
Review

From Sea to Sea: Canada’s Three Oceans of Biodiversity
Philippe Archambault1*, Paul V. R. Snelgrove2, Jonathan A. D. Fisher3, Jean-Marc Gagnon4, David J.

Garbary5, Michel Harvey6, Ellen L. Kenchington7, Véronique Lesage6, Mélanie Levesque1, Connie
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Evaluating and understanding biodiversity in marine ecosystems

are both necessary and challenging for conservation. This paper

compiles and summarizes current knowledge of the diversity of

marine taxa in Canada’s three oceans while recognizing that this

compilation is incomplete and will change in the future. That

Canada has the longest coastline in the world and incorporates

distinctly different biogeographic provinces and ecoregions (e.g.,

temperate through ice-covered areas) constrains this analysis. The

taxonomic groups presented here include microbes, phytoplank-

ton, macroalgae, zooplankton, benthic infauna, fishes, and marine

mammals. The minimum number of species or taxa compiled here

is 15,988 for the three Canadian oceans. However, this number

clearly underestimates in several ways the total number of taxa

present. First, there are significant gaps in the published literature.

Second, the diversity of many habitats has not been compiled for

all taxonomic groups (e.g., intertidal rocky shores, deep sea), and

data compilations are based on short-term, directed research

programs or longer-term monitoring activities with limited spatial

resolution. Third, the biodiversity of large organisms is well

known, but this is not true of smaller organisms. Finally, the

greatest constraint on this summary is the willingness and capacity

of those who collected the data to make it available to those

interested in biodiversity meta-analyses. Confirmation of identities

and intercomparison of studies are also constrained by the

disturbing rate of decline in the number of taxonomists and

systematists specializing on marine taxa in Canada. This decline is

mostly the result of retirements of current specialists and to a lack

of training and employment opportunities for new ones.

Considering the difficulties encountered in compiling an overview

of biogeographic data and the diversity of species or taxa in

Canada’s three oceans, this synthesis is intended to serve as a

biodiversity baseline for a new program on marine biodiversity,

the Canadian Healthy Ocean Network. A major effort needs to be

undertaken to establish a complete baseline of Canadian marine

biodiversity of all taxonomic groups, especially if we are to

understand and conserve this part of Canada’s natural heritage.

Introduction

Marine biodiversity in Canada’s oceans can be assessed in

several ways, each with its own attributes, limitations, and

applications. First, we can report and describe past or ongoing

changes in biodiversity. This descriptor establishes the relative

status of marine genes, species, habitats, ecosystems, and ecological

functions in Canadian waters. Second, we can describe the state of

biodiversity in relation to anthropogenic activities, whether they

are positive or negative [1,2,3] as judged by trends in the number

of species and by potential future impacts.

Canada is at a major crossroads in its commitment to the

conservation of living marine resources. On the one hand, Canada

signed the Convention on Biological Diversity in Rio de Janeiro in

1992 and enacted national legislation (Oceans Act, 1996) that defines a

requirement to protect marine habitat, biodiversity, and ocean health.

The Oceans Act in Canada recognizes that three oceans—the Arctic,

the Pacific, and the Atlantic—are the common heritage of all

Canadians. Furthermore, this Act holds that conservation based on

an ecosystem approach is of fundamental importance to maintaining

biological diversity and productivity in the marine environment. In the

Canadian context, an ecosystem approach strives to utilize a broad

range of indicators (e.g. biodiversity) and measures (e.g. species

richness) to develop strategies that will maintain biodiversity and

function and conserve physical and chemical properties of the

ecosystem [4] On the other hand, like many other regions of the

world [5], Canada’s oceans face numerous threats, including

overfishing [2,6], introduced species [7], habitat destruction [8,9],

alteration of food webs through removal of target species and bycatch

[1,10,11], eutrophication and chemical loading [12], and climate

change [3]. Furthermore, there is growing recognition that the diversity

of life in the oceans, spanning from genes to species to ecosystems,

represents an irreplaceable natural heritage crucial to human well-

being and sustainable development. There is compelling evidence that

Canada is on the verge of a crisis in marine biodiversity, which will only
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be exacerbated by complex and unanticipated effects of climate

change.

Terrestrial ecologists have recognized the significance of

biodiversity as an indicator of environmental health and ecosystem

functioning [12,13,14], and the potential importance of biodiver-

sity is now largely recognized not only by academic scientists but

also by the mass media, decision makers, and the general public.

However, biodiversity in marine systems has received only a

fraction of the attention afforded to that in terrestrial environments

[15,16] and the link between biodiversity and ecosystem function

is more tenuous [17] We know now that biodiversity in the sea—

especially in the deep sea—is probably as great as on land, but far

fewer marine species have been described to date [18,19,20].

Given current concerns about global warming, habitat degrada-

tion, and many other anthropogenic stressors, the need for

protection and documentation of marine biodiversity is urgent.

To be able to assess change in the status of a nation’s biodiversity,

a baseline ‘‘norm’’ or standard is essential. The taxonomic groups

targeted for the baseline reported here were determined primarily by

the accessibility of datasets and the availability of authors with

appropriate expertise and willingness to contribute data. Although

this biodiversity assessment is not exhaustive, the inclusion of

microbes, phytoplankton, macroalgae, benthic infauna, zooplank-

ton, fish, and marine mammals encompasses many of the major

groups of organisms in Canada’s oceans. We must also acknowledge

that some of the habitats (e.g. neritic waters, subtidal continental

shelf muds) included in this baseline have already been significantly

affected by human activities. The main objective of this study is to

compile and identify the current number of described species of the

major taxonomic groups, understanding that this list will constantly

change as the biota is sampled and described more thoroughly. We

hope that, over time, this list will be augmented to establish a

complete inventory of known species in Canadian waters. Finally,

different groups of organisms are of special interest for a variety of

reasons that range from high economic value to extinction risk to

exceptional species richness. We have attempted to highlight some of

the key issues for these groups, although the scope of the present

discussion is necessarily limited. For example, this summary discusses

in some detail the marine mammal and fish species considered to be

at risk of extinction, but because of the uneven information available

for other groups they are rarely considered in this context, though

many may also be vulnerable.

This compilation was difficult, especially given the large size and

many different biogeographic provinces and ecoregions within

Canadian territorial waters, which are defined here as the 12-

nautical-mile contiguous coastal zone (Canada’s territorial sea).

Canada is bordered by the Pacific, Arctic, and Atlantic oceans,

and its territorial sea covers 14.3% (2,687,667 km2)(Text S1) of the

territorial sea area of the world. By comparison, the total territorial

sea area of the 27 countries that make up the European Union

(EU) is 1,008,904 km2, and that of the United States is only

796,441 km2. Further, with 16.2% of the world coastline, Canada

has the longest coastline of any country. Including the mainland

and offshore island coastlines, the total length of 243,791 km far

exceeds the total EU countries’ coastline of 143,261 km (Text S2).

These numbers provide clear meaning to Canada’s motto ‘‘A Mari

usque ad Mare,’’ which means ‘‘From Sea to Sea.’’

Canada’s three oceans: Description

Following Spalding et al. [21] on the classification of marine

provinces and ecoregions of the world, Canadian oceans

encompass three ocean provinces—the Arctic, the Cold Temper-

ate Northwest Atlantic (hereafter ‘‘Eastern Canada’’), and the

Cold Temperate Northeast Pacific (hereafter ‘‘Western Canada’’).

These provinces can be further divided into 16–17 ecoregions,

which represent about 7% of the 232 global ecoregions (depending

on the resolution of some Arctic boundary disputes). The following

section includes a description of the general circulation patterns

and major physical structuring features that define the three ocean

provinces.

Arctic
The Canadian Arctic encompasses eight or nine of the 19

ecoregions in the Arctic [21]. Two Arctic ecoregions considered

here, namely, the Northern Grand Banks-Southern Labrador and

the Northern Labrador ecoregions, are placed in the Cold

Temperate Northwest Atlantic province for purposes of this

report because of the ocean circulation patterns and close linkage

with the other ecoregions of this province (e.g., Gulf of St.

Lawrence, Grand Banks). In general, the Canadian Arctic is

covered by ice with a median normalized thickness of up to 3 m

that drops to 60% of this level between mid-July and mid-October.

Several independent analyses have established a declining trend in

the extent of Arctic ice, amounting to 23% per decade. This trend

began in the late 1970s and extends at least to the late 1990s, with

a more pronounced trend in summer [22]. An animation of the

change in ice extent is available online at http://nsidc.org/data/

virtual_globes/images/seaice_2008_climatology_lr.mov).

The surface waters of the Canada Basin circulate in a large,

clockwise rotational pattern known as the Beaufort Gyre. The

circulation of the Beaufort Gyre coincides with winds of an

atmospheric anticyclone centered over the Canada Basin

(Figure 1) [23]. The Beaufort Sea receives about one-third of

the major freshwater input in the Arctic from the Mackenzie

River (340 km3 yr21) [24]. Riverine input, especially in the

Beaufort Sea, creates brackish lagoons and an estuarine habitat

that supports a euryhaline community, and this input is known

to affect biodiversity patterns [25] and the productivity–diversity

relationship of the benthos [26]. The Canadian Arctic

Archipelago forms a network of shallow channels that connect

the central Arctic region with Baffin Bay. The Archipelago

consists of about 16 major passages that vary from 10 to 120 km

in width and from a few meters to more than 700 m in depth.

However, the depth of much of the Archipelago remains

uncharted. The predominant flow through the Archipelago is in

a southerly and easterly direction [27]. During spring in

Lancaster Sound, there is a westward current along the north

side of the passage with a velocity of 22 cm s21 and an eastward

flow of 20 cm s21 along the south side of the channel [28]. The

currents through the shallow channels of the Archipelago are

generally weak.

The eastern part of the Archipelago is bordered by Nares Strait,

Smith Sound, Kane Basin, and Baffin Bay. Baffin Bay has a

maximum depth of more than 2,300 m and is linked to the

Labrador Sea (and the North Atlantic) by Davis Strait (at about

600 m depth). The Labrador Current is a continuation of the cold

Baffin Island Current [29] and flows southeastwardly from

Hudson Strait (the net volume of the Labrador Current is

3,170 km3 y21) [30] and south to the Grand Banks of Newfound-

land. The Labrador Current cools temperatures in the Canadian

Atlantic provinces and the Gulf of St. Lawrence, and these cool

waters facilitate transport of pack ice and icebergs south to

Newfoundland in late winter and spring (Figure 2).

Eastern Canada - Cold Temperate Northwest Atlantic
Eastern Canada is perhaps the best sampled area of the three

Canadian provinces and includes four of the five ecoregions of this

Marine Biodiversity in Canada
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Figure 1. Location and general circulation patterns for the Canadian Arctic province.
doi:10.1371/journal.pone.0012182.g001
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Figure 2. Location and general circulation patterns for Eastern Canada.
doi:10.1371/journal.pone.0012182.g002

Marine Biodiversity in Canada

PLoS ONE | www.plosone.org 4 August 2010 | Volume 5 | Issue 8 | e12182



ocean province (above and beyond the two included in the

Canadian Arctic, as described above) [21]. Eastern Canada is best

described by partitioning it into different regions. Starting in the

north, the Labrador Current flows south to the Grand Banks and

enters the Gulf of St. Lawrence (GSL) through the Strait of Belle

Isle and Cabot Strait [31]. To the west of Newfoundland, the

GSL, a nearly enclosed shallow sea, receives about 600 km3 of

freshwater discharges per year, roughly 70% of which come from

the St. Lawrence River system [32]. The catchment area of the

GSL is 66106 km2 with a human population density of 29.5

people km22 [33]. The ice extent in the GSL peaks in March [34].

One other key defining feature is the deep (300–355 m) waters in

the lower St. Lawrence Estuary that cover an area of 1,300 km2

and are currently hypoxic, with oxygen concentrations lower than

2.0 mg L21 [35,36].

The low-salinity water of the St. Lawrence Estuary flows

northeast through the GSL to the Scotian Shelf. This region is

interconnected by two sources of subpolar water, the GSL and the

Labrador Current [37]. Another important feature of the area is

the Gulf Stream, which enters from south of the Scotian Shelf and

flows north, deflecting eastward as it flows along the Scotian Shelf

and approaches Newfoundland. As it flows through these regions,

it begins to broaden and sheds mesoscale warm- and cold-core

water eddies.

Another important region in Eastern Canada is the Bay of

Fundy. The unique funnel shape and depth of the Bay of Fundy

create the highest tidal amplitude in the world at 16 m (53 ft). As

an aside, a rivalry between Arctic Quebec (Ungava Bay) and the

Canadian Maritimes over who has the world’s highest ocean tides

was declared a tie by the Canadian Hydrographic Service. The

immense energy of the tides, which produce an ebb and flow that

is estimated to be 2,000 times greater than the daily discharge of

the GSL [38], powers a highly productive, rich, and diverse

natural ecosystem that, in turn, shapes the environment, tourism,

and fishing industries of the Fundy region.

Western Canada - Cold Temperate Northeast Pacific
In Western Canada a divergence in the prevailing wind

pattern causes a bifurcation in two branches of the Subarctic

Current; a northern branch curves to the northeast into the Gulf

of Alaska as the Alaska Current, and a southern branch curves to

the southeast as the California Current. This bifurcation is

variable in space, time, and intensity (Figure 3). During winter

the bifurcation is abrupt and mostly confined to the southern

portion (blue area in Figure 3), whereas in summer (red area in

Figure 3) the current splits broadly over the region because the

wind patterns are less clearly established [39]. The California

Current is poorly defined and variable. In late autumn or early

winter, the California Current is shifted offshore by the Davidson

Current, a seasonal current that moves from 32uN northward to

the coast of Vancouver Island. Thomson [39] notes that this

northward flow persists to early spring (March), when the

California Current moves back inshore. The circulation patterns

along the coast are highly complex because the British Columbia

shoreline has many inlets and fjords. Our objective here is to

provide a brief description of circulation patterns and to call

attention to more comprehensive views of west coast circulation

[39,40,41,42]. Two important facts about Western Canada are

that the 4.4 million people who live in British Columbia are

mostly concentrated in the cities of Vancouver and Victoria (2.6

million people combined), and that there is no ice cover along

the British Columbia coastline. The latter is important because

the other two marine provinces in Canada are ice covered, at

least in part, either seasonally (Eastern Canada) or year-round

(Arctic).

Marine biodiversity within major taxonomic
groups

The oceans are richer in phyla than terrestrial and freshwater

domains. In Canada, two-thirds of the 63 major phyla are

predominantly marine. About 84% of phyla occur in marine

environments, compared with 72% in freshwater and 66% in

terrestrial realms. The relationship is reversed at the species level,

though 25% of all known species of microbiota, plants, and

animals in Canada (an estimated 17,750 species) are marine [43].

Tunnicliffe [44] independently estimated that about 5,000 marine

species (including algae, marine mammals, fish, and invertebrates)

have been described from British Columbia waters, but this

estimate did not include bacteria. Brunel et al. [45] listed 2,214

metazoan invertebrates in the Gulf of St. Lawrence. A key point to

note in this context is that most metazoan taxonomists would

agree that the proportion of undescribed species in the oceans is

far greater than that on land, at least for phyla other than Insecta

[20].

The following section presents an overview of the taxa or species

observed in the three biogeographical provinces: Canadian Arctic

(including the subarctic Hudson Bay System) Eastern Canada, and

Western Canada. The taxonomic groups discussed are microbes,

phytoplankton, macroalgae, zooplankton, benthic infauna, fishes,

and marine mammals. There are several important caveats to this

summary. First, there are significant data gaps, even in published

information. For example, rocky intertidal environments in Canada

are generally well sampled and described, but there has been no

coordinated effort to integrate the many local studies that underlie

this knowledge. Similarly, there has been no effort to integrate

taxonomic lists for subtidal epifaunal communities in Canadian

waters, but this habitat is not well sampled and the geographic

coverage of such an effort would be quite limited. Second, the

proportion of unknown species to validly recognized species varies

with the size of the organisms. Species diversity in marine mammals

and, to a lesser extent, in fishes is well known, whereas microbes are

poorly known. There is also a general inverse relationship between

the knowledge of diversity and both water depth and geographical

remoteness. Thus, even for well-known groups such as fishes, deep-

water and Arctic environments continue to yield new species.

Finally, one significant constraint on this summary is the availability

of data. Some datasets are considered proprietary by those who

collected them, and other datasets are not available in digital

format. Whether any of these resources ever enter the public

domain will depend on the good will, enthusiasm, and resources of

those interested in a Canadian marine biodiversity. Efforts are

underway to develop an online database (The Canadian Register of

Marine Species, www.marinespecies.org/carms/ but if these data

are ever to become available in integrated databases, such as the

Ocean Biogeographic Information System (OBIS, www.iobis.org),

attitudes about data sharing will have to change, and significant

resources will need to be made available to fund data rescue efforts

from hard copy records in file cabinets and nonstandardized

spreadsheets on computer hard drives [46]. There are scattered

taxonomic lists and keys for specific pelagic ([45,47,48,49,50,51], for

a complete list see each specific taxonomic section), benthic

([45,50,51,52,53,54,55,56,57,58,59,60], for a complete list see each

specific taxonomic section) marine parasites [61,62] taxa but these

sources need updating and integration across regions, and often

represent non-georeferenced summaries that are sometimes assem-

bled by parataxonomists.
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Figure 3. Location and general circulation patterns for Western Canada.
doi:10.1371/journal.pone.0012182.g003
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Microbes - (Arctic 9,500 - with a projection up to 54,500
taxa)

Marine microbes (single-celled eukaryotes, bacteria, and

archaea) form the basis of the Arctic food web. With the aid of

new molecular biological techniques, it is now possible to identify

the microbes that inhabit Arctic seas and estimate diversity at all

taxonomic levels. Although there is no scientific consensus on what

constitutes a microbial species, there is broad agreement that the

various species can be separated into units of diversity that can be

compared. Such operational taxonomic units are assigned at a

defined level of similarity, based on the small subunit ribosomal

RNA gene (SSU rRNA gene). The first surveys of Arctic microbes

using these techniques were only published in 2002 [63]. Since

then several studies have been carried out in the Canadian Arctic

focusing on small (less than 3 microns) single-celled eukaryotic

plankton (picoeukaryotes, which are poorly identified by micros-

copy), archaea, and bacteria [64,65,66,76,68,69,70]. Most recent-

ly, massively parallel tag sequencing techniques [71] have revealed

that, like other oceans, the Arctic contains a remarkably diverse

range of microbes [65].

By comparison, relatively little work has been carried out in

waters of Eastern Canada (Atlantic) or Western Canada (Pacific).

Except for the tag sequencing studies, all microbial DNA sequences

are deposited in Genbank (see individual publications for accession

numbers) descriptions of geographical and other data including

environmental data, are being archived in the International Polar

Year Polar Data Catalogue at www.polardata.ca and Microbis

at http://icomm.mbl.edu/microbis/. Tag sequences are publicly

available online through the visualization and analysis of microbial

population structures (VAMPS) project of the Marine Biological

Laboratory, Woods Hole, Massachusetts (http://vamps.mbl.edu).

The first microbial studies focused on the surprisingly

abundant archaea in upper Arctic waters. An early suggestion

was that these microbes originated from terrestrial soils and

freshwater inflow before entering the Western Arctic via the

Mackenzie River [72]. Subsequent studies found that these

‘‘nonmarine’’ forms were indeed abundant but that the marine

populations were distinct [66,67,68]. The Canadian Arctic Shelf

Exchange Study (CASES) project was the first to document

seasonal changes in the surface and deep eukaryotic communities

[73,74]. A fundamental conclusion of these studies was that

water masses are the primary structuring agent in community

composition.

All studies in the Arctic to date have highlighted the importance

of water masses. Much more important than depth or geography,

water masses determine the makeup of microbial communities

across the Arctic and presumably in other oceans [65,75]. The

implications for the effects of climate change on microbial

communities are therefore enormous. As currents shift and change

position relative to each other in a layered ocean, the relative

position of different microbial communities to each other will

change, potentially perturbing historical biogeochemical cycling

patterns [65,76,77].

The tag sequence studies indicate that there are 300–3,000

unique bacterial ‘‘species’’ (at least 97% similar at the SS rRNA

gene level) in separate water masses [64], with about 15 different

water masses in the Arctic Ocean [78]. The total diversity of

bacterial ‘‘species’’ in the Arctic would then be between 4,500 and

45,000 species. Clone library comparisons of bacterial diversity

and eukaryotic picoplankton diversity suggest that picoeukaryotes

are 10 times less diverse than bacteria [67], which means that

there are probably between 450 and 4,500 picoeukaryote species

in the Arctic Ocean. Similarly for archaea, which are slightly more

diverse than picoeukaryotes, a good approximation would

therefore be 500 to 5,000 ‘‘species.’’ For the Canadian Arctic

this would mean a total of 9,500 to 54,500 microbe species. This

estimate is similar to that of Mosquin et al. [43], but their study

encompassed the three Canadian oceans. They estimated 56,568

species for this group; however, our updated Arctic evaluation

suggests that this group is far more diverse.

The Arctic is changing rapidly, but our ability to predict the

consequences for higher food webs and biogeochemical cycling is

hampered by our poor understanding of how microbial commu-

nities interact in a complex, layered ocean. The initial goal of

describing the diversity of these communities must be expanded,

because there is a pressing need to identify the functional diversity

within water masses and the interaction of different microbial

communities. New studies are now under way in the North

Atlantic as part of the Canadian Healthy Oceans Network

(CHONe) of the Natural Sciences and Engineering Research

Council of Canada and in the North Pacific (Lovejoy unpublished

data). There is tremendous potential in such an approach [79],

and closing the knowledge gap will require sustained support for

acquiring relevant technological expertise, technology for high-

throughput sequencing, and bioinformatics development.

Phytoplankton (total taxa 1,657)
Marine phytoplankton are single-celled photosynthetic organ-

isms that are adapted to live in the upper water column of oceanic

and coastal regions. In a broader sense, they also encompass non-

autotrophic (e.g., heterotrophic, phagotrophic, mixotrophic)

microorganisms. Phytoplankton are classified following the scaling

nomenclature of Sieburth et al. [80], who define pico- (smaller

than 2 mm), nano- (2–20 mm), micro- (20–200 mm), meso-

(200 mm–2 mm), and macroplankton (larger than 2 mm). How-

ever, most marine phytoplankton species range in size from 0.2 to

200 mm. Marine phytoplankton are responsible for less than 1% of

the earth’s photosynthetic standing biomass, but these microscopic

organisms contribute more than 45% of the annual net primary

production of the planet [81]. There are approximately 5,000

recognized phytoplankton species in the world’s oceans [82,83];

however, there may be up to 25,000 morphologically defined

forms of phytoplankton [81].

Numerically, cyanobacteria, which are the only extant pro-

karyotic group of oxygenic photoautotrophs, represent a major

portion of global marine phytoplankton. Oxygenic photosynthesis

evolved only once since the Archean period, but it subsequently

spread through endosymbiosis to a wide variety of eukaryotic

clades [81].

The majority of phytoplankton taxa that dominate modern

oceans and coastal regions are distributed among at least eight

well-circumscribed major divisions or phyla [81]. However, a

recent reassessment of the higher classification of eukaryotes,

based on ultrastructural and molecular approaches, recognized six

supergroups, which can be tentatively referred to as kingdoms

[84], and the marine phytoplankton species have representatives in

four of these supergroups [85].

Unfortunately, there is no exhaustive documentation of

phytoplankton in Canadian marine waters, aside from two

taxonomic publications from the Baie des Chaleurs [86] and the

St. Lawrence system [87] for Eastern Canada. The first extensive

report on phytoplankton was published [88] on waters west of

Greenland, including some eastern Canadian Arctic regions. They

reported a total of 89 phytoplankton species, mostly represented

by large cells belonging to diatoms (48 taxa) and dinoflagellates (37

taxa). Four decades later, Hsiao [89] compiled a complete list of

marine phytoplankton present in the Canadian Arctic. He

recorded 354 taxa, including 244 diatoms and 86 dinoflagellates.

Marine Biodiversity in Canada
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No comparable list has been compiled for the Eastern and

Western Canada ocean provinces yet. The information on the

biodiversity of marine phytoplankton for Canadian waters

reported here has been gathered mainly through various published

and unpublished reports and scattered papers. We have exempted

from this survey any old taxonomic papers that refer to

descriptions of new species that have not been verified in more

recent studies.

A total of 1,657 marine phytoplankton taxa have been reported

from the various oceanic and coastal waters of Canada (see

information sources in Table 1), with representatives in four of the

six supergroups of eukaryotes [84]: Archaeplastida (chlorophytes

and prasinophytes), Chromalveolata (bicosoecids, chrysophytes,

cryptophytes, diatoms, dictyochophytes, dinoflagellates, prymnesio-

phytes, rhaphidophytes, synurids, and xanthophytes), Excavata

(euglenes), and Opisthokonta (choanoflagellates). The total marine

phytoplankton for Canada is dominated by stramenopiles (60%),

mostly including diatoms (56%), followed by dinoflagellates (22%),

and less than 5% for the other groups listed in Table 1. Surprisingly,

the highest diversity of marine phytoplankton has been recorded in

the coastal fringe along the Arctic Ocean. This maximum known

number of phytoplankton taxa for the Arctic region includes

multiple sympagic (sea-ice related) species that may have been

flushed out of melting sea ice during the spring period, elevating the

number of pennate diatoms (Bacillariophyceae) to a maximum of

393 taxa out of a total of 633 diatoms. The second-most-important

group of Arctic marine phytoplankton includes 195 dinoflagellates,

whereas other groups each represent less than 3% (Table 1). The

breakdown of the Arctic into eastern, central (the Archipelago), and

western Arctic reveals different levels in marine phytoplankton

biodiversity (data not shown). The eastern Arctic has the greatest

number of marine phytoplankton taxa at 778, followed by the

western and central Arctic with 418 and 242 taxa, respectively.

The Hudson Bay System is considered to be a subarctic region

and includes Hudson Strait and Foxe Basin. It sustains a total of

586 phytoplankton taxa, mostly represented by diatoms (281 taxa)

and dinoflagellates (150 taxa) and a few chlorophytes, choano-

flagellates, chrysophytes, and prasinophytes.

Table 1. Numbers of extant marine phytoplankton taxa in Canada’s three ocean provinces and one ecoregion (Hudson Bay).

Pacific Ocean Canadian Arctic Hudson Bay Atlantic Ocean
Canada three
oceans TOTAL

Archaeplastida/Chloroplastida

Chlorophyta 5 21 17 4 35

Prasinophyta 7 28 21 27 52

Chromalveolata/Alveolata/Dinozoa/Dinoflagellata

Dinophyceae (dinoflagellates) 103 195 150 190 368

Chromalveolata

Cryptophyceae 4 15 6 8 24

Chromalveolata/Haptophyta

Prymnesiophyceae 21 26 12 41 68

Chromalveolata/Stramenopiles

Coscinodiscophyceae 181 172 113 161 313

Fragilariophyceae 32 68 38 29 95

Bacillariophyceae 110 393 130 84 522

Bacillariophyta (diatoms) 323 633 281 274 930

Bicosoecida 0 5 3 3 8

Chrysophyceae 6 12 16 18 37

Dictyochophyceae 4 11 6 6 14

Rhaphidophyceae 3 2 0 1 4

Synurales 0 3 0 0 3

Xanthophyceae 0 1 0 0 1

Excavata/Euglenozoa

Euglenida 2 11 8 8 20

Kinetoplastea 1 3 5 3 8

Opisthokonta

Choanomonada 0 16 28 29 39

Cyanophyceae 0 2 2 0 4

Incertae sedis 3 18 31 14 42

TOTAL PHYTOPLANKTON 482 1002 586 626 1657

Literature used for Western Canada [189,190,191,192,193,194,195], Canadian Arctic
[88,89,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223], Hudson Bay
[224,225,226,227,228,229,230,231,232,233,234], and Eastern Canada [86,87,235,236,237,238,239,240,241,242].
Grouped by major taxonomic ranks in the four supergroups as described by [84].
doi:10.1371/journal.pone.0012182.t001
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Eastern Canada (Atlantic) is the second-most-important ocean

province of Canada in terms of known phytoplankton diversity,

with a total of 626 phytoplankton taxa consisting of 274 diatoms

(mostly centric forms with 161 taxa), 190 dinoflagellates, 41

prymnesiophytes, 29 choanoflagellates, and 27 prasinophytes. The

high diversity of small phytoplankton in the Atlantic probably

reflects an increasing research effort in that region by the

Maritimes and Quebec. This research focuses specifically on

developing a better knowledge and understanding of these

microscopic organisms rather than the better-known large diatom

and dinoflagellate cells.

Finally, the Western Canada province (Pacific) offers the

poorest-known diversity of phytoplankton, with only 482 taxa

mostly represented by 323 diatoms, including 181 centric forms,

103 dinoflagellates, and 21 prymnesiophytes.

From this general overview, the Arctic Ocean and associated

coastal fringe, which is biologically poor, contain the highest

diversity of known phytoplankton, but with roughly the same

proportion of centric forms as in the Atlantic and Pacific oceans.

The high occurrence of pennate diatoms in Arctic marine

phytoplankton is a direct consequence of melting processes of

annually formed sea ice, which contributes to the release of

sympagic diatoms to the upper water column. A similar situation is

expected in Hudson Bay, but the research effort there has

probably been far less than in the Arctic regions, thus explaining

the low number of phytoplankton taxa recorded.

A last point of interest is the recent occurrence of two pennate

diatoms of Pacific origin, Membraneis challengerii and Neodenticula

seminae, in the Northeast Atlantic, including the Gulf of St.

Lawrence [90,91,92]. It is important to highlight that the lack of

in-depth knowledge of the biodiversity of marine phytoplankton

with respect to Canada’s oceanic and coastal environments reflects

the immense aquatic territory of Canada.

Macroalgae (total taxa 860 to 979)
Seaweed biodiversity encompasses benthic, mostly multicellular

and macroscopic organisms assigned to the phyla Rhodophyta,

Chlorophyta, and Chrysophyta, that is, the marine red, green,

brown, and yellow-green algae. About 900 species in these groups

are known from Canadian coastal waters. Canadian seaweed

biodiversity and biogeography represent complex interactions of

long-term global phylogenetic diversification (over hundreds of

millions of years) and more ecologically based factors, such as

climate change and biotic interactions, over shorter time scales

(Pleistocene and Holocene). Modern distributions are set by this

historical backdrop and the contrasting oceanographic patterns,

pack ice, and climate differences among the oceans. Much of the

global factual framework for understanding seaweed floras in the

context of these issues was described in the seminal work of Lüning

[93], major syntheses [94], and more recent reviews [95,96].

Primary floristic synopses of the seaweed floras for the different

Canadian coasts have been published for Western Canada [97],

for Eastern Canada [98,99,100], and for the Canadian Arctic

[100,101].

The fundamental features and causes of Canadian seaweed

species richness in Canada’s three oceans are summarized as

follows (see Table 2):

1. Some 650 species from Western Canada to Alaska are part of a

gradually changing, species-rich flora that runs from Mexico

north to the Bering Strait. Northward from British Columbia,

there is increasing inclusion of species from the flora of the

northwestern Pacific across the Aleutian Archipelago and a

decline in species with more southerly distributions [97,102].

2. There is a relatively species-poor Arctic flora of about 200

species [100,101], for which the distribution extends into

Eastern Canada and across the North Atlantic to northern

Europe. The primary historical features that have affected this

flora (including that in Greenland) are the extent to which

north Pacific species have been able to colonize through the

Bering Strait since the Miocene and Pleistocene glaciations and

the climatic rigors of even interglacial periods [102,103]. Of

this flora, only about 20 species from the Arctic Ocean are also

found in Alaska [102].

3. The flora of Eastern Canada is comparatively species poor,

with about 350 described species. The primary factors that

affect species richness are current climatic rigors associated

with winter cold and ice, and historical constraints resulting

from nonrocky shoreline south of Cape Cod, which limited

southward migration of species during Pleistocene glaciations

[93]. At least half the species in Eastern Canada are also

distributed in western North America (Canada to Alaska), or

represent species pairs that have undergone vicariant specia-

tion [103]. Significant elements in this flora (e.g., Chondria

baileyana) are warm temperate species with disjunct distributions

south of the Bay of Fundy that became trapped in the Gulf of

St. Lawrence during the postglacial hypsithermal interval.

While the numbers in Table 2 are unlikely to change

substantially in the short term, new species continue to be

described, based on both morphological studies and molecular

methods that recognize cryptic speciation.

The coastline between northern Washington and southeast

Alaska is home to a comparatively diverse flora [97]. Most species

occur in strictly Canadian waters, and many also occur as far away

as the Aleutian Islands and the Bering Sea [102]. Western Canada

and adjacent areas are home to numerous endemic species, many

of which have extremely restricted distributions (e.g., Prasiola

Table 2. Seaweed taxa (species, subspecies, varieties) on Canada’s three ocean coastlines.

Province Chlorophyta Phaeophyceae Rhodophyta Tribophyceae Total

Canadian Arctic# 61 75 66 3 210

Eastern Canada* 90 120 130 9 350

Western Canadau 120 134 380 6 650

#loosely based on [98,100] with inclusion of subsequent records.
*loosely based on [98], including records from the Bay of Fundy northward.
ubased on [97], excluding taxa known only from Oregon but adding subsequently described taxa and some undescribed cryptic species.
The Canadian Arctic province represents distributions from the Bering Strait to Labrador; Eastern Canada extends from the Bay of Fundy to Labrador; Western Canada
extends from Washington state to southeast Alaska. Values shown are conservative estimates, though totals have been rounded upward to the nearest ten.
doi:10.1371/journal.pone.0012182.t002
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linearis in the San Juan Islands and surrounding areas of

Washington and Canada). Most species, however, extend beyond

Canadian waters. Furthermore, absence elsewhere may be more

apparent than real and simply awaits more thorough exploration

and the application of relevant taxonomic expertise. Similarly,

Canadian Arctic endemics are rare (Chukchia endophytica from two

sites in Nunavut and east Greenland may qualify). This endemism

may not exist at all, as cold Arctic waters and the constituent

species (e.g., Papenfussiiella callitricha) extend well into the waters of

Eastern Canada, and much of this flora extends eastward to

northern Europe. Chlorojackia pachyclados, an apparent Eastern

Canada endemic, is known from only a single site in the Gulf of St.

Lawrence. Regardless, Adey et al. [104] emphasize that endemic

species often have limited practical or theoretical use in

characterizing large geographic regions.

Sampling intensity and taxonomic expertise severely constrain

accuracy of seaweed mapping and floristic data, as well as notions

of abundance and rarity. Many species are known from single

descriptions or from sites with limited geographic extent. As is the

case with many microscopic taxa in Canadian waters the

identification of smaller epiphytes and endophytes is often

problematic because of limited taxonomic expertise. Many

shorelines are relatively inaccessible and have been poorly

explored (e.g., Queen Charlotte Islands). The occurrence of many

cosmopolitan species (especially in green algae) suggests that new

species described from one region will eventually be found at more

distant points when the criteria become part of more general

systematic understanding, and molecular tools are more accessible

than they are at present. Some species have not been resampled

since their original description from a limited number or even

single sites (e.g., Chlorojackia pachyclados). Because of the continuity

of shorelines and climatic conditions with adjacent geographic

areas and water circulation patterns in the Holarctic, there are few

strict endemic species in Canadian waters.

The Arctic algal flora traditionally was thought to have

originated from Atlantic species [105,106]. This view was based

on the high similarity of species composition between cold

temperate North Atlantic and Arctic oceans. A better understand-

ing of paleoclimates, the flora of the cold North Pacific shores, and

relationships of disjunct sister taxa have resolved Dunton’s [105]

paradox of differing origins for shallow-water animal and algal

biotas in the Arctic. Thus, while exchange has probably occurred

from Atlantic to Pacific via the Arctic, this pattern is limited to a

few species, and the bulk of the evidence suggests mass algal

colonization in the opposite direction (e.g., [102,103,104]),

consistent with animal biogeographic models. Furthermore, as

climate change brings even limited warming of Arctic surface

waters, species from the cold North Pacific are potential

colonizers.

Anthropogenic introductions of seaweeds on eastern and

western coasts of Canada have occurred, and seaweed species

have become naturalized. On the west coast, only Sargassum

muticum has become a prominent member of algal communities,

whereas in Eastern Canada, Fucus serratus, Furcellaria lumbricalis,

Codium fragile, and Bonnemaisonia hamifera have substantially changed

algal communities. The prospect of increased ship traffic through

the Northwest Passage, which will be facilitated by climate

warming and decreased sea ice in the Canadian Arctic, will greatly

increase the probability of algae invasions into the region.

Zooplankton (total taxa 900)
Marine zooplankton are key elements of marine ecosystems,

serving as the dominant conduit for the transfer of energy from

phytoplankton to upper trophic levels, which in some instances

can be other zooplankton. Changes in zooplankton community

composition exhibit strong latitudinal and cross-shelf gradients,

some of the strongest of which occur when moving from coastal

areas, where extreme variations of salinity can place physiological

limitations on species occurrence, to offshore areas where oceanic

processes that govern distribution can dominate. Steep gradients

also occur across the frontal zones associated with boundary

currents, such as the California Current, the Labrador Current,

and the Gulf Stream (Figures 2 and 3).

The total number of species (or higher order taxa) can be used

as a rough measure of zooplankton biodiversity. However, species

number alone does not include the ‘‘evenness’’ component of

biodiversity. Generally, 80–90% or more of the total local

abundance and biomass is accounted for by a much smaller

number of species (1 to 20 species, depending on location and

season). Also, because many zooplankton taxa have restricted

depth and seasonal ranges, the total number of taxa for the three

Canadian oceans in all years greatly exaggerates the diversity

present at any single time and place (which is the biodiversity

actually experienced by the organisms inhabiting that location).

Because Canadian waters are so strongly seasonal, this problem

extends well beyond zooplankton to almost every other taxonomic

group.

Data collections for organisms in lower trophic levels are often

acquired through short-term, directed research programs or

longer-term monitoring activities with limited spatial resolution.

Indices of biodiversity gathered with such restrictions can be

effective in identifying changes in water masses and oceanic

regimes that result from changes in environmental forcing (e.g.,

[107]). They may be of limited value in establishing the state of

marine ecosystems or in evaluating their resilience to change in

response to anthropogenic influences on food web structure

because of uncertainty in the thoroughness and consistency of the

information base.

Changes in spatial coverage or range (e.g., depth) of collection

activity can lead to substantial changes in perceived diversity

owing to differences in the water masses being sampled. Many of

the changes in zooplankton diversity noted in the last several

decades are attributable partly to increases in geographical

coverage and depth range of collections, partly to poleward

zoogeographic range extensions that have accompanied recent

climate fluctuations and trends (particularly in Western Canada),

and partly to recent taxonomic revisions (often including splits at

the genus or species level) and the use of more complete keys in

identification of routine survey samples.

Eastern Canada. The Canadian eastern ocean province

(from Davis Strait to the Eastern Gulf of Maine, including Cabot

Strait and the Bay of Fundy) has complex oceanographic

influences (see Figures 1 and 2). Marine zooplankton from

Eastern Canada coastal waters include members of eight phyla

(Cnidaria, Ctenophora, Mollusca, Annelida, Arthropoda,

Chateognatha, Echinodermata, and Chordata) with a total of

381 identified species (Table S1). The class Crustacea (phylum

Arthropoda) is the most diverse mesozooplankton group, in which

88 families are represented by 269 species and members of the

suborder Copepoda are responsible for about half of the group’s

diversity (41 families, 153 species). Cnidaria are the second-most-

diverse group, in which 27 families are represented by 60 species.

There have been only four species (three orders and four families)

of Ctenophora identified in Atlantic waters. Most Mollusca (13

families and 16 species) are represented principally by larval

stages, of which holoplanktonic Gastropoda are represented by

two species of the genus Limacina and one species from the genus

Clione. Many members of the phylum Annelida occur in near-
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surface plankton as larvae and juveniles, or as sexual epitokes or

stolons, while adult stages are occasionally caught in near-bottom

collections. Higher order taxa (Chaetognatha, Echinodermata,

and Chordata) have low diversity; few families (two to five per

phylum) are represented by a small number of species (five to eight

per phylum).

Several species found in Eastern Canada were identified

through intensive efforts to detail species occurrence at a few

sites. Collections with similar efforts toward thorough taxonomic

identification are not commonly available in other parts of the

eastern region, and rare or ephemeral species are often classified

into broader taxonomic categories, thereby limiting our knowledge

of the overall biodiversity.

St. Lawrence Marine System and Hudson Bay System.

The St. Lawrence Marine System (SLMS; including Gulf of St.

Lawrence and the Lower St. Lawrence Estuary) and Hudson Bay

System (HBS; James Bay, Hudson Bay, Hudson Strait, and the

Foxe Basin) are highly dynamic estuarine systems that have

distinctive physical and chemical features that influence planktonic

organisms in many ways. In these environments, it is common to

find a sequence of zooplankton assemblages along the salinity

gradient with (i) euryhaline-freshwater species (at the riverine end),

(ii) estuarine species followed by euryhaline marine species (farther

downstream), and (iii) stenohaline marine species (in the marine

zone) [108].

Marine zooplankton from the SLMS include 318 identified

species from eight phyla (Cnidaria, Ctenophora, Mollusca,

Annelida, Arthropoda, Chateognatha, Echinodermata, and Chor-

data), while zooplankton from the HBS include 166 species from

the same phyla (Table S1). The phylum Arthropoda, which

includes four different classes (Branchiopoda, Ostracoda, Max-

illopoda, Malacostraca) is again the most diverse group of

mesozooplankton, with 84 families represented by 245 species in

the SLMS and 51 families represented by 126 species in the HBS.

Members of the class Maxillopoda make up about half of the

diversity of this group (41 families with 100 species in the SLMS

and 29 families with 68 species in the HBS). Cnidaria are also the

second-most-diverse group, with 21 families represented by 30

species in the SLMS and 16 families represented by 23 species in

the HBS. There have been only five (three orders and four

families) species of Ctenophora identified in the SLMS and two

(two orders and two families) in the HBS. In the phylum Annelida

(orders Aciculata, Canalipalpata), there are nearly two or three

times more families and species in the SLMS (30 families and 96

species) than in the Atlantic (14 families and 41 species) and the

Arctic (20 families and 28 species). However, only a small number

of Annelida have been sampled and identified in the HBS, thereby

potentially underestimating overall diversity.

Western Canada. Table S1 shows that Western Canada has

a higher number of recorded species (481) but roughly the same

number of families (127) as the other ocean provinces and regions

of Canada. Nearly 40% of the Pacific mesozooplankton species are

calanoid copepods (185 species in 24 families). This calanoid count

is larger than that in any other Canadian region and also nearly

four times larger than the number listed in Figueira’s [109] earlier

Canadian Pacific compilation. Some of the latter difference is

attributable to post-1970 increases in the number of named species

in several calanoid copepod families (Aetideidae, Clausocalanidae,

Euchaetidae, Heterorhabdidae, Spinocalanidae). More are

probably attributable to increased sampling intensity and to the

availability and use of more complete keys in identification of

routine survey samples. However, there have also been numerous

northward range extensions during the last 10 to 15 years by

species previously reported only from south of about 35uN. Other

taxa showing elevated numbers of species in the Pacific region

include siphonophores, anthomedusae, ostracods, pteropods,

euphausiids, chaetognaths, hyperiid amphipods, and thaliaceans.

The first three groups have all undergone extensive taxonomic

revision, leading to a continuous increase in the number of

identified species. However, variation in the numbers of

euphausiid, chaetognath, hyperiid, and thaliacean species is

clearly associated with climate-linked meridional range

expansions and contractions ([110,111,112] Galbraith and

Mackas unpublished). Pteropod species richness is higher in

Western Canada than in the other ocean provinces but below that

reported for regions adjoining the southern border of Western

Canada (the California Current and the North Pacific Central

Gyre, see Figure 3).

Taxa showing relatively low diversity in the Pacific within

groups include the harpacticoid copepods (four species in three

families), poecilostomatoid copepods (11 species in four families),

and fully planktonic decapods (eight species in three families).

Canadian Arctic. This assessment of Arctic zooplankton

biodiversity covers a wedge-shaped area with corners defined by

Bering Strait in the west, Davis Strait in the east, and the North

Pole as the apex. The southern boundary is defined by the Arctic

Circle (66uN). Zooplankton diversity of the Canadian Arctic has

not been exhaustively characterized. The species inventory

reported here (131 families and 372 species) is very likely an

underestimate, yet it is comparable to the better-studied eastern

province (136 families and 381 species) (Table S1).

Overall, the relative diversity of phyla in the Arctic follows that

recorded in other regions; Arthropoda are the most diverse (82

families with 292 species), followed by Cnidaria (19 families and 38

species) and Annelida (20 families and 28 species). Pacific

zooplankters contribute to arthropod diversity in the western

Arctic [113] but as yet do not appear to be reproductively

established. Calanoid copepods dominate in the Arctic with 104

species (as this taxa does in most other areas); this is only surpassed

by the calanoid diversity of the Pacific (185 species). Harpacticoid

copepod diversity is notably higher in the Arctic than in any other

region (65 species as compared with 25 species for the next

highest); this number may be inflated because of taxonomic

uncertainties. Species-level diversity of other phyla (Ctenophora,

Mollusca, Chaetognatha, and Chordata) is comparable to that

found in SLMS and the HBS, but lower than that found in both

Eastern and Western Canada.

Seasonal ice cover, complex vertical water column structure,

and inputs from both the Atlantic and the Pacific oceans create a

habitat-rich environment for marine zooplankton, with continued

potential for northward range expansions. As climate change

modifies oceanographic conditions and as exploration of the Arctic

expands, there is little doubt that the number of taxa observed in

this region will increase.

Benthic infauna (total taxa 2,127)
The seabed environment includes a great variety of physically

diverse and biologically distinct habitats that collectively add to

regional biodiversity. These habitats differ from each other in

depth (from intertidal to the abyss), temperature, light availability,

and type of substratum (ranging from hard through soft, muddy

bottoms). Further, some benthic fauna lives in the sediment

(infauna) or attached to the seafloor (epifauna). The benthic fauna

is typically classified into size categories (macrofauna is larger than

1.0 mm, meiofauna is 0.1–1.0 mm, and microfauna is smaller

than 0.1 mm). All of these organisms must be sampled with

specialized gear, including trawl, box core, grab, remotely

operated vehicle, and scuba diver (see Eleftheriou and McIntyre
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[114] for a complete list of methods) appropriate for the specific

habitat and size categories. The different types of gear create a

challenge in compiling species lists, because standardization is not

possible and it is rarely possible to assemble a full suite of sampling

gear and appropriate scientific specialists to sample the complete

range of organisms at a given location. For these reasons, the

compilation presented here includes only subtidal macroinfaunal

species for which raw data (e.g., per grab or per quadrat) are

available. This approach probably greatly underestimates the

number of benthic invertebrate species in Canada’s three oceans.

For example, Brunel et al. [44] listed a total of 1,855 species of

benthic macroinvertebrates (both epifaunal and infaunal, from all

habitat types (intertidal, subtidal, soft-bottom, and hard-bottom) in

the Gulf of St. Lawrence. This number represents 83.7% of all

macroinvertebrate species in the Gulf of St. Lawrence and is

nearly as great as the total number of infaunal species reported for

all of Canada.

A compilation of published and unpublished data on the

number of infaunal taxa collected with grabs and box cores in the

three provinces is given in Table 3. A total of 2,127 infaunal taxa

were recorded for the three oceans combined. The malacostracans

and polychaetes each represent 32%, and the mollusks an

additional 20%, of this total. The total number of taxa is clearly

an underestimate, because many taxonomic groups are identified

at a coarse taxonomic level (e.g., Nematoda). This compilation

shows clear gaps in information for Western Canada and the

Arctic; only about 144 samples and 243 samples were compiled,

respectively for each of those provinces, far less than the 662

samples included from Eastern Canada. Additional samples (202

in total) from Lancaster Sound, Eclipse Sound, and northern and

central Baffin Bay [115] and 134 samples in the Beaufort Sea area

[116] were unavailable for this Canadian Arctic compilation.

Amazingly, the Canadian Arctic (data are mostly from the

compilation of Cusson et al. [25]) included 992 taxa, only 53

taxa fewer than were reported from Eastern Canada (1,044 taxa),

where more than twice as many samples have been collected.

Western Canada is also surprisingly diverse (814 taxa) considering

the relatively few samples included in the compilation.

Figure 4 represents the taxa accumulation curves for infauna

from the three ocean provinces. The continuing rise of the global

taxa accumulation curve suggests that the infaunal community

contains many more species. The taxa accumulation curves for

each province suggest that the Arctic province and Western

Canada are undersampled. Note the rapid increases in number of

Table 3. Numbers of marine benthic infaunal taxa in the three ocean provinces in Canada, organized in major taxonomic groups.

Eastern Canada Canadian Arctic Western Canada Canadian three oceans

Annelida 343 313 347 693

Polychaeta 342 306 331 673

Arthropoda 323 430 242 752

Malacostraca 291 385 203 673

Maxillopoda 16 3 25 34

Ostracoda 3 31 9 40

Brachiopoda 3 4 1 5

Chordata 14 21 0 32

Cnidaria 36 9 5 44

Anthozoa 17 7 4 24

Hydrozoa 18 2 0 19

Echinodermata 52 35 24 87

Asteroidea 14 11 2 22

Holothuroidea 14 7 7 22

Ophiuroidea 17 14 13 33

Echiura 1 1 1 3

Ectoprocta 8 3 0 10

Hemichordata 2 0 1 2

Mollusca 223 154 173 432

Bivalvia 92 70 92 185

Gastropoda 116 73 116 215

Nematoda 1 1 1 1

Nemertea 5 3 6 10

Platyhelminthes 3 1 2 4

Porifera 6 4 0 13

Sipuncula 8 10 8 20

Others 16 3 3 19

Total 1044 992 814 2127

Literature used for the compilation: [9,25,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268].
doi:10.1371/journal.pone.0012182.t003
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taxa as samples are taken from Eastern to Western Canada.

Furthermore, the abrupt increases in the number of taxa in the

Arctic clearly highlight that this area of Canada contains many

more species that have not yet been discovered. The number of

samples compiled represents only 248 m2 of seafloor in the three

Canadian provinces. Eastern Canada has the best coverage with

178 m2 of seafloor sampled, while Western Canada has very little

coverage (20 m2) and the Arctic has 53 m2.

In the Canadian Arctic, Cusson et al. [25] compiled data from

219 stations to generate a total list of 947 species or taxa, which

represented 229 families, 68 orders, 29 classes, and 15 phyla.

Arthropoda and Annelida represented 43% and 32%, respectively,

of all Arctic macrofaunal species. Benthic composition varied from

west to east across the study region, with an average composition

of 37% Annelida and 31% Arthropoda. In their study, Cusson et

al. [25] found the lowest taxa richness in the Hudson Bay

ecoregion (followed by James Bay and the Beaufort-Mackenzie

areas) and the highest values in the highly dynamic ecoregions of

Ungava Bay and Davis Strait. The low primary production

observed in Hudson Bay [117] could explain the small number of

taxa. Salinity explained a large portion of the variance in number

of taxa in the Beaufort-Mackenzie and James Bay ecoregions

[25,26].

The major threat for the continental shelf benthos in the Arctic

is from the shrinking of pack ice [118]. The consequence of this for

the benthos is predicted to be a reduced carbon supply to the

seafloor. If carbon is intercepted by zooplankton and the microbial

loop, this would change the quality, timing, and source of carbon

to the benthos [118]. This change could, in turn, alter species

composition and reproductive cycles, thereby redistributing

benthic biomass. Lower benthic biomass would presumably affect

predators, including mammals and sea birds, favoring smaller

predators such as fish [116].

The threats faced by the Arctic coastline are different from

those on the Atlantic and Pacific coasts. Sparse human populations

and an ice-covered ocean have helped to protect Arctic

biodiversity from human activity in the past, but similar protection

has not occurred on the Atlantic and Pacific coasts. Though effects

of climate change may occur, particularly in transition regions

such as northern Newfoundland [11], the most significant impact

over broad scales is related to fishing effects on habitat [119,120]

and on pelagic [121] and benthic [122,123] food webs. Decreased

biomass and damage to animals with shells, such as bivalves and

urchins, have also been observed [124]. A study of trawling effects

on hard substrate fauna indicated relatively modest effects of

trawling [125], in some cases as a result of rapid colonization and

growth potential [126].

Though there is little doubt that the sedimentary infauna in

Canadian waters is undersampled, it is difficult to know just how

significant this undersampling actually is. Furthermore, using the

approach of Griffiths et al. [127], it is possible to generate a crude

estimate of this number. The ratio of European fishes to European

polychaetes, both of which are assumed to be relatively well

described, is 1.37. The equivalent ratio in Eastern Canada is 0.64. If

Figure 4. Plot of taxa accumulation curves of infauna for the three Canadian ocean provinces. The top curve represents the rarefaction
curve for the combined three provinces and the lower curve represents samples accumulated in stations within each ocean province (Canadian
Arctic, Eastern Canada, and Western Canada).
doi:10.1371/journal.pone.0012182.g004
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we assume that the fishes of Eastern Canada waters are relatively

well described (this is the most sampled province in Canada) and

then make the large assumption that proportions of species within

different phyla are similar in different areas of the world, this ratio

suggests that only a little more than half of the polychaete species in

Eastern Canada have been described. It is noteworthy, however,

that in European and Canadian waters, the deep-water fauna is

underestimated, potentially by an order of magnitude, at least for

sedimentary infauna [128]. A major effort to sample all habitats

from the intertidal zone to the deep sea, including hard-bottom

substrata, needs to be undertaken if a true baseline of Canadian

marine benthic biodiversity is to be established.

Fish (total taxa 891–932)
Given the important roles played by marine fishes within

Canada’s culture, economy, and ecosystems, and considering

information gained through their exploitation and management,

knowledge of marine fish diversity can be said to be relatively well

documented, yet continually expanding [129,130,131,132]. The

approximately 900 marine fish species reported from Canada’s

territorial waters among three oceans (Table 4) represent over 5%

of all the fish species described in the OBIS global database [133].

In an international context, Canada is among only seven nations

or large territories in which more than 80% of territorial marine

fish species are estimated to have been discovered, based on spatial

analyses of the completeness of the OBIS database [133].

However, within Canada, the Arctic Ocean has not been as

thoroughly sampled as the Pacific and Atlantic [131,133]. As a

result, since the early 1960s, the number of known Arctic fish has

nearly doubled. In addition to the 189 species reported for the

Arctic (Table 4), some 83 additional species occur in adjacent non-

Canadian waters and may yet be found to occur in Canada [129].

Some new species are likely to be found in the Arctic, particularly

in deeper waters of the Atlantic and Pacific in groups such as the

midwater fishes [133].

Numbers of both Atlantic and Pacific species and families

greatly exceed those reported from the Arctic (Table 4). These

patterns reflect true spatial differences in total numbers of species

among oceans, although comparisons of species richness between

the Atlantic and the Pacific are strongly influenced by the

relatively small area of Canada’s Pacific coast [131,134]. Even in

relatively well sampled regions, such as the Atlantic Scotian Shelf,

an area in which standardized trawl surveys have been conducted

annually for decades, new records of fish species continue to be

detected [135]. This pattern has led to examinations of additional

physical correlates, including sampled area and depth range, as

potential surrogates for fish species richness, in order to provide

scientific advice related to fish conservation in the absence of

exhaustive census data [135]. Despite challenges in enumerating

fish diversity, it is critical to detect changes in the geographic

distributions of fishes to quantify their dynamics in response to

climate variability and exploitation. For example, latitudinal

distributions and species-richness patterns of Atlantic fishes change

from year to year in response to atmospherically influenced

changes in ocean temperature [136]. Such positive relationships

between water temperature and species richness portend future

changes in response to increases or variability in ocean conditions.

It was reported that in the Pacific [130], about 16% of species had

their northern range limit, and 4% had their southern range limit,

within Canadian waters; these boundaries may shift with future

changing ocean conditions. Already, in the Bering Sea, a region

that separates Canada’s Pacific and Arctic ocean waters, decreases

in ice cover and increases in water temperature on the continental

shelf have led to northward shifts in marine fish distributions,

increasing catch rates of some species, and increased species

richness within the last 25 years [137]. Those results illustrate the

value of repeated surveys in high-latitude marine ecosystems. Just

as the Canadian Arctic has been important to the transfer of

species among northern ocean basins in the geological past

(particularly from the Pacific to Atlantic [134]), future decreases in

the extent of Arctic sea ice are predicted to provide similar

conditions that will facilitate the redistribution of fishes and

invertebrates [138]. Given that Canada’s Arctic waters are

expected to be a zone of changing biodiversity in the coming

years, yet remain relatively undersampled [129,131,133], in-

creased monitoring will be required to detect future changes.

Although climate can certainly influence marine fish distribu-

tions and diversity, the majority of fishes that are of greatest

Table 4. Diversity and status of marine fishes in the three ocean provinces in Canada.

Province Species (Families) Current and potential threats
Committee on the Status of Endangered Wildlife in Canadaa (COSEWIC)
marine fish species/population assessments

Endangered Threatened
Special
concern

Not at
risk

Data
deficient

Candidate species
(April 2009)

Western Canada 371b (99c) Overexploitation; Bycatch;
Potential future ocean warming

4 3 7 6 4 8

Canadian Arctic 189d (48d) Reduced sea ice leads to thermal
habitat loss; Potential future
overexploitation; Potential future
bycatch

1 2 1 0 2 0

Eastern Canada 527b,538e (151e) Overexploitation; Bycatch; Potential
future ocean warming

6 6 5 1 1 7

Totalf 891b,932g (193g) 11 11 13 7 7 15

a,http://www.cosewic.gc.ca.;
b[131];
c[269];
d[129];
e[132];
fTotals within COSEWIC columns include marine fish with populations in more than one ocean;
g‘Native’ Canadian species and families from [270]).
doi:10.1371/journal.pone.0012182.t004
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concern (those considered top candidates for assessment by the

Committee on the Status of Endangered Wildlife in Canada,

COSEWIC) (Table 4) are listed because of the impacts of directed

fisheries exploitation or bycatch. These patterns mirror wider

assessments of North American and global marine fishes that are

threatened mostly by exploitation, habitat loss, and pollution

[139]. Whereas less than 2% of all Canadian marine fish species

were formally assessed for extinction risk status, of those assessed,

53% were considered threatened [139]. Together with species that

are considered to be ‘‘data deficient’’ (Table 4), species-specific

patterns partly reflect the current logistical limits to knowledge of

marine fish population dynamics beyond the most abundant and

largest species. For species or populations that have been classified

by COSEWIC as imperilled and recommended for protection,

there are additional decisions at the federal government level that

determine whether species are protected under existing Canadian

species-at-risk legislation [140]. For marine fishes specifically, their

listings between 2003 and 2006 greatly lagged species within other

taxonomic groups (mostly terrestrial and freshwater species); only

one of 11 marine fishes was listed, and this was a species not fished

commercially [140]. In addition to changes in relatively shallow-

water and low-latitude ecosystems, declines in fish abundance

extend to Canada’s deep-sea habitats [141], and the potential

future establishment of commercial fishing in the Arctic will

require assessments of both direct and indirect effects on Arctic

ecosystems [142].

Sampling coverage within Canadian waters has recently

accelerated as a direct result of the collection of new data and

the amalgamation and dissemination of existing data by OBIS.

McAllister [131], for example, called for increased systematic

surveys of Canadian Arctic, mesopelagic, rocky bottom zones, and

waters deeper than 500 m. Directed sampling has already

increased the coverage of deep waters within Canada’s east Arctic

Baffin Bay and Davis Strait regions [143], and existing Canadian

mesopelagic survey data are expected to be added to the OBIS

database shortly (see www.marinebiodiversity.ca). Further, the

increased profile for marine biodiversity in the last decade, as well

as Census of Marine Life efforts to specifically target surveys within

Arctic ecosystems, will undoubtedly contribute to increased spatial

coverage. Currently, Atlantic data sources dominate Canadian

marine fish representation in OBIS, partly as a result of data

availability from nationally funded annual surveys in this region

and partly as a result of differences in regional efforts to migrate

existing data into OBIS. Current research also seeks a greater

understanding of how and why patterns of marine fish diversity are

changing. Therefore, in addition to the biological data contained

in OBIS, it may be useful in the future to link specific samples in

OBIS to concurrent oceanographic data (as are collected in many

Canadian scientific fish surveys) or to match them to remotely

sensed oceanographic data. Such linkages between biological,

physical, and chemical databases would provide oceanographic

and environmental contexts in which to evaluate changes in fish

abundance and distribution for preserving Canada’s marine

ecosystems in the face of multiple stressors.

Marine mammals (total 52 species)
Of the 125 extant marine mammal species worldwide, 52 occur

in Canadian oceans, including representatives from all major taxa,

except sirenians and river dolphins (Table S2). This total is five times

higher than that reported previously [43]). Species diversity is

highest in the eastern North Pacific (37 species), followed by the

western North Atlantic (30 species), and the Arctic (24 species). In

Eastern and Western Canada, species richness is among the highest

reported worldwide for marine mammals, largely as a result of the

diversity observed on the Scotian Shelf (Atlantic) and in Pacific

coastal waters [144]. The wide distribution ranges of many marine

mammals [144], which often include high-latitude feeding grounds

and low-latitude breeding grounds, result in overlap in Canadian

waters between temperate and more Arctic species, thus enhancing

diversity. The long history of marine mammal exploitation, which

provides indirect data and has stimulated scientific research efforts,

is also likely to contribute to species discovery and high species

richness in Eastern and Western Canada.

High primary productivity at 40 to 60 degrees north and south

latitude [145] was proposed as a reason for the relatively high

diversity of marine mammals in Canadian waters, although

diversity is lower than expected in the North Atlantic based solely

on primary productivity [144]. Other studies challenged this

hypothesis as they found little correspondence between biodiver-

sity and primary productivity in several species groups, including

oceanic cetaceans [146,147,148]. It is unlikely that the lower-than-

expected diversity results primarily from local extinction, given

their small number (n = 3) in the western North Atlantic [144].

Instead, it might result from colder sea-surface temperatures in the

North Atlantic than those observed at midlatitudes or along the

Canadian Pacific coast. Species distribution and diversity appear

to vary positively with sea-surface temperature in various taxa up

to a certain temperature, above which a decline in diversity may

occur in some species groups [146,147,148].

Nevertheless, it remains inarguable that commercial and, in some

cases, subsistence exploitation have historically threatened several

marine mammal species in Canadian oceans and elsewhere. The

vast majority of the larger cetaceans were driven to near extinction

worldwide by these past practices [149]. At least 33 of the 52 marine

mammal species in Canada have been subjected to heavy

exploitation, including 16 species that are still harvested today,

either commercially or for subsistence, or simply because of the

nuisance they cause to fisheries and other human activities or

infrastructures (Table S2). Although some species (e.g., humpback

whales) might be on their way to recovery, populations of seven of

the eight larger whales are still considered at risk of extinction in

Canada. In total, 22 species of marine mammals (42%) are at risk of

extinction in Canada, including 9 of 30 populations in the Eastern

Canada, 14 of 22 populations in the Arctic, and 14 of 37

populations in the Western Canada. This figure is higher than the

overall proportion (36%) of marine mammal species at risk of

extinction globally [144]. Although all at-risk populations are

protected from hunting in Eastern Canada, 8 of the 14 species at

risk in the Canadian Arctic and 6 of 14 populations at risk in

Western Canada are still harvested for subsistence, or because they

represent a nuisance.

Direct interactions with the world’s fisheries also threaten

marine mammals worldwide, including Canada. Each year

fisheries probably kill hundreds of thousands of small cetaceans,

and to a lesser extent pinnipeds and otters [144,150]. In Canada,

incidental capture of harbor porpoises and entanglement of some

of the larger whales in fishing gear are of serious concern

[151,152,153].

In addition to hunting and fisheries, habitat loss and

degradation represent by far the main threats to marine mammals

worldwide and may arise through ecological interactions with

fisheries, climate change, or pollution [144,154,155]. In Canada,

habitat loss or degradation through climate change is predicted to

have dramatic consequences for strongly pagophilic Arctic species

or for those with narrow ecological niches [156]; Ocean warming

might cause an increase in diversity in Eastern and Western

Canada by shifting northward the distribution of species currently

found slightly south of Canada’s borders [147].
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Pollution effects on whales exposed to chemical contaminants,

noise, and introduced pathogens and toxin-producing organisms,

are also of growing concern worldwide and in Canada

[144,157,158]. The best-documented cases of high pollutant

accumulation in Canada are for species occupying high trophic

positions, notably killer whales and harbor seals [159,160], St.

Lawrence beluga whales and harbor seals [161,162], and polar

bears [163]. Monitoring and predicting effects of these threats on

Canadian biodiversity will require not only more extensive field-

based observations but also new tools to track these changes

remotely on a more global scale [154]. There is a need to better

characterize the distribution of marine mammal species in

Canada, particularly Arctic and deep-water species. However, it

is doubtful that these censuses will lead to the discovery of new

species, considering the long history of marine mammal

exploitation and observation in Canadian waters. These survey

efforts might instead enhance diversity by revealing range

extensions of Arctic species to the south, or of temperate and

subarctic species to the north.

Discussion

The known
Generally, most taxonomic groups contain higher numbers of

species in southern marine areas than in the north [164,165]. For

example, only 189, or 21%, of Canada’s marine fish are found in

the Canadian Arctic (see Table 4). But this is not always true

(Table 1), given that known phytoplankton species are markedly

more species rich in the Canadian Arctic (1,002 species, Table 1)

than elsewhere. Crustaceans are also more diverse in the

Canadian Arctic than in Eastern and Western Canada (Tables 5,

6, and 7). Further, Western Canada is generally more species rich

Table 5. Taxonomic classification of taxa reported in Canadian Arctic.

Taxonomic group No. taxa State of knowledge No. introduced species2 No. experts No. ID guides

Domain Archaea 50–5000 1 ND 0 0

Domain Bacteria (including Cyanobacteria) 5004–50004 1 ND 0 0

Domain Eukarya

Other Eukarya (5 phyla) 50–500 1 ND 2–3 0

Kingdom Chromista

Phaeophyta 134 5 2? ,10 1

Chromobiota (phyto) 774 2 ND ,5 2

Kingdom Plantae

Chlorophyta 132 3 ? ,10 2+1

Rhodophyta 66 4 ? ,10 1

Angiospermae (not included in our analysis) ND ND ND ND ND

Kingdom Protoctista (Protozoa)

Dinomastigota (Dinoflagellata) 301 3 ND ,5 2

Foraminifera ND ND ND ND ND

Unclassified Prototista 41 2 ND ,5 2

Unclassified choanoflagellates 30 2 ND ,5 2

Kingdom Animalia

Porifera 4 2 ND 1 0

Cnidaria 47 3 ND 2 3

Platyhelminthes 1 1 ND ND 0

Mollusca 156 3 ND 3 1

Annelida 324 3 ND 1 2

Crustacea 722 3 ND 3 9

Bryozoa/Ectoprocta 3 2 ND ND 2

Echinodermata 35 3 ND 1 3

Urochordata (Tunicata) 3 2 ND 2 1

Other invertebrates 52 2 ND 2 1

Vertebrata (Pisces) 189 4 0 ,5 5

Marine mammals 24 4 0 15–20 4–5

SUBTOTAL 30381

TOTAL REGIONAL DIVERSITY 8142–58547

Notes: The taxonomic classification of phytoplankton, zooplankton species reported in Canadian Arctic, including the Hudson Bay system (Hudson Bay, Hudson Strait,
and Foxe Basin). The benthic taxa are only the infaunal species.
1Subtotal before the domains Bacteria, Eukarya, Archaea.
2The total number of introduced species in the three Canadian oceans is approximately 112. We know this is an incomplete count that needs to be updated (A Locke,
JM Hanson, and JL Martin, manuscript in preparation).

doi:10.1371/journal.pone.0012182.t005
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than Eastern Canada, even though less sampling effort has been

expended in the former area (e.g., benthic infauna, Table 3). The

west coast of Canada has one of the richest seaweed floras in the

world (650 species; Table 2). Rhodophyta are well represented in

Western Canada with 380 taxa, which is almost 3 times higher

than in Eastern Canada and and 5.8 times higher than in the

Canadian Arctic (Tables 5, 6, and 7). Some other taxonomic

groups such Pheaophyta and Chlorophyta are nearly equal in

species number among the three oceans.

Not surprisingly, the best-known groups of organisms are those

that are relatively easily sampled (the macroalgae and presumably

other intertidal to shallow-water fauna), those that are of greatest

economic interest (the fishes), and those that are large and

charismatic (marine mammals).

Macroalgae species (Rhodophyta, Chlorophyta, and Phaeo-

phyta macroalgae) are generally taxonomically well known; about

830 species have been described from the region. There are

approximately 900 species of fishes known, which probably

represent more than 80% of those that occur in Canadian waters.

Finally, Canadian waters include 52 species of marine mammals,

which represent 44%, at least seasonally, of the marine mammals

on the planet [166]. For most other groups of organisms, the

proportion of unknown species is sufficiently large that extrapo-

lation of a total number is difficult.

In a historical inventory of marine invertebrate taxa (intertidal,

benthic, pelagic, parasitic) in the Haida Gwaii (Queen Charlotte

Islands) region of Western Canada, a marine species accumulation

curve was calculated using sampling data from the first record in

Table 6. Taxonomic classification of taxa reported in Eastern Canada.

Taxonomic group No. taxa State of knowledge No. introduced species2 No. experts No. ID guides

Domain Archaea 50–5000 1 ND 0 0

Domain Bacteria (including Cyanobacteria) 5000–50000 1 ND 0 0

Domain Eukarya

Other Eukarya (5 phyla) 50–500 1 ND 2–3 0

Kingdom Chromista

Phaeophyta 120 5 1 ,10 1

Chromobiota (phytoplankton) 333 4 ND ,5 2

Kingdom Plantae

Chlorophyta 121 3–5 1 ,10 3

Rhodophyta 130 5 2 .10 2

Angiospermae (not included in our analysis) ND ND ND ND ND

Kingdom Protoctista (Protozoa)

Dinomastigota (Dinoflagellata) 219 3 ND ,5 2

Foraminifera ND ND ND ND ND

Unclassified Prototista 14 2 ND ,5 2

Unclassified choanoflagellates 29 2 ND ,5 2

Kingdom Animalia

Porifera 6 2 ND 2 0

Cnidaria 97 4 ND 1+1(Ret) 2

Platyhelminthes 3 1 ND ND ND0

Mollusca 228 4 ND 2+1(Ret) 2

Annelida 439 3 ND 2 2+1

Crustacea 719 4 ND 9 8

Bryozoa/Ectoprocta 8 2 ND 0 2

Echinodermata 52 4 ND ND 3

Urochordata (Tunicata) ND ND ND 1 ND

Other invertebrates 72 1 ND 2 2

Vertebrata (Pisces) 538 5 1 ,10 3

Marine mammals 32 4 0 20–25 4–5

SUBTOTAL 31601

TOTAL REGIONAL DIVERSITY 8260–58660

Notes: The taxonomic classification of phytoplankton, zooplankton species reported in Eastern Canada, including the St. Lawrence ecosystem. The benthic taxa are
only the infaunal species.
1Subtotal before the domains Bacteria, Eukarya, Archaea.
2The total number of introduced species in the three Canadian oceans is approximately 112. We know this is an incomplete count that needs to be updated (A Locke,
JM Hanson, and JL Martin, manuscript in preparation).

Ret = Retired.
doi:10.1371/journal.pone.0012182.t006
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1878 to 2000 [167]. The curve accumulates a total of 2,276

species. This once more shows that Canadian marine invertebrate

biodiversity is underestimated in the present study, as the total

number of macroinvertebrate taxa enumerated in our study for

the infauna and zooplankton taxa for the west coast of Canada is

comparatively low with 1,122 taxa (Table 7). Differences between

these two numbers are explained in part by the inclusion of

organisms from hard-bottom habitat and parasitic species in the

former study [167] and in part by the fact that the authors of that

study worked from species inventories rather than raw data, as was

done in the present study. This type of calculation may also

overestimate total known species because a very careful review is

needed by a wide range of taxonomic experts to ensure the validity

and uniqueness of all taxa. This review will be far easier once the

World Register of Marine Species (WoRMS) completes its global

list of known of marine taxa.

Noting all of these caveats, the minimum number of taxa in the

three Canadian oceans is currently between 15,988 and 61,148.

This range is quite high even without sampling many areas of

Canada and in view of our known underestimation of the taxa in

Canadian oceans.

The unknown
Figure 5 shows data adapted from a summary table presented

by Mosquin et al. [43] in their 1995 review of taxonomic diversity

in Canada. We have chosen a few phyla and subdivisions of

marine organisms to illustrate the number of species reported,

versus those unrecorded in the literature at that time. The term

‘‘unrecorded’’ refers to the estimated gaps in our knowledge from

the numbers of undescribed species or as yet unrecorded species in

each taxonomic group. The information reported by Mosquin

et al. [43] suggested that only 48% of marine species in Canada

Table 7. Taxonomic classification of species reported in Western Canada.

Taxonomic group No. taxa State of knowledge No. introduced species2 No. experts No. ID guides

Domain Archaea 50–5000 1 ND 0 0

Domain Bacteria (including Cyanobacteria) 5000–50000 1 ND 0 0

Domain Eukarya

Other Eukarya (5 phyla) 50–500 1 ND 2–3 0

Kingdom Chromista

Phaeophyta 134 5 2 ? ,10 1

Chromobiota (phytoplankton) 355 4 ND ,5 2

Kingdom Plantae

Chlorophyta 122 2–5 1 ? ,10 3

Rhodophyta 380 5 ND ,10 1

Angiospermae (not included in our analysis) ND ND ND ND ND

Kingdom Protoctista (Protozoa)

Dinomastigota (Dinoflagellata) 112 3 ND ,5 2

Foraminifera ND ND ND ND ND

Unclassified Prototista 3 2 ND ,5 2

Unclassified choanoflagellates ND 2 ND ,5 2

Kingdom Animalia

Porifera ND ND ND 3 0

Cnidaria 5 4 ND 1+1(Ret) 2

Platyhelminthes 2 1 ND ND 0

Mollusca 188 3 ND 1 (Ret) 2

Annelida 364 3 ND 2 2

Crustacea 481 5 5? 3 7

Bryozoa/Ectoprocta ND 2 ND ND 2

Echinodermata 24 3 ND 1 3

Urochordata (Tunicata) 12 4 ND 1 1

Other invertebrates 46 4 ND 1 2

Vertebrata (Pisces) 371 5 2 ,10 4

Marine mammals 37 4 0 10–15 3–4

SUBTOTAL 26361

TOTAL REGIONAL DIVERSITY 7736–58136

Notes: The benthic taxa are only the infaunal species.
1Subtotal before the domains Bacteria, Eukarya, Archaea.
2The total number of introduced species in the three Canadian oceans is approximately 112. We know this is an incomplete count that needs to be updated (A Locke,
JM Hanson, and JL Martin, manuscript in preparation).

Ret = Retired.
doi:10.1371/journal.pone.0012182.t007
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have been scientifically named and classified. Clearly, there is

room for training new generations of taxonomists!

There are significant disparities in knowledge and status of

taxonomic inventory across taxonomic groups. Even for most of

the named marine species, ecological and life history information,

as well as information on geographic distribution, is sparse. Grid-

based biological surveys would provide the basis for sound

distribution maps that are currently lacking for many species. In

general, larger organisms, such as Chordata are represented by

fewer taxa in Canada, and most are known (with the possible

exception of a small proportion of Osteichthyes). However, even

though there are relatively few marine mammal species in

Canada, there is a major discrepancy between the total of 10

species listed [43] and the 52 species we have included (Table S2).

This difference highlights the critical need to establish baseline

knowledge of Canadian marine biodiversity. Considering how

comparatively well known marine mammals are relative to most

other groups, the inferred gaps in knowledge are particularly

disconcerting when attempting to estimate the diversity of smaller

organisms in poorly sampled taxonomic groups, such as benthic

and pelagic invertebrates, phytoplankton, and microbes.

In addition to the disparity in taxonomic effort across different

phyla, there is also strong habitat dependence with respect to

species inventory; shallow, nearshore environments are much

better sampled than deep-sea sediments. Deep-sea sediments

represent the largest ecosystem type on Earth in area. The benthic

organisms in and on sediments represent the largest proportion of

unrecorded or undescribed metazoan diversity in Canadian

waters. Indeed, the data from Mosquin et al. [43] in Figure 5

show that although the benthos, which encompasses 8,639 species,

represents the largest group of described marine species, there are

an additional 2,075 species that have been collected but remain

unrecorded. This gap becomes even more striking when

considering the vast extent of the deep-sea environment and the

small amount that has been sampled.

These examples highlight the substantial gaps in current

taxonomic knowledge and the need for better information to

guide future conservation measures in marine ecosystems.

Taxonomic challenges in Canadian marine research
The overall state of taxonomic effort in Canada has shown a

serious decline over the past two to three decades. Reports

produced in the mid-1990s suggested an impending crisis

[168,169,170] and, as in many other disciplines in Canada, the

number of taxonomists and systematists specializing in marine

taxa has dropped at an alarming rate. A comparison of results

from a 1996 survey [171] of marine taxonomists and systematists

in Canada with those from an extensive revision carried out in

2004 [172] suggests attrition due to retirement as a major cause of

this decline. A similar decline is observed in Europe [173].

Vacated positions in universities and government laboratories

have not been filled by traditional taxonomists. While the number

of respondents to the 2004 survey is significantly greater, the vast

majority declared themselves as unavailable to do taxonomic

work. Few who received formal taxonomic training actually work

in a field where they can apply their taxonomic expertise in the

exploration of biodiversity. Of those who are available, most have

not received formal taxonomic training and may be best described

as ‘‘parataxonomists,’’ in the broadest sense of the term. Tables 5,

6, and 7 showed clearly that the number of experts correlates with

the size of the organisms studied. Marine mammals have 10 to 25

experts nationally, depending of the ocean province, pisces have

more than 5 experts, and macroalgae have 10 experts. All other

taxonomic groups have fewer than 5 experts or none (see Bryozoa,

Archaea, Bacteria). For many phyla, expertise is often limited to a

subset of families, with no capacity in other groups.

With increasing research emphasis on community ecology

approaches and economically important species, and with

decreasing funding for baseline taxonomic surveys and traditional

taxonomy, very few traditional marine taxonomists have been

Figure 5. Percent contributions of reported (green) and unrecorded (gray) total numbers of species. Data are limited to sampling within
Canada’s 200-nautical-mile limit. This compilation has been produced from the data listed in Appendix 1 of Mosquin et al. [39].
doi:10.1371/journal.pone.0012182.g005
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trained in recent decades. Consequently, few taxonomic revisions

and new descriptions of Canadian marine taxa have been

published. To highlight this fact, a new species of polycheate in

Canada was recently described [174,175] by a Mexican

taxonomist, because there was nobody in Canada available to

take on the task. Population and community ecologists (who often

have no choice but to use old and outdated taxonomic information

to assign names to their specimens) have now become the

parataxonomists responsible for training new parataxonomists. In

this context, we expect a diminishing capacity to assign the correct

taxonomic terms to marine species, and increasingly inaccurate

taxonomy from one generation to the next. For instance, issues

such as the cosmopolitan species syndrome, where species similar in

appearance are given the same name based on the first-described

taxon (often from the Old World literature), are perpetuated as a

result of the limited recent taxonomic work and the reduced

capacity of parataxonomists to distinguish subtle differences

between sibling species. These issues necessitate care in analyses

of merged databases where taxonomic precision and accuracy may

be very unven [176].

Canada’s marine taxonomic challenge is certainly exacerbated

by the fact that a relatively small total scientific community is

distributed across a large geographic area that borders on three of

the world’s oceans and has the longest national coastline in the

world. Not surprisingly, for historical and geographic reasons,

there is much better taxonomic coverage of the northwest Atlantic

region than the west coast and particularly Canadian Arctic

waters. These differences are reflected both in the number of

preserved collections in museums and in taxonomic publications.

This imbalance emphasizes the need to ensure the preservation of

recently collected material and voucher (identified) specimens,

especially if we are to retain the capacity to confirm species

identifications at a later date. Unfortunately, with limited

taxonomic research capacity in the world [177], even in Canadian

museums, the wealth of knowledge contained in old and recently

collected material will remain unavailable. This challenge was

emphasized by the White Point Workshop on Marine Biodiversity

in Canada [178,179] in 2002, which recommended support for

research programs with taxonomic inventories and support for

collection-holding infrastructure. An official Survey of Taxonomic

Expertise in Canada was undertaken in February 2010 by the

Council of Canadian Academies’ Expert Panel on Biodiversity

Science, and results will be known later during 2010.

Fortunately, the rapid development of genetic approaches for

identification of species, such as the Barcode of Life (University of

Guelph, Ontario, Canada), has increased interest in taxonomy and

systematics of marine taxa in Canada. Radulovici et al. [180]

reviewed the utility of this method for marine organisms. These

nontraditional approaches are encouraging but cannot yet take

advantage of museum-preserved material. Taxonomic experts

cannot always validate their results with this approach, thus

limiting its utility. Mosquin et al. [43] projected that about 34% of

Canadian marine invertebrates remain unreported (ranging from

8.1% for Mollusca to 49.5% for Porifera). Hence, there is no doubt

that new approaches are needed to discover these estimated at

least 3,500 unreported marine invertebrate species. Indeed, given

the new genetic tools, it is likely that this number will increase

significantly in the future. Greater investments will be needed to

address these challenges. The traditional taxonomy and the

molecular taxonomy need to be integrated together to describe

what it is left to describe and not one method to the detriment of

the other method [177]. Taxonomy must be seen as more than a

descriptive exercise but as a fundamental tool of discovery,

conservation, and management.

As an example, Saunders [181] and Robba et al. [182]

evaluated barcoding for a range of red algal taxa from all three

oceans. Porphyra provides a case study for cryptic speciation and

the importance of wide-ranging geographic sampling to determine

both evolutionary divergence and species’ distributions [183].

Molecular sampling of hundreds of populations of 22 named

species from California to Alaska revealed one to many

populations of five clades that merit species rank. That most of

the described and undescribed entities have been collected from at

least one location within the west coast waters included in this

review suggests that they are more widely distributed within the

region.

The Barcode of Life is one of several Census of Marine Life

projects with significant activity in Canada. The Future of Marine

Animal Populations (FMAP) program is led from Dalhousie

University and has provided many new insights into trends in

fisheries, global patterns in biodiversity, and the movements of

animals in the oceans [184]. The Pacific Ocean Shelf Tracking

(POST) project is led from the Vancouver Aquarium and has

provided new insight into movements of Pacific salmon species,

sturgeon, and other species along the North Pacific coastline [185].

Canadian scientists have also been involved in other Census

projects that have not focused on Canadian territorial waters,

though the Arctic Ocean Diversity (ArcOD) project [186] has

sampled widely in the Arctic and the Natural Geography of

Inshore Areas (NaGISA) has included sampling sites in Atlantic

Canada [187]. None of these projects has engaged in broad-scale

species inventory, though the Gulf of Maine Area (GoMA) project

has assembled species lists for that region and worked closely with

the Canadian node of the Ocean Biogeographic Information

System (OBIS) program at Bedford Institute of Oceanography,

which has assembled extensive datasets produced by Fisheries and

Oceans Canada over several decades [188].

The small size of the Canadian marine science community has

the advantage of allowing a relatively closely knit group with the

potential to work together nationally to address key issues with

respect to marine biodiversity. One outgrowth of the Census of

Marine Life has been the establishment of a national research

program funded by the Natural Sciences and Engineering

Research Council of Canada that partners biodiversity researchers

from 15 Canadian universities, with researchers and managers at

Fisheries and Oceans Canada, the federal agency charged with

ocean management and policy in Canada. This program also

partners with seven other government laboratories. The Canadian

Healthy Oceans Network (CHONe) is a five-year program that

will address some of the objectives of the Census beyond 2010, as

the program extends until 2013 and beyond through collabora-

tions established during the lifetime of the network. The CHONe

will foster projects that include establishing biodiversity baselines

in poorly sampled areas, as well as projects on ecosystem function

and connectivity, and allows for open access to data from the

network through OBIS and other databases. New species will be a

challenge, and require the involvement of taxonomic experts

around the world. The network will help guide the Canadian

marine biodiversity community to ensure that all data collected in

the future are entered into widely accessible databases that will

remain available beyond the lifetime of any individual project. The

challenges to achieving this goal are substantial. Particular

programs may have specific and unique data needs, making

standardization difficult. The concept of open access to data is still

new, and there are few mechanisms in place to assist data rescue

and make available old hard-copy datasets through OBIS or other

platforms. Nonetheless, the utility of global-scale analysis [133] is

compelling, and more information is always better than less.
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Canadian academic and government researchers are acutely

aware of the ongoing threats to marine biodiversity due to habitat

destruction, overfishing, and pollution, and there is new concern

over the possible impacts of climate change, ocean acidification,

and invasive species. Some of these effects may enhance

biodiversity, though most are expected to reduce it. All will

contribute to changing biodiversity. Understanding the long-term

ramifications of those changes from a human social perspective

and in the context of ecosystem services and health remains a

challenge and an important focal point for research in the coming

years. In light of the difficulties encountered in compiling

biogeographic and species syntheses for Canada’s three oceans,

as described in this review, we hope that work presented here will

pave the way for future syntheses that might be begin with expert

taxonomic monographs that update and amalgamate knowledge

for different taxa, and then progress to integrative analyses across

taxa, habitats, and oceans. These syntheses will be of great use to

scientists and organizations dedicated to understanding and

protecting the marine environment.
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Text S1 Territorial sea data is from L. Pruett and J. Cimino,

unpublished data, Global Maritime Boundaries Database

(GMBD), Veridian - MRJ Technology Solutions, (Fairfax,

Virginia, January, 2000) (excluding Caspian sea and
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those waters. Even though the established limit for a territorial sea

is 12 nautical miles, some countries claim larger areas. Territorial

seas with overlapping claims from different countries are shown

separately as disputed territorial seas. UNCLOS is an interna-

tional agreement that sets conditions and limits on the use and
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DOC)

Text S2 Coastal length data are based on the World Vector

Shoreline, United States Defense Mapping Agency, 1989. Figures

were calculated by L. Pruett and J. Cimino, unpublished data,

Global Maritime Boundaries Database (GMBD), Veridian - MRJ

Technology Solutions, (Fairfax, Virginia, January, 2000).
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species.
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DOC)
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Archambault.
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