readily resolved ie hepatic and extrahepatic tissues

of both male and female cunners during prespawning, early

spawning and late spawning. The induction potential of

heart (7-18 fold) was much greater than liver (4-6 fold),

kidney (4-7 fold) and gill (2-5 fold). Male cunners

displayed a much higher induction potential compared to

females in heart EROD during prespawning (18 versus 13

fold I and early spawning (12 versus 7 fold) but

significant sex differences were observed during late

spawning. Sex differences were also evident in liver and

kidney tissues throughout the reproductive season, males

exhibiting higher enzyme activities than fem<lles in each
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The potential for induction of a conjugating enzyme,

glutathione S-transferase (GSTI, was also studied. Unlike

EROD. GST was refractory to induction in all tissues of

male and female cunners throughout gonad maturation/spawning.

Depression of CST was observed in the heart tissue of diesel

exposed males during early spawning and male liver and

kidney during late spawning.

These experiments shew the feasibility of using

extrahepatic as we] 1 as hepatic Mi"O enzymes for monitoring

studies even during the reproductive season.
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1. INTRODUCTION

1.1 Mixed Function Oxygenase in Mammals

Mixed function oxygenases (MFO's), also referred to

cytochrome P-450 monooxygenases, are responsible for

the oxidative metabolism of a myriad of lipophilic organic

substrates. These lipophilic substrates include a diversity

of chemical sb:uctures, and include drugs, carcinogens,

and environmental pollutants such polychlorinated

biphenyls (PCB IS), pesticides, and petroleum hydrocarbons

(Conney, 1967; Snyder and Remmer, 1979; Gelboin, 1980).

Besides the oxidation of xenobiotic compounds, ~lFO enzymes

are involved in the metabolism of endobiotics like steroids,

fatty acids, vitamins, hormones, and bile acids (Ahmad,

1979). Some common MFO reactions are illustrated in Figure

1.1.

l'lixed function oxygenases are found in virtually all

or9anisms including vertebrates, invertebrates, and many

bacteria, with the exception of anaerobic bacteria.

Components of the mammalian P-450 monooxygenase system,

isolated from the microsomal fraction (smooth endoplasmic

reticulum ve3icles) of the liver include the heme~containing

cyctochrome P-450, the flavoprotein NADPH-cyctC'~hrome P-450

reductase, and phospholipid. The highest concentrations

of cyctochrome P-450-dependent monooxygenases are localized

in the smooth endoplasmic reticulum (SER) of the liver

cell (Hodgson, 1979) . Intracellular locations besides



Figure 1.1: Common mixed function oxygenase reactions

(Adapted from Lee, 1981.)
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the SER that usually contain lower MFO activity include

the rough endoplasmic reticulum (RER) and the mitochondrial

membrane (Hodgson, 1979) as well as the nuclear envelope

of the liver cell (Viviani et al., 1918). The mitochondrial

electron transport system (inner membrane matrix) is quite

different from the microsomal system and appears to be

specialized for steroid metabolism. Sa to et al. (1977)

noticed tha" partially purified cyctochrome P-450 from

rat liver mitochondria was incapable of catalyzing the

NADPH-dependent !:Jenzphetamine N-demethylation. unlike a

cyctochrome P-450 isolated from rat liver

Both cyctochrome P-450' s, however, exhibited 26-hydroxylase

activity, which is involved in cholesterol metabolism.

Extra-hepatic tissues including kidney, small intestine,

lung. placenta, and skin appear to be active to some degree

in the biotransformation of lipophilic compounds (Brattsten,

1979) .

Monooxygenases function primarily as a detoxification

system (so-called phase I enzymes), but many compounds

became more toxic or carcinog~nic upon conversion to

chemically reactive metabolites by mixed function oxygenases

(conney, 1982). Primary oxidation products arising from

['hase 1 reactions are excreted or further transformed into

more hydrophilic metabolites by a series of conjugating

"phase 2" enzymes e.g. glutathione transferases, glucuronyl

transferases and sulphotransferases (Ge1boin, 1980).



/>lanifestation of cellular toxicity in an organism is governed

by various factors including species, type of xenobiotic,

dose, levels of conjugating enzyml:!s, and type of MFO enzymes

involved (Gelboin, 1980).

It is quite clear that monooxygenases "activates"

molecular oxygen with one atom being incorporated into

the substrate and the other atom reduced in the form of

water (~lason, 1957). Detailed catalytic events mediated

by ~\FO are still ambiguous. There appears to be four common

phases involve:! in catalysis: (11 substrate binding, (2)

reduction of enzyme-substrate complexes by NADPH cytochrome

P-450 reductase, (3) oxygen activation and (4) oxygen atom

transfer (Ahmad, 1979). The substrate molecule combines

with the oxidized ferric form of cyctochrome (Fe+3) and

the complex undergoes reduction to the ferrous form (Fe+2l,

which interacts with oxygen in such a way that the

hydroxylated substrate and a molecule of water leave the

now re-oxidized cyctochrome P-450 (Estabrook et a1., 1971).

The sequential events of cytochrome P-450 mediated metabolism

of benzo[aJpyrene are schematically depict~d in Figure

1.2. The complex nature of MFO enzyme reactions is obvious

when one considers that, depending on the substrate, all

the reaction steps except possibly the association of

substrate and enzyme, could be rate-limiting (Bjorkhem,

1977). However, in many hydroxylation reactions either



Figure 1.2: oxidative IIletilbolislI of benzo[a)pyrene.

(Adapted from Lee. 1981.)
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of the electron transfer steps appear to regula,ce the rate

of reaction (Bjorkhem, 1977).

A number of different cyctochrOllle P-450 hemoproteins

have been detected in rat tissues {Wolf et al., 19861,

an~ this may account for the broad substrate F:-""::!cificities

0", the MFO enzyme system. The enzyme system is unique

in that increased levels as well as variant forms are

commonly found in the tissues of animals exposed to chemicals

referred to as "inducing" compounds (Snyder and Remmer,

1979). Early studies on hepatic enzyme induction by Brown

et a1. (1954) revealed that the rate at which rat or mouse

liver preparations de-methylated the hepatocarcinogen,

3-methyl-4-monol1lethylaminoazobenzene (3-methyl MAS) ,

dependent upon the diet fed to the. animals. Brown et a1­

(1954) eventually attributed the increased rate of catalysis

to polycyclic aromatic hydrocarbons (PAH I s I lik~

)-methylcholanthrene I)-MC) present in the ar.imal feed.

At about the same time, Conney et a1. (l956) presented

evidence indicating that the increased rate of de-methylation

was a result of de novo synthesis of new enzyme rather

than the activation of nascent enzyme. The level of response

depends upon the type of inducers, species, age, sex,

and physiological state of the animal including reproductive

and nutritional status (Vessel, 1982).



In depth study of two forms of purified cytochrome

P-450 hemoproteins (Lu and West, 1980) demonetrated that

they possess different spectral properties along with

differing affinities for certain types of inducers.

Phenobarbital administered to rats resulted in the

proliferation of hepatic cytochrome P-450 monooxygenases

possessing a Soret band at 450 nm (Orrenius and Ernster,

1964). Omura and Sa to (1962) first coined the term

"cytochrome P-450" upon observing this unique spectral

band in microsomes bubbled with carbon monoxide and further

reduced with sodium di thioni te. Aromatic hydrocarbons

like 3-MC and e-napthoflavone (BNF) induce cytochromes

with a Soret band at 448 nm tOrrenius and Ernster, 1964).

Recently another form of cytochrome P-448 from the liver

of 3-MC pretreated rats has been purified and characterized

(Seidel and Shires, 1986), further demonstrating the

multiplicity of the cytochrome P-450 monooxygenases. Even

though the cytochrome P-450 system possesses biological

Ubiquity and displays the capacity to metabolize a wide

range of chemicals, selectivi ty towards some substrates

may be enhanced.

1. 2 Mixed Function Oxygenase in Fish

Metabolism of PAH's and barbiturates to oxidised

derivatives has been studied in mammals since the 1940's.

Subsequent characterization of the enzymes responsible
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for oxidation led to the discovery of the cytochrome

P-450dependent mixed function oxygenase system. Until

the late 1960's research on drug metabolism in aquatic

organisms was limited, probably in part to the premise

that "ocean dwelling" species could simply remove toxic

materials via passive diffusion processes. Contrary to

such a belief, Adamson (1967) reported that many lipophilic

compounds are relatively impermeal:-le to fish gills compared

to other membranes. Evidence was subsequently presented

demonstrating that marine and freshwater fish species are

quite efficient in transforming xenobiotics into water

soluble derivatives for easy excretion via rena 1 or biliary

(Dewaide and Henderson, 1968). The microsomal

fraction of trout liver was found to contain cytochrome

:';>-450 (Chan at a1., 1967). In fact, the xenobiotic

metabolizing system of aquatic organisms was observed to

have qualities similar to the complex marrunalian MFO system,

although the rates of oxidative metabolism were reported

to be slower in aquatic species (James et a1., 1977).

This early work invalved.J:.!!. vitro systems, but it is realized

now that fish are capable of many phase 1 and phase 2

reactions ..!.!l vivo (Table 1.1). Since many xenobiotics

to which fish are exposed are readily taken up and

sequestered in tissues like liver, blood, muscle, and brain

{Melancon and Lech, 1978) the necessity to metabolize

toxicants for easy excretion is apparent.



Table 1.1 Blotconsformatlon r:eactions demonstrated in viva by several (ish -..pecie••

Blotr:ansCarmation
reaction

Phaac 11

O-Oellikylotion

N-Dealkylatlon
oxidlltion

Hydr:olysis

Acetylation

Glutathione conjug•• tlon
Taurine "
Sui fate
Giucuronide

Glycine

Taken frolll Lech and Vodienik, 1984.

Spccicli

PlItho.tlli minnow
Rainbow truut

Carp
Mudsueker. seu! pi n
Cuha salmon
Rllinbow trou'
Carp
to: -aquila [ish
c .. tri!lh, blucgill
Rainbow trout
PillClsh
~'oli'luilo (ish
D~9fJ.h sh.. r:k
Rainbow trout
Carp
Flounder
Goldrlsh
Rainbow trout
Ril1nbow trout
Goldrish
Flounder

ChemiClIl

p-Nl t rophonyl ethers
I'cnt<:lch loroen isulo
Fenilhrolhioll
Dinitrnmillc
Nilphthlllcnc, bclH:ol D Ipyrene
N<lphthalene
~l('thylnaphthalene ~

Rotencno
Aldrin, dieldrin
2. 4-0ichlor:ophenoxyaCet ie aei 11 estcr
Dielhylhoxylphtha lote
~litlathlon

1".. raLhlon
Ethyl-Ill-ami nobenzODte
Et hy l-l'I\-am1 nobenzo,") te
Molinllto
2.4-Dichloropheno)tyllcetic .. cid
i'en toillcholorophcno I
Pentachlorophenol
]-Tr i r luoromet.hyl-4-ni trophenol
Pentachlorophenol
Ami nobenzoic acid
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Mammalian MFO and fish MFO have several characteristics

in Both systems are dependent upon molecular oxygen

and NADPH, a.nd the cytochrome P-450's exhibit most of the

same spectral patterns. The monooxygenase activity of

trout liver microsomes has been shown to be sensitive to

inhibition by carbon monoxide and responsive to mammalian

MFO modulators like a-naphthoflavone and metyrapone (Ahokas

et a1., 1977). As in mammals, 1'1FO enzyme activities are

highest in fish liver, arid other extrahepatic tissues

including kidney, gill, Q.. d heart have been shown to possess

xenobiotic metabolizing ability (Payne and May, 1979; Porter

et aI., 1986). The head kidney of teleost fish (attached

to the trunk kidney which is responsible for urine

production) see£.s analogous to the mammalian adrenal cortex

{Butler. 19731 which is known to be instrumental in steroid

and xenobiotic metabolism (Burke and Orrenius. 1979) .

The fish monooxygenase system also responds to a diversity

of subst.rates that may undergo biotransformation. Different

fish species display a wide variation in the rates of

xer."biotic metabolism (James and Bend, 19801 as do different

manunalian species. Mixed function oxygenases in fish are

also influenced by physiological and environmental factors

including age, sex, diet, gonadal maturity, ambient

temperature, seasonal changes, developmental stage, and

exposure to inducers!inhibitors (Walton et al.. 1978;

Stegeman and Chevion, 1980; Addison and Willis, 1982; Walton
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et a1., 1983; Binder and Stegeman, 1984; Andersson and

Koivusaari, 1985).

Most hepatic monooxygenase 3ctivities are higher in

male rats than in female rats ',Shapiro, 1986). Fish species

also appear to exhibit sexual dimorphism in MFO m~tabolizing

ability, generally with higher activit.ies in males versus

females. Sex differences llave been reported in the specific

content of cytochrome P-450 in hepatic and renal microsomes

from adult rainbow trout (Salma qairdneri) a~,d brook trout

(Salvelinus fontinalisl (Stegeman and Chevion, 1980).

Kidney microsomes from mature male trout showed a 20-fold

higher cytoc.nrome c reductase activity, as well as faster

hydroxylation rates of vario"5 substrates including

progesterone and aflatoxin 81 compared to females (Williams

et al., 1986). The same study, however, showed no

significant sex differences in benzolalpyrene hydroxylase

or benzphetamine N-demethylase activities (Williams et

al., 1986), and sex differences in cytochrome P-450 content

and associated MFO activities were less pronouncea -lith

liver microsomes compared to kidney microsomes . Other

investigators have shown that sex-related changes in

monooxygenase activities during certain st<:.-,l ....= of gonad

maturation/spawning of fish also dependent on the

substrates used to assay the activity. Hepatic MFQ

activities measured in rainbow trout usin'1 benzo[aJpyrene,
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7-ethOXYCOUffiarin, aminopyrene, and ethylmorphine

substrates were significantly higher in males than in females

during the pre-spawning period, yet 7-ethoxyresorufin

(Koivusaari et al., 1984). In the rat,

dee thy lase activi ty displayed such difference:

differences

have been shown to be regulated through the

hypothalamo-pituitary axis (Gustafsson et al .• 1983) and

growth hormone (sornatotrophin) secretory patterns

important for the s~:'(\lal dimorphism seen in this species.

Androgen "impril"ting" during neonatal life is postulated

to play an important role in producing MFO activities

observed c:..., ring the adult stage of the rat (Gustafsson

et a1., 1903). Neonatal gonadectomy and androgen exposure

studies -eveal the existence of sex-specific cytochrome

P-450s in the rat (Dannan et al., 1986), however, we know

little of the underlying mechanisms. Gonadal steroids

(estradiols and testosterones) may play an important role

in regulating observed sex differences in MFO activity

of fish (Stegeman and Chevion, 198:'}.

Habitat temperature appears to influence the time

course and intensity of the int!uction process in fish

(Andersson and Koivusaari, 1985). Constitutive levels

of MFa activity in isolated liver cells of rainbow trout

affectei by temperature changes (Andersson and

Roi vusaari, 1986). The enzymes ethoxycoumarin O-deethy1ase
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and benzo(a)pyrene hydroxylase were higher in liver cells

from cold acclimated trout than those from warm acclimated

fish at all assay temperatures used (Andersson and

!<o~.vusaari, 1986). Hepatic MFQ of bluegill (Lepomis

llklcrochirus r.) displayed temperature compensation (Ankley

et a1.. 1985), since fish acclimated to cool water (12°c)

hydroxylate benzo[a}pyrene more rapiuly than fish kept

at temperature (32°c). This compensatory response

is important for poikilotherms which live in an environment

with large temperature fluctuations.

1.3 Mixed Function Oxygenase Induction: A Useful 9iological

Monitor for organic Pollution in the Aguatic Environment

During the early 1970' 5 more intensive studies on

xenobiotic metabolism in fish and other aqua':.ic species

began to appear. Investigations were also lIloJre related

to environmental health int.erests than in previous years

(reviewed by Payne, 1984). l-Uxed function oxygenase

induction was proposed (Payne and Penrose, 1975) as a

sensitive biological monitor of environmental pollutants.

particularly oil contamination. Elevated M:E'O enzyme levels

in fish have been shown in a number of field trials over

the past decade to be related to hydrocarbon pollution

in the aquatic environment (Figure 1.3). Field studies

carried out in the early 1970's in Newfoundland demonstrated

that brown trout (Salmo truttal captured from a small urban



Figure 1.3: Mixed function oxygenase trials in fish in
association with petroleum hydrocarbon pol­
lution.

(Units are relative enzyme activities for
liver tissues in all cases. Low tower =
control site; high tower = experimental
site.)

(Adapted from Payne et al., ~ 987. )
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lake in St. John's with a history of hydrocarbon pollution

exhibited elevated benzoia }pyrene hydroxylase levels in

liver tissues (Payne and Penrose, 19751. Other field studies

were also successful in demonstrating the association between

petroleum hydrocarbon exposure and increased MFO enzyme

levels in fish species. Cunners (Tauto901abrus adspersus l

collected in the vicinity of a large oil refinery in

Placentia Bay, Newfoundland, had elevated MFO enzyme levels

in both liver and gill tissues compared to fish taken from

control sites (Payne, 1976). Likewise, a small boat marina

putatively contaminatec1 with petroleum hydrocarbons harbored

cunners with induced MFO enzyme levels (Payne. 1976) .

Blennies (Blennius ~l collected from a diesel oil spill

site in the Adriatic sea exhibited marked benzo[alpyrene

hydroxylase induction in liver tissues and the induction

was 1lI3intained for three weeks {Xure1ec et a1., 19771.

Another field trial in the Adriatic revealed b1ennies taken

from the site of a refinery outfall had highly induced

liver HFO enzyme levels (Britvic et al., 1983) relative

to control sites. Two species of· sanddabs (Citharicthys

sardidus and £. stiqmeus) and white perch (Phanerodon

furcatus) collected near a natural petroleum seep in the

Santa Barbara channel displayed increased benzo{a jpyrene

hydroxylase 1e\'~ls ("'pies et a1., 1980: Spies et a1., 1982).

Mummichogs (Fundulus heteroclitisl collected near the site

of an oil spill off the coast of Massachusetts were reported

to have elevated aldrin epoxidase (Burns, 1976) and
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(Stegeman, 1978) enzyme

activities. Since one would expect extremely low levels

of hydrocarbons or other chemicallo in the open ocean,

particularly interesting are the reports of elevated MFO

levels in various fish species including codfish !Gadus

morhua) collected near oil-rigs in the North Sea (Davie:;

et a1., 19841. A recent biomonitoring study was carried

out in Finland near the site of an oil spill in the Vassa

Archipelago (Lindstrom-Seppa et a1., 1985). Perch (Perea

fluviatilisl at this site were found to exhibit slightly

elevated benzolalpyrene hydroxylase enzyme act.tdties and

significantly induced glutathione S-transferase activities

compared to control sites. An important revelation from

this study was that glutatione S-transferase enzyme levels

were a moce powerful indicator of hydrocarbon exposure

than the MFO enzyme levels. Most of the earlier field

studies have focused on elevated liver MFO, but Payne et

al. (1984) reported elevated MFO enzyme levels in kidney

tissues of flounder (Pseudopleuronectes americanusl collected

at the site of a no. 2 fuel oil spill in Baie Verte,

Newfoundland.

Some workers have proposed that exposure to levels

of pollutants sufficient to disturb serum chemistry may

be applicable to monitoring programs (Lockhart and Metner,

19841. However, a study in Puget Sound (Casillas ct aI.,

1985) revealed that changes in serum chemistry (e.g. glucose
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levels, adrenaline) and gross pathology were comparable

in diagnosing presumptive polll.!tion mediated diseases

of English Sole (Parophrys vetulu$ 1. Contaminant levels

sufficient to produce gross pathological damage (primary

effect) ma',e measurement of changes in bioch~m~cal parameters

like serum ions, sugars, cortisol, or adrenaline (secondary

effects) redundant in the sense of providing an early warning

system. Mixed function oxygenase enzyme induction is.

in essence, a primary detoxification response and, in the

case of exposure to potent inducers such as petroleum

hydrocarbons. enzyme change can be expected to occur before

the onset of more serious pathological change. A recent

field study carried out in finland (Nikunen, 1985) cataloging

the differences in 25 biochemical variables of rdinbow

trout held in cages near a reference site compared to a

water waste discharge site from a petrochemical complex,

showed significant differences between only two of the

parameters: increases in activity of the detoxification

enzymes, MFO and glucuronyltransferase of fish near the

chemically polluted site compared to the control s'

An A' tempt to interpret biochemical l:esponses in terms

of Whole-organism or population effects might be optimistic

at present, but it is not unreasonable to want to do so.

However, from a regulatory environmental perspective,

one of the primary values of such a sensitive response
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as MFO induction is its value as indicator in defining

boundary limits for point sources of pollution e.g. around

oil-rigs or major spill sites. Also in relation t.o mixed

organic pollution, studies in the Great Lakes and Europe

(Figure 1.41, have demonstrated the potential to discriminate

water quality over broad geographical regions by using

the MFO induction response. Although it is quite reasonable

to state that chemical analysis is a more efficient means

of quantitatively and qualitatively defining water quality,

it lacks biological significance and is time consuming

and expensive. Kurelec et al. (1982) stated "the use of

MFO as a monitoring tool would help fill the gap which

usually exists between the estimated concentration of

xenobiotiC5 in water and corresponding biological effects."

1.4 Phase 2 Detoxification: Glutathione S-Transferase

Xenobiotics catalyzed by MFO enzymes produce electro­

philic products that are often conjugated with endogenous

substances such as sugars, amino acids, sulphate, phos:>hate

or a tripeptide referred to as glutathione (Brattsten,

1979). Gluta"hione (GSH), gamma-gl tamylcysteinylglycine,

I;·ossesses a nucleophilic thiol moiety, the cysteinyl residue,

which combines with highly reactive electrophiles and other

oxidative products of MFO enzymatic reactions (Ketterer

et al., 1983). The negative charge and high hydrophilicity

of GSH greatly increases the aqueous solubility of lipophilic



Figure 1.4: Mixed function oxygenase trials in fish
in association with mixed organic pol­
lution.

(Units are relative enzyme activities for
liver tissues in all cases. Low tower :0

control site; high tower :0 experimental
site. )

(Adapted from Payne et a1., 1987.)
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compounds that conjugate with GSH, enhancing biliary

excretion {Ketterer et a1., 1983) or the GSH conjugates

further metabolized to form mercapturic acids which

excreted in the urine (Fukami, 1984). Enzymatic

catalysis is involved in many GSH conjugation reactions

and executed by a group of enzymes referred to as the

glutathione S-transferases (GST) which primarily

cytosolic (Fukami, 1984). microsomal glutathione

S-transferase has also been characterized (Boyer et a!.,

1986). Figure 1.5 show the conjugation of some substrates

catalysed by glutathione S-transferases.

Since conjugation is preceded by oxidation reactions

mediated by the MFO ~nzyme system, the former is sometimes

considered a secondary detoxification process while the

latter is a primary detoxification process (Fukami, 1984).

This does not lessen the importance of the GSH

S-transferases. Substrates like some insecticides

detoxified primarily by the GSH conjugation pathway rather

than by the MFO enzyme system (Fukami, 1984). Furthermore,

the MFO enzyme. system may produce both toxic aud nontoxic

metabolites whereas the GSH S-transferases are primarily

involved in detoxification. The enhancement of GSH

S-transferase activity in the forestomach of mice by

compounds including benzyl isothiocyanate, p-methoxynitro­

phenol, coumarin and 2-tert-butyl-4-hydroxyanisole (2-BHA)



Figure 1.5: Conjugation reactions catalyzed by glutathione
S-transferase

(Adapted from Fukami, 1984.1
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significantly reduced benzo{alpyrene induced neoplasia

in that organ (Sparnins et a1., 19821. However, in some

instances the G5H conjugation process ha~ been reported

to activate xenobiotics like alkylnitr':lsoguanidines,

dihalo:nethanes. and the antinecj?lastic agent, bleomycin.

to mutagenic and/or carcinogenic derivatives (Igwe, 1986).

Glutathione conjugation has been demonstrated to occur

in a variety of species including mammals, fish, birds,

amphibians, insects and other invertebrates (Boyland and

Chasseaud, 1969). Five G5ft S-transferases have been isolated

. from rat liver and they display a wide range of catalytic

activity - it is hypothesized that a ycneral mechanis1!\

of catalysis exists for the isoenzymes which involves a

nucleophilic attack of enzyme-bound GSH on the electrophilic

center of the xenobiotic (Keen et ai., 19761. Similar

to the MPO system, GSH S-transferases show a broad

overlapping substrate specificity (Habig and Jakoby, 1981).

The majority of research on the GSH S-transferases

have been performed using rat liver cytosol, but extrahepatic

tissues as well as other species have also been employed

(Habig et al., 1974). Five cytosolic GSH S-transferases

have been isolated from the liver of the male little skate,

~ erinacea (Poureman and Bend, 1984). Glutathione
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S-trans£erase activity has also been demonstrated in black

sea bass (Centropristis striata) liver, kidney, brain,

muscle and reel blood cells (Braddon et al., 1985).

Glutathione S-transferases, like UFO enzymes, exhibit

the highest act1.vities in mammalian and fish liver tissues

relative to other organs (Jakoby, 1978; Braddon et a1.,

1985). Intracellular GSH concentrations in tde rat liver

as high as 5-10 rnf.l (Kosower and Kosower, 1978) with

GSH S-transferase concentrations as high as 0.2 mM (Ketterer

et a1., 1983). Liver biotransformation enzyme activities

are generally higher in mammals than aquatic species.

However. I..hole Odonata larva were found to exhibit Gsa

S-transferase activities 6 times that of rat liver (DierickK

and De Brabander, 1984).

Many factors that influence MFO enzyme activities

in fish may also affect GSH S-transferasef". Xenobiotics

such as PCB's, BNF, and PAR's have been shown to induce

liver GSH S-transferases in fish (Ankley et al., 1986;

Andersson et al., 1985b; Lindstrom-Seppa et al., 1985);

although others claim that various MFO-type inducers have

no enhancing affect on GSH 5-transferase activities (Bend

and James, 1978; Fair, 1986). The effects of other factors

like environmental temperature and starvation on various

MFO related activities and UDP glucorony1transferase
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activities (conjugating enzyme) have been thoroughly

characterized (Andersson et al., 1985a; Andersson and

Kaivusaari, 1986). however, little information is available

about these effects on the GSII S-transferases. This study

investigated the potential for GST induction in various

tissues of cunners exposed to petroleum hydrocarbons during

the critical stages of gonad maturation/spawning.
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2. MATERIALS AND METHODS

2.1~

All reagents used in these studies were of standard

chemical grade obtained from various suppliers. Other

chemicals are listed below:

ethoxyreso-ufin: Pierce Chemical Co., Rockford, Illinois.

resorufin:

diesel oil:

Eastman-Kodak Ltd., Rochester, New York.

Texaco (local).

glutathione (reduced form): Sigma Chemical CO .• St. Louis,

Missouri .

l-cho!oro-2, 4-dinitrobenzene: Sigma Chemical Co. , St.

Louis, Missouri

naphthalene, fluorene, phenanthrene, pyrene, benzo [a jpyrene:

Supelco Ltd., Oakville, Ontario.

hexane (HPLC grade): Fisher Sciem.ific, Montreal, Quebec.

methyl-tert-butyl-ether (HPLC grade): BOH, Dartmouth,

Nova Scotia.

2.2 Fish Collection

Male and fema Ie (Tautogolabrus adspersus)

were caught using a hoop net and/or gill net from a relative­

ly pristine area of Portugal Cove during the sumroer of

1985. The fish ranged in weight from 100-300 9 and were

collected during three periods of gonad maturation/spawning

based on gonad indices and according to Pottle and Green

(1976) :
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(I) prespawning (June 25th, 26th, 27th)

(2) early spawning (July 16th, 17th, 19th)

(3) late spawning (August 4th).

2.3 Exposure System

After the fish

in 52 L containers. they

transported to the laboratory

acclimated for 1-2 weeks

in 2000 L holding tanks. This was followed by exposure

to no. 2 fuel oil (diesel oill in a flow-through sea water

tank maintained at ambient temperature (Prespawn temperature

'" Soc, early spawn temperature" 12 c Ci late spawn temperature

13°C). The exposure consisted of introducing 200 rol

of oil into a head tank (25 Ll and mixing it with a constant

stream of seawater sprayed onto the surface of the head

tank {Kiceniuk et. a1.,1982}. Seawater containing the

oil was then drawn from the bottom of the tank into the

experimental tank (200 L, flow rate'" 2 L/minl. This type

of exposure set-up allows for a pulse delivery of diesel

oil. Refer to Figure A.-I of the Appendix for experimental

design.

A control tank was set up next to the experimental

tank and received the same manipulations except for chemical

ex.posure. Oue to the difficulty in sexing cunners, each

tank contained 35-40 fish to provide sufficient numbers

of each sex for appropriate statistical analysis. The

ex.perimental fish received two equivalent exposure doses,
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200 rol of diesel, 45 h apart. Hourly water samples were

taken from each tank throughout the duration of the

experiment, in such a way as not to disturb the oil sheen

on the surface water of the experimental tank.

2.4 oil l\nalysis in Water

Each water sample was subjected to a modified version

of the fluorimetric method of Keizer and Gordon 119B)

for determination of total oil concentration. The control

and experimental tanks each had a glass tube (1 em diameter;

1 m length) immersed approximately 20 em below the water

surface for withdrawing samples into 300 ml glass BOD

sampling bottles. Each seawater sample was extracted with

100 rol of spectroanalyzed hexane in alL separatory funnel.

The hexane extract of both control and experimental tanks

analyzed by fluorescence sp~ctroscopy (308

excitation/344 nm emission) for the presence of mono- and

polyaromatic hydrocarbons. A standard curve was constructed

by spiking hexane with diesel oil (Figure A.2).

2.5 I'reparation of S9 Fractions from Liver. Kidney, Gill

and l3e<'lrt

Fish were killed (90 hr following first diesel exposure)

with a blow to the head and the hepatic and extra-hepatic

organs were removed immediately. Necropsy data (organ

weights I body weight, length I sex) were recorded. The

bile duct was clamped with a haemostat and the liver and
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other tissues of the fish were excised, weighed, and placed

on ice. All organs were minced with scissors and

approximately 1 9 of each was homogeni2ed in 4 volumes

of ice-cold 50 roM Tris-HCL. {pH 7.5) using ten passes of

a glass Ten Brock hand homogenizer. The 59 supernatant

was obtained by removing cell debris by centrifugation

at 4°C for 10 min at YOaa x g. The 59 fraction of each

sample was stored in triplicate in polyproplyler.e Eppendorf

micro test-tubes at -BO°C.

2.6 Protein Determination

Protein W.;l.S dt!termined by the procedure of Lowry et

a1. (1951), using a Perkin-Elmer UV-Visible scanning

spectrophotometer. Lowry reagent consisted of 20 9 Na2C03

(anhydrous) and 4 9 NaOH dissolved in 950 ml of distilled

water and diluted to 1 L. Five ml of a solution consisting

of 1 rol of 1% CuS04, 1 ml of 2% Na-K tartate and 100 ml

of Lowry reagent was added to 500 lJl of 59 suspension (10-20

lJl af 59 to 480-490 lJl of distilled water). Various

concentrations of bovine serum albumin (E5A) ranging from

50 IJg/m1 to 400 IJg/rnl were used as standards. Distilled

water {500 1J1) served as a blank. After a 10 min incubation

periou at room temperature, 500 1J1 of 1 N Folin-Ciocalteu

reagent was added to the mixture. The mixture

immediately vortexed and incubated for 30 min at

temperature. The absorbance was read at 620 A linear
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stant.ard curve for protein concentration versus absorbance

was produced from the BSA standards and used to calculate

S9 protein concentrations in mq/ml and mg/g organ.

2.7 Total Lipid Determination

Total lipids were measured gravimetrically after

extraction by the method of Bligh ~nd Dyer (1959). Liver

S9 fractions were removed from the -80"C freezer and thawed.

Approximately 2 ml of the S9 fraction was transferred to

a conical volumetric test tube and the volume recorded.

The S9 fraction was transferred to an Omn! mixer and blended

for 60 sec. with 10 l'Q1 of methanol :water (I; 1) . Thl;< mixture

blended for another 2 min after the addition of 20

ml of chloroform and then filtered. Filtration through

a Whatman 11 filter paper was followed by blending of the

filter paper with 10 ml of methanol:water (1:1) and 20

ml of chloroform. The blender was rinsed with 10 ml of

methanol:water (l:l) and 20 ml of chloroform followed by

filtration through a second filter paper. The total filtrate

was transferred to a 200 ml Erlenmeyer flask and 20 ml

of 0.88% potassium chloride was added. The mixture

allowed to settle for 10 min before the upper phase

discarded. A 30 ml solution of methanol :water (1: 1)

added to 115 ml of the filtrate, mixed thoroughly and the

solution Wi\S allowed to settle before the upper phase

discarded. This step was repeated twice. Two grams of
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ad<1ed to the flask which

swirled and allowed to stand for at least 30 min.

The solution was then filtered through glass wool into

a pre-weighed 250 ml roundbottom flask. The glass funnel

was washed three timE-s with chloroform and allowed to drain

into the flask. The filtrate was evaporated on a Brinkmann

rotary evaporator (4Z0C, -700 Torr) and the flask placed

in a dessiccator overnight.

The flask was weighed after a 24 h period and the

lipid weight determined. The extract was taken up in 2

ml of HFLC grade hexane and filtered through a Millex SR

0.5 \.un PTFE filter. The filtrate was stored in an amber

vial with a Teflon lid at <1°C in preparation for HPLC

analysis.

2.8 polycyclic Aromatic Hydrocarbon (PAU) Analysis

Chromatographic hardware included a Beckman Model

110 liquid chromatograph and the fOllowing Perkin-Elmer

instrumentation:ISS-lOO Autoinjector and a Model 3600 Data

Station.

Chromatography was carried out on a Nucleosil NH2

column (5 \.1m, 5rnm id, 25 cm) with an injection volume of

145 \.11 for samples and 25 \11 for standards. The mobile

phase consisted of 100% hexane (Fisher HPLC grade) for
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14 min. followed by a column backflush of 90% hexane and

10\ methyl-t-butyl-ether (Fisher HPLC grade). The solvent

flow rate was 2 rol/min in the forward flow mode and 3 rol/min

on backf lush.

Benzene plus 5 groups of polycyclic aromatic hydro­

carbons (naphthalene r f iuorene, phenanthrene, pyrene and

benzo[a]pyrene) were used as external standards and peaks

were identified on the basis of retention times and

quantitated by peak height of the absorbance (254 om) of

the extracts wi th those of the standards.

2.9 Ethoxyresorufin O-deethylase Determination

The mixed function oxygenase system deethylates

7-ethoxyresorufin (7-ER) to produce resorufin. This

substrate is relatively specific for mammalian cytochrome

P-448 monoxygenases. Burke and Mayer (l974) developed

a fluorimetric assay which measures the increase in resorufin

formation as a linear increase in fluorescence.

Ethoxyresorufin O-deethylase (EROD) actiVity was assa;{ed

fluorimetrically as described by Pohl and Fouts (1980)

using a Perkin-Elmer LS-5 fluorescence spectrophotometer.

The reaction mixture, final volume 1.25 ml, consisted of

53 nmol Tris- Sucrose buffer (50 mM, pH 7.5), 50 J.Il S9

liver (100 J.I1 for the extra-hepatic organs a.\d the buffer
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volume adjusted accordingly), 2.25 ornol 7-ER (150 11M) and

the reaction mixture was started by addition of 0.16 mg

NADPH (1.25 mg/mll. After a 15 min incubation at 2SoC

in a temperature controlled water bath, the reaction was

terminated by the addi tieD of 2.5 rol of ice-cold spectro-

analyzed methanol. A methanol blank contained the same

components as the sample tubes except the addition of

methanol to denature the protein occurred before the addition

of NADPH. Assay tubes were vortexed and the protein pre-

cipitate removed by centrification at 3600 x 9 for 2 min.

'l'he fluorescence of resorufin formed in the supernatants

was measured in a matched set of fluorimetric cuvettes

(1 em path length) at 585 om using an excitation wavelength

of 550 nm (slit width of 0.5 mm). Enzyme activi ty was

linear with time and protein concentration. The rate of

enzyme activity in nmol/min/mg protein was obtained fl..Jm

the regression of fluorescence against standArd

concentrations of resorufin. The level of sensitivity

of this assay was calculated to be 3 pmo1 product

formed/min/mg protein.

2.10 Glutathione S-transferase Determination

Glutathione transferase activit: assayed based

Habig et a1. (1974) by measuring the conjugation of

l-chloro-2, 4-dinitrobenzene (CONS) with glutathione (GSH)

as a change in absorbance.
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The reaction mixture was prepared in a spectrophotometer

cuvettE' with a total volume of 3 mL The reaction mixture

consisted of 2.875 rol of 0.1 roM potassium phosphate (pH

6.5), 60 lJl of 50 mM CONS and 50 \.ll of a 1/10 dilution

of liver S9 (100 :l1 of a 1/10 dilution of kidney S9 and

gill 59: 200 III of a 1/2 dilution of heart 59 and buffer

adjusted accordingly). The incubation carried

out at 25°C. 'l'he reaction W<l.S initiated by the addition

of 25 jJl of 1 roM GSH and the sample cuvette was read against

the reference cuvette (minus GSH and adjusted with buffer)

at a wavelength of 340 om in a dual-beam Perkin-Elmer UV

Vis· .... Ie scanning spectrophotometer (model 571). The change

in absorbance was monitored on a chart recorder for a period

of 3 min. The specific activity was expressed as ~g CONS-GSa

conjugate formed/min/mg protein based on the extinction

coefficient of 9.6 rnM/cm. All enzyme assays were linear

with time and protein concentration.

2.11 Statistical Methods

Analysis of variance (ANOVA) was applied to determine

significant relationships between sex, treatment, and sample

period and their interactions on enzyme activities. Duncan's

multiple range test, which compares all possible pairs

of means. was used to determine wtlich means '/Jere different.

Means of data sets were considered to differ significantly

from each other if p<O.05 for the F-value. All data points
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in the tables and figures represent +/- standard

(S.E.Mo.l. Univariate analysis was applied to

determine distribution patterns. Correlations were computed

using the Spearman ranked correlation method. All

statistical analysis were carried out using SAS Statist­

ical programs.



4.
3. RESULTS

univariate analysis of the hepatic and extrahepatic

ethoxyresoruf in O-deethylase (EROD) and glutathione

S-transferase (GST) sp2cific activities revealed the absence

of a normal distribution. Therefore, the data were ranked

for the purpose of meaningful statistical analysis. Many

investigators carrying out biochemical studies do not perform

univariate analysis on their data, i.e. they

normality. However, this assumption in most casl2!s will

be invalid. To illustrate the pitfalls that may be

encountered when interpreting toxicological data (or any

experimental data set), an example is presented in the

Appendix. Table 11..1 shows the differences in p-values

generated from three-way ANQVA of non-normal data (liver

EROD) that have and have not been ranked.

3.1 Ethoxyresorufin o-deethylase (BReD) Induction

A laboratory study was conducted to measure the effect

of petroleL.n hydrocarbon exposure on EROD in

(Taut..ogolabrus adspersus) during the critical period of

gonad maturation/spawning. The exposure system (Figure

A.l of the Appendix) delivered a pulse of diesel oil with

concentration of 50 \Jg/ml (SO ppm), calculated from

the standard curve depicted in Figure A..2 of the Appendix.

A representative concentration curve of diesel oil in t.he
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tank water during the experimental trials is presented

in Figure A.3. A relatively high concentration of diesel

oil was used in order to decrease the variability of oil

concentrations in water (which is difficult to attain with

low concentrations of oil) during the various exposure

periods.

Figures 3.1-3.8 show EROD specific activities in liver,

kidney, gill and heart of cunners throughout the reproductive

Results indicate EROO in hepatic and extrahepatic

tissues of diesel exposed cunners were significantly higho::.t"

relative to the control cunners during prespawning, early

spawning and late spawning. Ethoxyresorufin Q-deethylase

specific activities of diesel exposed cunners were 4-6

fold higher in the liver, 4-1 fold higher in the kidney,

2-5 fold higher in the gill, and 7-18 fold higher in the

heart than enzyme activities of contral cunners. The EROD

induction potential of each organ is tabulated in Table

3.1.

3.2 Sex Differences in Ethoxyresorufin O-deethylase (EROD)

The generation af p-values by one-way ANOVA for t.he

determination of sex differences in the ability of cunners

to deethylate 7-ethoxyresorufin are shown in Table 3.2.

Sex differences in gill and heart EROD were not significant

throughout the reproductive season. However, induction



Figure ;.1 : Mole liver EROD specific activity (nmol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.2 :Female liver EROD specific activity (nmal/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.3 : Mole kidney ERGD specific activity (nmal/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.4 : Female kidney EROD specific activity (nmol/m;n/mg protein)
of control and diesel exposed cunners.

~ 0.
041 N-12

D:IESEL

~ 0.03
Y

~ 0.02

g I CONTROL
N-12

0.01

0.00
1 PAESPAWN

N-~2

N--12

EARLY SPAWN

.~.t1I11t1cel1y significant (p<O.O~).

N-12

N-12

LATE SPAWN

~



Figure 3.5 : Male gill EROD specific activity (nmol/min/mg protein)
of control and diesel exposed cunners.

0.06

0.0'

~

N-11N-12

CONTROL

N-12

0.04
G
I

t O.OJ

E 0~ 0.02L DIESEL 0
o N-11

0.01

N-9 N-i2

LATE SPAWNEARLV SPAWN

o.oo ..\-, - __- ~ ~---~-------~--~

1 PRESPAWN

etet1et1ce11y e1gn1ficent. (p<o.oe).



Figure 3.6 : Female gill EROD specific activity (nmal/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.7 : Mole heart EROD specific activity (nmol/min/mg protein)
of control and diesel exposed cunners.

0.06

0.05

H 0.04
E
A
R O.OJ
T

E
R 0.02
a
o

1'1-12

CONTROL

N-12 N-11

to;

0.01

N-9 N-11 N-12

LATE SPAWNEARLY SPAWN

o.oo~ :
, PAESPAWN

etlllltletlcelly significant (p<O.O!5).



Figure 3.8 : Female heart EROD specific activity (nmol/min/mg protein)
of control and diesel exposed cunners.
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'fable 3.1: Bthoxyresorufin o-deethylase (EROD) induction
factors of cunners exposed to diesel oil.

Male Cunners E'elll41e Cunners

Liver Kidney Gill Heart Ll.ver Kidney Gill 1l~lIrt

Prespawn

Early spawn

Late spawn

18

l2

l'

II

l6

Induction factor = mean tROD specific activities
of oil exposed cunners
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Table 3.2; Level of siqnificance of sex differences in
EROD specific activities of cunners.

Sample Treatment Organ

Liver Kidney ~~

Prespawn control p<O.lQ23 p<O.Ol91 p<O.6952 p<O.9454
diesel p<O.OO46 p<O.0121 P<O.4919 p<O .2568

Early spawn control p<O.4843 p<O.1297 p<O.3HS p<O.1403
diesel p<O.2899 p<O.0367 p<O.371B p<O.7372

Late spawn control p<O.4073 p<O.OOOl p<O.1064 p<O.7367
diesel p<O.2473 p<O.0287 p<O.7889 p<O.0584



potential in heart (Table 3.11 was ,higher in males versus

females during prespawning (18 versus 13 foldl and late

spawning (12 versus 7 foldl. There were significant sex

differences in liver ERaD of cunners exposed to diesel

during early spawning. Significant sex differences in

kidney ERaD were observed within both control and treated

cunners throughout the reproductive season with the exception

of early spawning control cunners. In each case where

significant sex differences were evident, males always

displayed higher ERGO specific activities than females.

3.3 Seasonal Variability in Ethoxyresorufin O-deethylase

(EROD)

Control showe.:l significant variability

in liver, kidney, gill or heart ERaD (p<O.051 throughout

the reproductive season. Also, there was no significant

seasonal variability in hepatic or extrahepatic EROO specific

activities of diesel treated males. Induced females also

displayed negligable differences in EROD of kidney, gill

and heart, whereas liver EROD was significantly higher

during late spawning compared to prespawning and early

spawning.

3.4 Glutathione S-transferase (GST) Inducibility.

Figures 3.9-].16 depict the hepatic and extrahepatic

GST specific activities of control and diesel exposed cunnc.rs



Figure 3.9 : Male liver GST specific activity (umol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.10 : Female liver GST specific activity (umol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.11 : Male kidney GST specific activity (umol/;nin/mg protein)
of control and diesel exposed cunners.
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Figure 3.12 : Female kidney CST specific activity (umol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.13 : Male gill GST specific activity (umol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.14 : Female gill GST specific activity (umal/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.15 : Male heart GST specific activity (umol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.16 : Female heart GST specific activity (umol/min/mg protein)
of control and diesel exposed cunners.
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during the three experimental trials. Asterisks indicate

significant treatment differences in the enzyme activity.

Unlike EROD, GST was not induced in the fish exposed to

no. 2 fuel oil, There were some significant, but marginal,

differences between control and diesel exposed cunners.

However, no special trend was apparent enabling distinction

between GST specific activities of control and experimental

fish throughout the reproductive seasen.

3.5 Sex Differences in Glutathione S-transferase (CST)

Table 3.3 indicates the level of significance for

differences in GST specific activity.

significant differences were seen, these differences were

small and did not constitute a clear trend in any tissue.

The sex with the higher GST specific activities is shown

below the p-values generated by one-way ANOVA.

3.6 Seasonal variability in Glutathione S-transferase

Similar to EROD, seasonal variability in gill and

heart GST specific activities was not significant. The

only significant change was in kidney GST which was lower

in control males during early spawning relative to pre­

spawning and late spawning. Also, liver GST in control

and experimental females varied significantly throughout

the reproductive season with enzyme <:H:tivities lower during



Table3.3:
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Level of significance of sex differences in
GST specific activities of cunners.

Sample Treatment Organ

Liver_ Kidney ~~

Prespawn control p<O.0723 p<O.0150 p<O.3234 p<O.7455
(female)

diesel p<O.1649 p<O.159S p<O.5748 p<O.1558

Early spawn control p<O.OOI38 p<O.01l6 p<O.4891 p<O.OO87
(male) (male) (male)

diesel p<O.Oa03 p<O.0528 p<O.7044 p<O.6601
(male) (male)

Late spawn control p<O.OOOl p<O.OOll p<O.1728 )(0.6771
(male) (female)

diesel p<O.OOO3 p<O.0783 p<O.5191 p<O.6398
(male)
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late spawning relative to the two previous periods. Even

though differences in GST were statistically significant

in some cases, the absolute differences were quite small.

3.7 Polycyclic Aromatic Hydrocarbon (PAR) Levels in Cunner

Liver

The levels of unsubstituted PAH in liver tissues of

cunners duting the early spawning period arc listed in

Table 3.4. Naphthalene equivalents were higher than the

other PAH in both control and diesel expoeed fish. 'I'here

were no significant differences in PAH levels between male

control and experimental cunners. Experimental females

had 5igoi ficantly higher levels of naphthalene and fluorene

equivalents relative to control females. No other

signifiC3rl:. differences in PAH levels between treatments

were evident.

There were no significant sex differences in PAH levels

between experimental males and females. only one PAH,

fluorene, was fOl.:nd to be significantly higher in control

males relative to control females. Table 3.5 list p-values

for sex differences within control <Inc! diesel exposed



Table 3.4: Levels of PAD in cunner liver tissues during early spawning.

_________b-"PA"'H'--"u"'n'''t'''sL2/m'''9~11!l·p<:'"d _

~ Treatment Naphthalene Fluorene Phenanthrene~ Benzo[a)pyrene

~l. control a45.417.76 4.0.10.81 4.210.83 2.111.76 1.510.50
p<0.5501 p<O.9395 p<0.8519 p<0.6524 p<0.6232

::; diesel 63.5H4.68 3.810.75 3.9tO.84 2.9:t:1.87 1.410.73

fe_Ie control 33.215.48
p<0.0022

diesel 57.715.13

a means t S.E.

b 1 PAD unit = 1 jJg/1JI1 _ 1 ppra

2.01.10.20
p<O.0012
5.511.96

5.5t1.33
p<O.6384
6.3±l.59

0.310.34
p<O .1308
3.3t1.6

1.610.83
p<O.4227
O.4±0.19



Table 3.5: Level of significance of sex differences in PAH within control and
diesel exposed cunners during early spawning.

PAIi Eauivalents

Treatment Naphthalene Fluorene Phenz:nthrene Pyrene genzo(a lpvrcne

Control P<0.24'12 p<0.04BO p<0.B785 P<O.0961 p<O.4BI3

::: Diesel p<0.4836 p<0.4750 p<0.3959 p<O.H47 p<O .2930
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3.8 Correlations Between Enzyme Specific Activities and

Body Characteristics

Correlation coefficients (R-values) of enzyme-enzyme

interaction and enzyme-body characteristic interaction

for cunners during the reproductive season are presented

in Tables A. 2-A.13 of the Appendix. Ai though a number

of significant correlations are seen within each

group, no obvious trend was observed throughout gonad

maturation/spawning.
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4. DISCUSSION

4.1 Mixed Function Oxygenase (MFO) in the Cunner:

Induction, Sex Differences and Seasonal Variability

During Gonad Maturation/Spawning.

Pish an" known to display a mUltiplicity of cytochrome

P-450's (Elmamlouk et al. I 1977). Hepatic and extrahepatic

organs of fish are known to exhibit MFO enzyme activities

{Stegeman, 1980). Induct.ion in fish, however, appear to

be more limited to P-448 type inducers. Induce;:-s include

important environmental contaminants such as PAH I s, PCB I 5,

and complex petroleum products (Addison et a1., 1981; Payne

and Penrose, 1975; Walton et al., 1918). Field trials

have demonstrated the usefulnf"SS of t-1FO inJuction as an

indicatol" of early biological effects due to these pollutants

(reviewed by Payne, 1987). However, 1.hr~ liver may be

refractory to induction during the reproductive period

and studies were carried out to investigate the induction

potential of extrahepatic as well as hepatic tissues in

cunners during the summer reproductive period.

The cunner was a suitable test species for this

experiment because of its contracted gonad

maturation/spawning period relative to such species as

Atlantic cod ('fempleman, 1976) winter f launder



68

(Pleuronecte~ americanus) (Fletch~r and King, 1978). This

work successfully demonstrated the ability to resolve

ethoxyresoru£ in O-deethylase (ERGO) induction in liver,

kidney, gill, and heart tissues of cunners in all

experimental trials when exposed to diesel oil. Also,

constitutive levels of ERGO did not vary significantly

throughout the reproductive season in hepatic or extrahepatic

tissues. Sex differences in ERGO were obf:erved in liver

and kidney tissues during certain periCJds of gonad

maturation/spawning. In each case, males had higher EROD

specific activities than females.

Most investigations on the inducibility of MFO enzymes

in aquatic biota have focussed on fish liver (Addison,

1984). This may be a more practical organ for monitoring

since it h'ls been established as the major detoxification

tissue of animals. MallUllalian liver generally contains

the highest concentrations of enzymes involved in xenobiotic

metaboliBm (Bend and Singh, 1984), and preparation of liver

fractions are easier to ","ork with relative to extrahepatic

organs. However, besides elucidating the importance of

chemical metabolism in extriihep~tic organs from

toxicological perspective, it is essential to study the

potential use of biotransformation enzymes in other organs

as indices of environmental pollution. The results of

this thesis show EROD inducibility of kidney and gill tissues
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is comparable to liver. Furthermore, heart EROD induction

was even greater than liver throughout the reproductivp.

Previous investigations have provided evidence

that fish kidney has the capacity to execute cytochrome

P-450 mediated reactions (Lindstrom-seppa et al., 1981;

Stegeman et a1., 1984); other studies have revealed

comparable MFO activities in liver and kidney tissues

(Pesonen et a1., 1985). Furthermore, fi~ld studies have

shown the importance of measuring MFO in extrahepatic organs

as well as liver. Flounder (with ripe gonads) collected

at the site of an oil spill in Newfoundland in June exhibited

no induction potential in liver tissues but marked induction

in kidney tissues compared to reference sitE:!s (Payne et

al. I 1984). The potential for induction of MFO in gill

tissue was also demonstrated in fish collected near a

refinery outfall (Payne, 1976). The lc.w constitutive EROD

levels observed in heart tissues of the cunners in this

study may account for the excellent induction seen in this

tissue. Information on the xenobiotic metabolizing capacity

of fish heart is lacking, especially with respect to the

influence of reproductive status. Stegeman et al. (1982)

demonstrated that the cytochrome P-450 in the heart of

scup (~ chrysops) similar to

3-methylcholanthreM (P-448) inducible form found in rat

heart. Overall, the results of this study dernonstrilte
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well as hepatic MFO enzymes

in biological monitoring inclUding throughout the

reproductive period.

No significant variability in EROD specific i1ctivities

noted dur ing gonad ma turation/spawning. \~a I ton et

al. (1983) found large differencli!s in constitutive levels

and induction of liver MFO (aryl hydrocarbon hydroxylase)

female and male

maturati on/spawning

throughout the gonad

This earlier study, which

was restricted to analysis of liver ti5sues, indic<lted

that aryl hydrocnrbon hydroxyl<J.se (Mill) may not be a

sensitive indicator of exposure to petroleum hydrocarbons

during intense reproductive activity. It should be noted

that different "IFO enzyme activities (EROD vs AHH) were

evaluated 1n this stUdy. The 'noise' generated by the

reproductive cycle of cunners in the study conducted by

Walton et al. (1983) does suggest the use of AIIH, unlike

the EROD assay which was specially develofted for inducers

like l'AH's, should be scrutinized when used as a biological

moni tor (espcciilily it seems during reproduction).

No significant sex differences between control and

diesel ex[.'osed cunners were observc(: [or gill or hC<lrt

EHOD. lIow~v,-,r, till.) hL'':lrt l~HO[) illdul:t".,iotl !Jotcnti.;l1 o.~ I\I;:Ile

eUlln~n-> was hi yht.'l" thelll f em;l] L' eUllrh!n; duri I1q prcsp,1wn.iIH}
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and early spawning. No differenc~s in heart EROO induction

potenti'll were seen ..Juring late spawning, whereas sex dif­

(erences were observed in liver and kidney tissues. Within

diesel exposed cunners, early spawning males had higher

liver EROO specific activities compared to early spawning

females. Also, kidney EROO of both male control and male

diesel exposed cunners wore higher thiln famnies throughout

the reproductive season. The only exception in kidney

EROD sex differences '....as in cilrly spawning (control) cunners,

where no significant '>ex differences were noted. An

investigation concerned with natural variation in benzo­

la Ipyrene hydroxylation in flounder (Platichthys flasus)

revealed higher specific activities in liver tissues of

males versus females throughout the year, especially during

gonild milturation when MFO activity appcclred to be inhibited

in the females tTarlcbo et ill., 191:15). In. another study,

liver MFO (bcnzoia )pyrene, 7-cthoxycoum:trin, and

7-ethoxyresorufin as substrates) of the freshwater vendclce

(Coarcgonus albula) varied during the seasons with lowest

levels being detected prior to clnd cluring spawning, but

these levels were consistant1y higher in males rel<ltive

to females (Lindstrom-Seppi'l, 1985). Stegeman and Chevion

(1980) found <1 higher cytochrome P-450 content in m<1lc

brook trout and rainbow trout relative to fcmilles durino

sp.wning, yet bcnzol .. lpyrenc hyurollyli.lsc iJct;vity W<1S hiqhcl
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Different ratios of illH.lrogens have been found in the

plasma of both sexes of rainbow trout (Campbell et 31 .•

1980) and during prcspawning, females have higher concen-

trations of plasma cstr<ldiol-17-S levels (\~hitehead

et 031., 1978). Growing evidence supports the idea that

sex steroids may play a major role in regulating HFO

activities in fish species (Forlin ct. a1., 1984; Hansson

and Gustafsson, 1981). Furthermore, sex-specific cytochrome

P-450's have been isolated from rat liver (Dannan ct. aL.

1986). Circulating steroids anu sex specific cytochromes

P-450 may be postulated to help explain seasonal and

sex-linked differences in ~lFO en~ymes.

Analytical procedures have traditionally been an

intcqrill aspect of environmental monitoring programs.

Besides analytical determination of chemical concentrations

in the aquatic environment, it is also important to measure

tissue concentrations of l<enobiotics in targ'~t organisms.

Biological effects of chemicals are a manifestation of

biological concentrations environmental

concentrations (Tan and Singh. 1967). The importance of

measuring a sublethal response such as MFO induction, in

addition to chemical analysis, is clearly seen in this

thesis when the sensitivities of both approaches are

compared. Detcrmill.:ltion of totill PlIII levels in CUnllloJr

livet' uocs noL t';l!li ly ui!lcrilllil'<ltc b~·t\~C":1l control [i!;h



73

and diesel exposed fish. \.;hen EROD induction is used as

a sole indicator of petroleum exposure, control fish are

readily distinguished from diesel exposed fish. Thus,

incorporation of a biomoni tor such as HFO induction in

environmental monitoring programs is tin essential complement

to analytical methods.

In summary, EROD induction was readily resolved in

male and female cunners in both hepatic and extrahepatic

tissues throughout the reproductive season. Some sex-linked

differences were apparent in EROD of liver, kidney and

heart. These studies support the versatility of ~IFO enzyme

induction as a sensitive biological monitoring tool.

4.2. Glutathione S-transferase {GST} in the Cunner:

Induction, Sex Diffen'!nces, and Seasonal

Variability During Gonad Maturation/Spawning.

One major role of reduced glutathione (GSH) in mammals

is the direct conjugation of xenobiotics. Conjugation

may be spontaneous or achieved by <I group of cytosolic/

microsomal cpzymes known as glut<lthione S-transferases

(GST) (Igwe, 1986) found in ffi<lmmaliitn and non-mammaliitn

species (Horgenstern et <11., 19B41. In this study, the

potential [or GSH S-tr<1ns(cruse induction in cunners

.:Ilso investigiltcd during the (jull<ld lni:ltuY"iltion/spilwning

poriod.
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The results of this study indicate that male <lnci female

cunners are refr.:Jctory to GST induction when exposed to

No. 2 fuel oi 1 during the repcoductive season. It is

difficult relate these observations to other

investigations due to speci<.!s differences, physiological

differences and difflHing methodologies. Induction of

hepatic GSA S-transferase specific activity has been shown

to in exposed to PAR-type compounds.

Intraperitoneal injection of 3-methylcholanthrene

benzo[a]pyrene significantly induced GST activities in

fem.:l.le and male rats (Kaplowitz et al., 1975) with higher

enzyme activity being observed in males. Conflicting reports

in the literature on the inducibility of GST in fish species

appear to be due to species differences ... nd variations

of experimental protocol. \<Jinter flounder administered

I, 2, 3, 4-dibenzanthracene (DBA) or 5, 6-benzoflavone

(BNF) intraperitoneally displayed no significant induction

in hepatic GST activity over controls (Poureman et al.,

1983). In another stlldy, BNF treated rainbow trout e:thibited

significantly higher hepatic GST activity relative to control

fish (Andersson et al., 1965a).

No significant sex differences in GST were observed

in gill tissues. Heart GST of control male cunners were

significantly higher thun females during early spawning.

There were somn v,lriability .:1nd sex'Jal diCferences in GS'I"
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specific activity of liver und kidney tissues.

\~heTe sex differences were observed in liver and kidney

tissues, males generally had higher GST enzyme activities

than females. A number of investigations have been conducted

studying ~IFO sexual dimorphism in fish (Stegeman <lnd chevion,

U80; Koivusaari et a1., 1984; williams et 011.,1986),

jet c.nformation on sex differences in enzyme-catalyzed

conjugation is lacking. There are some reports

differences in mammalian GST. Examination of five strains

of mice indicated a ten-fold higher hepatic GST content

in males compared to females (Hatilyama et 011., 1986).

Kaplowitz et al. (1915) demonstrated higher hepatic GST

specific activities male rilts than female rats.

Testosterone has been shown to inf luence the levels of

GST in mouse liver (Hatayama at al., 1986) and this steroid

is postulated to be an importa.nt developmental regulator

of GST in mice. The postulated control of MFO in mammals

by androgen "imprinting" {Gustafsson et al., 19B3} may

also be important in the expression of sex-specific GST

in mammals and fish. Sex differences seen in kidney and

liver GST of cunners may be related to sex-specific enzymes

and circula tory steroids.

The relationship bl:!twcen the biological oxidation

of drugs/chemicals .:Imj subsequent conjug.:ltion in manlm<lls

implies th.:lt the hi!jhcr tho detoXifying/toxifying enzyme
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ratio the more protection afforded against xenobiotic

toxicity (Conney, 19B51. Several studies with Eis~ have

also supported this premise. Starry flounder appear to

have a lower incidc:oce of hepatocarcinoma than English

sole in of Puget Sound (Collier and Varanasi, 1986)

which are known to be heavily polluted with aromatic

hydrocarbons. Field studies have revealed that English

sale exhibit substantially higher levels of AHH (activation

enzyme) and lower levels of GST (deactivating enzyme)

activities than do the nonsusceptible starry flounder

(Collier and Varanasi, 1986), Another investigation with

the same two species showed higher increases in hepatic

DNA adduct formation in English sale compared to starry

flounder when exposed to equa 1 doses of benzo [a !pyrene

(Varanasi et al., 1987). Even though the cunners were

refractory to GST induction, the high MFO induction potential

implies that this species may be very susceptible to aquatic

pollutants, especially during the sensitive reproductive

stages. However, the results of this study suggests that

GST has little potential as a biomonitor for hydrocarbon

pollution.
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CONCLUSIONS

1. Mixed function oxygenase induction, measured

ethoxyresorufin O-deethylase (ERDD) was rc.:adily resolved

in hepatic and extrahepatic tiiisues of

throuqhout the reproducti ve season when exposed to

diesel oil.

2. Male ERQD was generally higher than female EROD in

hepatic and extrahepatic tissues throughout gonad

maturation/spawning.

3. Heart EROD had a higher induction potential than liver,

kidney and 9111 BRaD in cunners throughout the

reproductive season.

4. GST was not indllcible in hepatic or extrahepatic tissues

of cunners throughout gonad maturation/spawning.

S. Unlike EROD induction, which was observed in all tissues

at all sampling periods in fish exposed to petroleum,

GST was demonstrated to have little potential as a

biomonitor for hydrocilrbon pollution.

6. Except for a few .i.ncidental correlations among EROD,

GST and the body characteristics, no meaningful

relationships were apparent.
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APPENDIX



Figure A.I: Pulse deliv~'ry exposure system of
diesel oil to cunners.



SALT WATER

I~
HE'OUNK

2001111
DIESEL Oil

92

l5CUIiN£RS
200l SAlT w,UER I~



Pigure A.2: Standard curve of fluorescence
(excitation 308 MI, elllission 344 nm)
versus diesel oil concentration.
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Figure A.3: Diesel concentration in exposure tank during
early spawning trial.
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TABLE A.I:

Source

Sample

Treatment

97

Comparison of p-values of non-normal data
that have been ranked and non-ranked.

EROD specific activities

O.oaOl* O. 0001 0.0001 0.0001

0.5313 0.5741 0.31':60.3401

0.0001 0.0001 0.0001 0.0001

0.0001 O. 0001 O.QOOI 0.0

Sex 0.0471 0.0043 0.8565 0.7898

0.0200 0.0001 0.9212 0.5035

Sample x Treatment 0.0001 0.0001 0.0001 0.0001

0.8026 0.2381 0.8975 0.9035

Sample x Sex 0.0028 n.1730 0.40530.8189

0.1105 0.6278 0.1656 0.3464

Treatment x Sex 0.3696 0.0283 0.69090.4949

0.B068 0.8332 a.GorS 0.0371

Sample x Treatment K Sex 0.0024 0.2323 0.8572 0.8692

0.2589 0.7877 0.4860 0.8534

p-value

unranked

ranked



Table A.2;

EK

EL 0.04

EK

EG
Ell
CL
CK

ce

eco
eeo
eLSI
LTII

• p<O.05

Correlation coefficients amonl} enzyme activities and body
character.istics of control dlQle cunners during pro3pawnlng.

EG Ell CL CK ee CII cco ceo CLSI LT. NT

0.53 O.ltl 0.61 0.37 0.04 0.11 -0.07 0.20 0.38 0.15 0.27
-0.10 0.13 0.29 0.77· 0.16 0.71· 0.45 -0.55 -0.58 -0.45 -0.44

0.51 0.12 0.20 0.60 0.16 0.31 0.06 0.48 -0.13 -0.03
0.40 0.41 0.46 0.66 0.29 0.12 0.22 -0.60 -0.33

0.56 0.07 0.54 -0.12 -0.12 -0.17 -0.21 -0.10
0.56 0.79· 0.17 -0.30 -0.39 -0.52 -0.43

0.33 0.19 -0.22 -0.16 -0.54 -0.51
0.27 -0.71 -0.54 -0.38 -0.41

-0. )J -0.17 -0.6S- -0.68·
0.81- 0.26 0.47

0.42 0.~2 :::
0.9S·

EL- Liver Ethoxyresorufin O-Oecthylasc
EK- Kidney Ethoxyrcsorufin O-Deethylase
EG- Gill Ethoxyresorut'in O-Ocethylase
EH- lleart Ethoxyresorufin O-Oeet.hylase
GL- Liver Glut.athione S-Transferase
GK- Kidney Glutathione S-Transfera.se
GL- Cill Glut.at.hione S-Transferase
GL- lleart Glutathione S-Transferase

CGO- Gonad Index -
I IGonad/Weight-TI' I x 100

CCO- Condit.ion Index ­
(IWei9ht-TI)/llengthx3) J x 100

CLSI- Liver Somat.ic Index _
r I Liver/weight-TIll x 100

LTH- Lengt.h
WT- weight
TI- Gonad + Liver



Table A.3: Correlation coefficients among enzyme activities and body characteristics
of control male cunnen: during early spawning.

EK EG E. GL GK GG G. CGO ceo CLSI LT. WT

EL -0.09 -0.10 0.15 0.14* 0.18 -0.27 -0.73* -0.03 0.03 0.08 0.11 0.22
EK 0.08 0.04 -0.32 0.30 -0.18 -0.09 0.47 0.09 0.43 -0.07 -0.07
EG 0.45 -0.19 0.10 0.59 0.23 -0.26 -0.16 0.18 0.49 0.50
E. 0.17 0.002 0.33 -0.28 0.49 0.20 0.40 0.08 0.40
GL 0.03 -0.27 -0.28 -0.21 0.34 -0.05 -0.37 -0.22
GK 0.02 -0.09 -0.02 0.14 -0.50 -0.20 -0.18
GG -0.10 -0.16 -0.13 0.29 -0.27 0.24
G. -0.36 0.18 -0.27 -0.23 -0.27
CGO 0.42 0.54 -0.10 0.19 ::
CCO 0.11 -0.47 -0.14
CLSI 0.40 0.55
LT. 0.90*

* p<O.05

EL- Liver Ethoxyresorufin O-Oeethylase
EK- Kidney Ethoxyresorufin O-Oeethylase
EG- Gill Ethoxyresorufin O-Oeethylase
EH- Heart Ethoxyresorufin O-Deethylase
Ct- Liver Glutathione S-Transferase
GK- Kidney Glutathione S-Transferase
GL- Gill Glutathione S-Transferase
GL- Heart Glutathione S-Transferase

CGO- Gonad Index ­
{IGonad!Weight-'1'I)] x 100

CCO- Condition Index ..
(IWeight-'1'l l!(Lengthx3 l 1 x 100

CLSI- Liver Somatic Index ""
(Liver!Weight-TI) 1 x 100

LTH- Length
WT" weight
'1'1= Gonad + Liver



Table A.4; Correlation coefficients alnOng enzyme activities and body characteristics
of control male cunners during late spawning.

EK EG EB GL GK GG GB eGO ceo CLS.I LTB WT

EL 0.15 0.19 -0.22 0.35 -0.42 0.49 0.06 -0.22 0.01 -0.42 -0.20 -0.22
EK 0.71* -0.09 -0.07 0.07 -0.08 -0. 2~' 0.12 0.38 -0.15 0.49 0.54
EG -0.09 0.05 o.os 0.02 -0.27 0.22 0.11 0.02 0.43 0.34
EB -0.45 -0.07 -0.43 0.40 0.15 0.06 0.22 0.25 0.22
GL 0.12 0.50 0.05 -0.39 -0.56 -0.72* -0.26 -0.54
GK 0.21 0.21 -0.07 0.24 0.07 -0.22 -0.17
GG 0.14 -0.49 -0.18 -0.22 -0.70* -0.80*
GB 0.27 0.28 0.50 -0.70* -0.44

eGO 0.17 0.53 0.19 0.35
ceo 0.33 0.05 0.48
CLS.I -0.16 0.12 0

LTB 0.85*

'* p<0.05

EL- Liver Ethoxyresorufin O-Deethy1sse
EK- Kidney Ethoxyresorufin O-Oeethylase
EG- Gill Ethoxyresorufin O-Oeethylase
EH- Heart Ethoxyresorufin o-Oeethylase
GL= Liver Glutathione S-Transferase
GK- Kidney Glutathione S-Transfera.e
GL- G~. \1 Glutathione S-Transferase
GL- Heart Glutathione S-Transferase

eGo= Gonad Index =
[(Gonad/t'o'eight-Tlll x 100

ceo- Condition Index ­
[(Weight-Tll/(Lp.ngthx)l 1 x 100

CLS!= Liver Somatic Index =-
[(Liver/weight-TIl J x 100

LTH=- Length
WT= Weight
Tlco Gonad + Liver



Table A.5: Correlation coefficients aJlIong enzyme activities and body
characteristics of control female cunners during prespawning.

P.K BG EB GL GK 00 GB CGO CCO CLSI LTB >iT

EL 0.20 -0.04 0.46 -0.12 0.07 -0.25 0.14 0.25 -0.31 0.02 -0.03 0.06
EK -0.28 -0.54 0.16 0.52 -0.63'" -0.85· -0.34 0.56 -0.22 0.10 0.21
BG 0.41 0.10 -0.11 0.17 0.61 -0.15 0.06 0.01 -0.11 -0.22

EB 0.02 -0.45 0.23 0.68· 0.29 -0.19 o.OJ -0.02 0.09
GL 0.14 -0.67· -0.40 -0.06 0.34 0.20 O.OB 0.27
GK -0.39 -0.28 -0.04 0.29 -0.27 -0.28 -0.23

00 0.71- -0.02 -0.23 -0.10 -0.24 -0.45
GB 0.44 -0.44 0.51 -0.01 -0.11
CGO -0.42 0.74* -0.12 0.11

CCO -0.04 -0.18 0.01
CLSI 0.13 0.40
LTB 0.89* .....

'" p<O.05

EL- Liver EthoKyresorufin O-Oeethylase
EK= Kidney EthoKyresoruf in O-Oeethylase
EG= Gill Ethoxyresorufin O-Deethylase
EH=- Hellrt Ethoxyresorufin O-Oeethylase
GL'" Liver Glutathione S-Transferase
GK"" Kidney Glutathione S-Transferase
G1.- Gill Glutathione S-Transferase
GL" Heart Glutathione S-Transferase

CGO- Gonll.d Index ­
{(Gonad/Weight-Tl)) x 100

CCO- Condition Index ..
I (Weight-Tl )/(Lengthx3) 1 x 100

CLSI- Liver Somatic Index.
[(Liver/Weight-TI)) x 100

LTH- Length
WT- Weight
TI- Gonad + Liver



Table A.6: Correlation coefficients among enzyme activities and body
characteristics of control female cunners during early spawning.

EK EG En GL GK GG Gn CGO CCO CLSI LTD WT

EL 0.33 -0.23 0.16 0.01 -0.25 -0.01 0.31 -0.28 -0.04 0.10 0.55 0.41
EK 0.41 0.81- -0.02 0.28 0.61- 0.14 0.41 -0.20 0.34 0.46 0.40
EG 0.30 -0.21 0.04 0.39 -0.19 -0.05 -0.26 0.11 -0.16 -0.13
En 0.28 0.63- o.~o· 0.28 0.58- 0.05 0.48 0.68+ 0.68+
GL 0.1S- 0.06 0.10 -0.01 -0.32 0.09 0.11 0.07

GK 0.43 0.22 0.35 -0.25 0.16 0.20 0.21
GG -0.18 0.75- 0.17 0.70- 0.52 0.62-
Gn -0.16 0.04 -0.30 0.31 0.19

CGO 0.29 0.53 0.31 0.40 ~

0
CCO 0.58- 0.26 0.38
CLSI 0.33 0.46
LTB 0.97-

.. p<O.OS

EL= Liver Ethoxyresorufin O-Deethylase
EK- Kidney =:thoxyresorufin O-Oeethylase
EG- Gill Ethoxyresorufin O-Oeethylase
EH" Heart Ethoxyresorufin O-Deethylase
GL- Liver Glutathione S-TraJ'lsferase
GK- Kidney Glutathione S-Transferase
GL- Gill Gluta1:hione S-Transferase
GL"" Hearth Glutathione S-Transferase

CGO'" Gonad Index ""
[(Gonad/i~eight-Tl) 1 x 100

ceo- Condi ticn Index ­
[(Weight-Tl)/(Lengthx3) I x 100

CLSI'" Liver Somatic Index -
[(Liver/Neight-Tl) I x 100

LTH- Length
\'IT- Weight
Tl- Gonad + Liver



Table A. "I: Correlation coefficients among enzyme activities and body
characteristics of control female cunnors during late spa..,ning.

EL

EK
EG
EK

GL
GK

GG

GO
eGO

ceo
CLSI
LTD

EK

-0.003

KG

0.03
0.30

ED

-0.57*
-0.29
-0.47

GL

-0.19

0.17
-0.18

0.25

GK

-0.06

0.37
-0.28

0.25

0.39

GG

0.41
-0.27
-0.62*

0.24
0.05

-0.l.2

GO

-0.04

-0.01
0.07
0.06

0.22
0.16
0.20

CGO cco CLS:r

-0.47 -0.27 -0.75*
0.23 -0.16 0.43
0.03 -0.48 0.27
0.09 0.52 0.06

-0.34 0.45 0.15
-0.29 -0.12 -0.19

0.08 0.29 -0.43

0.14 -0.23 0.01
-0.14 0.67*

0.14

WT

-0.76* -0.82*
-0.14 -0.19
-0.14 -0.18

0.59* 0.59*
-0.005 0.03
-0.06 -0.19
-0.28 -0.24

-0.17 -0.21
0.46 0.50
0.14 0.31 l-'

0.49 0.59- ~
0.96'"

• p<O.05

EL- Liver Ethaxyresorufin O-Oeethylase
EK- Kidr.ey Ethoxyresorufin O-Oeethylase
EG- Gill Ethoxyresoru£in O-Oeethylase
EH'"' Heart Ethoxyresorufin O-Oeethylase
GL- Liver Glutathione S-Transferase
GK- Kidney Gl.utathione S-Transferaae
GL" Gill Glutathione S-Transferase
GL" Heart Glutathione S-Transferase

CGO- Gonad Index ..
[(Gonad/Weight-TIl J x 100

CCO- Condition Index -
I (Weight-Tl )/(Lengthx) 1 x 100

CLSI= Liver Somatic Index
I (Liver/toJeight-Tl)) x 100

LTH- Length
WT- !o'eight
Tl= Gonad + Liver



Table A.S: Correlation coe.f.ficients among enzyme activities and body
characteristics of diesel exposed male cunners during prespawning.

EK EG ED GL GK GG GH eGO

EL 0.~3 0.31 0.34 0.69* -0.~3 -0.28 -o.~~ -0.52
EE 0.39 0.24 0.27 0.72* -0.01 0.14 -0.43

EG -0.32 0.39 0.49 -0.32 il.15 -0.01

E. 0.34 0.005 0.12 -0.04 -0.27

GL -0.02 -0.21 0.11 -0.05

GK 0.32 0.50 -0.08
GG 0.~8 0.~7

G. 0.43

eGO
ceo
CLSI

LT•

.. p<O.05

ceo CLSI LTH WT

-0.13 -0.44 0.21 0.18
-0.22 -0.53 -0.19 -0.25

-0.17 -0.29 -0.39 -0.37
-0.07 -0.05 0.46 0.45

0.01 0.01 -0.26 -0.06

0.004 -0.15 -0.10 -0.11
0.49 0.24 0.03 0.16
0.37 0.37 -0.24 -0.14

0.20 -0.38 -0.52 -0.50
0.29 -0.26 0.29

-0.07 0.16 ....
0.77* 0

EL= Liver Ethoxyresorufin O-Oeethylase
EK'" Kidney Ethoxyresorufin O-Oeethylase
EG= Gill Ethoxyrcsorufin O-Deethylase
EH"" Heart Ethoxyresorufin O-Deethylase
GL= Liver Glutathione S-Transferase
GK"" Kidney Glutathione S-Transferase
GL= Gil.l Glutathions S-Transferase

GL= Heart Glutathione S-Transferase

eGo= Gonad Index =
I {Gonad/Weight-Tll] x 100

CCo- Condi ti.on Index ""
{(Weight-T1 J/{Lengthx311 X 100

CLSI= Liver Somatic Index =
{(Li.ver/Weight-Tl) I x 100

LTH= Length

WT= Weight
Tl'" Gonad + Liver



Table A.9:

EK

EL

EK

EG
EH

GL

GK
GG
GU

CGO
ceo
CLSI

LTH

* p<O.OS

Correlation coefficients among enzyme activities and body
characteristics 'Of diesel exposed male cunners during early spawning.

EG EH GL GK GG GH CGO CCO CLSI LTH WT

-0.l4 -0.22 -0.13 0.47 0.71'" 0 -0.34 -0.37 -0.74'" 0.24 0.26
-0.10 -0.02 -0.22 0.45 0.40 0.34 -0.42 -0.47 -0.85* 0.38 0_32-

0.21 0.41 0.55 0.07 -0.27 0.40 -0.09 0.42 0.27 -0.08
-0.28 0.003 0.26 -0.11 -0.46 0_007 -0.06 -0.47
-0.06 0.14 -0.21 0.18 -0.04 0.13 -0.22 -0.23

0.35 -0.15 0.14 0.14 -0.12 0.25 0.32
-0.27 -0.33 -0.45 -0.39 0.41 0.38

-0.42 -0.04 -0.42 0.31 0.34

0.16 0.74* -0.35 -0.40
0.38 -0.51 -0.08

-0.27 o. 78* ~

0.78*

EL= Liver Ethoxyresorufin O-Oeethylase
EI{= Kidney Ethoxyresorufin O-Deethylase
EG- Gill Ethoxyresorufin O-Oeethylase
EH'" Heart Etho~yresorufin O-Oeethylase

GL'" Liver Glutathione S-Transferase
GK"" Kidney Glutathione S-Transferase
GL- Gill Glutathione S-Transferase
GL= Heart Glutathione S-Trasferase

CGO= Gonad Index =
I (Gonad/Weight-TIl J x 100

Condition Index ­
(Weight-Tll/(Lengthx3) 1 x 100

CLSI= Liver Somatic Index =
(Liver/loJeight-Tl)] x 100

LTH- Length
liT::; Weight
Tl= Gonad + Liver



Table A.IO: Correlation coefficients among enzyme activities and body
characteristics of diesel exposed male cunners during late spawning.

EK

EL -0.11
EK

EG

E"
GL

GK
OG

G"

eGO
ceo
CLSI

LTH

• p<0.05

EG EH GL GK

0.67* -0.14 0.11 -0.20
-0.05 -0.13 0.48 0.62*

-0.41 0.08 -0.25
0.07 -0.02

0.69*

GG GH eGO ceo CLSI LTH WT

-0.33 0.25 0.16 0.35 0.55 -0.41 -0.34
-0.40 -0.15 -0.44 -0.61* -0.43 0.29 -0.22
-0.34 -0.10 0 0.24 0.22 -0.10 -0.03

-0.01 0.76* 0 -0.19 -0_03 0.19 0.13
0.21 -0.09 -0.57 -0.42 -0.38 0.30 -0.17

0.34 0.11 -0.79* -0.60· -0.74* 0.02 -0.50
-0.18 -0.37 0.14 -0.34 -0.30 -0.24

-0.12 0.02 -0.05 -0.25 -0.14

0.32 0.63· 0.18 0.60*

0.68* -0.64* -0.09
-0.30 0.04

0.77*
m

EL= Liver Ethoxyresorufin O-Deethylase
EK= Kidney Ethoxyresoruf in O-Deethylase
EG= Gill Ethoxyresorufin O-Oeethylase
EH= Heart Ethoxyresorufin O-Oeethylase
GL= Liver Glutathione S-Transferase
GK::: Kidney Glutathione S-Transferase
GL"" Gill Glutathione S-Transferase
GL'" Heart Glutathione S-Transferase

CGO::: Gonad Index =
[(Gonad/Weight-Tlli x 100

CCO" Condition Index =
[ (Weight-Tl J/ (Lengthx3) 1 x 100

CLSI:: Liver Somatic Index ::
[(Liver/Weight-TIll x 100

LTH" Length
\~T'"' \~eight

T!= Gonad + Liver



Table A.II: Correlation coefficients among enzyme activities and body
characteristics of diesel exposed females during prespawning.

EK EG EH GL GK GG GH eGO ceo CLSI

EL 0.45 0.47 -0.37 0.61- 0.66- 0.04 -0.29 0.13 -0.22 -0.52
EK 0.44 0.15 0.09 0.23 -0.59* -0.81* -0.31 -0.11 -0.68-
EG -0.37 0.39 0.36 -0.52 -0.81- 0.27 0.02 -0.21
EH 0.002 -0.38 0.02 0.51 -0.47 -0.04 0.11
GL 0.36 0.10 -0.26 0.30 -0.44 -0.06
GK 0.30 -0.37 0.17 -0.55 -0.29
GO 0.70 0.25 -0.14 0.46
GH -0.37 -0.02 0.57
eGO 0.24 0.32
ceo 0.31
CLSI
L'!'H

* p<O.OS

LTD WT

-0.61* -0.82-

-0.34 -0.34
-0.53 -0.59-

0.71* 0.77*
0.02 -0.30

-0.47 -0.66-
0.15 0.11

0.67 0.71
-0.45 -0.33
-0.09 0.16

0.44 0.50
0.90*

~

a

EL" Liver Ethoxyresorufin O-Deethylase
EK= Kidney Ethoxyresorufin O-Deethylase
EG= Gill Ethoxyresorufin O-Deethylase
EH: Heart Ethoxyresorufin O-Oeethylase
GL= Liver Glutathione S-Transferase
GK= Kidney Glutathione S-Transferase
GL= Gill Glutathione S-Transferase
GL= Heart Glutathione S-Transferase

eGo= Gonad Index =:

l tGonad/l.,eight-TlI} x 100
ceo= Condi tion Index =

In''eight-Tll/tLengthx3}} x 100
CLSI= Liver Somatic Index =

l (Liver/lieight-T111 x 100
LTH: Length
tiT= Weight
T1= Gonad + Liver



Table A.12: Correlation coefficients among enzyme activities lind body
characteristics of diesel exposed female cunners during early spawning.

EK EG Ea GL GK GG Ga eGO ceo CLSI LTa WT

EL O. J7 -0.34 -0.27 0.54 -0.22 -0.34 -0.35 -0.78* 0.32 -0.74* -0.38 -0.36
EK -0.31 0.07 0.59* 0.18 -0.30 0.28 -0.42 -0.01 -0.24 -0.10 -0.20

EG 0.44 -0.26 -0.07 0.32 0.43 0.35 0.20 0.06 -0.17 -0.20
EO -0.09 -0.46 -0.47 0.64* 0.34 0.25 0.50 -0.23 -0.20
GL 0.13 -0.30 -0.43 -0.65* 0.56 -0.55 0.17 0.17
GK 0.37 0.04 -0.15 -0.35 -0.23 0.38 0.28

GG -0.04 0.14 -0.43 -0.13 0.27 0.17
GO 0.21 -0.43 0.43 -0.57 -0.64*
eGO -0.26 0.94* 0.35 0.34
ceo -0.39 -0.04 0.08
CLSI 0.20 0.20 ;;;

LTa 0.98*

• p<o.a5

EL- Liver Ethoxyresorufin O-Oeethylase
EK- Kidney Ethoxyresorufin O-Oeethylase
EG- Gill Ethoxyresorufin O-OeethylallQ
EH- Heart Ethoxyres;:lrufin O-Oeethyla'le
GL'" Liver Glutathione S-Transferase
GK- Kidney Glutathione S-Transferase
GL- Gill Glutathione S-Transferalle
GL'" Heart Glutathione S-Transferase

CGO'" Gonad Index ..
[(Gonad/Weight-Tl) I x 100

ceo- ConditioD Index ­
[IWeight-Tll/(Lenc;thx3l] X 100

CLSI= Liver Somatic Index ..
I (Liver/weight-TIl} x 100

LTH- Length
\'IT''' Weight
Tl" Gonad + Liver



Table 1\..13: Correlation coefficients among enzyme activities and body
characteristics of diesel exposed female cunners during late spawning.

EK EG EU GL GK GG GU CGO CCO CLSI LTU WT

EL 0.B3* 0.03 0 -0.47 -0.20 0.15 -0.29 0.38 0.35 0.34 0.02 0.32
EK 0.11 0.29 -0.31 -0.41 -0.06 -0. )2 0.38 0.19 0.49 0.23 0.47
EG 0.29 0.03 -0.29 0.18 0.31 -0.16 0.20 0.03 -0.18 -0.10
ED -0.32 -0.49 -0.55 -0.49 -0.06 -0.19 -0.13 0.31 0.30
GL 0.06 -0.07 0.55 -0.37 0.07 -0.20 -0.28 -0.35
GK -0.12 0.17 0.09 -0.01 0.07 -0.19 -0.38
GG 0.49 0.25 ('.21 0.33 -0.49 -0.38
GO -0.17 0.24 -0.23 -0.62" -0.68-
CGO 0.51 0.73- ·'0.13 0.12
CCO 0.16 -0.47 -0.07

~
CLSI 0.11 0.21

LT. 0.87-

• p<O.OS

EL= Liver Ethoxyresorufin O-Deethylase
EK= Kidney Ethoxyresorufin O-Oeethyl,).se
EG- Gill Ethoxyresorufin O-Oeethylase
EH= Heart Ethoxyresoruf in Q-Deethylase
GL= Liver Glutathione S-Transferase
GK- Kidney Glutathione S-Transferase
GL- Gill Glutathione S-Transferase
GL= Heart Glutathione S-Transferase

eGO- Gonad Index -
I (Gonad!Wei9ht-Tll) x 100

CCO- Condition Index ­
[(t'leight-Tll/l Len9thx)) J x 100

CLSI- Liver Somatic Index -
I (Liver!Weiqht-Tll) x 100

LTH- Length
~'r= Weight
Tl- Gonad + Li ver
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Table A.14: Gonad Indices of Cunners Throughout the
Reproductive Season

Gonad Index (eGol

~ ~ Prespawn Early Spawn Late Spawn

Male Control 5.2010.71 6.3410.44 2.1910.22

Diesel 6.1810.28 3.13tO.35 3.1610.16

Female Control 6.06:1:0.23 9.05:!:0.33 5.0810.32

Diesel 5.2510.34 9.95±O.lS 4.6310.48

Gonad Index (eGO) = (Gonad/weight - Tl) x 100
Tl = Gonad + Liver
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