INFLUENCE OF REPRODUCTIVE STATUS, SEX, AND

PETROLEUM HYDROCARBON EXPOSURE ON HEPATIC

AND EXTRAHEPATIC BIOTRANSFORMATION ENZYMES
OF THE CUNNER, TAUTOGOLABRUS ADSPERSUS

EDWARD L. PORTER, B.Sc













INFLUENCE OF REPRODUCTIVE STATUS,
SEX, AND PETROLEUM HYDROCARBON EXPOSURE ON HEPATIC
AND EXTRAHREPATIC BIOTRANSFORMATION ENZYMES OF THE CUNNER,
TAUTOGOLABRUS ADSPERSUS

by

@ Edward L. Porter, B.Sc.

A thesis submitted to the School of Graduate Studies
in partial fulfillment of the requirements for the degree of

Master of Science

Toxicology
Memorial University of Newfoundland

MAY, 1988

St. John's Newfoundland



ABSTRACT

Laboratory and field trials have validated. liver mixed
function oxygenase (MFO) induction as a sensitive biomonitor
for petroleum hydrocarbon exposure. However, basal enzyme
levels are known to vary seasonally and the usage of extra-
hepatic tissues for biological monitoring has received
little attention. Laboratory experiments were conducted
in the summer of 1985 to determine the induction potential
of ethoxyrsorufin O-deethylase (EROD) in liver, kidney,
gill, and heart tissues of cunners (Tautogolabrus adspersus)
exposed to no. 2 fuel oil (diesel oil) during the repro-
ductive season. Although basal 1levels varied, induction
was readily resolved in hepatic and extrahepatic tissues
of both male and female cunners during prespawning, early
spawning and late spawning. The induction potential of
heart (7-18 fold) was much greater than liver (4-6 fold),
kidney (4-7 fold) and gill (2-5 fold). Male cunners
displayed a much higher induction potential compared to
females in heart EROD during prespawning (18 versus 13
fold) and early spawning (12 versus 7 fold) but no
significant sex differences were observed during late
spawning. Sex differences were also evident in liver and
kidney tissues throughout the reproductive season, males
exhibiting higher enzyme activities than females in each

case.

ii



The potential for induction of a conjugating enzyme,
glutathione S-transferase (GST), was also studied. Unlike
EROD, GST was refractory to induction in all tissues of
male and female cunners throughout gonad maturation/spawning.
Depression of GST was observed in the heart tissue of diesel
exposed males during early spawning and male liver and
kidney during late spawning.

These experiments show the feasibility of using
extrahepatic as well as hepatic MFO enzymes for monitoring

studies even during the reproductive season.
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1. INTRODUCTION

1.1 Mixed Function Oxygenase in Mammals

Mixed function oxygenases (MFO's), also referred to

as cytochrome P-450 y , are r ible for
the oxidative metabolism of a myriad of lipophilic organic
substrates. These lipophilic substrates include a diversity
of chemical structures, and include drugs, carcinogens,
and environmental pollutants such as polychlorinated
biphenyls (PCB's), pesticides, and petroleum hydrocarbons
(Conney, 1967; Snyder and Remmer, 1979; Gelboin, 1980).
Besides the oxidation of xenobiotic compounds, MFO enzymes
are involved in the metabolism of endobiotics like steroids,
fatty acids, vitamins, hormones, and bile acids (Ahmad,
1979). Some common MFO reactions are illustrated in Figure

1.1

tiixed function oxygenases are found in virtually all
organisms including vertebrates, invertebrates, and many
bacteria, with the exception of anaerobic bacteria.
Components of the mammalian P-450 monooxygenase system,
isolated from the microsomal fraction (smooth endoplasmic
reticulum vesicles) of the liver include the heme-containing
cyctochrome P-450, the flavoprotein NADPH-cyctc~hrome P-450
reductase, and phospholipid. The highest concentrations
of cyctochrome P-450-dependent monooxygenases are localized
in the smooth endoplasmic reticulum (SER) of the liver
cell (Hodgson, 1979). Intracellular locations besides

1



Figure 1.1: Common mixed function oxygenase reactions

(Adapted from Lee, 1981.)



* Epoxidation %
ci
ALDRIN DIELDRm
L ———
BENZO (a) PYRENE 3-HYDROXYBENZO (a) PYRENE
m O-Deethylation mm:cc“o
H5C20
7 - ETHOXYCOUMARIN UMBELLIFERONE
oH
S o o £5
ETHOX YRESORUFIN RESORUFIN
CHj3 - H
(/__%nzcu-r‘a-mz@ N-Demetnylation ' ™\ cw,-CH-K-CH,
CHy = CHjy

BENZPHETAMINE +HCHO



4
the SER that usually contain lower MFO activity include

the rough endoplasmic reticulum (RER) and the mitochondrial
membrane {(Hodgson, 1979) as well as the nuclear envelope
of the liver cell (Viviani et al., 1978). The mitochondrial
electron transport system (inner membrane matrix) is quite
different from the microsomal system and appears to be
specialized for steroid metabolism. Sato et al. (1977)
noticed tha* partially purified cyctochrome P-450 Efrom
rat liver mitochondria was incapable of catalyzing the
NADPH-dependent benzphetamine N-demethylation, unlike a
cyctechrome P-450 1isolated from rat liver microsomes.
Both cyctochrome P-450's, however, exhibited 26-hydroxylase
activity, which is involved in cholesterol metabolism.
Extra-hepatic tissues including kidney, small intestine,
lung, placenta, and skin appear to be active to some degree
in the biotransformation of lipophilic compounds (Brattsten,

1979).

Monooxygenases function primarily as a detoxification
system (so-called phase 1 enzymes), but many compounds
became more toxic or carcinogenic upon conversion to
chemically reactive metabolites by mixed function oxygenases
(Conney, 1982). Primary oxidation products arising from
rhase 1 reactions are excreted or further transformed into
more hydrophilic metabolites by a series of conjugating
"phase 2" enzymes e.g. glutathione transferases, glucuronyl

transferases and sulphotransferases (Gelboin, 1980).
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Manifestation of cellular toxicity in an organism is governed
by various factors including species, type of xenobiotic,
dose, levels of co;xjugating enzymes, and type of MFO enzymes

involved (Gelboin, 1980).

It is quite clear that monooxygenases "activates"
molecular oxygen with one atom being incorporated into
the substrate and the other atom reduced in the form of
water (Mason, 1957). Detailed catalytic events mediated
by MFO are still ambiguous. There appears to be four common
phases involved in catalysis: (1) substrate binding, (2)
reduction of enzyme-substrate complexes by NADPH cytochrome
P-450 reductase, (3) oxygen activation and (4) oxygen atom
transfer (Ahmad, 1979). The substrate molecule combines
with the oxidized ferric form of cyctochrome (Fe+3) and
the complex undergoes reduction to the ferrous form (Fe+2),
which interacts with oxygen in such a way that the
hydroxylated substrate and a molecule of water leave the
now re-oxidized cyctochrome P-450 (Estabrook et al., 1971).
The sequential events of cytochrome P-450 mediated metabolism
of benzo[alpyrene are schematically depicted in Figure
1.2. The complex nature of MFO enzyme reactions is obvious
when one considers that, depending on the substrate, all
the reaction steps except possibly the association of
substrate and enzyme, could be rate-limiting (Bjorkhem,

1977). However, in many hydroxylation reactions either



Figure 1.2: Oxidative metabolism of benzolalpyrene.

(Adapted from Lee, 1981.)
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8
of the electron transfer steps appear to regulate the rate

of reaction (Bjorkhem, 1977).

A number of different cyctochrome P-450 hemoproteins
have been detected in rat tissues (Wolf et al., 1986),
and this may account for the broad substrate sracificities
oi the MFO enzyme system. The enzyme system is unique
in that increased levels as well as variant forms are
commonly found in the tissues of animals exposed to chemicals
referred to as "inducing" compounds (Snyder and Remmer,
1979). Early studies on hepatic enzyme induction by Brown
et al. (1954) revealed that the rate at which rat or mouse

liver preparations de-methylated the hepatocarcinogen,

3 hyl-4 lami (3-methyl MAB), was
dependent upon the diet fed to the animals. Brown et al.
(1954) eventually attributed the increased rate of catalysis
to polycyclic aromatic hydrocarbons (PAH'S) like
3-methylcholanthrene (3-MC) present in the arimal feed.
At about the same time, Conney et al. (1956) presented
evidence indicating that the increased rate of de-methylation
was a result of de novo synthesis of new enzyme rather
than the activation of nascent enzyme. The level of response
depends upon the type of inducers, species, age, sex,
and physiological state of the animal including reproductive

and nutritional status (Vessel, 1982).
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In depth study of two forms of purified cytochrome
P-450 hemoproteins (Lu and West, 1980) demonctrated that
they possess different spectral properties along with
differing affinities for certain types of inducers.
Phenobarbital administered to rats resulted in the
proliferation of hepatic cytochrome P-450 monooxygenases
possessing a Soret band at 450 nm (Orrenius and Ernster,
1964). Omura and Sato (1962) first coined the term
"cytochrome P-450" wupon observing this unique spectral
band in microsomes bubbled with carbon monoxide and further
reduced with sodium dithionite. Aromatic hydrocarbons
like 3-MC and g-napthoflavone (BNF) induce cytochromes
with a Soret band at 448 nm (Orrenius and Ernster, 1964).
Recently another form of cytochrome P-448 from the liver
of 3-MC pretreated rats has been purified and characterized
(Seidel and Shires, 1986), further demonstrating the
multiplicity of the cytochrome P-450 monooxygenases. Even
though the cytochrome P-450 system possesses biological
ubiquity and displays the capacity to metabolize a wide
range of chemicals, selectivity towards some substrates

may be enhanced.

1.2 Mixed Function Oxygenase in Fish
Metabolism of PAH's and barbiturates to oxidised
derivatives has been studied in mammals since the 1940's.

Subsequent characterization of the enzymes responsible
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for oxidation led to the discovery of the cytochrome
P-450dependent mixed function oxygenase system. Until
the late 1960's research on drug metabolism in aquatic
organisms was limited, probably in part to the premise
that "ocean dwelling" species could simply remove toxic
materials via passive diffusion processes. Contrary to
such a belief, Adamson (1967) reported that many lipophilic
compounds are relatively impermeable to fish gills compared
to other membranes. Evidence was subsequently presented
demonstrating that marine and freshwater fish species are
quite efficient in transforming =xenobiotics into water
soluble derivatives for easy excretion via renal or biliary
routes (Dewaide and Henderson, 1968). The microsomal
fraction of trout liver was found to contain cytochrome
?-450 (Chan et al., 1967). In fact, the xenobiotic
metabolizing system of aquatic organisms was observed to
have gqualities similar to the complex mammalian MFO system,
although the rates of oxidative metabolism were reported
to be slower in aquatic species (James et al., 1977).
This early work involved_in vitro systems, but it is realized
now that fish are capable of many phase 1 and phase 2
reactions in vivo (Table 1.1). Since many xenobiotics
to which fish are exposed are readily taken wup and
sequestered in tissues like liver, blood, muscle, and brain
(Melancon and Lech, 1978) the necessity to metabolize

toxicants for easy excretion is apparent.



Table 1.1

Biotransformation reactions demonstrated in vivo by several fish species.

Biotransformation

reaction

Phase 1 Phase 11 specics Chemical

O-Dealkylation Fathead minnow p-Nitrophenylethers
Rainbow trout Pentachloroanisole

Fenithrothion

N-Dealkylation car| Dinitramine

Oxidation Mudsucker, sculpin Naphthalene, benzolalpyrene
Coho salmon Naphthalene
Rainbow trou’ Methylnaphthalene
Car Rotenone
Misquito fish Aldrin, dieldrin

Hydrolysis Cutfish, bluegill  2,4-Dichlorophenoxyacetic acid ester
Rainbow trout Diethylhexylphthalate
Pinfish Malathion
Hosquito fish tarathion

Acetylation Dogfish shark Ethyl-m-aminobenzoate

Glutathione conjugation
Taurine

Sulfate ol
Glucuronide "
Glycine "

Rainbow trout
carp

Flounder
Goldfish
Rainbow trout
Rainbow trout
Goldfish
Flounder

Ethyl-m-aminobenzoate
Molinate
2,4-Dichlorophenoxyacetic acid
pentacholorophenol
Pentachlorophenol
3-Trifluoromethyl-4-nitrophenol
Pentachlorophenol

Aminobenzoic acid

Taken from Lech and Vodicnik,

1984.

11
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Mammalian MFO and fish MFO have several characteristics

in common. Both systems are dependent upon molecular oxygen
and NADPH, and the cytochrome P-450's exhibit most of the
same spectral patterns. The monooxygenase activity of
trout liver microsomes has been shown to be sensitive to
inhibition by carbon monoxide and responsive to mammalian
MFO modulators like a-naphthoflavone and metyrapone (Ahokas
et al., 1977). As in mammals, MFO enzyme activities are
highest in fish liver, and other extrahepatic tissues
including kidney, gill, a.d4 heart have been shown to possess
xenobiotic metabolizing ability (Payne and May, 1979; Porter
et al., 1986). The head kidney of teleost fish (attached
to the trunk kidney which is responsible for urine
production) seens analogous to the mammalian adrenal cortex
(Butler, 1973) which is known to be instrumental in steroid
and xenobiotic metabolism (Burke and Orrenius, 1979).
The fish monooxygenase system also responds to a diversity
of substrates that may undergo biotransformation. Different
fish species display a wide variation in the rates of
xerobiotic metabolism (James and Bend, 1980) as do different
mammalian species. Mixed function oxygenases in fish are
also influenced by physiological and environmental factors
including age, sex, diet, gonadal maturity, ambient
temperature, seasonal changes, developmental stage, and
exposure to inducers/inhibitors (Walton et al., 1978;

Stegeman and Chevion, 1980; Addison and Willis, 1982; Walton
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et al., 1983; Binder and Stegeman, 1984; Andersson and

Koivusaari, 1985).

Most hepatic monooxygenase activities are higher in
male rats than in female rats Shapiro, 1986). Fish species
also appear to exhibit sexual dimorphism in MFO metabolizing
ability, generally with higher activities in males versus
females. Sex differences have been reported in the specific
content of cytochrome P-450 in hepatic and renal microsomes

from adult rainbow trout (Salmo gairdneri) and brook trout

(salvelinus fontina ) (Stegeman and Chevion, 1980).
Kidney microsomes from mature male trout showed a 20-fold
higher cytocnrome ¢ reductase activity, as well as faster
hydroxylation rates of varions substrates including
progesterone and aflatoxin Bl compared to females (Williams
et al., 1986). The same study, however, showed no
significant sex differences in benzo[a]pyrene hydroxylase
or benzphetamine N-demethylase activities (Williams et
al., 1986), and sex differences in cytochrome P-450 content
and associated MFO activities were less pronounced -iith
liver microsomes compared to kidney microsomes. Other
investigators have shown that sex-related changes in
monooxygenase activities during certain staycz of gonad
maturation/spawning of fish are also dependent on the
substrates used to assay the activity. Hepatic MFO

activities measured in rainbow trout using benzolalpyrene,
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7-ethoxycoumarin, aminopyrene, and ethylmorphine as
substrates were significantly higher in males than in females
during the pre-spawning period, yet 7-ethoxyresorufin
deethylase activity displayed no such sex difference
(Koivusaari et al., 1984). In the rat, sex differences
have been  shown to be regulated  through  the
hypothalamo-pituitary axis (Gustafsson et al., 1983) and
growth hormone (somatotrophin) secretory patterns are
important for the sexual dimorphism seen in this species.
Androgen "imprirting" during neonatal life is postulated
to play an important role in producing MFO activities
observed & ring the adult stage of the rat (Gustafsson
et al., 1983). Neonatal gonadectomy and androgen exposure
studies ~eveal the existence of sex-specific cytochrome
P-450s in the rat (Dannan et al., 1986), however, we know
little of the wunderlying mechanisms. Gonadal steroids
(estradiols and testosterones) may play an important role
in regulating observed sex differences in MFO activity

of fish (Stegeman and Chevion, 1987).

Habitat temperature appears to influence the time
course and intensity of the induction process in fish
(Andersson and Koivusaari, 1985). Constitutive levels
of MFO activity in isolated liver cells of rainbow trout
are affectei by temperature changes (Andersson  and

Koivusaari, 1986). The enzymes ethoxycoumarin O-deethylase
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and benzo[alpyrene hydroxylase were higher in liver cells
from cold acclimated trout than those from warm acclimated
fish at all assay temperatures used (Andersson and
Koivusaari, 1986). Hepatic MFO of bluegill (Lepomis
macrochirus r.) displayed temperature compensation (Ankley
et al., 1985), since fish acclimated to cool water (12°c)
hydroxylate benzolalpyrene more rapiuly than fish kept
at a warmer temperature (32°c). This compensatory response
is important for poikilotherms which live in an environment

with large temperature fluctuations.

1.3 Mixed Function Oxygenase Induction: A Useful Biological
Monitor for Organic Pollution in the Aquatic Environment
During the early 1970's more intensive studies on

xenobiotic metabolism in fish and other aquatic species

began to appear. Investigations were also more related
to environmental health interests than in previous years

(reviewed by Payne, 1984). Mixed function oxygenase

induction was proposed (Payne and Penrose, 1975) as a

sensitive biological monitor of environmental pollutants,

particularly oil contamination. Elevated MFO enzyme levels
in fish have been shown in a number of field trials over
the past decade to be related to hydrocarbon pollution
in the aquatic environment (Figure 1.3). Field studies
carried out in the early 1970's in Newfoundland demonstrated

that brown trout (Salmo trutta) captured from a small urban



Figure 1.3:

Mixed function oxygenase trials in fish in
association with petroleum hydrocarbon pol-
lution.

(Units are relative enzyme ﬁCthLtleS for
liver tissues in all cases. Low tower =
control site; high tower = exper.unental
site.)

(Adapted from Payne et al., 7987.)
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lake in St. John's with a history of hydrocarbon pollution
exhibited elevated benzolalpyrene hydroxylase levels in
liver tissues (Payne and Penrose, 1975). Other field studies

were also ul in rating the association between

petroleum hydrocarbon exposure and increased MFO enzyme
levels in fish species. Cunners (Tautogolabrus adspersus)
collected in the vicinity of a large oil refinery in
Placentia Bay, Newfoundland, had elevated MFO enzyme levels
in both liver and gill tissues compared to fish taken from
control sites (Payne, 1976). Likewise, a small boat marina
putatively contaminated with petroleum hydrocarbons harbored
cunners with induced MFO enzyme levels (Payne, 1976).
Blennies (Blennius parvo) collected from a diesel oil spill
site in the Adriatic sea exhibited marked benzo[alpyrene
hydroxylase induction in liver tissues and the induction
was maintained for three weeks (Kurelec et al., 1977).
Another field trial in the Adriatic revealed blennies taken
from the site of a refinery outfall had highly induced
liver MFO enzyme levels (Britvic et al., 1983) relative
to control sites. Two species of sanddabs (Citharicthys
sardidus and C. stigmeus) and white perch (Phanerodon
furcatus) collected near a natural petroleum seep in the
Santa Barbara channel displayed increased benzo[alpyrene
hydroxylase levzls (Spies et al., 1980; Spies et al., 1982).

Mummichogs (Fundulus heteroclitis) collected near the site

of an oil spill off the coast of Massachusetts were reported

to have elevated aldrin epoxidase (Burns, 1976) and
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benzo[alpyrene hydroxylase (Stegeman, 1978) enzyme
activities. Since one would expect extremely low levels
of hydrocarbons or other chemicals in the open ocean,
particularly interesting are the reports of elevated MFO
levels in various fish species including codfish (Gadus
morhua) collected near oil-rigs in the North Sea (Davies
et al., 1984). A recent biomonitoring study was carried
out in Finland near the site of an oil spill in the Vassa
Archipelago (Lindstrom-Seppa et al., 1985). Perch (Perca
fluviatilis) at this site were found to exhibit slightly
elevated benzola]pyrene hydroxylase enzyme activities and
significantly induced glutathione S-transferase activities
compared to control sites. An important revelation from
this study was that glutatione S-transferase enzyme levels
were a more powerful indicator of hydrocarbon exposure
than the MFO enzyme levels. Most of the earlier field
studies have focused on elevated liver MFO, but Payne et
al. (1984) reported elevated MFO enzyme levels in kidney
tissues of flounder (Pseudopleuronectes americanus) collected
at the site of a no. 2 fuel oil spill in Baie Verte,

Newfoundland.

Some have that P to levels
of pollutants sufficient to disturb serum chemistry may
be applicable to monitoring programs (Lockhart and Metner,
1984). However, a study in Puget Sound (Casillas et al.,

1985) revealed that changes in serum chemistry (e.g. glucose
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levels, adrenaline) and gross pathology were comparable
in diagnosing presumptive pollution mediated diseases

of English Sole (Parophrys wvetulus). Contaminant levels
sufficient to produce gross pathological damage (primary
effect) mate measurement of changes in biochemical parameters
like serum ions, sugars, cortisol, or adrenaline (secondary
effects) redundant in the sense of providing an early warning
system. Mixed function oxygenase enzyme induction is,
in essence, a primary detoxification response and, in the
case of exposure to potent inducers such as petroleum
hydrocarbons, enzyme change can be expected to occur before
the onset of more serious pathological change. A recent
field study carried out in Finland (Nikunen, 1985) cataloging
the differences in 25 biochemical variables of rainbow
trout held in cages near a reference site compared to a
water waste discharge site from a petrochemical complex,
showed significant differences between only two of the
parameters: increases in activity of the detoxification
enzymes, MFO and glucuronyltransferase of fish near the

chemically polluted site compared to the control s te.

An -!tempt to interpret biochemical vresponses in terms
of whole-organism or population effects might be optimistic
at present, but it is not unreasonable to want to do so.
However, from a regulatory or environmental perspective,

one of the primary values of such a sensitive response
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as MFO induction is its value as an indicator in defining
boundary limits for point sources of pollution e.g. around
oil-rigs or major spill sites. Also in relation to mixed
organic pollution, studies in the Great Lakes and Europe
(Figure 1.4), have demonstrated the potential to discriminate
water quality over broad geographical regions by using
the MPO induction response. Although it is quite reasonable
to state that chemical analysis is a more efficient means
of quantitatively and qualitatively defining water quality,
it lacks biological significance and is time consuming
and expensive. Kurelec et al. (1982) stated "the use of
MFO as a monitoring tool would help fill the gap which
usually exists between the estimated concentration of

xenobiotics in water and corresponding biological effects."

1.4 Phase 2 Detoxification: Glutathione S-Transferase
Xenobiotics catalyzed by MFO enzymes produce electro-
philic products that are often conjugated with endogenous
substances such as sugars, amino acids, sulphate, phosphate
or a tripeptide referred to as glutathione (Brattsten,
1979). Gluta*hione (GSH), gamma-gl tamylcysteinylglycine,
possesses a nucleophilic thiol moiety, the cysteinyl residue,
which combines with highly reactive electrophiles and other
oxidative products of MFO enzymatic reactions (Ketterer
et al., 1983). The negative charge and high hydrophilicity

of GSH greatly increases the aqueous solubility of lipophilic



Figure 1.4:

Mixed function oxygenase trials in fish
in association with mixed organic pol-
lution.

(Units are relative enzyme activities for
liver tissues in all cases tower =
control site; high tower experimental
site.)

(Adapted from Payne et ai., 1987.)
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compounds that conjugate with GSH, enhancing biliary
excretion (Ketterer et al., 1983) or the GSH conjugates
are further metabolized to form mercapturic acids which
are excreted in the urine (Fukami, 1984). Enzymatic
catalysis is involved in many GSH conjugation reactions
and executed by a group of enzymes referred to as the
glutathione S-transferases (GST) which are primarily
cytosolic (Fukami, 1984). A microsomal glutathione
S-transferase has also been characterized (Boyer et al.,
1986). Figure 1.5 show the conjugation of some substrates

catalysed by glutathione S-transferases.

Since conjugation is preceded by oxidation reactions
mediated by the MFO enzyme system, the former is sometimes
considered a secondary detoxification process while the
latter is a primary detoxification process (Fukami, 1984).
This does not  lessen the importance of the GSH
S-transferases. Substrates like some insecticides are
detoxified primarily by the GSH conjugation pathway rather
than by the MFO enzyme system (Fukami, 1984). Furthermore,
the MFO enzyme system may produce both toxic aud nontoxic
metabolites whereas the GSH S-transferases are primarily
involved in detoxification. The enhancement of GSH
S-transferase activity in the forestomach of mice by
compounds including benzyl isothiocyanate, p-methoxynitro-

phenol, coumarin and 2-tert-butyl-4-hydroxyanisole (2-BHA)



Figure 1.5: Conjugation reactions catalyzed by glutathione
S-transferase

(Adapted from Fukami, 1984.)
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significantly reduced benzo[alpyrene induced neoplasia
in that organ (Sparnins et al., 1982). However, in some
instances the GSH conjugation process has been reported
to activate xenobiotics like alkylnitrosoguanidines,
dihalomethanes, and the antinecplastic agent, bleomycin,

to mutagenic and/or carcinogenic derivatives (Igwe, 1986).

Glutathione conjugation has been demonstrated to occur
in a variety of species including mammals, fish, birds,
amphibians, insects and other invertebrates (Boyland and
Chasseaud, 1969). Five GSH S-transferases have been isolated
from rat liver and they display a wide range of catalytic
activity - it is hypothesized that 2 ycneral mechanism
of catalysis exists for the isoenzymes which involves a
nucleophilic attack of enzyme-bound GSH on the electrophilic
center of the xenobiotic (Keen et al., 1976). Similar
to the MFO system, GSH S-transferases show a broad

overlapping substrate specificity (Habig and Jakoby, 1981).

The majority of research on the GSH S-transferases
have been performed using rat liver cytosol, but extrahepatic
tissues as well as other species have also been employed
(Habig et al., 1974). Five cytosolic GSH S-transferases
have been isolated from the liver of the male little skate,

Raja erinacea (Foureman and Bend, 1984). Glutathione
Raja; ecinacea
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S-transferase activity has also been demonstrated in black

sea bass (Centropristis striata) liver, kidney, brain,

muscle and red blood cells (Braddon et al., 1985).

Glutathione S~transferases, like MFO enzymes, exhibit
the highest activities in mammalian and fish liver tissues
relative to other organs (Jakoby, 1978; Braddon et al.,
1985). Intracellular GSH concentrations in tue rat liver
are as high as 5-10 mM (Kosower and Kosower, 1978) with
GSH S-transferase concentrations as high as 0.2 mM (Ketterer
et al., 1983). Liver biotransformation enzyme activities
are generally higher in mammals than aquatic species.
However, whole Odonata larva were found to exhibit GSH
S-transferase activities 6 times that of rat liver (Dierickx

and De Brabander, 1984).

Many factors that influence MFO enzyme activities
in fish may also affect GSH S-transferases. Xenobiotics
such as PCB's, BNF, and PAH's have been shown to induce
liver GSH S-transferases in fish (Ankley et al., 1986;
Andersson et al., 1985b; Lindstrom-Seppa et al., 1985);
although others claim that various MFO-type inducers have
no enhancing affect on GSH S-transferase activities (Bend
and James, 1978; Fair, 1986). The effects of other factors
like environmental temperature and starvation on various

MFO related activities and UDP glucoronyltransferase
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activities (conjugating enzyme) have  been  thoroughly
characterized (Andersson et al., 1985a; Andersson and
Koivusaari, 1986), however, little information is available
about these effects on the GSH S-transferases. This study
investigated the potential for GST induction in various
tissues of cumners exposed to petroleum hydrocarbons during

the critical stages of gonad maturation/spawning.
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2. MATERIALS AND METHODS

2.1 Chemicals
All reagents used in these studies were of standard
chemical grade obtained from various suppliers. Other

chemicals are listed below:

ethoxyresovufin: Pierce Chemical Co., Rockford, Illinois.

resorufin: Ea. T ak Ltd., r, New York.

diesel oil: Texaco (local).

glutathione (reduced form): Sigma Chemical CO., St. Louis,
Missouri.

l-choloro-2, 4-dinitrobenzene: Sigma Chemical Co., St.

Louis, Missouri
naphthalene, fluorene, phenanthrene, pyrene, benzolalpyrene:
Supelco Ltd., Oakville, Ontario.
hexane (HPLC grade): Fisher Sciencific, Montreal, Quebec.
methyl-tert-butyl-ether (HPLC grade): BDH, Dartmouth,

Nova Scotia.

2.2 Fish Collection

Male and female cunners (Tautogolabrus adspersus)
were caught using a hoop net and/or gill net from a relative-
ly pristine area of Portugal Cove during the summer of
1985. The fish ranged in weight from 100-300 g and were
collected during three periods of gonad maturation/spawning
based on gonad indices and according to Pottle and Green

(1978):
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(1) prespawning (June 25th, 26th, 27th)
(2) early spawning (July 16th, 17th, 19th)

(3) late spawning (August 4th).

2.3 Exposure System

After the fish were transported to the laboratory
in 52 L containers, they were acclimated for 1-2 weeks
in 2000 L holding tanks. This was followed by exposure
to no. 2 fuel oil (diesel oil) in a flow-through sea water
tank maintained at ambient temperature (Prespawn temperature
= 8°C; early spawn temperature = 12°C; late spawn temperature
= 13°C). The exposure consisted of introducing 200 ml
of oil into a head tank (25 L) and mixing it with a constant
stream of seawater sprayed onto the surface of the head
tank (Kiceniuk et. al., 1982). Seawater containing the
oil was then drawn from the bottom of the tank into the
experimental tank (200 L, flow rate = 2 L/min). This type
of exposure set-up allows for a pulse delivery of diesel
0il. Refer to Figure A-1 of the Appendix for experimental

design.

A control tank was set up next to the experimental
tank and received the same manipulations except for chemical
exposure. Due to the difficulty in sexing cunners, each
tank contained 35-40 fish to provide sufficient numbers
of each sex for appropriate statistical analysis. The

experimental fish received two equivalent exposure doses,
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200 ml of diesel, 45 h apart. Hourly water samples were

taken from each tank throughout the duration of the
experiment, in such a way as not to disturb the oil sheen

on the surface water of the experimental tank.

2.4 0il Analysis in Water

Each water sample was subjected to a modified version
of the fluorimetric method of Keizer and Gordon (1973)
for determination of total oil concentration. The control
and experimental tanks each had a glass tube (1 cm diameter;
1 m length) immersed approximately 20 cm below the water
surface for withdrawing samples into 300 ml glass BOD
sampling bottles. Each seawater sample was extracted with
100 ml of spectroanalyzed hexane in a 1 L separatory funnel.
The hexane extract of both control and experimental tanks
was  analyzed by fluorescence spectroscopy (308 nm
excitation/344 nm emission) for the presence of mono- and
polyaromatic hydrocarbons. A standard curve was constructed

by spiking hexane with diesel oil (Figure A.2).

2.5 I ion of 89 Fractions from Liver, Kidney, Gill

and Heart

Fish were killed (90 hr following first diesel exposure)
with a blow to the head and the hepatic and extra-hepatic
organs were removed immediately. Necropsy data (organ
weights, body weight, length, sex) were recorded. The

bile duct was clamped with a haemostat and the liver and
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other tissues of the fish were excised, weighed, and placed

on ice. Bll organs were minced with scissors and
approximately 1 g of each was homogenized in 4 volumes
of ice-cold 50 mM Tris-HCL, (pH 7.5) using ten passes of
a glass Ten Broek hand homogenizer. The S9 supernatant
was obtained by removing cell debris by centrifugation
at 4°C for 10 min at 9000 x g. The S9 fraction of each
sample was stored in triplicate in polyproplylene Eppendorf

micro test-tubes at -80°C.

2.6 Protein Determination

Protein was determined by the procedure of Lowry et
al. (1951), wusing a Perkin-Elmer UV-Visible scanning
spectrophotometer. Lowry reagent consisted of 20 g NajCO3
(anhydrous) and 4 g NaOH dissolved in 950 ml of distilled
water and diluted to 1 L. Five ml of a solution consisting
of 1 ml of 1% CuS04, 1 ml of 2% Na-K tartate and 100 ml
of Lowry reagent was added to 500 ul of S9 suspension (10-20
pl of S9 to 480-490 pl of distilled water). Various
concentrations of bovine serum albumin (BSA) ranging from
50 ug/ml to 400 ug/ml were used as standards. Distilled
water (500 ul) served as a blank. After a 10 min incubation
periou at room temperature, 500 ul of 1 N Folin-Ciocalteu
reagent was added to the mixture. The mixture was
immediately vortexed and incubated for 30 min at room

temperature. The absorbance was read at 620 nm. A linear
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stancard curve for protein concentration versus absorbance

was produced from the BSA standards and used to calculate

S9 protein concentrations in mg/ml and mg/g organ.

2.7 Total Lipid Determination

Total 1lipids were measured gravimetrically after
extraction by the method of Bligh and Dyer (1959). Liver
S9 fractions were removed from the -80°C freezer and thawed.
Approximately 2 ml of the S9 fraction was transferred to
a conical volumetric test tube and the volume recorded.
The S9 fraction was transferred to an Omni mixer and blended
for 60 sec. with 10 ml of methanol:water (1l:1). The mixture
was blended for another 2 min after the addition of 20
ml of chloroform and then filtered. Filtration through
a Whatman #1 filter paper was followed by blending of the
filter paper with 10 ml of methanol:water (1:1) and 20
ml of chloroform. The blender was rinsed with 10 ml of
methanol:water (1:1) and 20 ml of chloroform followed by
filtration through a second filter paper. The total filtrate
was transferred to a 200 ml Erlenmeyer flask and 20 ml
of 0.88% potassium chloride was added. The mixture was
allowed to settle for 10 min before the upper phase was
discarded. A 30 ml solution of methanol:water (1:1) was
added to 115 ml of the filtrate, mixed thoroughly and the
solution was allowed to settle before the upper phase was

discarded. This step was repeated twice. Two grams of
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anhydrous sodium sulphate were added to the flask which
was swirled and allowed to stand for at least 30 min.
The solution was then filtered through glass wool into
a pre-weighed 250 ml roundbottom flask. The glass funnel
was washed three times with chloroform and allowed to drain
into the flask. The filtrate was evaporated on a Brinkmann
rotary evaporator (42°C, =700 Torr) and the flask placed

in a dessiccator overnight.

The flask was weighed after a 24 h period and the
lipid weight determined. The extract was taken up in 2
ml of HPLC grade hexane and filtered through a Millex SR
0.5 um PTFE filter. The filtrate was stored in an amber
vial with a Teflon 1id at 4°C in preparation for HPLC

analysis.

2.8 Polycyclic Aromatic Hydrocarbon (PAH) Analysis
Chromatographic hardware included a Beckman Model

110 1liquid chromatograph and the following Perkin-Elmer

instrumentation:I8S-100 Autoinjector and a Model 3600 Data

Station.

Chromatography was carried out on a Nucleosil NHp
column (5 pm, 5mm id, 25 cm) with an injection volume of
145 ul for samples and 25 pul for standards. The mobile

phase consisted of 100% hexane (Fisher HPLC grade) for
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14 min. followed by a column backflush of 90% hexane and
10% methyl-t-butyl-ether (Fisher HPLC grade). The solvent
flow rate was 2 ml/min in the forward flow mode and 3 ml/min

on backflush.

Benzene plus 5 groups of polycyclic aromatic hydro-
carbons (naphthalene, fluorene, phenanthrene, pyrene and
benzo[alpyrene) were used as external standards and peaks
were identified on the basis of retention times and
quantitated by peak height of the absorbance (254 nm) of

the extracts with those of the standards.

2.9 Ethoxyresorufin O-deethylase Determination

The mixed function oxygenase system deethylates
7-ethoxyresorufin (7-ER) to produce resorufin. This
substrate is relatively specific for mammalian cytochrome
P-448 monoxygenases. Burke and Mayer (1974) developed
a fluorimetric assay which measures the increase in resorufin

formation as a linear increase in fluorescence.

Ethoxyresorufin O-deethylase (EROD) activity was assayed
fluorimetrically as described by Pohl and Fouts (1980)
using a Perkin-Elmer LS-5 fluorescence spectrophotometer.
The reaction mixture, final volume 1.25 ml, consisted of
53 nmol Tris- Sucrose buffer (50 mM, pH 7.5), 50 pl 89

liver (100 pl for the extra-hepatic organs aad the buffer



37
volume adjusted accordingly), 2.25 nmol 7-ER (150 uM) and

the reaction mixture was started by addition of 0.16 mg
NADPH (1.25 mg/ml). After a 15 min incubation at 25°C
in a temperature controlled water bath, the reaction was
terminated by the addition of 2.5 ml of ice-cold spectro-
analyzed methanol. A methanol blank contained the same
components as the sample tubes except the addition of
methanol to denature the protein occurred before the addition
of NADPH. Assay tubes were vortexed and the protein pre-
cipitate removed by centrification at 3600 x g for 2 min.
The f£luorescence of resorufin formed in the supernatants
was measured in a matched set of fluorimetric cuvettes
(1 cm path length) at 585 nm using an excitation wavelength
of 550 nm (slit width of 0.5 mm). Enzyme activity was
linear with time and protein concentration. The rate of
enzyme activity in nmol/min/mg protein was obtained firom
the regression of fluorescence against standard
concentrations of resorufin. The level of sensitivity
of this assay was calculated to be 3 pmol product

formed/min/mg protein.

2.10 Glutathione S-transferase Determination

Glutathione transferase activit: was assayed based
on Habig et al. (1974) by measuring the conjugation of
l-chloro-2, 4-dinitrobenzene (CDNB) with glutathione (GSH)

as a change in absorbance.
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The reaction mixture was prepared in a spectrophotometer

cuvette with a total volume of 3 ml. The reaction mixture
consisted of 2.875 ml of 0.1 mM potassium phosphate (pH
6.5), 60 ul of 50 mM CDNB and 50 ul of & 1/10 dilution
of liver S9 (100 nl of a 1/10 dilution of kidney S9 and
gill 89; 200 pl of a 1/2 dilution of heart 89 and buffer
was adjusted accordingly). The incubation was carried
out at 25°C. The reaction was initiated by the addition
of 25 pl of 1 mM GSH and the sample cuvette was read against
the reference cuvette (minus GSH and adjusted with buffer)
at a wavelength of 340 nm in a dual-beam Perkin-Elmer UV
Vis‘hle scanning spectrophotometer (model 571). The change
in absorbance was monitored on a chart recorder for a period
of 3 min. The specific activity was expressed as pg CDNB-GSH
conjugate formed/min/mg protein based on the extinction
coefficient of 9.6 mM/cm. All enzyme assays were linear

with time and protein concentration.

2.11 Statistical Methods

Analysis of variance (ANOVA) was applied to determine
significant relationships between sex, treatment, and sample
period and their interactions on enzyme activities. Duncan's
multiple range test, which compares all possible pairs
of means, was used to determine which means were different.
Means of data sets were considered to differ significantly

from each other if p<0.05 for the F-value. All data points
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in the tables and figures represent means +/- standard
error (S.E.Mn.). Univariate analysis was applied to
determine distribution patterns. Correlations were computed
using the Spearman ranked correlation method. All
statistical analysis were carried out using SAS Statist-

ical programs.
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3. RESULTS

Univariate analysis of the hepatic and extrahepatic
ethoxyresorufin O-deethylase (EROD) and glutathione
S-transferase (GST) specific activities revealed the absence
of a normal distribution. Therefore, the data were ranked
for the purpose of meaningful statistical analysis. Many
investigators carrying out biochemical studies do not perform
univariate analysis on their data, i.e. they assume
normality. However, this assumption in most cases will
be invalid. To illustrate the pitfalls that may be
encountered when interpreting toxicological data (or any
experimental data set), an example is presented in the
Appendix. Table A.1 shows the differences in p-values
generated from three-way ANOVA of non-normal data (liver

EROD) that have and have not been ranked.

3.1 Ethoxyresorufin O-deethylase (EROD) Induction

A laboratory study was conducted to measure the effect
of petrolew.an hydrocarbon exposure on EROD in cunner
(Tautogolabrus adspersus) during the critical period of
gonad maturation/spawning. The exposure system (Figure
A.l of the Appendix) delivered a pulse of diesel oil with
a mean concentration of 50 pg/ml (50 ppm), calculated from
the standard curve depicted in Figure A.2 of the Appendix.

A r ative ation curve of diesel oil in the
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tank water during the experimental trials is presented
in Figure A.3. A relatively high concentration of diesel
oil was used in order to decrease the variability of oil
concentrations in water (which is difficult to attain with
low concentrations of o0il) during the various exposure

periods.

Figures 3.1-3.8 show EROD specific activities in liver,
kidney, gill and heart of cunners throughout the reproductive
season. Results indicate EROD in hepatic and extrahepatic
tissues of diesel exposed cunners were significantly higher
relative to the control cunners during prespawning, early
spawning and late spawning. Ethoxyresorufin O-deethylase
specific activities of diesel exposed cunners were 4-6
fold higher in the liver, 4-7 fold higher in the kidney,
2-5 fold higher in the gill, and 7-18 fold higher in the
heart than enzyme activities of control cunners. The EROD
induction potential of each organ is tabulated in Table

3.1

3.2 Sex Differences in Ethoxyresorufin O-deethylase (EROD)
The generation of p-values by one-way ANOVA for the
determination of sex differences in the ability of cunners
to deethylate 7-ethoxyresorufin are shown in Table 3.2.
Sex differences in gill and heart EROD were not significant

throughout the reproductive season. However, induction
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Figure 5.1 : Male liver EROD specific activity (nmol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.2 :Female liver EROD specific activity (nmol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.3 : Male kidney EROD specific activity (nmol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.4 : Female kidney EROD specific activity (nmol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.5 : Male gill EROD specific activity (nmol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.6 : Female gill EROD specific activity (nmol/min/mg protein)
of control and diesel exposed cunners.

N=12 Ne=12 N=12
* »* »*
N=12
N=12 CONTROL Ne=d2
1 PRESPAWN EARLY SPAWN 2 LATE SPAWN b 1

% : statistically significant (p<0.0S) .

IS
3



—oxmM —HTPMI

0.06

0.05

0.04

0.01

0.00

Figure 3.7 : Male heart EROD specific activity (nmol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.8 : Female heart EROD specific activity (nmol/min/mg protein)
of control and diesel exposed cunners.
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Table 3.1:

Prespawn

Early spawn

Late spawn

50

in y (EROD)
factors of cunners exposed to diesel oil.

Male Cunners

Female Cunners

[Liver Kidney Gill Heart | Liver Kidney Gill Heart
6 7 3 18 6 5 3 13
5 5 2 12 4 5 2 7
4 5 5 15 5 4 4 16

Induction factor =

mean EROD specific activities

of oil exposed cunners
mean EROD specific activities
of control cunners
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Table 3.2: Level of significance of sex differences in
EROD specific activities of cunners.

sample Treatment organ
Liver Kidney Gill Heart
Prespawn control  p<0.1023 p<0.0191 p<0.6952 p<0.9454
diesel p<0.0046 p<0.0121 P<0.4919 p<0.2568
Early spawn control  p<0.4843 p<0.1297 p<0.3118 p<0.1403
diesel p<0.2899 p<0.0367 p<0.3718 p<0.7372
Late spawn control p<0.4073 p<0.0001 p<0.1064 p<0.7367
diesel p<0.2473 p<0.0287 p<0.7889 p<0.0584
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potential in heart (Table 3.1) was .higher in males versus
females during prespawning (18 versus 13 fold) and late
spawning (12 versus 7 fold). There were significant sex
differences in liver EROD of cunners exposed to diesel
during early spawning. Significant sex differences in
kidney EROD were observed within both control and treated
cunners throughout the reproductive season with the exception
of early spawning control cunners. In each case where
significant sex differences were evident, males always

displayed higher EROD specific activities than females.

3.3 Seasonal Variability in Ethoxyresorufin O-deethylase

(EROD)

Control cunners showed no significant variability
in liver, kidney, gill or heart EROD (p<0.05) throughout
the reproductive season. Also, there was no significant
seasonal variability in hepatic or extrahepatic EROD specific
activities of diesel treated males. Induced females also
displayed negligable differences in EROD of kidney, gill
and heart, whereas liver EROD was significantly higher
during late spawning compared to prespawning and early

spawning.

3.4 Glutathione S-tran: (GST) Inducibility.

Figures 3.9-3.16 depict the hepatic and extrahepatic

GST specific activities of control and diesel exposed cunncrs
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Figure 3.9 : Male liver GST specific activity (umol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.10 : Female liver GST specific activity (umol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.11 : Male kidney GST specific activity (umol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.12 : Female kidney GST specific activity (umol/min/mg protein)

of control and diesel exposed cunners.
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Figure 3.13 : Male gill GST specific activity (umol/min/mg protein)

of control and diesel exposed cunners.
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Figure 3.14 : Female gill GST specific activity (umol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.15 : Male heart GST specific activity (umol/min/mg protein)
of control and diesel exposed cunners.
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Figure 3.16 : Female heart GST specific activity (umol/min/mg protein)
of control and diesel exposed cunners.
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during the three experimental trials. Asterisks indicate
significant treatment differences in the enzyme activity.
Unlike EROD, GST was not induced in the fish exposed to
no. 2 fuel oil. There were some significant, but marginal,
differences between control and diesel exposed cunners.
However, no special trend was apparent enabling distinction
between GST specific activities of control and experimental

fish throughout the reproductive seascn.

3.5 Sex Differences in Glutathione S-transferase (GST)

Table 3.3 indicates the level of significance for
sex differences in GST specific activity. Although
significant differences were seen, these differences were
small and did not constitute a clear trend in any tissue.
The sex with the higher GST specific activities is shown

below the p-values generated by one-way ANOVA.

3.6 1 vVariability in Glutathione S-transferase

(GST) .

Similar to EROD, seasonal variability in gill and
heart GST specific activities was not significant. The
only significant change was in kidney GST which was lower
in control males during early spawning relative to pre-
spawning and late spawning. Also, liver GST in control
and experimental females varied significantly throughout

the reproductive season with enzyme activities lower during
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Table3.3: Level of significance of sex differences in
GST specific activities of cunners.

Sample Treatment Organ
Liver Kidney Gill Heart
Prespawn control  p<0.0723 p<0.0150 p<0.3234 p<0.7455
(female)
diesel p<0.1649 p<0.1595 p<0.5748 p<0.1558

Early spawn control p<0.0088 p<0.0116 p<0.4891 p<0.0087

(male) (male) (male)
diesel p<0.0003 p<0.0528 p<0.7044 p<0.6601
(male) (male)

Late spawn control p<0.0001 p<0.0011 p<0.1728 ><0.6771
(male) (female)
diesel p<0.0003 p<0.0783 p<0.5191 p<0.6398
(male)
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late spawning relative to the two previous periods. Even
though differences in GST were statistically significant

in some cases, the absolute differences were quite small.

3.7 Polycyclic Aromatic Hydrocarbon (PAH) Levels in Cunner

Liver

The levels of unsubstituted PAH in liver tissues of
cunners during the early spawning period are 1listed in
Table 3.4. Naphthalene equivalents were higher than the
other PAH in both control and diesel exposed fish. There
were no significant differences in PAH levels between male
control and experimental cunners. Experimental females
had significantly higher levels of naphthalene and fluorene
equivalents relative to control females. No other
significart differences in PAH levels between treatments

were evident.

There were no significant sex differences in PAH levels
between experimental males and females. Only one PAH,
fluorene, was found to be significantly higher in control
males relative to control females. Table 3.5 list p-values
for sex differences within control and diesel exposed

cunners.
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Table 3.4: Levels of PAH in cunner liver tissues during early spawning.

Sex Treatment Naphthalene

male control 245.417.76
p<0.5501
diesel 63.5%14.68

female control 33.245.48
p<0.0022
diesel 57.745.13

4 means t S.E.

P 1 PAH unit = 1 pg/ml = 1 ppm

Fluorene

4.0:0.81
p<0.9395

3.840.75

2.01:0.20
p<0.0012
5.5%:1.96

PPAH units/mg lipid

Phenanthrene

4.2:0.83
p<0.8519
3.9:0.84

5.521.33
p<0.6384
6.3:1.59

Pyrene Benzolalpyrene

2.1%1.76
p<0.6524
2.9:1.87

0.310.34
p<0.1308
3.3z21.6

1.520.50
p<0.6232
1.4:0.73

1.6:0.83
p<0.4227
0.4:0.19



Table 3.5: Level of significance of sex differences in PAH within control and
diesel exposed cunners during early spawning.

PAH Equivalents

Phenanthrene Pyrene Benzolalpyrene

Treatment Naphthalene Fluorene
Control P<0.2442 p<0.0480 p<0.8785 P<0.0961 p<0.4813
Diesel p<0.4836 p<0.4750 p<0.3959 p<0.7447 p<0.2930
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3.8 Correlations Between Enzyme Specific Activities and

Body Characteristics

Correlation coefficients (R-values) of enzyme-enzyme
interaction and enzyme-body characteristic interaction
for cunners during the reproductive season are presented
in Tables A.2-A.13 of the Appendix. Although a number
of significant correlations are seen within each cunner
group, no obvious trend was observed throughout gonad

maturation/spawning.
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4. DISCUSSION

4.1 Mixed Function Oxygenase (MFO) in the Cunner:
Induction, Sex Differences and Seasonal Variability

During Gonad Maturation/Spawning.

Fish are known to display a multiplicity of cytochrome
P-450's (Elmamlouk et al., 1977). Hepatic and extrahepatic
organs of fish are known to exhibit MFO enzyme activities
(Stegeman, 1980). Induction in £ish, however, appear to
be more limited to P-448 type inducers. Inducers include
important environmental contaminants such as PAH's, PCB's,
and complex petroleum products (Addison et al., 1981; Payne
and Penrose, 1975; Walton et al., 1978). Field trials
have demonstrated the usefulness of MFO induction as an
indicator of early biological effects due to these pollutants
(reviewed by Payne, 1987). However, tha liver may be
refractory to induction during the reproductive period
and studies were carried out to investigate the induction
potential of extrahepatic as well as hepatic tissues in

cunners during the summer reproductive period.

The cunner was a suitable test species for this
experiment because of its contracted gonad
maturation/spawning period relative to such species as

Atlantic cod (Templeman, 1976) or winter flounder
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(Pleuronectes americanus) (Fletcher and King, 1978). This
work successfully demonstrated the ability to resolve
ethoxyresorufin O-deethylase (EROD) induction in 1liver,
kidney, gill, and heart tissues of cunners in all
experimental trials when exposed to diesel oil. Also,
constitutive levels of EROD did not vary significantly
throughout the reproductive season in hepatic or extrahepatic
tissues. Sex differences in EROD were observed in liver
and kidney tissues during certain pericds of gonad
maturation/spawning. In each case, males had higher EROD

specific activities than females.

Most investigations on the inducibility of MFO enzymes
in aquatic biota have focussed on fish liver (Addison,
1984). This may be a more practical organ for monitoring
since it has been established as the major detoxification
tissue of animals. Mammalian liver generally contains
the highest concentrations of enzymes involved in xenobiotic
metabolism (Bend and Singh, 1984), and preparation of liver
fractions are easier to work with relative to extrahepatic
organs. However, besides elucidating the importance of
chemical metabolism in extrahepatic organs from a
toxicological perspective, it is essential to study the
potential use of biotransformation enzymes in other organs
as indices of environmental pollution. The results of

this thesis show EROD inducibility of kidney and gill tissues
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is comparable to liver. Furthermore, heart EROD induction
was even greater than liver throughout the reproductive
season. Previous investigations have provided evidence
that fish kidney has the capacity to execute cytochrome
P-450 mediated reactions (Lindstrom-Seppa et al., 1981;
Stegeman et al., 1984); other studies have revealed
comparable MFO activities in liver and kidney tissues
(Pesonen et al., 1985). Furthermore, field studies have
shown the importance of measuring MFO in extrahepatic organs
as well as liver. Flounder (with ripe gonads) collected
at the site of an oil spill in Newfoundland in June exhibited
no induction potential in liver tissues but marked induction
in kidney tissues compared to reference sites (Payne et
al., 1984). The potential for induction of MFO in gill
tissue was also demonstrated in fish collected near a
refinery outfall (Payne, 1976). The lcw constitutive EROD
levels observed in heart tissues of the cunners in this
study may account for the excellent induction seen in this
tissue. Information on the xenobiotic metabolizing capacity
of fish heart is lacking, especially with respect to the
influence of reproductive status. Stegeman et al. (1982)
demonstrated that the cytochrome P-450 in the heart of
scup (Stenotomus chrysops) was similar to a
3-methylcholanthrene (P-448) inducible form found in rat

heart. Overall, the results of this study demonstrate
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a role for extrahepatic as well as hepatic MFO enzymes
in  biological monitoring  including  throughout  the

reproductive period.

No significant variability in EROD specific activities
was noted during gonad maturation/spawning. Walton et
al. (1983) found large differences in constitutive levels
and induction of liver MFO (aryl hydrocarbon hydroxylase)
in  female and male cunners throughout the gonad
maturation/spawning season.  This earlier study, which
was restricted to analysis of liver tissues, indicated
that aryl hydrocarbon hydroxylase (AHH) may not be a
sensitive indicator of exposure to petroleum hydrocarbons
during intense reproductive activity. It should be noted
that different MFO enzyme activities (EROD vs AHH) were
evaluated 1in this study. The ‘'noise' generated by the
reproductive cycle of cunners in the study conducted by
Walton et al. (1983) does suggest the use of AHH, unlike
the EROD assay which was specially developed for inducers
like PAH's, should be scrutinized when used as a biological

monitor (especially it seems during reproduction).

No significant sex differences between control and
diesel exposed cunners were observed for gill or heart
EROD. flowever, the heart EROD induction potential of male

cunners was higher than female cunners during prespawning
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and early spawning. No differences in heart EROD induction
potential were seen uuring late spawning, whereas sex dif-
ferences were observed in liver and kidney tissues. Within
diesel exposed cunners, early spawning males had higher
liver EROD specific activities compared to early spawning
females. Also, kidney EROD of both male control and male
diesel exposed cunners were higher than females throughout
the reproductive season. The only exception in kidney
EROD sex differences was in early spawning (control) cunners,
where no significant sex differences were noted. An
investigation concerned with natural variation in benzo-
[alpyrene hydroxylation in flounder (Platichthys flesus)
revealed higher specific activities in liver tissues of
males versus females throughout the year, especially during
gonad maturation when MFO activity appeared to be inhibited
in the females (Tarlebo et al., 1985). In another study,
liver MFO (benzolalpyrene, 7-ethoxycoumarin, and
7-ethoxyresorufin as substrates) of the freshwater vendace
(Coaregonus albula) varied during the seasons with lowest
levels being detected prior to and during spawning, but
these levels were consistantly higher in males relative
to females (Lindstrom-Seppa, 1985). Stegeman and Chevion
(1980) found a higher cytochrome P-450 content in male
brook trout and rainbow trout rclative to females durina
spawning, yet benzolalpyrene hydroxylase activity was higher

in females.
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Different ratios of androgens have been found in the
plasma of both sexes of rainbow trout (Campbell et al.,
1980) and during prespawning, females have higher concen-
trations of plasma estradiol-17-8 levels (Whitehead
et al., 1978). Growing evidence supports the idea that
sex steroids may play a major role in regulating MFO
activities in fish species (Forlin et. al., 1984; Hansson
and Gustafsson, 1981). Furthermore, sex-specific cytochrome
P-450's have been isolated from rat liver (Dannan et. al.,
1986). Circulating steroids and sex specific cytochromes
P-450 may be postulated to help explain seasonal and

sex-linked differences in MFO enzymes.

Analytical procedures have traditionally been an
integral aspect of environmental monitoring programs.
Besides analytical determination of chemical concentrations
in the aquatic environment, it is also important to measure
tissue concentrations of xenobiotics in target organisms.
Biological effects of chemicals are a manifestation of
biological concentrations and not environmental
concentrations (Tan and Singh, 1987). The importance of
measuring a sublethal response such as MFO induction, in
addition to chemical analysis, is clearly seen in this
thesis when the sensitivities of both approaches are
compared.  Determination of total PAlIl levels in cunner

liver does not casily discriminate between control [ish
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and diesel exposed fish. When EROD induction is used as

a sole indicator of petroleum exposure, control fish are
readily distinguished from diesel exposed fish. Thus,
incorporation of a biomonitor such as MFO induction in
environmental monitoring programs is an essential complement

to analytical methods.

In summary, EROD induction was readily resolved in
male and female cunners in both hepatic and extrahepatic
tissues throughout the reproductive season. Some sex-linked
differences were apparent in EROD of liver, kidney and
heart. 'These studies support the versatility of MFO enzyme

induction as a sensitive biological monitoring tool.

4.2. Glutathione S-transferase (GST) in the Cunner:
Induction, Sex Differences, and Seasonal
Variability During Gonad Maturation/Spawning.

One major role of reduced glutathione (GSH) in mammals
is the direct conjugation of xenobiotics. Conjugation
may be spontaneous or achieved by a group of cytosolic/
microsomal enzymes known as glutathione S-transferases
(GST) (Igwe, 1986) found in mammalian and non-mammalian
species (Morgenstern et al., 1984). In this study, the
potential for GSH S-transferase induction in cunners was
also investigated during the gonad maturation/spawning

period.
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The results of this study indicate that male and female

cunners are refractory to GST induction when exposed to
No. 2 fuel oil during the reproductive season. It is
difficult to relate these observations to other
investigations due to species differences, physiological
differences and differing methodologies. Induction of
hepatic GSH S-transferase specific activity has been shown
to occur in rats exposed to PAH-type  compounds.
Intraperitoneal  injection of  3-methylcholanthrene  or
benzolalpyrene significantly induced GST activities in
female and male rats (Kaplowitz et al., 1975) with higher
enzyme activity being observed in males. Conflicting reports
in the literature on the inducibility of GST in fish species
appear to be due to species differences und variations
of experimental protocol. Winter flounder administered
1, 2, 3, 4-dibenzanthracene (DBA) or 5, 6-benzoflavone
(BNF) intraperitoneally displayed no significant induction
in hepatic GST activity over controls (Foureman et al.,
1983). 1In another study, BNF treated rainbow trout exhibited
significantly higher hepatic GST activity relative to control

fish (Andersson et al., 1985a).

No significant sex differences in GST were observed
in gill tissues. Heart GST of control male cunners were
significantly higher than females during early spawning.

There were some variability and sexnal differcences in GST
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specific activity of cunner liver and kidney tissues.
Where sex differences were observed in liver and kidney
tissues, males generally had higher GST enzyme activities
than females. A number of investigations have been conducted
studying MFO sexual dimorphism in fish (Stegeman and Chevion,
1980; Koivusaari et al., 1984; Williams et al., 1986),
yet :nformation on sex differences in enzyme-catalyzed
conjugation is lacking. There are some reports on sex
differences in mammalian GST. Examination of five strains
of mice indicated a ten-fold higher hepatic GST content
in males compared to females (Hatayama et al., 1986).
Kaplowitz et al. (1975) demonstrated higher hepatic GST
specific activities in male rats than female rats.
Testosterone has been shown to influence the levels of
GST in mouse liver (Hatayama ct al., 1986) and this steroid
is postulated to be an important developmental regulator
of GST in mice. The postulated control of MFO in mammals
by androgen "imprinting" (Gustafsson et al., 1983) may
also be important in the expression of sex-specific GST
in mammals and fish. Sex differences seen in kidney and
liver GST of cunners may be related to sex-specific enzymes

and circulatory steroids.

The relationship between the biological oxidation
of drugs/chemicals and subsequent conjugation in mammals

implies that the higher the detoxifying/toxifying cnzyme
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ratio the more protection afforded against xenobiotic
toxicity (Conney, 1985). Several studies with fish have
also supported this premise. Starry flounder appear to
have a lower incidence of hepatocarcinoma than English
sole in areas of Puget Sound (Collier and Varanasi, 1986)
which are known to be heavily polluted with aromatic
hydrocarbons. Field studies have revealed that English
sole exhibit substantially higher levels of AHH (activation
enzyme) and lower levels of GST (deactivating enzyme)
activities than do the nonsusceptible starry flounder
(Collier and Varanasi, 1986). Another investigation with
the same two species showed higher increases in hepatic
DNA adduct formation in English sole compared to starry
flounder when exposed to equal doses of benzo[alpyrene
(Varanasi et al., 1987). Even though the cunners were
refractory to GST induction, the high MFO induction potential
implies that this species may be very susceptible to aquatic
pollutants, especially during the sensitive reproductive
stages. However, the results of this study suggests that
GST has little potential as a biomonitor for hydrocarbon

pollution.
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CONCLUSIONS

Mixed function oxygenase induction, measured as
ethoxyresorufin O-deethylase (EROD) was readily resolved
in hepatic and extrahepatic tissues of cunners

thr the «r ive season when exposed to

diesel oil.

Male EROD was generally higher than female EROD in
hepatic and extrahepatic tissues throughout gonad
maturation/spawning.

Heart EROD had a higher induction potential than liver,
kidney and gill EROD in cunners throughout the
reproductive season.

GST was not inducible in hepatic or extrahepatic tissues
of cunners throughout gonad maturation/spawning.

Unlike EROD induction, which was observed in all tissues
at all sampling periods in fish exposed to petroleum,
GST was demonstrated to have little potential as a
biomonitor for hydrocarbon pollution.

Except for a few incidental correlations among EROD,
GST and the body characteristics, no meaningful

relationships were apparent.
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APPENDIX



Figure A.l: Pulse delivery exposure system of
diesel oil to cunners.
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Figure A.2: Standard curve of fluorescence
(excitation 308 nm, emission 344 nm)
versus diesel oil concentration.
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Figure A.3: Diesel concentration in exposure tank during
early spawning trial.
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TABLE A.l: Comparison of p-values of non-normal data
that have been ranked and non-ranked.

Source

Sample

Treatment

Sample x Treatment

Sample X Sex

Treatment x Sex

Sample x Treatment x Sex

& p-value
u unranked

R ranked

R

0.0001* 0.0001 0.0001

0.5313 0.5741 0.3746

0.0001  0.0001 0.0001
0.0001 0.0001 0.0001

0.0471  0.0043 0.8565
0.0200 0.0001 0.9212

0.0001 0.0001 0.0001
0.8026 0.2381 0.8975

0.0028 n.1730 0.4053
0.1105 0.6278 0.1656

0.3696 0.0283 0.6909
0.8068 0.8332 0.6005

0.0024 0.2323 0.8572
0.2589 0.7877 0.4860

0.0001
0.3401

0.0001
0.0

0.7898

0.5035

0.0001
0.9035

0.8189
0.3464

0.4949

0.0371

0.8692
0.8534



Table A.2: Correlation coefficients
characteristics of control

EK EG EH  GL  GK GG
EL 0.04 0.53 0.18 0.61 0.37 0.04
EK -0.10 0.13 0.29 0.77* 0.16
EG 0.51 0.12 0.20 0.60
EH 0.40 0.41 0.46
GL 0.56 0.07
GK 0.56
Gc
GH
cGo
cco
CLSI
LTH
* p<0.05

EL= Liver Ethoxyresorufin O-Deethylase
EK= Kidney Ethoxyresorufin O-Deethylase
EG= Gill Ethoxyrescrufin O-Deethylase
EH= Heart Ethoxyresorufin O-Deethylase
GL= Liver Glutathione S-Transferase
GK= Kidney Glutathione S-Transferase
GL= Gill Glutathione S-Transferase

GL= Heart Glutathione S-Transferase

among enzyme activities and
male cunners during prespawning.

GH cGo cco CLSI LTH
0.11 -0.07 0.20 0.38 0.15
0.77% 0.45 -0.55 -0.58 -0.45
0.16 0.31 0.06 0.48 -0.13
0.66 0.29 0.12 0.22 -0.60
0.54 -0.12 -0.12 -0.17 -0.21
0.79* 0.17 -0.30 -0.39 -0.52
0.33 0.19 -0.22 -0.16 -0.54

0.27 =-0.71 ~-0.54 -0.38
-0.33 =-0.17 -0.68*

0.81* 0.26

0.42

CGO= Gonad Index =
[ (Gonad/Weight-T1)] x 100
CCO= Condition Index =
[ (Weight-T1)/(lengthx3)] x 100
CLSI= Liver Somatic Index =
[(Liver/Weight-T1)] x 100
LTH= Length
WT=  Weight
Tl= Gonad + Liver

body

WT
0.27
~-0.44
-0.03
-0.33
=0.10
-0.43
=0.51
-0.41
=0.68%
0.47
0.52
0.95*%

o
@



Tabl

* p<i

EL=
EK=

EH=
GL=
GK=
GL=
GL=

e A.3:

Correlation coefficients among enzyme activities and body characteristics
o

f control male cunners during early spawning.

EK EG EH GL GK
-0.09 -0.10 0.15 0.74* 0.18
0.08 0.04 =-0.32 0.30
0.45 =0.19 0.10
0.17 0.002
0.03
0.05

Liver Ethoxyresorufin O-Deethylase
Kidney Ethoxyresorufin O-Deethylase
Gill Ethoxyresorufin O-Deethylase
Heart Ethoxyresorufin O-Deethylase
Liver Glutathione S-Transferase
Kidney Glutathione S-Transferase
Gill Glutathione S-Transferase
Heart Glutathione S-Transferase

GG
=-0.27
-0.18

0.59

0.33
-0.27

c.02

GH CcGo cco CLSI LTH WT
-0.73* -0.03 0.03 0.08 0.11 0.22
-0.09 0.47 0.09 0.43 =-0.07 -0.07

0.23 -0.26 -0.16 0.18 0.49 0.50
-0.28 0.49 0.20 0.40 0.08 0.40
-0.28 -0.21 0.34 -0.05 =-0.37 -0.22
-0.09 -0.02 0.14 -0.50 =-0.20 -0.18
-0.10 -0.16 -0.13 0.29 -0.27 0.24

-0.36 0.18 =-0.27 -0.23 =-0.27
0.42 0.54 -0.10 0.19
0.11 -0.47 -0.14
0.40 0.55
0.90*
CGO= Gonad Index =
[ (Gonad/Weight-T1)] x 100
CCOo= Condition Index =
[(Weight-T1)/(Lengthx3)] x 100
CLSI= Liver Somatic Index =
[(Liver/Weight-T1)] x 100
LTH= Length
WT= Weight

T1

Gonad + Liver
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Correlation coefficients among enzyme activities and

of control male cunners during late spawning.

Table A.4:

EK EG EH GL GK
EL 0.15 0.19 -0.22 0.35 =-0.42
EK 0.71* -0.09 =-0.07 0.07
EG -0.09 0.05 0.05
EH -0.45 -0.07
GL 0.12
GK
GG
GH
cGco
cco
CLSI
LTH
* p<0.05
EL= Liver Ethoxyresorufin O-Deethylase

EK=
EG=
EH=
GL=
GK=
GL=
GL=

Kidney Ethoxyresorufin O-Deethylase
Gill Ethoxyresorufin O-Deethylase
Heart Ethoxyresorufin O-Deethylase

Liver Glutathione S-Transferase
Kidney Glutathione S-Transferase
Gill Glutathione S-Transferase
Heart Glutathione S-Transferase

body characteristics

GH cGo cco CLST LTH
0.06 -0.22 0.01 -0.42 ~0.20
-0.2¢ 0.12 0.38 =-0.15 0.49
-0.27 0.22 0.11 0.02 0.43
0.40 0.15 c.06 0.22 0.25
0.05 -0.39 -0.56 =-0.72* -0.26
0.21 -0.07 0.24 0.07 -0.22
0.14 -0.49 -0.18 -0.22 =0.70*%
0.27 0.28 0.50 =0.70*%
0.17 0.53 0.19
0.33 0.05
-0.16
CGO= Gonad Index
[(Gonad/Welght Tl)] x 100
CCO= Condition Inde:

[ (Weight~' Tl)/(LSngthxa)] x 100

CLSI= Liver Somatic Index

[(Liver/Weight-— Tl)] x 100

LTH=
WT=
Tl=

Length
Weight
Gonad + Liver

WwT
-0.22
0.54
0.34
0.22
-0.54
=0.17
-0.80%
-0.44
0.35
0.48 5
0.12 ©
0.85%



Table A.5: Correlation

FK
0.20

EG
-0.04
-0.28

EH

0.46
-0.54

0.41

GL
-0.12
0.16
0.10
0.02

GK
0.07
0.52
-0.11
-0.45
0.14

* p<0.05

Liver Ethoxyresorufin O-Deethylase
Kidney Ethoxyresorufin O-Deethylase
Gill Ethoxyresorufin O-Deethylase
Heart Ethoxyresorufin O-Deethylase
Liver Glutathione S-Transferase
Kidney Glutathione S-Transferase
Gill Glutathione S-Transferase
Heart Glutathione S-Transferase

coefficients
characteristics of control female

GG
-0.25
-0.63%

0.17

0.23
=0.67*
-0.39

body

0.06
0.21
-0.22
0.09
0.27
-0.23
-0.45
=-0.11
0.11
0.01
0.40
0.89% "

among enzyme activities and
during ing.
GH CGo cco CLSI LTH
0.14 0.25 =-0.31 0.02 -0.03
-0.85* -0.34 0.56 -0.22 0.10
0.61 =0.15 0.06 0.01 -0.11
0.68% 0.29 =-0.19 0.03 -0.02
=0.40 =0.06 0.34 0.20 0.08
=0.28 ~0.04 0.29 -0.27 -0.28
0.71* -0.02 -0.23 -0.10 -0.24
0.44 -0.44 0.51 -0.01
=-0.42 0.74* -0.12
-0.04 -0.18
0.13
CGO= Gonad Index =
[(Gonad/Weight-T1)] x 100
CCO= Condition Index =
[(Weight-T1)/(Lengthx3)] x 100
CLSI= Liver Somatic Index =
[(Liver/Weight-T1)] x 100
LTH= Length
W= Weight

Tl=

Gonad + Liver



Table A.6:

* p<i

EL=
EK=
EG=
EH=
GL=
GK=
GL=
GL=

Correlation coefficients among enzyme activities and body
characteristics of control female cunners during early spawning.
EK EG EH GL GK GG GH CGo cco CLSI LTH WT
0.33 -0.23 0.16 0.07 =-0.25 =0.07 0.31 -0.28 -0.04 0.10 0.55 0.41
0.47 0.81* -0.02 0.28 0.67% 0.14 0.47 -0.20 0.34 0.46 0.40
0.30 =-0.21 0.04 0.39 -0.19 -0.05 -0.26 0.11 -0.16 =-0.13
0.28 0.63* 0.80* 0.28 0.58* 0.05 0.48 0.68+ 0.68+
0.78% 0.06 0.10 -0.07 -0.32 0.09 0.11 0.07
0.43 0.22 0.35 -0.25 0.16 0.20 0.21
-0.18 0.75* 0.17 0.70* 0.52 0.62%
-0.16 0.04 -0.30 0.31 0.19
0.29 0.53 0.31 0.40
0.58% 0.26 0.38
0.33 0.46
0.97*
0.05

Liver Ethoxyresorufin O-Deethylase
Kidney Sthoxyresorufin O-Deethylase
Gill Ethoxyresorufin O-Deethylase
Heart Ethoxyresorufin O-Deethylase
Liver Glutathione S-Transferase
Kidney Glutathione S-Transferase
Gill Glutathione S-Transferase
Hearth Glutathione S-Transferase

CGO= Gonad Index =
[ (Gonad/Weight-T1)] x 100
€Cco= Condition Index =

[ (Weight-T1)/(Lengthx3)] x 100

CLSI= Liver Somatic Index =

[ (Liver/Weight-T1)] x 100
Length

Weight

Gonad + Liver

LTH=
WT=
Tl=

201



Table A.7: Correlation coefficients among enzyme activities and
characteristics of control female cunners during late spawning.

EK EG EH GL GK GG GH CGO €CCO CLSI  uLTH
EL -0.003 0.03 -0.57* -0.19 -0.06 0.41 -0.04 -0.47 -0.27 -0.75* -0.76*
EK 0.30 -0.29 0.17 0.37 =-0.27 ~0.01 0.23 -0.16 0.43 -0.14
EG -0.47 -0.18 ~-0.28 -0.62*% 0.07 0.03 -0.48 0.27 -0.14
EK 0.25 0.25 0.24 0.06 0.09 0.52 0.06 0.59*%
GL 0.39 0.05 0.22 -0.34 0.45 0.15 -0.005
GK -0.12 0.16 =-0.29 -0.12 -0.19 =-0.06
GG 0.20 0.08 0.29 -0.43 -0.28
GH 0.14 -0.23 0.01 -0.17
cGco -0.14 0.67* 0.46
cco 0.14 0.14
CLSI 0.49
LTH
* p<0.05
EL= Liver Ethoxyresorufin O-Deethylase CGO= Gonad Index =
EK= Kidney Ethoxyresorufin O-Deethylase [ (Gonad/Weight-T1)] x 100
EG= Gill Ethoxyresorufin O-Deethylase CCO= Condition Index =
EH= Heart Ethoxyresorufin O-Deethylase [ (Weight-T1)/(Lengthx3)] x 100
GL= Liver Glutathione S-Transferase CLSI= Liver Somatic Index
GK= Kidney Glutathione S-Transferase [ (Liver/Weight-T1)] x 100
GL= Gill Glutathione S-Transferase LTH= Length
GL= Heart Glutathione S-Transferase WT= Weight

Tl= Gonad + Liver

body

WT
=0.82*%
-0.19
-0.18

0.59*%

0.03
-0.19
=0.24
-0.21

0.50

0.31 $a

0.59% 2

0.96*



Table A.8: Correlation

coefficients

among enzyme activities and

body

characteristics of diesel exposed male cunners during prespawning.

EK EG EH GL GK
EL 0.13 0.31 0.34 0.69* -0.13
EK 0.39 0.24 0.27 0.72*
EG -0.32 0.39 0.49
EH 0.34 0.005
GL -0.02
GK
GG
GH
cGo
cco
CLSI
LTH
* p<0.05

Liver Ethoxyresorufin O-Deethylase
Kidney Ethoxyresorufin O-Deethylase
Gill Ethoxyresorufin O-Deethylase
Heart Ethoxyresorufin O-Deethylase
Liver Glutathione S-Transferase
Kidney Glutathione S-Transferase

= Gill Glutathione S-Transferase
Heart Glutathione S-Transferase

GG
-0.28
-0.01
-0.32

0.12
=0.2%

0.32

GH CGO cco CLSI LTH
-0.11 -0.52 =-0.13 -0.44 0.21
0.14 -0.43 -0.22 -0.53 =-0.19
9.15 -0.01 -0.17 =-0.29 =-0.39
-0.04 -0.27 -0.07 -0.05 0.46
0.11 -0.05 0.01 0.0l -0.26
0.50 -0.08 0.004 -0.15 =-0.10
0.18 0.17 0.49 0.24 0.03
0.43 0.37 0.37 -0.24
0.20 -0.38 -0.52
0.29 -0.26
-0.07

CGO= Gonad Index =

[ (Gonad/Weight-T1)] x 100

CCO= Condition Index =
[ (Weight-T1)/(Lengthx3)] x 100
CLSI= Liver Somatic Index =
[ (Liver/Weight-T1)] x 100
LTH= Length
Weight

Tl= Gonad + Liver

WP
0.18
-0.25
-0.37
0.45
-0.06
~0.11
0.16
-0.14
-0.50
0.29
0.16
0.77%

¥0T



Table A.9: Correlation coefficients among
characteristics of diesel exposed male cunners during early spawning.

EK EG EH 6L GK
EL 0.84* -0.14 -0.22 =-0.13 0.47
EK -0.10 =-0.02 -0.22 0.45
EG 0.21 0.41 0.55
EH 0.11 -0.28
GL -0.06
GK

GG

GH

cco

Ccco

CLSI

LTH

* p<0.05

Liver Ethoxyresorufin O-Deethylase
Kidney Ethoxyresorufin O-Deethylase
Gill Ethoxyresorufin O-Deethylase
Heart Ethoxyresorufin O-Deethylase
Liver Glutathione S-Transferase
Kidney Glutathione S-Transferase
Gill Glutathione S-Transferase

GL— Heart Glutathione S-Trasferase

GG GH
0.71% o
0.40 0.34
0.07 -0.27
0.003  0.26
0.14 -0.21
0.35 -0.15
-0.27

enzyme

€GO
-0.34
-0.42
0.40
-0.11
0.18
0.14
-0.33
-0.42

activities and

cco
-0.37
-0.47
-0.09
-0.46
-0.04

0.14
-0.45
-0.04

0.16

CGO= Gonad Index =

Ind

CLSI LTH

-0.74*  0.24
-0.85*  0.38

0.42 0.27
0.007 -0.06
0.13  -0.22
-0.12 0.25
-0.39 0.41
-0.42 0.31
0.74* -0.35
0.38  -0.51
-0.27

l(Gonad/Wetht Tl)] x 100
CCO= Condition
[ (Wweight-! Tl)/(Lengtth)] x 100

CLSI= Liver Somatic Index =

LTH= Length

WT:

Weight

Tl= Gonad + Liver

[(Liver/Weight-T1)] x 100

body

WT
0.26
0.32
-0.08
-0.47
-0.23
0.32
0.38
0.34
-0.40
-0.08
0.78* »
0.78%



Table A.10: Correlation  coefficients among enzyme activities and  body
characteristics of diesel exposed male cunners during late spawning.

EK EG EE  GL GK
EL -0.11 0.67* -0.14 0.11 -0.20
EK -0.05 -0.13 0.48 0.62*%
EG -0.41 0.08 -0.25
EH 0.07 —-0.02
GL 0.69*%
GK
GG
GH
cGo
cco
CLSI
LTH
* p<0.05

Liver Ethoxyresorufin O-Deethylase
Kidney Ethoxyresorufin O-Deethylase
Gill Ethoxyresorufin O-Deethylase
Heart Ethoxyresorufin O-Deethylase
Liver Glutathione S-Transferase
Kidney Glutathione S-Transferase
Gill Glutathione S-Transferase
Heart Glutathione S-Transferase

GG GH CGo cco CLSI LTH WT

-0.33 0.25 0.16 0.35 0.55 -0.41 -0.34
-0.40 -0.15 -0.44 -0.61* -0.43  0.29 -0.22
-0.34 -0.10 0 0.24 0.22 -0.10 -0.03
-0.01 0.76% 0 -0.19 -0.03 0.19 0.13
0.21 -0.09 -0.57 =-0.42 -0.38 0.30 =-0.17
0.34 0.11 -0.79*% -0.60* -0.74* 0.02 -0.50
-0.18 -0.37 0.14 -0.34 -0.30 -0.24

-0.12 0.02 -0.05 =-0.25 -0.14

0.32 0.63* 0.18 0.60%*

0.68* -0.64* -0.09

-0.30 0.04

0.77%

CGO= Gonad Index =
[ (Gonad/Weight-T1)] x 100

CCO= Condition Index =
[(Weight-T1)/(Lengthx3)] x 100

CLSI= Liver Somatic Index =
[(Liver/Weight-T1)] x 100

LTH= Length

W Weight

Gonad + Liver
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Table A.11: Correlation

coefficients

among

characteristics of diesel exposed females during prespawning-

EK EG EH GL GK
EL 0.45 0.47 -0.37 0.61%* 0.66*
EK 0.44  0.15 0.09 0.23
EG =37 0.39 0.36
EH 0.002 -0.38
GL 0.36
GK
GG
GH
cGo
cco
cLsI
LTH
* p<0.05

Liver Ethoxyresorufin O-Deethylase

Gill Ethoxyresorufin O-Deethylase
Heart Ethoxyresorufin O-Deethylase
Liver Glutathione S-Transferase
Kidney Glutathione S-Transferase
Gill Glutathione S-Transferase
Heart Glutathione S-Transferase

Kidney Ethoxyresorufin O-Deethylase

GG
0.04
-0.59*
-0.52
0.02
0.10
0.30

GH
-0.29
-0.81*%
<0.8r*

0.51
-0.26
=0.37

0.70

enzyme activities and body
cGo cco CLSI LTH WT
0.13 -0.22 -0.52 -0.61* -0.82*
-0.31 -0.11 -0.68* -0.34 -0.34
0.27 0.02 -0.21 -0.53 -0.59*
-0.47 -0.924 0.11 0.71* 0.77*
0.30 =-0.44 -0.06 0.02 =0.30
0.17 -0.55 -0.29 -0.47 -0.66%
0.25 =-0.14 0.46 0.15 0.11
-0.37 -0.02 0.57 0.67 0.71
0.24 0.32 -0.45 -0.33
0.31 -0n.09 0.16
0.44 0.50
0.90*

Gonad Index =
[(Gonad/weight T1)] x 100
Condition Index =
[ (Weight- Tl)/(Lengthx3)] x 100
Liver Somatic Index =
[(Liver/Weight-T1)] x 100
Length
Weight
Gonad + Liver

LOT



Table A.12: Correlation coefficients among enzyme activities and body
characteristics of diesel exposed female cunners during early spawning.

EK EG EH GL GK GG GH CGo cco CLST LTH W

EL 0.37 -0.34 -0.27 0.54 -0.22 -0.34 -0.35 -0.78% 0.32 -0.74* -0.38 -0.36
EK -0.31 0.07 0.59* 0.18 -0.30 0.28 -0.42 -0.01 -0.24 -0.10 -0.20
EG 0.44 -0.26 -0.07 0.32 0.43 0.35 0.20 0.06 =-0.17 -0.20
EH -0.09 -0.46 =-0.47 0.64* 0.34 0.25 0.50 =-0.23 -0.20
GL 0.13 -0.30 -0.43 -0.65* 0.56 -0.55 0.17 0.17
GK 0.37 0.04 -0.15 -0.35 -0.23 0.38 0.28
GG -0.04 0.14 -0.43 -0.13 0.27 0.17
GH 0.21 -0.43 0.43 =-0.57 -0.64*
CGo -0.26 0.94* 0.35 0.34
cco -0.39 -0.04 0.08
CLSI 0.20 0.20
LTH 0.98%
* p<0.05

Liver Ethoxyresorufin O-Deethylase CGO= Gonad Index =

Kidney Ethoxyresorufin O-Deethylase [(Gonad/we).ght T1)] x 100

Gill Ethoxyresorufin O-Deethylase CCOo= Condition Index =

Heart Ethoxyresorufin O-Deethylase [ (Weight~ Tl)/(Lengthx])] % 100

Liver Glutathione S-Transferase CLSI= Liver Somatic Index =

Kidney Glutathione S-Transferase [(Liver/Weight-T1)] x 100

Gill Glutathione S-Transferase LTH= Length

Heart Glutathione S-Transferase WT=  Weight

Tl= Gonad + Liver

80T



Table A.13: Correlation coefficients

among

enzyme activities and

body
characteristics of diesel exposed female cunners during late spawning.

EK EG EH 6L GK
EL 0.83* 0.03 0 -0.47 -0.20
EK 0.11 0.29 =-0.31 -0.41
EG 0.29 0.03 -0.29
EH -0.32 -0.49
GL 0.06
GK

GG

GH

cGo

cco

CLSI

LTH

* p<0.05

Liver Ethoxyresorufin O-Deethylase
Kidney Ethoxyresorufin O-Deethylase
Gill Ethoxyresorufin O-Deethylase
Heart Ethoxyresorufin O-Deethylase
Liver Glutathione S-Transferase
Kidney Glutathione S-Transferase
Gill Glutathione S-Transferase
Heart Glutathione S-Transferase

GG

0.15
-0.06

0.18
-0.55
=-0.07
=0.12

GH
-0.29
-0.32

0.31
-0.49

0.55

0.17

0.49

cGco cco CLSI LTH WT
0.38 0.35 0.34 0.02 0.32
0.38 0.19 0.49 0.23 0.47
-0.16 0.20 0.03 -0.18 -0.10
-0.06 =0.19 =-0.13 0.31 0.30
=-0.37 0.07 =-0.20 -0.28 -0.35
0.09 -0.01 0.07 -0.19 -0.38
0.25 .21 0.33 -0.49 -0.38
-0.17 0.24 -0.23 ~0.62* -0.68*

0.51  0.73* -0.13 0.12
0.16 -0.47 -0.07

0.11 0.21

0.87*

Gonad Index =
[ (Gonad/Weight-T1)] x 100
Condition Index =
[ (Weight~ Tl)/(Lengtth)l x 100
Liver Somatic Index
[(Liver/Weight-T1)] x 100
Length
Weight
Gonad + Liver

60T
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Table A.14: Gonad Indices of Cunners Throughout the
Reproductive Season

Gonad Index (CGO)

ex Treatment Prespawn Early Spawn Late Spawn
Male Control 5.20£0.71 6.34:0.44 2.79%0.22
Diesel 6.1810.28 3.1340.35 3.16:0.16
Female Control 6.06£0.23 9.05:0.33 5.08%0.32
Diesel 5.25£0.34 9.95t0.15 4.63:0.48
Gonad Index (CGO) = (Gonad/Weight - T1) x 100

Tl = Gonad + Liver
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