Properties of the Steiner Triple Systems of Order 19

Charles J. Colbourn*
School of Computing, Informatics, and Decision Systems Engineering Arizona State University, Tempe, AZ 85287-8809, U.S.A.
Anthony D. Forbes, Mike J. Grannell, Terry S. Griggs
Department of Mathematics and Statistics, The Open University
Walton Hall, Milton Keynes MK7 6AA, United Kingdom
Petteri Kaski ${ }^{\dagger}$
Helsinki Institute for Information Technology HIIT
University of Helsinki, Department of Computer Science
P.O. Box 68,00014 University of Helsinki, Finland
Patric R. J. Östergård ${ }^{\ddagger}$
Department of Communications and Networking
Aalto University
P.O. Box 13000, 00076 Aalto, Finland
David A. Pike ${ }^{\S}$
Department of Mathematics and Statistics Memorial University of Newfoundland
St. John's, NL, Canada A1C 5S7
Olli Pottonen
Department of Communications and Networking Aalto University
P.O. Box 13000, 00076 Aalto, Finland
Submitted: Sep 22, 2009; Accepted: Jul 1, 2010; Published: Jul 10, 2010
Mathematics Subject Classification: 05B07

[^0]
Abstract

Properties of the 11084874829 Steiner triple systems of order 19 are examined. In particular, there is exactly one 5 -sparse, but no 6 -sparse, $\operatorname{STS}(19)$; there is exactly one uniform $\operatorname{STS}(19)$; there are exactly two $\operatorname{STS}(19)$ with no almost parallel classes; all STS(19) have chromatic number 3; all have chromatic index 10 , except for 4075 designs with chromatic index 11 and two with chromatic index 12; all are 3 -resolvable; and there are exactly two 3 -existentially closed STS(19).

Keywords: automorphism, chromatic index, chromatic number, configuration, cycle structure, existential closure, independent set, partial parallel class, rank, Steiner triple system of order 19.

1 Introduction

A Steiner triple system (STS) is a pair (X, \mathcal{B}), where X is a finite set of points and \mathcal{B} is a collection of 3 -subsets of points, called blocks or triples, with the property that every 2 -subset of points occurs in exactly one block. The size of the point set, $v:=|X|$, is the order of the design, and an STS of order v is commonly denoted by $\operatorname{STS}(v)$. Steiner triple systems form perhaps the most fundamental family of combinatorial designs; it is well known that they exist exactly for orders $v \equiv 1,3(\bmod 6)[31]$.

Two $\operatorname{STS}(v)$ are isomorphic if there is a bijection between their point sets that maps blocks onto blocks. Denoting the number of isomorphism classes of $\operatorname{STS}(v)$ by $N(v)$, we have $N(3)=1, N(7)=1, N(9)=1, N(13)=2$ and $N(15)=80$. Indeed, due to their relatively small number, the STSs up to order 15 have been studied in detail and are rather well understood. An extensive study of their properties was carried out by Mathon, Phelps and Rosa in the early 1980s [35].

For the next admissible parameter, we have $N(19)=11084874829$, obtained in [26]. Of course, this huge number prohibits a discussion of each individual design. Because the designs are publicly available in compressed form [28], however, examination of some of their properties can be easily automated. Computing resources set a strict limit on what is feasible: one CPU year permits 2.8 milliseconds on average for each design.

Many properties of interest can nonetheless be treated. In Section 2, results, mainly of a computational nature, are presented. They show, amongst other things, that there is exactly one 5 -sparse, but no 6 -sparse, $\operatorname{STS}(19)$; that there is one uniform $\operatorname{STS}(19)$; that there are two STS(19) with no almost parallel classes; that all STS(19) have chromatic number 3; that all have chromatic index 10, except for 4075 designs with chromatic index 11 and two with chromatic index 12; that all STS(19) are 3-resolvable; and that there are two 3 -existentially closed $\operatorname{STS}(19)$. Some tables from the original classification [26] are repeated for completeness. In Section 3, some properties that remain open are mentioned, and the computational resources needed in the current work are briefly discussed.

Table 1: Automorphism group order

\mid Aut \mid	$\#$						
1	11084710071	8	101	19	1	96	1
2	149522	9	19	24	11	108	1
3	12728	12	37	32	3	144	1
4	2121	16	13	54	2	171	1
6	182	18	11	57	2	432	1

2 Properties

2.1 Automorphisms

The automorphisms and automorphism groups of the STS(19) were studied in [6, 26]; we reproduce the results here (with a correction in our Table 2).

Representing an automorphism as a permutation of the points, the nonidentity automorphisms can be divided into two types based on their order. The automorphisms of prime order have six cycle types

$$
19^{1}, \quad 1^{1} 2^{9}, \quad 1^{1} 3^{6}, \quad 1^{3} 2^{8}, \quad 1^{7} 2^{6}, \quad 1^{7} 3^{4}
$$

and the automorphisms of composite order have nine cycle types

$$
1^{1} 9^{2}, \quad 1^{1} 6^{3}, \quad 1^{1} 3^{2} 6^{2}, \quad 1^{1} 2^{1} 4^{4}, \quad 1^{1} 2^{1} 8^{2}, \quad 1^{3} 8^{2}, \quad 1^{3} 4^{4}, \quad 1^{3} 2^{2} 6^{2}, \quad 1^{3} 2^{2} 4^{3} .
$$

Table 1 gives the order of the automorphism group for each isomorphism class. Tables 2 and 3 partition the possible orders of the automorphism groups into classes based on the types of prime and composite automorphisms that occur in the group. Compared with [26], Table 2 has been corrected by transposing the classes 18c and 18d, and the classes 12 a and 12 b (this correction is incorporated in the table reproduced in [4]).

A list of the $104 \mathrm{STS}(19)$ having an automorphism group of order at least 9 is given in compact notation in the supplement to [6]. Cyclic STS(19) were first enumerated in [1] and 2-rotational ones (automorphism cycle type $1^{1} 9^{2}$) in [38]; these systems are listed in [35]. The 184 reverse $\operatorname{STS}(19)$ (automorphism cycle type $1^{1} 2^{9}$), together with their automorphism groups, were determined in [10].

In this paper, certain $\operatorname{STS}(19)$ are identified as follows: A1-A4 are the cyclic systems as listed in [35]; B1-B10 are the 2-rotational STS(19) as listed in [35]; and S1-S7 are the sporadic $\operatorname{STS}(19)$ listed in the Appendix. In addition, an $\operatorname{STS}(19)$ can be identified by the order of its automorphism group when this is unique (the listings in [6] are useful for retrieving such designs). Design A4, with an automorphism group of order 171, is both cyclic and 2-rotational and is therefore also listed as B8 in [35]; it is the Netto triple system [39]. A reader interested in copies of STS(19) that are not included among the sporadic examples here will apparently need to carry out some computational work, perhaps utilizing the catalogue from [28]-the authors of the current work are glad to provide consultancy for such an endeavour.

Table 2: Automorphisms (prime order)

Order	Class	19^{1}	$1^{1} 2^{9}$	$1^{1} 3^{6}$	$1^{3} 2^{8}$	$1^{7} 2^{6}$	$1^{7} 3^{4}$	\#
432				*	*	*	*	1
171		*		*				1
144				*	*	*		1
108				*	*	*	*	1
96				*	*	*		1
57		*		*				2
54				*		*	*	2
32					*	*		3
24				*	*	*		11
19		*						1
18	a		*	*				1
	b			*	*		*	2
	c			*		*	*	6
	d			*		*		2
16					*	*		13
12	a			*	*	*		8
	b			*	*			7
	c			*		*		12
	d				*	*	$*$	10
9				*				19
8	a				*	*		84
	b				*			17
6	a		*	*				14
	b			*	*			14
	c			*		*		116
	d				*		*	10
	e					*	*	28
4	a				*	*		839
	b				*			662
	c					*		620
3	a			*				12664
	b						*	64
2	a		*					169
	b				*			78961
	c					*		70392
\#		4	184	12885	80645	72150	124	164758

Table 3: Automorphisms (composite order)

Class	$1^{1} 9^{2}$	$1^{1} 6^{3}$	$1^{1} 3^{2} 6^{2}$	$1^{1} 2^{1} 4^{4}$	$1^{1} 2^{1} 8^{2}$	$1^{3} 8^{2}$	$1^{3} 4^{4}$	$1^{3} 2^{2} 6^{2}$	$1^{3} 2^{2} 4^{3}$	\#
432			*			*	*	*		1
171	*									1
144			*	*	*		*			1
108			*					*		1
96			*				*			1
57										2
54			*							2
32				*			*			3
24			*							11
19										1
18a		*								1
18b								*		2
18 c			*							6
18d			*							2
16				*	*		*			5
16				*						6
16						*	*			1
16							*			1
12a			*							8
12b										7
12c										12
12d								*		10
9	*									9
9										10
8 a							*			2
										82
8 b				*			*			5
					*		*			10
						*	*			2
6a		*								14
6 b										14
6 c			*							104
										12
6 d								*		10
6 e										28
4 a										839
4 b				*						498
							*			153
										11
4 c									*	48
										572
\#	10	15	137	518	16	4	185	24	48	

Table 4: Number of subsystems

STS(7)	STS(9)	$\#$	STS(7)	STS(9)	$\#$
0	0	10997902498	3	1	45
0	1	270784	4	0	2449
1	0	86101058	4	1	25
1	1	12956	6	0	75
2	0	572471	6	1	5
2	1	641	12	0	2
3	0	11819	12	1	1

2.2 Subsystems and Ranks

A subsystem in an STS is a subset of blocks that forms an STS on a subset of the points. A subsystem in an $\operatorname{STS}(v)$ has order at most $(v-1) / 2$; hence a subsystem in an $\operatorname{STS}(19)$ has order 3,7 or 9 . Moreover, the intersection of two subsystems is a subsystem. It follows that each STS(19) has at most one subsystem of order 9, with equality for 284457 isomorphism classes [42]. The number of subsystems of each order in each isomorphism class was determined in [29] and these results are collected in Table 4. The STS(19) with 12 subsystems of order 7 and 1 subsystem of order 9 is the system having an automorphism group of order 432 , and the other two $\operatorname{STS}(19)$ with 12 subsystems of order 7 are the systems having automorphism groups of orders 108 and 144.

The rank of an STS is the linear rank of its point-block incidence matrix over GF(2). In this setting, a nonempty set of points is (linearly) dependent if every block intersects the set in an even number of points. Counting the point-block incidences in a dependent set in two different ways, one finds that a dependent set necessarily consists of $(v+1) / 2$ points so that its complement is the point set of a subsystem of order $(v-1) / 2$. An in-depth study of the rank of STSs has been carried out in [11].

In particular, for $v=19$ there is at most one dependent set, with equality if and only if there exists a subsystem of order 9. It follows that the rank of an STS(19) is 18 if there exists a subsystem of order 9 (284457 isomorphism classes) and 19 otherwise (11084590 372 isomorphism classes).

The rank over GF(2) gives the dimension of the binary code generated by the (rows or columns of) the incidence matrix. The code generated by the rows of a point-block incidence matrix is the point code of the STS. There exist nonisomorphic STS(19) that have equivalent point codes [27].

2.3 Small Configurations

A configuration \mathcal{C} in an $\operatorname{STS}(X, \mathcal{B})$ is a subset of blocks $\mathcal{C} \subseteq \mathcal{B}$. Small configurations in STSs have been studied extensively; see [8, Chapter 13], [17] and [19]. The number of any configuration of size at most 3 is a function of the order of the STS. We address small configurations with some particular properties.

A configuration \mathcal{C} with $|\mathcal{C}|=\ell$ and $\left|\cup_{C \in \mathcal{C}} C\right|=k$ is a (k, ℓ)-configuration. A configuration is even if each of its points occurs in an even number of blocks. If no point of a configuration occurs in exactly one block, then the configuration is full.

The only even (and only full) configuration of size 4 is the Pasch configuration, the $(6,4)$-configuration depicted in Figure 1. The numbers of Pasch configurations in the STS(19) were tabulated in [26]; for completeness, we repeat the result in Table 5.

Table 5: Number of Pasches

Pasch	$\#$	Pasch	$\#$	Pasch	$\#$	Pasch	$\#$
0	2591	17	954710609	34	2190166	51	366
1	35758	18	845596671	35	1301951	52	482
2	263646	19	716603299	36	775233	53	78
3	1315161	20	583321976	37	452306	54	278
4	4958687	21	457755898	38	267642	55	69
5	15095372	22	347324307	39	152122	56	137
6	38481050	23	255589428	40	92056	57	24
7	84328984	24	182938899	41	51019	58	104
8	162045054	25	127614183	42	31587	59	6
9	276886518	26	87003115	43	16974	60	41
10	426050673	27	58052942	44	11827	62	47
11	596271997	28	38010203	45	6008	64	3
12	765958741	29	24457073	46	4629	66	18
13	910510124	30	15492114	47	2151	70	5
14	1008615673	31	9663499	48	2099	78	2
15	1047850033	32	5956712	49	724	84	3
16	1027129335	33	3623356	50	991		

Three STS(19) with 84 Pasch configurations were found in [23]. Indeed, 84 is the maximum possible number of Pasch configurations and the list of such $\operatorname{STS}(19)$ in [23] is complete. The three systems are those having automorphism groups of order 108, 144 and 432, also encountered in Section 2.2.

Replacing the blocks of a Pasch configuration, say $\mathcal{P}=\{\{a, b, c\},\{a, y, z\},\{x, b, z\}$, $\{x, y, c\}\}$, by the blocks of $\mathcal{P}^{\prime}=\{\{x, y, z\},\{x, b, c\},\{a, y, c\},\{a, b, z\}\}$ transforms an STS into another STS. This operation is a Pasch switch. All but one of the 80 isomorphism classes of STS(15) contain at least one Pasch configuration. Any one of these can be transformed to any other by some sequence of Pasch switches [16, 22]. A natural question is whether the same is true for the $\operatorname{STS}(19)$, that is, if each $\operatorname{STS}(19)$ containing at least one Pasch configuration can be transformed to any other such design via Pasch switches. The answer is in the negative.

In [21] the concept of twin Steiner triple systems was introduced. These are two STSs each of which contains precisely one Pasch configuration that when switched produces the other system. If in addition the twin systems are isomorphic we have identical twins. In
[20] nine pairs of twin $\operatorname{STS}(19)$ are given. By examining all STS(19) containing a single Pasch configuration, we have established that there are in total 126 pairs of twins, but no identical twins.

We also consider STSs that contain precisely two Pasch configurations, say \mathcal{P} and \mathcal{Q}, such that when \mathcal{P} (respectively \mathcal{Q}) is switched what is obtained is an STS containing just one Pasch configuration \mathcal{P}^{\prime} (respectively \mathcal{Q}^{\prime}). There are precisely 9 such systems. In every case the two single Pasch systems obtained by the Pasch switches are nonisomorphic. One such system is S 1 (in the Appendix).

For size 6, there are two even configurations, known as the grid and the prism (or double triangle); these (9,6)-configurations are depicted in Figure 1.

Figure 1: The even configurations of size at most 6

Every STS contains an even configuration of size at most 8, see [15]. However, no STS(19) missing either a grid or a prism was known. Indeed, a complete enumeration of grids and prisms establishes that there is no such STS(19). The distribution of the numbers of grids is shown in Table 9 and that for prisms in Table 10. The smallest number of grids in an $\operatorname{STS}(19)$ is 21 (design S4) and the largest is 384 (the $\operatorname{STS}(19)$ with automorphism group order 432). The smallest number of prisms is 171 (design A4) and the largest is 1152 (the designs with automorphism group orders 108, 144 and 432). In particular, then, every $\operatorname{STS}(19)$ contains both even (9,6)-configurations.

An STS is k-sparse if it does not contain any $(n+2, n)$-configuration for any $4 \leqslant$ $n \leqslant k$. In studying k-sparse systems it suffices to focus on full configurations, because an ($n+2, n$)-configuration that is not full contains an $(n+1, n-1)$-configuration. Because k-sparse $\operatorname{STS}(19)$ with $k \geqslant 4$ are anti-Pasch, one could simply check the 2591 anti-Pasch STS(19). A more extensive tabulation of small $(n+2, n)$-configurations was carried out in this work.

There is one full $(7,5)$-configuration (the mitre) and two full $(8,6)$-configurations, known as the hexagon (or 6-cycle) and the crown. These are drawn in Figure 2, and their numbers are presented in Tables 11, 12 and 13.

The existence of a 5 -sparse $\operatorname{STS}(19)$ was known [7]. By Table 11 there are exactly four nonisomorphic anti-mitre $\operatorname{STS}(19)$. Moreover, by Tables 12 and 13 there is a unique STS(19) with no hexagon and exactly four with no crown. Considering the intersections

Figure 2: The full $(7,5)$ - and (8, 6)-configurations
of the classes of STS(19) with these properties, and the anti-Pasch ones, only two STS(19) are in more than one of the classes: one has no Pasch and no mitre, and one has no Pasch and no crown.

Theorem 1. The numbers of 4-sparse, 5-sparse and 6-sparse STS(19) are 2591, 1 and 0 , respectively.

The unique 5-sparse - that is, anti-Pasch and anti-mitre - $\operatorname{STS}(19)$ is A4. The unique STS(19) having no Pasch and no crown is A2, and the unique STS(19) with no hexagon is S 5 . The other three anti-mitre systems are B4, S6 and A3, and the other three anticrown systems are those with automorphism group orders 108, 144 and 432. The largest number of mitres, hexagons and crowns in an $\operatorname{STS}(19)$ is 144 (for the three $\operatorname{STS}(19)$ with automorphism group orders 108, 144 and 432), 171 (for A4) and 314 (for S7), respectively.

2.4 Cycle Structure and Uniform Systems

Any two distinct points $x, y \in X$ of an STS determine a cycle graph in the following way. The points x, y occur in a unique block $\{x, y, z\}$. The cycle graph has one vertex for each point in $X \backslash\{x, y, z\}$ and an edge between two vertices if and only if the corresponding points occur together with x or y in a block.

A cycle graph of an STS is 2-regular and consists of a set of cycles of even length. Hence they can be specified as integer partitions of $v-3$ using even integers greater than or equal to 4 . For $v=19$, the possible partitions are $l_{1}=4+4+4+4, l_{2}=4+4+8, l_{3}=4+6+6$, $l_{4}=4+12, l_{5}=6+10, l_{6}=8+8$ and $l_{7}=16$. The cycle vector of an STS is a tuple showing the distribution of the cycle graphs; for STS(19) we have ($a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}$) with $\sum_{i=1}^{7} a_{i}=\binom{19}{2}=171$, where a_{i} denotes the number of occurrences of the partition l_{i}.

The cycle vector $(0,0,0,0,0,0,171)$ is of particular interest; an STS all of whose cycle graphs consist of a single cycle is perfect. It is known [25] that there is no perfect $\operatorname{STS}(19)$. A more general family consists of the STSs with $a_{i}=\binom{v}{2}$ for some i; such STSs are uniform. Uniform STS(19) are known to exist [39].

An extensive investigation of the cycle vectors of STS(19) was carried out. The results are summarized in Table 6, where the designs are grouped according to the support of the cycle vector, that is, $\left\{i: a_{i} \neq 0\right\}$. Only 28 out of 128 possible combinations of cycle graphs are actually realised.

Table 6: Combinations of cycle graphs

Type	$\#$	Type	$\#$	Type	$\#$
5	1	3567	125	24567	75786636
57	5	4567	5009893	34567	174351058
134	3	12347	39	123457	51146
347	1	12457	56	123467	15
357	1	12467	1	124567	8658874
457	17	13457	89	134567	11039468
567	2585	13467	2	234567	8685731027
1347	5	14567	135588	1234567	2124060807
2457	255	23457	46863		
3457	259	23567	10		

The main observation from Table 6 is the following.
Theorem 2. There is exactly one uniform STS(19).
The following conclusions can also be drawn from Table 6. The anti-Pasch systems are one with cycle graph 5 ; five with cycle graphs 5 and 7 ; and 2585 with cycle graphs 5 , 6 and 7 . The unique 6 -cycle-free system has cycle graphs $1,2,4,6$ and 7 . The numbers of k-cycle-free systems for $k=4,6,8,10,12$ and 16 are $2591,1,381,66,2727$ and 4, respectively. The unique uniform $\operatorname{STS}(19)$ is the 5 -sparse system A4 of Theorem 1.

2.5 Independent Sets

An independent set $I \subseteq X$ in a Steiner triple system (X, \mathcal{B}) is a set of points with the property that no block of \mathcal{B} is contained in I. A maximum independent set is an independent set of maximum size. There exists an $\operatorname{STS}(19)$ that contains a maximum independent set of size m if and only if $m \in\{7,8,9,10\}$, and $m=10$ arises precisely when the design contains a subsystem of order 9; see [8, Chapter 17]. The following theorem collects the results of a complete determination.

Theorem 3. The numbers of $\operatorname{STS}(19)$ with maximum independent set size 7, 8, 9 and 10 are 2, 10133102 887, 951487483 and 284457 , respectively.

The two systems that have maximum independent set of size 7 are the (cyclic) systems A2 and A4.

2.6 Chromatic Number

A colouring of a Steiner triple system (X, \mathcal{B}) is a partition of X into independent sets. A partition of X into k independent sets is a k-colouring. The chromatic number of an STS is the smallest integer k such that the STS has a k-colouring, and corresponding colourings are optimal. Designs with a unique optimal colouring have been termed uniquely colourable [41]. A colouring is equitable if the cardinalities of the colour classes differ by at most one. An STS is k-balanced if every k-colouring is equitable.
$\operatorname{No} \operatorname{STS}(v)$ with $v>3$ is 2-chromatic [40]. Moreover, every $\operatorname{STS}(19)$ is 4-colourable [13, Theorem 6.1]; see also [24, Theorem 5]. Consequently, the chromatic number of any STS(19) is either 3 or 4 . No STS(19) with chromatic number 4 was known; indeed as we see next, none exists. An exhaustive search establishes the following.
Theorem 4. Every $\operatorname{STS}(19)$ is 3-chromatic. More specifically,
(i) every $\operatorname{STS}(19)$ has a 3 -colouring with colour class sizes $(7,7,5)$ and
(ii) every $\operatorname{STS}(19)$ except for designs A2 and A4 has a 3-colouring with colour class sizes $(8,6,5)$.

Next we show that Theorem 4 completes the determination of the combinations of 3 -colouring patterns that can occur in an $\operatorname{STS}(19)$. For a given 3-colouring of an $\operatorname{STS}(19)$, let the colour classes be $\left(C_{1}, C_{2}, C_{3}\right)$. Let $c_{i}=\left|C_{i}\right|$ for $1 \leqslant i \leqslant 3$. Without loss of generality suppose that $c_{1} \geqslant c_{2} \geqslant c_{3}$, and denote the pattern of colour class sizes by the corresponding integer triple (c_{1}, c_{2}, c_{3}). Informally, we refer to the colour classes C_{1}, C_{2}, C_{3} as red, yellow and blue. It is shown in [12, Section 2.4] and [13] that any 3-colouring of an $\operatorname{STS}(19)$ must have one of the six patterns

$$
(7,6,6),(7,7,5),(8,6,5),(8,7,4),(9,5,5),(9,6,4)
$$

and that certain reductions are possible.
Lemma 1. An $\operatorname{STS}(19)$ that has a 3-colouring with colour class sizes
(i) $(7,7,5)$ also has one with sizes $(7,6,6)$,
(ii) $(8,6,5)$ either has one with sizes $(7,7,5)$ or one with sizes $(7,6,6)$,
(iii) $(8,7,4)$ also has one with sizes $(7,7,5)$,
(iv) $(9,5,5)$ either has one with sizes $(9,6,4)$ or one with sizes $(8,6,5)$,
$(v)(9,6,4)$ also has one with sizes $(8,6,5)$,
(vi) $(8,7,4)$ also has one with sizes $(8,6,5)$,
(vii) $(9,5,5)$ also has one with sizes $(8,6,5)$,
(viii) $(9,6,4)$ also has one with sizes $(9,5,5)$,
(ix) $(9,6,4)$ also has one with sizes $(8,7,4)$.

Proof. For (i)-(v), see [12, Section 2.4] or [13, Section 4]. It remains only to prove (vi)-(ix).

Let $x_{i j k}, 1 \leqslant i \leqslant j \leqslant k$, denote the number of blocks containing points belonging to colour classes C_{i}, C_{j} and C_{k}, with appropriate multiplicities. Thus, for example, x_{122} is the number of blocks that contain a red point and two yellow points. Write x for x_{223}. As in the proof of [12, Theorem 2.4.1] we can construct the following table by a straightforward computation.

$\left(c_{1}, c_{2}, c_{3}\right)$	x_{122}	x_{133}	x_{112}	x_{113}	x_{223}	x_{233}	x_{123}
$(7,6,6)$	$15-x$	x	$3+x$	$18-x$	x	$15-x$	6
$(7,7,5)$	$21-x$	$x-5$	$1+x$	$20-x$	x	$15-x$	5
$(8,6,5)$	$15-x$	$x-3$	$7+x$	$21-x$	x	$13-x$	4
$(8,7,4)$	$21-x$	$x-7$	$6+x$	$22-x$	x	$13-x$	2
$(9,5,5)$	$10-x$	$x-2$	$12+x$	$24-x$	x	$12-x$	1
$(9,6,4)$	$15-x$	$x-6$	$12+x$	$24-x$	x	$12-x$	0

Suppose we have an $(8,7,4) 3$-colouring of an $\operatorname{STS}(19)$. Then $x \geqslant 7$ since $x_{133}=$ $x-7 \geqslant 0$. Moreover, $x_{233}=13-x \leqslant 6$. Therefore we can find a yellow point to change to blue without creating a blue-blue-blue block. This proves (vi).

Suppose we have a $(9,5,5) 3$-colouring. Since $x_{122}+x_{133}=8<9$ we can find a red point to be changed to either yellow or blue. This proves (vii).

Suppose we have a $(9,6,4) 3$-colouring. If $x_{233}<6$, we can change a yellow point to blue. So we may assume that $x_{233}=6$. Then $x_{133}=x_{123}=0$. Hence each blue point occurs exactly three times in the yellow-blue-blue blocks and paired with three yellow points. So each blue point must occur paired with three yellow points in yellow-yellowblue blocks. This is impossible; hence (viii) is proved.

Again, suppose we have a $(9,6,4) 3$-colouring. If $x_{122}<9$, we can change a red point to yellow. Otherwise $x_{122} \geqslant 9$. This forces $x=x_{223}=x_{233}=6$ and $x_{133}=x_{123}=0$, which is impossible by the same argument as in the proof of (viii). This proves (ix).

The main result of this section is a straightforward consequence of Theorem 4 and Lemma 1.

Theorem 5. Any STS(19) is 3-colourable with one of the following six combinations of 3-colouring patterns:

$$
\begin{aligned}
& \mathcal{C}_{1}=\{(7,6,6),(7,7,5)\} \\
& \mathcal{C}_{2}=\{(7,6,6),(7,7,5),(8,6,5)\} \\
& \mathcal{C}_{3}=\{(7,6,6),(7,7,5),(8,6,5),(8,7,4)\} \\
& \mathcal{C}_{4}=\{(7,6,6),(7,7,5),(8,6,5),(9,5,5)\} \\
& \mathcal{C}_{5}=\{(7,6,6),(7,7,5),(8,6,5),(8,7,4),(9,5,5)\} \\
& \mathcal{C}_{6}=\{(7,6,6),(7,7,5),(8,6,5),(8,7,4),(9,5,5),(9,6,4)\}
\end{aligned}
$$

The first combination in Theorem $5,\{(7,6,6),(7,7,5)\}$, occurs in only two $\operatorname{STS}(19)$, both of which are cyclic; in fact these are the two exceptions of Theorem 4(ii), systems A2 and A4. The other two cyclic STS(19), A1 and A3, have the colouring pattern combination $\{(7,6,6),(7,7,5),(8,6,5)\}$. It is easy to find examples exhibiting each of the remaining combinations.

We are now able to answer the open problem of whether there exists a 3-balanced STS(19) [13, Problem 1]. By [13, Theorem 4.1] and Theorems 4 and 5 we immediately get the following.

Corollary 1. Every $\operatorname{STS}(19)$ is 3-chromatic and has an equitable 3-colouring. There exists no 3-balanced STS(19).

In a separate computation we obtained the frequency of occurrence of each combination of 3 -colouring patterns. We also obtained information concerning the size of maximum independent sets. Our results are presented in Table 7 in the form of a two-way frequency table of maximum independent set size against combinations of 3 -colouring patterns \mathcal{C}_{i} as defined in Theorem 5. The cell in row \mathcal{C}_{i}, column j gives the number of $\operatorname{STS}(19)$ that have 3 -colouring pattern combination \mathcal{C}_{i} and maximum independent set size j. Observe that the total count for size 10 is in agreement with [42], and it is worth pointing out that the zero entries in rows \mathcal{C}_{2} to \mathcal{C}_{6} can be deduced by elementary arguments without the need for any extensive computation. In particular, it is not difficult to show that an independent set of size 10 excludes the possibility of a $(9,5,5) 3$-colouring.

Table 7: Colourings and maximum independent sets

Colouring	7	8	9	10	Total
\mathcal{C}_{1}	2	0	0	0	2
\mathcal{C}_{2}	0	53680512	2650830	1241	56332583
\mathcal{C}_{3}	0	10079422375	421936849	283216	10501642440
\mathcal{C}_{4}	0	0	2912144	0	2912144
\mathcal{C}_{5}	0	0	464995662	0	464995662
\mathcal{C}_{6}	0	0	58991998	0	58991998
Total	2	10133102887	951487483	284457	11084874829

2.7 Almost Parallel Classes

A set of nonintersecting blocks that do not contain all points of the design is a partial parallel class, and a partial parallel class with $\lfloor v / 3\rfloor$ blocks is an almost parallel class. Consequently, six nonintersecting blocks of an STS(19) form an almost parallel class. For each STS(19) we determined the total number of almost parallel classes in the following way.

For each STS(19), the point to be missed by the almost parallel class is specified, after which the problem of finding the almost parallel classes can be formulated as instances
of the exact cover problem. In the exact cover problem, a set U and a collection \mathcal{S} of subsets of U are given, and one wants to determine (one or all) partitions of U using sets from \mathcal{S}. To solve instances of the exact cover problem, the libexact software [30], which implements ideas from work by Knuth [32], was utilized. The results are presented in Table 8.

There is a conjecture that for all $v \equiv 1,3(\bmod 6), v \geqslant 15$, there exists an $\operatorname{STS}(v)$ whose largest partial parallel class has fewer than $\lfloor v / 3\rfloor$ blocks [4, Conjecture 2.86], [8, Conjectures 19.4 and 19.5], [41, Section 3.1]. The results in the current work are in accordance with this conjecture.

In fact, Lo Faro already showed that every STS(19) has a partial parallel class with five blocks [33] and, constructively, that there indeed exists an STS(19) with no almost parallel class [34]. The current work shows that there are exactly two STS(19) with no almost parallel classes. These are A4 and the unique design with automorphism group of order 432. The largest number of almost parallel classes, 182, arises in S3.

A set of blocks of a design with the property that each point occurs in exactly α of these blocks is an α-parallel class. A partition of all blocks into α-parallel classes is an α-resolution, and a design that admits an α-resolution is α-resolvable. A Steiner triple system whose order v is not divisible by 3 cannot have a (1-)parallel class, but may have a 3-parallel class. The existence of Steiner triple systems of order at least 7 without a 3 -parallel class is an open problem [8, p. 419].

A complete search demonstrates that every STS(19) not only has a 3-parallel class, but a 3 -resolution. It is, however, not always the case that every 3 -parallel class can be extended to a 3 -resolution. That is, some $\operatorname{STS}(19)$ contain a 6 -parallel class that is nonseparable, in that it does not further partition into two 3-parallel classes. Using [3], the largest α for which an $\operatorname{STS}(v)$ contains a nonseparable α-parallel class is $3,1,3,5$ and 6 for $v=7,9,13,15$ and 19 , respectively.

2.8 Chromatic Index

While the chromatic number concerns colouring points, the chromatic index concerns colouring blocks. More precisely, the chromatic index of an STS is the smallest number of colours that can be used to colour the blocks so that no two intersecting blocks receive the same colour.

An $\operatorname{STS}(v)$ is resolvable if and only if its chromatic index is $(v-1) / 2$. Since 19 is not divisible by 3 , there is no resolvable $\operatorname{STS}(19)$, and the smallest possible chromatic index for such a design is $\lceil 57 / 6\rceil=10$.

By elementary counting, an $\operatorname{STS}(19)$ with chromatic index 10 must have at least 7 disjoint almost parallel classes. Moreover, the chromatic index of an $\operatorname{STS}(19)$ with no almost parallel classes is at least $\lceil 57 / 5\rceil=12$. We now describe the computational approach used to show that 10, 11 and 12 are the only possible chromatic indices for an STS(19).

Exact algorithms and greedy algorithms for finding the chromatic index and upper bounds on the chromatic index of STSs were presented in the early 1980s [2, 5]. Now

Table 8: Number of almost parallel classes

APC	$\#$	APC	$\#$	APC	$\#$	APC	$\#$
0	2	79	764738	110	526902725	141	43290
36	1	80	1224282	111	495595995	142	25609
40	1	81	1924007	112	458547878	143	14838
48	5	82	2974055	113	417254801	144	8604
50	1	83	4513033	114	373408256	145	4827
51	1	84	6737331	115	328678489	146	2907
52	2	85	9882490	116	284606260	147	1581
54	5	86	14239039	117	242381171	148	1028
56	14	87	20170633	118	203039046	149	522
57	6	88	28071379	119	167316900	150	386
58	16	89	38411235	120	135654277	151	210
59	6	90	51637134	121	108190905	152	173
60	31	91	68231490	122	84895844	153	75
61	27	92	88611342	123	65517542	154	85
62	58	93	113110188	124	49778191	155	32
63	65	94	141933285	125	37203375	156	53
64	158	95	175017943	126	27381347	157	6
65	225	96	212214494	127	19807367	158	22
66	476	97	252843760	128	14108068	159	6
67	774	98	296203531	129	9891578	160	24
68	1606	99	341097019	130	6829506	162	5
69	2801	100	386153551	131	4633657	164	12
70	5363	101	429813668	132	3105171	166	3
71	9930	102	470269272	133	2044697	167	1
72	18098	103	505968628	134	1327796	168	1
73	32270	104	535235668	135	847519	172	4
74	56959	105	556712827	136	536040	174	4
75	98415	106	569489811	137	332998	180	1
76	168833	107	572707805	138	203608	182	1
77	284405	108	566389062	139	123411		
78	470557	109	550847618	140	74672		

modern algorithms for finding colourings and chromatic numbers of graphs can be used to determine the chromatic number of the line graph of the design, which equals the chromatic index of the design.

To find a 10 -colouring, the algorithm starts by finding sets of 7 disjoint almost parallel classes. To do this, for each STS(19), all almost parallel classes are first found (as in Section 2.7). Using these, sets of 7 disjoint ones are obtained by an algorithm for finding cliques in graphs (form one vertex for each almost parallel class and place edges between disjoint classes). The Cliquer software [37] can be utilized to find the cliques. The final step is an exhaustive search for three partial parallel classes to partition the remaining $57-7 \cdot 6=15$ blocks.

A more general exhaustive search algorithm was applied to instances with chromatic index greater than 10 . The final result is as follows.

Theorem 6. The numbers of STS(19) that have chromatic index 10, 11 and 12 are 11084870752,4075 and 2, respectively.

Consequently, exactly the two STS(19) with no almost parallel classes (see Section 2.7) have chromatic index 12. Our results are consistent with the observation that no $\operatorname{STS}(v)$ with $v>7$ and chromatic index exceeding the minimum chromatic index by more than 2 is known to exist [8, pp. 366-367], [41, p. 411].

2.9 Existential Closure

The block intersection graph of an STS has one vertex for each block and an edge between two vertices exactly when the corresponding blocks intersect. A graph $G=(V, E)$ is n-existentially closed if for every n-element subset $S \subseteq V$ of vertices and for every subset $T \subseteq S$, there exists a vertex $x \notin S$ that is adjacent to every vertex in T and nonadjacent to every vertex in $S \backslash T$.

In [14] n-existentially closed block intersection graphs of STSs are studied. The block intersection graph of an $\operatorname{STS}(v)$ is 2-existentially closed if and only if $v \geqslant 13$, it cannot be 4 -existentially closed [36, Theorem 1] for any v, and the only possible orders for which it can be 3 -existentially closed are 19 and 21. In fact, two $\operatorname{STS}(19)$ possess 3-existentially closed block intersection graphs [14].

The following result from [14, Theorem 4.1] helps in designing an algorithm for determining whether the block intersection graph of an STS is 3 -existentially closed.

Theorem 7. The block intersection graph of an $\operatorname{STS}(v)$ is 3-existentially closed if and only if
(i) the $\operatorname{STS}(v)$ contains no subsystem $\operatorname{STS}(7)$,
(ii) the $\operatorname{STS}(v)$ contains no subsystem $\operatorname{STS}(9)$,
(iii) for every set of three nonintersecting blocks, ifv <19 there exists a block that intersects none of the three, and if $v \geqslant 19$ there exists a block that intersects all three.

No $\operatorname{STS}(19)$ other than those discovered in [14] is 3-existentially closed.
Theorem 8. The number of 3 -existentially closed STS(19) is 2.
The two 3-existentially closed STS(19) are A3 and S2.

3 Conclusions

The main aim of the current work has been to compute all kinds of properties of STS(19) and collect them in a single place. However, it is impossible to accomplish this task in an exhaustive manner, so we omit discussion of properties that (1) we do not consider to have large general interest, (2) we are not able to present in a compact manner, or (3) we simply are not able to compute at the present time.

For example, we consider various kinds of colouring problems, such as those studied in $[9,18]$, to be of the first type. Any properties that have been used as invariants for STSs cannot, by definition, be tabulated in a compact way and are of the second type; examples of this type include various forms of so-called trains.

The third type of problems contain some very interesting open problems, including those of determining intersection numbers of STSs, maximal sets of disjoint STSs, and whether all STSs are derived. Further information on these problems can be found in $[4,8]$. For example, just determining whether a single STS is derived remains a major challenge.

The problems were addressed using three different computational environments (in Canada, Finland and Great Britain), so we do not try to give exact details about the computations. The computational resources needed partition the problems roughly into three groups: those taking days or at most a couple of weeks ("easy"), those taking up to a couple of years ("intermediate") and those taking up to ten years ("hard"). These CPU times are roughly the times needed for one core of a "contemporary microprocessor".

The intermediate calculations were those of determining subconfigurations (10 CPU weeks), determining the almost parallel classes (1.5 CPU years), constructing the frequency table of maximum independent set size against 3-colouring pattern combination (12 CPU weeks), showing existence of 3-parallel classes (7 CPU months) and searching for 3-existentially closed designs (9 CPU months). The only one belonging to the category of hard calculations was the determination of the chromatic indices, which consumed just under 8 CPU years. All remaining calculations were "easy".

Appendix

We use the same method for compressing STSs as in the supplement to [6]. That is, for the points we use the symbols a-s and represent an STS by a string of 57 symbols $x_{1} x_{2} \cdots x_{57}$. The symbol x_{i} is the largest element in the i th block. The other two symbols in the i th block are the smallest pair of symbols not occurring in earlier blocks under the colexicographic ordering of pairs: a pair y, z with $y<z$ is smaller than a pair y^{\prime}, z^{\prime} with
$y^{\prime}<z^{\prime}$ iff $z<z^{\prime}$, or $z=z^{\prime}$ and $y<y^{\prime}$. The order of the automorphism group is given after each design.

S1: edgfhghijkllmnljompqporqsnsloqprmrsnnopsrqqprosqsrpsqrrss (1)
S2: cefggfhijijklmnokppqmrsolrsqnqpsnrmornsoqpsqporpqrsrsqsrs (8)
S3: cefghngjljrikoqplrnqmskmsnonsmrlpmoprqpqosopqsrrpsqqsrsrs (3)
S4: cefghigpojlijqmplrqokomsnnqpslrommnsrqprnsoprqsrspqqsrsrs (1)
S5: cefghfgjoiksmrlpnksqkmpsnlrnoqmmnqposrprqoorpqsrspqqrssrs (6)
S6: cefghigomjsinksllsjqkmropnlqrpomnrpqpqornsopqrsrpqsqsrsrs (9)
S7: cefihkgsojosmiqmnrlpjqklospnqlpormprnsprqonsoprqsrqqrssrs (1)

References

[1] S. Bays, Sur les systèmes cycliques de triples de Steiner, Ann. Sci. Ecole Norm Sup. (3) 40 (1923), 55-96.
[2] C. J. Colbourn, Computing the chromatic index of Steiner triple systems, Comput. J. 25 (1982), 338-339.
[3] C. J. Colbourn, Separations of Steiner triple systems: some questions, Bull. Inst. Combin. Appl. 6 (1992), 53-56.
[4] C. J. Colbourn, Triple systems, in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (Editors), 2nd ed., Chapman \& Hall/CRC, Boca Raton, 2007, pp. 58-71.
[5] C. J. Colbourn and M. J. Colbourn, Greedy colourings of Steiner triple systems, Ann. Discrete Math. 18 (1983), 201-207.
[6] C. J. Colbourn, S. S. Magliveras and D. R. Stinson, Steiner triple systems of order 19 with nontrivial automorphism group, Math. Comp. 59 (1992), 283-295 and S25-S27.
[7] C. J. Colbourn, E. Mendelsohn, A. Rosa and J. Širáň, Anti-mitre Steiner triple systems, Graphs Combin. 10 (1994), 215-224.
[8] C. J. Colbourn and A. Rosa, Triple Systems, Oxford University Press, Oxford, 1999.
[9] P. Danziger, M. J. Grannell, T. S. Griggs and A. Rosa, On the 2-parallel chromatic index of Steiner triple systems, Australas. J. Combin. 17 (1998), 109-131.
[10] R. H. F. Denniston, Non-isomorphic reverse Steiner triple systems of order 19, Ann. Discrete Math. 7 (1980), 255-264.
[11] J. Doyen, X. Hubaut and M. Vandensavel, Ranks of incidence matrices of Steiner triple systems, Math. Zeitschr. 163 (1978), 251-259.
[12] A. D. Forbes, Configurations and Colouring Problems in Block Designs, Ph.D. Thesis, The Open University, November 2006.
[13] A. D. Forbes, M. J. Grannell and T. S. Griggs, On colourings of Steiner triple systems, Discrete Math. 261 (2003), 255-276.
[14] A. D. Forbes, M. J. Grannell and T. S. Griggs, Steiner triple systems and existentially closed graphs, Electron. J. Combin. 12 (2005), \#R42 and Corrigendum.
[15] Y. Fujiwara and C. J. Colbourn, A combinatorial approach to X-tolerant compaction circuits, IEEE Trans. Inform. Theory 56 (2010), 3196-3206.
[16] P. B. Gibbons, Computing Techniques for the Construction and Analysis of Block Designs, Ph.D. Thesis, University of Toronto, 1976, Department of Computer Science, University of Toronto, Technical Report \#92, May 1976.
[17] M. J. Grannell and T. S. Griggs, Configurations in Steiner triple systems, in Combinatorial Designs and Their Applications (Milton Keynes, 1997), F. C. Holroyd, K. A. S. Quinn, C. Rowley and B. S. Webb (Editors), Chapman \& Hall/CRC Press, Boca Raton, 1999, pp. 103-126.
[18] M. J. Grannell, T. S. Griggs and R. Hill, The triangle chromatic index of Steiner triple systems, Australas. J. Combin. 23 (2001), 217-230.
[19] M. J. Grannell, T. S. Griggs and E. Mendelsohn, A small basis for four-line configurations in Steiner triple systems, J. Combin. Des. 3 (1994), 51-59.
[20] M. J. Grannell, T. S. Griggs and J. P. Murphy, Equivalence classes of Steiner triple systems, Congr. Numer. 86 (1992), 19-25.
[21] M. J. Grannell, T. S. Griggs and J. P. Murphy, Twin Steiner triple systems, Discrete Math. 167/168 (1997), 341-352.
[22] M. J. Grannell, T. S. Griggs and J. P. Murphy, Switching cycles in Steiner triple systems, Utilitas Math. 56 (1999), 3-21.
[23] B. D. Gray and C. Ramsay, On the number of Pasch configurations in a Steiner triple system, Bull. Inst. Combin. Appl. 24 (1998), 105-112.
[24] P. Horak, On the chromatic number of Steiner triple systems of order 25, Discrete Math. 299 (2005), 120-128.
[25] P. Kaski, Nonexistence of perfect Steiner triple systems of orders 19 and 21, Bayreuth. Math. Schr. 74 (2005), 130-135.
[26] P. Kaski and P. R. J. Östergård, The Steiner triple systems of order 19, Math. Comp. 73 (2004), 2075-2092.
[27] P. Kaski and P. R. J. Östergård, There exist non-isomorphic STS(19) with equivalent point codes, J. Combin. Des. 12 (2004), 443-448.
[28] P. Kaski, P. R. J. Östergård, O. Pottonen and L. Kiviluoto, A catalogue of the Steiner triple systems of order 19, Bull. Inst. Combin. Appl. 57 (2009), 35-41.
[29] P. Kaski, P. R. J. Östergård, S. Topalova and R. Zlatarksi, Steiner triple systems of order 19 and 21 with subsystems of order 7, Discrete Math. 308 (2008), 2732-2741.
[30] P. Kaski and O. Pottonen, libexact User's Guide, Version 1.0, Helsinki Institute for Information Technology HIIT, HIIT Technical Reports 2008-1, 2008.
[31] T. P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. J. 2 (1847), 191-204.
[32] D. E. Knuth, Dancing links, in: J. Davies, B. Roscoe and J. Woodcock (Eds.), Millennial Perspectives in Computer Science, Palgrave Macmillan, Basingstoke, 2000, pp. 187-214.
[33] G. Lo Faro, On the size of partial parallel classes in Steiner systems $\operatorname{STS}(19)$ and STS(27), Discrete Math. 45 (1983), 307-312.
[34] G. Lo Faro, Partial parallel classes in Steiner system $S(2,3,19)$, J. Inform. Optim. Sci. 6 (1985), 133-136.
[35] R. A. Mathon, K. T. Phelps and A. Rosa, Small Steiner triple systems and their properties, Ars Combin. 15 (1983), 3-110; and 16 (1983), 286.
[36] N. A. McKay and D. A. Pike, Existentially closed BIBD block-intersection graphs, Electron. J. Combin. 14 (2007), \#R70.
[37] S. Niskanen and P. R. J. Östergård, Cliquer User's Guide, Version 1.0, Communications Laboratory, Helsinki University of Technology, Technical Report T48, 2003.
[38] K. T. Phelps and A. Rosa, Steiner triple systems with rotational automorphisms, Discrete Math. 33 (1981), 57-66.
[39] R. M. Robinson, The structure of certain triple systems, Math. Comp. 29 (1975), 223-241.
[40] A. Rosa, On the chromatic number of Steiner triple systems, in 1970 Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), Gordon and Breach, New York, 1970, pp. 369-371.
[41] A. Rosa and C. J. Colbourn, Colorings of block designs, in Contemporary Design Theory: A Collection of Surveys, J. H. Dinitz and D. R. Stinson (Editors), Wiley, New York, 1992, pp. 401-430.
[42] D. R. Stinson and E. Seah, 284457 Steiner triple systems of order 19 contain a subsystem of order 9, Math. Comp. 46 (1985), 717-729.

Table 9: Number of grids

Grid	$\#$	Grid	$\#$	Grid	$\#$	Grid	$\#$
21	1	58	421406261	95	5466378	132	19595
22	1	59	455538873	96	4452414	133	17568
23	1	60	483962320	97	3625512	134	17390
24	6	61	505587977	98	2964501	135	15125
25	27	62	519737441	99	2419681	136	14765
26	44	63	525975481	100	1984363	137	12845
27	156	64	524399635	101	1625523	138	12707
28	403	65	515397821	102	1340634	139	10911
29	1012	66	499528245	103	1103378	140	10689
30	2577	67	477877986	104	915322	141	9228
31	6067	68	451447963	105	756727	142	9097
32	13721	69	421183378	106	629794	143	7629
33	29607	70	388549216	107	522121	144	7495
34	62549	71	354553810	108	439478	145	6593
35	125648	72	320163173	109	365162	146	6407
36	246636	73	286220933	110	310349	147	5325
37	461547	74	253571165	111	256766	148	5266
38	840481	75	222621207	112	219625	149	4318
39	1484562	76	193840439	113	183979	150	4386
40	2534581	77	167454239	114	157625	151	3507
41	4196398	78	143611784	115	133530	152	3515
42	6739474	79	122366578	116	115251	153	2820
43	10522877	80	103592757	117	97139	154	2838
44	15960510	81	87177751	118	85923	155	2265
45	23562586	82	72978536	119	72545	156	2455
46	33871296	83	60813771	120	65014	157	1830
47	47412716	84	50428258	121	55582	158	1905
48	64736436	85	41665785	122	50393	159	1433
49	86205567	86	34306651	123	43478	160	1552
50	112103389	87	28141430	124	40275	161	1124
51	142489811	88	23037710	125	34759	162	1284
52	177059163	89	18809436	126	32578	163	913
53	215192146	90	15344880	127	28746	164	1010
54	256144342	91	12489931	128	27080	165	766
55	298709622	92	10159180	129	23884	166	843
56	341446147	93	8261382	130	23163	167	557
57	382864465	94	6721096	131	20281	168	664

Table 9: Number of grids (cont.)

Grid	$\#$	Grid	$\#$	Grid	$\#$	Grid	$\#$
169	490	194	80	219	2	249	3
170	527	195	19	220	23	250	2
171	324	196	90	221	2	252	10
172	429	197	21	222	14	254	1
173	267	198	70	223	5	255	2
174	383	199	8	224	33	256	7
175	206	200	97	225	5	258	1
176	328	201	16	226	8	260	7
177	153	202	39	227	5	262	1
178	232	203	6	228	31	264	8
179	126	204	79	229	2	267	2
180	223	205	5	230	4	272	7
181	128	206	25	231	3	276	4
182	207	207	13	232	21	280	4
183	109	208	59	234	10	284	3
184	155	209	4	235	1	288	5
185	75	210	51	236	26	294	1
186	149	211	2	238	5	300	1
187	57	212	46	239	1	303	1
188	159	213	10	240	26	308	1
189	45	214	14	242	1	312	3
190	91	215	2	243	1	320	2
191	44	216	38	244	7	336	2
192	123	217	3	245	1	384	1
193	36	218	15	248	11		

Table 10: Number of prisms

Prism	$\#$	Prism	$\#$	Prism	$\#$	Prism	$\#$
171	1	250	75976	287	42388161	324	198341505
189	1	251	98127	288	46639711	325	196983412
200	1	252	125286	289	51169522	326	195225803
207	1	253	158108	290	55931715	327	193085136
211	1	254	200729	291	60918787	328	190605951
216	2	255	253967	292	66151873	329	187795686
217	1	256	318185	293	71586084	330	184649280
219	6	257	397908	294	77237835	331	181212592
221	1	258	492617	295	83032700	332	177549753
222	6	259	610716	296	88988957	333	173586201
223	17	260	753345	297	95089060	334	169440136
224	22	261	921675	298	101293200	335	165109202
225	27	262	1126793	299	107579627	336	160640418
226	25	263	1368838	300	113892453	337	155982892
227	41	264	1655279	301	120225453	338	151293063
228	73	265	1993377	302	126496164	339	146440917
229	130	266	2390574	303	132753692	340	141569668
230	166	267	2851791	304	138902842	341	136664720
231	245	268	3389099	305	144926038	342	131727398
232	321	269	4010807	306	150790370	343	126770273
233	448	270	4727106	307	156429753	344	121858346
234	667	271	5547565	308	161884623	345	116981409
235	932	272	6485240	309	167038214	346	112190976
236	1291	273	7552715	310	171888128	347	107410238
237	1750	274	8757871	311	176448741	348	102737476
238	2462	275	10118769	312	180620616	349	98136704
239	3344	276	11640128	313	184476735	350	93657722
240	4558	277	13335175	314	187911346	351	89292744
241	6221	278	15233835	315	190927860	352	85046857
242	8341	279	17317913	316	193530670	353	80920249
243	11120	280	19617190	317	195702979	354	76911822
244	14888	281	22137761	318	197395867	355	73054525
245	20119	282	24884491	319	198675356	356	69332115
246	26400	283	27887561	320	199497261	357	65735409
247	34577	284	31140015	321	199874535	358	62291346
248	44753	285	34623522	322	199760946	359	58986226
249	58845	286	38376738	323	199286571	360	55805608

Table 10: Number of prisms (cont.)

Prism	$\#$	Prism	$\#$	Prism	$\#$	Prism	$\#$
361	52776788	398	5210998	435	424445	472	95566
362	49877144	399	4870806	436	400992	473	92467
363	47109094	400	4555184	437	375930	474	89604
364	44477939	401	4255687	438	356584	475	86116
365	41956665	402	3975185	439	335932	476	83388
366	39596950	403	3710635	440	318533	477	80516
367	37316718	404	3468155	441	300617	478	78206
368	35158337	405	3235022	442	286646	479	74644
369	33131446	406	3021856	443	271545	480	72289
370	31199621	407	2817205	444	258555	481	68924
371	29360909	408	2632611	445	245429	482	67293
372	27626089	409	2454635	446	235409	483	63891
373	25997783	410	2292545	447	224067	484	62065
374	24455068	411	2137919	448	214575	485	58964
375	22993528	412	1995564	449	205399	486	56790
376	21604049	413	1861521	450	197610	487	54505
377	20310057	414	1737449	451	188729	488	52492
378	19075074	415	1616932	452	182542	489	49354
379	17916453	416	1509591	453	176060	490	47536
380	16819109	417	1404929	454	168815	491	45253
381	15795662	418	1314772	455	162976	492	43832
382	14826839	419	1225935	456	158019	493	40816
383	13907432	420	1144721	457	152147	494	39536
384	13050725	421	1067065	458	148600	495	37181
385	12241906	422	995655	459	142312	496	35949
386	11482906	423	927859	460	138498	497	33708
387	10762834	424	868000	461	134174	498	32268
388	10084561	425	811642	462	130272	499	30063
389	9453238	426	758276	463	125969	500	28901
390	8853538	427	709328	464	122632	501	27030
391	8294860	428	663317	465	117860	502	25906
392	7771024	429	619097	466	115901	503	24000
393	7269785	430	582159	467	111021	504	23162
394	6806485	431	544981	468	108594	505	21754
395	6363581	432	513193	469	104985	506	20937
396	5960984	433	479631	470	101572	507	19322
397	5569324	434	452765	471	98344	508	18497

Table 10: Number of prisms (cont.)

Prism	$\#$	Prism	$\#$	Prism	$\#$	Prism	$\#$
509	17095	546	1731	583	334	620	2116
510	16519	547	1499	584	421	621	2254
511	15154	548	1394	585	413	622	2301
512	14143	549	1222	586	434	623	2357
513	13411	550	1291	587	392	624	2510
514	12808	551	1103	588	480	625	2523
515	11849	552	1094	589	420	626	2527
516	11530	553	926	590	465	627	2581
517	10468	554	1000	591	474	628	2719
518	10064	555	826	592	572	629	2826
519	9280	556	885	593	521	630	2966
520	8869	557	719	594	593	631	3099
521	8064	558	757	595	599	632	3144
522	7774	559	648	596	662	633	3059
523	7153	560	728	597	647	634	3157
524	6714	561	532	598	710	635	3236
525	6300	562	629	599	729	636	3362
526	6014	563	517	600	830	637	3384
527	5362	564	511	601	872	638	3465
528	5209	565	436	602	972	639	3487
529	4847	566	505	603	959	640	3393
530	4551	567	416	604	1011	641	3423
531	4184	568	497	605	1050	642	3599
532	4108	569	374	606	1149	643	3580
533	3736	570	452	607	1188	644	3753
534	3743	571	358	608	1375	645	3622
535	3116	572	387	609	1308	646	3827
536	3141	573	349	610	1358	647	3643
537	2792	574	345	611	1471	648	3812
538	2744	575	330	612	1495	649	3744
539	2548	576	381	613	1553	650	3902
540	2452	577	336	614	1701	651	3579
541	2100	578	351	615	1703	652	3790
542	2155	579	326	616	1875	653	3752
543	1864	580	382	617	1868	654	3713
544	1844	581	315	618	1980	655	3683
545	1613	582	399	619	2027	656	3662

Table 10: Number of prisms (cont.)

Prism	$\#$	Prism	$\#$	Prism	$\#$	Prism	$\#$
657	3649	694	1495	731	194	768	27
658	3597	695	1380	732	211	769	22
659	3637	696	1400	733	175	770	21
660	3667	697	1250	734	177	771	14
661	3567	698	1324	735	164	772	21
662	3416	699	1141	736	152	773	12
663	3464	700	1136	737	154	774	24
664	3326	701	1010	738	147	775	10
665	3370	702	1024	739	116	776	16
666	3370	703	931	740	116	777	5
667	3294	704	935	741	88	778	13
668	3155	705	833	742	123	779	3
669	3170	706	844	743	89	780	5
670	3123	707	729	744	97	781	8
671	3023	708	759	745	75	782	10
672	3036	709	669	746	103	783	6
673	2903	710	666	747	68	784	9
674	2895	711	636	748	90	785	5
675	2735	712	624	749	79	786	10
676	2797	713	597	750	91	787	5
677	2606	714	564	751	56	788	9
678	2600	715	511	752	60	789	2
679	2416	716	531	753	44	790	8
680	2493	717	433	754	65	791	8
681	2302	718	455	755	43	792	12
682	2238	719	439	756	45	793	1
683	2215	720	394	757	46	795	2
684	2072	721	359	758	39	796	2
685	2115	722	366	759	42	797	2
686	2023	723	334	760	35	798	3
687	1880	724	326	761	28	799	1
688	1868	725	262	762	30	800	2
689	1724	726	306	763	23	801	1
690	1645	727	229	764	40	805	1
691	1620	728	253	765	15	806	5
692	1595	729	253	766	16	807	1
693	1497	730	218	767	19	808	4

Table 10: Number of prisms (cont.)

Prism	$\#$	Prism	$\#$	Prism	$\#$	Prism	$\#$
809	1	838	1	856	1	912	2
814	1	840	2	864	2	918	6
816	3	844	1	868	1	1152	3
818	1	846	2	870	4		
822	14	850	1	878	1		
832	1	852	1	888	2		

Table 11: Number of mitres

Mitre	$\#$	Mitre	$\#$	Mitre	$\#$	Mitre	$\#$
0	4	29	666856068	56	699975	83	39
3	11	30	726726670	57	427224	84	83
4	27	31	765630873	58	261965	85	16
5	94	32	780912655	59	162576	86	47
6	463	33	771673239	60	105125	87	20
7	1587	34	739625001	61	68560	88	34
8	5196	35	688305207	62	47177	89	7
9	16130	36	622481814	63	32413	90	54
10	45051	37	547576707	64	23643	91	1
11	119156	38	468917351	65	16778	92	19
12	292925	39	391303591	66	12393	93	9
13	685985	40	318424938	67	8661	94	7
14	1502196	41	252876637	68	6489	96	27
15	3122990	42	196124480	69	4295	98	2
16	6160011	43	148685094	70	3264	99	2
17	11527121	44	110224646	71	2181	100	6
18	20542885	45	79959174	72	1700	102	7
19	34903297	46	56803086	73	990	104	2
20	56577514	47	39545210	74	909	105	2
21	87700390	48	26981662	75	469	108	5
22	130128895	49	18067853	76	465	112	3
23	185013010	50	11873632	77	270	114	1
24	252364501	51	7665089	78	263	116	2
25	330721805	52	4870654	79	122	120	2
26	416700734	53	3046823	80	191	144	3
27	505540524	54	1883004	81	72		
28	591121831	55	1150672	82	96		

Table 12: Number of hexagons

Hexa	$\#$	Hexa	$\#$	Hexa	$\#$	Hexa	$\#$
0	1	34	724247745	66	436234	98	110
2	1	35	714131642	67	326333	99	62
4	8	36	685867252	68	239208	100	77
5	2	37	642422184	69	179527	101	33
6	18	38	587540455	70	134495	102	74
7	42	39	525307321	71	100405	103	17
8	275	40	459726499	72	75980	104	35
9	1060	41	394271746	73	57056	105	28
10	3888	42	331862444	74	43803	106	28
11	13543	43	274475233	75	31922	107	10
12	42046	44	223366811	76	26629	108	136
13	119420	45	179088397	77	17366	109	10
14	315586	46	141683536	78	13996	110	17
15	769997	47	110703052	79	9867	111	10
16	1750488	48	85587484	80	8815	112	14
17	3711050	49	65546910	81	5888	113	1
18	7390282	50	49813749	82	5139	114	17
19	13851974	51	37586617	83	3120	115	1
20	24536316	52	28199864	84	2880	116	18
21	41147211	53	21046347	85	1883	117	4
22	65593940	54	15677184	86	2264	118	1
23	99604643	55	11622883	87	1127	120	10
24	144448598	56	8623668	88	1016	121	1
25	200532422	57	6370044	89	615	122	4
26	266967992	58	4713086	90	1645	124	8
27	341559277	59	3483045	91	436	126	16
28	420712045	60	2580662	92	408	128	1
29	499765074	61	1909874	93	249	132	3
30	573401076	62	1419396	94	234	144	12
31	636579383	63	1050752	95	150	171	1
32	684620989	64	786486	96	248		
33	714416762	65	577280	97	75		

Table 13: Number of crowns

Crown	$\#$	Crown	$\#$	Crown	$\#$	Crown	$\#$
0	4	75	84	112	39276	149	11026967
24	8	76	225	113	46162	150	12418598
28	1	77	98	114	55376	151	13951975
32	7	78	230	115	65172	152	15649589
34	1	79	146	116	78169	153	17504989
36	17	80	303	117	92109	154	19550198
40	4	81	184	118	110533	155	21784052
42	2	82	352	119	130711	156	24217202
44	3	83	271	120	155188	157	26857968
45	1	84	507	121	183383	158	29735229
46	3	85	409	122	218318	159	32838784
48	17	86	625	123	256913	160	36187030
49	2	87	538	124	304546	161	39768756
50	4	88	788	125	357058	162	43644429
51	3	89	745	126	420855	163	47762633
52	19	90	1103	127	493066	164	52146277
54	23	91	997	128	580012	165	56809902
55	5	92	1448	129	678149	166	61761576
56	37	93	1460	130	794787	167	66960296
57	9	94	1941	131	925609	168	72455628
58	16	95	1999	132	1080365	169	78205211
59	6	96	2809	133	1256516	170	84194952
60	72	97	2861	134	1462493	171	90422800
61	5	98	3569	135	1691178	172	96907778
62	22	99	3832	136	1960531	173	103579676
63	16	100	5157	137	2262445	174	110428354
64	65	101	5644	138	2612802	175	117487564
65	16	102	7012	139	3008486	176	124638538
66	77	103	7868	140	3455009	177	131927624
67	19	104	9735	141	3958995	178	139275613
68	71	105	11111	142	4536189	179	146638317
69	32	106	13806	143	5178047	180	154028623
70	81	107	15906	144	5903381	181	161359146
71	55	108	19655	145	6715687	182	168619294
72	173	109	22619	146	7629172	183	175716385
73	65	110	27800	147	8645817	184	182665320
74	144	111	32269	148	9772477	185	189374242

Table 13: Number of crowns (cont.)

Crown	$\#$	Crown	$\#$	Crown	$\#$	Crown	$\#$
186	195806871	217	134563689	248	4411819	279	3866
187	201907700	218	126661383	249	3734688	280	3026
188	207659159	219	118861873	250	3149311	281	2220
189	212988838	220	111206681	251	2648386	282	1621
190	217852023	221	103671809	252	2219528	283	1190
191	222201411	222	96346526	253	1850527	284	880
192	226058774	223	89252032	254	1538216	285	617
193	229322865	224	82406974	255	1272656	286	458
194	231961935	225	75860206	256	1051337	287	337
195	233966564	226	69578295	257	862379	288	237
196	235362932	227	63614491	258	707331	289	186
197	236055372	228	57977229	259	576064	290	135
198	236115675	229	52664490	260	468744	291	88
199	235469719	230	47671940	261	378298	292	63
200	234145518	231	43011588	262	304621	293	35
201	232142509	232	38676935	263	244241	294	36
202	229517435	233	34668107	264	194690	295	12
203	226209636	234	30961644	265	155113	296	19
204	222338699	235	27551781	266	123781	297	14
205	217827123	236	24435171	267	96942	298	5
206	212820389	237	21602222	268	76095	299	7
207	207301265	238	19035194	269	59785	300	4
208	201303814	239	16706493	270	46762	301	1
209	194883375	240	14612461	271	36086	302	1
210	188122519	241	12739285	272	27879	303	4
211	180992703	242	11064520	273	21426	306	1
212	173617922	243	9577688	274	16461	309	2
213	166018485	244	8260815	275	12570	314	1
214	158267357	245	7095407	276	9619		
215	150399412	246	6078552	277	7117		
216	142486139	247	5188692	278	5272		

[^0]: *Supported in part by DOD Grant N00014-08-1-1070.
 †'Supported by the Academy of Finland, Grant No. 117499.
 ${ }^{\ddagger}$ Supported in part by the Academy of Finland, Grants No. 107493, 110196, 130142, 132122.
 ${ }^{\S}$ Supported in part by CFI, IRIF and NSERC.
 ${ }^{\text {4 }}$ Current address: Finnish Defence Forces Technical Research Centre, P.O. Box 10, 11311 Riihimäki, Finland. Supported by the Graduate School in Electronics, Telecommunication and Automation, by the Nokia Foundation and by the Academy of Finland, Grant No. 110196.

