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Abstract. We study changes of variable, called time transformations, which
reduce a delay differential equation (DDE) with a variable non-vanishing delay
and an unbounded lag function to another DDE with a constant delay. By
using this reduction, we can easily obtain a superconvergent integration of the
original equation, even in the case of a non-strictly-increasing lag function, and
study the type of decay to zero of solutions of scalar linear non-autonomous
equations with a strictly increasing lag function.

1. Introduction. We consider delay differential equations (DDEs) of the form
{

y′ (t) = f (t, y (t) , y (t − τ (t))) , t ≥ t0,

y (t) = g (t) , t ≤ t0,
(1)

where the dependence on the past is contained in the non-local term y (t − τ (t))
and the delay τ (t) depends on t. However, in the following, we use the so-called
lag function θ defined by

θ (t) := t − τ (t)

instead of the delay function τ and so the non-local term in (1) is written as y (θ (t)).
By a change of variable t = α (s) – which we call time transformation (by viewing

the variable t as time) – we can reduce the DDE (1) to a DDE with a constant
delay. The price we pay is a more complicated right-hand side of the equation, e.g.
constant coefficient equations become variable coefficients equations. On the other
hand, we bring back the equation into a well-known setting where we can resort to
known analytic techniques for studying the qualitative behaviour of the solution as
well as to standard numerical techniques for computing it.
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As an example, consider the constant coefficient DDE with proportional delay,
{

y′ (t) = ay (t) + by (qt) , t > 0,

y (0) = y0
(2)

where q ∈ (0, 1). This equation was introduced in [10] where it arose in the modelling
of the dynamics of the pantograph collecting the current for an electric locomotive;
it is now known as the pantograph equation, after the paper [5]. The change of
variable t = es reduces it to the variable coefficient DDE with constant delay

{

z′ (s) = aesz (s) + besz (s − τ) , s > −∞,

z (−∞) = y0,

where z (s) = y (t), τ = log q−1 and the initial condition is shifted to −∞. This
transformation is well-known in the literature and was considered in several theo-
retical or numerical papers: see [6], [7], [8] and [9].

The plan of the present paper is the following. In Section 2, we study the reduc-
tion of a DDE (1) with a non-vanishing delay and an unbounded lag function to a
constant delay equation. Sections 3 and 4 contain two possible applications of such
reductions. In Section 3, we present an approach based on time transformations for
the superconvergent integration of DDEs with a non-strictly-increasing lag function.
We stress that in literature superconverge results in the integration of DDEs are
given only for strictly increasing lag functions (see [1] and [11]). In Section 4, we
analyze the type of decay to zero of solutions of scalar linear non-autonomous DDEs
with a strictly increasing lag function by a technique based on time transformations.
Conclusions are drawn in Section 5.

2. Reduction of DDEs. Let us consider the DDE
{

y′ (t) = f (t, y (t) , y (θ (t))) , t ∈
[

t0, t
)

,

y (t) = g (t) , t ≤ t0,
(3)

where t0 ∈ R, t ∈ (t0, +∞], f :
[

t0, t
)

× R
d × R

d → R
d, θ :

[

t0, t
)

→ R is such that

θ (t) ≤ t for all t ∈
[

t0, t
)

, and g : (−∞, t0] → R
d. We assume that the functions

f , θ and g are sufficiently regular and that the initial-value problem (3) possesses a
unique solution.

We show how the DDE (3) can be reduced, by a time transformation, to a DDE
with another lag function.

Let s0 ∈ R, s ∈ (s0, +∞] and κ : [s0, s) → R such that κ (s) ≤ s for all s ∈ [s0, s).
Moreover, let α : (−∞, s) → R be such that:

(i) α is continuous and the right derivative α′ (s) exists for all s ∈ [s0, s);
(ii) α (s) ≤ t0 for all s ≤ s0, α (s) ≥ t0 for all s ∈ [s0, s) and lims↑s α (s) = t;
(iii) θ (α (s)) = α (κ (s)) for all s ∈ [s0, s).

Note that (ii) implies α (s0) = t0.
The function α is a time transformation reducing (3) to the DDE

{

z′ (s) = f (α (s) , z (s) , z (κ (s)))α′ (s) , s ∈ [s0, s) ,

z (s) = g (α (s)) , s ≤ s0,
(4)

with lag function κ. As with the original DDE (3), we assume that there exists a
unique solution of (4).
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The link between the solution y of (3) and the solution z of (4) is given by

z (s) = y (α (s)) , s < s. (5)

In fact, for s0 ≤ s < s, we have α (s) ≥ t0 by (ii) and then

z′ (s) = y′ (α (s))α′ (s)

= f (α (s) , y (α (s)) , y (θ (α (s))))α′ (s)

= f (α (s) , y (α (s)) , y (α (κ (s))))α′ (s)

= f (α (s) , z (s) , z (κ (s)))α′ (s)

by (iii). On the other hand, for s ≤ s0, we have α (s) ≤ t0 by (ii) and then

z (s) = y (α (s)) = g (α (s)) .

Therefore, we can solve (4) and then “reconstruct” the solution of (3) by means
of (5).

Note that we do not pretend that the time transformation α is strictly increasing.
If this holds, then the function z essentialy coincides with the function y since it
is obtained from y by the time scaling s = α−1 (t). If the transformation α is not
strictly increasing, then there exists some value t ∈

[

t0, t
)

of the transformation
which is assumed more times, and so, the “reconstruction” of the solution y by (5)
may show more than once in a neighbourhood of t.

We give two examples of strictly increasing time transformations reducing to a
constant delay equation.

Example 2.1. Let q ∈ (0, 1), s0 ∈ R and τ > 0. The DDE with proportional delay
of parameter q,

{

y′ (t) = f (t, y (t) , y (qt)) , t ≥ t0,

y (t) = g (t) , t ≤ t0,

where t0 > 0, can be reduced to the DDE with constant delay τ
{

z′ (s) = f (α (s) , z (s) , z (s − τ))α′ (s) , s ≥ s0,

z (s) = g (α (s)) , s ≤ s0.

by the time transformation

α (s) = t0e
log q−1

τ
(s−s0), s ∈ R.

Example 2.2. Let a > 0, p ∈ (0, 1), s0 ∈ R and τ > 0. The DDE with a non-linear
lag function,

{

y′ (t) = f (t, y (t) , y (atp)) , t ≥ t0,

y (t) = g (t) , t ≤ t0,

where t0 > a∗ := a
1

1−p , can be reduced to the DDE with constat delay τ ,
{

z′ (s) = f (α (s) , z (s) , z (s − τ))α′ (s) , s ≥ s0,

z (s) = g (α (s)) , s ≤ s0.

by the time transformation

α (s) = a∗elog
t0
a∗ ·e

log p−1

τ
(s−s0)

, s ∈ R.
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In the sequel, we will study time transformations reducing to a constant delay
equation, i.e.

κ (s) = s − τ, s ∈ [s0, s) ,

in (4) for some τ > 0.
We assume that t = +∞, θ is unbounded and there exists τ∗ > 0 such that

θ (t) ≤ t − τ∗ for all t ∈
[

t0, t
)

(i.e. the DDE (3) has a non-vanishing delay).

Let {ξk}k≥0 be the sequence such that ξ0 := t0 and, for each k ≥ 0, ξk+1 is the
minimum root of odd multiplicity of the equation

θ (ξ) = ξk, (6)

i.e. ξk+1 is the first point where the curve θ = θ (t) crosses the horizontal line
θ = ξk. The points ξ0, ξ1, ξ2, ... are known as principal discontinuity points of the
DDE (3) (see [2, p. 26]).

Note that the sequence {ξk}k≥0 is strictly increasing and limk→∞ ξk = +∞.
Moreover,

θ (ξ) ≤ ξk if ξ ≤ ξk+1, k ≥ 0. (7)

We will, in the first instance, assume that:

(A) for any k ≥ 0, ξk+1 is the unique root of odd multiplicity of the equation (6) .

This means that ξk+1 is the unique point where the curve θ = θ (t) crosses the
horizontal line θ = ξk.

Note that strictly increasing lag functions satisfy (A). The case where the as-
sumption (A) is not fulfilled will be adressed in Subsection 2.2.

By (A) we have

θ (ξ) ≥ ξk if ξ ≥ ξk+1, k ≥ 0 (8)

(compare with (7)).

We now show how to construct, under the assumption (A), a time transformation
reducing the original DDE (3) to a DDE with a constant delay τ . Two distinct
constructions are presented. The first, called backward construction, is defined for
any lag function satisfying (A): however, in Subsection 2.2, it will also be applied
a to lag function for which (A) does not hold. The construction uses images of the
function θ and proceeds, for the construction of the transformation α (s), in the
negative direction of the s−axis by using the property (iii),

α (s − τ) = θ (α (s)) , s ≥ s0.

The second, called forward construction, is defined only for a strictly increasing lag
function. It uses counterimages of θ and proceeds in the positive direction of the
s−axis by using

α (s) = θ−1 (α (s − τ)) , s ≥ s0.

We stress that the backward construction will be used in Section 4 for developing
superconvergent integrations of DDEs with a non-strictly-increasing lag function
whereas the forward construction will be used in Section 5 for studying the rate
of decay to zero of solutions of linear scalar non-autonomous DDEs with a strictly
increasing lag function.
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2.1. The backward construction. Let us assume that we want to “reconstruct”
the solution y of (3) in

[

t0, ξk

]

for some index k > 1.
We arbitrarily fix τ > 0, S ∈ R and a strictly increasing differentiable function

ω : [S − τ, S] → R such that ω (S − τ) = ξk−1 and ω (S) = ξk.

Then, recursively define α :
[

S −
(

k + 1
)

τ, S
]

→ R by

α (s) := ω (s) , s ∈ [S − τ, S] , (9a)

α (s) := θ (α (s + τ)) , s ∈ [S − (k + 1) τ, S − kτ) , k = 1, 2, ..., k. (9b)

This yields

α (s) = θk (ω (s + kτ)) , s ∈ [S − (k + 1) τ, S − kτ) , 0 ≤ k ≤ k, (10)

where θk denotes the k−th iterate of θ.

Proposition 1. The function α is continuous, right-differentiable with right deriv-
ative recursively given by

α′ (s) = ω′ (s) , s ∈ [S − τ, S) , (11a)

α′ (s) = θ′ (α (s + τ)) α′ (s + τ) , s ∈ [S − (k + 1) τ, S − kτ) , (11b)

k = 1, 2, ..., k,

and it satisfies

α (s) ≤ ξk−k if s ≤ S − kτ (12)

α (s) ≥ ξk−k if s ≥ S − kτ, 0 ≤ k ≤ k. (13)

Moreover:

a) α is of class Cp, p positive integer, on every interval [S − (k + 1) τ, S − kτ ],

0 ≤ k ≤ k, if ω is of class Cp and θ is of class Cp on
[

t0, ξk

]

;

b) α is strictly increasing in [S − kτ, S], 2 ≤ k ≤ k +1, if and only if θ is strictly
increasing in

[

ξk−k+1, ξk

]

.

Proof. As for the continuity of α, it is sufficient to prove that

lim
s↑(S−kτ)

α (s) = α (S − kτ) , k = 1, ..., k.

For k = 1, we have

lim
s↑(S−τ)

α (s) = lim
s↑(S−τ)

θ (ω (s + τ)) = θ
(

ξk

)

= ξk−1 = α (S − τ) ,

and, for k = 1, 2, ..., k − 1, if

lim
s↑(S−kτ)

α (s) = α (S − kτ) ,

then

lim
s↑(S−(k+1)τ)

α (s) = lim
s↑(S−(k+1)τ)

θ (α (s + τ)) = θ (α (S − kτ))

= α (S − (k + 1) τ) .

By (9), we obtain that α is right-differentiable on
[

S −
(

k + 1
)

τ, S
)

and the
equalities (11) hold.

The properties (12) and (13) follow by

α (s) ≤ ξk−k if s ∈ [S − (k + 1) τ, S − kτ)

α (s) ≥ ξk−k if s ∈ [S − kτ, S − (k − 1) τ) , 0 ≤ k ≤ k.
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These inequalities hold since

ξk−1 ≤ α (s) = ω (s) ≤ ξk if s ∈ [S − τ, S]

and, for k = 1, 2, ..., k, if

α (s) ≤ ξk−(k−1) if s ∈ [S − kτ, S − (k − 1) τ)

then
α (s) = θ (α (s + τ)) ≤ ξk−k if s ∈ [S − (k + 1) τ, S − kτ)

by (7), and if
α (s) ≥ ξk−k if s ∈ [S − kτ, S − (k − 1) τ)

then
α (s) = θ (α (s + τ)) ≥ ξk−(k+1) if s ∈ [S − (k + 1) τ, S − kτ)

by (8).
Moreover, if ω is of class Cp and θ is of class Cp on

[

t0, ξk

]

, then α is of class
Cp on [S − τ, S] and, by assuming α to be of class Cp on [S − kτ, S − (k − 1) τ ],

k = 1, 2, ..., k, we can take, on [S − (k + 1) τ, S − kτ ], the derivatives of α up to the
order p and these derivatives turn out to be continuous. This proves the property
a).

Finally, we prove the property b). Let us assume that θ is strictly increasing in
[

ξk−k+1, ξk

]

, 2 ≤ k ≤ k+1, and prove that α is strictly increasing in [S − kτ, S]. If α

is strictly increasing on [S − lτ, S − (l − 1) τ) with l = 1, ..., k− 1, then it is strictly
increasing on [S − (l + 1) τ, S − lτ): in fact, for s1, s2 ∈ [S − (l + 1) τ, S − lτ) such
that s1 < s2, we have α (s1 + τ) < α (s2 + τ) and

α (s1 + τ) , α (s2 + τ) ∈
[

ξk−l, ξk−(l−1)

]

by (12) and (13); thus

α (s1) = θ (α (s1 + τ)) < θ (α (s2 + τ)) = α (s2) .

Since α coincides with the strictly increasing function ω on [S − τ, S], it is strictly
increasing on every interval [S − (l + 1) τ, S − lτ), 0 ≤ l ≤ k − 1. By continuity of
α, we have that α is strictly increasing on [S − kτ, S].

Vice versa, if θ is not strictly increasing on
[

ξk−k+1, ξk

]

, 2 ≤ k ≤ k+1, then there

are t1, t2 ∈
[

ξk−k+1, ξk

]

, with t1 < t2, such that θ (t1) ≥ θ (t2). By the continuity of

α, α (S − (k − 1) τ) = ξk−k+1 and α (S) = ξk, there are s1, s2 ∈ [S − (k − 1) τ, S]
with s1 < s2 such that α (s1) = t1 and α (s2) = t2. Hence

α (s1 − τ) = θ (α (s1)) = θ (t1) ≥ θ (t2) = θ (α (s2)) = α (s2 − τ) ,

and then α is not strictly increasing on [S − kτ, S].

The function α is a time transformation reducing the DDE
{

y′ (t) = f (t, y (t) , y (θ (t))) , t ∈
[

t0, ξk

)

,

y (t) = g (t) , t ≤ t0,
(14)

to the DDE with constant delay
{

z′ (s) = f (α (s) , z (s) , z (s − τ))α′ (s) , s ∈
[

S − kτ, S
)

,

z (s) = g (α (s)) , s ≤ S − kτ.
(15)

In fact, α satisfies the conditions (i), (ii) and (iii) at page 3, for the lag function
κ (s) = s − τ , s ≤ s0.
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0

−2

θ

t

θ=t

θ=t−2+1/2 sin(πt)

ξ
1

ξ
2

ξ
3

ξ
4

Figure 1. Lag function and principal discontinuity points for the
DDE (17).

Hence, we can solve (15) and then recover the solution of (14) by

z (s) = y (α (s)) , s ∈
[

S − kτ, S
]

.

Since α is continuous, α
(

S − kτ
)

= t0 and α (S) = ξk, all the values y (t), t ∈
[

t0, ξk

]

, are obtained when s runs in [S − kτ, S]. However, when θ is not strictly

increasing on
[

ξ1, ξk

]

, some values of y are obtained more times.

Our next example illustrates a backward construction. We consider the following
choice of the parameters S, τ and ω:

S = 0, τ = 1, ω (s) = ξk + s
(

ξk − ξk−1

)

, s ∈ [−1, 0] . (16)

Example 2.3. Consider the DDE
{

y′ (t) = f
(

t, y (t) , y
(

t − 2 + 1
2 sin πt

))

, t ≥ 0,

y (t) = g (t) , t ≤ 0.
(17)

The lag function is shown in Figure 1 and satisfies the assumption (A). The prin-
cipal discontinuity points are

ξk = 2k, k ≥ 0.

For k = 3, the function α is recursively given by

ω (s) = 2
(

k + s
)

, s ∈ [−1, 0]

α (s) = α (s + 1) − 2 +
1

2
sin (πα (s + 1)) , s ∈ [− (k + 1) ,−k) ,

k = 1, 2, ..., k.

and is shown in Figure 2.
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ξ
3
=6

ξ
2
=4

ξ
1
=2

ξ
0
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θ(ξ
0
)=−2

−1−2−3−4

Figure 2. Graph of the function α for the DDE (17) when k = 3
and the parameters S, τ and ω are given in (16).

2.2. The backward construction for a lag function not satisfying the as-
sumption (A). In this subsection, we drop the assumption (A),

(A) for any k ≥ 0, ξk+1 is the unique root of odd multiplicity of the equation (6).

Let us introduce the sets Dk, k ≥ 0, recursively defined by

D0 = {t0}

Dk+1 = {ξ ∈[ t0, +∞ ) : there exists η ∈ Dk such that ξ

is a root of odd multiplicity of the equation θ (ξ) = η} ,

k = 0, 1, 2, ... .

The points in the union of the sets Dk, k ≥ 0, are called (primary) discontinuity
points (see [2, p. 21]). We have

ξk ∈ Dk, k ≥ 0,

and, if (A) holds,

Dk = {ξk} , k ≥ 0.

The backward construction given in (9) can be also applied to a lag function
not satifying the assumption (A), but the recursion (9b) is accomplished only if
α (s + τ) ≥ t0 since θ (t) is defined only for t ≥ t0.

We obtain again a continuous function α such that, for 0 ≤ k ≤ k,

α (s) ≤ ξk−k, s ≤ S − kτ,

α (S − kτ) = ξk−k (18)

and then α (s) ≤ t0 for s ≤ s0 = S − kτ and α (s0) = t0.
On the other hand, it is not longer true that α (s) ≥ t0 for s ≥ s0 (recall

conditions (i), (ii) and (iii) at page 3). In fact, for s ∈ [S − (k + 1) τ, S − kτ),

0 ≤ k ≤ k − 1, s is a root of odd multiplicity of the equation α (x) = t0 if and only
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if there exists η ∈ Dk such that s + kτ is a root of the equation ω (x) = η. Hence,
there exists such a point s in the interval [S − (k + 1) τ, S − kτ) if and only if

Dk ∩
[

ξk−1, ξk

)

6= ∅.

We conclude that all the points s where α (s) crosses t0 can be determined by the
discontinuity points in

[

ξk−1, ξk

)

.
Since α (s) ≥ t0, s ≥ s0, is not longer true, α (s) is not defined for all s ∈

[s0 − τ, S] (recall that the recursion (9b) is accomplished only if α (s + τ) ≥ t0).
Let us introduce the subsets of [s0 − τ, S]:

A = {s ∈ [s0 − τ, S] : α (s) is defined and α (s) ≥ t0} ,

B = {s ∈ [s0 − τ, S] : α (s) is defined and α (s) ≤ t0} ,

C = {s ∈ [s0 − τ, S] : α (s) is not defined} .

Note that

A =
⋃

k>0

(B + kτ) ∩ [s0 − τ, S] (19)

C =
⋃

k>0

(B − kτ) ∩ [s0 − τ, S] .

where C is the closure of C. Moreover, the set B is a union of intervals whose ends
are the points s where α (s) crosses t0 (which separate A and B) or shifts of −τ

of such points (which separate B and C). The sets A and C are also unions of
intervals. Finally, note that

A ∩ C = ∅. (20)

The reduced constant delay equation now takes the form
{

z′ (s) = f (α (s) , z (s) , z (s − τ)) α′ (s) , s ∈ A,

z (s) = g (α (s)) , s ∈ B.
(21)

Next example illustrates a backward construction for a lag function not satisfying
the assumption (A).

Example 2.4. Let us consider the DDE
{

y′ (t) = f (t, y (t) , y (θ (t))) , t ≥ 0,

y (t) = g (t) , t ≤ 0.
(22)

where

θ (t) = t3 −
9

2
t2 + 6t−

9

5
, t ∈ [0, 3] .

The lag function is shown in Figure 3 and it does not satisfy the assumption (A).
The principal discontinuity points in [0, 3] are given in the table below:

k ξk

0 0
1 0.4199
2 0.6146
3 0.7773
4 2.5329
5 2.9715

.

The discontinuity points in [t0, ξ5) are collected in the sets:
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ξ
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Figure 3. Lag function and principal discontinuity points for the
DDE (22).

D0 = {t0}

D1 = {ξ1}

D2 = {ξ2, η2, µ2}

D3 = {ξ3, η3, µ3, η23, µ23}

D4 ∩ [t0, ξ5) = {ξ4, η34, µ34}

where

• η2 and µ2, with η2 < µ2, are the roots of θ (ξ) = ξ1 different from ξ2;
• η3 and µ3, with η3 < µ3, are the roots of θ (ξ) = ξ2 different from ξ3;
• η23, µ23, η34 and µ34 are the roots of θ (ξ) = η2, θ (ξ) = µ2, θ (ξ) = η3 and

θ (ξ) = µ3, respectively.

We choose k = 5 and the parameters in (16) so that S = 0, s0 = −5 and α is a
straight line on [−1, 0]. The function α defined by (9) is displayed in Figure 4.

Since

D0 ∩ [ξ4, ξ5) = ∅

D1 ∩ [ξ4, ξ5) = ∅

D2 ∩ [ξ4, ξ5) = ∅

D3 ∩ [ξ4, ξ5) = {η23, µ23}

D4 ∩ [ξ4, ξ5) = {ξ4, η34, µ34} ,

α (s) crosses the point t0 in the interval [−4,−3) at the points σ1 and σ2, with
σ2 < σ1, such that

ω (σ1 + 3) = µ23

ω (σ2 + 3) = η23
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θ(ξ
0
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−1−2−3−4−5−6

Figure 4. Graph of the function α for the DDE (22) when k = 5
and the parameters S, τ and ω are given in (16).

and in the interval [−5,−4) at the points σ5 = −5, σ4 and σ3, with σ5 < σ4 < σ3,
such that

ω (σ3 + 4) = µ23

ω (σ4 + 4) = η23

ω (σ5 + 4) = ξ5.

The sets B and C are given by

B = [−6, σ4 − 1] ∪ [σ3 − 1,−5] ∪ [σ4, σ2 − 1] ∪ [σ1 − 1, σ3] ∪ [σ1, σ2]

C = (σ4 − 1, σ3 − 1) ∪ (σ2 − 1, σ1 − 1) .

2.3. The forward construction. Now, let us assume that

θ′ (t) > 0, t ≥ t0, (23)

holds for the unbounded lag function θ. So, θ is strictly increasing and has a strictly
increasing inverse ϑ : [θ (t0) , +∞) → [t0, +∞) that is differentiable with derivative

ϑ′ (u) =
1

θ′ (ϑ (u))
, u ∈ [θ (t0) , +∞) .

Similarly to the backward construction, we arbitrarily fix τ > 0, S ∈ R and a
continuosly differentiable function ω : [S − τ, S] → R such that

ω′ (s) > 0 for s ∈ [S − τ, S] , ω (S − τ) = θ (t0) and ω (S) = t0. (24)

Then we define α : [S − τ, +∞) → R by

α (s) := ω (s) , s ∈ [S − τ, S) , (25)

α (s) := ϑ (α (s − τ)) , s ∈ [S + kτ, S + (k + 1) τ) , (26)

k = 0, 1, 2, ... .
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This yields

α (s) = ϑk (ω (s − kτ)) , s ∈ [S + (k − 1) τ, S + kτ) , k ≥ 0. (27)

Proposition 2. The function α is continuous, right-differentiable with positive
right derivative recursively given by

α′ (s) = ω′ (s) , s ∈ [S − τ, S) , (28)

α′ (s) = ϑ′ (α (s − τ))α′ (s − τ) , s ∈ [S + kτ, S + (k + 1) τ) , (29)

k = 0, 1, 2, ... ,

and it satisfies

α (S + kτ) = ξk, k ≥ 0.

The proof of Proposition 2 is straightforward. Note that α is strictly increasing
and maps [S − τ, +∞) into [θ (t0) , +∞).

The function α is a time transformation reducing the DDE
{

y′ (t) = f (t, y (t) , y (θ (t))) , t ≥ t0,

y (t) = g (t) , t ≤ t0,

to the DDE with constant delay
{

z′ (s) = f (α (s) , z (s) , z (s − τ))α′ (s) , s ≥ S,

z (s) = g (α (s)) , s ≤ S.

Hence, we can solve the DDE with constant delay and then reconstruct the
solution y in [t0, +∞) by

z (s) = y (α (s)) , s ∈ [S, +∞) .

Since α is strictly increasing, when s runs in [S, +∞) all the values of y in [t0, +∞)
are attained one single time.

3. Superconvergent integration. In this section, we illustrate an application of
the reduction to a constant delay equation which concerns superconvergent integra-
tions of a DDE with a non-vanishing delay and an unbounded lag function.

In the context of the numerical integration of DDEs, a method is said to be
superconvergent if it attains at the mesh points an order of convergence higher than
min {q + 1, p}, where q is the uniform order and p is the discrete order (see [2, p.
156, Theorem 6.2.1]).

It is well known (see [4, p. 341, Theorem 17.1]) that a Runge-Kutta (RK) method
of order p is superconvergent up to the order p, when it is applied to a constant
delay DDE with stepsize given by a submultiple of the delay and past values are
approximated by stage values. The explanation for this result is that the mesh point
approximations are the same as when the RK method is applied to the ordinary
differential equation of Bellman’s method of steps (see [3]).

In [11], the superconvergence up to the order p is also obtained for a continuous
Runge-Kutta (CRK) method, which is a natural continuous extension (NCE) of
an RK method of order p, when it is applied on a constrained mesh to a DDE
with a variable delay and a strictly increasing lag function. For the particular case
of a collocation method, this result was first proved in [1]. On the other hand,
there are no results in the literature concerning superconvergence in the case of a
non-strictly-increasing lag function.
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The reduction to DDEs with constant delay offers an alternative approach for
the superconvergent integration. This approach has the advantage that it does not
require an interpolant between mesh points and works for a non-strictly-increasing
lag function. The reduction is accomplished by a time transformation obtained by
using the backward construction.

We begin by considering the case where the assumption (A) holds.
As illustrated in Subsection 2.1, for fixed but otherwise arbitrary principal dis-

continuity point ξk, we can reduce the DDE (14) to the constant delay DDE (15).
The equation (15) can be now integrated by a ν−stage RK method (A, b, c) by

using a stepsize h = τ
m

, m a positive integer. The method proceeds along the mesh

{sn}n=−m,...,0,...,N , where sn = s0 + nh and N = km, and it yields a sequence

{zn}n=0,1,...,N , where zn is an approximation of z (sn) = y (α (sn)), given by

zn+1 = zn + h

ν
∑

i=1

bif
(

α
(

si
n+1

)

, Zi
n+1, Z

i
n+1−m

)

α′
(

si
n+1

)

, n = 0, 1, ..., N − 1,

z0 = g (α (s0)) ,

where si
n+1 = sn + cih, i = 1, ..., ν. The stage values Zi

n+1, i = 1, ..., ν and n =

−m, ...0, ..., N − 1, are given by

Zi
n+1 = zn + h

ν
∑

j=1

aijf
(

α
(

s
j
n+1

)

, Z
j
n+1, Z

j
n+1−m

)

α′
(

s
j
n+1

)

, n ≥ 0,

Zi
n+1 = g

(

α
(

si
n+1

))

, n < 0,

where, even for n < 0, si
n+1 = sn+1 + cih.

Note that, by (9) and (11), the values α
(

si
n+1

)

and α′
(

si
n+1

)

, i = 1, ..., ν and

n = −m, ...0, ..., N − 1, are computed by

α
(

si
n+1

)

= ω
(

si
n+1

)

, i = 1, ..., ν, n = N − m, N − m + 1, ..., N − 1

α
(

si
n+1

)

= θ
(

α
(

si
n+1+m

))

, i = 1, ..., ν, n = −m, ..., 0, ..., N − m − 1

and

α′
(

si
n+1

)

= ω′
(

si
n+1

)

, i = 1, ..., ν, n = N − m, N − m + 1, ..., N − 1

α′
(

si
n+1

)

= θ′
(

α
(

si
n+1+m

))

α′
(

si
n+1+m

)

, i = 1, ..., ν,

n = −m, ..., 0, ..., N − m − 1,

respectively.
By the superconvergence of the RK method when applied to equations with

constant delay, we obtain

max
n=0,1,...,N

|zn − y (α (sn))| = O (hp) ,

where p is the order of the RK method.
Note that in this type of superconvergent integration, we are using in the inter-

val
[

θ (t0) , ξk

]

the constrained mesh {α (sn)}n=−m,...,0,...,N for approximating the

solution y of (14). In case of a strictly increasing lag function θ, such a mesh co-
incides with the constrained mesh used in the classical superconvergent integration
by NCEs of RK methods.

Now, we analyze the case of a lag function not satisfying the assumption (A).
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As illustrated in Subsection 2.2, we can reduce the DDE (14) to the constant
delay DDE (21). From that subsection, we recall that the union of all iterated
shifts of τ of the set B, where α (s) ≤ t0 holds, yields the set A, where α (s) ≥ t0
holds (see (19)). Hence, we can construct a mesh on

[

S − kτ, S
]

as follows: we start
by defining an arbitrary mesh on the set B and then, by successive shifts of τ , we
fill by mesh points the set A. The DDE (21) is then solved on such a mesh by a RK
method of order p. We proceed by solving the DDE successively on the intervals
[S − (k + 1) τ, S − kτ ], k = k − 1, k − 2, ..., 1, 0. Thus

z (s) = zk (s) , s ∈ [S − (k + 1) τ, S − kτ ] , 0 ≤ k ≤ k,

where
z0 (s) = g (α (s)) , s ∈

[

S −
(

k + 1
)

τ, S − kτ
]

and, for 1 ≤ k ≤ k, zk is the solution of the ordinary differential equation






z′k (s) = f (α (s) , zk (s) , zk−1 (s − τ)) α′ (s) , s ∈ Ak,

zk (s) = g (α (s)) , s ∈ Bk,

zk (S − kτ) = zk−1 (S − kτ)
(30)

where

Ak = A ∩ [S − (k + 1) τ, S − kτ ]

Bk = B ∩ [S − (k + 1) τ, S − kτ ] .

Since the sets A, B and C are unions of intervals (recall Subsection 2.2), the
interval [S − (k + 1) τ, S − kτ ] is a union of subintervals which are subsets of A, B

or C. By (20), two such subintervals which are subsets of A and C, respectively, are
not consecutive. Moreover, since α (S − (k + 1) τ) = ξk−k+1 and α (S − kτ) = ξk−k

hold (recall (18)), the first and the last subintervals are subsets of A. We solve the
differential equation on the subintervals which are subsets of A (the initial value
is zk−1 (S − kτ) for the first subinterval and g (t0) for the others) whereas, in the
subintervals which are subset of B the function zk is known and in the subintervals
which are subsets C it is not defined.

Since the argument of the Bellman method can be repeated for the integration of
the equations (30), it follows that the approximations of the solution of (21) at the
mesh points are uniformly O (hp), where h is the maximum stepsize of the mesh.

4. Decay to zero of solutions. In this section, as another application of the
reduction to constant delay equations, we study the type of decay to zero of solutions
of linear scalar non-autonomous DDEs with a strictly increasing lag function.

Let us consider the linear scalar non-autonomous DDE
{

y′ (t) = λ (t) y (t) + µ (t) y (θ (t)) , t ≥ t0,

y (t) = g (t) , t ≤ t0,
(31)

where we assume that the delay is non-vanishing, the lag function is unbounded
and (23) holds.

It is well known that if

inf
t≥t0

{−λ (t)} > 0 and sup
t≥t0

|µ (t)|

−λ (t)
< 1,

then y (t) → 0 as t → +∞, for every initial function g (see [2, Theorem 9.2.2, p.
256]). Moreover, it is known that if there exists τ∗∗ > 0 such that θ (t) ≥ t− τ∗∗ for
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t ≥ t0, that holds in the case of a constant delay, the decay to zero is of exponential
type, i.e.

y (t) = O
(

e−c(t−t0)
)

, t → +∞, (32)

for some c > 0 called the decay constant.
The following lemma gives a very precise estimate of the decay constant c in (32),

in case of a constant delay.

Lemma 4.1. Let us consider a DDE (31) with constant delay τ > 0. If

L = inf
t≥t0

{−λ (t)} > 0 and R = sup
t≥t0

|µ (t)|

−λ (t)
< 1,

then

|y (t)| ≤ e−
G−1(τL;R)

τ
·(t−t0) max

t0−τ≤ξ≤t

∣

∣

∣

∣

e
G−1(τL;R)

τ
·(ξ−t0)g (ξ)

∣

∣

∣

∣

, t ≥ t0 − τ, (33)

where G−1 (· ; R) is the inverse of the strictly increasing function

G (x; R) =
x

1 − exR
, x ∈

(

0, log R−1
)

,

mapping the interval
(

0, log R−1
)

into (0, +∞).
Moreover, for any L > 0 and R ∈ [0, 1), there exists an equation (31) with

constant delay τ such that

inf
t≥t0

{−λ (t)} = L and sup
t≥t0

|µ (t)|

−λ (t)
= R,

whose solution satisfies (33) with equality: such an equation has

λ(t) = −L, µ (t) = LR, t ≥ t0,

and its solution is

y (t) = e−
G−1(τL;R)

τ
·(t−t0), t ≥ t0 − τ.

Proof. Set tn = t0 + nτ , n = −1, 0, 1, . . .. We prove by induction that if c > 0
satisfies

c ≤ (1 − ecτR)L, (34)

then, for every n = 0, 1, 2, . . ., we have

|y (t)| ≤ e−c(t−t0) max
t0−τ≤ξ≤t0

∣

∣

∣
ec(ξ−t0)g (ξ)

∣

∣

∣
, tn−1 ≤ t ≤ tn.

The case n = 0 is trivial.
For a given n = 0, 1, 2, . . ., if

|y (t)| ≤ e−c(t−t0) max
t0−τ≤ξ≤t0

∣

∣

∣
ec(ξ−t0)g (ξ)

∣

∣

∣
, tn−1 ≤ t ≤ tn,

then, for h ∈ [0, τ ],

y (tn + h) = e

h
∫

0

λ(tn+σ)dσ

y (tn) +

h
∫

0

e

h
∫

u

λ(tn+σ)dσ

µ (tn + u) y (tn + u − τ) du
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and hence

|y (tn + h)| ≤



e

h
∫

0

λ(tn+σ)dσ

+ ecτR

h
∫

0

e

h
∫

u

λ(tn+σ)dσ

(−λ (tn + u)) e−cudu





·e−c(tn−t0) max
t0−τ≤ξ≤t0

∣

∣

∣
ec(ξ−t0)g (ξ)

∣

∣

∣
.

Integration by parts yields

h
∫

0

e

h
∫

u

λ(tn+σ)dσ

(−λ (tn + u)) e−cudu = e−ch − e

h
∫

0

λ(tn+σ)dσ

+ c

h
∫

0

e

h
∫

u

λ(tn+σ)ds

e−cudu,

and so

|y (tn + h)| ≤



(1 − ecτR) e

h
∫

0

λ(tn+σ)dσ

+ ecτRe−ch

+ cecτR

h
∫

0

e

h
∫

u

λ(tn+σ)dσ

e−cudu





· e−c(tn−t0) max
t0−τ≤ξ≤t0

∣

∣

∣
ec(ξ−t0)g (ξ)

∣

∣

∣

≤



(1 − ecτR) e−Lh + ecτRe−ch + cecτR

h
∫

0

e−L(h−u)e−cudu





· e−c(tn−t0) max
t0−τ≤ξ≤t0

∣

∣

∣
ec(ξ−t0)g (ξ)

∣

∣

∣
.

Hence,

|y (t)| ≤ e−c(t−t0) max
t0−τ≤ξ≤t0

∣

∣

∣
ec(ξ−t0)g (ξ)

∣

∣

∣
, tn ≤ t ≤ tn+1,

if

(1 − ecτR) e−Lh + ecτRe−ch + cecτR

h
∫

0

e−L(h−u)e−cudu ≤ e−ch, h ∈ [0, τ ] . (35)

By rearranging (35), we obtain

1 − ecτR + cecτR

h
∫

0

e(L−c)sds ≤ (1 − ecτR) e(L−c)h, h ∈ [0, τ ] ,

and, by deriving both sides with respect to h, we see that (34) implies (35).
Now, (34) can be restated as

G (τc; R) ≤ τL

and

c =
G−1 (τL; R)

τ

turns out to be the best choice for c.
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The second part of Lemma 4.1 follows by observing that −G−1(τL;R)
τ

is the right-
most characteristic root of the constant coefficient equation

y′ (t) = −Ly (t) + LRy (t − τ) , t ≥ t0.

Now, by a time transformation reducing to a constant delay equation and by
previous Lemma 36, we study the decay to zero of solutions of (31).

The forward construction of Subsection 2.3, with τ = 1 and S = s0 = 0, defines a
time transformation α, which has a positive right derivative and maps [−1, +∞) into
→ [θ (t0) , +∞), for any given function ω = α|[−1,0] that is continuosly differentiable
and satisfies (24).

The next theorem gives a very precise estimate on the type of decay to zero for
a class of equations (31) determined by a time transformation.

Theorem 4.2. Let us consider a DDE (31) with a non-vanishing delay and an
unbounded lag function satisfying (23) and let α be a time transformation obtained
by the forward construction with τ = 1 and S = 0. If

L = inf
t≥t0

{

α′
(

α−1 (t)
)

(−λ (t))
}

> 0 and R = sup
t≥t0

|µ (t)|

−λ (t)
< 1,

we have

|y (t)| ≤ e−G−1(L;R)·α−1(t) · max
θ(t0)≤ξ≤t0

∣

∣

∣
eG−1(L;R)·α−1(ξ)g (ξ)

∣

∣

∣
, t ≥ θ (t0) , (36)

where G−1 is defined in Lemma 4.1.
Moreover, for any L > 0 and R ∈ [0, 1), there exists an equation (31) such that

inf
t≥t0

{

α′
(

α−1 (t)
)

· (−λ (t))
}

= L and sup
t≥t0

|µ (t)|

−λ (t)
= R,

whose solution satisfies (36) with equality.

Proof. The time transformation α reduces (31) to the constant delay equation
{

z′ (s) = α′ (s)λ (α (s)) z (s) + α′ (s)µ (α (s)) z (s − 1) , s ≥ 0,

z (s) = g (α (s)) , −1 ≤ s ≤ 0.
(37)

Since

inf
s≥0

{−α′ (s)λ (α (s))} = inf
t≥t0

{

α′
(

α−1 (t)
)

(−λ (t))
}

= L

and

sup
s≥0

|α′ (s)µ (α (s))|

−α′ (s)λ (α (s))
= sup

t≥t0

|µ (t)|

−λ (t)
= R,

Lemma 4.1 yields an exponential decay to zero for the reduced equation (37): we
have

|z (s)| ≤ e−G−1(L;R)·s max
−1≤ξ≤0

∣

∣

∣
eG−1(L;R)·ξg (α (ξ))

∣

∣

∣
, s ≥ −1.

Hence, (36) holds for the original equation (31).
Now, we prove the second part of the theorem. For L > 0 and R ∈ [0, 1), let us

consider the equation (31) given by

λ(t) = −
L

α′ (α−1 (t))
, µ (t) =

LR

α′ (α−1 (t))
, t ≥ t0.
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The reduced equation (37) takes the form

z′ (s) = −Lz (s) + LRz (s − 1) , s ≥ 0

and has

z (s) = e−G−1(L;R)s, s ≥ −1,

as a solution. Then, the original equation has

y (t) = e−G−1(L;R)·α−1(t), t ≥ θ (t0) ,

as a solution.

Note that for t = ξk, k ≥ 0, the inequality (36) yields

|y (ξk)| ≤ e−G−1(L;R)k · max
θ(t0)≤ξ≤t0

∣

∣

∣
eG−1(L;R)·α−1(ξ)g (ξ)

∣

∣

∣
.

Moreover, for a lag function θ such that

θ′ (t) ≤ 1, t ≥ t0,

the condition

inf
t≥t0

{

α′
(

α−1 (t)
)

(−λ (t))
}

> 0 (38)

holds if the function λ satisfies inft≥t0 {−λ (t)} > 0. However, we stress that the
condition (38) covers also cases where λ (t) vanishes as t → ∞.

We now apply Theorem 4.2 to the proportional delay case (see Example 2.1) and
to the case of a non linear lag function θ (t) = atp with a > 0 and p ∈ (0, 1) (see
Example 2.2).

Proposition 3. Let

θ (t) = qt, t ≥ t0 > 0, (39)

in (31), where q ∈ (0, 1). If

L = inf
t≥t0

{t · (−λ (t))} > 0 and R = sup
t≥t0

|µ (t)|

−λ (t)
< 1,

then

|y (t)| ≤

(

t

t0

)−
G−1(log q−1

·L;R)
log q−1

· max
qt0≤ξ≤t0

∣

∣

∣

∣

∣

∣

∣

(

ξ

t0

)

G−1(log q−1
·L;R)

log q−1

g (ξ)

∣

∣

∣

∣

∣

∣

∣

, t ≥ qt0. (40)

Moreover, for any L > 0 and R ∈ [0, 1), there exists an equation (31) with lag
function (39) such that

inf
t≥t0

{t · (−λ (t))} = L and sup
t≥t0

|µ (t)|

−λ (t)
= R

whose solution satisfies (40) with equality.
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Proof. The time transformation

α (s) = t0e
log q−1·s, s ≥ −1,

which corresponds, in the forward construction, to the choice

ω (s) = t0e
log q−1·s, s ∈ [−1, 0] ,

yields

α−1 (t) =
log t

t0

log q−1
, t ≥ t0.

Moreover, we have

α′ (s) = log q−1 · t0e
log q−1·s = log q−1 · α (s) , s ≥ −1,

and so

L = inf
t≥t0

{

α′
(

α−1 (t)
)

(−λ (t))
}

= log q−1 · L.

So, (36) reads as (40).
The second part of the proof follows by the second part of Theorem 4.2.

Proposition 4. Let

θ (t) = atp, t ≥ t0 > a∗ := a
1

1−p , (41)

in (31), where a > 0 and p ∈ (0, 1). If

L = inf
t≥t0

{

t log
t

a∗
· (−λ (t))

}

> 0 and R = sup
t≥t0

|µ (t)|

−λ (t)
< 1,

then

|y (t)| ≤

(

log t
a∗

log t0
a∗

)−
G−1(log p−1

·L;R)
log p−1

· max
at

p

0≤ξ≤t0

∣

∣

∣

∣

∣

∣

∣

∣

(

log ξ
a∗

log t0
a∗

)−
G−1(log p−1

·L;R)
log p−1

g (ξ)

∣

∣

∣

∣

∣

∣

∣

∣

, t ≥ at
p
0. (42)

Moreover, for any L > 0 and R ∈ [0, 1), there exists an equation (31) with lag
function (41) such that

inf
t≥t0

{

t log
t

a∗
· (−λ (t))

}

= L and sup
t≥t0

|µ (t)|

−λ (t)
= R

whose solution satisfies (42) with equality.

Proof. Let us consider the time transformation

α (s) = a∗elog
t0
a∗ ·elog p−1

·s

, s ≥ −1,

for which we have

α−1 (t) =
log

log t
a∗

log
t0
a∗

log p−1
, t ≥ t0,
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and

α′ (s) = log p−1 · log
t0

a∗
· elog p−1s · a∗elog

t0
a∗ ·elog p−1

·s

= log p−1 · log
α (s)

a∗
· α (s) , s ≥ −1.

Hence,
L = inf

t≥t0

{

α′
(

α−1 (t)
)

(−λ (t))
}

= log p−1 · L

and (36) becomes (42).
The second part follows by the second part of Theorem 4.2.

4.1. Asympotic order of solutions. Theorem 4.2 can be used as a starting point
for an investigation of the asymptotic order of vanishing solutions of DDEs (31). In
this subsection, we study the asymptotic order in the following two cases:

1) lim
t→+∞

θ′ (t) = q, where q ∈ (0, 1).

2) lim
t→+∞

θ′(t)
tl = b, where l ∈ (−1, 0) and b > 0.

To this aim, we give three lemmas whose proofs are trivial.

Lemma 4.3. Let β : [−1, +∞) → R be such that

β (s) ≤ hβ (s − 1) , s ≥ 0 (β (s) ≥ hβ (s − 1) , s ≥ 0)

where h > 0. Then

β (s) ≤ Melog h·s, s ≥ −1 (β (s) ≥ Melog h·s, s ≥ −1)

where

M = sup
s∈[−1,0)

{

β (s) e− log h·s
}

(M = inf
s∈[−1,0)

{

β (s) e− log h·s
}

).

Lemma 4.4. Let β : [−1, +∞) → R be such that

β (s) ≤ hβ (s − 1)
r
, s ≥ 0 (β (s) ≥ hβ (s − 1)

r
, s ≥ 0)

where h > 0, r > 0 and r 6= 1. Then

β (s) ≤ h∗eMelog r·s

, s ≥ −1 (β (s) ≥ h∗eMelog r·s

, s ≥ −1)

where h∗ = h
1

1−r and

M = sup
s∈[−1,0)

{

log
β (s)

h∗
· e− log r·s

}

(M = inf
s∈[−1,0)

{

log
β (s)

h∗
· e− log r·s

}

).

Lemma 4.5. Let β, γ : [−1, +∞) → R be such that

β (s) ≥ aebecs

, s ≥ −1,

and
γ (s) ≥ hβ (s − 1)

r · γ (s − 1) , s ≥ 0,

where a, b, c, h, r > 0 with e−c (r + 1) = 1 and he−car = 1. Then

γ (s) ≥ M ′becsaebecs

, s ≥ −1,

where

M ′ = inf
s∈[−1,0)

{

γ (s)

becsaebecs

}

.
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The following theorem deals with the case 1).

Theorem 4.6. Let us consider a DDE (31) such that

lim
t→+∞

θ′ (t) = q

where q ∈ (0, 1). If there exist t > 0, C > 0 and r > −1 such that

−λ (t) ≥ Ctr, t ≥ t,

and

R = lim sup
t→+∞

|µ (t)|

−λ (t)
< 1,

then

y (t) = o
(

t−c
)

, t → +∞,

for any c ∈
(

0, log R−1

log q−1

)

.

Proof. Let ε ∈ (0, min {q, 1 − q}) and let t0 be a new initial point for (31) such that
t0 ≥ ε−1,

θ′ (t) ≤ q2 and q1t ≤ θ (t) ≤ q2t, t ≥ t0,

where q1 = q − ε and q2 = q + ε (the second inequality follows by L’Hôpital’s rule).
Hence, for the inverse ϑ of θ, we obtain

ϑ (u) ≤ q−1
1 u, u ≥ θ (t0) , (43)

and

ϑ′ (u) =
1

θ′ (ϑ (u))
≥ q−1

2 , u ≥ θ (t0) . (44)

For an arbitrary function ω, Lemma 4.3 with (26) and (43) yields

α (s) ≤ Melog q
−1
1 ·s, s ≥ −1,

where

M = sup
s∈[−1,0]

{

ω (s) e− log q
−1
1 ·s

}

,

and then

α−1 (t) ≥
log t

M

log q−1
1

, t ≥ θ (t0) .

On the other hand, Lemma 4.3 with (29) and (44) gives

α′ (s) ≥ M ′elog q
−1
2 ·s, s ≥ −1,

where

M ′ = min
s∈[−1,0]

{

ω′ (s) e− log q
−1
2 ·s

}

,

and so

α′
(

α−1 (t)
)

≥ M ′

(

t

M

)

log q
−1
2

log q
−1
1

, t ≥ t0.

By (36), we obtain

|y (t)| ≤

(

t

M

)−
G−1(l;r)

log q
−1
1 max

θ(t0)≤ξ≤t0

∣

∣

∣

∣

∣

∣

(

ξ

M

)

G−1(l;r)

log q
−1
1

y (ξ)

∣

∣

∣

∣

∣

∣

, t ≥ θ (t0) , (45)
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where

l =
M ′

M

log q
−1
2

log q
−1
1

· inf
t≥t0







t

log q
−1
2

log q
−1
1 · (−λ (t))







, r = sup
t≥t0

|µ (t)|

−λ (t)
.

By taking

ω (s) = t0e
log

t0
θ(t0)

·s
, s ∈ [−1, 0] ,

we obtain

M =
θ (t0)

q1
, M ′ = log

t0

θ (t0)
·
θ (t0)

q2
.

With this choice of the function ω, by letting ε → 0, we have t0 → +∞, l → +∞,
r → R and

G−1 (l; r)

log q−1
1

→
log R−1

log q−1
.

Hence, for any c ∈
(

0, log R−1

log q−1

)

, there exist ε > 0 and an initial point t0 such

that

c <
G−1 (l; r)

log q−1
1

and then, by (45),

|y (t)|

t−c
≤ t

c−
G−1(l;r)

log q
−1
1 · M

G−1(l;r)

log q
−1
1 · max

θ(t0)≤ξ≤t0

∣

∣

∣

∣

∣

∣

(

ξ

M

)

G−1(l;r)

log q
−1
1

y (ξ)

∣

∣

∣

∣

∣

∣

→ 0, t → +∞.

We now consider the case 2).

Theorem 4.7. Let us consider a DDE (31) such that

lim
t→+∞

θ′ (t)

tl
= b, (46)

where l ∈ (−1, 0) and b > 0. If there exist t > 0, C > 0 and r > −1 such that

−λ (t) ≥ Ctr, t ≥ t,

and

R = lim sup
t→+∞

|µ (t)|

−λ (t)
< 1,

then

y (t) = o
(

(log t)
−c
)

, t → +∞,

for any c ∈
(

0, log R−1

log(l+1)−1

)

.

Proof. We rewrite the limit (46) as

lim
t→+∞

θ′ (t)

tp−1
= ap,

where p = l + 1 and a = b
p
.

Let ε > 0 and let t0 be a new initial point such that t0 ≥ ε−1 and

θ′ (t) ≤ a2ptp−1 and a1t
p ≤ θ (t) ≤ a2t

p, t ≥ t0.
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where a1 = a− ε and a2 = a+ ε (the second inequality follows by L’Hôpital’s rule).
Hence,

a
− 1

p

2 u
1
p ≤ ϑ (u) ≤ a

− 1
p

1 u
1
p , u ≥ θ (t0) , (47)

and

ϑ′ (u) =
1

θ′ (ϑ (u))
≥ a−1

2 p−1 (ϑ (u))
1−p ≥ a

− 1
p

2 p−1u
1−p

p , u ≥ θ (t0) . (48)

For an arbitrary function ω, Lemma 4.4 with (26) and (47) yields

a∗
2e

M2elog p−1
·s

≤ α (s) ≤ a∗
1e

M1elog p−1
·s

, s ≥ −1, (49)

where a∗
1 = a

1
1−p

1 ,

M1 = sup
s∈[−1,0)

{

log
ω (s)

a∗
1

· e− log p−1·s

}

,

a∗
2 = a

1
1−p

2 and

M2 = inf
s∈[−1,0)

{

log
ω (s)

a∗
1

· e− log p−1·s

}

.

Thus,

α−1 (t) ≥
log

log t
a∗
1

M1

log p−1
, t ≥ t0.

On the other hand, Lemma 4.5 with (29), (48) and (49) gives

α′ (s) ≥ M ′M2e
log p−1·sa∗

2e
M2elog p−1

·s

, s ≥ −1,

where

M ′ = inf
s∈[−1,0)

{

ω′ (s)

M2elog p−1·sa∗
2e

M2elog p−1·s

}

,

and we conclude that

α′
(

α−1 (t)
)

≥ M ′M2

M1
log

t

a∗
1

· a∗
2

(

t

a∗
1

)

M2
M1

, t ≥ t0.

By (36), we have

|y (t)| ≤

(

log t
a∗

1

M1

)−
G−1(l;r)

log p−1

max
θ(t0)≤ξ≤t0

∣

∣

∣

∣

∣

∣

∣

(

log ξ

a∗

1

M1

)

G−1(l;r)

log p−1

g (ξ)

∣

∣

∣

∣

∣

∣

∣

, t ≥ t0,

with

l = M ′M2

M1

a∗
2

(a∗
1)

M2
M1

· inf
t≥t0

{

log
t

a∗
1

· t
M2
M1 (−λ (t))

}

, r = sup
t≥t0

|µ (t)|

−λ (t)
.

The choice

ω (s) = a∗
1e

log
t0
a∗
1
·e

log

log
t0
a∗
1

log
θ(t0)

a∗
1

·s

, s ∈ [−1, 0] ,

yields

M1 = p−1 log
θ (t0)

a∗
1

, M2 = log
t0

a∗
1

, M ′ =
a∗
1

a∗
2

log
log t0

a∗

1

log θ(t0)
a∗

1

.
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and then

G−1 (l; r) → log R−1, ε → 0.

Hence, for any c ∈
(

0, log R−1

log p−1

)

, there exist ε > 0 and an initial point t0 such

that

c <
G−1 (l; r)

log p−1
,

and thus we obtain

|y (t)|

(log t)−c
≤ (log t)

c−
G−1(l;r)

log p−1 ·

(

log t
a∗

1

log t

)−
G−1(l;r)

log p−1

· (M1)
G−1(l;r)

log p−1 · max
θ(t0)≤ξ≤t0

∣

∣

∣

∣

∣

∣

∣

(

log ξ

a∗

1

M1

)

G−1(l;r)

log p−1

g (ξ)

∣

∣

∣

∣

∣

∣

∣

→ 0, t → +∞.

5. Conclusions. In the previous sections we have introduced the concept of time
transformation. This change of variable allows for the reduction of a given DDE with
a non-vanishing-delay and an unbounded lag function to another DDE with constant
delay. We have presented two applications of this reduction: an easy approach to the
superconvergent integration of equations with a non-strictly-increasing lag function
and a study of the type of decay to zero for solutions of scalar linear nonautonomous
equations with a strictly increasing lag function. In this paper, we have not dealt
with state-dependent equations. In a sequel to the present paper we shall show that
this time transformation can also be used to reduce a state-dependent DDE to one
with a prescribed simple lag function that is independent of the solution. This has
major implications in, e.g., the superconvergence analysis and the computation of
the breaking points, for state-dependent DDEs.
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