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�Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's,
NF, Canada, A1B 3X5, ÆDepartment of Mechanical Engineering, University of Waterloo,
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ABSTRACT

A detailed review and analysis of the thermal characteristics of laminar developing and fully developed ow in non-circular
ducts is presented. New models are proposed which simplify the prediction of Nusselt numbers for three fundamental
ows: the combined entrance problem, the Graetz problem, and thermally fully developed ow in most non-circular duct
geometries found in heat exchanger applications. By means of scaling analysis it is shown that the complete problem may
be easily analyzed by combining the asymptotic results for short and long ducts. By means of a new characteristic length
scale, the square root of cross-sectional area, the e�ect of duct shape has been reduced. The new model has an accuracy
of � 10 percent, or better, for most common duct shapes. Both singly and doubly connected ducts are considered.

NOMENCLATURE

A = ow area, m2

a; b = major and minor axes of ellipse or rectangle, m
Bi = constants, i = 1 : : : 4
C = constant
Ci = constants, i = 1 : : : 5
cp = speci�c heat, J=kgK
Dh = hydraulic diameter of plain channel, � 4A=P
f = friction factor � �=( 1

2
�U2)

h = heat transfer coeÆcient, W=m2K
k = thermal conductivity, W=mK
L = duct length, m
L� = dimensionless thermal length,� L=LReLPr
L = characteristic length scale, m
m = correlation parameter
_m = mass ow rate, kg=s
n = inward directed normal
NuL = Nusselt number, � hL=k
P = perimeter, m
Pr = Prandtl number, � �=�
q = heat ux, W=m2

r = radius, m
ReL = Reynolds number, � UL=�
s = arc length, m
T = temperature, K
u; v; w = velocity components, m=s
U = average velocity, m=s
x; y; z = cartesian coordinates, m
Y = dimensionless coordinate, � y=L
z = axial coordinate, m
Z = dimensionless position for thermally

developing ows, � z=LReLPr
Greek Symbols
� = thermal di�usivity, m2=s
Æ = hydrodynamic boundary layer thickness, m
� = thermal boundary layer thickness, m

� = aspect ratio, � b=a
 = symmetry parameter
� = dynamic viscosity, Ns=m2

� = kinematic viscosity, m2=s
� = uid density, kg=m3

� = wall shear stress, N=m2

� = temperature excess, T � To, K

Subscriptsp
A = based on the square root of area

Dh = based on the hydraulic diameter
H = based on isoux condition
h = hydrodynamic
L = based on the arbitrary length L
m = mixed or bulk value
T = based on isothermal condition
t = thermal

Superscripts

(�) = denotes average value of (�)
INTRODUCTION

Heat transfer in non-circular ducts of constant cross-
sectional area is of particular interest in the design of com-
pact heat exchangers. In these applications passages are
generally short and usually composed of cross-sections such
as triangular or rectangular geometries in addition to the
circular tube or parallel plate channel. Also, due to the
wide range of applications, uid Prandtl numbers usually
vary between 0:1 < Pr < 1, which covers a wide range of
uids encompassing gases and highly viscous liquids such
as automotive oils. In the second part of this paper, the
authors develop models for thermally fully developed ow,
thermally developing or Graetz ow, and simultaneously
developing ow in circular and non-circular ducts and chan-
nels.

A review of the literature [1,2] reveals that the only
models available for predicting heat transfer in the com-
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bined entry region are those of Churchill and Ozoe [3,4]
for the circular duct and Stephan [5,6] for the parallel plate
channel and circular duct. Recently, Garimella et al. [7] de-
veloped empirical expressions for the rectangular channel,
while numerical data for polygonal ducts were obtained by
Asako et al. [8]. Additional data for the rectangular, cir-
cular, triangular, and parallel plate channel are available
in Shah and London [1], Rohsenow et al. [9], and Kakac
and Yener [10]. Yilmaz and Cihan [11,12] provide a com-
plex correlation method for the case of thermally developing
ow with fully developed hydrodynamic ow, often referred
to as the Graetz problem or Graetz ow. More recently, the
authors have presented simpler models for both the Graetz
problem [13], the combined entrance problem [14], and nat-
ural convection in vertical isothermal ducts [15]. Additional
results are reported in Muzychka [16].

In Part I of this paper, the hydrodynamic problem was
considered in detail. Part II of this paper will present new
models for the associated thermal problem. These mod-
els have been developed using the Churchill and Usagi [17]
asymptotic correlation method, as was done in Part I for the
hydrodynamic problem. In this paper, the asymptotic so-
lutions for thermally fully developed ow, L >> Lh; L >>
Lt, thermally developing ow, L >> Lh; L << Lt, and
the combined entry problem, L << Lh; L << Lt, are used
to develop a more general model for predicting heat trans-
fer coeÆcients in non-circular ducts. Here Lt denotes the
thermal entry length and Lh the hydrodynamic entrance
length.

GOVERNING EQUATIONS
The governing equations for steady, constant property,

incompressible ow, in the thermal entrance region in a
non-circular duct or channel are:

r � ~V = 0 (1)

�~V � r~V = �rp+ �r2~V (2)

�cp~V � rT = kr2T (3)

Simultaneous solution of the continuity, Eq. (1), and
momentum, Eq. (2), equations subject to the no slip con-

diction at the duct wall, ~V = 0, the boundedness condition
along the duct duct axis, ~V 6= 1, and a constant initial
velocity, ~V = U~k, are required to characterize the ow.
In the energy equation, the ow is subject to constant in-
let temperature, the boundedness condition along the duct
axis, and either uniform wall temperature (UWT) usually
denoted with a subscript (T) or uniform wall ux (UWF)
condition, usually denoted with a subscript (H), at the duct
wall.

In the next section, scaling analysis [18] is used to show
the appropriate form of the solution for both short and long
ducts. Later, asymptotic analysis [19] is used to develop a
new model.

SCALE ANALYSIS
We now examine the energy equation and consider the

various balances implied under particular ow conditions.

The energy equation represents a balance between trans-
verse conduction and axial convection, i.e.,

�cp~V � rT| {z }
Convection

= kr2T| {z }
Conduction

(4)

We now consider several balances by examining the in-
teraction of the hydrodynamic and thermal boundary layers
in two regions: the long duct and the short duct . Each is
examined below using the method of scale analysis advo-
cated by Bejan [18].

Long Duct Asymptote, L >> Lt;L >> Lh
We begin by considering thermally and hydrodynami-

cally fully developed ow in a non-circular duct of constant
cross-section. We write the left hand side of Eq. (4) as:

�cp~V � rT � �cpU
(Tw � To)

L
(5)

Next considering an enthalpy balance on the duct, we
write:

qPL = _mcp(Tw � To) (6)

Using the above relationship in Eq. (5) we obtain the
following result:

�cp~V � rT � qP

A
(7)

The energy equation, Eq. (4) for fully developed ow
now scales according to

qP

A
� k

(Tw � To)

L2 (8)

where L represents a characteristic transversal length scale
of the duct cross-section. This allows the following relation
using the geometry:

NuL =
qL

k(Tw � To)
� A

PL (9)

If the chracteristic length scale is chosen to be L =
p
A, as

done in Part I of this paper, then the following expression
is obtained:

NupA = B

p
A

P
= B1 (10)

In otherwords, the Nusselt number for fully developed
ow, scales to a constant related to the geometry of the
duct cross-section. This result is valid for both parabolic
or uniform velocity distributions.

Short Duct Asymptote, L << Lt;L >> Lh
In the entrance region near the duct inlet two separate

problems must be considered. The �rst assumes that a
fully developed hydrodynamic boundary layer exists while
the second considers the more general problem where both
hydrodynamic and thermal boundary layers develop.

Beginning with the classical Graetz ow problem,
where the velocity distribution is assumed to be fully de-
veloped and of parabolic distribution, we may write the left
hand side of Eq. (4) as:
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�cp~V � rT � �cpU
�

L
(Tw � To)

L
(11)

where � is the thermal boundary layer thickness. This
assumes that the thermal boundary layer is con�ned to a
region near the duct wall where the velocity distribution is
approximately linear, i.e. j~V j � U�=L. The energy equa-
tion for Graetz ow now scales according to

�cpU
�

L
(Tw � To)

L
� k

(Tw � To)

�2
(12)

where the bulk temperature is taken to be equal the inlet
temperature, due to a thin thermal boundary layer. Re-
arranging this expression for � yields:

�

L �
�

L

LReLPr
�1=3

(13)

Next, considering the heat transfer coeÆcient which scales
according to

h(Tw � To) � k(Tw � To)

�
(14)

we obtain the following expression for the Nusselt number:

NuL =
hL
k
� 1

(L�)1=3
(15)

or

NuL =
B2

(L�)1=3
(16)

where L� = L=LReLPr, is the dimensionless thermal duct
length.

Alternatively, we could have used:

~V � r~V� � ~�

�
� � fReL

U�

L (17)

where we have used the result from Part I, i.e. Eq. (9),
for the dimensionless average wall shear. This leads to the
following well known behaviour:

�

L �
�
L=fReL
LReLPr

�1=3

(18)

and

NuL = B2

�
fReL
L�

�1=3

(19)

Both Eq. (16) and Eq. (19) have the same character-
istic and order of magnitude, since fReL is constant.

Short Duct Asymptote, L << Lt;L << Lh
Finally, in the combined entrance region, the hydrody-

namic boundary layer thickness scales according to the well
known expression [18]:

Æ

L
� 1

(ReL)1=2
(20)

We now consider two distinct regions. These are � >>
Æ and Æ >> �. When � >> Æ, ~V � U , and the energy
equation scales according to

�cpU
(Tw � To)

L
� k

(Tw � To)

�2
(21)

which gives

�

L
� 1

(ReLPr)1=2
(22)

and using Eq. (14), the Nusselt number becomes:

NuL =
B3

(L�)1=2
(23)

When � << Æ, ~V � U�=Æ, and the energy equation
scales according to

�cpU
�

Æ

(Tw � To)

L
� k

(Tw � To)

�2
(24)

which gives

�

L
� 1

Re
1=2
L Pr1=3

(25)

and using Eq. (14), the Nusselt number becomes:

NuL =
B4

Pr1=6(L�)1=2
(26)

In summary, we have found from scaling analysis the
following relationships for the local or average Nusselt num-
ber:

NuL =

8>>>>>>>>>>><
>>>>>>>>>>>:

B1 L >> Lt; Lh

B2

�
fReL
L�

�1=3

L << Lt; L >> Lh

B3

(L�)1=2
L << Lt; Lh, � >> Æ

B4

Pr1=6(L�)1=2
L << Lt; Lh, � << Æ

(27)

This asymptotic behaviour will be examined further
and will form the basis for the new model developed for the
thermal entrance problem. Finally, an expression relating
the approximate magnitude of the thermal entrance length
may be obtained by considering an equality between two
asymptotic limits given in Eq. (27) for Graetz ow with
L� = L�t :

B1 = B2

�
fReL
L�t

�1=3

(28)

or

L�t =
�
B2

B1

�3

fReL (29)

Later, it will be shown that this approximate scale com-
pares well with exact solutions.

ASYMPTOTIC ANALYSIS
In this section, asymptotic analysis [19] is used to es-

tablish expressions for the characteristic long duct and

3



short duct behaviour characterized through scaling anal-
ysis. First, the long duct limit is considered yielding a
simple relationship for predicting Nusselt number. Addi-
tionally, the issue of an appropriate characteristic length
scale is addressed. Finally, the short duct limits are consid-
ered by re-examining the approximate solution method of
Leveque [20] and the laminar boundary layer solutions for
isothermal and isoux plates [1,2,18,19].

Long Duct Asymptote, L >> Lt;L >> Lh
The fully developed ow limit for both hydrodynamic

and thermal problems has been addressed by Muzychka [16]
and reported in Muzychka and Yovanovich [13,14]. Addi-
tional results appear in Yovanovich et al. [15]. These refer-
ences [13-15] provide models for the classic Graetz problem
and the combined entrance problem for forced ow, and
for natural convection in vertical isothermal ducts of non-
circular cross-section.

In Part I of this paper the authors have shown that
when the friction factor-Reynolds number product is based
on the square root of cross-sectional area, the large number
of data were reduced to a single curve which was a simple
function of the aspect ratio of the duct or channel. We
also showed that this curve was accurately represented by
the �rst term of the series solution for the rectangular duct
cross-section. This important result is given by

fRepA =
12

p
�(1 + �)

�
1� 192�

�5
tanh

� �
2�

�� (30)

Next, Muzychka [16] and Muzychka and Yovanovich
[13] applied the same reasoning to the fully developed Nus-
selt number in non-circular ducts, leading to the develop-
ment of a model for the Graetz problem in non-circular
ducts. First, it was observed [13,16] that the Nusselt num-
bers for polygonal ducts collapsed to a single point when
L =

p
A, see Table 1, for both fully developed and slug

ows. Next it was observed that when the Nusselt num-
bers for the rectangular duct and elliptic duct, were nor-
malized with respect to the limiting values for the circular
and square ducts, these curves were approximately equal
to the normalized friction factor Reynolds number curve,
Eq. (30). Finally, a model was been developed which ac-
curately predicts the data for both thermal boundary con-
ditions [16], i.e. (T) and (H). The resulting model which
requires Eq. (30) is

NupA = C1

�
fRepA
8
p
��

�
(31)

where C1 is equal to 3:01 for the (UWT) boundary condi-
tion and 3:66 for the (UWF) boundary condition. These
results are the average value for fully developed ow in a
polygonal tube when the characteristic length scale is the
square root of cross-sectional area [16]. The parameter 
is chosen based upon the geometry. Values for  which
de�ne the upper and lower bounds in Figs. 1 and 2 are
�xed at  = 1=10 and  = �3=10, respectively. Almost all

of the available data are predicted within � 10 percent by
Eq.(31), with few exceptions.

Figures 1-3 compare the data for many duct shapes
obtained from Shah and London [1] for both singly and
doubly connected ducts. When the results are based upon
L =

p
A, and an appropriate aspect ratio de�ned, two dis-

tinct bounds are formed in Figs. 1 and 2 for the Nusselt
number. The lower bound consists of all duct shapes which
have re-entrant corners, i.e. angles less than 90 degrees,
while the upper bound consists of all ducts with rounded
corners and/or right angled corners.

Figure 3 shows the Nusselt number for the (H) condi-
tion for polygonal annular ducts and the circular annular
duct. The predicted values are determined from Eq. (31)
using the equivalent de�nition of aspect ratio given in Part
I for the circular annulus. For the polygonal annular ducts,
the equivalent r� =

p
Ai=Ao, where Ai and Ao are the

cross-sectional areas of the inner and outer ducts respec-
tively.

Table 1
Nusselt Numbers for Slug and Fully
Developed Flow for Regular Polygons

Isoux (H) Isothermal (T)
Geometry FDF Slug FDF Slug

Triangle 3.11 - 2.47 -
Square 3.61 7.08 2.98 4.93

NuDh Hexagon 4.00 7.53 3.35 5.38
Octagon 4.21 7.69 3.47 5.53
Circular 4.36 7.96 3.66 5.77

Triangle 3.51 - 2.79 -
Square 3.61 7.08 2.98 4.93

NupA Hexagon 3.74 7.01 3.12 5.01
Octagon 3.83 7.00 3.16 5.03
Circular 3.86 7.06 3.24 5.11

Short Duct Asymptote, L << Lt;L >> Lh
If the velocity distribution is fully developed and the

temperature distribution is allowed to develop, the classic
Graetz problem results. In the thermal entrance region, the
results are weak functions of the shape and geometry of the
duct. This behaviour is characterized by the following ap-
proximate analytical expression attributed to Leveque, see
[20]:

Nu /
�
C�

L�

�1=3

(32)

where C� is the dimensionless mean velocity gradient at the
duct wall and L� is the dimensionless axial location. Thus,
if C� is a weak function of shape, then Nu will be a weaker
function of shape due to the one third power.

In the thermal entrance region of non-circular ducts
the thermal boundary layer is thin and is assumed to be
developing in a region where the velocity gradient is linear.
For very small distances from the duct inlet, the e�ect of
curvature on the boundary layer development is negligible.
Thus, the analysis considers the duct boundary as a at
plate. The governing equation for this situation is given by
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Fig. 1 - Fully Developed Flow NuT, data from
Ref.[1].

Fig. 2 - Fully Developed Flow NuH, data from
Ref.[1].

Fig. 3 - Fully Developed Flow NuH in Annular
Ducts, data from Ref. [1].

Cy
@T

@z
= �

@2T

@y2
(33)

where the constant C represents the mean velocity gradi-

ent at the duct wall. For non-circular ducts, this constant
is de�ned as:

C =
@u

@n

����
w

=
1

P

I
@u

@n

����
w

ds (34)

For hydrodynamically fully developed ow, the con-
stant C is related to the friction factor-Reynolds number
product

fReL
2

=
@u

@n

����
w

L
U

= C� (35)

where L is an arbitrary length scale.
De�ning the following parameters:

Y =
y

L Z =
z=L

ReLPr
� = T � To ReL =

UL
�

leads to the governing equation

C�Y
@�

@Z
=

@2�

@Y 2
(36)

The governing equation can now be transformed into an
ordinary di�erential equation for each wall condition using
a similarity variable [20]

� =
Y

(9Z=C�)1=3
(37)

Both the UWT and UWF conditions are examined. Solu-
tions to the Leveque problem are discussed in Bird et al.
[20]. The solution for local Nusselt number with the UWT
condition yields:

NuL =
3
p
3�(2=3)

2�

�
fReL
18Z

�1=3

= 0:4273

�
fReL
Z

�1=3

(38)
while the solution for the local Nusselt number for the
(UWF) condition yields:

NuL = �(2=3)

�
fReL
18Z

�1=3

= 0:5167

�
fReL
Z

�1=3

(39)

The average Nusselt number for both cases can be ob-
tained by integrating Eqs. (38, 39):

NuL =
3

2
NuL (40)

The solution for each wall condition can be compactly
written with Z = L� as:

NuL = C2C3

�
fReL
L�

�1=3

(41)

where the value of C2 is 1 for local conditions and 3/2 for
average conditions, and C3 takes a value of 0.427 for UWT
and 0.517 for UWF.

The Leveque approximation is valid where the ther-
mal boundary layer is thin, in the region near the wall
where the velocity pro�le is linear. This corresponds to
ow of large Prandtl number uids, which give rise to very
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short hydrodynamic entrance lengths, i.e. hydrodynam-
ically fully developed ow. The weak e�ect of duct ge-
ometry in the entrance region is due to the presence of
the friction factor-Reynolds number product, fRe, in the
above expression, which is representative of the average ve-
locity gradient at the duct wall. The typical range of fRe
is 12 < fReDh

< 24, Shah and London [1]. This results
in 2:29 < (fReDh

)1=3 < 2:88, which illustrates the weak
dependency of the thermal entrance region on shape and
aspect ratio. Further reductions are achieved for similar
shaped ducts by using the length scale L =

p
A.

Short Duct Asymptote, L << Lt;L << Lh
Finally, if both hydrodynamic and thermal boundary

layers develop simultaneously, the results are strong func-
tions of the uid Prandtl number. In the combined entrance
region the behaviour for very small values of L� may be ad-
equately modelled by treating the duct wall as a at plate.
The characteristics of this region are:

Nuzp
Rez

=

8<
: 0:564Pr1=2 Pr ! 0

0:339Pr1=3 Pr !1
(42)

for the UWT condition [4], and

Nuzp
Rez

=

8<
: 0:886Pr1=2 Pr ! 0

0:464Pr1=3 Pr !1
(43)

for the UWF condition [3].
Composite models for each wall condition were devel-

oped by Churchill and Ozoe [3,4] using the asymptotic cor-
relation method of Churchill and Usagi [17]. The results
can be developed in terms of the Pr ! 0 behaviour or the
Pr !1 behaviour. For internal ow problems, the appro-
priate form is chosen to be in terms of the Pr ! 0 charac-
teristic which introduces the Peclet number Pe = RePr:

Nuz
(RezPr)1=2

=
Co"

1 +

�
CoPr

1=6

C1

�n#1=n = f(Pr) (44)

where Co and C1 represent the coeÆcients of the right
hand side of Eqs. (42, 43). The correlation parameter n is
found by solving Eq. (44) at an intermediate value of Pr
where the exact solution is known, i.e. Pr = 1. This leads
to n = 4:537 for the UWT condition and n = 4:598 for the
UWF condition. For simplicity, n = 9=2 is chosen for both
cases.

The average Nusselt number for both cases is now ob-
tained by integrating Eq. (44):

NuL = 2NuL (45)

After introducing L�, the solution for each wall condi-
tion can be compactly written as:

NuL = C4

f(Pr)p
L�

(46)

where the value of C4 = 1 for local conditions and C4 = 2
for average conditions, and f(Pr) is de�ned as:

f(Pr) =
0:564h

1 +
�
1:664Pr1=6

�9=2i2=9 (47)

for the UWT condition, and

f(Pr) =
0:886h

1 +
�
1:909Pr1=6

�9=2i2=9 (48)

for the UWF condition. The preceding results are valid
only for small values of L�.

MODEL DEVELOPMENT AND COMPARISONS
A model which is valid over the entire range of dimen-

sionless duct lengths for Pr !1, was developed by Muzy-
chka and Yovanovich [13] by combining Eq. (31) with Eq.
(41) using the Churchill and Usagi [17] asymptotic corre-
lation method. The form of the proposed model for an
arbitrary characteristic length scale is:

Nu(z�) =

 (
C2C3

�
fRe

z�

� 1

3

)n

+ (Nufd)
n

!1=n

(49)

Now using the result for the fully developed friction
factor, Eq. (32), and the result for the fully developed ow
Nusselt number, Eq. (33), with n � 5 a new model [13]
was proposed having the form:

NupA(L
�) =2

4(C2C3

�
fRepA
L�

� 1

3

)5

+

�
C1

�
fRepA
8
p
��

��5

3
5

1

5 (50)

where the constants C1; C2, C3 and  are given in Table
2. These constants de�ne the various cases for local or av-
erage Nusselt number and isothermal or isoux boundary
conditions for the Graetz problem. The constant C2 was
modi�ed from that found by the Leveque approximation to
provide better agreement with the data.

A model for the combined entrance region is now de-
veloped by combining the solution for a at plate with the
model for the Graetz ow problem developed earlier. The
proposed model takes the form:

NupA(L
�; P r) =

2
4
0
@(C2C3

�
fRepA
L�

� 1

3

)5

+

�
C1

�
fRepA
8
p
��

��5
!m=5

+

�
C4

f(Pr)p
L�

�m351=m (51)

which is similar to that proposed by Churchill and Ozoe
[3,4] for the circular duct. This model is a composite solu-
tion of the three asymptotic solutions just presented.
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Fig. 4 - Thermally Developing Flow NuT;m, data
from Ref.[1].

Fig. 5 - Thermally Developing Flow NuH;z, data
from Ref.[1].

Fig. 6 - Thermally Developing Flow in Parallel
Plate Channel, data from Ref.[1].

The parameter m was determined to lie in the range
2 < m < 7, for all data examined. Values for the blend-
ing parameter were found to be weak functions of the duct
aspect ratio and whether a local or average Nusselt num-

ber was considered. However, the blending parameter was
found to be most dependent upon the uid Prandtl number.

A simple linear approximation was determined to pro-
vide better accuracy than choosing a single value for all
duct shapes. Due to the variation in geometries and data,
higher order approximations o�ered no additional advan-
tage. Therefore, the linear approximation which predicts
the blending parameter within 30 percent was found to be
satisfactory. Variations in the blending parameter of this
order will lead to small errors in the model predictions,
whereas variations on the order of 100 percent or more, i.e.
choosing a �xed value, produce signi�cantly larger errors.
The resulting �t for the correlation parameter m is:

m = 2:27 + 1:65Pr1=3 (52)

The above model is valid for 0:1 < Pr < 1 which is
typical for most low Reynolds number ow heat exchanger
applications.

Comparisons with the available data from Ref. [1] are
provided in Tabular form in [13,14,16] and Figs. 4-9. Good
agreement is obtained with the data for the circular duct
and parallel plate channel. Note that comparison of the
model for the parallel plate channel was obtained by consid-
ering a rectangular duct having an aspect ratio of � = 0:01.
This represents a reasonable approximation for this system.
The data are also compared with the models of Churchill
and Ozoe [3,4] and Stephan [5,6] for the circular duct and
parallel plate channel in Figs. 7 and 8.

The numerical data for the UWT circular duct fall
short of the model predictions at low Pr numbers. How-
ever, all of the models are in excellent agreement with the
integral formulation of Kreith [22]. Good agreement is also
obtained for the case of the square duct for all Prandtl num-
bers. Comparisons of the model with data for the rectangu-
lar duct at various aspect ratios and the equilateral trian-
gular duct show that larger discrepancies arise. These data
neglect the e�ects of transverse velocities in both the mo-
mentum and energy equations. Additional graphical com-
parison can be found in [14].

The accuracy for each case may be improved consider-
ably by using the optimal value of the parameter m. How-
ever, this introduces an additional parameter into the model
which is deemed unnecessary for purposes of heat exchanger
design. The proposed model predicts most of the available
data for the combined entry problem to within �15 percent
and most of the data for the data for Graetz ow within �
12 percent [13,14,16]. These models can also be used to pre-
dict the heat transfer characteristics for other non-circular
ducts for which there are presently no data.

The present models also agree well with the published
models of Churchill and Ozoe [3,4] and the models of
Stephan [5,6]. It is evident from Figs. 4-9 that the present
models provide acceptable accuracy for design calculations.

Thermal Entrance Lengths
An equation for predicting the thermal entrance length

is now obtained from Eq. (29) with B1 corresponding to Eq.
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(31) and B2 = C2C3. This gives the following relationship:

L�t = 19:80

�
C2C3

C1

�3

�1+3(1 + �)2
�
1� 192

�5
tanh

� �
2�

��2
(53)

Using Eq. (53) with the appropriate values of
C1; C2; C3;  yields, L�t = 0:0358 and L�t = 0:0366 for
the circular duct for (T) and (H) respectively. When
rescaled to be based upon the hydraulic diameter, we ob-
tain L�t = 0:0281 and L�t = 0:0287 for the circular duct
for (T) and (H), which compare with the values from [1],
L�t = 0:0335 and L�t = 0:0430 for (T) and (H), respectively.

SUMMARY AND CONCLUSIONS
A general model for predicting the heat transfer co-

eÆcient in the combined entry region of non-circular ducts
was developed. This model is valid for 0:1 < Pr < 1,
0 < L� < 1, both uniform wall temperature (UWT) and
uniform wall ux (UWF) conditions, and for local and mean
Nusselt numbers. Model predictions agree with numerical
data to within � 15 percent or better for most non-circular
ducts and channels. The model was developed by combin-
ing the asymptotic results of laminar boundary layer ow
and Graetz ow for the thermal entrance region. In addi-
tion, by means of a novel characteristic length, the square
root of cross-sectional area, results for many non-circular
ducts of similar aspect ratio collapse onto a single curve.

The present study took advantage of scale analysis,
asymptotic analysis, and the selection of a more appropri-
ate characteristic length scale to develop a simple model.
This model only requires two parameters, the aspect ratio
of the duct and the dimensionless duct length. Whereas the
models of Yilmaz and Cihan [11,12] for Graetz ow consist
of several equations. The present model predicts most of
the developing ow data within � 12 percent or better.

Finally these models may also be used to predict results
for ducts for which no solutions or tabulated data exist.
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Table 2
CoeÆcients for General Model

Boundary Condition

UWT (T) C1 = 3:01; C3 = 0:409 f(Pr) =
0:564h

1 + (1:664Pr1=6)
9=2

i2=9

UWF (H) C1 = 3:66; C3 = 0:501 f(Pr) =
0:886h

1 + (1:909Pr1=6)
9=2

i2=9

Nusselt Number Type

Local C2 = 1 C4 = 1

Average C2 = 3=2 C4 = 2

Shape Parameter

Upper Bound  = 1=10

Lower Bound  = �3=10
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