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Abstract

Mitochondrial DNA (mtDNA) sequence variants segregate in mutation and tissue-specific manners, but the mechanisms
remain unknown. The segregation pattern of pathogenic mtDNA mutations is a major determinant of the onset and severity
of disease. Using a heteroplasmic mouse model, we demonstrate that Gimap3, an outer mitochondrial membrane GTPase, is
a critical regulator of this process in leukocytes. Gimap3 is important for T cell development and survival, suggesting that
leukocyte survival may be a key factor in the genetic regulation of mtDNA sequence variants and in modulating human
mitochondrial diseases.

Citation: Jokinen R, Marttinen P, Sandell HK, Manninen T, Teerenhovi H, et al. (2010) Gimap3 Regulates Tissue-Specific Mitochondrial DNA Segregation. PLoS
Genet 6(10): e1001161. doi:10.1371/journal.pgen.1001161
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Introduction

Mammalian mitochondrial DNA (mtDNA) is a maternally

inherited high copy genome. Copy number ranges from 102 to 105

depending upon the cell type, and typically, there is a single

haplotype or sequence variant in a cell (homoplasmy) [1–3].

Germline or somatic cell mutations in mtDNA lead to the co-

occurrence of two or more sequence variants in a cell, a state

known as heteroplasmy. In the absence of selection, the

segregation of mtDNA sequence variants can be modeled as a

random walk using two parameters: copy number and rate of

turnover [4]. However, in some cases there is preferential selection

for one mtDNA sequence variant over another, which depends

upon the variant, tissue, and nuclear background.

Most human pathogenic mtDNA mutations are heteroplasmic,

and typically oxidative phosphorylation function is impaired when

the proportion of mutant mtDNA exceeds a critical threshold in

the cell [5,6], leading to a wide spectrum of clinical disorders,

generally affecting tissues with a high aerobic demand [1].

Transmission of most mutations through the female germline is

stochastic [7]; however, in somatic tissues, mtDNA mutations can

have skewed segregation patterns depending upon the mutation,

tissue, and pedigree [6–14]. For instance, there is negative

selection for the A3243G mutation in tRNAleu usually associated

with MELAS (Mitochondrial Encephalomyopathy, Lactic Acido-

sis, Stroke-like episodes) in peripheral blood, but not in other

tissues [15,16]. However, this segregation pattern is not observed

for other mitochondrial tRNA mutations, such as A8344G

associated with MERRF (Myoclonic Epilepsy with Ragged-red

fibers) [13,17]. Thus, while both tRNA mutations impair

mitochondrial translation, genetically these mutations are treated

differently in the same cell types. To investigate the molecular

basis for tissue-specific mtDNA segregation, we have used a

heteroplasmic mouse model segregating two neutral mtDNA

haplotypes derived from two old inbred mouse strains, BALB and

NZB [18]. Transmission of these haplotypes through the female

germline is neutral [18]; however, in post-natal life, the BALB

mtDNA haplotype accumulates in hematopoietic tissues, while in

the kidney and liver there is selection for the NZB haplotype [19].

In every other tissue investigated there is no preference for either

mtDNA haplotype. The mechanisms for this mtDNA selection

between tissues are apparently completely different [20,21].

Previously, we demonstrated that nuclear-encoded genes regulate

this selection process and mapped the quantitative trait loci (QTL)

involved [22]. Further, we showed that selection for the BALB

mtDNA haplotype in hematopoietic tissues can be completely

eliminated in certain nuclear backgrounds [21]. In this study, we

show that Gimap3 is a critical gene for regulating mtDNA

segregation hematopoietic tissues in this model.

Results

Selection for the BALB mtDNA haplotype in hematopoietic

tissues with age is rapid, proportional to the starting heteroplasmy

level, and can be modeled as an exponential function [21]. The

phenotype is robust, being found in a number of Mus musculus

domesticus strains (DBA, 129Sv, NZB, C3H, C57BL/6J). In

contrast, on the CAST/Ei mouse nuclear background, selection

for the BALB mtDNA haplotype in hematopoietic tissues is

completely abolished [21], suggesting that a combination of
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nuclear genes can completely regulate this process. To identify the

genetic basis underlying this binary mtDNA segregation pheno-

type in hematopoietic tissues, we outcrossed heteroplasmic BALB/

c females with CAST/Ei males to generate an F2 intercross

(BALB/c X CAST/Ei). Mice were grouped into two phenotypes,

based on either the absence or presence of mtDNA selection in the

spleen (Figure 1). Mice were classified as having no mtDNA

selection, if the % NZB mtDNA in hematopoietic tissues was

similar to that of neutral tissues ie. those in which only random

segregation is observed. All other mice were classified as positive

for mtDNA selection, regardless of the rate of selection. In F2

mice, we found age-dependent regulation of this mtDNA

segregation phenotype. At three months of age, approximately

40% of the F2 mice showed no mtDNA selection in the spleen,

while at 12 months of age only 6% of F2 mice maintained the

same phenotype. There was no difference between males and

females.

Clearly the genetic regulation of this binary mtDNA segregation

phenotype is complex, yet we reasoned that at 12 months of age,

two fully penetrant recessive loci could account for the frequency

of such a phenotype. We performed a genome-wide linkage scan

on 12 month old F2 mice (n = 168) using 680 SNPs to map loci

regulating the absence of mtDNA segregation. We identified an 11

Mb interval on chromosome 6 (37.4–48.99 Mb) significantly

linked to the loss of mtDNA selection (LOD 4.6, genome-wide

p = 0.007 with 10, 000 permutations, Figure 2). No other loci

across the genome reached statistically significant levels after the

permutation analysis. However, we did detect two suggestive loci

(p,0.63) [23], one on chromosome 11 (p = 0.310) and another on

chromosome 13 (p = 0.557). We had previously mapped this same

Author Summary

Mitochondria are essential cellular organelles, which
contain their own small circular genome in mammals.
The mitochondrial genome is maternally inherited and
encodes proteins critical for aerobic energy production.
Mutations in mitochondrial DNA can lead to disruptions in
aerobic energy production, which manifest as a wide
spectrum of human clinical disorders. These mutations can
segregate in mitotic and post-mitotic tissues, so that the
proportion of the mutant genome can change with age,
thereby affecting the clinical onset and severity of disease.
The mechanisms regulating mtDNA segregation in mam-
mals are not understood. We have used a mouse model of
mtDNA segregation to elucidate the molecular basis of this
process. Here, we demonstrate that the gene, Gimap3, can
regulate mtDNA segregation in mouse white blood cells.
This is the first gene identified to regulate mtDNA
segregation in mammals, which is also an important factor
in cell survival. Future work on this protein will provide
critical insight into the pathways that regulate mitochon-
drial DNA in white blood cells, an important factor in the
pathogenesis of human mitochondrial DNA mutations.

Figure 1. MtDNA segregation in hematopoietic tissues of 12-month-old heteroplasmic F2 (BALB/c X CAST/Ei) mice. A representative
profile of mtDNA heteroplasmy levels in hematopoietic (spleen, peripheral blood, and bone marrow) and neutral tissues (heart, brain and skeletal
muscle) from four 12-month-old F2 (BALB/c X CAST/Ei) mice illustrates the mtDNA segregation phenotypes. Mice were classified as having no (-)
mtDNA selection if the % NZB mtDNA in hematopoietic tissues was similar to neutral tissues or having (+) mtDNA selection. Data is presented from
mice with high (.60%) or moderate (35%) levels of NZB heteroplasmy in their neutral tissues.
doi:10.1371/journal.pgen.1001161.g001

Gimap3 and Mitochondrial DNA Segregation
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chromosome 6 locus as Smdq- 3, a QTL controlling the rate of

mtDNA selection in the spleen at 12 months of age [22]. Together,

these results confirms that chromosome 6 contains a gene(s) critical

for the regulation of mtDNA segregation in hematopoietic tissues.

To identify candidate genes within this 11 Mb interval, we

searched for those annotated with a putative role in mitochondrial

biology (GO:0005739 - mitochondrion) and found six matching

this criterion (Table 1). Evaluating candidate genes for a tissue-

specific role in mitochondrial biology is a difficult process, because

most mitochondrial genes tend to be ubiquitously expressed. Gstk1,

Ndufb2 and Mrps33 are ubiquitously expressed, and the latter two

would presumably affect oxidative phosphorylation function.

However, we and others have shown that there is no difference

in respiratory chain function between NZB and BALB mtDNA

haplotypes [20,24]. Little is known of the putative kinase Adck2.

In contrast, Gimap3 and Gimap5, paralogues with 84% identity at

the amino acid level (Figure 3A), have immune-related functions

and make particularly attractive candidate genes because the

mtDNA segregation phenotype occurs only in hematopoietic

tissues.

We sequenced the full-length cDNA of Gimap3 and Gimap5 from

total RNA extracted from BALB/c and CAST/Ei spleens.

Gimap5 contained two missense changes (Val to Ile and Arg to

Ser) between BALB and CAST variants (Figure 3B). Neither of

these amino acid variants are evolutionarily conserved in other

Gimap family members [25]. However, for Gimap3 we found

differential exon splicing with the CAST/Ei variant missing one of

five exons. Gimap3 consists of five exons with two in frame AUG

start sites in exons 3 and 4. Exon 4 also contains a stop codon

upstream of the second AUG start site, so when all five exons are

spliced together, the second start is used for translation of the

mature protein (Figure 4). In the CAST/Ei Gimap3 mRNA, exon 4

is missing so translation starts from the first AUG (Figure 4),

thereby altering the reading frame to produce a mature protein

with an extra 58 amino acids at the N-terminus (Figure 4). We

sequenced across exon 4 in genomic DNA from BALB/c and

CAST/Ei and discovered a G to A transition in the splice acceptor

site of exon 4 in CAST/Ei that prevents splicing of this exon into

the mRNA (Figure 4). Since this mtDNA segregation phenotype is

conserved among a variety of Mus musculus domesticus strains [22],

we sequenced across exon 4 in four of these strains and found that

the genomic sequence was identical to that of BALB/c (Figure 4).

This altered mRNA splicing for the CAST/Ei allele changes

considerably the Gimap3 protein sequence in the soluble domain

of the protein, but does not affect the C-terminal transmembrane

domain (Figure 4), which anchors and localizes it to the outer

mitochondrial membrane [26].

MtDNA segregation in hematopoietic tissues is age-dependent,

but it is unclear what role Gimap3 has in younger mice. To test

whether there was an association of the CAST/Ei allele with the

loss of mtDNA selection in the spleen, we genotyped the Gimap3

locus in three month old F2 mice (n = 145). Indeed, we observed a

significant enrichment for the CAST/Ei allele in mice with no

mtDNA selection and loss of the CAST/Ei allele in mice with

mtDNA selection (Figure 5). This data suggests Gimap3 plays an

important role in mtDNA segregation in hematopoietic tissues

independent of age and made Gimap3 an attractive candidate gene.

To definitively test for a role of Gimap3 in regulating mtDNA

segregation, we generated transgenic mice overexpressing the

Cast/Ei Gimap3 cDNA driven off the ubiquitous ROSA26

promoter (Figure 6). The transgene was expressed ubiquitously,

as expected from this promoter, and at a higher level than the

endogenous Gimap3 in the spleen (Figure 6). Transgenic males

Figure 2. A chromosome 6 locus significantly affects mtDNA segregation in hematopoietic tissues. Genome-wide linkage analysis from
168 F2 (BALB/c X CAST/Ei) mice searching for loci regulating the loss of mtDNA selection. Only the chromosome 6 locus was significantly linked to
this phenotype (LOD 4.6, genome-wide p = 0.007 with 10,000 permutations).
doi:10.1371/journal.pgen.1001161.g002

Table 1. Chromosome 6 genes located between 37–49 Mb
with a role in mitochondrial biology (GO:0005739).

Gene Position (Mb) Function

Adck2 39.52 kinase of unknown function

Ndufb2 39.54 Complex I subunit

Mrps33 39.75 mitochondrial ribosomal protein

Gstk1 42.19 protein disulfide oxidoreductase

Gimap5 48.66 immune related GTPase

Gimap3 48.71 immune related GTPase

doi:10.1371/journal.pgen.1001161.t001

Gimap3 and Mitochondrial DNA Segregation
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were crossed to heteroplasmic females and progeny sampled at

three months of age. Our previous QTL mapping results

demonstrated that the Smdq-3 locus on chromosome 6 has an

additive genetic effect, so our expectation was the CAST/Ei Gimap

3 allele would slow the rate of mtDNA segregation in the spleen.

Consistent with our expectation, overexpression of the CAST/Ei

Gimap3 in the spleen significantly slowed the rate of mtDNA

segregation compared to littermate controls and our heteroplasmic

mouse model on the BALB/c nuclear background (Figure 6).

These results confirm Gimap3 is an important regulator of

hematopoietic mtDNA segregation.

Our results further support the hypothesis that the pathways

regulating mtDNA segregation are indeed tissue or cell-specific. In

our heteroplasmic mouse model, mtDNA selection for the NZB

haplotype in the liver and kidney is regulated by different genes and

with different kinetics [20,22]. Ectopic expression of the CAST

Gimap3 transgene had no effect on NZB mtDNA selection in the liver

or kidney (Figure 7), nor had any effect on mtDNA segregation in

tissues which are neutral for selection in our mouse model, such as

the brain, heart, lung, and skeletal muscle. Consistent with this

finding, retroviral overexpression of the CAST Gimap3 in

heteroplasmic murine embryonic fibroblasts had no effect on

heteroplasmy levels (Figure 7). These results imply that a cell-specific

context or pathway is also required to alter mtDNA segregation.

Mitochondrial genome copy number regulation has been

proposed to influence the segregation of mtDNA haplotypes and

human mtDNA mutations. To test whether changes in mtDNA

copy number regulate mtDNA segregation in hematopoietic

tissues, we measured the copy number in the spleen of F2 mice

and found no difference between mice with either absence or

presence of mtDNA selection (Figure 8). These data demonstrate

that copy number regulation per se is not a major determinant for

this particular mtDNA segregation phenotype, and that Gimap3

expression has no role in regulating mtDNA copy number.

Figure 3. Gimap3 and Gimap5 protein sequences. A. ClustalW alignment of BALB Gimap3 and Gimap5 protein sequences. B. ClustalW
alignment of BALB and CAST Gimap5.
doi:10.1371/journal.pgen.1001161.g003

Gimap3 and Mitochondrial DNA Segregation
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Figure 4. Gimap3 gene structure and protein sequence in BALB/c and CAST/Ei mouse strains. A. Exon structure and splicing of Gimap3. An
AUG start codon is present in both exon 3 and exon 4. In exon 4, upstream of AUG start codon is a stop codon. In the BALB/c allele all 5 exons are
spliced together, so translation of the mature protein initiates at the second AUG start codon, with a predicted size of 34 kDa. In the CAST/Ei allele, a
G-A transition in the splice acceptor site of exon 4 prevents its splicing into the mature mRNA, so exon 4 is missing and translation initiates from the
first AUG start codon, predicting a protein of 41 kDa. B. Alignment of the Gimap3 exon 4 and flanking intronic sequence from 5 Mus musculus
domesticus strains, all of which are indistinguishable in the phenotype for mtDNA segregation compared to the Mus musculus castaneus CAST/Ei
strain. C. ClustalW alignment of CAST and BALB Gimap3 protein sequences.
doi:10.1371/journal.pgen.1001161.g004

Gimap3 and Mitochondrial DNA Segregation
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Discussion

In this study, we identify the first nuclear-encoded gene that

influences mtDNA segregation in mammals. Gimap3 is an outer

mitochondrial membrane GTPase, which we show genetically can

regulate the rate of mtDNA segregation in hematopoietic tissues. We

also demonstrate that segregation of mtDNA haplotypes in mouse

hematopoietic tissues is a complex genetic trait regulated with age

but independent of mtDNA copy number. Variation in Gimap3 alone

does not account for the entire segregation phenotype for the

following reasons. At three months of age, some mice homozygous

for the CAST allele still exhibit mtDNA selection, the phenotype is

age-dependent, and in our transgenic mice, overexpression of the

CAST Gimap3 had a quantitative effect on the rate of mtDNA

segregation. These observations suggest other genes, such as the two

suggestive loci detected on chromosome 11 and 13 in the linkage

analysis are involved in the regulation of mtDNA segregation.

MtDNA selection in hematopoietic tissues of both humans and

mice can be modeled as an exponential function, however, the rates

are significantly different, up to 70 times faster in our mouse model

than in humans [17]. In humans carrying the A3243G MELAS

mutation, there is depletion of mtDNA independent of hetero-

plasmy level and age, which might be a secondary effect of the

mutation and a driver for selection of wild type mtDNA [16].

However, the mechanism that leads to a decreased copy number

and drives selection for the wild type mtDNA remains unknown.

Rajasimha et al. [17] have postulated that selection against the

A3243G MELAS mutation likely occurs in the stem cell population

of rapidly dividing cells. Data from our mouse model do not support

this mechanism of segregation, even though in our BALB/c

heteroplasmic mouse model, selection for mtDNA occurs in

leukocytes from both lymphoid and myeloid lineages [21]. In

rapidly dividing colonic crypts there is no selection for mtDNA

haplotypes [18], and, in our F2 (BALB/c X CAST/Ei) cross the

frequency of mice that have lost mtDNA selection changes with age.

Gimap3 is a member of the conserved Gimap (GTPase of

immunity-associated protein) gene cluster found only in vertebrates,

with an orthologue in angiosperm plants [25–28]. Both Gimap3

and Gimap5 (a paralogue of Gimap3) contain a G1 to G5 switch

GTPase, two coiled-coil motifs, and a hydrophobic conserved box

[25]. In humans, only GIMAP5 is a functional gene producing two

splice variants with predicted molecular masses of 34.8 and

39.5 kDa, while GIMAP3 appears to be a pseudogene [25]. Very

little is known about protein function, and in particular the role of

the GTPase domain and the conserved box remain an enigma.

These two proteins are critical for T cell development and cell

survival, and shown to interact with anti-apoptotic Bcl-2 family

members, but the mechanisms are not understood [27]. Gimap5

was originally identified as the factor responsible for the severe T cell

lymphopenia in the diabetes prone BioBreeding rat [29], although

in mice loss of Gimap5 function produces a broader and more

severe phenotype, which includes a leukocyte developmental defect,

liver dysfunction, and lethality (median age of death around 14–15

weeks) [30]. The CAST/Ei variant of Gimap3 only differs at the N-

terminus, leaving intact all of the known functional domains of the

protein, including the C-terminus required for membrane insertion

and localization. How these extra 58 amino acids in the CAST/Ei

Gimap3 variant affect protein function requires further character-

ization of Gimap3 in leukocytes.

How can an outer mitochondrial membrane protein regulate

mtDNA segregation in hematopoietic tissues? Selection for

mtDNA haplotypes can only be directed at two levels, either at

the DNA sequence itself or at the proteins encoded within it.

Analysis of Gimap3 protein sequence does not support a direct

physical interaction with mtDNA, because the protein does not

appear to span both mitochondrial membranes into the matrix

space in order to facilitate such an interaction. One possibility is

that Gimap3 acts as a node or switch on the outer membrane for a

retrograde signaling cascade involving mitochondrial peptide

export, a process that occurs across eukaryotes [31–34]. Bacteria

use peptide export-import as a control circuit to regulate processes,

such as nutrient uptake and sporulation [35]. Further work on

Gimap3 will establish its function within mtDNA segregation and

whether peptide export or cell survival are involved.

Methods

Ethics Statement
These studies were approved by the McGill University Animal

Care Committee and The Regional State Administrative Agency

of Southern Finland (ESAVI).

Mice and Breeding
To produce mice for the genome scan, female BALB/c mice

heteroplasmic for the BALB and NZB mtDNA haplotypes were

outcrossed to male CAST/Ei mice to generate an F1, which were

then intercrossed to obtain F2 progeny. Transgenic mice were made

by cloning the CAST/Ei cDNA of Gimap3 into the EcoRI site of

pBroad3 (Invivogen), which was then microinjected into fertilized

FVB embryos. Founders were screened for the transgene, germline

transmission, and autosomal inheritance. Transgenic mice were

crossed to BALB/c, and the resulting F1 males crossed to

heteroplasmic BALB/c females to generate heteroplasmic littermates.

Phenotyping
Tissues were collected from mice at 3 and 12 months of age and

DNA extracted by conventional methods. Heteroplasmy levels

Figure 5. Enrichment of the CAST/Ei Gimap3 allele in three-
month-old F2 mice with no mtDNA selection. Three-month-old F2
(BALB/c X CAST/Ei) mice (n = 145) were classified into two groups,
presence (+) (n = 88, 0.61) or absence (-) (n = 57, 0.39) of mtDNA
selection, and then genotyped for their Gimap3 alleles. Distributions
were compared to the expected Mendelian ratios by Chi-square analysis
(p = 0.00033).
doi:10.1371/journal.pgen.1001161.g005

Gimap3 and Mitochondrial DNA Segregation
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were determined across tissues and the mtDNA segregation

phenotype in hematopoietic tissues done according to Battersby

et al. [21]. Only animals with an initial level of NZB heteroplasmy

above 20% were included in the analysis. Relative fitness values

for NZB mtDNA in the kidney and liver were calculated as

previously described [22].

MtDNA Quantitation
Relative levels of mtDNA to nuclear DNA were determined

using SYBR Green (Kapa Biosystems) on a Bio-Rad CFX96

thermal cycler with primers for mtDNA (forward 59- GAG-

CATCTTATCCACGCTTCC, reverse 59-GGTGGTACTCCC-

GCTGTAAA) and the single copy nuclear-encoded gene beta-2

microglobulin (forward 5-TGTCAGATATGTCCTTCAGCA-

AGG, reverse 5-TGCTTAACTCTGCAGGCGTATG). Samples

and standards were run in triplicate and used only after comparing

the post-run amplification efficiencies.

Genotyping
The Illumina Medium Density Linkage Panel was used for SNP

genotyping of mouse heart genomic DNA. From a total of 1449

markers on the panel, 680 SNPs were informative between BALB/

Figure 6. Transgenic expression of CAST/Ei Gimap3 cDNA in heteroplasmic mice slows the rate of splenic mtDNA segregation. A.
CAST/Ei Gimap3 transgene expression across a number of mouse tissues (B-brain; L-lung; H-heart; S-spleen) driven off the ROSA26 promoter.
Endogenous Gimap3 expression from BALB/c or CAST/Ei spleen was loaded as a control. Equal amounts of total RNA were amplified by RT-PCR under
the same conditions in each tissue. Beta-actin was used as a control. B. CAST/Ei Gimap3 transgene expression in three-month-old mice significantly
slows down the mean rate of mtDNA segregation in the spleen compared to littermate controls and the BALB/c heteroplasmic mouse model
(ANOVA, p = 0.0011). Data are presented as a scatter plot with means indicated (bar). Transgene negative (n = 16) and positive (n = 17); BALB/c
(n = 23).
doi:10.1371/journal.pgen.1001161.g006

Gimap3 and Mitochondrial DNA Segregation
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c and CAST/Ei. The Gimap3 allele was genotyped in genomic

DNA by PCR using primers (forward 59- ACGTGCACAGACC-

CATTTCT, reverse 59- GTGCTGGAGGGAAGTTTGTC) and

then digested Hpy188III and separated on agarose gels. Mice were

screened for the presence of the transgene using a PCR assay that

amplified the Gimap3 CAST/Ei cDNA and the BALB/c gene

(forward 59-CATACCGTCACACCATCTGC, reverse 59-

CTTTTACCGCAGCCAGATTT), which amplifies a 320 bp

fragment from the cDNA and a 1700 bp fragment from the

gene.

RNA Analysis
All tissues sampled were frozen in liquid nitrogen and stored at

280uC. Total RNA was extracted with Trizol (Invitrogen) then

treated with DNaseI to eliminate potential DNA contamination.

Gimap3 cDNAs were amplified from BALB/c and CAST/Ei

spleens by RT-PCR (Qiagen) with primers (forward 59-

TCCTGCCTGAGAGACTGTTG, reverse 59- TGTGAGTGA-

TCCCAATCCAC). Transgene and endogenous Gimap3 expres-

sion was measured by RT-PCR using equal amounts of total RNA

with primers for Gimap3 (forward 59- TGGACTTCCCATTGG-

TAAACA, reverse 59-ACCCCAAAGACCTCCTTCAC) and

beta-actin (forward 59 -TCACCCACACTGTGCCCATCTAC,

reverse 59 -GAGTACTTGCGCTCAGGAGGAGC).

Retroviral Constructs
Full-length cDNAs were cloned into a Gateway (Invitrogen)

converted pBABE-puro retroviral expression vector and transfect-

ed into the Phoenix amphotropic packaging line to transiently

Figure 7. Ectopic expression of Gimap3 has no effect on mtDNA segregation. A. Relative fitness of NZB mtDNA in the liver and kidney of F2
transgenic littermates positive or negative for the CAST/Ei Gimap3 cDNA. Data are presented as means 6 SD (transgene negative, n = 16; and
positive, n = 17). B. Cultured heteroplasmic murine embryonic fibroblasts were transduced with BALB Gimap3 or CAST Gimap3 containing an N-
terminal HA tag in pBABE, or with empty vector (pBABE). Cells were grown continuously in culture for 1 month. The change in NZB heteroplasmy in
the bulk culture was determined comparing the level after 1 month of culture to the initial level before retroviral transduction.
doi:10.1371/journal.pgen.1001161.g007

Figure 8. MtDNA copy number regulation in the spleen has no
effect on mtDNA segregation. MtDNA copy number relative to
nuclear DNA was measured in the spleen of three month F2 (BALB/c X
CAST/Ei) mice with or without mtDNA selection. Data are presented as
means 6 SD (+ mtDNA selection, n = 32; - mtDNA selection, n = 13).
doi:10.1371/journal.pgen.1001161.g008

Gimap3 and Mitochondrial DNA Segregation
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produce virus, which was then used to infect NIH3T3 or

heteroplasmic murine embryonic fibroblasts.

Statistical Analysis
Linkage analysis was carried out by regression at the markers

under a logistic regression model and an allele dosage mode of

inheritance. The genome wide corrected p-values were based on a

10,000 permutation sample. Allele distributions of Gimap3 in three

month old F2 mice were analyzed by Chi-Square analysis

comparing to an expected Mendelian distribution. The effect of

the CAST/Ei transgene on mtDNA segregation was analyzed in

datasets first for normality, followed by ANOVA and posthoc

testing.

Acknowledgments

We thank A. Wartiovaara, H. Jacobs, H. Spelbrink, U. Richter, and I.

Hovatta for helpful and stimulating discussions.

Author Contributions

Conceived and designed the experiments: RJ EAS BJB. Performed the

experiments: RJ PM HKS TM HT TW DT BJB. Analyzed the data: RJ

JCLO BJB. Contributed reagents/materials/analysis tools: EAS. Wrote the

paper: RJ EAS BJB.

References

1. Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human

disease. Nat Rev Genet 6: 389–402.
2. Wai T, Teoli D, Shoubridge EA (2008) The mitochondrial DNA genetic

bottleneck results from replication of a subpopulation of genomes. Nat Genet 40:
1484–1488.

3. Cree LM, Samuels DC, de Sousa Lopes SC, Rajasimha HK, Wonnapinij P,

et al. (2008) A reduction of mitochondrial DNA molecules during embryogenesis
explains the rapid segregation of genotypes. Nat Genet 40: 249–254.

4. Chinnery PF, Samuels DC (1999) Relaxed replication of mtDNA: A model with
implications for the expression of disease. Am J Hum Genet 64: 1158–1165.

5. Hayashi J, Ohta S, Kikuchi A, Takemitsu M, Goto Y, et al. (1991) Introduction

of disease-related mitochondrial DNA deletions into HeLa cells lacking
mitochondrial DNA results in mitochondrial dysfunction. Proc Natl Acad

Sci U S A 88: 10614–10618.
6. Boulet L, Karpati G, Shoubridge EA (1992) Distribution and threshold

expression of the tRNA(Lys) mutation in skeletal muscle of patients with
myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 51:

1187–1200.

7. Chinnery PF, Thorburn DR, Samuels DC, White SL, Dahl HM, et al. (2000)
The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or

both? Trends Genet 16: 500–505.
8. Larsson NG, Holme E, Kristiansson B, Oldfors A, Tulinius M (1990) Progressive

increase of the mutated mitochondrial DNA fraction in Kearns-Sayre syndrome.

Pediatr Res 28: 131–136.
9. Kawakami Y, Sakuta R, Hashimoto K, Fujino O, Fujita T, et al. (1994)

Mitochondrial myopathy with progressive decrease in mitochondrial tRNA(-
Leu)(UUR) mutant genomes. Ann Neurol 35: 370–373.

10. Dunbar DR, Moonie PA, Jacobs HT, Holt IJ (1995) Different cellular

backgrounds confer a marked advantage to either mutant or wild-type
mitochondrial genomes. Proc Natl Acad Sci U S A 92: 6562–6566.

11. Fu K, Hartlen R, Johns T, Genge A, Karpati G, et al. (1996) A novel
heteroplasmic tRNAleu(CUN) mtDNA point mutation in a sporadic patient

with mitochondrial encephalomyopathy segregates rapidly in skeletal muscle and
suggests an approach to therapy. Hum Mol Genet 5: 1835–1840.

12. Weber K, Wilson JN, Taylor L, Brierley E, Johnson MA, et al. (1997) A new

mtDNA mutation showing accumulation with time and restriction to skeletal
muscle. Am J Hum Genet 60: 373–380.

13. Chinnery PF, Howell N, Lightowlers RN, Turnbull DM (1997) Molecular
pathology of MELAS and MERRF. The relationship between mutation load

and clinical phenotypes. Brain 120(Pt 10): 1713–1721.

14. Chinnery PF, Zwijnenburg PJ, Walker M, Howell N, Taylor RW, et al. (1999)
Nonrandom tissue distribution of mutant mtDNA. Am J Med Genet 85:

498–501.
15. Rahman S, Poulton J, Marchington D, Suomalainen A (2001) Decrease of 3243

A–G mtDNA mutation from blood in MELAS syndrome: a longitudinal study.
Am J Hum Genet 68: 238–240.

16. Pyle A, Taylor RW, Durham SE, Deschauer M, Schaefer AM, et al. (2007)

Depletion of mitochondrial DNA in leucocytes harbouring the 3243A-.G
mtDNA mutation. J Med Genet 44: 69–74.

17. Rajasimha HK, Chinnery PF, Samuels DC (2008) Selection against pathogenic
mtDNA mutations in a stem cell population leads to the loss of the 3243A–.G

mutation in blood. Am J Hum Genet 82: 333–343.

18. Jenuth JP, Peterson AC, Fu K, Shoubridge EA (1996) Random genetic drift in
the female germline explains the rapid segregation of mammalian mitochondrial

DNA. Nat Genet 14: 146–151.

19. Jenuth JP, Peterson AC, Shoubridge EA (1997) Tissue-specific selection for

different mtDNA genotypes in heteroplasmic mice. Nat Genet 16: 93–95.

20. Battersby BJ, Shoubridge EA (2001) Selection of a mtDNA sequence variant in

hepatocytes of heteroplasmic mice is not due to differences in respiratory chain

function or efficiency of replication. Hum Mol Genet 10: 2469–2479.

21. Battersby BJ, Redpath ME, Shoubridge EA (2005) Mitochondrial DNA

segregation in hematopoietic lineages does not depend on MHC presentation

of mitochondrially encoded peptides. Hum Mol Genet 14: 2587–2594.

22. Battersby BJ, Loredo-Osti JC, Shoubridge EA (2003) Nuclear genetic control of

mitochondrial DNA segregation. Nat Genet 33: 183–186.

23. Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, et al. (2003) The

nature and identification of quantitative trait loci: a community’s view. Nat Rev

Genet 4: 911–916.

24. Moreno-Loshuertos R, Acin-Perez R, Fernandez-Silva P, Movilla N, Perez-

Martos A, et al. (2006) Differences in reactive oxygen species production explain

the phenotypes associated with common mouse mitochondrial DNA variants.

Nat Genet 38: 1261–1268.

25. Krucken J, Schroetel RM, Muller IU, Saidani N, Marinovski P, et al. (2004)

Comparative analysis of the human gimap gene cluster encoding a novel

GTPase family. Gene 341: 291–304.

26. Daheron L, Zenz T, Siracusa LD, Brenner C, Calabretta B (2001) Molecular

cloning of Ian4: a BCR/ABL-induced gene that encodes an outer membrane

mitochondrial protein with GTP-binding activity. Nucleic Acids Res 29:

1308–1316.

27. Nitta T, Nasreen M, Seike T, Goji A, Ohigashi I, et al. (2006) IAN family

critically regulates survival and development of T lymphocytes. PLoS Biol 4:

e103. doi:10.1371/journal.pbio.0040103.

28. Nitta T, Takahama Y (2007) The lymphocyte guard-IANs: regulation of

lymphocyte survival by IAN/GIMAP family proteins. Trends Immunol 28:

58–65.

29. MacMurray AJ, Moralejo DH, Kwitek AE, Rutledge EA, Van Yserloo B, et al.

(2002) Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation

in a novel immune-associated nucleotide (Ian)-related gene. Genome Res 12:

1029–1039.

30. Schulteis RD, Chu H, Dai X, Chen Y, Edwards B, et al. (2008) Impaired

survival of peripheral T cells, disrupted NK/NKT cell development, and liver

failure in mice lacking Gimap5. Blood 112: 4905–4914.

31. Loveland B, Wang CR, Yonekawa H, Hermel E, Lindahl KF (1990) Maternally

transmitted histocompatibility antigen of mice: a hydrophobic peptide of a

mitochondrially encoded protein. Cell 60: 971–980.

32. Shawar SM, Vyas JM, Rodgers JR, Cook RG, Rich RR (1991) Specialized

functions of major histocompatibility complex class I molecules. II. Hmt binds

N-formylated peptides of mitochondrial and prokaryotic origin. J Exp Med 174:

941–944.

33. Haynes CM, Yang Y, Blais SP, Neubert TA, Ron D (2010) The matrix peptide

exporter HAF-1 signals a mitochondrial UPR by activating the transcription

factor ZC376.7 in C. elegans. Mol Cell 37: 529–540.

34. Young L, Leonhard K, Tatsuta T, Trowsdale J, Langer T (2001) Role of the

ABC transporter Mdl1 in peptide export from mitochondria. Science 291:

2135–2138.

35. Perego M (1997) A peptide export-import control circuit modulating bacterial

development regulates protein phosphatases of the phosphorelay. Proc Natl

Acad Sci U S A 94: 8612–8617.

Gimap3 and Mitochondrial DNA Segregation

PLoS Genetics | www.plosgenetics.org 9 October 2010 | Volume 6 | Issue 10 | e1001161


