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Abstract. The global dynamics of a periodic SIS epidemic model with matu-
ration delay is investigated. We first obtain sufficient conditions for the single
population growth equation to admit a globally attractive positive periodic
solution. Then we introduce the basic reproduction ratio R0 for the epidemic

model, and show that the disease dies out when R0 < 1, and the disease
remains endemic when R0 > 1. Numerical simulations are also provided to
confirm our analytic results.

1. Introduction. Many mathematical models for the spread of infectious diseases
are described by autonomous systems of differential equations (see, e.g., [2, 4]).
However, certain diseases admit seasonal behavior and it is now well understood
that seasonal fluctuations are often the primary factors responsible for recurrent
epidemic cycles. Periodic changes in social interactions can alter the contact rate
for some directly transmitted contagious infections. For example, in the case of
childhood infectious disease, the contact rates vary seasonally according to the
school schedule [5]. Fluctuations of birth rates are also evidenced in the works
of population dynamics [8, 19]. Periodic vaccination strategies are often used to
control diseases [6]. We further refer to two surveys [1, 7] and references therein for
seasonal fluctuations in epidemic models. It thus becomes natural to model these
diseases by periodically forced nonlinear systems.

A central concept in the study of the spread of communicable diseases is the
basic reproduction number, denoted by R0, which is defined as the expected number
of secondary cases produced, in a completely susceptible population, by a typical
infective individual (see, e.g., [2, 4]). In many cases, one may expect that such a
disease can invade the susceptible population if R0 > 1. Thus, we need to reduce
R0 to be less than 1 in order to eradicate a disease. For a large class of autonomous
compartmental epidemic models, the explicit formula for R0 was obtained in [16].
This work has been extended recently to the periodic case in [17].

The purpose of this paper is to obtain a threshold type result on the global
dynamics for a periodic SIS epidemic model with maturation delay. The model is
presented in the next section and a single species growth model is analyzed with
three types of birth rate functions. In section 4, we introduce the basic reproduction
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ratio and show that it acts as a threshold parameter for the uniform persistence
and global extinction of the disease. The last two sections give some numerical
simulations and concluding remarks.

2. The model. Many epidemiological models are formulated so that the infectious
disease spreads in a population which either is a fixed closed population or has a
fixed size with balancing inflows and outflows due to births and deaths or migration.
However, it is generally accepted in ecology that the sizes of plant and animal
populations are influenced and constrained by foraging, predation, competition and
limited resources. In [3], Cooke et al. considered the variable population size and
derived a time-delayed SIS epidemic model:

{

S′(t) = B(N(t− τ))N(t − τ)e−d1τ − dS(t) − βS(t)I(t)
N(t) + γI(t),

I ′(t) = βS(t)I(t)
N(t) − (d+ d2 + γ)I(t),

where I is the number of the infective population, S is the number of the susceptible
population andN(t) = S(t)+I(t). Here d > 0 is the death rate constant at the adult
stage, B(N) is a birth rate function, τ is the maturation time, d2 ≥ 0 is the disease
induced death rate, γ > 0 is the recovery rate ( 1

γ
is the average infective time), and

d1 is the death rate constant for the juvenile stage. The standard incidence function
is used with β I

N
giving the average number of adequate contacts with infectives of

one susceptible per unit time. Typical examples of birth rate functions B(N) in the
biological literature are:

(B1) B1(N) = p
q+Nn , with p, q, n > 0 and p

q
> d.

(B2) B2(N) = A
N

+ c, with A > 0, d > c > 0.

(B3) B3(N) = be−aN , with a > 0, b > d.

Their model was obtained under the following assumptions:

(1) Transmission of disease is assumed to occur due to contact between suscepti-
bles and infectives.

(2) There is no vertical transmission.
(3) The disease confers no immunity, thus upon recovery an infective individual

returns to the susceptible class (hence the name SIS model).

This type of model is appropriate for some bacterial infections. For a fatal disease,
the recovery rate constant is set to zero, giving an SI model.

Let B(t,N) and d(t), respectively, be the time-dependent birth and death rates
of the population at the adult state, and d1(t) be the death rate of the population
at the juvenile stage. Assume that the maturation delay is τ > 0. It then follows
that the rate of entry into the adult stage is

B(t− τ,N(t− τ))N(t− τ)e−
∫

t

t−τ
d1(s)ds.

Thus, we obtain the following nonautonomous SIS model:


























S′(t) = B(t− τ,N(t− τ))N(t − τ)e−
∫

t
t−τ

d1(s)ds − d(t)S(t) −
β(t)S(t)I(t)

N(t)

+ γ(t)I(t),

I ′(t) =
β(t)S(t)I(t)

N(t)
− (d(t) + d2(t) + γ(t))I(t),

(2.1)
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where N(t) = S(t)+ I(t), B(t,N), β(t), d(t), d1(t), d2(t) and γ(t) are nonnegative.
To incorporate seasonal effects, we further assume that all these functions are T -
periodic in t for some T > 0. It is easy to see that the function

α(t) := e−
∫

t

t−τ
d1(s)ds

is also T -periodic in t. Thus, model (2.1) is a periodic time-delayed differential
system. We should point out that the model (2.1) with B(t,N) = a

N
+ c and d(t),

d1(t), d2(t) and γ(t) being constants was studied in [21]. Here we investigate the
global dynamics of (2.1) with the general forms of birth rate functions.

We assume that B(·, ·) ∈ C1(R×(0,+∞),R+) andB(t,N)N admits a continuous
extension G(t,N) from R × (0,+∞) to R × R+. It then follows that for any φ ∈
C([−τ, 0],R2

+), there is a unique local solution (S(t, φ), I(t, φ)) of system (2.1) with
(S(θ, φ), I(θ, φ)) = φ(θ), ∀θ ∈ [−τ, 0] (see, e.g., [10, Theorem 2.3]). Further, we
have (S(t, φ), I(t, φ)) ≥ 0 in its maximal interval of existence according to [13,
Theorem 5.2.1]. It is also easy to see that if φ = (φ1, φ2) ∈ C([−τ, 0],R2

+) with
φ2(0) > 0, then I(t, φ) > 0 and S(t, φ) > 0 for all t > 0 in its maximal interval of
existence. For any function x : [−τ, σ) → R

m, σ > 0, we define xt ∈ C([−τ, 0],Rm)
by xt(θ) = x(t + θ), ∀θ ∈ [−τ, 0]. In what follows, we write x̂ for the element of
C([−τ, 0],Rm) satisfying x̂(θ) = x for all θ ∈ [−τ, 0].

3. A single population growth model. In this section, we consider the single-
species population growth model:

N ′(t) = α(t)B(t − τ,N(t− τ))N(t− τ) − d(t)N(t) , F (t,N(t), N(t− τ)), (3.1)

where α(t) = e−
∫

t

t−τ
d1(s)ds. We will establish four sets of sufficient conditions

under which system (3.1) admits a globally attractive positive T -periodic solution,
and hence, the single population stabilizes eventually at an oscillating state.

For any φ ∈ C([−τ, 0],R+), there is a unique local solution N(t, φ) of (3.1) with
N(θ, φ) = φ(θ), ∀θ ∈ [−τ, 0] (see, e.g., [10, Theorem 2.3]). Moreover, we have
N(t, φ) ≥ 0 in its maximal interval of existence according to [13, Theorem 5.2.1].

Consider the linear equation with time delay τ :

u′(t) = a(t)u(t) + b(t)u(t− τ), (3.2)

where a(t), b(t) are T -periodic and continuous, b(t) > 0, ∀t ≥ 0.
For any φ ∈ C([−τ, 0],R), let u(t, φ) be the unique solution of (3.2) satisfying

u0 = φ. Let P̃ be the Poincaré map associated with (3.2) on C([−τ, 0],R), that is,

P̃ (φ) = uT (φ). The following result comes from [18, Proposition 2.1].

Lemma 3.1. Let r(P̃ ) be the spectral radius of P̃ . Then r = r(P̃ ) is a positive

eigenvalue of P̃ with a positive eigenfunction. Moreover, u(t) = v0(t)e
t
T

ln(r) is a
solution of (3.2), where v0(t) is T -periodic and v0(t) > 0, ∀t ≥ 0. If τ = kT for

some integer k ≥ 0, then r − 1 has the same sign as
∫ T

0
(a(t) + b(t))dt.

Note that the condition r(P̃ ) < 1 (r(P̃ ) > 1) implies that the zero solution of
(3.2) is stable (unstable). Thus, Lemma 3.1 implies that in the case where the
time delay is an integer multiple of the time period, the stability of zero solution of
(3.2) is equivalent to that of zero solution of the linear periodic ordinary differential
equation u′(t) = (a(t) + b(t))u(t).
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3.1. A general periodic form of B1(N). Assume that

(H1) B(·, ·) ∈ C1(R × (0,+∞),R+) with ∂B(t,N)
∂N

< 0, ∀N ∈ (0,+∞), d(t)
α(t) > B(t−

τ,∞); and there exists G(·, ·) ∈ C(R×R+,R+) such that G(t,N) = B(t,N)N ,
∀t ∈ R, N > 0.

(H2) G(t, 0) = 0 and r1=r(P1) > 1, where r(P1) is the spectral radius of P1, and
P1 is the Poincaré map of the following linear equation

N ′(t) = α(t)B(t − τ, 0)N(t− τ) − d(t)N(t). (3.3)

(H3) ∂G(t,N)
∂N

> 0, ∀N ∈ R+, t ∈ R.

It then follows that the periodic function F (t, v1, v2) has the following properties:

(1) F (t, 0, 0) = 0, F (t, 0, v2) ≥ 0, ∂F (t,v1,v2)
∂v2

> 0, ∀v1, v2 ≥ 0.

(2) F is strictly subhomogeneous, i.e., for any λ ∈ (0, 1), ∀v1, v2 > 0, F (t, λv1, λv2)
> λF (t, v1, v2).

(3) There exists a positive number h0 > 0 such that F (t, h0, h0) ≤ 0.

The following result is a straightforward consequence of [18, Theorem 2.1].

Theorem 3.2. Assume (H1)-(H3) hold. Then equation (3.1) admits a globally

attractive positive T -periodic solution N∗(t) in C([−τ, 0],R+) \ {0̂}.

3.2. A general periodic form of B2(N). Assume that

(A1) B(·, ·) ∈ C1(R × (0,+∞),R+) with ∂B(t,N)
∂N

< 0, ∀N > 0, t ∈ R, and d(t)
α(t) >

B(t− τ,∞) for all t ∈ R.
(A2) There exists G(·, ·) ∈ C(R × R+,R+) such that G(t,N) = B(t,N)N , ∀t ∈ R,

N > 0, and G(t, 0) > 0, ∀t ∈ R.

(A3) ∂G(t,N)
∂N

> 0, ∀N ∈ R+, t ∈ R.

Theorem 3.3. Assume (A1)-(A3) hold. Then equation (3.1) admits a globally

attractive positive T -periodic solution N∗(t) in C([−τ, 0],R+) \ {0̂}.

Proof. From (A2), we have F (t, 0, 0) > 0 and there is h0 > 0 such that F (t, h, h) ≤ 0

for all h > h0. It then follows from [13, Remark 5.2.1] that [0̂, ĥ] is positively

invariant. Thus, for any φ ≥ 0̂, we can find some hφ > h0 such that φ ≤ ĥφ, and
hence N(t, φ) exists for all t ≥ 0. Define the Poincaré map P2 : C([−τ, 0],R+) →
C([−τ, 0],R+) by P2(φ) = NT (φ). Thus, [13, Theorem 5.1.1 and Corollary 5.3.5]
imply that P2 is monotone and Pn0

2 is strongly monotone when n0T ≥ 2τ . By
the theory of delay differential equation (see, e.g., [10, Theorem 3.6.1]), Pn0

2 is
compact. Moreover, we note that F (t, u, v) is strictly subhomogeneous in (u, v).
Using the similar arguments as in [20, Theorem 3.3], we can deduce that P2 is

strictly subhomogeneous in the sense P2(αφ) > αP2(φ) for φ ≫ 0̂ and 0 < α < 1.
Thus, Pn0

2 is also strictly subhomogeneous.

Note that 0̂ ≤ P2(0̂). We claim 0̂ < P2(0̂). Suppose not, then P2(0̂) = 0̂, hence,

N(T + θ, 0̂) = 0 for all θ ∈ [−τ, 0] and N ′(T, 0̂) = 0. However, N ′(T, 0̂)=G(T −
τ, 0)α(t) > 0, a contradiction. Consequently, 0̂ < P2(0̂). Thus,

0̂ < P2(0̂) ≤ P 2
2 (0̂) ≤ · · · ≤ Pn0

2 (0̂) ≪ Pn0+1
2 (0̂) ≤ · · · .

Therefore, for any φ1 ∈ ωn0(0̂), we have φ1 ≥ Pn0+1
2 (0̂) ≫ 0, where ωn0(φ) denotes

the omega-limit set of φ under Pn0
2 . Moreover, ∀φ ≥ 0̂ and ∀ψ ∈ ωn0(φ), we have

ψ ≥ Pn0+1
2 (0̂) ≫ 0 from the monotonicity of Pn0

2 .
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By [19, Theorem 2.3.2] as applied to Pn0
2 , there exists a φ0 ≫ 0̂ with Pn0

2 (φ0) =

φ0 such that φ0 = ωn0(ϕ) for all of ϕ ≥ 0̂. Regarding (3.1) as an n0T -periodic
system, we then see that (3.1) admits a globally attractive positive n0T -periodic
solution N(t, φ0). It remains to prove that N(t, φ0) is T -periodic, that is, φ0 is a
fixed point of P2. Since

0̂ < P2(0̂) ≤ P 2
2 (0̂) ≤ · · · ≤ Pn0

2 (0̂) ≪ Pn0+1
2 (0̂) ≤ · · ·

and Pnn0
2 (0̂) → φ0 as n → ∞, it easily follows that Pn

2 (0̂) → φ0 as n → ∞,
and hence, φ0 is the fixed point of P2. Therefore, N(t, φ0) is a globally attractive

T -periodic solution for (3.1) in C([−τ, 0],R+) \ {0̂}.

3.3. A general periodic form of B3(N). In this subsection, we take B(t,N) =
p(t)e−q(t)N and assume that

(S1) p(t), q(t), d(t), d1(t) are nonnegative and T -periodic in t, and p(t) > 0,
q(t) > 0 for all t ∈ R;

(S2) r=r(P3) > 1, where r(P3) is the spectral radius of P3, and P3 is the Poincaré
map of the following linear equation

N ′(t) = α(t)p(t− τ)N(t − τ) − d(t)N(t). (3.4)

Note that

N ′(t) = α(t)p(t − τ)e−q(t−τ)N(t−τ)N(t− τ) − d(t)N(t)

≤ α(t)
p(t − τ)

q(t − τ)
e−1 − d(t)N(t).

Consider the periodic ordinary differential equation

Ū ′(t) = α(t)
p(t− τ)

q(t− τ)
e−1 − d(t)Ū(t). (3.5)

It then follows that equation (3.5) has a unique periodic solution

Ū∗(t) = e−
∫

t

0
d(s)ds ×





∫ t

0

α(w)
p(w − τ)

q(w − τ)
e−1e

∫

w
0

d(s)dsdw +

∫ T

0 α(w)p(w−τ)
q(w−τ)e

−1e
∫

w

0
d(s)dsdw

e
∫

T

0
d(s)ds − 1





and Ū∗(t) is globally asymptotically attractive for (3.5) with Ū(0) ≥ 0. By the
comparison theorem, we have N(t, φ) ≤ Ū(t, φ(0)) for all t in its maximal interval
of existence, where Ū(t, φ(0)) is the solution of (3.5) with Ū(0) = φ(0). Since
lim

t→∞
(Ū(t, φ(0)) − Ū∗(t)) = 0, the solution for (3.1) exists globally, and the periodic

solution semiflow for (3.1) is point dissipative.
In addition to (S1)-(S2), we further assume that

(S3) Ū∗(t) ≤ 1
q(t) .

Then the following result holds.

Theorem 3.4. Assume (S1)-(S3) hold. Then (3.1) admits a globally attractive

positive T -periodic solution N∗(t) in C([−τ, 0],R+) \ {0̂}.

Proof. Let P4 is the Poincaré map associated with (3.1). It then follows that ω(ψ) ⊆
[0̂, Ū∗

0 ] for any ψ ∈ C([−τ, 0],R+), where ω(ψ) is the omega limit set of ψ ≥ 0̂ for
P4 and Ū∗

0 ∈ C([−τ, 0],R+) with Ū∗
0 (θ) = Ū∗(θ), ∀θ ∈ [−τ, 0]. Furthermore, for
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each φ ∈ [0̂, Ū∗
0 ], we have φ(0) ≤ Ū∗(0), and hence, N(t, φ) ≤ Ū∗(t) for all t ≥ 0,

which implies that [0̂, Ū∗
0 ] is positively invariant for P4.

For a positive ε > 0, let rε be the spectral radius of

v′(t) = (α(t)p(t − τ) − ε0)v(t − τ) − d(t)v(t). (3.6)

Since r(P3) > 1, we can choose ε0 small enough such that rε0 > 1 and α(t)p(t −

τ) − ε0 > 0. From Lemma 3.1, (3.6) admits a solution v∗(t) = e
t
T

lnrε0u0(t), where
u0(t) is positive and T -periodic. Hence, v∗(t) → ∞.

For ε0 > 0, we choose a sufficiently small positive number δ0, such that

α(t)p(t − τ)e−q(t−τ)N ≥ α(t)p(t− τ) − ε0, ∀t ≥ 0, 0 ≤ N < δ0.

Since lim
φ→0

Nt(φ) → 0 uniformly for t ∈ [0, T ], there exists δ1 > 0 such that

‖Nt(φ)‖ ≤ δ0, ∀t ∈ [0, T ], ‖φ‖ ≤ δ1.

We first claim that lim sup
n→∞

‖Pn
4 ψ‖ ≥ δ1 for all of ψ ∈ [0̂, Ū∗

0 ]\{0̂}. Suppose not, and

lim sup
n→∞

‖Pn
4 φ‖ < δ1 for some φ ∈ [0̂, Ū∗

0 ] \ {0̂}, then there exists an integer N1 ≥ 1

such that ‖Pn
4 φ‖ < δ1, ∀n ≥ N1. For any t − τ ≥ N1T , we have t = nT + t′ with

n ≥ N1, t
′ ∈ [0, T ] and ‖Nt(φ)‖ = ‖Nt′(P

n
4 φ)‖ ≤ δ0. Then

N ′(t, φ) ≥ α(t)p(t − τ)e−q(t−τ)N(t−τ,φ)N(t− τ, φ) − d(t)N(t, φ)

≥ (α(t)p(t − τ) − ε0)N(t− τ, φ) − d(t)N(t, φ).

Since N(t, φ) > 0, ∀t > τ , we can choose a small number k > 0 such that N(t) >
kv∗(t), ∀t ∈ [N2T,N2T + τ ], where N2 > N1 and N2T > τ . By the comparison
theorem (see e.g. [13, Theorem 5.1.1 ]), we have N(t, φ) > kN∗(t), ∀t ≥ N2T + τ .
Thus, lim

t→∞
N(t, φ) = ∞, a contradiction.

Let X = [0̂, Ū∗
0 ] and X0 = {φ ∈ X : φ(0) > 0}, define ∂X0 = X \X0. Note that

P4 is point dissipative, asymptotically smooth and the orbits of bounded sets are
bounded. It then follows from [9, Theorem 2.4.6] that P4 admits a global attractor

A ∈ X . It is clear that M∂ := {φ ∈ ∂X0 : Pn
4 (φ) ∈ ∂X0, ∀n ≥ 0} = {0̂} and

Ω(M∂) := ∪φ∈M∂
ω(φ) = {0̂}, where ω(φ) is the ω-limit set of φ with respect to

P4. In view of the above claim, {0̂} is isolated in X and W s(0̂) ∩ X0 = ∅ where

W s(0̂) is the stable set of 0̂ for P4. Moreover, for each ψ ∈ ∂X0 and ψ 6= 0̂, there
exists a t0 ∈ [0, τ ] such that N(t0, ψ) > 0, where N(t, ψ) is the solution of equation
(3.1) through ψ. Hence, N(t, ψ) > 0 for all t ≥ t0, which implies that Pn

4 (ψ) ∈ X0

for nT > τ . Therefore, ω(φ) 6= {0̂} and there is no cycle in ∂X0 from 0̂ to 0̂. By
the acyclicity theorem on uniform persistence for maps (see [19, Theorem 1.3.1 and
Lemma 1.3.1]), it follows that P4 : C([−τ, 0],R+) → C([−τ, 0],R+) is uniformly
persistent with respect to X0. Note that P4 is an α-contraction for an equivalent
norm in C([−τ, 0],R+) (see [9, Theorem 4.1.1]). Moreover, P4 is point dissipative
and Pn

4 is compact for nT > τ . Thus, [12, Theorem 4.5] implies that P4 : X0 → X0

admits a global attractor A0 in X0. Since for every φ ∈ A0, N(t, φ) > 0 for all
t ≥ 0, it follows from the invariance of A0 for P4 that A0 ⊂ int(C([−τ, 0],R+)).

Consequently, for any ψ ∈ X \ {0̂}, we have ω(ψ) ⊂ A0 ⊂ int(C([−τ, 0],R+)).
Define

E(t, u, v) := α(t)p(t − τ)ve−q(t−τ)v − d(t)u.
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For any φ ∈ [0̂, Ū∗
0 ], we have

∂E

∂v
(t,N(t), N(t− τ, φ))

= (1 − q(t− τ)N(t − τ, φ))α(t)p(t − τ)e−q(t−τ)N(t−τ,φ)

> (1 − q(t− τ)U∗(t− τ))α(t)p(t − τ)e−q(t−τ)N(t−τ,φ) ≥ 0.

It then follows that Pn0
4 is strongly monotone in [0̂, Ū∗

0 ] when n0T ≥ 2τ . Note that
E(t,N(t), N(t − τ)) is strictly subhomogeneous. Using the same argument as in
[20, Theorem 3.3], we can deduce that P4 is strictly subhomogeneous. Thus, Pn0

4 is
also strictly subhomogeneous. It then follows from [19, Theorem 2.3.2], as applied

to Pn0
4 : U = [0̂, Ū∗

0 ] → U , that Pn0
4 has a fixed point φ0 ≫ 0 in [0̂, Ū∗

0 ] such that
every nonempty compact invariant set of Pn0

4 is in int(C([−τ, 0],R+)). Since for

each ψ ∈ C([−τ, 0],R+) \ {0̂}, ω(ψ) is a nonempty compact invariant set of Pn0
4

in [0̂, Ū∗
0 ] and ω(ψ) ⊂ int(C([−τ, 0],R+)), it follows that ω(ψ) = φ0, and hence,

P4(φ0) = φ0. Therefore, N(t, φ0) is a globally attractive T -periodic solution for

(3.1) in C([−τ, 0],R+) \ {0̂}.

Assume that

(S3)
′

max
0≤t≤T

{α(t)p(t− τ)e−2} < min
0≤t≤T

{ 1
τe1+τd(t) }.

Then, we have the following result.

Theorem 3.5. Assume that (S1),(S2) and (S3)
′

hold. Then (3.1) admits a globally

attractive positive T -periodic solution in C([−τ, 0],R+) \ {0̂}.

Proof. Note that

E(t, u2, v2) − E(t, u1, v1) ≥ −d(t)(u2 − u1) − p(t− τ)e−2α(t)(v2 − v1).

We use the exponential ordering introduced in [14] to prove this theorem. For some
µ ≥ 0, we define

K̃µ = {φ ∈ C([−τ, 0],R+) : φ ≥ 0 and φ(s)eµs is nondecreasing on [−τ, 0]},

and Kµ = K̃µ ∩CL where CL is the Banach space of Lipschitz functions on [−τ, 0]

with the norm ‖φ‖Lip := |φ| + sup{|φ(s)−φ(t)
s−t

| : s 6= t, s, t ∈ [−τ, 0]}.
Denote the exponential ordering defined by Kµ as ≤µ. Then if φ <µ ψ, we have

e−µτ [ψ(−τ) − φ(−τ)] ≤ ψ(0) − φ(0), i.e., ψ(−τ) − φ(−τ) ≤ eµτ [ψ(0) − φ(0)].

Therefore,

µ(ψ(0) − φ(0)) +E(t,N(t, ψ), N(t− τ, ψ)) − E(t,N(t, φ), N(t− τ, φ))

= µ(ψ(0) − φ(0)) +E(t, ψ(0), ψ(−τ)) − E(t, φ(0), φ(−τ))

≥ µ(ψ(0) − φ(0)) − d(t)(ψ(0) − φ(0)) − α(t)p(t− τ)e−2(ψ(−τ) − φ(−τ))

≥ [µ− d(t) − α(t)p(t − τ)e−2eµτ ](ψ(0) − φ(0)).

Since

max
0≤t≤T

{α(t)p(t− τ)e−2} < min
0≤t≤T

{
1

τe1+τd(t)
} and ψ(0) − φ(0) > 0,

there is some µ > 0 such that

µ− d(t) − α(t)p(t − τ)e−2eµτ > 0,
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and hence,

µ(ψ(0) − φ(0)) +E(t, ψ(0), ψ(−τ)) − E(t, φ(0), φ(−τ)) > 0.

For every φ ≥ 0̂, we have N(t, φ) ≥ 0 and there exists Mφ > 0 such that φ≪µ M̂φ

and E(t,Mφ,Mφ) < 0. Thus N(t, φ) ≤ Mφ, N(t, φ) exists for all t ≥ 0. By
[13, Theorem 6.2.3], Pn0

5 is strongly monotone in the ordered space (CL,Kµ) for
n0T ≥ τ , where P5 is the Poincaré map of (3.1).

If φ ≫µ 0 in Kµ, then N(t, φ) > 0 for all t > −τ . For 0 < λ < 1, let W (t) =
N(t, λφ) − λN(t, φ), then W(0)=0. Since

W ′(0) = N ′(0, λφ) − λN ′(0, φ)

= α(0)p(−τ)e−q(−τ)λφ(−τ)λφ(−τ) − λα(0)p(−τ)e−q(−τ)φ(−τ)φ(−τ) > 0,

we have W (t) > 0 for all sufficiently small t > 0. We further claim W (t) > 0 for all
t > 0. Suppose not. Then there is t0 > 0 such that W (t0) = 0, W (t) > 0 for t < t0,

and dW (t)
dt

∣

∣

∣

t0
≤ 0. Since λφ≪µ φ, N(t0 − τ, λφ) < N(t0 − τ, φ). Then we have

dW (t)

dt

∣

∣

∣

∣

t0

= E(t0, N(t0, λφ), N(t0 − τ, λφ)) − λE(t0, N(t0, φ), N(t0 − τ, φ))

= α(t0)p(t0 − τ)e−q(t0−τ)N(t0−τ,λφ)N(t0 − τ, λφ) − d(t0)N(t0, λφ)

−[α(t0)p(t0 − τ)e−q(t0−τ)N(t0−τ,φ)λN(t0 − τ, φ) − λd(t0)N(t0, φ)]

> α(t0)p(t0 − τ)e−q(t0−τ)N(t0−τ,λφ)λN(t0 − τ, φ)

−α(t0)p(t0 − τ)e−q(t0−τ)N(t0−τ,φ)λN(t0 − τ, φ)

= α(t0)p(t0 − τ)[e−q(t0−τ)N(t0−τ,λφ) − e−q(t0−τ)N(t0−τ,φ)]λN(t0 − τ, φ) > 0,

a contradiction. This proves that W (t) > 0 for all t > 0.
For every φ≫µ 0, let Z(t)=[N(t, λφ)−λN(t, φ)]′ +µ[N(t, λφ)−λN(t, φ)]. Then

Z(0) = W ′(0) > 0, hence for sufficiently small t > 0, Z(t) > 0. We claim that
Z(t) > 0 for all t > 0. Suppose not. Thus, there is t0 > 0 such that Z(t0) = 0 and
Z(t) > 0 for t < t0. It then follows that

Z(t0) = α(t0)p(t0 − τ )e−q(t0−τ)N(t0−τ,λφ)N(t0 − τ, λφ) + µ[N(t0, λφ) − λN(t0, φ)]

−[λα(t0)p(t0 − τ )e−q(t0−τ)N(t0−τ,φ)N(t0 − τ, φ) − λd(t0)N(t0, φ)] − d(t0)N(t0, λφ)

> α(t0)p(t0 − τ )e−q(t0−τ)N(t0−τ,λφ)N(t0 − τ, λφ) + [µ − d(t0)][N(t0, λφ) − λN(t0, φ)]

−α(t0)p(t0 − τ )e−q(t0−τ)λN(t0−τ,φ)λN(t0 − τ, φ)
≥ −α(t0)p(t0 − τ )e−2[N(t0 − τ, λφ) − λN(t0 − τ, φ)]

+[µ − d(t0)][N(t0, λφ) − λN(t0, φ)].

Since Z(t) > 0 for all t < t0, we haveN(t0−τ, λφ)−λN(t0−τ, φ) ≤ eµτ [N(t0, λφ)−
λN(t0, φ)], and hence

Z(t0) > [−α(t0)p(t0 − τ)e−2eµt + µ− d(t0)][N(t0, λφ) − λN(t0, φ)] > 0,

a contradiction. Thus, Z(t) > 0 for all t > 0. It then follows from [13, Theorem
6.2.3] that Nt(λφ) ≫µ λNt(φ) for t > τ and Pn0

5 (αφ) ≫µ αPn0

5 (φ) in Kµ for
n0T > τ .

Since for every φ ∈ C([−τ, 0],R+) \ {0̂} and t > 0, we have

[N(t, φ)]′ + µN(t, φ)

= α(t)p(t− τ)e−q(t−τ)N(t−τ,φ)N(t− τ, φ) − d(t)N(t, φ) + µN(t, φ)

> [µ− d(t)]N(t, φ) ≥ 0,
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and hence, Pn0
5 (φ) ∈ int(Kµ) for n0T > τ . By using Pn0

5 (φ) if necessary, we may
therefore assume that φ ∈ int(Kµ) to study the asymptotic behavior of φ > 0 under
Pn0

5 .

For any β ≥ 1, choose Vβ = [0̂, βĥ0]Kµ
where h0 is determined such that

p(t − τ)e−q(t−τ)hα(t) < d(t) always holds for all t ≥ 0 and h > h0. Then Vβ is
positively invariant. First note that when n0T > τ , Pn0

5 is order-compact in the
sense that Pn0

5 ([u, v]Kµ
) is precompact for all of u <Kµ

v. Moreover, Pn0
5 is strictly

subhomogeneous and strongly monotone with respect to the exponential ordering.
By the continuity and differentiability of solutions with respect to initial val-

ues, it follows that the P5 is differentiable at zero, and DP5(0) = P3, where P3

is the Poincaré map of the linear equation of (3.4). Clearly, Pn0
3 is compact.

Moreover, Pn0
3 is strongly positive for the exponential ordering Kµ. Furthermore,

D(Pn0
5 (0̂)) = (DP5(0̂))n0 and r{D(Pn0

5 (0̂))} = r{(DP5(0̂))}n0 = [r(P3)]
n0 . By [19,

Theorem 2.3.4], Pn0
5 has a unique positive fixed point φ0 in Vβ , and φ0 is globally

asymptotically stable with respect to Vβ \ {0̂}. This implies that ωn0(φ) = φ0 for
all φ ∈ Vβ , where ωn0(φ) is the ω-limit set of φ associated with Pn0

5 .
By the arbitrariness of β, it then follows that (3.1) admits a globally attrac-

tive, positive n0T -periodic solution N(t, φ0) in C([−τ, 0],R+) \ {0̂}. It remains

to prove that N(t, φ0) is also T -periodic. For φ > 0̂, since Pnn0
5 (φ) → φ0 as

n→ ∞, it then follows that P5(P
nn0
5 (φ)) → P5(φ0) as n→ ∞. On the other hand,

P5(P
nn0
5 (φ)) = Pnn0

5 (P5(φ)) → φ0 as n→ ∞. Thus, P5(φ0) = φ0, and N(t, φ0) is a

globally attractive T -periodic solution for (3.1) in C([−τ, 0],R+) \ {0̂}.

4. Threshold dynamics. We now assume that a disease is invading the popu-
lation, and the population is divided into susceptible and infective classes. The
disease transmission is modeled by system (2.1). In this section, we will study the
global dynamics of system (2.1). Let

M := C([−τ, 0],R2
+), M0 := {(φ1, φ2) ∈M : φ2(0) > 0} and ∂M0 := M\M0.

Clearly, M0 is an open set relative to M. Note that (N∗(t), 0) is the disease-free
periodic solution of (2.1). By linearizing (2.1) at (N∗(t), 0), we obtain the following
equation for the infective population variable I:

I ′(t) = β(t)I(t) − (d(t) + d2(t) + γ(t))I(t). (4.1)

Let CT be the ordered Banach space of all T -periodic functions from R to R,
which is equipped with the maximum norm ‖ · ‖ and the positive cone C+

T := {φ ∈
CT : φ(t) ≥ 0, ∀t ∈ R}. According to the theory developed in [17] with F (t) = β(t)
and V (t) = d(t) + d2(t) + γ(t), we define the next infection operator L : CT → CT

by

(Lφ)(t) =

∫ ∞

0

Y (t, t− a)β(t− a)φ(t − a)da, ∀t ∈ R, φ ∈ CT ,

where Y (t, s) = e−
∫

t

s
V (u)du = e−

∫

t

s
(d(u)+d2(u)+γ(u))du, t ≥ s. Then the basic repro-

duction ratio is defined as R0 := ρ(L), the spectral radius of L. By [17, Lemma
2.2], it follows that

R0 =

∫ T

0
β(t)dt

∫ T

0
(d(t) + d2(t) + γ(t))dt

.

Note that in section 3, we have obtained four sets of sufficient conditions for
system (3.1) to have a globally attractive positive T -periodic solution N∗(t) (see
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Theorems 3.1-3.4). We are now in a position to prove the threshold type result on
the global dynamics of (2.1) in terms of R0.

Theorem 4.1. Assume that (3.1) has a globally attractive positive T -periodic solu-

tion N∗(t) in C([−τ, 0], R+)\{0̂}, and that there is an L such that B(t−τ,N)α(t) <
d(t), ∀N > L, t > 0. Let G(t,N) = B(t,N)N satisfy one of the following condi-
tions:

(C1) G(t,0)≡0 and r=r(P̌ ) > 1, where r(P̌ ) is the spectral radius of P̌ and P̌ is
the Poincaré map of the following linear equation:

N ′(t) = α(t)B(t − τ, 0)N(t− τ) − (d(t) + d2(t))N(t).

(C2) G(t, 0) > 0 for all t ≥ 0.

Then the following statements are valid:

(a) If R0 < 1, then any solution (S(t, φ), I(t, φ)) of system (2.1) with φ ∈ M0

satisfies lim
t→∞

(S(t, φ) −N∗(t)) = 0 and lim
t→∞

I(t, φ) = 0.

(b) If R0 > 1, system (2.1) has a positive T -periodic solution in M0, and there is
an η > 0 such that any solution (S(t, φ), I(t, φ)) of system (2.1) with φ ∈M0

satisfies lim inf
t→∞

S(t, φ) ≥ η and lim inf
t→∞

I(t, φ) ≥ η.

Proof. Let (S(t, φ), I(t, φ)) be the unique solution of (2.1) with (S(θ, φ), I(θ, φ)) =
φ(θ), ∀θ ∈ [−τ, 0]. Since N(t, φ) = S(t, φ) + I(t, φ) ≥ 0 in the maximal interval of
existence, N(t) satisfies the differential inequality

N ′(t) ≤ α(t)B(t − τ,N(t− τ))N(t− τ) − d(t)N(t).

For φ ∈ M , there is a Mφ > L and M̂φ > φ such that B(t − τ,Mφ)α(t) ≤ d(t).
By [13, Theorem 5.2.1], N(t, φ) is uniformly bounded. Since S(t, φ) ≤ N(t, φ)
and I(t, φ) ≤ N(t, φ), it follows that each solution (S(t, φ), I(t, φ)) exists glob-
ally on [0,∞), and solutions of (2.1) is uniformly bounded in M. Define Φ(t)φ =
(St(φ), It(φ)), t ≥ 0, φ ∈ M . Then Φ(t) is a T -periodic semiflow on M . We have
following claims:

Claim 1. There is some δ1 > 0 such that lim sup
n→∞

‖Φ(nT )φ‖ ≥ δ1 for all φ ∈M0.

In the case where (C1) holds, for a positive ε > 0, let rε be the spectral radius of

u′(t) = (α(t)B(t − τ, 0+) − ε)u(t− τ) − (d(t) + d2(t))u(t). (4.2)

Since r(P̌ ) > 1, we can choose ε small enough such that rε > 1 and B(t, 0+)−ε > 0

for all t ≥ 0. From Lemma 3.1, (4.2) admits a solution u∗(t) = e
t
T

lnrεu0(t), where
u0(t) is positive and T -periodic. Hence u∗(t) → ∞.

For ε > 0, we can choose a sufficiently small positive number δ0, such that

α(t)B(t − τ,N) ≥ α(t)B(t − τ, 0+) − ε, ∀t ≥ 0, 0 ≤ N < δ0.

Since lim
φ→0

Nt(φ) → 0 uniformly for t ∈ [0, T ], there exists δ1 > 0 such that

‖Nt(φ)‖ ≤ δ0, ∀t ∈ [0, T ], ‖φ‖ ≤ δ1.

Suppose, by contradiction, that lim sup
n→∞

‖Φ(nT )φ‖ < δ1 for some φ ∈ M0. Then

there exists an integer N1 ≥ 1 such that ‖Φ(nT )φ‖ < δ1, ∀n ≥ N1. For any
t − τ ≥ N1T , we have t = nT + t′ with n ≥ N1, t

′ ∈ [0, T ] and ‖Φ(t)φ‖ =
‖Φ(t′)Φ(nT )φ‖ ≤ δ0. Then,

N ′(t) ≥ α(t)B(t − τ,N(t− τ))N(t − τ) − (d(t) + d2(t))N(t)

≥ (α(t)B(t − τ, 0+) − ε)N(t− τ) − (d(t) + d2(t))N(t).
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Since N(t, φ) = S(t, φ) + I(t, φ) > 0, ∀t > 0, ∀φ ∈ M0, we can choose a small
number k > 0 such that N(t, φ) > ku∗(t), ∀t ∈ [N1T,N1T + τ ]. By the comparison
theorem [13, Theorem 5.1.1], we have N(t, φ) > ku∗(t), ∀t ≥ N1T , and hence,
lim

t→∞
N(t, φ) = ∞, a contradiction to the uniform boundedness of N(t, φ).

In the case where (C2) holds, we can choose ε small enough such that

min
t≥0

{α(t)B(t− τ, 0+) − ε} > max
t≥0

{d(t) + d2(t)}.

For ε > 0, we can choose a sufficiently small positive number δ0, such that

α(t)B(t − τ,N) ≥ α(t)B(t − τ, 0+) − ε, ∀t ≥ 0, 0 ≤ N < δ0.

Since lim
φ→0

Nt(φ) → 0 uniformly for t ∈ [0, T ], there exists δ1 > 0 such that

‖Nt(φ)‖ ≤ δ0, ∀t ∈ [0, T ], ‖φ‖ ≤ δ1.

Suppose, by contradiction, that lim sup
n→∞

‖Φ(nT )φ‖ < δ1 for some φ ∈ M0. Then

there exists an integer N1 ≥ 1 such that ‖Φ(nT )φ‖ < δ1, ∀n ≥ N1. For any
t − τ ≥ N1T , we have t = nT + t′ with n ≥ N1, t

′ ∈ [0, T ] and ‖Φ(t)φ‖ =
‖Φ(t′)Φ(nT )φ‖ ≤ δ0. Thus

N ′(t) ≥ α(t)B(t − τ,N(t− τ))N(t − τ) − (d(t) + d2(t))N(t)

≥ (α(t)B(t − τ, 0+) − ε)N(t− τ) − (d(t) + d2(t))N(t)

> min
t≥0

{α(t)B(t − τ, 0+) − ε}N(t− τ) − max
t≥0

{d(t) + d2(t)}N(t).

Since
min
t≥0

{α(t)B(t− τ, 0+) − ε} > max
t≥0

{d(t) + d2(t)},

it follows from [13, Theorem 5.1.1] that there is a solution u∗(t) = estu with s > 0
and u > 0 for the following equation:

u(t) = min
t≥0

{α(t)B(t− τ, 0+) − ε}u(t− τ) − max
t≥0

{d(t) + d2(t)}u(t). (4.3)

Hence, u∗(t) → ∞ as t→ ∞. Since N(t, φ) = S(t, φ) + I(t, φ) > 0, ∀t > 0, φ ∈M0,
we can choose a small number k > 0 such thatN(t, φ) > ku∗(t), ∀t ∈ [N1T,N1T+τ ].
By the comparison theorem [13, Theorem 5.1.1], we have N(t, φ) > ku∗(t), ∀t ≥
N1T + τ . Thus lim

t→∞
N(t, φ) = ∞, also a contradiction. This completes the proof of

claim 1.
In the case where R0 < 1, we have

∫ T

0 β(t)dt <
∫ T

0 (d(t) + d2(t) + γ(t))dt. If
I(0) > 0, then N(t) ≥ I(t) > 0, ∀t ≥ 0 and hence, we have

I ′(t) ≤ (β(t) − (d(t) + d2(t) + γ(t)))I(t), ∀t ≥ 0.

Then
I(t) ≤ I(0)e

∫

t

0
β(s)−(d(s)+d2(s)+γ(s))ds ∀t ≥ 0,

and hence, lim
t→∞

I(t) = 0. Therefore, system (2.1) is asymptotic to the following

periodic time-delayed equation:

N ′(t) = B(t− τ,N(t− τ))N(t − τ)α(t) − d(t)N(t), (4.4)

which is the same as (3.1). Note that N∗(t) is a global attractive solution of (3.1).
Next, we use the theory of internally chain transitive sets (see e.g., [11, 19]) to prove
lim

t→∞
(S(t) −N∗(t)) = 0.

In fact, if we denote the Poincaré map P := Φ(T ) : M → M , then Pn(φ) =

Φ(nT )φ, ∀n ≥ 0, φ ∈ M . Let φ = (φ1, φ2) ∈ M \ {0̂} and ω = ω(φ) be the omega
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limit set of {Pn(φ)}. Since I(t, φ) → 0 as t → ∞, there holds ω = ω̄ × {0̂}. We

first claim that ω̄ 6= {0̂}. Assume not, i.e., ω̄ = {0̂}, then lim
n→∞

(SnT (φ), InT (φ)) =

lim
n→∞

Φ(nT )φ = (0̂, 0̂), which contradicts claim 1. It is easy to see that Pn|ω(φ, 0̂) =

(P̄n(φ), 0̂) where P̄ is the periodic solution semiflow of (3.1). By [19, Lemma
1.2.1], ω is an internally chain transitive set for P , and hence, ω̄ is an inter-
nally chain transitive set for P̄ . Define N∗

0 ∈ C([−τ, 0],R+) by N∗
0 (θ) = N∗(θ),

∀θ ∈ [−τ, 0]. Since ω̄ 6= {0̂} and N∗
0 is a globally stable fixed point for P̄ in

C([−τ, 0],R+) \ {0̂}, we have ω̄ ∩W s(N∗
0 ) 6= ∅, where W s(N∗

0 ) is the stable set of

N∗
0 . By [19, Theorem 1.2.1], we then get ω̄ = N∗

0 . This proves ω = (N∗
0 , 0̂), and

hence, lim
t→∞

((S(t, φ), I(t, φ)) − (N∗(t), 0)) = 0.

In the case where R0 > 1, we have
∫ T

0 β(t)dt >
∫ T

0 (d(t) + d2(t) + γ(t))dt. Fix a

number η0 ∈ ( 1
R0
, 1), since

lim
(I(t),N(t))→(0,N∗(t))

N(t) − I(t)

N(t)
= 1 > η0,

there exists η1 > 0, such that

N(t) − I(t)

N(t)
> η0, ∀0 ≤ I(t) ≤ η1, |N(t) −N∗(t)| ≤ 2η1.

Since lim
φ→(N∗

0 ,0̂)
Φ(t)φ = (N∗

0 , 0̂) uniformly for t ∈ [0, T ], there exists η2 > 0 such that

‖Φ(t)φ− (N∗
0 , 0)‖ ≤ η1, ∀t ∈ [0, T ], ‖φ− (N∗

0 , 0)‖ ≤ η2. Then we have the following
claim:

Claim 2. lim sup
n→∞

‖Φ(nT )φ− (N∗
0 , 0̂)‖ ≥ η2 for all φ ∈M0.

Suppose, by contradiction, that lim sup
n→∞

‖Φ(nT )φ − (N∗
0 , 0̂)‖ < η2 for some φ ∈

M0. Then there exists an integer N2 ≥ 1 such that ‖Φ(nT )φ− (N∗
0 , 0)‖ < η2, ∀n ≥

N2. For any t ≥ N2T , we have t = nT + t′ with n ≥ N2 and t′ ∈ [0, T ]. Thus, we
have

‖Φ(t)φ− (N∗
0 , 0)‖ = ‖Φ(t′)(Φ(nT )φ) − (N∗

0 , 0̂)‖ ≤ η1, ∀t ≥ N2T.

Therefore, I(t) satisfies the following differential inequality

I ′(t) ≥ (β(t)η0 − (d(t) + d2(t) + γ(t)))I(t), ∀t ≥ N2T.

By the comparison theorem, it follows that

I(t) ≥ I(N2T )e
∫

t
N2T

(β(s)η0−(d(s)+d2(s)+γ(s))ds
.

Since R0 > 1 and η0 ∈ ( 1
R0
, 1), we have lim

t→∞
I(t) = ∞, a contradiction.

In the case where G(t, 0) ≡ 0, we choose

M1 = (0̂, 0̂) and M2 = (N∗
0 , 0̂).

It then follows that M1 and M2 are disjoint, compact and isolated invariant set for
P in ∂M0, and Ã∂ :=

⋃

φ∈∂M0
ω(φ) = {M1,M2}. Further, no subset of M1,M2

forms a cycle in ∂M0. In view of two claims above, we see that M1 and M2 are
isolated invariant sets for P in M , and W s(Mi) ∩M0 = ∅, i = 1, 2, where W s(Mi)
is the stable sets of Mi for P .

In the case where G(t, 0) > 0 for all t ≥ 0, M2 is the only compact invariant set
for P in ∂M0, and hence we only choose i=2 in the above argument.

By the acyclicity theorem on uniform persistence for maps (see [19, Theorem 1.3.1
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and Remark 1.3.1]), it follows that P : M →M is uniformly persistent with respect
to M0. Thus, [19, Theorem 3.1.1] implies that the periodic semiflow Φ(t) : M →M

is also uniformly persistent with respect to M0. According to [21, Theorem 3.1],
system (2.1) has an T -periodic solution (S∗(t), I∗(t)) with (S∗

t , I
∗
t ) ∈ M0 for all

t ≥ 0. Clearly, S∗
t > 0 and I∗t > 0 for all t > 0.

It follows from [12, Theorem 4.5], with ρ(x) = d(x, ∂M0), that P : M0 → M0

has a compact global attractor A0. Since A0 = P (A0) = Φ(T )A0, it follows that
φ1(0) > 0 and φ2(0) > 0 for all φ ∈ A0. Let B0:=

⋃

t∈[0,T ] Φ(t)A0. We have B0 ⊂M0

and lim
t→∞

d(Φ(t)φ,B0) = 0 for all φ ∈M0. Define a continuous function p : M → R+

by
p(φ) = min(φ1(0), φ2(0)), ∀φ = (φ1, φ2) ∈M.

Since B0 is a compact subset of M0, we have infφ∈B0 p(φ) = minφ∈B0 p(φ) > 0.
Consequently, there exists η > 0 such that

lim inf
t→∞

min(S(t, φ), I(t, φ)) = lim inf
t→∞

p(Φ(t)φ) ≥ η, ∀φ ∈M0.

This completes the proof.

5. Numerical simulations. In this section, we use specific birth functions to
verify our results in the previous two sections by numerical simulations.

Example 1. In this example, we choose B(t,N)N = N
2(1+cos(t))

1+N
, d(t) = 0.5,

d1(t) = 1, τ = 1. Then α(t) = e−1 and the equation (3.1) becomes

N ′(t) = N(t− 1)
2(1 + cos(t− 1))

1 +N(t− 1)
e−1 −

1

2
N(t).

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t

N
(t
)

(1-1)

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t

N
(t
)

(1-2)

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

R
0
>1

t

S
(t
),
I(
t)

S(t)
I(t)

(1-3)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

R
0
<1

t

S
(t
),
I(
t)

S(t)
I(t)

(1-4)



182 YIJUN LOU AND XIAO-QIANG ZHAO

It is easy to see that (H1)-(H3) in Theorem 3.2 hold for this equation, our nu-
merical simulations in Fig. (1-1) and Fig. (1-2) show that there is a globally
asymptotically attractive positive periodic solution N∗(t). Moreover, if we choose
d2(t) = 1

10 , β(t) = 1 + sin(t) and γ(t) = 1
10 , then R0 = 10

7 > 1. Thus, we have Fig.
(1-3), which shows that the disease is uniform persistence and there is a positive
periodic solution when R0 > 1. On the contrary, if we choose d2(t) = 1

5 (1 + sin(t)),

β(t) = 1
2 (1 + 3 sin(t)) and γ(t) = 1

5 , then R0 = 5
9 < 1. We have Fig. (1-4) for this

case. For other initial data, we have similar simulations, which may suggest that
every solution converges to the disease-free periodic solution.

Example 2. In this example, we choose B(t,N)N = 0.8 + N , d(t) = 1, d1(t) =
1 + sin(t), τ = 1. Then α(t) = e−1+cos(t)−cos(t−1) and the equation (3.1) becomes

N ′(t) = (0.8 +N(t− 1))e−1+cos(t)−cos(t−1) −N(t).
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It is easy to see that (A1)-(A3) in Theorem 3.3 hold for this equation, our nu-
merical simulations in Fig. (2-1) and Fig. (2-2) show that there is a globally
asymptotically attractive positive periodic solution N∗(t). Moreover, if we choose
d2(t) = 1

5 , β(t) = 4(1 + sin(t)) and γ(t) = 1
5 , then R0 = 20

7 > 1. Thus, we have
Fig. (2-3), which shows that the disease is uniform persistence and there is a pos-
itive periodic solution when R0 > 1. On the other hand, if we choose d2(t) = 1

5 ,

β(t) = 1
2 (1 + sin(t)) and γ(t) = 1

5 , then R0 = 5
14 < 1. We have Fig. (2-4) for this

case. For other initial data, we have similar simulations, which may suggest every
solution converges to the disease-free periodic solution.
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Example 3. In this example, we choose B(t,N)N = 1.2N(1 + sin(t))e−
1
2 N ,

d(t) = 1
5 , d1(t) = 1 + sin(t), τ = 4. Then α(t) = e−4+cos(t)−cos(t−4) and the

equation (3.1) becomes

N ′(t) =
6

5
N(t− 4)e−4+cos(t)−cos(t−4)(1 + sin(t− 4))e−

1
2N(t−4) −

1

5
N(t).

It is easy to see that (S1)and (S2) hold for this equation. In this case, 1
q(t) = 2 and

(3.5) becomes

Ū ′(t) = α(t)
p(t− τ)

q(t− τ)
e−1 − d(t)Ū (t)

= e−4+cos(t)−cos(t−4) 1.2(1 + sin(t− 4))
1
2

e−1 −
1

5
Ū(t)(t)

≤ e−3 × 4.8 −
1

5
Ū(t).

0 200 400 600 800 1000
0

0.5

1

1.5

t

N
(t
)

(3-1)

0 200 400 600 800 1000
0

0.5

1

1.5

t

N
(t
)

(3-2)

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
0
>1

t

S
(t
),
I(
t)

S(t)
I(t)

(3-3)

0 10 20 30 40 50 60
0

0.5

1

1.5

R
0
<1

t

S
(t
),
I(
t)

S(t)
I(t)

(3-4)

Hence, Ū∗(t) ≤ 5×4.8
e3 ≤ 2, and (S3) holds. Our numerical simulations in Fig.

(3-1) and Fig. (3-2) show that there is a globally asymptotically attractive positive
periodic solution N∗(t). Moreover, if we choose d2(t) = 1

5 , β(t) = 1 + sin(t) and

γ(t) = 1
5 , then R0 = 5

3 > 1. Then, we have Fig. (3-3), which shows that the disease
is uniform persistence and there is a positive periodic solution when R0 > 1. On
the other hand, if we choose d2(t) = 1

5 , β(t) = 0.2(1 + sin(t)) and γ(t) = 1
5 , then

R0 = 1
3 < 1. We have Fig. (3-4) for this case. For other initial data, we have
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similar simulations, which may imply that every solution converges to the disease-
free periodic state.

Example 4. In this example, if we choose d(t) = 0.2, d1(t) = 1+0.2 sin(t), τ = 0.1
and B(t,N)N = N(1 + cos(t))e−2N , then α(t) = e−0.1+0.2(cos(t)−cos(t−0.1)) and the
equation (3.1) becomes

N ′(t) = N(t− 0.1)(1 + cos(t− 0.1))e−2N(t−0.1)e−
1
10 + 1

5 (cos(t)−cos(t−0.1)) −
1

5
N(t).
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It is easy to see that (S1), (S2) and (S3)
′

hold for this equation, our numerical
simulations in Fig. (4-1) and Fig. (4-2) show that there is a globally asymptotically
attractive positive periodic solutionN∗(t). Moreover, if we choose d2(t) = 1

5 , β(t) =

4(1 + sin(t)) and γ(t) = 1
5 , then R0 = 20

3 > 1. Thus, we have Fig. (4-3), which
shows that the disease is uniform persistence and there is a positive periodic solution
when R0 > 1. On the other hand, if we choose d2(t) = 1

5 , β(t) = 1
2 (1 + sin(t)) and

γ(t) = 1
5 , then R0 = 5

6 < 1. We have Fig. (4-4) for this case. For other initial
data, we have similar simulations, which may suggest that every solution converges
to the disease-free periodic solution.

6. Concluding remarks. In this paper, we first consider a time-delayed periodic
single-species population model and obtain four sets of conditions to ensure that the
population will stabilize eventually at an oscillating state. When the disease invades
the population and susceptibles contact infectives under the standard incidence
law, we find an explicit formula for R0 in the form of the division of the average
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contact rate and the mass of the average disease induced death rate, disease recovery
rate and death rate. Furthermore, we show that there exists an endemic periodic
solution and the disease remains endemic when R0 > 1, and the disease dies out
when R0 < 1. In order to eradicate such a disease, we should decrease the average
contact rate, or increase the average disease recovery rate to make R0 < 1.

As discussed in [21], we remark that in the case d2(t) ≡ 0, N(t) satisfies equation
(3.1), and hence

lim
t→∞

(N(t) −N∗(t)) = 0.

Note that I(t) satisfies the following nonautonomous equation

I ′(t) =
β(t)(N(t) − I(t))I(t)

N(t)
− (d(t) + γ(t))I(t), (6.1)

which is asymptotic to the following periodic equation

I ′(t) =
β(t)(N∗(t) − I(t))I(t)

N∗(t)
− (d(t) + γ(t))I(t). (6.2)

If R0 > 1, i.e.,
∫ T

0
(β(t) − d(t) − γ(t))dt > 0, and β(t) > 0, ∀t ∈ [0, T ], then it

follows from [19, Theorem 5.2.1] that equation (6.2) admits a unique positive T -
periodic solution I∗(t), which is globally asymptotically stable in R+ \ {0}. It then
follows from the theory of asymptotically periodic system (see [19, Section 3.2])
that lim

t→∞
(I(t)− I∗(t)) = 0. This implies that system (2.1) has a globally attractive

positive T -periodic solution (N∗(t) − I∗(t), I∗(t)).
By applying the perturbation theory of a globally stable fixed point (see [15,

Theorem 2.2]) and the theorem on uniform persistence uniform in parameters (see
[19, Theorem 1.4.2]) to the Poincaré map of system (2.1), we can further show that
if R0 > 1, β(t) > 0, ∀t ∈ [0, T ], and ‖d2(·)‖ := max

0≤t≤T
|d2(t)| is sufficiently small,

system (2.1) has a globally attractive positive T -periodic solution (S̄(t), Ī(t)). On
the other side, our numerical results (for example, see Figs.(1-3), (2-3), (3-3) and (4-
3)) suggest that in the case where R0 > 1, every solution with nontrivial initial data
is asymptotic to a periodic solution, while these periodic solutions may be different.
This implies that there may be no uniqueness of positive T -periodic solution for
some d2(t) ≥ 0. It is worthy to study the uniqueness, multiplicity, and stability
of positive solution of (2.1) in the case where R0 > 1. We leave this challenging
problem for further investigation.
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