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ABSTRACT

The Black Sea is an esse ntially isolated sea connec ted to the Mediterranean Sea

through two narrow and shallow straits. The Bosphorus Strait connects the Black Sea to

the Marmara Sea and the Dardanelles Strait connects the Marmara Sea to the eas tern

Mediterranean Sea . Today, a two-way flow exists between the Medit erranean Sea and

the Black Sea via the Marm ara Sea and the Dardan elles and Bosphorus Straits. During

glacial periods when water levels in the World Ocean dropp ed, the Black Sea became

periodically isolated. There are three conflicting hypotheses regarding the timin g and

mechanism of the last reconn ection of the Black Sea to the Mediterranean Sea: the Flood

Hypothesis, the Outflow Hypothesis and the Osci llating Hypothesis.

Cores MAR05-50P and MAR05-5 1G were raised in 9 1 m water depth from the

southweste rn Black Sea shelf on the eastern levee of a saline underflow channel.

Composite core MA R05-50 was constructed from the above cores to accommodate core

top loss and an age model was created based on I I radiocar bon dates. Core MAR05-50

recovered sediments from virtually the entire Holocene from I 1490 cal yr 131'to present.

A total of 45 indiv idual ostracod spec ies were found in the above cores and 43

were identifi ed with the aid of taxonomi c literature. From 11400 t0745 0 cal yr 131'the

ostracod asse mblage is completely dominated by Ponto-Casp ian species, mainly

Loxoconcha sublepida, Loxoconcha lepida and Tyrrhenocythere amnicola donetziensis.

From 7580 to 64 10 cal yr BP the assemb lage is almost equal abundances of a new

Mediterranean species Loxoconcha littora lis and the Ponto-Caspian species. After 7450

cal yr BP to the top of the core, the assemblage is fully domi nated by Mediterranean





species, including Palmoconcha agilis, Carinocythereis carinata, Hiltermannicythere

rubra and Pterygocyth ereis jo nesii. CONISS cluster analysis revealed 6 Bio-zones where

there are distinct changes in the ostracod assemblage. The lower, Porno-Caspian interval

is divided into Bio-zones I and 2. The "mixed" assemblage is Bio-zone 3. The upper,

Mediterranean interval of the core is divided into Bio-zones 4, 5 and 6 where new

Mediterranean species are introduced and previous species decrease in abundance or

disappear. The changes in the ostracod assemblages from one bio-zone to the next

suggests that progressive ecological changes took place on the southwestern Black Sea

shelf from 11400 cal yr BP to present. Sedimentological data and geochemical data from

core MAR02-45, ~70 km northeast of the study area, place the timing of the last post­

glacial reconnection between the Black Sea and the Mediterranean Sea at ~85 00 cal yr

BP.

The ostracod data indicate a ~1000 year salinization lag between the reconnection

and the first Mediterranean species to colonize the area. The step-wise Bio-zones further

suggest that the post-reconnection salinization of the Black Sea was a gradual process and

took ~5000 years to reaeh near-modern salinity conditions. The results conflict with the

catastrophic Flood Hypothesis in that the changes in the ostracod assemblages seem to

reflect a more ordered reconnection and stepwise salinization process. The ostracod

results can neither confi rm nor refute the Oscillating Hypothesis. There are no conflicts

between the ostracod data and the Outflow Hypothesis which argues for a gradual

reconnection and salinization. Both the Outflow Hypothesis and the Oscillating

Hypothesis are entirely plausible based on the ostracod evidence from core MAIW5-50.
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CHAPTER 1

INTRODUCTION

This thesis is part of continuin g research in the area of the Aegean, Marmara and

Black seas with regard to tectonic events, sea-level and clim atic changes durin g the

Quaternary in centr al and northern Europe. The goa l of this study is to develop a

paleoecological reconstruction of the southwest Black Sea shelf area using the ca lcareous

microfossil Ostracoda. The Ostracoda are a class of the Crustacea (phylum Arthropoda)

which are commonly preserved in marin e sediments. The main purpose of this research

is to support and add to an exis ting body of data regardin g the post-glacial environment of

the Black Sea . This thesis also highlights Black Sea ostracod taxonomy as well as the

value and increas ing use of ostracods as paleoenvironm ental ind icators.

1.1. Thesis Objectives

The primary scientific objectives of this thesis arc:

I . to construct a chronostratigraphic fram ewo rk for the latest glacial to Recent

sediments recove red in a 737 em-long piston core (MA R05-50) and its 157 ern-long

gravi ty core (MA R05-5 IG) raised in 91 m water depth from the southwes tern Black Sea

she lf

2. to identify ost racod species co llected from 89 samples extracted from the

above piston and grav ity cores.

3. to determine the abundance and distributi on of 45 ostraco d spec ies found in the

above 89 samples.

4. to delin eate the paleoclim atic and paleoceanographic evo lution, with emphasis



on salinity changes, of the southwestern Black Sea shelf based on the ecological affi nities

(where known) of the above 45 ostracod species and

5. to evaluate the validity of three existing and internally conflicting hypotheses

regarding the post-glacial reconnection of the Black Sea with the eastern Mediterranean

Sea.

1.2. Oceanography of the Black Sea

The Black Sea is an essentially isolated sea situated between the Pontic Mountains

of Turkey to the south, the Caucasus and Crimea Mountains of Russia and Ukraine to the

north and northeast and the Danube alluvial plain to the west (Fig.I. I). It is bordered by

Bulgaria, Georgia, Romania, Russia, Turkey, and Ukraine.

The Black Sea is connected to the World Ocean through two shallow and narrow

straits. The Bosphorus Strait connects the southwestern Black Sea to the Marmara Sea;

the Marmara Sea in turn is connected to the Aegean Sea through the Dardanelles Strait

(Fig. 1.1). The sill depth of the Bosphorus Strait is - 40 m and the Dardanelles Strait sill

depth is - 70 m (Aksu et al., 2002a). The Black Sea is also connected to the Sea of Azov

by the Strait of Kerch in the north. It has an elliptical shape trending west-east with a

surface area of - 436,000 krrr' , a maximum west-east length of approximately 1210 km

and a maximum width of 560 km. The volume of water contained in the Black Sea is

- 534,000 knr' , The maximum depth is 2212 m (Panin and Strechie, 2006). The level of

the Black Sea oscillates seasonally by - 10- 15 em in response to freshwater river input

from large rivers such as the Danube, Don, Dneiper, Dneister and Bug (Stanev et al.,

2000) and no significant tides. In the southwestern Black Sea waves generated by 100-
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Figure 1.1. Bathymetric map of the Black Sea showing its location within Europe and connecti ons to the Azov Sea to the north

and the Marmara Sea to the southeast. Isobaths in meters (modified from Aksu et al., 2002b).



year stor ms influence the sea floo r to depth s of up to 95 m (Ak suet al. , 2002a ).

1.2.1. Water Masses

The Black Sea is the world ' s largest me romicti c water body, meanin g it has layer s

which do not mix . A tw o-w ay flow ex ists between the Med iterran ean Sea, Aegean Sea

and Blac k Sea via the Marm ara Sea and the Dard anell es and Bosph oru s Stra its (Fi g. 1.2 ;

Lat if et al., 1992) . A low-salini ty (17-2 0 psu) 25- 100 rn th ick layer flow s at a velocit y o f

10- 30 em S· I into the north ern Aeg ea n. Thi s water ma ss is known as the Black Sea

outflo w. In the wi nte r the Black Sea outflow is coo l (5-15 "C) and in the summe r is

warm (20-25 "C) . Higher sa linity (38-39 psu) war m ( 15-20 "C) Med iter ranean water

flows north a long the eas te rn Aege an . This water mass is know n as the Medit erranean

inflow. This wa ter mass descend s ben eath the low-salin ity surface water of the north ern

Aege an, tran sit s the Dard anell es Stra it and Marmara Sea and eve ntually crosses the

Bosph oru s Stra it at a ve loc ity of 5-1 5 em S· I and flows into the Black Sea where it

co ntributes to a bott om water mass below the low-salinit y, low-d en sity sur face water

layer (Ozsoy et a l., 1995). At the Bosphorus ex it the und erfl ow sa lin ity is - 35 psu and at

the she lf edge is redu ced to - 3 1 psu by entra inme nt of surface wat er (Ozsoy et al., 200 1).

Th e seaso na lly var yin g temp eratu re in the surfa ce layer decreases with depth to a

min imum whi ch ca n be traced th rou ghout the Black Sea and is known as the co ld

interm edi ate layer. The cold inte rmed iate layer ranges from depth s of 50 rn in the ce nte r

to 100 m at the margins of the Black Sea basin. Below thi s layer at dep ths of 50-2 00 m is

the perm anent haloclin e which se para tes the upp er and bott om water mass es (Mur ray et

al., 1991). The Black Sea water column ex hibits stro ng ve rt ica l strat ificatio n and there is
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little mixing between the bottom water layer and the upper oxyge n-rich layer becau se the

intervening haloclin e is deeper than storm wave base. Thus, the warmer, high-salinit y,

high-d ensit y bottom water layer below a depth of 150- 200 m is perm anen tly anoxic and

enriched in enr iched in hydrogen sulfide (Panin and Strechie, 2006) . The Black Sea is the

largest permanently anoxic basin in the world (Murray and lzdar , 1989).

1.2.2. Hyd rological Exc ha nges

Toda y, there is a net expor t of - 300 krrr' yr' of water from the Black Sea to the

Aegean Sea (Ozsoy et a l., 1995). The volume of Black Sea surface water outflow is - 600

krrr' per year. The volume of water lost throu gh evaporation is - 350 knr' yr" , The

volume of bottom water inflow from the Mediterranean is approx imately - 300 knr' yr' .

Prec ipitation contr ibutes - 300 krrr' yr" . The Black Sea receives a high input of river

discharge. In the northw estern Black Sea alone the Danub e, Dniestr , Dniep r and

Sou thern Bug rive rs contribute a total water volume of - 255.7 knr' yr" , Rivers such as

the Don and Kuban wh ich flow into the Sea of Azov bring the total freshwater fluvial

input into the Black Sea to - 370 knr' yr" (Balkas et al., 1990).

1.2.3. C ur re nts

The surface water circulation of the Black Sea is dom inated by two large cent ral

cyclo nic gyres, one western and one eastern (Fig. 1.3; Oguz et al., 1993) and several

smaller anticyclonic eddi es along the coast. The cyc lonic basinal gy res and anti cyc lonic

coasta l eddi es are separated by the Rim Current which is < 75 km wide and tran sport s

water co unter clockwise around the periphery of the Black Sea basin at a veloc ity of - 20

em s· ' (Oguz et al., 1993).
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Figure 1.3. A map of the Black Sea showing the Rim Current which travels counter clockwise around the entire basin, western

and eastern cyclonic gyres and numerou s anticyclo nic eddies (modifie d from Aks u et a!., 2002 b).



1.3. Geo log ica l Se tt ing of th e Black Sea

The Black Sea is part o f the Pont o-Caspian basins whi ch also inc lude the Sea of

Azov , the Cas pian Sea and the Ara l Sea (Boomer et a I., 20 10). The se basins arc the

remn ant s of the Parat eth ys Sea , whi ch ex isted from the Late Jurassic (- 150 Ma) to Early

Pliocene (-5 Ma). The Te thys Ocean, to which the Paratethys Sea was connected, closed

dur ing the Paleogen e with the subduction of the Te thyan plate (Robinso n, 1997) and the

western part o f this ocean became the Medite rranean Sea (Rogl, 1999). The Parateth ys

Sea to the nort h beca me progressively sha llower dur ing the Plioce ne and was partitioned

into the Ponto-Caspian basins .

The Black Sea floor is separated into the Western and Eas tern basins, wh ich arc

separated by the Mid-Bl ack Sea Ridge (F inett i et a l., 1988). These basins orig inated as

two back arc basins in the Early Cretaceo us as the Neo -Te thys Ocea n floor was subducted

beneath the Balc anide s-P ontide s vo lcanic arc (Leto uzey et al., 1977 : Robin son, 1997).

1.3.1. Geo mo r pho logy of th e Study A rea

Sed iment cores stud ied in this thesis were co llected on the southwes t Black Sea

shelf (F ig. 1.4). This area is ge nerally flat and dips gently to the north . It is d issected by

a promin ent channel that begins at the Bosphoru s Strait and ext end s to the she lf edge west

of the Bosph oru s Ca nyon and acco mmodates Mediterranean bottom water inflow to the

Black Sea (Fig. 1.4; Flood et a l. 2009) . The channe l is 200- 500 m wide and 10-25 m

dee p and separates the she lf region into two parts : a western shelf which is 25-35 krn

wide and an eastern she lfw hich is 10-l7 km wide. O n both sides of the channe l the she lf

break occurs at - 115- 120 m water depth. The she lf s lopes are steep at 5_9 0 and



Figur e 1.4. Sun-illuminated image of the channel network which accommodates inflow of saline Mediterranean water. The

locations of cores MAR05-50P and MAR05-51G to the east of the channel are also shown (Aksu and Hiscott, unpubl ished data).



are dissected by numero us submarine canyo ns and gu llies . Eve ntua lly the slope levels off

at the floor of the Black Sea basi n at - 2200 m water depth (A ksu et al., 2002a) .

104.Summary of Quaternary Glaciation and Deglaciation in thc Black Sea

The Black Sea region has felt the repercussions of glac iatio ns and deglaciations

which are reco rded by cycles of tran sgressions and regressions and changes in seabe d

geomor pho logy (e.g., Os trovs ky et aI., 1977 (in Russian), in Panin and Strechie, 2006;

Chepalyga, 1984; Ske ne et aI., 1998). Durin g glacial periods the Black Sea became

periodicall y isol ated from the World Ocean as the sea level fell below the sill depth of the

Bosphorus Strait. Geo morp holog ica l, geochemica l and paleont ological evidence record s

these eve nts and the effects on the environment. The last glac ial period ended

approx imately 16000 years ago (ra nin and Strechie, 2006). This thesis is conce rned with

the pos t-glac ial paleoceanograph ic evo lution of the southwes tern Black Sea shelf

1.4.1. Brief Glacial-Interglacial History ofthc Black Sea from 125 ka Years Ago

The following su mma ry of glacial/ deglacial effec ts in the Black Sea regio n is

largely summar ized from Panin and Strec hie (2006).

Dur ing the Riss-WOrm interg lac ial ( 125-65 ka BP) the Black Sea level was higher

than it is today. At that time the Black Sea was co nnecte d to the Cas pia n Sea through the

Manych Stra it and had a surface sa linity of 30-37 psu (Nevesskaya, 1970 (in Russian ), in

Panin and Strechi e, 2006) . A fter this high stand there was a 100-110 m drop in sea level

in the Black Sea assoc iated with glaciation correlated with the marine isotopic stage 4

(Chepalyga, 1984 ). Durin g th is period the water in the Black Sea became bracki sh to

fresh (5- IOpsu) and the faun a living there were low-salin ity Casp ian types. During the

10



following interstadial some - 40- 25 ka BP (i.e., marine isotop ic stage 3; Imbrie et al.,

1984) the water level in the Black Sea rose aga in to breac h the Bosphoru s Strait. Thus,

the Black Sea flowed out to the Marmara Sea and became reconnected with the

Mediterra nean once aga in (Aks u et aI., 2002a) .

At around 25 ka BP the Wiirm glaciation (i.e ., marine isoto pic stage 2) lead to a

dramatic regressio n and extreme drop in sea level. There is some debate regardi ng the

actual amo unt of this drawdown: Ryan et al. ( 1997) estimated a Black Sea level of -140

m, whereas Aks u et al. (2002a) and Hiscott et al. (2002) estimated a level of -I 10m. The

last glacia l maximum occurred at - 19- 18 ka BP. At this time the Black Sea once aga in

became an isolated bracki sh lake. Between 16-15 ka BP post-glacial meltin g assoc iated

with the transition from the Wurrn glacial to the Holocene interg lacial began in northern

Eurasia and Alpine mount ain belts and by - 5000 yr BP the Black Sea level had atta ined

approximately its present level. There is some debate regardin g the effect of the post­

glacia l ice cap melting on the Black Sea level and the ensuing reconn ect ion with the

Med iter ranean Sea , as explained below.

1.5. Hypotheses Regarding Mechanisms lind Timing of Rcconnection

There are three basic hypotheses regarding the Holocene connec tion history of the

Black Sea to its neighbourin g basins and the World Ocea n. They are known as: the

Flood Hypothesis, the Outflow Hypothesis and the Osci llating Sea leve l Hypothesis.

1.5.1. The Flood Hypothesis

The Flood Hypothesis was first proposed by Ryan et al. ( 1997). The authors

argue against the conve ntional story of a gradual reconn cction of the Black Sea to the
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Medi terra nean Sea. Instead , they argue d for a ca tastro phic rcco nncct ion whe n the

Med iterra nean waters invaded the Black Sea in less than 2-3 years . In Ryan et al. ( 1997)

th is " flood" is to have taken place at - 71 50 yr 131' (-7570 ca l yr 131'). T his was later

revise d in Rya n et al. (2003) to 8360 yr 131' (-9 140 ca l yr 131'). T he hypothesis was made

famo us by Ryan and Pitma n ( 1998) in thei r book "Noah's Flood: The Sc ien tific

Discoveries Abo ut the Even t that Changed History" . As the title sugges ts, they arg ue that

the possible floo ding even t in the Black Sea m ight have inspi red the Biblica l story of

Noa h and the flood.

The Flood Hypothesis diverges fro m the more conve nt iona l story at the po int

where the glac ia l maximu m ends and ice caps beg in to mel t at - 15-16 ka 131'. So me

scie ntists (e .g ., Aks u et aI., 2002a; Hiscott et aI., 2002) be lieve that mel twater led to the

refi lling of the Black Sea th rou gh heavy river inp ut and Cas pian spillover and as ea rly as

- 11500-12500 ca l yr 131' the Black Sea bega n flowi ng out throu gh the Bos phor us Strait

and has not been iso lated fro m the Medi terra nea n Sea since .

As firs t prese nted, The Flood Hypothesis pos tulated that instead o f refi lling the

Black Sea , the meltwater fro m the ice caps was redirec ted northward to the Bal tic and

North Seas . The isolated Black Sea becam e a gia nt fres hwa ter lake and co ntinued to

regress to a lowstand of - 150 m (Rya n et aI., 1997). When the Med iterranea n water level

rose hig h eno ugh to break throu gh a hypothet ical uncon sol idated sed imen t dam across the

Bosp hor us Strai t, the Medi terra nea n waters catastrophica lly flooded the iso lated

fres hwater Black Sea wi th sa line Med iter ranea n water at 7570 ca l yr 131' (Rya n et al.,

1997). The au tho rs ca lculated that this flooding could have bee n co mp lete d in j ust a

couple of yea rs at the ra te of 15 cm wa ter-leve l rise per day, or instantaneou sly by
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geological standards. This resulted in the submergence of 100,000 km2 of previously

exposed shelves around the Black Sea (Ryan et al. 1997; Ryan and Pitman, 1998).

Ryan et al. (2003) subsequently revised the details of the Flood Hypothesis. The

authors now believe there were actually two lowstands and two flood events instead of

one. First, there was a lowstand of -120 m at - 15200- 12400 cal yr HI'. Ryan et al.

(2003) as well as Major et al. (2002) explained that Black Sea outflow at this time was

possible. They said the outflow then ceased again between - 12500 and 10 100 cal yr 131'

and the Black Sea fell to a new lowstand of -95 m. At - 9140 cal ka 131' the second and

more significant flooding event took place as indicated by marine strontium isotopic

signals (Majo r et al., 2006). This hypothesis directly precludes the possibility of a

continuous outflow from the Black Sea by - 11900 cal ka 131' as argued by Aksu et al.

(2002a), Hiscott et al. (2002), Hiscott et al. (2007) and others (see the Outflow

Hypothesis below).

Ryan et al. (2003) described evidence from sediment cores which suggests that the

shelves surrounding the Black Sea were subaerially exposed from - 12500 to 10100 cal yr

HI', after post-glacial melt ing. They report mud cracks at -99 m and shrub roots in place

in desiccated mud at -123 m. They report seeing no evidence of landward onlap which is

characteristic of transgression. The original date of the flooding event was based on

radiocarbon dating of the first marine species of mussels and bivalves to colonize the

area. In five cores dates were obtained which cluster at 7150 ± 100 yr HI' (7570 ka cal

131'; Ryan et al., 1997).

Ballard et al. (2000) supported Ryan et al. (1997) reporting evidence of an ancient

shoreline at -155 m. Mollusks collected from this ancient inferred beach were dated at
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8050 ± 60 to 7335 ± 55 ca l yr BP. The authors believe d this date suppo rted the timing of

the f100d as firs t proposed by Ryan et a!' (1997) . However, the timin g of the f100d even t

was later cha nge d by Ryan et a!' (2003) to 9 140 cal yr SP . The prev ious date of7570 ca l

yr BP was reinte rpreted as the onset of wate r conditions suitable to mar ine fauna .

High-resolu tion seismic ref1ection pro files across the outer Ukrai ne shelf revea led

an eros ional unconformity which Ryan et a!' (2003) labeled Unco nfor mity I and

interpre ted to represe nt a she lf-wide ex posure surface resu lting from regression. At - 120

rn, Unconfo rmity 1 is represe nted by a wave -cut surface whic h is draped by coq uina

shells dated at - 12200 ca l yr BP. Ler ico lais et a!' (2009, 20 10) suppor t the idea of a

lowstand of aro und -100 m between - 12400 and 9 100 ca l yr BP based on their

inter pretatio n of a "pro nounced shore line" on the Romanian shelf. They also suppor t the

idea of a rapid transg ressio n « 100 yea rs) whic h was fast enough to preserve these

coas ta l features .

1.5.2. The Outflow Hypothe sis

An alternative Black Sea hypothesis advocates a more grad ual and progressive

Holocene reco nnectio n of the Black Sea with the easte rn Med iterranean Sea . Aks u et al.

(1999, 2002a, 2002b), Kam inski et al. (2002), Mudie et al. (2007) and Hisco tt et al.

(2007) presen ted ev idence that the re co uld not have been a catas tro phic f100d of the Black

Sea at 9 150 ca l yr BP. These aut hors believe that the Black Sea was fully transgressed.

and water was flowing out of the Black Sea by - 11900 ca l yr BP (Aks u et al., 2002a;

Hiscott et aI., 2002) and its level has not change d significantly since that time .

Brack ish surface water conditions preva iled in the Black Sea as it flowe d out to
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the Marmara Sea until - 8100 cal yr BP (Marret et al., 2009; Mertens et al., 2012). i\

short pulse of Mediterranean water entered the Black Sea at - 9100 cal BP (Marret et al.,

2009) and then ceased, or was greatly reduced, due to strengthening in Black Sea outflow.

Sometime between - 8500 and 8000 cal yr BP, a two-way flow was established through

the Bosphorus Strait.

Hiscott et a!' (2002) used high resolution seismic profiles to show the presence of

two south-prograded delta lobes at the southern exit of the Bosphorus Strait. They argued

that these deltas are the result of persistent Black Sea outflow because there are no rivers

in the area that could account for the observed volume of sediments (Hiscott et al., 2002).

The younger delta was constructed between - 11200- 9900 cal yr BP based on radiocarbon

dates. After - 10000- 9400 cal yr BP the delta became inactive because two-way flow

with the Mediterranean had been initiated. When Mediterranean water began flowing

northward underneath the Black Sea outflow, the sediment supply to the delta was cut off

This strongly suggests that water was already vigorously flowing out of the Black Sea at a

time when the Flood Hypothesis would have the Black Sea isolated and at a maximum

lowstand.

In response, Eris et a!' (2007) said that the sediment supply for this delta was the

Kurbagahdere River, which today flows into the Marmara Sea near the western side of

istanbul, and not Black Sea outflow through the Bosphorus Strait. Hiscott et al. (2008)

rebutted this criticism, calculating that the sediment flux provided by the Kurbagahdere

River is entirely inadequate and stand by their initial conclusion that the delta strongly

suggests that water was flowing out of the Black Sea during the early Holocene.

Furthermore, radiocarbon dating of a sapropel layer (mud with >-2 % organic
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carbon deposited under reduced-oxygen conditi ons) in Marmara Sea cores showed it was

deposi ted between - 11850 to - 6500 cal yr BP sugges ting that water was flowing out of

the Black Sea into the Marmara Sea formin g a low salinity lid ove r the Marmara Sea

water during that interva l (Aks u et al., 2002a). Flora and fauna found within the sapropel

(labeled M I ) are of Black Sea affini ty. strongly sugges ting they were deposited by a

Black Sea outflow (Mudie et al., 2002; Aksu et al., 2002a). Sperling et al. (2003) and

Vidal et al. (20 I 0) disagreed that sapropel M 1 is evidence for Black Sea outflow . Vidal

et al. (20 10) states that oxygen isotopic evidence from carbonate shells show s rising

Marmara Sea surface salinity until - 9900 cal yr BP confirming that Black Sea outfl ow

was not significant enough to contribute to sapropel deposition and that Black Sea

outflow only began in earnes t after this date as indicated by decreasing salinity.

Hiscott et al. (200 7) presents sedimentological and paleontological ev idence for a

progressive Holocene recon nection of the Black Sea with the Med iterranean Sea . They

recove red 9.5 m-Iong core MA R02-45 from a post-tra nsgress ive successio n on the

sou thwes tern Black Sea shelf. The water depth at the core site is 69 m. The base of the

core was dated at 10325 ±80 cal yr BP. The underlying unconformit y a (U nconformity I

of Ryan et al., 2003) deepens toward the shelf edge show ing that the core site was never

isolated from the open Black Sea suggesting there could not have been a drawdown

greater than -70 m after at least 10325 cal yr BP.

There is also evidence that the earl y Holocene Black Sea was bracki sh and not

freshwater. Based on ostracods from core MAR02-45 Evans (2004) sugges ts a bracki sh

salinity (-5 psu) before a faunal turno ver beginnin g at - 7500 ca l yr BP indicating saline

inflow from the Mediter ranean (Hiscott et al., 2007) . Dinocysts also indicate a rising
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salinity (>10-1 2 psu ) after this time (Marret et al., 2009). Mudie et al. (2002. 2007)

fou nd that po llen from Black and Mar mara Sea co res indicated warm and humi d

condit ions wi th yea r-ro und precipitat ion by 10500 ca l yr BP. This co nflicts with the co ld,

dry conditions necessary for a -100 111draw down in the Black Sea. Also, they foun d no

uniqu e peak of terri genou s matt er indicat ing rapid flood ing of a coastal plain.

Te mporary changes in sa linity-diagnos tic gro ups of dinocysts and freshw ater

algae are ev idence of the short-lived pulse of sa line water. Between - 9400 and 8600 ca l

yr BP these freshwa ter/bracki sh types temp orar ily gave way to marine flora. This

rep lacement was interrupt ed between 8400 cal yr BP and - 7900- 7500 ca l yr BP after

which bracki sh /lora and fauna wer e fi nally per manent ly rep laced (Hiscott et al., 2007;

Marret et al., 2009) . These authors ther efore bel ieve that reconne ct ion occurred

sometime between - 8500 and 8000 cal yr BP.

1.5.3. The Oscillating Sealevel Hypothesis

Yanko-Hornbach (2007) questioned the ev ide nce used by Ryan et al. (1997. 2003)

and Ryan and Pitman (1998). She commented that the core and se ismic data used in the

Flood Hypothesis were " limi ted" . In particular she was critic al of the use of Dreisse na

species to date a submerged coastline at -100 m. Th e fossil Dreisse na ac tua lly has a

much wid er stratig raphic distr ibut ion than living specimens and is therefore a weak

paleobathymetr ic indicator. Based on benth ic foraminifera l assemblages in thc Black Sea

Yanko-Ho mbac h et al. (2007) concl uded that the Holocene reconnection of the Black Sea

to the Medi terranea n Sea was "neither rapid. nor gradual, nor catastro phic . Instead. it

occurred in an oscillating mann er, permitting periodic immigra tion of Mediterranean
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organisms into the Pontic basin". After the last glacial maximum when the climate

warmed a large water input, from high river discharge, melting permafrost and Caspian

Sea spillover, raised the isolated Black Sea level from -100 to -20 m but then temporarily

dropped again to -50 m during the Younger Dryas cold period from - 12700 cal yr BP to

- 11200 cal yr BP. At - 10800 cal yr BP the Black Sea then began to spill over the

Bosphorus sill and enter the Marmara Sea and inflowing Mediterranean waters raised the

level gradually to -20 m. The Black Sea level never again dropped below -50 m, never

experienced fluctuations greater than about ±20 m and occasionally rose a few meters

higher than present sealevel during the Holocene (Yanko-Hombach et al., 2007). The

level gradually rose at a rate of 3 em yr', oscillating between these levels, periodically

allowing Mediterranean organisms to make their way into the Black Sea. The first

"wave" of immigrants entered the Black Sea at - 10500 cal yr BP. This first connection

may not have been through the Bosphorus Strait, but another route (i.e., Sakarya Valley

via the Izmit Bay, also known as the Sakarya Bosphorus; Yanko-Horn bach ct al., 2004;

Kerey et al., 2004). Marine colonization was slow but gradual, becoming pronounced at

- 7600 cal yr BP which coincides with the "Flood" date of 7570 cal yr BP (Ryan et al.,

1997). A Black Sea level which never fell below -20 m directly precludes the -95 m

water level drawdown and subsequent flooding event proposed by the Flood Hypothesis.

Martin et al. (2007) also said that the Black Sea Holocene water levels rose and

fell periodically due to changes in freshwater discharge and repeated marine incursions

and these oscillations decreased in magnitude through the Holocene. Filipova-Marinova

(2007) and Ivanova et al. (2007) also presented paleontological evidence for Holocene

Black Sea level oscillations which became increasingly attenuated and closer to the
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modern level in the last - 5000 years . Giosa n et al. (2006) stated that imm ediately before

the reconnectio n to the Medi terra nean Sea the Black Sea level was aro und -30 m based on

cores from the Danub e Delta and it has not t1uctuated more than ± 1-2 m in the last 5000

years.

1.6. Dating Methods Used in this Thesis

It is impor tant to convert radiocarbon dates from fossil materi al into ca lenda r

yea rs so that an acc urate ch ronostrati graphi c fram ework ca n be construc ted and the

paleoclim atic and paleoceano graphi c evo lution of the study area can be compared with

other studies. Radiocarb on dates obtained from fossil materi al cannot be considered as

ca lenda r ages because of changes in atm ospher ic I·C through time and reservo ir effects

whereby "o ld" car bon is recycled and part itioned into marin e shells resultin g in a date

that is inaccu rate by 100s of years . In this thesis most dates are give n in calenda r yea rs

before present (ca l yr BP). Where radiocarbon dates were ob tai ned 11-0111 fossil materi al

the dates were ca libra ted or re-calibrated using the OxCal Ma rine09 ca libration

procedu re. Approx imate ages from the literatu re which are not d irectly tied to spec ific

radiocarbon dates were conver ted to ca lendar years using the Mar ine09 "global" marin e

ca libra tion curve construc ted with rese rvoi r corrections for the Black Sea (F ig. 1.5).

1.7. Introduction to thc Ostracoda

The Ostrac oda arc a class of the subphylum Crustacea in the phylum Arthropoda.

Commo nly refe rred to as os tracods or ostracodes , living spec imens were first describ ed

by O.F. MUller in 1776 (Athers uch et al., 1989). Cr ustaceans also include such we ll­

known anima ls as lobsters and shrimp and the ostraco da bea r a resembl ance to these but
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Figure 1.5. Graph of ca lendar age (cal yr BP) vers us conven tional radiocarbon age e4C

yr BP) based on the Marine09 database downloaded from c 14.arch .ox .ac.uk and

incorporating Black Sea reservoir corrections of 4 15 yr for ages younger than 7 100 14C yr

and 280 yr for dates olde r than 7100 14C yr.
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they are much smaller. Generally a microscope is required for detailed observation.

Ostracods are a very diverse group. It is estimated that at least 25,000 species are

living today, of which - 8000 have been described (Morin and Cohen, 1991; Cohen et al.,

1998). The estimated total of all living and fossil species is 33,000 (Kempf: 200 I,

personal communication, in Horne et al., 2002). These creatures are amongst the most

complex of the organisms studied by micropaleontologists.

On average, these aquatic microcrustaceans range in size from 0.5 to 2.0 rum.

Their bodies consist of a head and thorax and 5-8 pairs of appendages used for

locomotion (Athersuch et al., 1989). These body parts are often referred to by

paleontologists as "soft parts". The ostracod secretes a low-Mg calcite bivalved carapace

which encloses its body. This calcified portion of the ostracod is commonly referred to as

its "hard parts". Generally, the term carapace is used to denote two valves which are still

articulated. The term valve is used to refer to one half of a carapace (Holmes and Chivas,

2002b).

The strongly calcified carapace or valve is typically the only part of the ostracod

that is preserved as a fossil. Occasionally internal parts are preserved. Zoologists who

work with living ostracods may use internal parts in addition to valve morphology for

taxonomic identification. However, a paleontologist has the disadvantage of working

with only the empty valves and must make identifications based on gross morphology of

the valves alone. Morphological features of ostracods valve are presented in Chapter 4.

The ostracod lives for approximately a few months up to four years and grows by

moulting, or ecdysis (Horne et al., 2002). There are 9 growth stages, also called instal'

stages, including the final adult stage (Athersuch et al., 1989). The j uvenile stages are
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referred to as A- I (last ju venil e stage; read as "A minu s I ") through to A-8. The ea rlies t

of the j uve nile va lves are commonly not represe nted in a fossil asse mblage due to the

fragi le natur e of these tiny shells. As the ostracod grow s, its phys ica l features develop

progressively with eac h moult (see Chap ter 4, Plate 3, figs 10- 15 for exa mple) and

therefore the adult stage is best suited for identifi cation .

Some os traco ds may sw im for part or all o f their lives (Horne et al., 2002) .

However , most arc benthi c, living on or burr ow ing a few centime tres into the seatloo r

sediment. Some ostraco ds are phytal and are commo nly associated with algae . The type

of substrate preferred by the ostracod is often retl ected in its morph ology ; for example

sleek, smooth types arc suited to swi mming freely in dense aquatic plant s (Va n

Morkhoven , 1962). Athersuch et a!. (1989) and Horne et a!. (2002) provide detailed

information abo ut os traco d morphology and biology. Os tracods arc highl y sensit ive to

changes in water chemistry and for this reason they are increasingly being recogn ized as

va luab le proxies for enviro nmenta l and paleoe nviron menta l stud ies.

1.8. The Usc of Ostracods in (Paleo)environmental Studies

To be able to der ive inform ation about past and modern enviro nme nts, rel iable

proxies are needed. A proxy is an organism or chemi cal signa l which respond s to, and

thu s record s, changes in the environment. Over the past three or four decades ostra cods

have been recognized as exce llent proxie s suitable for reconstru ctin g paleoenvironment s.

Ostracod distribution is highly dep endent on wat er condit ions, mainl y salinity but also

depth, substrate, water chemistry, nutri ent ava ilability and temp erature . Because

ostraco ds are very se nsitive to changes in these co nditions they ca n be studied to interpret

22



environmental changes ove r time (Frenze l and Boomer. 2005).

Ostracods are found in almost eve ry conceivable type of aquat ic environment.

Shallow seas to deep ocea ns, lakes, rivers, caves, lagoons, estuar ies, temporary ponds and

even hot spr ings are all inhabited by these tiny crustacea ns. Ostracods have even been

foun d in semi-aquatic environments, specifica lly damp vege tation. Ostracods are

typically divided into marine, brackish and freshwater types (Athersuch et al., 1989).

In addition to being ubiquit ous in aquatic enviro nments, ostracods have an

excellent foss il record. Their preservation potential is high due to thei r small size,

abundance and strongly calcified low Mg-calcite va lves. They are found in the foss il

record certainly from the Ordovic ian, although some sources say thc Cambrian

(Athersuch et al., 1989). Depending on the species , the degree of ca lcifica tion of the

carapace var ies. Furthermore , preservation is affected by the environment. If the pore

waters in the sediment are acidic, the valves may be dissolved. There fore, it should be

noted that weakly ca lcifie d species are under-represented in foss il asse mblages .

Therefore, as Boomer et al. (2003) describes, the task of the paleoecologist is to

approxima tely reco nstruct the living assemblage, or biocoenosis, from which the

paleoenvironm ental interpretation can be derived .

The application of ostracods to paleoenvironm ental reconstruct ion is best done as

part of a multidi scipl inary approach. The study of these organisms can be done by both

quant itat ive and qualitative methods. It is possible to obtain geoc hemica l inform ation

from ostracod va lves throu gh microprobe or laser-ablation techniqu es. In this thesis, a

more qualit ative approac h is used . The following sec tion gives a brief ove rview of the

applica tions of ostraco d foss ils in paleoenvironm ental studies.
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1.8.1. Information Deri ved Fro m Ostracod Valves

Ostracod studies may be done both quanti tatively and qualit at ively. Boom er et al,

(2003) and Danielp ol et a!. (2002) give succi nct ove rvie ws of the various applications of

ostracods in paleoen vironm ental studies . This thesis focuses mainly on qualit ati ve

methods but does usc so me of the quantit ati ve methods described below.

1.8.1.1. Quantitative Analyses: Ratio s

Female: male rat ios may reveal something about the stability of the environ ment.

Abc ( 1990) sugges ted that a high female: male ratio may ind icate r-st rategy repro duction

in respo nse to an unstable enviro nment (i.e., many females facilitate quick and certain

reproduction . On the oth er hand, a more eq ua l number of males and females could

indica te k-strategy reprod uction in a stable environment. Rep roduction is sexual in most

taxa (Smith and Horn e, 2002) .

Ad ult:juven ile ratios and population age structures are commo nly used for

environmental reconstru ctions. The ratios of all instars of a species within a sample has

been shown to be a reliable indicato r of whether the sample is a life or death asse mblage

and the degree of post-mortem transport (Boome r et al ., 2003) . This type of obse rva tion

ca n also be made qua litati vely. Simp ly observing fully gro wn adults as well as lots of

ju veni les of different stages is adequate to infer an ill situ, life assemb lage (D. Horne,

personal co mmunication) .

Valve:carapace rat ios yield limited informatio n regard ing rewo rking or pos t­

mortem tran sport. On e ca n ded uce that a high number of disar ticulated valves co uld

indicate a high energy env ironment. One must take into acco unt that some spec ies have a
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stronger hinge than others. Also, sample processing will certainly cause some degree of

carapace disarticulation. It is therefore advisable to compare these ratios only for the

same or closely related species within a sequence (Boomer et al., 2003).

Ostracod shell chemistry studies can yield considerable information about the

water chemistry of the paleoenvironment. Geochemical applications of ostracod valves

are discussed in Chapter 7.

1.8.1.2. Qualitative Analyse s

Qualitative observations of ostracods are as important as quantitative data fo r

paleoenvironmental reconstruction. Ostracods have well-known environmental controls

on their distribution (e.g., Neale, 1988; Athersuch et al., 1989) and the ecological

affinities of many Ponto-Caspian and Mediterranean genera and species are at least

somewhat known and documented.

Salinity is a major factor controlling ostracod distribution and ostracods are

commonly categorized into marine, brackish and fresh water species (Athersuch et al.,

1989). Therefore, ostracods are very good proxies for qualitative paleosalinity

reconstructions, which is why they were chosen for this research. Salinity range

preferences and tolerances are known for many ostracod species (Neale, 1988). Some

ostracods are stenohaline, meaning they favor a very narrow salinity range, while other

euryhaline species can tolerate a broad range of salinities. Boomer et al. (20I0) cautions

that Ponte-Caspian ostracod autecology is not fully known. Precise paleoenvironmental

reconstructions (i.e., quantitative salinity interpretations) cannot yet be made. Other

controls on ostracod distribution are depth, substrate, dissolved oxygen levels
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temp erature, pH, food availability and the stability of these conditi ons (A thersuch et al.,

1989; Frenze l and Boomer , 2005).

Substrate is a very important factor controlling ostracod distribut ion . Different

species prefer di fferent substrates . Some ostracods prefer to live on or within the

sediment. Within th is sediment-dwelling group, some prefer so fter clay and mud while

some prefer sand. Many ostracods, such as the smoo th-valved Sclerochilus gewemuelleri

are phytal, mean ing they live on or around marine plants (Athersuch et al., 1989).

Dissolved oxyg en levels can influence the distribut ion of ostraco ds. Diffe rent

spec ies or groups of related species can have different toleran ces. Some groups such as

the Order Platycop ida adapt well to reduced-oxygen environments and occ urrences of

these might indicate this type of paleoenvironm ent (Whatley, 1990; Boomer et al., 2003,

2005) .

Eco logica l interpretation s of a fossi l asse mblage can therefore be made based on

what we observe of the same or closely related species living in modern environments.

This is most easi ly done for Quaternary and late Neog ene asse mblages because many of

the species or closely related species are sti ll living today (Boomer et al., 2003) .

1.9. Early Work on Black Sea Ostracods

A significant amount of research has been done on Black Sea and Ponte-Caspian

ostracods in the last century and a half. Dub owsky ( 1939) , Livental ( 1929, 1938),

Schwe yer ( 1949) , Aga larova et al. (1961) and Shornikov ( 1964, 1966. 1969) are among

the main contributors to some of the earliest data on Ponte -Caspian ostracods . The

original taxonomic descripti ons of these ostracods, including information on their
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ecological affinities and distribution around the Porno-Caspian basins. done by these

authors are relied heavily upon in this thesis and by all researchers of Black Sea

ostracods.
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CHAPTER 2

METHODS

2.1. Data Acquisition

2.1.1. Geophys ical Dahl

Multibeam images (Fig. 1.4) of the southwestern Black Sea shelf were collected in

2005 during the MAR05 research cruise of the RV Koca I' iri Reis using a Kongsberg

EM-3000 multibeam echosounder. Mosaics of bathymetry and backscatter images

arising from this survey have been published by Flood et al. (2009) . Approximately 1918

line-kilometres of Huntec deep-tow boomer profiles (vertical resolution 15 to 30 em)

were also collected along the 200 m apart multibeam tracks.

2.1.2. Cores

During the MAR05 cruise several piston and gravity cores were also collected

from the southwestern Black Sea shelf Two of these cores collected from closely spaced

sites are used in this project: piston core MAR05-50P and gravity core MAR05-51G (Fig.

2.1). The core sites are located to the northwest of the Bosphorus Strait, on the eastern

levee of a saline underflow channel (Fig. 2.1; Fig. 1.4; Flood et al., 2009) . Cores

MAR05-50P and MAR05-51G penetrated the seabed ~3 1 0 m apart. The location of core

MAR05-50P adjacent to the main saline inflow channel is shown on a multibeam image

(Fig. 1.4) and a I-1 untec DTS seismic reflection profi le (Fig. 2.2) collected during the

same cruise (Flood et al., 2009). Table 2.1 gives the penetration depths (lengths),

locations, and water depths for these two cores.
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Figure 2.1. Regional map of the Black Sea study area showi ng the location of cores

MA ROS-SOP and MA ROS-S IG (labeled here together as MA ROS-SO) north of the

Bospho rus ex it into the Blac k Sea and to the len of a saline inflow channel. lsobaths are

in meters (mo difie d from Flood et al., 2009) .
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Table 2.1. Lengths (depth below seabed), locations and water depth lor cores MAR05­

501' and MAR05 -5 IG. Latitud e and longitud e were obtained with the GI'S of the RV

Koca Piri Reis.
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2.2. Composite Core Con struction

Core top loss is a common occ urrence durin g the piston co ring operation, which

occ urs when the free- fall wire is inadvertentl y kept slightly longer than the distance

between the tip of the trigger weig ht and the tip of the piston corer. Under such

circumstances, the pis ton corer star ts to penetrate into the sedime nt, but the piston

remains at the tip of the corer preventin g sediment entry into the liners unt il the free- fall

wire is taut. Only after the free- fall wi re is taut , the core r sta rts recovering sedime nts as it

penetrates deeper into the sea bed . On the basis of vis ua l co re desc riptions and car bon and

sulfur ele men ta l and isotop ic data fellow M.Sc. student Anna Linegar estimated an

approx imate ly 50 em core top loss for core MAR 05-50P relative to core MAR 05-510

(Linegar, 20 12). In orde r to compe nsa te for th is missing sectio n, the top 50 ern o f core

MA R05-5 10 was added to the top of core MAR05 -50 P. Thus, a em depth in core

MA R05-50 P is 50 em dep th in the composite co re which is hereafter referre d to as co re

MA R05 -50 . Core illus trations and description arc given in Chapter 3.

2.3. Sediment Sample Proces sing

Ap proxi mately 20-25 cnr' of sediment were taken from both cores MAR 05-50P

and MA R05-5 10 at 10 em intervals for a total of 89 samples . Samp les from MAR 05-50P

were numb ered 0, 10, 20 ... 730 . Samp les from MA R05 -5 10 were numbered 100 , 200 ,

300... 1500 . There is no sample 00 because th is mater ial had already been remove d

from the top of the core by Turk ish Customs for inspec tion .

The samples were fi rst ove n-dried at - 25 °C and the dry we ights were reco rded.

The average sample we ight after drying was - 32 g. They were then put into sma ll plastic
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containers and treated with - 70 mlof 1% sodium hexametaphosphate (Ca lgon) and left

for seve ral days, gently shaken occasio nally to disaggrcgate the sediments.

Nex t, each sample was wet-sieve d using tap-water and a 63 urn sieve . The > 63

urn fractions were collected from the sieve and dried in an oven at - 25 "C. Once dried

each > 63 11mfraction was passed through a stack of 4 sieves : 355 urn, 180 ~1I11 , 125 um

and 63 um. The reason for this was simply to separate the sample into smaller. more

manageable porti ons for subsequent hand-pi ckin g of the ostraco d shells. The material

which remain ed in the bottom 63 urn sieve (i.e., the > 63 um fraction) was not examin ed

and was returned immediat ely to a glass vial and stored.

A small enough sieve size must be used to collect j uveniles and also adults of

smaller spec ies. Furthermore, some fragile species may only be present as fragments

which will bias the asse mblage if not collected. A sieve size of 125 um is regarded as

adequate (Boo mer et al., 2003).

2.4. Ostracod Collection

Each sample was exa mined under a stereogra phic microscope by the author.

Ostracod valves were hand-pick ed using a very small pain t brush (size 000) wetted with

water. There was no limit on the numb er of va lves picked; a ll the va lves that could be

found in a given sample were collected. Frag ments were also coll ected . However,

fragments that were less than - 30% of the original valve, or fragm ents inadequ ate for

identific ation , were not picked. In the case of Candona schweyeri (SCI-IORNIKOY ,

1964), sma ller fragment s were co llected so as to ensure the species was not under­

represe nted because it has thinn er walls than other spec ies and is more prone to breakin g.
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All instar stages (i.e ., adults and ju ven iles) of the ostraco ds were also picked. Although in

some cases they are imp ossibl e to confid entl y identify, all juveni les found were co llected.

2.5. Ostracod Identification

The os traco d valves are we ll-preserve d throu ghout the cores . Beca use no internal

soft- part preservation was observed, the ostraco ds were identifi ed based on gross

mor pho logy of the valves (see Chapter 4, Plate I for guide to morph ology). Shell shape

and size, surface orna mentation and types of margin al pore ca nals are uniqu e

characteristics which are key to identi fyin g ostraco d taxa. Examination of valve

morph ology was done mainl y under the stereographic microscope. Tra nsmitted light

microscop y was also used to observe characterist ics not discernibl e with the stereo gra phic

microscope, mainl y ma rgin al pore cana ls. Reference materi als used for identifica tion

included Schweye r (1949) , Schornikov (1964, 1966), Bonadu ce et al. ( 1975) , Olteanu

( 1978), Athers uch et al. ( 1989), Stancheva (1989). Boomer et al. ( 1996, 2005, 20 I0),

Horne et al. (2002) and Oprea nu (2008). Co ns idera ble assis tance in making

identificat ions was provi ded by Dr. David Horn e (Q uee n Mary Unive rsity. United

Kingdom ) and Dr. Mariu s Stoica (University of Bucharest, Rom ani a), durin g visits to

their laboratories and by electro nic cor respo ndence .

2.5.1. Issues with Ostracod Identification

It is o ften diffi cult to confidently identi fy ostraco d spec ies, especi ally when

working only with fossi l valves lacking intern al part s. Many ostracod genera cont ain

numerou s spec ies which look very simi lar to one another. The genus Xesto leberis is a

good exa mple of th is. Athersuch et al. (1989) remarked that this genus has a world- wid e
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distribution and its many species are often confused because their smooth carapaces look

very similar. For this reason, it is not always possible to make identifications to species

level.

Another significant problem arises due to the lack of taxonomic consistency in the

literature. In many cases the original descriptions of species preceded microphotography

and instead feature hand-drawn illustrations. These drawings may be unclear or they may

be inaccurate or the illustrator may have exaggerated certain aspects of the morphology to

make them clear. For these reasons, there can be uncertainty that a specimen being

examined today is exactly the same as what the original author described. This problem

is compounded when the original material has been lost making visual comparison

impossible.

A second reason taxonomic discrepancies occur is due to intra-specific variation.

Small variations in the shape or ornamentation of a carapace may be mistakenly used to

describe a separate species. Similarly, if a species is wide-spread it might have been

described as a new species by an author who was unaware that the species had already

been described in another region. Palmoconcha agilis (RUGGIERI, 1967) and

Palmoconcha guttata (NORMAN, 1865) may be an example of this (see Palmoconchu

agilis in Chapter 4: Taxonomy for explanation).

Similarly, regional variations in names, or naming preferences of researchers,

further complicate the taxonomy. For example, the same species may be known by

different names in North America and Europe. A taxonomic harmony is greatly needed

and some members of the ostracodology community arc currently working to achieve

this.
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2.6. Counting Ostracods

Ostraco ds have nine growt h stages: 8 j uvenile stages and one ad ult stage

(Athersuch et al., 1989). Thus, one individual ostracod may contribute up to 18 valves to

the sediment over its lifetim e. It is impossible then to reall y know how many individuals

are actually represented in a sample because it will usually contain disarticulated valves

as well as articulated carapaces and probably vario us ju venile stages . In this study one

valve (i.e., half of a full carapace) is counted as I . A full carapace is count ed as 2. This

simple counting method is a generally acce pted prac tice (Boomer et al., 2003) .

2.7. Environmental Assessments for Individual Species and Assemblages

The eco log ical affinities of the ostracods present in this study are mostly well­

known and doc umented. This information was obtained from numerous sources. The

main reso urce tex ts used includ e Puri et al. (1964), Schornikov ( 1964, 1966, 1969),

Bonaduce et al. ( 1975) , Athers uch et al. (1989), Stancheva ( 1989), Boomer et a l. ( 1996,

2005 ,20 10) and Opreanu (200 8).

In addition to the above literature, the afo rementioned Drs. Horne (Q ueen Mary

University, United Kingdom) and Stoica (Univers ity of Bucharest, Romania) also

provided assis tance regar ding the eco logica l affi nities of the spec ies recove red from core

MAR05-50.

2.8. Calib ra t ion of Radiocarbon Dates

A total of fourtee n radiocarbon ages were obtained from core MAR05 -50P and

two from core MAR05-51G. These dates are presented in Chapter 3. Eight of the

uncal ibrated dates were originally publ ished by Flood et al. (2009) .
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All dates have been calibrated to calendar years before present (cal yr BP) using

the Marine09 calibration curve (Fig. 1.5) and the OxCal program maintained by the

University of Oxford. The Marine09 calibration curve has a built-in reservoir correction

of 405 yr. The dates were calibrated using reservoir ages suggested for the Black Sea.

For dates older than 7100 14Cyr a 6 R value of -125 yr BP equaling a 280 yr reservoir age

was used, as suggested by Soulet et al. (2011). For 14Cdates younger than 7100 yr, a i\R

value of 10 yr BP was used to make the reservoir correction 415 yr, as suggested by Siani

et al. (2000). Other authors have since used a 300 yr reservoir correction lor dates older

than 7100 14C dates as also described in Soulet et al. (2011). This small difference (i.e.,

20 years) in reservoir correction would not have a significant effect on the calibrated

radiocarbon dates. For a full explanation of reservoir corrections see Soulet et al. (2011).

2.8.1. Age Profile Con struction

The original micropaleontological and sedimentological data were converted from

the depth domain into age domain using the software Ager and Timer. First, the program

Ager assigned an age to each sample depth based on linear interpolation (and

extrapolation) between calibrated radiocarbon dates obtained from carbonate fossils in the

core. The program Timer then used the output of the Ager program to create a time series

over equal increments as specified by the user. In this study, a IOO-year increment was

used in the depth to age conversions. The ostracod data were recalculated at every 100

year time-step. The conversions from the depth domain to the age domain were done by

supervisor Dr. Ali Aksu. The results are discussed in Chapters 4 and 5.

2.9. Statistical Methods
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2.9.1. CONISS Clu ster Analysis

Cl uster ana lysis is a stati stical techn ique whic h arranges objec ts (in th is casco

species) into two or more gro ups (ca lled cluste rs) based on var iab les (R-mode) or samp les

(Q-mode). The purpo se is to de linea te groups which are more "s imi lar. or re lated in some

way (i.e.• commo n physical. chemica l and/or biological properti es) to eac h other than to

those in other clusters. This techniqu e has become useful in taxonom y because it

removes the element of subjec tivity (Dav is. 1973).

Cluster analysis starts with a data matri x. where variables and samples are placed

in rows and columns. This data matri x is ana lysed and a table is con structed where

variab les are both rows and co lumns and the numb ers in the tabl e are measures of

similarity or di fferences between the two va lues of the respec tive variables (in this case .

spec ies; Davis, 1973). This table is known as the si milarities matrix and lists the

similarities between variab les as distances. There are var ious options in the

determination of the similarities matrix. such as squared Eucl idian distance optio n. Gower

similarity coefficient option , Man hatta n distance opt ion , etc. In this thes is. the Eucl idian

dis tance is used in the determin ation of the simi larities matri x.

After the dista nces betwee n variables have bee n found. the next step in the cluster

ana lysis is to divide the varia bles into gro ups based on the above calcul ated distances.

Aga in, a numb er of options are ava ilable to do this. such as the flat meth od , hierar chical

clusterin g method , and so on. In th is thesis , the hierar chical c luste ring method is used to

divide the var iables into groups.

The result s of the cluster ing techniqu e are best presented using a dend rogram (o r

binary tree). The var iab les are represented as nodes in the dend rogram and the branches
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illustrate when the cluste r method joi ns subgro ups conta ining that va riable. The length of

the branch indica tes the distance (or measure of simi lar ities) between the subgro ups when

they are joi ned (Davis , 1973). Different method s exis t for computing the dis tance (or

meas ure of similari ties) between subgro ups at eac h step in the clu stering. Single linkage

(a lso known as the nearest ne ighbor) com putes the distance between two subgro ups as the

mini mu m distance (or measure of simi larities) between any two memb ers of oppos ite

gro ups. Co mplete linkage (a lso known as the furthes t neighb or) computes the distance

between subgro ups in each step as the maximum distance between any two mem bers of

the different gro ups. Average linkage (also known as the ce ntroi d meth od) co mputes the

distance between subgro ups at eac h step as the average of the distances betw een the two

subgro ups. Single link age is used in this thesis. A dend rogram that clear ly dif ferenti ates

gro ups of objects will have sma ll distances in the far branches of the tree and large

differences in the near branches.

CON ISS is a Co nstrai ned Incremental Sums of Squares clu ster ana lysis subroutine

which is run wi thin the Tilia softwa re. The techn ique was descr ibed and a FORTRAN

progra m publ ished by Gri mm (1987). The curre nt impl em entat ion in Tilia is a C version

of the program . CON ISS was run on four data sets: (i) compl ete os traco d data in de pth

domain, (i i) complete ostraco d data in age domain, (iii) domin ant species in the de pth

doma in with less abundant species not exceeding 5% of the sum at any level remove d and

(iv) dom inant spec ies in the age domain with less abundant species not excee ding 5% of

the su m at any level remove d. The result s are discussed in Chapters 5 and 6.

2.9.2. Q- and R-Modc Factor Analy sis
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Q- and R-mode factor analyses were run on column-normalized data. Column

normalization is a critical step because factor analysis is highly affected by the frequency

distribution of the data. Dominant species will be much favored over minor and auxiliary

species. To prevent this discrimination we go through a column normalization procedure

(Davis, 1973). The minimum value in each column is subtracted from the values, making

the smallest value zero, then these values are divided by the maximum value in each

column, making the biggest value 1. The result is that all the value in the data matrix

range from a maximum of 1 to a minimum of O. Thus, there are no predominant variable

or minor variables, allowing the program to extract relationships between variables and

samples that otherwise may have been undetected.

After column normalizing the data factor analysis was run on the data requesting

that the program initially extract factors which should account for 98 % of the total

variance, leaving 2 % as random (Fig. 2.3). Moving to the right in Figure 2.3, the

variance values drop and Catell's scree test says to drop all values after the "elbow"

where the values begin to drop-off (Catell, 1966). Finally, the five most significant

factors were extracted which account for 82.8 % of the total variance. A rotation, in this

case orthogonal, of the retained factors generally follows this selection step (Abdi, 2003).

In this case Varimax rotation was used.

Factor analysis first produces a correlation coefficient matrix from a complex data

set. The program then uses this correlation coefficient matrix to extract a small number

of hypothetical samples (Q-mode) or hypothetical variables (R-mode) that explains a

large proportion of the total variance in the data set. The program used was written by

Klovan (1971). It performs both Q- and R-mode factor analyses during the same run.
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Figure 2.3. Plot showing the original factors acco unting for 98 % of the total variance

extrac ted from the depth domain data (green line) and the rema ining 5 factors considered

most significant (blue line) after applying Catell's scree test (thick black line).
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The numb er of hypothetical samples. hypothetical variables as well as the amount of

variance to be exp lained by the factors is co ntro lled by the opera tor. The factor analysis

results are presented in Chapters 5 and 6.
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CHAPTER 3

STRATIGRAPHY AND AGE MODEL

3.1. Core Description

Co res MA ROS-SOP and MAR OS-SIG recove red a succession o f late-Qu atern ary

sedime nts on the easte rn bank of a subma rine channe l north of the Bosph oru s exi t (Fig .

1.4; f ig. 2.2) . The origi na l core descr iption s we re done by supe rv isor Dr. A li Aksu and

were publi shed in f lood et al. (2009). The compos ite co re (co nstr uc ted by adding the top

50 em of MA ROS-S IG to the top of MAROS-SOP) is 787 em lon g (Fig . 3. 1). Th ree

lithostrat igraphi c un its are defined .

In the co mposi te core MAROS-SO the sedime nt is mainly silt w ith a mean grai n

size of 5.5 rpat the bottom of the core and 6.5 rpat the top . There is upward lining unt il

~SOO em and then slight coarsening upward s. Unit 3 ex tends from the base of the

co mposi te co re to a dep th of 695 ern (645 em in MAR OS-SOP) the sediment is

inte rbe dded silty mud and gra ded bed s of coarse silt to mainly very fine sand (F ig. 3. 1;

Flood et aI., 2009). Th e brackish water bivalve Dreissena is abunda nt in some of the

gra ded bed s. Flood et al. (2009) interpreted this par t of the core as a post-Y oun ger Dryas

tran sgressive seque nce . These bed s are similar to the laminated sedime nts below

reflec tio n surface U I in MA R02 -4S described in Evans (2004) and Hiscott ct a l. (2007)

whic h are interpr eted to be stor m-influence d sha llow wate r deposit s (Eva ns, 2004).

At 695 em depth in the comp osit e core there is a local uncon fo rmity referred to as

the U I reflec tor (Fig . 3. 1). This surface was inter preted by Floo d et al. (20 09) to have

ex isted as a sea bed omiss ion surface unt il the beginnin g o f levee growth in the sub ma rine
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Figure 3.1. Illustrations of cores MA R05-50 p and MA R05-5 1G (Linega r 20 12). The top

50 em of co re MA R05-5 1G is added to the top of co re MA R05-50 P to crea te a comp osite

core herein refer red to as MAR 05-50. Numbers to the right of the co lumn indicate

ca librated dates used to constr uct the age model. The da tes in ita lics are previously

unpublished (from Linegar . 20 12).
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channel north of the Bosphorus exit. The authors stated that development of this

erosional surface might have been done under an early vigorous Rim Current prior to

additional scouring beneath the earliest saline inflow.

Unit 2 begins above the unconformity u, (695 em composite depth) there is sharp

facies change to moderately bioturbated silty mud (:S 10% sand) with scattered marine

mollusc shells above a composite depth of 513 em, Flood et al. (2009) interpreted these

sediments as a levee succession. The first available radiocarbon date above unconformity

Ul is 7570 ± 40 yr BP (uncalibrated) at 675 ern depth in the composite core. Unit I

extends from 95 cm to the top of core MAR05-50 and is different from Unit 2 on the

basis that it is color banded. Bioturbation is only moderate in core MARO-50 and not

interpreted to be a major factor affecting ostracod distribution.

3.2. Radiocarbon Dates

A total of fourteen radiocarbon dates were obtained from these two cores, two

from core MAR05-51G and twelve from MAR05-50P . These radiocarbon dates were

calibrated to calendar years (cal yr BP) using methods described in Chapter 2. Table 3.1

lists all the raw and calibrated radiocarbon dates, With the exce ption of 550, 620 and 625

ern (raw depths), these dates were previously published in Flood et al. (2009).

3.3. Age Model

Nine of the fourteen radiocarbon dates from cores MAR05-50P and MAR05-51G

were used to construct an age model for composite core MAR05-50 (Table 3.2; Fig. 3.2).

The date at the top of the core is assumed to be zero. The dates at 50, 695 and 696 ern

were ext rapolated and/or interpolated using constant sedimentation rates between dated
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Ta b le 3 .1. A ll radi ocarbon date s obta ined fro m co res MARaS-SOP and MAR05-51G . The materi a l dated , the orig inal

radio carbon date s and the cal ibrated dates are give n. The sample depths shaded in grey ind icate dates which were not used in

the age mo de l. The dept hs give n are relati ve to the individu al cores. For de pths in th e comp osi te cor e MA Ra S-50 add 50 em

to dept hs in core MA RaS -SOP.

Core Raw Depth (em) Dat ed M a te ria l 14C Dat e (yr BP ) Mean cal yr BP M e dian ca l yr B P Lab #

MAR05-50P 44 Bivalve fragments 2590 ± 90 2250 ± 120 2250 TO 13095

MA R05-5 1G 145 Bivalve frauments 3280 ± 60 3105 ±90 3 105 TO 1310 1

MAR05-50P 180 Mvti lus ialloorovi ncia lis 3240 ±50 3050 ±80 3050 TO 13096

MA R05-50P 200 Mvtil us rallonrovinc ialis 3590 ± 15 3470 ±40 3470 UCIAMS-96128

MAR05-50P 279 M tilus rallonrovin cia lis 3250 ± 70 3065 ± 100 3065 TO 13097

MA R05-50P 310 Myti lus iallop rovincia lis 4 130 ±20 4 175 ±45 4 175 UCIAMS-96 127

MAR05-50P 340 Mvtilus iallonrovi ncla lis 4320 ±60 4440 ± 90 4440 TO 13098

MA R05-50P 435 M tilus iallonrovincia lis 5330 ±70 5695 ±80 5685 TO 13099

MAR05-50P 550 Foraminifera/Ostracod s 7710 ± 40 8300 ± 50 8305 BETA305920

MAR05-50P 620 Foraminifera/Ostracod s 8540 ±50 9335 ±65 9340 BETA30592 1

MAR05-50P 625 Foraminifera/O stracods 7570 ±40 8160 ± 60 8160 BETA307981

MAR05-50P 670 Dreissena to lvmornha 9880 ± 110 10935 ± 150 10950 TO 13100

MAR05-50P 737 Dreissena spp. - pristine 10270 ± 90 11500 ± 175 11490 TO 12915

MA R05-50P 737 Bivalve fragments-worn 32190 ±280 35390 ±450 35255 TO 12734

46



Table 3.2. The age model for comp osite core MA ROS-SO.

Depth (em) Age (cal yr BP)

0 0

50 1956

94 2250

230 3050

250 3470

360 4175

390 4440

485 5695

675 8 160

695 84 19

696 10733

720 10935

787 11500
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intervals. Unco nfor m ity a l occ urs betw een 695 and 696 ern (Fig. 3. 1).

3.3.1. Dates Not Included in the Age Model

Two dates were obta ined from 737 em depth . One sample cont ain ed pristi ne

Dreissena shells and gave an age of 11500 ± 175 cal yr BP (Ta ble 3.1). Th e other sample

contained some sma ll pri stin e bivalves mixed in w ith num erou s wo rn, pitt ed bivalve

frag me nts . This sample gave an age of 35390 ± 450 cal yr BP . Beca use the latt er sample

appea red to be much older and co nta ined rework ed shells thi s date was disregarded in the

fina l age model.

Two newl y obtai ned dates from 550 and 620 cm raw depth s were also left out o f

the age model. Sedime nts at these depth s lack ed any large pri stin e she lls suitable for

dat ing. A ll of the pristin e os traco ds and foram inif era we re coll ected fro m the > 63 urn

frae tion of the - 25 crrr' sample but were not abunda nt eno ugh to fulfill the weight

requi rem ent of the datin g laborator y. To obtain the desired sample size the autho r need ed

to coll ect additiona l shell frag me nts which were pitt ed and worn. These two dat es ended

up being o lde r than a date obtained fro m pris tine fora minife ra at 625 em raw depth . Thus

these dates we re deem ed unr eli abl e and not includ ed in the age mod el.

The date fro m 279 em ra w depth turn ed out to be only 14 years o lde r than the da te

fro m 180 cm raw dep th. To de ter mine if thi s dat e was reli abl e two more she lls from 200

and 3 10 cm raw depth s were sent for datin g. Th ese new dates were con sistent wi th other

dat es fro m the core but not with the ea rlier date from 279 em raw dep th . There fore th is

date wa s j udge d to be inaccu rat e and was not includ ed in the age mod el.

Th e co mpos ite core was co nstruc ted usin g only the top 50 em from core MAR0 5-
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51G. The date from 145 em raw depth is from core MAR05-5 IG and thus not included in

the final age model. It also seems too old relative to the other dates but there might have

been some compres sion of sediments in the gravity core to exp lain this disparity.

3.4. Sedi me ntatio n Rat es

Sedimentation rates at the core site over the last 11500 cal years were calculated

based on the radiocarbon dates used in the age model. The ave rage sedimentation rate for

the whole of core MAR05-50 was 70 em ka' i. I3elow unconformity U I the sedimentation

rate was 120 em ka'i . The dates above unconformity U I show a decrease to 80 ern ka' i

until 4440 cal yr BP. Major ct al. (2002) also noted a decrease in sedimentation rate at

8000 cal yr I3P in cores from the northwestern I3lack Sea.

After 4440 cal yr I3P the rate increased again to 110 em ka'i until 4175 cal yr BP

and then 130 em ka'i until 3470 cal yr I3P. It slowed down again to 50 em ka' i between

3470 and 3050 cal yr I3P. The highest rate of sedimentation occurred between 3050 and

2250 cal yr BP when it inc reased to a relatively very high rate of 0.68 em yr' .

The base of core MAR05-50 is dated at 11500 cal yr I3P and it is 787 em long.

Assuming the date at the top of the core is 0 cal yr BP, each centimeter of sedi me nt

represents an ave rage of 14.6 years . The core was sampled every 10 em giving an

average temporal resolution of - 146 years.

3.4.1. O nse t of Ma r ine Infl ow int o th e Sou thwest ern Black Sea Shelf

According to Major et al. (2006), strontium isotope values from ca rbo nate shells

in northwestern Black Sea cores reflec t a connection with thc global ocean starting at

- 9150 cal yr I3P (recalibrated from 8400 14C ka BP and their 9430 cal yr I3P) and marks
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the beginnin g of sedime ntation on the Black Sea co ntinenta l shel f. The ea rlier date

pro pose d by Ryan et a!' ( 1997) of7570 ca l yr BP is now given as the tim e when salinities

became sui table for the co lonization of the shelf area by fauna wi th marine affinities and

not the date of the marin e incurs ion itsel f (Majo r et al., 2006). The assess me nt of Major

et a!' (2006) is predicated on the notion that the Black Sea shelves were subae ria lly

exposed unt il 9 150 ca l yr BP. This has been cha llenged by Hiscott et a l. (2007) and

others (e.g ., Aksu et al., 1999, 2002a ; Giosan et al., 2009; Mud ie et al., 2007, Yank o­

Hom bach , 2007 ; Yank o-Hombach et al., 2007) who provided ev ide nce for inund at ion of

the shelves by at least ~ 10000 ca l yr BP or ea rlier with no subsequent regress ion from

then unt il present. Sedime nts from 9 150 cal yr BP are " missi ng" from core MAR0 5-50

because of the hiatus rep rese nted by uncon formity U I which spans - 8500- 10600 cal yr

BP.
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CHAPTER 4

TAXONOMY

4.1. Ostracod Species Found

A total of 45 ostracod species were recovered from the samples from cores

MAR05-50P and MAR05-5IG . Five specimens have only been identified to genus level.

Four have been identified using the abbreviation "sp. aff" (species (((fillis) which means

the identity of the species is unknown but strongly resembles another species. There arc

also three "unknown species" which could not be identified by the author. A full

systematic taxonomy and SEM plates follows in section 4.2. Below is a full list of all

species identified from both cores in alphabetical order:

Amnicythere caspia (L1VENTAL. 1930 nomen nudunn

Amnicyt here cymbula (L1VENTAL. 1929)

Atnnicythere olivia (U VENTAL, 1938)

Antnicythere pedi formis (SCHOR IKOV, 1966)

Antnicythere propinqua (L1VENTAL, 1929)

Amnicy there quinquetuberculata (SCHWEYER, 1949)

Aninicythere striatocostata (SCHWEYER, 1949)

A11111 icythere subcaspia (L1VENTAL, 1929)

Amnicythere volgensis (NEGADAEV, 1957)

Buntonia sub ulata rect angularis RUGGIERI, 1954

Bythocythere sp. SARS. 1866

Callistocy there diffusa (MOLLER, 1894)
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Cando na schw eyeri SCHORNIKOV, 1964

Carinocy there is carinata (RO EM ER, 1838)

Casp iella acron asuta (UVENT AL , 1929)

Cost a ed wards! (RO EM ER, 1838)

Cuneocy there semip unctata (BR ADY , 1868)

Cytheroma variabilis MOLL ER, 1894

Cy theromorp ha sp. atI/ilscala (BRADY, 1869)

Cytheropteron sp . afr oinornatum BRADY & ROB ERTSON, 1872

Euxinocy there (Ma etocytherej lopatici (SCHORNIKOV, 1964)

Euxinocy there bacuana (UV ENT AL, 1938)

Euxinocythere sp. aff re licta (SCI-IORNIKOV , 1964)

Hemicyth erura sp. ELOfS ON, 1941

Hiltermannicyth ere rubra (M OLL ER, 1894)

Lepto cyth ere devexa SHORNIKOV, 1966

Leptocyth ere mult ipunctata (SEGUENZA , 1884)

Leptocyth ere sp. 1 SARS , 1925

Loxoconcha immodulata ST EPANAITYS, 1958

Loxoconcha lep ida ST EPANAITYS, 1962

Loxo concha littoralis MOLL ER, 1894

Loxoconcha spp. juveni1e s*

Loxo concha subl epida STANCH EVA, 1989

Palm oconcha agilis (R UGGI ERI , 1967)

Para cypri s polita SARS , 1866
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Paradoxosto ma simile MOLLER, 1894

Pontocy there sp. DUBOWSKY, 1939

Pterygocyth ereisjonesii (BAIRD, 1850)

Scleroch ilus gewe muelleri DUBOWSKY, 1939

Semicytherura sp. WAGNER, 1957

Tyrrhenocy there amnico la donetziensis (DUBOWSKY, 1926)

Unknowns p. I

Unknowns p.2

Unknown sp. 3

Xestoleberis sp. aff. cornelii CARAION, 1963

*The author was unable to distinguish between the j uveniles of Loxoconcha

lepida and Loxoconcha sublepida. Therefore this category consists of all the juveniles of

these two species.

4.2. Systematic Taxonomy

For a guide to ostracod morphological features see section 4.2.1. Plate I (also see

Athersuch et al., 1989 and Horne et al., 2002). The sample depths li'OI11 each individual

eore at which each species was found is given. fo r each species. the morphological

characteristics are described as well as the ecological affinity and geographical

distribution if known. A list of synonyms is included for each species. In a few cases.

the details for the original citation are omitted because the original publications could not

be obtained through the inter-library loans service at Memorial University of

Newfoundland.
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A mnicyther e caspia (LIVENTAL, 1930 nomen nudum )

Phlte2, Fig. I.

1930Cythere caspia; Livental, details unknown.

1961 Leptocyt here caspia Livental; Agalarova et al., p. 108, pI. 63, figs 4- 6.

2010 Amnicythere casp ia'l (Livental nomen nudum) ; Boomer et al., p. 128, pI. I, fig. 15.

Found in: 580, 630-650 em depth in core MAR05-50P.

Morphology: Small species (450- 550 11m). Subovate elongate carapace. Valves are

smooth with a c-shaped rib on the posterior-lateral surface which is parallel with the

posterior margin. Anterior and posterior margins compressed.

Distribution and ecolo gy: A Ponto-Caspian species. Boomer et al. (20 I 0) found this

species in Late Glacial sediments from the western Black Sea.

A mnicythere cymbula (LIVENTAL, 1929)

Plate 2, Figs 2-3.

1929 Leptocyt here cymbu la n. sp.; Livental, p. 21, pI. 1, fig. 25.

1966 Leptocyt here cymbu la (Livental); Schornikov, p. 35, fig. 3.

1989Amnicythere cymbula (Livental); Stancheva, p. 23, pI. 2, fig. 3.

1996 Leptocy there cymbula Livental; Boomer et al., p. 81, fig. 4A-H .

2008 Amnicythere cymbula (Livental); Opreanu, p. 59, fig. 3.

Found in: 520, 610- 650, 690, 700 em depth in core MAR05-50P.

Morphology: Small to medium species (450-500 ~1l11 ) . Subreniform elongate carapace.

Valves almost smooth to finely pitted. Some valves possess a small "r idge" on the lateral

surface of the posterior-ventral margin which may extend slightly along the ventral
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margin . Ante rior and posteri or margins compr essed . Margin a l pore ca nals s imple or

bifurcated .

Distribution and ecolo gy: Sc horni kov ( 1966) found this species living in the Dniestcr

River. Don Delt a and Cas pian Sea . Boom er et al. ( 1996) found thi s botto m-dwe lling

species in the Ara l Sea in wa ter less than 27 m deep and w ith a salinity range o f 8- 10 psu .

Opreanu (20 08) remark s this spec ies is found today in lagoon s and estua ries in the Ponto­

Cas pian regio n. Stancheva ( 1989) found thi s species in Middle- Upper Pleistocene

sedime nts in the western Black Sea .

Remarks: Stanc hev a ( 1989 ) gives a length o f 600- 675 um for thi s species. Th e

spec ime ns fo und in this study are smaller and may be A- I instars.

A mnicytltere olivia (L1VENTAL 1938)

Plate 2, Figs 4-5 .

1938 Cythere olivia; Livental, p. 62. pI. I. figs 27-29.

1961 Leptocythere olivina Live nta l; Aga larova et al., p. 84. p. SO.fig. l a.b. pI. 51. figs 1­

Ja .b, pI. 57, figs 4, Sa.b.

1962 Leptocyth ere olivina Livental; Mandelstam et al., p. 194. pI. 30 , fi gs 9, 10.

2008 Amnicy there olivina (Live nta l); Oprea nu , p. 59, fig. 5.

2010 Amnicythere olivia (Liventa l); Boomer et al., p. 128, pI. 2, figs 4- 6. 9.

Found in: 340 ,390,490-5 70,590-730 ern depth in core MAR 05-50P .

Morphology: Me dium species (500- 600 urn ), Subquadrate ca rapace. Conspicuous ly

pitted with deep fossae. Dorsal margin stra ight. Anterior and posteri or margins tapered .

Posterior margin tap ered wit h two distinct depression s which may be pitted or smoo th.
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Distribution and ecolog y: Boomer et al. (20 10) found this species in Late Glacia l

sediments in the western Black Sea . Opreanu (2008) also found this species as fossils in

late Quaternary sediments on the Romanian coast of the Black Sea .

Remarks: Livental originally described Cyt here olivia in 1938 from the Baku region on

the Caspian coast (Boo mer et a l., 20 10). Agalarova et al. (196 1) descr ibe Lept ocyth ere

olivina and refers to Livental (1938) as a synonym. There fore, the spe lling olivina is

probab ly a spe lling error. See Boomer et al. (20 I0) for a full exp lanation.

A m nicyt here pediformis (SCHORNIKOV, 1966)

Plate 2, Figs 6-7.

1966 Leptocyt here pe diform is sp. n.; Schornikov, p.33, pI. 2, figs 1- 13.

1969 Leptocyth ere pediformis Schornikov; Schornikov , p. 183. pI. 10, fig. 2.

2010 Amn icythere pediformis (Schornikov); Boomer et al., p. 128. pI. I. fig. 13.

Found in: 540,550, 600- 640, 660, 690 em depth in core MAR05-50P .

Morphology: Small spec ies (400-450 urn). Dorsal margin straight. Ventral margin

slightly sinuous. Evenly ornamented with tine punctae which fin e slightly toward all

margins, especially the anterior. Posterior and anterior margins com pressed .

Distribution and ecolog y: Boomer et al. (20 10) found this species in Late Glacial

sediments in the western Black Sea . They remarked that this species is also found in

contempora neo us sediments of the Caspian Sea. Schornikov ( 1966) also found this

species only as a fossil in the Azov-Black Sea basin.

A 1Il/licyth ere propinqua (LIVEN TAL 1929)
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Plate 2, Figs 8-9.

1929 Cythere propinqua; Livental, p. 20, pI. I, figs 21-2 4.

2010 Amnicy there propinq ua (Livental); Boomer et al., p. 129. pI. 1, fig. 14.

Found in: 070 ern depth in core MAR05-50P; 110 em depth in core MAR05-51G.

Morphology: Medium species (550-600 urn). Carapace elongate, narrow and smooth

with no ornamentation. Rounded anteriorly and posteriorly. Ventral margin slightly

sinuous. I-Ieight of valve almost uniform but posterior margin slightly tapered.

Distribution and ecology: This species is living today in the Caspian Sea, Aral Sea,

Black Sea and Azov Sea. Boomer et al. (20 10) recorded this species in Quaternary

deposits ofthe western Black Sea.

Amnicythere quinquetuberculata (SCHWEYER, 1949)

Plate 2, Figs tu-n.

1949 Cythere quinqu etubercula ta sp. n.; Sc hweyer, p. 27, pI. 9, figs 5, 6.

1964 Leptocythere quinquetuberculata (Schweyer) ; Schornikov, p. 1285, fig. 7.

1969 Leptocythere quinq uetuberculata (Schweyer); Schornikov, p. 187, pI. 15, fig. 2.

1989 Amnicythere quinquetuberculata (Schweyer); Stancheva, p. 25, pI. 7, fig. 8.

2002 Amnicythere quinquetuberculata (Schweyer); Tunoglu, pI. 3, fig. 6.

2004 Callistocythere quinquetuberculata (Scweyer); Evans, p. 18, pI. 1, figs 4, 5.

2008 Amnicy there quinque tuberculata (Schweyer); Op rea nu, p. 59, fig. 4.

Found in: 340,490-660 ,680-730 cm depth in core MAR05-50P.

Morphology: Medium species (500-600 urn). Subquadrate carapace. Sexually

dimorphic with the male being more elongate. Dorsal margin straight. Anterior margin
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compressed. Posterior margin compressed and tapered, more so in female. Valve

conspicuously ornamented with five large tubercles pitted with large shallow fossae.

Distribution and ecology: Schornikov (1964) recorded this species living in the Danube

and Don deltas and the Caspian Sea. Opreanu (2008) reported this species living in a

group of saline lakes near the Romanian Black Sea coast south of the Danube Delta. She

also remarked that this species prefers depths less than 5 m and reduced salinities of

around 5 psu. Stancheva (1989) found this species in Lower-U pper Pleistocene deposits

in the western Black Sea.

Amnicythere striatocostata (SCHWEYER, 1949)

Plate 2, Figs 12-13.

1949 Cythere stria tocos tata sp. n.; Schweyer, p. 27, pI. 9, fig. 8.

1961 Leptocyt here stria tocosta ta (Schweyer); Agalarova et aI., p. 108, pI. 63. figs l-Ba.b.

1964 Leptocy there stri atocostata (Schweyer); Schornikov, p. 1284, pI. 6. figs 1-1 5.

1969 Leptocythere stria tocostata (Schweyer); Schornikov, p. 187. pI. 14, fig. 3.

2004 Leptocy there stria tocostata (Schweyer); Evans, p. 31, pI. 3. fig. 5.

2008 Amnicy there stria tocost ata (Schweyer); Opreanu, p. 58, fig. I .

2010 Amnicy there striatocostata (Schweyer); Boomer et al., p. 125, pI. I, fig. 10.

Found in: 530,600,620, 700 em depth in core MAR05-50P.

Morphology: Carapace small (450-50 0 urn) and elongate. Ornamented with parallel

ribs which run longitudinally from the posterior margin and fade toward the anterior.

Valve is otherwise smooth and thin. Anterior margin is compressed.
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Distribution and ecology : Opreanu (2008) reported this species found as a fossil in

Pliocene to Recent deposits all around the Ponto-Caspian basins. This species is living

today in the Caspian and Black Seas (Stancheva, 1989).

Amnicythere subcaspia (L1VENTAL, 1929)

Plate 2, Figs 14-15.

1961 Leptocyth ere subcaspia Livental; Agalarova et aI., p. 102, pI. 59, figs 6'l,b.

Found in: 410, 490-510 , 530, 550- 570, 590- 600, 630-66 0, 690, 730 em depth in core

MAR05-50P.

Morphology: Small species (400--450 urn). Similar to A.ca.\pia but less elongate.

Anterior margin rounded and compressed. Posterior margin approximately two thirds the

width of anterior margin. Valves smooth with a raised c-shaped "ridge" or rib which

parallels the posterior margin. This ribbing may extend subtly to the posterior-lateral

surface and contains smaller ribbing surrounded by the more prominent "ridge".

Distribution and ecology: Presumably a Ponto-Caspian species. Illustrated by

Agalarova et al. (1961) in Ostracoda FOIl1 Pliocene and post-Pliocene deposits (It

Azerbaijan [in Russian].

Remarks: The drawings in Agalarova et al. (1961) appear exaggerated.

Amnicythere volgensis (NEGADAEV, 1957)

Plat e 3, Fig. I.

2011 Amnicythere volgensis (Negadaev); Schornikov, p. 180, fig. 1.

Found in: 510,6 10,620,69 0, 720 em depth in core MAR05-50P.
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Morphology: Medium to large species (- 700 urn). Rounded anterior margin strongly

compressed. Pitted with large fossae. One or two bumps or tubercles at posterior-ventral

margin.

Distribution and ecology: Found as a fossil in Pleistocene and Holocene sediments of

the Back Sea and still living in the Caspian Sea (Schornikov, 2011).

Buntonia subulata rectangularis RUGGIERI, 1954

Plate 3, Figs 2-3.

1969 Buntonia subulata rectangularis Ruggieri; Schornikov, p. 190, pI. 17. fig. I.

2011 Rectobunt onia rectangttlaris (Ruggieri); Cabral et al., fig. 2, #7.

Found in: 70, 170, 220, 230, 290, 310, 340 em depth in core MAR05-50P; 10, 40, 120,

130 em depth in core MAR05-5I G.

Morphology: Small to medium species (500- 525 um). Carapace ovate and inflated.

Valves smooth in centre. Concentric ribbing parallel to posterior and anterior margins.

Finley pitted between ribbing. Vertical muscle scar pattern can sometimes bc sccn.

Distribution and ecology: Cabral et al. (20 II ) found this species in Recent sediments on

the continental shelf of western Algarve, Portugal.

Bythocythere sp. SARS, 1866

Plate 3, Figs 4-5 .

1969 Bythocythere turgida Sars; Schornikov, p. 209, pI. 35, fig. I (pars) (non Sars, 1866).

Found in: 0, 10, 30, 40, 70, 80, 100, 110, 170, 180, 230-25 0, 270, 290-40 0, 420 cm

depth in core MAR05-50P; 10, 30-50 ,80,100,1 10,1 30 em depth in core MAR05-51G.
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Morphology: Large spec ies (750- 800 urn), Subrhombo ida l and strongly inflated

cara pace . Sma ll caud al process above mid-h eight. Valves ornamented with very li ne

reticu lation and wavy " lines" which give a wrinkled appeara nce . Poster ior margin

strongly compresse d.

Distribution and ecolog y: Presum ably marin e since other spec ies of Byth ocyth ere such

as B. robinsoni, B. intermedia and B. zetlandica are marin e sublitto ral species found

aro und the coas ts of Britain and northwestern Euro pe (A thersuch et al., 1989).

Callistocythere diffusa (MU LLER, 1894)

Plate 3, Figs 6-7.

189.t Cyt here diffusa; Mu ller, p. 354

1969 Callistocythere diffusa (Muller); Schornikov , p. 189. pI. 16. fi g. 4.

Found in: 10, 30. 40, 60-80, 170, 270 em depth in core MA R05 -50 P; 10, 60. 100. 110

ern dept h in core MA R05 -5 1G.

Morphology: Medium spec ies (550 -600 11m). Ren iform cara pace wit h the anter ior

margin curved down ward . Heavily ornamented with irregu lar fossae and indentations

surrounded by large. round ed rnuri. Posteri or margin compresse d.

Distribution and ecology: Marine spec ies . Puri et al. ( 1964) reco rded th is spec ies living

in the Gulf of Na ples associated with Posid onia and ca lcareo us algae up to 100 m water

dept h. Bonaduce et al. ( 1975) recorded this spec ies from the Adriatic Sea up to 119 m,

main ly on mediu m sa nd. They also mention th is spec ies being foun d in the Tyrrhenian

Sea. Schornikov ( 1966) found this spec ies to be commo n in the Black Sea at dept hs of

13-70 m.
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Candona sch weyeri SCHORNIKOV, 1964

Plat e 3, Figs 8-9.

1964 Cando na schweyeri nom. n.; Schornikov, p. 1277, fig. I.

1969 Cando na schweye ri; Schornikov, p. 173, pl. 5, fig. I.

2004 Candona aff. schweyeri Schornikov; Evans, p. 19, pl. I, fig. 10.

2008 Candona schweyeri (Schornikov); Opreanu, p. 61, fig. 10.

2010 Cando na schweyeri Schornikov; Boomer et al., p.124. pl. I. fig. 7.

Found in: 340. 490,5 10- 730 em depth in core MAROS-SOP.

Morphology: Carapace large (~ I mm). Valves are smooth. elongate, evenly inflated and

very thin. Generally rounded with slightly straight anterior margin and slightly concave

ventral margin.

Distribution: Schornikov (1964) recorded this species living around the Danube,

Dniester and Don deltas and in the Caspian Sea.

Remarks: Due to its thin fragile valves. C. scltweyeri was often found as frag ments in

samples from cores MAROS-SOP and MAROS-S 1G. It was therefore difficult to count the

exact number of whole valves present.

Carinocythereis cariuata (ROEMER. 1838)

Plate 3, Figs 10-15.

1838 Cytherina carina/a sp. nov.; Roemer, p. 518, pl. 6, fig. 28.

1850 Cythere is antiqua ta sp. nov.; Baird, p. 176, pl. 20. fig. 2.

1987 Carinocy there is carina/a (Roemer); Athersuch & Whittaker, p. 97- 102.

2004 Carinocythereis carina /a (Roemer); Evans, p. 19. pI. 2, figs 2, 3.
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Found in: 0- 130, 150-400, 420-480,530-570,670 em depth in core MAROS-SOP; 10­

150 em depth in core MAROS-S1G.

Morphology: Large quadrate carapace (0.8- 1 mrn). Sexual dimorphism pronounced

with the male being more elongate and narrow. Conspicuously ornamented with three

sub-parallel longitudinal carinae which can be continuous or broken. Surface of valve is

otherwise heavily to subtly tuberculate or sometimes smooth. Prominent eye tubercle.

Anterior margin carinate and denticulate. Posterior margin spinose.

Distribution and ecology: Far-ranging species living in marine sublittoral waters at

depths 01'2-6 0 m. Today it is found around the British Isles, the Atlantic coast of France,

the Mediterranean Sea and the Black Sea (Athersuch et al., 1989). Puri et al. (1964)

recorded this species living in the Gulf of Naples associated with Posidonia (seagrass)

and algae at water depths less than 100 m.

Caspiella acrona suta (LIVENTAL, 1929)

Plate 4, Fig. 1.

1961 Casp iella acron asuta (Livental); Agalarova et al., p. 41, pI. 10, figs 1- 3, pI. I L figs

1-4 , pI. 12, figs L 2, pI. 26, fig. 6, pI. 32, fig. 2.

2005 Caspio lla acronasuta; Boomer et al., p. 178, pI. I , figs 1, 4.

Found in: 730 em depth in core MAROS-SOP

Morphology: Large species (- I mm). Smooth thick valves. Anterior margin rounded.

Dorsal margin arched. Posterior margin tapered to a point. Wide inner lamella.

Marginal pore canals simple and numerous.
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Distribution and ecology: Typica l benth ic Caspia n species. Boomer et al. (2005)

recorde d this species in Recent core tops from the southern Cas pian Basin at a current

water depth of 3 15 m. This spec ies prefers very deep water (E. I. Schornikov, persona l

com mun ication) .

Remark s: There seems to be some confus ion regarding the co rrect spe lling of th is

genus. Boome r et al. (20 I 0) said that Caspie lla is the correc t gen us name.

Costa edwards! (ROEME R, 1838)

Plate 4, Figs 2-3.

1838 Cytherina edwards! n. sp; Roemer, p. 5 18, pl. 6.

1889Cythere runcinata (Baird); Brady & Norman, p. 160, pl. 15, figs 24, 25, 30, 3 1.

1962 Cos/a edwardsii (Roemer); Ruggieri, p. 5, pl. 8, figs 1- 5.

1975 Cos/a edwa rds! (Roemer); Bonaduce et al., p. 5 1, pl. 25, figs 1- 7.

Found in: 0- 130, 150, 170, 180.2 10-330 em dept h in core MA R05-50P; 10-1 50 cm

dep th in core MAR05 -5 1G.

Morphology: Cara pace large (800-900 um), Conspicuously ornamented with three

longitudinal car inae (costae) sloping downward but not reach ing the anter ior margin .

Areas betwee n car inae can be smoo th but are ofte n heavily pitted. Anterior and posterior

margi ns are com presse d and strongly denticulate and/or spinose. Sex ual dimorphi sm is

present with the male being more elonga te and narrow.

Distribution and ecology: Marine sublittora l spec ies with a pre ference for silty

substra tes . Puri et al. (196 4) recorded this species living aro und the Island of Ischia and
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other shallow areas of the Gulf of Na ples . Bonaduc e et al. ( 1988) record ed it on the

Tunisian shelf betw een 18 and 28 m on mudd y sand with sca tte red algal veg eta tio n.

Cuneo cythere semipunctata (BRA DY. 1868)

Plate 4, Figs 4-5.

1868 Cythere sem ipunctata sp. nov.; Brad y. p. 411 . pl. 29 , figs 33-37.

1963 Cuneocy there semipunctata (Brady ); Van Morkh oven , p. 32 1.

Found in: 0, 10 ern depth in core MAR 05- 501'; 20, 40 em depth in co re MAR0 5-51 G.

Morphology: Cara pace sma ll (450-600 1.1111) and inflated posteriorl y. Posterior half o f

va lve pitt ed with large ro unded fosae, Anter ior margin smoo th, vcry compresse d and

sligh tly upturn ed . Mar ginal pore ca nals num erou s and simp le, so me times in gro ups of

fou r or five.

Distribution and ecology: Marine sublittora l spec ies often found on sandy substrates.

Athcrs uch et al. ( 1989) recor ded th is spec ies in waters aro und the coas t o f Ireland ,

Eng land and southwes t France , Th ey also rem arked that it is occasio nally found in

asso ciat ion wi th Laminaria (bro wn algae) at the low er limit of the intert idal zo ne. Sm ith

and Horn e (2002) recorded this spec ies in an es tuary on the coas t o f Wales in sa linity

range o f 30-35 psu . Bon adu ee et al. ( 1975) recor ded thi s spec ies in the Adria tic Sea on

sandy mud and si lt at depth s up to 194 m and a lways represe nted by only a few

indi viduals. T hey rem ark ed that it has a lso been fou nd in the Bay of Na ples.

Cytheroma variabilis MOLL ER , 1894

Plate 4, Figs 7-8.
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1894 Cytheroma variabilis; MUller, p. 350, pI. 26, figs 5, 9- 15.

1969 Cytheroma variab ilis MUller; Schornikov, pI. 22, fig. 2.

Found in: 0, 10,40, 60- 80, 100, 160-1 80, 200-410, 500. 550, 570 em depth in core

MA R05-50 P; 10,40, 60, 80, 90, 110 em depth in core MAR0 5-51G.

Morphology: Sma ll species (- 400 11m) with narrow, thin, inflated valves. Smoo th and

unornamented exce pt for some widely scattered pores. Anter ior margin rounded. Dorsal

margin arched. Posterior margin tapered .

Distribution and ecology: MUller originally described this species from the Gulf of

Naples. Pur i et al. (1964) also reported this species living in the Gulf of Naples

associated with Posidonia. Bonaduce et al. (1975) noted this specie s has a widely

scattered distribut ion in the Adriatic Sea to a depth of 127 m. They remarked that it is

present on all substrates but seems to prefer sandy clay and sandy silt.

Cytheromorpha sp. aff./uscata (BRADY, 1869)

Plate 4, Fig. 6.

1969 Cytheromorphafuscata (Brady) ; Schornikov , p. 181, pI. 8. fig. 3.

Found in: 570 ern depth in core MAR0 5-50P .

Morphology: Medium species (500-600 urn). Cara pace subquadra te. Valves

ornamented with small round ed fossae which tine toward the anterior margin. Anter ior

margin compressed and curved downw ard.

Distribution and ecology: Recorded by Opreanu (2003/04) in Sinoe lagoon , Danub e

Delta area . She described this species as a bracki sh, littoral species found in the Baltic

and the North Seas , Black and Azov Sea basin and in the Caspian Sea .
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Cytheropteron sp. aff. inornatum BRADY & ROBERTSON, 1872

Plat e 4, Figs 9-10.

1872 Cyt heropteron inornatu m sp. nov.; Brady & Robertson, p. 61. pI. 2.ligs 1- 3.

1989 Cytheropteron inornatu m sp. nov. Brady & Robertson; Athersuch et al., p. 226, Fig.

95. pI. 8,lig. 4.

Found in: 0, 10 ern depth in core MAR05-50P; 10. 20 ern depth in core MAR05-51G.

Morphology: Carapace sub-rhomboidal and small (-4 00 ~1I11 ) . Upturned caudal process

just above mid-height. Valves generally smooth with scattered punctae. Recognizable by

prominent pointed ala on each valve.

Distribution and ecology: Athersuch et al. (1989) wrote that little is known of the

ecology of this species. It is presumed to be marine and sublittoral.

Euxi uocythere (Maetocythere) lopatici (SCHORN[KOV, 1964)

Plat e 4, Figs 11-12.

1964 Leptocy there lopatlci; Schornikov, p. [279, pI. 2. figs 1-7, pI. 3, figs 1- 11.

2008 Euxinocythere lopatici (Schornikov); Opreanu, p. 60. fig. 7.

2010 Euxinocyt here (Maetocythere) lopatici (Schornikov); Boomer et al., p. 129. pI. 1.

figs, 9. 12, q.v. for full synonymy.

2011 Euxinocythere virgata (Schneider); Scornikov, p. 180. fig. 1.

Found in: 210, 280, 300, 530, 610, 620, 640- 670, 690, 720 em depth in core MAR05­

50P.

Morphology: Medium species (500- 550 11m). Subquadrate carapace. Valves thick

conspicuously ornamented with large rounded fossae and pits surrounded by muri, giving
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a "wri nked" appearance. Transverse ridge parallel to posterior margin. Anterior and

posterior margins compressed.

Distribution and ecology: Boomer et al. (20 10) found this species in Late Glacial to

Holocene sediments in the Black Sea. Schornikov (20 11) found E. virgat a (which the

author believes to be synonymous) living in the Caspian Sea, basins of the Don River and

Taganrogsky Bay (Azov Sea) and the Danube River Delta.

Euxinocyther e bU CIlUIlU (L1VENTAL, 1938)

Plate 4, Figs 13-14.

1969 Leptocy there bacua na (Livental); Schornikov, p. 187, pI. 15, fig. 3.

1989 Euxinocy there (Euxinocy there) bacuana (Livental); Stancheva, p. 29, pI. VII, fig. 9.

2004 Callistocythere bacuana (Livental); Evans; p. 26, pI. 1, fig. 3.

201lSCallistocy there bacu ana; Boomer et al., pI. 1, fig . 8.

2008 Amnicythere bacuana (Livental); Opreanu, p. 60, fig. 6.

2011 Euxinocy there bacua na (Livental, 1938); Schornikov, p. 180, fig. 1.

Found in: 340, 510, 520, 540, 560, 590-6 40, 660, 670. 720, 730 em depth in core

MAR05-50 P.

Morphology: Small to medium species (400-500 11m). Carapace subtrapezoidal and

strongly convex. Conspicuously ornamented with large pitted tubercles in the centre of

the valve and two transverse ridges - one at the posterior margin and one at the anterior

margin.

Distribution and ecology: Brackish species found in Holocene deposits of the Black

Sea, Caspian Sea and the Dniester River and the Don Delta. Currently living in the Black
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and Cas pian Seas (O prea nu 200 8) .

Eux inocythere sp. aft'. relicta (SC HO RN IKOV , 1964 )

Plate 4, Fig. IS; Plate 5, Fig. 1.

1964 Leptocy there relic/a sp. n.; Sc hor nikov , p. 1282, fig. 4.

1969 Leptocy there relic /a Sho rnikov ; Schornikov, p. 184 , pI. 11, fig. 1.

2011 Euxinocythere relicta (Sc ho rn ikov); Sc hor nikov, p. 180 , fig. I .

Found in: 340,5 10,540, 550,580,600-660,690-710,730 cm dept h in core MA R05 ­

50 1'.

Morphology: Sma ll species (- 400 urn). Ren iform cara pace . Va lves ge ne rally eve nly

ornamented w ith small fossae. Poster ior and anter ior margin s co mpresse d.

Distribution: Scho rni kov ( 1964) fir st described thi s species fro m delt as flowing into the

Azov and Black Sea s. Sc horn ikov (20 11) found thi s species livin g in the Cas pian Sea.

Azov Sea and several Ukrai nian es tuaries in the wes te rn Black Sea and as a fossi l or

subfos si l in the Recent sed imen ts o f the Black Sea and Aegean Sea .

Hemicytherura sp . ELOrSON, 1941

1}late 5, Figs 2-3.

Found in: 220, 340 em de pth in core MAR 05-50P .

Morphology: Sma ll species (- 400 urn). Cara pace con sp icu ously orna me nted with large

fossae which o ften have seco ndary ret icul at ion wi thin. Ca uda l process above mid-h eigh t.

Distribution and ecology: Presumably marine, littoral , phytal species like other

Hemicyth erura species such as H. cellulosa and H. hoskini (A thers uch et al., 1989).
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Hiltermannicythere rubra (MOLLE R, 1894)

Plate 5, Figs 4-6.

1894 Cythereis rubra sp. nov.; Muller, p. 372, pI. 28, figs 2 1, 26, pI. 3 1, figs, 2, 3.

1969 Carinocythereis rubra (Muller) ; Schornikov, p. 191, pI. 18, fig. I .

1975 Hiltermannicythere aff. H. rubra (M uller); Bonaduce et al., p.49, pI. 28, figs 1-5 .

1979 Hiltermannic ythere rubra (Muller) ; Athersuch, p. 140, fig. 2 (13).

Found in: 0- 120, 150- 180,200-330,360-500,530,540 cm depth in core MAR05-50P;

0- 150 cm depth in core MAR05-5I G.

Morphology: Large species (800-850 urn). Subquadra te carapace. Ta pered slightly at

posterior. Poster ioventral margin denticulate. Thick valves wea kly orna mented with

three longitud inal carinae - dorsal, median and ventral. Med ian car inae most prom inent.

Areas betwee n carin ae genera lly even ly pitted with large rounded fossae .

Distribution and ecolo gy: Marine euryhaline species capable of living in sali nities of 8­

40 psu (Aladin , 1993). Puri et al. (1964) recorded this spec ies living on the shallow

banks around Ischia, Procida, Nap les and Sorrento Pen insula associate d with Posidonia in

depth s up to 100 m. Bonaduce et al. (1975) recorded this species in the Adr iatic Sea .

Ivanova et al. (2007) found this species in upper Holocene sedime nts of the Black Sea

and com mented that this specie s is thought to indicate polyhal ine (18- 30 psu) co nditions.

Leptocyth ere devexa SC HORNIKOV, 1966

Plate 5, Figs 7-8.

1966 Leptocyt here devexa sp. n.; Schornikov, p. 39, fig. 5.

1969 Leptocy there devexa Schornikov ; Schornikov, p. 185, pI. 12, fig, 3.
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Fo u nd in : 50.70, 180,240,270,300,320,340.370-390 ern depth in core MA R05-50 1';

100 ern dept h in co re MA R05 -5 1G.

Mo r p hology: Sma ll species (375-400Ilm) . Reni fo rm carapace. Va lves orname nted

wi th numero us muri and tine pun ctae.

Distribution: Sha llow marine spec ies . Oprea nu (2005) recorded this species in Recent

sedi me nts of the wes tern Blac k Sea at an average depth of28.5 m.

Leptocyth ere multipuuctata (SEGUENZA, 1884)

Plate 5, Figs 9-10.

1966 Leptocyth ere (Leptocythere) multipunctata multipunctata (Seg uenza); Sc hor nikov ,

p. 40, tig. 6.

1969 Leptocythere tnultipunctata (Seg uenza); Sc hor nikov , p. 185, pI. 12, fig . 2.

1975 Leptocyt here multipunctata (Seg uenza); Bon adu ce et al., p.33, pI. 17, figs 4- 7.

Fou nd in: 0, 10, 60-90, 130. 170, 180. 200 -240, 270-440, 460, 600 em dep th in co re

MA R05 -50P; 20, 50. 100, 110. 130, 140 ern dep th in co re MA R05 -5 1G.

M or p hology : Sma ll spec ies (450 -500 urn). Reniform carapace. Va lves distinct ly

orname nted wi th de fined muri and tine punct ae often arranged in gro ups o f 6- 10.

Reticul ation tin es toward s all margins. Posterior margin co mp resse d .

Distribution lind ecology: Scho rnikov ( 1966) found this spec ies in the Black Sea

commo nly on mu d at dep ths of 30-60 rn. He comme nts that th is spec ies can live in

interst itia l wa ter and with out oxyge n Schornikov ( 1969) record ed thi s spec ies in the Azov

and Black Seas and co mme nted that its pre ferred sa linity is > II psu. Kilic (2000)

recorded thi s spec ies on the Black Sea coas t of Turkey .
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Lepto cythere sp. I SARS, 1925

Found in: 130 em depth in core MAR05-50P.

Morphology: Elongate, subquadrate carapace. Valve smooth with a rounded ridge

structure on posterior-ventral surface. All margins, exc luding dorsal margin , compresse d.

Distribution and ecology: Unknown.

Loxo conclta immodulata STE PANA ITYS, 1958

Plate 5, Figs 11-l2.

1958 Loxoconcha immodulata; Stepanaitys, p. 19, pI. 1, fig. 18.

1969 Loxoconcha immodulata Stepanaitys; Schornikov , p. 20 1, pI. 27, fig. 2.

1996 Loxoconcha immodulat a Stepanaitys; Boomer et al., p. 81, pI. I, fig. 18.

20 I0 Loxoconc ha immodulata Stepanaitys; Boomer et al., p. 130, pI. 2, figs 7-8, 12.

Found in: 80, 340 , 490, 510- 620, 640, 670- 700 cm depth in core MAR0 5-50P.

Morphology: Sma ll to medium species (400-5 00 urn). Strongly convex, trigonal

carap ace. Sex ual dimorph ism present with male being more quadrat e than female. Pitted

with round ed fossae which line towards all margins. Marked eyespot.

Distribution: Boomer et al. (1996) record ed this spec ies from the Ara l Sea . They

remark that it is a lso present in the Caspian Sea .

Loxoconcha lepida STE PANA ITYS, 1962

Plate 5, Figs 13-15

1962 Loxoconcha lepida Stepanaitys; Mandelstam et al., p. 178, pI. 28, fig. 7.

1962 Loxoconcha unodensa Mandelstam ; Mandelstam et al., p. 178, pI. 28, fig. 9.
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1964 Loxoconcha lepida Stepanai tys ; Scho rnikov, p. 1290, pI. II , figs 1- 12.

1969 Loxoconcha lepida Stepa nai tys; Schornikov, p. 199, pI. 25, fig . 2.

2008 Loxoconc ha lepida Stepanaitys ; Op rea nu, p. 6 1, fig . 9.

2010 Loxoconcha lepida Stepanaitys ; Boomer et al., p. 129, pI. 2, figs 1- 3.

Found in : 240 , 250, 340 , 370, 490, 520 -5 40, 560, 570. 590 -700, 720 , 730 em de pth in

core MAR05-50P.

Morphology: Medi um to large spec ies (600 -650 um). Subova te cara pace . Sex ua l

dimorphism very pron oun ced with the ma le being more elonga te and ova l shaped and the

fema le having greater height and more stro ng ly arched dorsal margin . Va lves

ornamented wit h deep pits wh ich are larger in the ce ntre and fi ne towa rds margin s. So me

va lves have a sma ll s lightly uptu rned spine at the dorsovent ral ma rgin .

Distribution and ecology: Sc ho rnikov ( 1964) reco rded thi s species living from delt as in

the Azov and I3lack Seas. It was also found in the Ca spian Sea in 30 % of samp les

between 5 and 125 m. Sta ncheva ( 1989) also com me nted thi s species lives today in the

Black and Cas pian Sea . Ivan ova et al. (2007) reco rded thi s spec ies in lower Holocene

sediments of the Black Sea and co mmen ted that thi s specie s is oligo ha line (i .e., prefer ring

a sa linity range of 0.5-5 ps u). Boomer et al. (20 I0) recor ded th is species as foss ils in

Quaternary deposits o f the wes tern I3lack Sea. Boo mer et al. ( 1996) recorded th is species

in Holocene sediments in the Ara l Sea .

Remarks: L. lepida and L. unodensa were or igina lly descr ibed as separa te spec ies.

Sc hornikov ( 1964) recog nized tha t they we re ac tua lly a ma le and fema le of L. lepida.

Loxo con cha tittorali s M OLLER, 1894
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Plate 6, Figs 4-5.

1894 Loxoco ncha littoral is; MUller, p. 346, pI. 27, fig. 9, pI. 29, figs 1- 7.

1964 Loxoco ncha littoral is MUller; Ruggieri, p. 517, figs 1,2 .

1975 Loxoconch a littorali s MUller; Bonaduce et al., p. 108, pI. 66, figs 8-1 2.

Found in: 50, 80, 390, 420, 480- 580, 600- 620, 670, 690-71 0, 730 ern depth in core

MAR05-50P.

Morphology : Small species (400-4 50 urn). Subtrigonal to subquadrate carapace.

Sexually dimorphic with male being more elongate. Valves ornamented with defined

muri and rounded fossae. A prominent ridge-like structure curves up from the

posteriorventral area to the marked eyespot.

Distribution and ecology: Marine species. Described as "surely stenohaline" by

Ruggieri (1964). Rare in the Adriatic Sea, found along the Apulia coast on medium sand

(Bonaduce et al., 1975). Puri et al. (1964) recorded this species in the Gulf of Naples

associated with sponges in shallow water. It has also been recorded from the Miocene

and Pliocene of the Mediterranean. Ivanova et al. (2007) figured this species is "probably

mesohaline (5- 18 psu) based on its occurrence in the Mediterranean".

Loxocon cha spp. juven iles

Plate 6, Figs 1-3.

Found in: 240, 270, 300, 310,330-36 0, 380-400 , 420, 430, 480-73 0 ern dcpth in core

MAR05-501'.

Remarks: This group contains all the juveniles of both L. lepid a and L. sublepida .

These are so numerous and similar looking it would have been too time-consuming and
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extreme ly difficult to attempt to separa te them . Because these species are both Pont o­

Caspia n types, occ ur in most samples togeth er and are the same genus they are considere d

here together.

Laxo concha sublepida STANC HEV A, 1989

Plate 6, Fig s 6-7.

1989 Loxoco ncha sublepi da sp. n.; Stancheva, p. 35, pI. 8, figs 8- 10.

2002 Loxoconcha tumida Brady; Tunog lu, p. 9, pI. I , fig. II .

2005 Loxoconcha sp. I ; Boom er et aI., pI. I , figs 3, 6.

Found in: 2 10,250,270,320-340, 480-730 ern depth in core MA ROS-SOP.

Morphology: Stancheva chose th is name because of the close resembl ance to L. lepida .

Cara pace is mediu m (500-600 11m). Va lves are ova te with straig ht dorsal margin ,

sometimes slightly inc lined. Ornamentation consists of pitt ing which is largest in the

ce ntre and decreases towards margins. Severa l conce ntric parall el ridges so metimes

present in the pos ter iorve ntra l area .

Distribution and ecology: Stancheva fi rst describ ed this specie s from Middle- Upper

Pleistocene de posi ts fro m the wes tern Black Sea shelf. In Upper-Pleistoce ne to

Neoe uxinian sedimen ts it was found in samples do minated by L. lepida.

Palmo conclut agilis (RUGGIE RI, 1967)

Plate 6, Figs 10-14.

1967 Loxoco ncha agilis sp. n.; Ruggieri, p. 377, figs 39--45, pI. 37, fig. 6.

1975 Loxoconcha aff L. agilis Ruggieri; Bonaduce et aI., pI. 65, figs 9- 14.
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2004 Palmoconcha af f. guttate (Norman); Eva ns, 24 , pI. 4 , figs 6- 8 (see Rem arks).

2010 Palmoconcha agi lis (Ruggie ri); Boom er et al., p. 130 , pI. 2, fig. II.

Found in: 0- 330, 360 , 370, 390--490, 510-5 80 , 600, 620- 660 , 680- 700, 720 em depth

in core MA R05 -50P; 10-150 em depth in core MAR 05-5I G.

Morphology: Cara pace medium (500-600 urn), Infl ated, ova te va lves with a prom inent

margi na l rim whic h is flattened posteriorl y. Ca uda l process above mid-height. Va lves

smoo th to finely pitte d. Sex ua l dimorphi sm prese nt with male being more elonga te.

Distribution and ecology: Bon adu ce et al. ( 1975) record ed thi s spec ies (as Loxoconcha

af f. L. agi lis) on sandy and silty mud in the Adriatic Sea . This spec ies is abunda nt today

on clays aro und the shore lines of the Black Sea at depth s o f 10-1 00 m (Sc hornikov ,

1967). Boom er et al. (20 10) found th is spec ies in recent sedi me nts of the western Black

Sea and co mme nted that " the species form s part of the ' Mediterranean' fauna .which has

beco me es ta blis hed in the pos t-co nnec tio n per iod".

Remarks: Piagil is is rem arkabl y sim ilar to Pigut tata which is found in the No rth Sea

and around the Atlan tic coas ts of Europe (A thers uch et al., 198 9; Penn y, 1993). Ruggieri

desc ribed Piagilis fro m the eas tern Mediterranea n. It is possible that they are the same

species. Co mparison of interna l part s is necessary to be ce rta in.

Paracypris polita SA RS , 1866

Plate 6, Fig. 15; Plate 7, Fig. I.

1866 Paracyprispolita sp. n.; Sa l's, p. 12.

1969 Paracy pris po lita Sal's; Schor nikov , p. 171, pI. 3, Jig. 3.
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Found in: 0--40, 60, 120, 230, 270, 310 em depth in core MAR05-50P; 10, 20, 40-1 00,

130,1 50 ern depth in core MAR05-5IG.

Morphology: Carapace smooth and large (1- 1.3 mm). Anterior margin rounded. Dorsal

margin arched. Posterior margin tapered to a point. Ventral margin gently concave at

about mid-length. Marginal pore canals conspicuously branching. Distinct vertical scar

pattern.

Distribution and ecolog y: This marine species has been recorded from southern

Norway, the Skagerak (strait between Norway and southwestern Sweden), north and

southwest Britain in littoral environments up to 70 m (Athersuch et al.. 1989). Found in

the Bay of Naples off Capri at 70 m depth (Brady & Norman, 1889).

Paradoxostoma simile MOLLER, 1894

Plate 7, Fig. 2.

1894 Paradoxo sto ma sim ile; Muller, p. 318, pl. 22, fig. 30, pl. 23, fi gs 2, 25, 27, 32.

1969 Paradoxostoma simi le Muller; Schornikov, pl. 41, fig. 3.

Found in: 340,350,38 0,390 cm depth in core MAR05-50P.

Morphology: Medium carapace (650-700 11m). Subrhomboidal valves are very thin and

smooth. Anterior margin narrow and rounded. Caudal process well above mid-height.

Distribution and ecology: Puri et al. (1964) recorded this species living in the Gulf of

Naples associated with Posidonia and calcareous algae at depths less than 100 m.

Bonaduce et al. (1975) found this species living in the Adriatic Sea. Athersuch et al.

(1989) refers to this species in passing as being Mediterranean.
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Ponto cythere sp. DUBOW SKY , 1939

Plate 7, Fig. 3.

Found in: 10,70 ern depth in core MAR05-50P; 10 cm depth in core MAR05- 5I G.

Morphology: Small species (- 450 11m). Carapace elongate and reniform. Valves thin

and smooth with wide ly scattered pores. Anterior margin finely dent iculat e.

Distribution and ecology: This species of the genus Pontocyth ere is unkn own. Other

species of this genus are marine. P.rubra and Puurbi da are found in the Medit er ranean

and Pielongata is found around the coasts of Britain and northw estern Europe (Athersuch

et al., 1989).

Pterygocythereis jonesii (BAIRD, 1850)

Plate 7, Figs 4-5.

1850 Cy thereisjonesii sp. nov .; Baird, p. 175, pI. 20, fig. I .

1975 Pterygocy thereisjonesi i (Baird); Bonaduce et a l., p. 54, pI. 29, figs I-II .

1989 Ptery gocyth ereisjonesii (Baird); Athersuch et al., p. 146, pI. 4, fig. 6.

2011 Pterygocyth ereis jonesi (Baird); Cabral et al., p. 40 , fig. 2, #9.

Found in: 0- 90 ,110-180,200- 330,53 0, 560 em depth in core MAR05-50P; 10-1 50 em

depth in eore MAR0 5-5IG.

Morphology: Large spec ies (- I mm). Cara pace quadrat e and conspicuously

ornamented with promin ent spinose alae. Anterior, dorsal and posterior margins spinose .

Valves otherwise smoo th. Prominent eye tubercle.

Distribution and ecology: A common mar ine, sublittora l species found in the

Mediterra nean and Black Seas . Bonaduce et al. ( 1975) recorded this species on medium
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and fine sand and sandy silt and mud in the Adriatic Sea from shallow water till the

maximum co llection depth , noting the highest concentrations were between 80 and 170

m. Penny (1993) recorded this species in the North Sea (sa linity 34-35 psu) abundant at

depths >80 m on fine sandy mud .

Sclerochilus gewemuelleri DUBOW SKY, 1939

Plat e 7, Fig. 6.

1939 Scle rochilus gewe mue ller i nom. nov. var .; Dubowsky, p. 4, p. 65, figs 1, 2.

1969 Scleroc hilus gewe mue lleri; Schornikov p. 2 10, pl. 36, fig. 1.

1987 Scleroc hilus gewem uelleri Dubowsky; Athersuch & Horne, p. 209, fi g. 8A-J .

Found in: 290 ,3 40,350,370,390, 400 cm depth in core MAR05 -50 P.

Morphology: Small to medium species (450-65 0 11m). Ren iform cara pace . Valves thin

and smoo th. All margins smoo th and rounded. Vent ral margi n strongly sinuous and

concave j ust befo re mid-len gth. Weak hinge.

Distribution and ecology: Marine sublittora l, occas ionally littoral, species found aro und

the Britis h Isles, the Mediterra nean and the Black Sea (Athers uch ct a l., 1989). Van

Mork hove n ( 1962) remarks that the genera belonging to the subfa mily Paradoxostominae

(inc luding Scle rchi lusy are mainly phytal. The ir smoo th, elongate cara paces seem

suitable for moving aro und amongst marine plants. Whitt aker ( 1972) recorded this

species on the south coast of England living on sublittora l a lgae in salinities 01'26-35 psu.

Semicyth erura sp. WAGNER, 1957

Plate 7, Fig. 7.

80



Found in: 70 ,280 em depth in core MA R05-50 P.

Morphology: Sma ll species (~350 11m) . Valves thin and weak ly orna men ted wi th very

faint muri and punc tae. Ca uda l process at mid-h eight. Dorsal ma rgi n arched. Ve ntra l

margin almos t st ra ight.

Distribution and ecology: Spec ies of the gen us Semicyt herura are ma inly phytal,

ma rine, littoral and ofte n found associated wi th algae .

Tyrrlt eno cyth ere {/1Il1l;CO/{/ don etziensi s (Du bowsky, 1926)

Plate 7, Figs 8-12.

1969 Tyrrhenocythere amnicola donetziensis Dubowsky; Sc hor nikov , p. 194, pI. 2 1, fig.

1996 Tyrrhenocyth ere donetziensis (D ubowsky); Boom er et al., p. 78, fig. 2A-B, fig. 3A­

H., q. v. for full syno nymy .

Found in: 40 ,70,80, 150, 180,270,280,300-320,340,360-390,480-730 ern dep th in

core MAR05-50 P; 20, 100, 130 em dept h in core MAR05-5 1G.

Morphology : Large spec ies (800 -900 urn ). Carapace is ro unde d, subtrigonal and

inflated . Sexual dimor phism is pre sent with the ma le being more elongate. Ma rgi na l

pore cana ls are co nspic uo usly bra nching . Va lves are very finely pitted and some times

possess a slightly upturn ed ca uda l proces s. Prom inent muscle scar pa tte rn.

Distribution and ecolo gy: This spec ies lives in the Black, Ara l and Cas pia n Seas

(Boo mer et aI., 1996). It a lso lives in the Azov Sea (Stancheva, 1989). Sc hornikov

(20 11) fou nd this species living in the Cas pian Sea , basi ns of the Do n River and the
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Danube Delta. Sch ornik ov (20 11) also found it as a fossil in the Ara l Sea, Black Sca and

Aegea n Sea . He comm ented that this species is capable of livin g in fresh water.

Remarks: This spec ies exhibit s a great deal of intra-specific morph olo gical var iation . A

caud al process is present on so me valves . Ventral margin s arc sinuous to varying

degrees. This va riation caused significant diffi cult y for ident ificat ion . Schornikov (1969)

is incorrect in not using parenth eses for "Dub owsky" because the genus Tyrrhenocyt here

was not describ ed until the 1950s (D. Horne, personal communication).

Unknown sp. 1

Plate 7, Fig. 13.

Found in: 60, 510 , 520, 580, 620, 690, 720 cm depth in core MAR0 5-50P ; 130 cm depth

in co re MAR0 5-51 G.

Morphology: Medium spec ies (500- 600 ~1l11 ) . Inflated , rounded, subtrigo nal carap ace.

Valves smoo th and orna mented only with wide ly sca tte red pores.

Distribution and ecology: Unknown.

Unknown sp, 2

Found in: 730 ern depth in co re MAR05-50P.

Morphology: Med ium (-600 11m). Elonga te carapa ce . Valves smoo th and

unorna men ted. Sma ll bump or ridge at posterior-v ent ral margin .

Distribution and ecology: Unknow n.

Unknown sp. 3
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Plat e 7, Fig. 14.

Found in: 90 em depth in co re MAR OS-SOP.

Morphology: Sma ll (- 400 11m). Subquadra te cara pace . Va lves orna me nted with large

roun ded fossae which are finer and shallower in the centre of the va lave and get larger

towards the margin s. Anterior and poster ior margin s th ick and strongly compr essed .

Distribution and ecology: Unknown.

Xestoleberis sp. aff, cornelli CA RA ION, 1963

Plate 7, Fig. IS.

1963 Xestoleber is corne /ii ; p. 325-329, pI. 15, fig. 3.

Found in: 10, 40, 70, 90, 120, 200, 210, 240, 280-46 0, 480, 500, 560, 6 10, 640, 660,

670 em depth in core MAROS-SOP; 80, 100, 130 em dept h in co re MAROS-SI G.

Morphology: Medium species (600- 700 urn). Ca rapace round ed , subtrigona l and

inflat ed . Dorsal ma rgin strongly convex. Vent ral margin sinuous to straight. Valves

th in, smooth and orname nted only with wide ly scattere d norm al pore s.

Distribution and ecology: Thi s genus has a world-wide distribut ion with many similar­

look ing species . Most spec ies are mar ine and inhab it algae in shallow water but brackis h

spec ies are a lso known (Ath ersuch et al ., 1989).

4.2 .1. SEM Plates

Plates 1- 7 contain sca nning elect ron microscop e (S EM) images of virtua lly eve ry

type of ostraco d recovered from cores MAROS-SOP and MAROS-SI G. Plate I is intend ed

as a guide to so me key ostracod valv e characte ristics . All sca le bars are I00 urn.
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PLATE 1
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Explanation of Plate 1

Pig. I - Carinocy thereis cari na/a

Eye tubercle: A slight elevation of the carapace to cover the eye.

Carina: A longitudinal ridge on the valve.

Denticle: A small spine-like projection on the valve.

Spine: A long pointed projection on the valve.

Pig. 2 - Amni cyth ere strlato costata

Ribbing: Raised, mainly longitudinal, " lines" on the valve. There may be only

one or several concentric ribs.

Pig. 3 - Calllstocy there diffusa

Hinge: Dorsal feature; interlocking grooves and sockets join the two valves

together to form a carapace. Hinge type is useful for taxonomy.

Muscle scars: Scars left from where the muscles of the living ostracod were

attached to the valve. Muscle scar patterns are distinct and thus useful lor

taxonomy.

Fig. 4 - Cyt heropteron sp. aff inOl"/1a/III11

Ala: A pointed, wing-like projection.

Fig. 5 - Amnicy thcre quinquetuberc ulata

Tubercle : A raised, rounded protuberance on the valve surface.

Pig. 6 - Hiltermann icyth ere rubra

Fossae (pl .): Relatively large depressions or pits; sometimes reticulated.

Muri (p l .): Wall-like structures surrounding the fossae.

Eye spot: A "spot" on the anteriodorsal area of the valve accommodating the eye.

85



Fig. 7 - Palmo concha agilis

Marginal rim: The outermost area or edge of the valve.

Punctae (pl.): Small pits on the valve.

Caudal process: A projection at the posterior of the valve.

Fig. 8 <Amnicythere cymbula (in transmitted light)

Marginal pore canals: Nerve-bearing canals. These have a distinct character (i.c.,

few, many, straight, curved, simple, bifurcated, branching, etc.) and arc useful for

identificat ion.
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PLATE 2
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Explanation of Plate 2

Fig. 1 - Amnicy therc caspia , left valve, external.

Fig. 2 - Amnicythere cymbula, left valve, external.

Fig. 3 - Amnicyt here cymbula, left valve, internal.

Fig. 4 - Amn icythere olivia , left valve, external.

Fig. 5 - Amnicythere olivia, left valve, internal.

Fig. 6 - Amn icythere pedifor mis, left valve, external.

Fig. 7 - Amnicyt here pedifor mis, right valve, internal.

Fig. 8 - Amnicythere prop inqua, left valve, external

Fig. 9 - Amnicy there prop inqua, left valve, internal.

Fig. 10 - Amnicy there quinquetuberculat a, female, left valve, external.

Fig. II - Amnicythere quinquetuberculata , male, left valve, internal.

Fig. 12 - Amnicyt here striato costata, right valve, external.

Fig. 13 - Amnicythere striatocostata, left valve, internal.

Fig. 14- Amnicythere subcasp ia, left valve, external.

Fig. 15 - Amnicy there subcasp ia, left valve, internal.
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PLATE 3
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Explanation of Plate 3

Fig. I - Amnicythere volgensis, right valve, external.

Fig. 2 - Buntonia subu lata rec tangularis, left valve, external.

Fig. 3 - Buntonia subulata rec tangul aris, left valve, internal.

Fig. 4 - Bythocy there sp., right valve, external.

Fig. 5 - Bythocythere sp., right valve, internal.

Fig. 6 - Callistocy there diffusa , left valve, external.

Fig. 7 - Callistocy there diffusa, left valve, internal.

Fig. 8 - Candona schweyeri, right valve, external.

Fig. 9 - Candona schweyeri, right valve, internal.

Fig. 10 - Carinocy thereis carina /a, female, left valve, external.

Fig. II - Carinocythere is carina /a, male, left valve, external.

Fig. 12 - Carinocythere is car ina/a, juvenile (A- I), left valve, external.

Fig. 13 - Carinocythere is carina /a, juvenile (A-2), left valve, external.

Fig. 14 - Carinocythereis carina/a, juvenile (A-3), left valve, external.

Fig. 15 - Cari nocyt here is car ina/a, juvenile (A-4) , left valve, external.
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PLATE 4
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Explanation of Plate 4

Fig. I - Casp iella acronasuta, right valve, external.

Fig. 2 - Costa edwardsi, female, left valve, external.

Fig. 3 - Costa edwa rdsi, male, right valve, internal.

Fig. 4 - Cuneocy therc semipunc tata, right valve, external.

Fig. 5 - Cuneocy there semipunctata, right valve, internal.

Fig. 6 - Cytheromorp ha sp. atI/i/scala, female, right valve, external.

Fig. 7 - Cy theroma variabilis, left valve, external.

Fig. 8 - Cytheroma variab ilis, left valve, internal.

Fig. 9 - Cytheropteron sp., right valve, external.

Fig. 10 - Cytheropte ron sp., left valve, internal.

Fig. II - Euxinocythere (lvJaetocythere) lopati ci, left valve, external.

Fig. 12 - Euxinocythere (Maetocythere) lopat ici, right valve, internal.

Fig. 13 - Euxincy there bacuana, female, left valve, external.

Fig. 14 - Euxincythere bacuana, right valve, external.

Fig. 15 - Euxincythere sp. afT.relicta, right valve, external.
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PLATE 5
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Explanation of Plate 5

Fig. I - Euxincy there sp. aff relicta , right valve, internal.

Fig. 2 - Hem icytherura sp., left valve, external.

Fig. 3 - Hetnicyth erura sp., len valve, internal.

Fig. 4 - Hilte rmannicytherc rubra , left valve, external.

Fig. 5 - Hilt erm anni cyth ere rubra , left valve, internal.

Fig. 6 - Hilt erm ann icythere rubra, right valve, external, deformed.

Fig. 7 - Lep tocyt here devexa, len valve, external.

Fig. 8 - Leptocy there devexa , left valve, internal.

Fig. 9 - Lept ocyth ere multip unctata, left valve, external.

Fig. 10 - Lcptocythere multipunctat a, right valve, internal.

Fig. II - Loxoconcha immodulata, left valve, external.

Fig. 12 - Loxoco ncha immo dulata, left valve, internal.

Fig. 13 - Loxoconch a lep ida , female, left valve, external.

Fig. 14 - Loxocon cha lep ida , female, left valve, internal.

Fig. 15 - Loxoco ncha lepida , male, right valve, external.
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PLATE 6
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Explan ation of Plate 6

Fig. I - Loxoconcha spp. juveni le, possibly A-2, right va lve, externa l.

r ig. 2 - Loxoconcha spp. j uvenile , possibly A-3 , right va lve, exte rna l.

Fig. 3 - Loxoco ncha spp. juvenile, possibly A-4, right valve, exte rna l.

Fig. 4 - Loxoconcha littoral is, fema le, len valve, external.

ri g. 5 - Loxoconcha littoral is, fema le, len valve , intern al.

r ig. 6 - Loxocon cha sublepida , left valve, externa l.

Fig. 7 - Loxocon cha sub lep ida , le ft va lve, internal.

ri g. 8 - Palinoconcha agilis, fema le, left va lve, exte rna l.

r ig. 9 < Palmoconcha agi lis, female, right va lve, internal.

ri g. 10 - Palmoco ncha agilis, male, left va lve, externa l.

Fig. II - Palmocon cha agilis, j uven ile (A-I), left valve, ex ternal.

ri g. 12 < Palmoconcha agil is,j uvenile (A-2) , left va lve, external.

ri g. 13 < Palmoconcha ag ilis, j uven ile (A-3) , len valve, external.

Fig. 14 - Palmoconcha ag ilis, j uveni le (A-4), len valve, exte rna l.

Fig. 15 < Paracypris polita, right valve, externa l.
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PLATE 7
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Explanation of Plate 7

Fig. I - Paracypris polita, right valve. internal.

Fig. 2 - Paradoxostoma simile, right valve, external.

Fig. 3 - Pontocyth ere sp., right valve, external.

Fig. 4 - Pterygocyther ei sjonesii, left valve, external.

Fig. 5 - Pterygocythereisjonesii, left valve, internal.

Fig. 6 - Sclerochi lus gewemue lleri , left valve, external.

Fig. 7 - Semicytherura sp., probably juvenile (A- I), right valve, external.

Fig. 8 - Tyrrhenocyth ere amnico/a donetziensis, male, right valve, external.

Fig. 9 - Tyrrhenocythere amnicola donetziensis, female, right valve, external.

Fig. 10 - Tyrrhenocyt here amnico/a donetziensis, juvenile (A- I) , right valve, external.

Fig. I I - Tyrrhenocythere amnico/a donetziensis, juvenile (A-2), left valve, external.

Fig. 12 - Tyrrhenocythere amnicola donetziensis, juvenile (A-4), left valve, external.

Fig. 13 - Unknown sp. I , left valve, external.

Fig. 14 - Unknown sp. 3, left valve, external.

Fig. 15 - Xestoleberis sp. aff cornelii, left valve, external.
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CHAPTERS

RESULTS

The result s in this chapter are presented with respect to depth in composite core

MAR05-50. In later chapters these results are discussed with respect to calendar years

BP. The original data are give n in Appendix A.

Distinct changes are evident in the ostracod asse mblages of core MAR05-50 (Fig.

5.1). From the base of the core at 780 em depth to 630 ern depth in the core the

asse mblage is dominated by ostracods com monly found in the present-d ay brackish

waters of the Ponte-Caspian basins (e.g ., Schornikov , 1969; Oprea nu, 2008; Boomer et

al., 20 10). From 620 ern to 540 ern depth in the core there is an interval characterized by

occurrences of more or less equal proportions of Ponte- Caspian species and species

which are commonly found in the more saline waters of the Mediterra nean Sea (Fig. 5.1;

e.g., Athersuch et al., 1989; Bonaduce et al., 1975). At 530 em depth in the core the

asse mblage becomes esse ntially fully Mediterranean and remai ns so to the top of the core .

For the purposes of further discussion these three distinct asse mblages will herein be

referred to as the "brackish", " transitiona l" and "marine" asse mblages or sections

respective ly.

5.1. General Sample Description

In addition to abundant ostracods, the samples from core MAR05-50 also contain

the remains of var ious other calcareo us organ isms. Bent hic foramini fera. bivalves and

gastropods an: common throughout the core. The abundances o r these calca reous

remains fluctuates a lot with no noticeable trend . Some samples have essen tially
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Figure 5. 1. A graph of ostracod % abundance of Mediterranean vs. Ponto-Caspian

species as it changes with depth alongside an illustration of composite core MAR05-50.

The % abundance graph clearly shows a turnover from a Ponto-Caspian (brackish) to a

Mediterranean (marine) ostracod assemblage beginning at 620 cm depth in composite

core MAR05-50 and becoming essentially fully marine from 540 em upward. The level

of unconformity surface U I is shown. Vertical wavy lines indicate moderate bioturbation.

Horizontal wavy lines indicate shelly horizons. See Chapter 3 for core unit descriptions.

(core log modified from Linegar, 2012).
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none of these while so me of the sa mples are full of large shells and shell fragment s. In

the lowest - 80 em as well as 370-390 em and 5 10 ern de pth in co re MA R05-50 shells

from gas tropods and biva lves are particularly ab unda nt.

5.2. Ostracod Abundance in Core MAR05-50

Ostracods are very abundant and well-preserved thro ughout core MA R05-50 (F ig.

5.2) . Throughout the co re small amounts of pyrite are precipit ated on or inside the

valves . The lowest concentration is 0.2 va lves per gra m of dry sediment and the highest

concentration is 60 .8 valv es per gram of dry sed iment. The average ostracod

concentration in the co re is 7.7 valves per gram of dry sed iment (Fig. 5.2). The brack ish

asse mblage of the co re (780-630 em) has an average co ncentration 01'5.0 va lves per gram

of dry sedime nt. The transiti onal asse mblage (620 -5 40 em) has an average conce ntration

of 4.5 va lves per gram. The marine asse mblage (530 -0 em) has an average conce ntra tion

of8 .9 va lves per gra m (Fig . 5.2) .

5.3. Ostracod Diver sity

The core shows a high spec ies dive rsity overa ll wi th a total of 45 indi vidual

ostraco d spec ies bein g found (Fig. 5.2). The ave rage num ber of ind ividual species found

in each sample throughout the entire co re MAR05-50 is 10.3. The pattern of diversity

Iluctuations genera lly match es the patt ern of conc ent ration Iluctuati ons (Fig. 5.2).

In the bracki sh assembl age the avera ge numb er of spec ies is 12.6. The highest

diversity in this asse mblage occurs at 670 ern with 18 spec ies repr esented . Th e lowest

diversity is at 760 em with only 8 spec ies found (Fig . 5.1).

The tran siti onal asse mblage has a similar average d iversity to the brackish
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Figure 5.2. Ostracod concentration (va lves per gram of dry sediment) and diversity

(number of species) tluctuate throughout core MAROS-SO. The grap h shows a trend o f

diversity and concent ratio n genera lly increasi ng and decreasing together. Both show a

general increase around 4 m depth with a maximum spike at 390 cm depth .

102



asse mb lage with an average of 12.7 spec ies in eac h sample. In thi s inte rva l where Pont o­

Cas pian and Med iterranean species co-occ ur, the divers ity init iall y increases slightly from

13 species to a maximum of 15 spec ies at 580 ern . Then the d iversity gra dua lly decl ines

upwards to 11 spec ies by 540 ern depth , the end of the transitional sectio n (F ig. 5.2) .

The onset of the mar ine asse mblage at 530 ern is chara cter ized by low spec ies

diversity (F ig. 5.2). Until 450 ern depth in the core the average numb er of spec ies per

sample is 5.9 and a lmos t always includ es Palntoconcha agilis, Carinocythereis carinata,

Hiltermanni cyth ere rubra and Xesto leberis sp. aff cornelii. Directl y followin g this

interva l upcore, the diversity nearly double s and reach es a maximum 01'21 species at 390

ern depth in the core (F ig. 5.1 ). Thi s is also the maximum diversity for the entire core.

This sample at 390 cm also shows the highest co nce ntratio n. Nine of the 2 1 spec ies

found in th is sample are Pont o-Casp ian types . However. co ns idering the high numb ers of

the marine os tracod va lves, the sample is consi dered to be 97.7 % marin e.

After reachin g a maximum dive rsity at 390 em depth in the co re the numb er of

species decreases upcore, fluctuating between 2 and 16 species . The minimum diversi ty

for the entire co re occ urs at both 240 and 190 ern depth in the core.

5.4. Whole Carapaces versus Valves

Worker s often use this inform ation to comm ent on the changing energy of the

environment or possibl e post-mortem reworkin g within a sequence (Boomer et al ., 2003) .

For exa mple, an increase in the number of broken or disarti culated valves might indicate

a higher energy environment.

However, the inform ation that is gained from co unting whole cara paces versus
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disart iculated va lves is limit ed and must be trea ted with ca utio n. Os traco d valves and

hinges are fragile and can eas ily be broken during processing and picking. This fra ilty is

largely a funct ion of the ca rapace morphology of individ ual spec ies . Therefo re, the final

state of the va lves is not necessarily a true refl ect ion of the in situ state of the valves

before sa mple processing (De Deckker, 2002) . Boomer et al. (2003) indicated that

cara pace to va lve ratios should reall y on ly be used to com pare change s within a species or

closely related taxa within the a sequence .

In the case of core MAR05-50 disar ticulated valves const itute an avera ge of 96 %

of all samples . The highest occurrence of intact ca rapaces is at 480 ern dep th with 90 %

valves and 10 % carapaces .

55 , Valve Coloration

Color cha nge s are not iceable mov ing upw ard in core MA ROS-50. In the lower

brack ish section of the core the ad ult specimens of Loxoconcha sublepida arc mainly

opaque cha lky white to translucent white or clear in appearance. The adult specimens of

Loxoconcha lepida are ma inly grey and very chalky looking. The opaq ue chalky

appe ara nce is ca used by disso lution of the calcit e va lve when deposi ted in eutrophic,

organic rich sediment and subsequent pyrite formation on the valve wh ich may later

become oxid ized to H2S0 4 resu lting in slight to total dissolution (De Deckker, 2002).

The Loxoconcha j uve ni les are usuall y opaque white or translucent but are not chalky in

appeara nce. It is ve ry app arent that the valves of Tyrrhenocyt here amnicola donetziensis

arc almost always very dark grey, sometimes tran slucen t and sometimes very cha lky grey

to white and opaq ue.
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Beginnin g around 470 ern dep th in the core there arc higher numbers of grey

co lored ostraco d valves . Valves becom e grey or brown when in co ntac t with anox ic

sedimen ts (De Deckker , 2002) . Then. at 340 em depth in the co re there see ms to be fewer

grey valves agai n; here most va lves are opaque white and a few are tran slucent white in

ap pearance . In the tran sitiona l asse mblage the Mediterranean species Loxoconcha

littoralis is mainly tran slucent clear to translucent white and T amnicola donetziensis is

grey and often chalky as is found in the bracki sh assemb lage. In the mar ine section of

core MAR05 -50 the valves are mainl y opa que to translucent white. Occasionally a few

orange or browni sh co lored valves also occ ur. Mo st notably these colored valves arc

often the Mediterranean species Cos /a edwards! and Carinocyt here is carina/a .

5.6. Upcore Changes in Ostracod Assemblages

There is a major turnover in ostracod asse mblages in co re MA R05-50 (Fig. 5. 1).

In this sectio n upcore changes involving key ostraco d spec ies arc descr ibed in detail. Key

species are considered to be those which are consis tently ab undant. occ ur in most samples

and are represented by both adults and seve ra l stages of j uve niles (see below). They can

therefore be ass umed to have lived and died at the co re site, as oppose d to having bee n

rewo rked or transported to the site. and are therefo re reliable for reconstr uct ing eco log ica l

changes in the study area (see Chapter 6).

5.6.1. Population Age Diagram s

Pop ulation age diagrams (f ig. 5.3a, b) arc useful when using ostraco ds to interpret

paleoenvironment s (Boo mer et al., 2003; De Deckk er , 2002) . Os traco ds have nine

grow th stages (A thersuch et al., 1989). The adult is known as stage A. The pen ultim ate
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Figure 5.3a. Popul at ion age diagrams for key species from irregularly spaced depth s

throughout core MAROS-SO. The presence of adult s (A) and various j uveniles (A- I to A­

6) confirms an autochthonous assemb lage on which an environmental inte rpretati on can

be based. Blue bars indica te brackish species and pink indicate marine species. Note:

The population age diagrams for L. lepida + L. sublepida show two separate A stages

(vsub' and " lep"). The se species were counted in the same diagram because their

ju veni les could not be distinguished.
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Figure 5.3b. Population age diagrams continued. These diagrams clearly show that these

species were well repre sented by both adults and various ju venile stages and are there fore

autochthonous and can be used for paleoenvironmental interpreta tion.
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instar stage is known as A- I (read as "A minu s I") and so on to A-8. By plottin g how

many valves of a part icular species are present. from A down to the sma llest j uveniles an

assessme nt of the type of env ironme nt can be made (Boomer et al., 2003).

An ostraco d population which contains adults and all instar stages dow n to the

earliest j uveniles (smaller than A-4) can be said to represent a low-energy autochthonous

asse mblage (Boo mer et al., 2003) . If the smaller j uveniles are missing. then thc

asse mblage can be said to be a moderate-energy autochthonous asse mblage becau se the

tiniest valves have been removed by water currents. An assemb lage which contains only

adults and the largest j uveniles (A- I and A-2 possib ly) is considered to be a high-energy

autochthonous asse mblage because strong water currents carried away the medium and

small ju venile valves (Boo mer et al., 2003) .

Finally. an asse mblage of ju ven iles without adults is probably not autochthonous.

These small valves may have been transported to the area by moving water. Another

alte rnative is that something. such as a sudde n environmental change. prevented the

j uveniles from reac hing adulthood (De Deckker, 2002) . The populatio n age diagrams for

core MA ROS-SO show that the autochthonous asse mblage changed from brack ish species

to marine species going upward in the core. The presence of various stages of ju veni les

in most samples probab ly indicates a low to moderate energy system.

5.6.2 . Brackish (Ponto-Ca spian) Assemblage (780-630 em)

The samples from 780- 630 em depth in core MAROS-SOcontain on average 96.9

% specimens commonly fou nd in brackish waters of the Porno-Caspian basins (Fig . 5.1;

e.g.. Schornikov , 1969; Opreanu, 2008; Boomer et 'II., 20 I0). The brackish asse mblage is
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clea rly domin ated by L. sublepid a and L. lepida (Fig. 5.4). In this interval. valves of L.

sublepida and L. lepida together make up an average of 63.5 % of each samp le. with a

maximum abundance of 81.5 % at 660 em. From 620 em to 540 em depth in the core this

average drops to 33.3 % as L. sub lepida and L. lep ida co-exist with the Medi terran ean

species Loxoconcha littoralis (Fig . 5.4). In the brack ish section of core MAR05-50 L.

littora lis occurs in only 9 out of the 16 samples and has an average abundance of less than

2 %.

Other signifi cant species in the lower . brackish asse mblage are Ty rrhenocy there

amnicola don etziensis (aver ag ing 11.2 % of each sample), Amnicythere olivia (5.4 %),

Cando na sch weyeri (4.9 %) and Amnicythere quinqu etubercula ta (4.3 %; Fig. 5.4).

Other spec ies comm only appearing in the bracki sh asse mblage but in low abundances are

Amni cythere bacua na, Amnicy there pediformis, Amni cyth ere subcaspia, Amnicyt here

stria tocost ata, Amnicythere cymbula, Euxinocy there relic/a, and Loxoconcha

immodula ta. These spec ies appear somewhat sporadically and when prese nt typically

account for less than 2 % of a given sample. The marine species Palmoconcha agilis is

present at most depths in the brackish section but in extremely low abundances. typically

only one or two valves.

5.6.3. Ostracod Var iation Below and Above Unconformity u.
The unconfor mity U I occ urs at a core depth of 695 em in co mpos ite core MA R05-

50 (Fig. 5.1). It spans from - 10700 to 8400 cal yr I3P (see Chapter 3). This

unconformity occ urs within the brackish section of core MAR05-50 (Fig. 5.1). The

changes in the ostracod assemblage before and after this - 2300 year hiatus are not very
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noticeable in core MAR05-50 but some changes do occur. For example, L. sub lepida and

L. lepida together increase from 55.6 to 70.0 % from 730-7 00 ern depth (200 years

preceding the hiatus, see Chapter 4) to 690-67 0 em depth in the core (250 years alter the

hiatus; Fig. 5.4). Other changes over the same interval involve T amnico la donetziens is

which decreases from 18.9 to 5.6 % and A. olivia which decreases from 7.4 to 2.6 % in

abundance (Fig. 5.4). The average number of species present at 730-7 00 em depth is

11.0 and increases to 15.3 for 690-67 0 cm depth. The concentration also increases from

3.3 to 7.4 valves per gram of dry sediment when comparing the same intervals (Fig. 5.2).

5.6.4. Transitional Assemblage (620-540 em)

Between 620 em and 540 em depth in core MAR05-50 there is an interval where

brackish and marine ostracod species co-occur (Fig. 5.1; Fig. 5.4). From the base of the

core to 630 em depth, the ostracods have brackish water affinities and the assemblage is

dominated by L. sublepida and L. lep ida. There is a major change in the assemblage at

620 em depth in the core. At this depth the Mediterranean species L. littoral is abruptly

becomes the most abundant species. Its valves constitute 40.6 % of the sample at this

depth (Fig. 5.4). This is a dramatic increase from the sample directly below at 630 ern

depth in which this species comprises only 1.7 % of the specimens in that sample. L.

littoralis maintains an average of 41.6 % abundance in the transitional assemblage from

620 em to 540 ern depth in the core, making it the dominant species in this assemblage.

Brackish water species remain abundant in the transitional section (Fig. 5.4). L.

sub lepid a and L. lep ida, which had been the dominant species in the brackish assemblage,

become the second most abundant species in the transitional assemblage with an average
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abunda nce of33 .3 % (F ig. 5.4) . Likewi se, T amnico la donetzie nsis, which had been the

second most abund ant spec ies in the bracki sh section, is sti ll present in the tran sitional

asse mblage but its average abundance decreases from 11.2 to 5.8 %, now makin g it the

thi rd most abundant species .

Durin g thi s interval where brackish and marine species co-occ ur, the numb er of

brack ish spe cies is still grea ter than the numb er of marin e species. However , given the

high numb er of spec imens of the Medi terranean spec ies L. littoralis, the average ratio of

marin e to brack ish speci mens is ca lculated to be 60:40 in the transitional section.

In the ea rlies t stages of the transit ional sec tion the Med iterranean species

Carinocythereis carina/a, Hiltermannicyth ere rubra and Cytheroma variabilis first

appear in significa nt numb ers in the southwes tern Black Sea study area. The marin e

spec ies Palmoconcha agi lis, which is also present in the bracki sh section, increases from

1.3 to 2.7 % ave rage abundance in the transitional asse mblage .

5.6.5. Mar ine (Me diter ranea n) Asse mblage (530-0 em)

At 530 em depth in core MAR0 5-50 another str iking chan ge occurs in thc

ost racod asse mblage (F ig. 5.1 ; Fig. 5.3). The Med iterranean spec ies L. littorali s

decreases dram at icall y from 55.4 % abundance at 540 ern de pth to only 2.5 % at 530 ern

depth (F ig. 5.4) . At the same sample depth s the Pont o-Caspian spec ies L. sublepida and

L. lepida together decreases from 28.4 to a mere 3.1 %.

A ll of the Pon to-Caspian spec ies are replaced imm ediately and unequ ivoca lly by

the Med iterranean ostracods P. agilis, H. rubra , and C. carina/a together co nstituting

89 .4 % of the sample from 530 em depth in co re MA R05-50 (Fig. 5.4) . Toge ther with

112



other marine os traco ds. these marin e species domin ate the os tracod asse mblage from that

point upwa rd to the top of the core. In th is sec tion of core MA R05-50 the sa mples co nsis t

on averag e of 99 .2 % valves from marine spec ies (Fig. 5. 1).

L. /ittora/ is all but disappeared in the mar ine assem blage, occ urring only a few

times represent ed by a valve or two (F ig. 5.4). L. sub/epic/a and L. lepida do occ ur ofte n

in the marine asse mblage but in extremely low abundances « I % of the sample) and

mainl y below a depth of 250 em (Fig. 5.4). T amnicola donetziensis also occurs in the

mar ine asse mblage in abundances typicall y 1 % or less and most frequently between the

depth s 440 em and 320 cm (Fig. 5.4 ).

By far . the most abundant species in the entire mar ine assemblage is the

Mediter ranea n spec ies P. agilis (F ig. 5.4) . Valves o f this spec ies make up an average of

56.6 % of each sa mple in this sec tion of core MA R05 -50 . P. agilis is also the most

frequ entl y occ ur ring spec ies throughout the ent ire core. It was found in 83 of the origina l

89 sa mples a lbe it in extre me ly low abundances in the brack ish sec tio n.

The other signi fica nt spec ies present in the marine asse mblage of core MA R05-50

are C. carina/a. H. rubra , C. edwards! and P. jonesii. Notab le changes occ ur within this

sec tion involving the relati ve abundances of these spec ies .

5.6.6. Notable Upward Changes in Key Marine Specie s

C. carina/a does not occur in core MAR05-50 until the transitional section begin s

at 620 em depth, except lor one ju venile valve at 720 ern depth in the core (Fig. 5.4 ).

Within the transiti onal section, from 620 em to 580 em depth . C. carina/a appears in low

ab undances (ave rage 1.1 %). It then disapp ears and does not appear aga in until 530 em
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depth when the marine assemblage begins to dominate. At 530 em depth in the core C.

car inata suddenly becomes very abundant making up 3 1.1 % of that sample. It then

gradually decreases to 1.8 % by 380 ern depth. At 370 ern depth it increases again and

maintains an average of 13.1 % abundance until 310 ern depth when its abundance spikes

to 47.7 %. Thereafter. its abundance fluctuates significantly and the average abundance is

19.4% until the top of core MAR05-50 (Fig. 5.4).

H. rubra does not appear in core MAR05-50 before the transitional section except

for one deformed valve (Plate 5, Fig. 6) from 780 cm depth. In the transitional section it

occurs between 590 cm and 540 ern depth with maximum abundance at 550 ern of 5.4 %.

When the marine section begins at 530 em depth H. rubra increases immediately to 29.8

% (Fig. 5.4). H. rubra continues to be a significant marine species. constituting an

average of 10.2 % of the marine assemblage until the top of core MAR05-50.

P. jo nesii is represented by a single valve in two samples at 6 10 and 580 ern depth

within the transitional assemblage. Apart from this. P. jonesii and C. edwards! both begin

to occur from 380 ern upward and thereafter have average abundances of 5.4 and 5.8 %

respectively (Fig. 5.4). There are considerable fluctuations in these abundances but

overall they increase going upward in the core. For example, C. edwards! reaches a

maximum abundance of2 7.7 % at 50 ern and yet in several samples in the marine section

it does not appear at all. C. edwards! is more abundant towards the top of the core.

Considering only the top 70 ern its abundance is 16.8 %. Pijonesii does not deviate from

its average abundance as much as C. edwards! but it also generally increases in the

uppermost part of core MAR05-50.

Other marine species frequently appearing in core MAR05-50 are Paracypris
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pollia, Leptocyth ere multipunctata , Callistocy there diffusa , Cythero nta variabilis,

Byth ocyth ere sp. and Xesto leber is sp. aff cornelii (Fig. 5.4). X. sp. afT. cornelii appears

frequently but sporadically throughout core MAR05-50 between 720 cm and 60 ern depth

and consistently appears between 510 cm and 330 em depth with a maximum of 5.5 %

abundance at 490 cm depth in the core.

5.7. Statistical Results

Cluster analysis and factor analysis were run on the ostracod data in both depth

and age (calendar years) domains. In this chapter only the results involving data in the

depth domain (with less abundant species not exceeding 5% of the sum at any level

removed) are presented. In Chapter 6 the data is interpreted with respect to calendar

years.

5.7.1. Cluster Analysis

Figure 5.5 shows the results of CONISS run only on dominant species in the depth

domain with less abundant species not exceeding 5% of the sum at any level removed.

The CONISS dendrogram clearly shows several well-defined clusters. The interpretation

of the clusters results is discussed in Chapter 6.

5.7.2. Factor Anal ysis

5.7.2.1. R-factor Analysis

Factor analysis first produced a correlation coeffi cient matrix Crable 5.1). In the

correlation coefficient matrix the value at the intersection of a row and column gives the

degree of correlation between the two species. 0.99 being a strong correlation, zero
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Ta ble 5.1. The correlation-coefficient matrix produced by R-mode factor analysis shows the correlation or relatedne ss of 25 of

the main species in core MAR05- 50. A closer the correlation coefficient is to 0.99, the stronger the correlation between the

species. Inversely, the closer the corre lation coefficient is to -0.99, the more negative the correlati on between two species. The

closer the correlation coeffic ient is to 0, both positive and negative correl ations become weaker.

aan

ca r::~

.atn.
me

.o~~~,~~j:
. ttnora,

Pon tocvthere
e n lc

; pp . ~ ~~: e~~~

qu;n qUetuber<~:;::

-0.58-0.38 -0.47 -0.29 -0.24-0.15 -0.28-0.13 -0.25 -0.27 0.260.65 -0.06 0.2 0.350.53 0 .43 0.48 0.46 0.99 0.27 0.12 0.560.37 0.4 1imm od utat

;'u1c:~~;
s~:;~~~ 0.4 4 -0.28 -0 .36-0.21 -0.18 -0. 11 0.22 0.1 0.12-0.23 -0.04 0.2 -0.05 0. 26 0.550.45 0.390.34 0.210.37 0.27 0.13 0.4 1 0.99 0.05

. a ff. re/ic ta -0.44 -0.29 -0.36 -0.22 -0.18-0.11 -0.22 -0.1 -0.14 -0.2 -0.0 4 0 .13 -0 .05 0.3 0.26 0.56 0.450.52 0.490,41 0.4 50.34 0.450.05 0.99

117



indicating no relationsh ip and -0.99 indicatin g a strong negati ve co rrelation. R-mode

factor ana lys is ex tracted five factors. R-factor I to R-factor 5. which acco unt for 83. 1 %

of the tota l var iance in the sequence (F ig. 5.6).

R-factor 1 accounts for 32.3 % of the total var iance . This factor is mainl y

contro lled by the Medit erranean ostraco d spec ies P. agilis. L. multipunctata and X. sp.

aff corneIii are also significant. There are minor co ntributions from H. rubra and C.

variablis. Th ere are minor negati ve correl ations with P. jo nesi i and C. edwards! (Fig.

5.6).

R-fact or 2 accounts for 22.2 % of the total varianc e. Thi s factor is controlled

mainl y by the Ponte- Caspian species L. subl epida and L. lepida in addition to T ainnicola

donetziensis, A. quinqu etuberculata and A. olivia. C. schweyeri and A. subcasp ia are

minor co ntributors to this factor (Fig . 5.6).

R-factor 3 acco unts for 17.8 % of the total variance . This factor is cont rolled by

the Mediterra nea n species P. agilis. C. carinata, P. jo nesii and C. edwards i with minor

contributions from H. rubra and P. polita. There is a nearl y (statistica lly) significant

corre lation wi th L. multip unctata (F ig. 5.6) .

R-factor 4 acco unts for 6. 1 % of the total variance. Thi s factor is co ntro lled by the

Mediterranea n species L. littoralis, the dominant species in the tran siti onal section of core

MAR05-50. and the Pont o-Caspian species Limmodulata. This factor has man y very

min or contributions . mainl y from Porno -Casp ian species but also from the Medit erran ean

Spec ies as well (Fig. 5.6).

R-factor 5. which acco unts for 4.7 % of the total variance . is ano ther factor with

contributions from the Medit erranean species . This factor is controlled by L.
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Figure 5.6. R-factor s 1-5 showing the significant species (factor loadings). Factors

exceeding 0.2 are signifi cant (solid blue). Minor factors (blue outline) are also shown. The

graph (bottom. right) shows the factor loadings before and after Varimax rotaion and a

thick black line indicates Catells' scree test which eliminates the least significant factors.
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multipunctata and C. variab lis with a min or contribution from C. carinata and a negat ive

cor relatio n wit h P. agilis and x: sp. a ff cornelii (Fig. 5.6) .

5.7.2.2. Q-factor Analysis

These R- fact ors ca n be plotted down-c ore j ust as the abundance of any sing le

species ca n be plott ed down-c ore (Fig . 5.7). These plots are ca lled Q- factors. Q- factors I ­

S are the plots of R-fact ors 1- 5 res pec tively. Th ese plots show wh ere in the core these

asse mblages , or fac tors, are occ urri ng .

Starting at the base o f core MAR05-50, Q-fa ctor 2 (Porno -Cas pian spec ies)

domin ates the lower, bracki sh section o f the core , compri sin g alm ost 100 % o r the

asse mblage to a depth of - 620 em, Above 620 em depth in the co re Q-factor 4 (mixed

Medit erranean and Pont o-Casp ian spec ies) shar ply increases and dominates the asse mblage

at - 80 % abunda nce until a depth of - 520 ern (F ig. 5.7). Above 520 cm depth in the co re

Q-facto r I (Me dite rranean spec ies) sharply increases and dom inates the low er marine

sectio n of core MA R05 -50 with an average ab unda nce of - 70 %. Above - 380 cm depth in

the core the general abu nda nce trend of Q-fac tor I is osci llating but genera lly decreasing

until the top of co re MA R05 -50 . Above 380 cm depth in the core Qvfactor 3

(Med iter ranea n spec ies) begin s to increase and has an increasin g trend dir ectl y

disp roporti on ate to Q-fa ctor I to the top of the core. Q-fa ctor 5 (Me dite rranea n spec ies) .

wh ich only accounts for 4.7 % o f the total variance , is more erra tic but do es notic eabl y fall

to an abundance of 0 % ab ove - 100 em depth in the cor e. From 100 em depth to the top of

the core Q-fac tor 3 domin ates the sequence .
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Figure 5.7. Q-factors 1-5 are the down-core plots of R-factors 1- 5 respectively . The Q-factor results match the observed

results that there are clearly three separate "sections" in core MAR05 -50 . R-factors 1, 3, and 5 occur in the upper, marin e

section of the core. R-factor 2 domin ates the lower, brackish section and R-factor 4 dominat es the transitional section of the
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CHAPTER 6

INTERPRETATION

In the ostracod data recovered from core MA RaS -50 there is a distinct faun al

turnover from a brack ish to a mar ine asse mb lage beg inning at 7450 ca l yr BP (F ig. 5. 1).

The suddenness of this turn over, occurring in - 146 yea rs, and its magnitud e strongly

sugges t that it must have been driven by eco logica l changes which took place at the co re

site on the so uthwestern Black Sea shelf durin g the Holocene, spec ific ally assoc iated with

changes in sa linity dri ven by a sys tematic reconn ect ion to the Medit errane an Sea . The

high fauna l diversit y excludes changes in oxygen ava ilability as a ca use of this turn over.

In this chapter the results presented in Chapter 5 are d iscussed in calend ar yea rs.

Tab le 6. I lists sample depth s in the compos ite co re MA RaS-50 and the co rresponding

ages in ca lendar years (see Chap ter 2) .

6.1. Bio-zones

In paleoecological microfossil studies it is com mon to divide the sedimentary

seq uence into fauna l or floral asse mblage "zo nes" . These are sectio ns of the sequence

that are disti nct ive ly characterized by parti cular asse mblages of species and are divide d

by distinct changes that are obse rved in those asse mblages . Zo nes can be determined

visually by the researcher, but the process can also be done easi ly by num erical

(statis tica l) analys is. Sta tistical analysis is most useful because it basicall y eliminates the

e lement of subjec tivity and can detect relationsh ips within the data that a research er might

not perce ive . The basic principl es of num erical ana lys is as used in this thesis were

estab lished by Gordo n & Birks ( 1972) and Birks & Go rdo n ( 1985) .
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Tab le 6.1. Samp le dept hs from core MA RaS-50 with corresponding ages (cal yr BP) as

determin ed by the softwa re Ager. The shaded area indicates the transitional section

(asse mblage) of the core. Above this is the marine section and below is the bracki sh

section. The hiatu s denot ed by the unconformity U I is shown as a red line between 690

and 700 ern depth in the core .

Depth Cal 14C ka

(em) BP

0 0

10 391

20 782

30 1170

40 1570

50 1960

60 2020

70 2090

80 2160

90 2220

100 2290

110 2340

120 2400

130 2460

140 2520

150 2580

160 2640

170 2700

180 2760

190 2820

200 2870

210 2930

220 2990

230 3050

240 3260

250 3470

260 3530

Depth Cal 14C ka

(em) BP

270 3600

280 3660

290 3730

300 3790

310 3860

320 3920

330 3980

340 4050

350 4110

360 4180

370 4260

380 4350

390 4440

400 4570

410 4700

420 4840

430 4970

440 5100

450 5230

460 5370

470 5500

480 5630

490 5760

500 5890

510 6020

520 6150

530 6280

Depth Cal 14C ka

(em) BP

540 6410

550 6540

560 6670

570 6800

580 6930

590 7060

600 7190

610 7320

620 7450

630 7580

640 7710

650 7840

660 7970

670 8100

680 8230

690 8350

700 10800

710 10900

720 10900

730 11000

740 11100

750 11200

760 11300

770 11400

780 11400
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In this chapter Figure 5.5 (species % abunda nce) is re-d rawn to present the

ostraco d data with respec t to ca lendar yea rs (F ig. 6.1). Based on the CON ISS clu ster

resul ts, Figure 6.1 can be divided into 6 "bio-zo nes" where marked changes in the

ostraco d asse mblage refl ect eco log ica l changes which too k place at the MAR05 -50 core

site ove r the past ~11400 years. Table 6.2 briefl y summarizes the bio-zon es.

6.1.2. Bio-zone 1 (11400-10700 cal yr BP)

Bio-zone I is part of the lower, brackish asse mblage which occ urs from the base

of core MA R05-50 dat ed from 11400 ca l yr BP to 10700 ca l yr BP. The most abundant

species over this tim e interval are L. sublepida and L. lepida, T amni cola donetziensis, C.

schweye ri, A. quinqu etuberculata (F ig. 6.1). These spec ies and other less abundant ones

such as A. bacuana, A. pediformis and A. cymbula are curre ntly foun d living in the

Cas pian Sea which has a sa linity range of 1-1 3 psu. C. schweyer i prefe rs sa linities of up

to 8 psu (Aladin, 1993) and A. quinquetuberculata prefe rs sa linities of up to 5 psu

(O prea nu, 200 8). L. lepida is also found living in deltas aro und the Azov Sea where the

maximum water depth is 14 m and salinity is very low, ce rtainly far less than 10 psu at

the coast. A. cymbula is found today in lagoons and estuaries in the Ponto-Caspian basins

(O prea nu.2008).

Bio-zone I is interp reted to represent a low salinity env ironment; probabl y less

than 10 psu based on the above spec ies and possibl y as low as 5- 8 psu based on the upper

sa linity pre ferences of C. schweyeri , A. quinqu etuberculata and L. lepida (see

Taxo nomy) . There were marine spec ies (e.g., P. aglis and L. littoralisi present in this

interval bu t the low sa linity strictly limit ed their distr ibuti on and thu s their abunda nces
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Table 6.2 . Outline of Bio-zones 1- 6 giv ing the main ostracod species and eco log ical

significa nce of each bio- zone.

Bio-zonc# Ma in Ostracod Species Ecologica l Sig nilicancc

Age (ca l yr BP)

Bio-zone I L. sublepida, L. lepida, T. amnico la Low sa lin ity, possibly 5-8 psu

l1 400-l0700 ca l yr BP donetziensis. A. quinqu etuberculat a. but not freshwater

A. olivia .C. schweye ri

Bio-zon e 2 L. sublepi da.Li lepida, T. amnicola Rem ain s brack ish, possibl y

8400-75 80 ca l yr BP donetziensis, A. quinquetuberculata, s light sa linity incre ase

A. olivia.C. schweyeri possibl y re lated to processes

whichre-in itiated

sed imentation after the hiatu s

( i.e ., inflo w of Medit erran ean

wa ter)

Bio-zone 3 L. liuora lis, L. lep ida , T. amnicola I'ost- reconn ect iontransitiona l

7450 -64 10 ca l yr BP donetziensis. A. quinqu etuberculata. phase, risi ng sa linity suitab le

A. olivia . C. schweyeri for bracki sh and marin e

ostracods , possib ly up to

Bio-zon e 4 P. agilis.C . carinata . H. rubra.L. Sa lin ity inc rease d a llow ing

628 0-43 50 ca l yr BI' multip unctata. C. variablis new Med iterr anean species to

dominate

Bio-zone 5 P. agilis , C. carinata, H. rubra , L. Introduction of two new

43 00-2350 ca l yr BP multipunctata, C. variablis. 1'. Medit err anean sublittora l

jonesii, C. edwardsi spec ies, possible sea level rise,

sa lin ity pcrhap s o Zf psu

Bio-zone 6 P. agiliscC. carinata , H. rubra, 1'. Ne w Med iterran ean spec ies I' .

2300 ca l yr BP-Present jone sii, C. edwards i, 1'. polita poll ia, sa linity s imilar to toda y
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are extreme ly low (Fig. 5.4 ; Fig. 6.1). The energy regime of the enviro nment is

interpreted to be low-moderate based on the high abundance of ju venile stages in the

samples (Fig . 5.3).

6.1.3. Bio-zone 2 (8400-7580 cal yr BI')

Bio-zone 2 begins above the U l unconfo rmity surface at ~8400 cal yr I3P (see

Chapter 3; Tabl e 3.2) and extends to 7580 cal yr BP (Fig. 6.1). There are not many

distinctive changes in the Bio-zone 2 ostracod asse mblage relative to l3io-zone 1 that

ex isted before the hiatus. L. lepida together with L. sublepida together increase in

abundance and T Amnicola and A. olivia decrease in abunda nce (see Chapter 5).

Increases in concentration (3.2 to 7.4 valves per gram) and diversity ( I I to I S species)

both occ ur in the first 250 years afte r the hiatus. These changes might have been simply

random fluctuation s whieh can be seen throughout the core and not necessaril y related to

processes which form ed unconform ity u, (see Chapter 3; Flood et al., 2009).

The data sugges t that durin g the l3io-zone 2 interva l a brackish environment

persisted on the southwestern Black Sea shelf suitable for ostracods wh ich favor brackish

waters . The changes in ostracod abundances from l3io-zone 1 to Bio-zone 2 might be

related to processes which re-in itiated sedimentation after the hiatus at ~8400 cal yr I3P.

This low salinity enviro nment persisted in the area of the core site until 7450 cal yr BP.

6.1.4. Bio-zone 3 (7450-6410 cal yr BI')

l3io-zone 3 marks a major change in the ostracod asse mblage (Fig . 6.1). This

interval encompasses the transitional assemblage from the first significa nt occurr ence of

marine ostraco ds (L. littoral isi at 7450 cal yr BP to the end of the co-occurrence of
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marine and brackish species at 6410 cal yr BP (Fig. 6.1). The change in the assemblage

at 7450 cal yr BP happens rather abruptly, in geological terms, considering that it occurs

within 10 em core depth which represents ~ 146 years (see Chapter 3). If the species L.

littoralis is truly stenohaline, as described by Ruggieri (1964), then it stands to reason that

when the water reached precise conditions favored by L. littoral is this species was able to

rapidly expand its population from only a one or two specimens per sample in Bio-zones

1 and 2 to making up ~40 % of Bio-zone 3.

The sudden appearance and rapid proliferation of L. littoralis, suggests that bio­

zone 3 places the persistent reconnection to the Mediterranean Sea (via the Bosphorus

Strait) at or sometime before 7450 cal yr BP and that the salinity rose quickly (in ~ 1 46

years) to a level suitable for L. littoralis . 1vanova et al. (2007) regards this species as

preferring salinities up to 18 psu so this might be an upper limit lo r the salinity range

sometime during or near the end of the Bio-zone 3 interval at 6410 cal yr BP.

However, during this interval the brackish species Loxoconcha sublepida ,

Loxoconcha lepid a and Tyrrhenocythere amnicola donetziensis were still able to sustain

their existence for another - 1000 years, until 6410 cal yr BP. The coexistence of

brackish and marine species during this interval suggests that salinities were rising but

still in a range suitable for both marine and brackish ostracods tolerant of increasing

salinities.

6.1.4.1. Significance of Loxoconcha Iittoralis

Other marine ostracods, namely P. agi lis, were present in the brackish interval

along with L. littoralis (Fig. 6.1). When the opportunity (i.e., a more saline environment)
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developed L. littoralis was the first of the marin e species to take advantage and

aggressively co lonize the area. It is possibl e that the sa linity at that time was in the exac t

range suitable for L. littoral is to thrive. However , that pa rticular sa linity range was only

sustained for - 1000 yea rs afte r which time it becam e unsu itable for L. littoralis and other

Medit erranean species were able to take adva ntage of its waning dom inance.

Another possibility is tha t L. littoralis is simply an agg ress ive and oppor tunis tic

species and was simply the fastes t to move in and take adva ntage of the lack of

compe tition from other marin e spec ies. Other species such as P. agilis took longer to

establish themse lves but eve ntua lly dom inated the area, out-competing L. Iittorali s.

6.1.4 .2. Cohabitation or Bioturbation?

Durin g the transition al interva l the Mediterra nea n species L. littoralis co-exis ted

with the lingerin g brackish spec ies for - 1000 yea rs (Fig.6 .1) . This suppor ts the idea that

the reconn ect ion with the Medite rranean invo lved steps in a prot racted process. But is it

possibl e that bioturb ation simply mixed these species together and they were not actua lly

living at co re site MARa S-50 together? The author arg ues that the observe d trend s arc

not a result of bioturb at ion and that these species trul y were livin g togeth er. The

bound ary betw een L. littoralis and the later mar ine species, es pecia lly P, agilis is ve ry

sharp (F ig. 6. 1). If bioturb ation was mixin g sedime nt over thickn esses of > Ia em there

would be more ove rlap between these spec ies. In addition, L. littoralis was a lready

present in the bracki sh asse mblage so it was not simply introduced into the mar ine

asse mblage and bioturb ated downward. L. littoral is and the brackish spec ies are

cons istently rep resented in the transit ional asse mblage as many adults and var ious
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juveniles. whic h is further evidence that they were living and dying there . Based on

visua l obse rvation, bio turbatio n is only moderate in core MA R05-50 and is not

interpreted to be a major factor in the distribut ion of ostracod va lves throughout the core.

Nowhere else in the core is there a "blur" or overlap that mixes species with dramatica lly

dif ferent environm enta l prefer ences.

6.1.5 . Rio-zone 4 (6280-4350 cal yr UP)

Bio-zone 4 begi ns at 6280 cal yr BP and marks the time when the brackis h

assem blage was esse ntially comp letely over taken by the marine species imm igrating in

through the Bosp hor us Strai t (Fig . 6.1). The pioneering L. littoral is was rapidly replaced

at this time by new Mediterranean species and the ostracod assemb lage in core MAR05 ­

50 became essentiall y fully compri sed of marine species until present (Fig. 5.1).

The first ostracod s to do minate the new marine assemb lage in bio-zone 4 were P.

agilis. C. carina/a and H. rubra (Fig . 6.1). These species are found living today arou nd

the Med iterra nean and adjo ining seas where the salinities are 37-39 psu. P. agi lis is

found in the Ad riatic Sea (Bo naduce et al., 1975) and it is abunda nt toda y around the

shallow (10- 100 m) shorel ine of the Black Sea (Schornikov, 1967). C. carinata can be

found today all around the Atlantic Ocean and Medit erranean Sea and prefer s depth s of

- 60- 80 m (Keen , 1982; Athersuch et al., 1989). J-I. rubra lives on the shallow banks

around Isch ia, Procida , Naples and the Sorre nto Penin sula in de pths up to 100 m (Puri et

al., 1964).

Bio-zone 4 is defi ned as an "early marine" stage. Thi s is called the early marine

stage becau se it is the beginning of increasingly saline bottom water in the southw estern
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Black Sea shelf due to steady Mediterranean inflow with water depth s prob ab ly aro und

80 m or less . Sal inity had risen to a point where it was unfavora ble for brack ish Pont o­

Cas pian spec ies and they soo n all but disapp eared. Dur ing thi s interva l. the

Mediterranea n os traco ds began to diversify and flour ish .

At - 4440 cal yr BP there is a tremend ous spike in the numbe r of va lves and the

numb er of spec ies (f ig. 5.2). While almos t ha lf of the 2 1 spec ies are bracki sh. the sheer

numb er of mari ne valves (es pecially P. agilis) makes the sample at this age /de pth 97.7 %

mar ine specimens. P. agilis makes up 75 % of the sample at th is level. The reason for

this spike in abundance and diversity is not clear. It co uld simply be a time when

condit ions at the cor e site were favorable for all o f these species, part icularly P. agilis. It

might be that at th is tim e bottom water cond itions were optima l fo r P. agi lis whose

popul ation was consequently ex ploding, crea ting the abundance spike .

6.1.6. Bio-zon e 5 (4350- 2350 cal yr BP)

Bio-zone 5 is de fi ned as a "mid-ma rine" stage marked by a further increase in

sa linity ind icated by the introduc tion of two new marine spec ies (fig. 6. 1). At 4350 ca l

yr Bl' C. edwards! and P. jo nes ii both appear for the fi rst tim e in core MAR 05-50 and

continue on as two of the more common species in the marin e asse mblage. 1'. jo nesi i

prefers sa linities of 26-35 psu (Nea le, 1988) so the co re site on the so uthwestern Black

Sea shelf might have bee n close to or in that sa linity range during this interval. C.

edwardsi and 1'. jon esii are both sublittora l spec ies (Athersuch et a l., 1989.) and 1'. jon esii

commonly occurs in wa ter well over 80- 100 m deep (Bonaduce et al., 1975; Penn y.

1993).
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6.1.7. Bio-zone 6 (-2350 cal yr B1>-Present )

Bio-zone 6 is defined as "late marine" because this stage started only abo ut 2300

years ago (Fig. 6. \). By this time the bottom water sa linity was probably very similar to

modern values (see also Soulet et al., 20 10). This bio-zone is de fi ned by a declin e in the

marine spec ies P. agilis and H. rubra common to Bio-zones 4 and 5. P. agi lis has an

ave rage abunda nce of 63 . \ % in Bio-zones 4 and 5 and in Bio-zone 6 it decreases to ju st

42.6 %. There is also a major decl ine in L. multipun ctata, X sp. aff cornelii and C.

variablis whose abundances all drop well below I % in Bio-zone 6. Bio-zone 5 ostracods

P. jo nesii and C. edwards! become more abun dant and 1'. po/ita notably become s a much

more commonly occ urring species in this late marine bio-zone (Fig. 6.1).

6.2. R-mode Fac tor Ana lysis

In Chapter 5 Q- and R-mode factor analys is result s were presented using ostra cod

data in the depth domain. Q-mode analysis seeks to discover simi larity between samples,

whereas R-mode ana lysis reveals simi lar behavior of variab les (in this case the vario us

species) . In this chapter, Q- and R- mode factor results are presented aga in, but with

respect to ca lendar years . The stat istical analysis of 25 key species in 92 samples

produced 5 R-factors after Var imax rotation acco unting lo r 82.8 % of the total variance

(Fig 6.2).

R-factors I account s for 28.9 % of the total variance and is main ly contro lled by

Medit erranean species 1'. agilis, L. multipunctata and X sp. aff cornclii with a minor

contribution from H. rubra (Fig 6.2).

R-fact or 2 accounts fo r 20.6 % of the total variance and its main contro lling
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Figure 6.2 . R-mode factor analysis extracted 5 factors from the age (ca l yr BP) data after

Vari max rotation (bottom right). Factors (species) more than ±O.2 are considered

statistica lly signilica nt (so lid green). Minor contributing factors are also shown (outl ined

green).
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spec ies are the Ponto-Caspian spec ies L. lepida , L. sublepida, T. amnicola don etziensis,

A. quinqu etub erculata, A. olivia, A. cymbula, A. bacuana and E. sp. aff relic /a (Fig 6.2) .

R-factor 3 accounts for 15.2 % of the total variance and is mainly controll ed by C.

edwardsi, P. polita. P. jonesii. P. agil is and C. carina/a are also significant species in

this factor (Fig 6.2).

R-facto r 4 accounts for 9.9 % of the total variance and is mainly controlled by the

Mediterranean species L. littoralis whic h dominates thc tra nsitional assemb lage .

Accord ing to the analysis L. immodulata is also a sig nifica nt contri bu tor. This is a

surprisi ng result because L. immodu lata is a very minor species in core MA R05-50 with

an ave rage trans itiona l sect ion ab unda nce 01'2.8 %. R-factor 4 also has num erous minor

factor load ings, mainly from brack ish ostracod species (F ig 6.2) .

R-factor 5 accounts for 8.2 % of the total variance and is main ly controlled by the

occurrence of C. carina/a, H. rubra and C. variab ilis with a negati ve correlation wit h C.

edwards i, P. po lito and L. mult ipunctata (Fig 6.2).

6.3. Q-mode Factor Analysis and Relation ship to Bio-zon es 1-6

The downcore plots of the Q-factors clearl y show 3 divi sions : lower, midd le and

upper areas of the Q-factor grap hs, corre spondi ng to ea rlier observations of brack ish ,

tran sitiona l and marine sect ions respectively in core MAR05 -50 (Fig. 6.3; Fig. 5.4; Fig.

5.1). The Q-fac tors are described in the order they occ ur movi ng upward from the base

of core MA R05-50 , and thus fo rward in time from - 11400 ca l yr BP. Q-fac tor 2 is the

dominant facto r from the base of core MA R05 -50 at - 11400 ca l yr BP to - 7400 ca l yr BP

(Fig. 6.3). Between - 7400 ca l yr I3P and - 6400 ca l yr BP this fa ctor show s a sharp

stepwise decre ase reaching 0 factor loadings at - 6400 cal yr BP. It is
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Figure 6.3. Q-factors 1- 5 show the down-core distribution of R-factors 1- 5 respective ly. The Q-factor plots clearly show that

the R-factors are distinctly distributed in lower. middle and upper parts of core MAR05-50. On the right, the location of Bio­

zones 1- 5 in the core are shown alongside the R-factor asse mblages which control each bio-zone.
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abse nt in the upp er 6400 years of the core. Q-factor 2 clea rly co rrelates to the low er

bracki sh sec tio n of core MAR OS-SO (Fig. 6.3). Th erefo re, the R-factor 2 ass emblage is

the main co mpo ne nt of the ea rlies t Bio-zo nes 1 and 2 (Fig. 6.1).

Q- fac to r 4 has fluctu at ing but very low fac tor loadin gs on samples fro m - 11400

ca l yr BP to - 7400 ca l yr BP. Th en Q-fac tor 4 becom es the domin ant factor with >80 %

loadin g fro m - 7400 ca l yr BP to - 6400 ca l yr BP . The shar p decl ine at - 6400 ca l yr BP

is nea rly perfectly match ed with the shar p increase at thi s time o f Q-fac tor 5 (see below),

broadl y matched w ith the recip rocal inc rease in Qvfactor 1. Q-factor 4 is abse nt from

- 6400 ca l yr BP to th e top o f co re MAROS-SO. Q-factor 4 clearl y corre lates to the

tra nsitiona l sec tion of core MAR OS-SO (Fig. 6.3). There fore the Rsfactor 4 asse mblage

which is contro lled by L. littoralis is the main co mpo nent o f Bio-zon e 3 (F ig. 6.1).

Q-fac to rs 1, 3 and 5 (a nd the corr espondin g Rsfactors) all co rre late w ith some part

or part s of the marin e sec tion o f core MAR OS-SO which includ es the Bio-zon es 4- 6 (F ig.

6.3; Fig . 6.1). Q- facto r 1 is abse nt fro m the base of the co re at - 11400 ca l yr BP to - 6400

ca l yr BP (F ig. 6.3). It becom es the domin ant fac tor fro m - 6400 cal yr BP to - 4000 cal

yr BP . The tran sit ion at - 6400 ca l yr BP is rem arkabl y abrupt. Between - 4000 ca l yr BP

and - 1500 ca l yr BP, Q-fac tor I ex hibits fluctuat ing but gra dua lly dec reas ing factor

load ings in the sa mples . It is less than 10 % in the upp er - 1500 yea rs of co re MA ROS-SO.

Qvfactor I clea rly denotes the ea rlies t marine stage and Bio-zon e 4 . P. agil is is the main

fac tor in the temp orall y assoc iated R- factor 1. The re is a clea r sim ilar ity eve n betw een

the trend ofQvfactor 1 (F ig. 6.3) and the abunda nce trend for P. agi lis (Fig . 6.1). R-factor

1 therefore is the main component of Bio-zone 4, the "ea rly mar ine" stage.

Q-fac tor 3 is abse nt fro m the base of the core to - 6400 ca l yr BP (Fig. 6.3). It
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becomes the dominant factor in the upper ~2000 years of the MAR05-50 record and

displays a nearly perfectly reciprocal relationship with Q-factor 1. This is particularly

true in the upper - 2000 years of the record. Q-factor 3 follows a similar trend/shape to

the abundance plots of P. jonesii, C. edwardsi and P. polita (Fig. 6.1) which are the main

contributors in R-factor 3. Therefore, the R-factor 3 assemblage is a component of Bio­

zone 5. Because P. polita is a statistically significant contributor to R-factor 3 (i.e., it has

a high loading on that factor), and this species does not become significant until Bio-zone

6 (Fig. 6.1), the importance of R-factor 3 also extends into Bio-zone 6.

Q-factor 5 is absent from the base of core MAR05-50 at - 11400 cal yr BP to

- 6400 cal yr BP. Between - 6400 cal yr BP and the top of the core, this factor exhibits

large amplitude fluctuations which are roughly reciprocal with those observed in Q-factor

1, but appear to be weakly correlated with Q-factor 3. Q-factor 5 and R-factor 5 are more

cryptic than the four preceding factors. Q-factor 5 (Fig. 6.3) very closely resembles the

abundance trend for C. carina ta (Fig. 6.1) which is the main controlling species on R­

factor 5. Therefore, R-factor 5 might be a part of all three marine Bio-zones 4-6 . In

Chapter 5 the statistical results for the depth data are given. In those results Rvfactor 5 is

much different than R-factor 5 results presented here in the age domain. This discrepancy

is discussed further in Chapter 7.
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CHAPTER 7

DISCUSSION

7.1. Timing of Two-way Flow and Increa sing Salinity in the Black Sea

The ostracod data described in Chapters 5 and 6 showed that the post-glacial

reconnection between the Black Sea and the Mediterranean Sea occurred at or before

7450 cal yr BP. Based on the work of others (e.g., Major et al., 2006; Hiscott et al., 2007;

Marret et al., 2009; fl ood et al., 2009) the actual timing of the first Mediterranean inflow

was earlier than suggested by the ostracod turnover in core MAR05-50. On the basis of

the strontium isotopic signal in dated mollusc shells, Major et a!' (2006) suggested that

Mediterranean water first entered the Black Sea in significant amounts as early as 9150

cal yr BP. This date is the revised timing of the catastrophic flooding of the Black Sea

that was first proposed by Ryan et a!' (1997). It was interpreted by others (Hiscott et al.,

2007; Marret et al., 2009) to be the timing of a short pulse of Mediterranean water inflow

due to a temporary weakening of Black Sea outflow and not the beginning of persistent

two-way flow across the Bosphorus Strait.

The sediments from cores MAR05-50 above the unconformity U I provide

evidence for the timing of post-glacial Mediterranean inflow into the Black Sea. I f the

sediments deposited above unconformity U I coincide with Mediterranean water inflow as

suggested by Flood et a!' (2009), then the inflow must have begun at least as early as

8160 cal yr BP, because this is the first available date above unconformity U I at 675 em

depth in core MAR05-50 (Fig. 3.1; Table 3.1). This date is from 695 cm depth in the

core, - 20 em above unconformity U I; thus, the first persistent inflow must have started
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sometime earlier to build ~20 em of levee success ion. The chronostratigraphy of core

MAR05-50 (see Chapter 3) would suggest that - 290 years would be needed to deposit

~20 em of sediment thickness, putting the timing of first persistent inflow at no later than

- 8450 cal yr BP, and possibly earlier if the inflow began during the hiatus at

unconformity u .,

In core MAR02-45, raised ~70 km west-northwest of core site MAR05-50, the

start of sulfate reduction signifying a good input of saline water into the Black Sea occurs

at 8520 cal yr BP (age recalibrated from Hiscott et al., 2007, unpubl ished data).

Accordingly, it seems likely that the persistent inflow had begun sometime between 8520

and 8450 cal yr BP. Based on dinocyst data Hiscott et al. (2007) suggested that after the

initiation of persistcnt Mediterranean inflow, and the associated establishment of two-way

exchanges across the Bosphorus Strait. the salinity increased to > I0- 12 psu. This salinity

level would still have been tolerable for the brackish water ostracods in Bio-zone 2.

7.1.2. Salini zation Lag

The above evidence suggests that there is a lag of at least 1000 years between the

beginning of persistent marine inflow into the Black Sea at ~8 5 00 cal yr HI' and the

aggressive colonization of the area by the first Mediterranean ostracod L. littoralis at

7450 cal yr HI'. This lag is interpreted as the time needed for enough Mediterranean

water to enter the Black Sea to raise the salinity to a level suitable for marine ostracods.

This is in agreement with Major et al. (2006) who moved the date of the initial incursion

back to ~9 1 5 0 cal yr BP, and who reinterpreted the date of - 7570 cal yr HI' (Ryan et al.,

1997) to mark the point when the salinity became suitable for Mediterranean molluscan
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fauna to begin colonizing the Black Sea. In this study, this lag is interpreted as evidence

that the post-glacial reconnection of the Black Sea to the Mediterranean Sea and

subsequent salinization of Black Sea bottom water was a progressive and gradual process.

This does not rule out a catastrophic initial reconnection, because modelling by Soulet et

al. (2010) showed that even a very rapid rise in the level of the Black Sea from - -90 m to

- -40 rn due to the addition of - 28000 knr' of 38 psu Mediterranean water would only

increase the average salinity of the Black Sea by - 2 psu.

7.2. Correlation with Geochemical Data from Core MAROS-SO

A concurrent geochemical study was done on the sediments from core MAROS-SO

by fellow M.Sc. candidate (A. Linegar, Paleoenvironmental History of the Southwestern

Black Sea: and Elemental and Stable Isotopic Study, 2012). The results showed that

organic carbon from the base of the core to unconformity u, (Bio-zone I in this study) is

isotopically light (- -27 %0) indicating its source was predominantly terrestrial or

lacustrine (f ig.7.1). Above unconformity u, the organic carbon signal becomes

increasingly marine (f ig. 7.1) and an increase in sulfate reduction suggests that by - 6300

cal yr BP a sustained two-way flow had been well established (A. Linegar, personal

communication). This is in agreement with this study, which documents the first fully

marine Bio-zone 4 after - 6300 cal yr (f ig. 6.1; Table 6.2), consistent with a strong and

persistent input of marine water by this time.

7.3. Relation to Previous Black Sea Studie s

The ostracod data conflict with the hypotheses of Ryan et al. (1997, 2003) and

Major et al. (2002, 2006). The location of core site MAROS-SO is currently at - -91 rn
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Figure 7.1. An illustration of composi te core MAROS-SO next to plots of organic carbon

source s shows that prior to the hiatus the source of organic carbo n was >80 % terrestrial.

At the start of re-deposition followi ng the hiatus at - 8400 cal yr BP the source of organic

carbon became increas ingly marine indicat ing the onset of Mediter ranean inflow

(mod ified from Linegar, 20 12).
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below sea level. and the U I unconformit y lies at an elevatio n of - -97 m (Figs 2.2, 3. 1).

Clearly the ostraco d data suggest that the core site was submerge d by at least a few

meters of water by - 11400 cal yr BP for the ostraco ds to be living there and that there

could not eve r have been a drawdown of the water level to - -95 m below the current sea

level since that time, as proposed by the Flood Hypothesis (Rya n et a l., 2003). Such a

drawdown would have ef fectively placed the core site at the paleo-shorelin e. Hiscott et

al. (2007) sugges ted that the water depth could not have been shallower than - -55 m

during this time based on early Holocene deposits which indicate d acc umulation below

storm wave base. On the modern shelf: accumulation is prevented by wave agitat ion in

water depth s less than 50-60 m (Hiscott and Aksu, 2002). Similarly, Yanko-Hombach

(2007) and Ivanova et al. (2007) agree that the water level in the Black Sea never dropped

below -40 m after - 11000 cal yr BP. These water levels would have been su itable for the

ostracod spec ies living at core site MA R05-50 from - 11400 cal yr BP. Unconformity Ul

occurs at a depth of 695 em in the brackish section of core MA R05-50. This

uncon formi ty is wide ly traceable in Holocene deposits of the southwestern Black Sea

shelf and is also prese nt in core MAR0 2-45 (Flood et al., 2009), suggest ing that core site

MAR05-50 was connec ted to the open Black Sea and not an isolated pond at an eleva tion

above a regressed " lake" .

Furthermo re, the ostracod species found in core MAR 05-50 clearly show that

conditio ns in the Black Sea from - 11400 to 7580 ca l yr BP were brackish and not

freshwa ter as previously proposed by Ryan et al. (1997) and, for the older part of this

time interva l, by Soulet et al. (20 10), before a grad ual reconnect ion to the Med iterranean

Sea. Brack ish conditions in the early Holocene Black Sea have also been shown by a
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number of previous authors . Marret et a!' (2009) concluded from dinocyst data from core

MAR02-45 that the salinity of the pre-reconnec tion Black Sea was between 7 and 12 psu

unt il - 7700 ca l yr BP and gradually became more saline ove r - 1500 years . Although

Soulet et a!' (20 10) criticized that conclusion stating that the dinocysts used to estimate

this sa linity actually are known to have a wider sa linity tolerance, Mudie et a!' (2007) also

concluded the ea rly Holocene Black Sea fluctuated between 5 and 15 psu based on

dinocyst data and a study of the process lengths of the dinocyst Lingulodinium

tnachaerophorum . Mertens et a!' (20 12) confi rms these estimates .

After the reconn ection, the salinity values might have been around 13-1 5 psu

dur ing Bio-zone 3 (Mer tens et al., 20 12). These salinity sugges tions would see m

tolerable for both marine and brackish water ostraco ds which were found together in core

MA R05-50 in the transitional asse mblage and Bio-zone 3 (Chapters 5 and 6). The

MAR05-50 site is immediately adjace nt to the site of saline inflow through the Bosphorus

Strait, so it would seem reasonable to assume that the bottom waters after reco nncction

were more sa line than - 15 psu, eve n more conducive to marine ostracods .

After the transitional Bio-zone 3, the start of the first marine bio-zone at 6280 ca l

yr BP (Fig 6. J; Table 6. I) more or less co incides with wea kening of Blac k Sea outflow at

- 6400 ca l ka BP proposed by Hiscott et a!' (2002) lettin g in more marin e water to raise

the salinity and provide eas ier access for the Medit erranean ostracods because the floor of

the Bosphorus Strait would have been continu ously bathed with Medietr ranean water and

j uveniles ostracods would have been more effec tive ly transported by stronge r northw ard­

flowing bottom waters. This timing also coincides with the maximum input of orga nic

carbon from marin e sources indicating a well-established reconn cction (F ig. 7.1).
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In addit ion to the sa linization lag propose d by Major et al. (2006), a lag of - 900

years was also observe d by Soulet et al. (20 11), although they bel ieve that the

Mediterranean wa ters entered the Black Sea without any precedin g Black Sea outflow .

Whateve r the mechan ism , So ulet et al, (20 10, 20 11) ag ree with a slow sa linization as do

Lane -Se rff et a!. (1997) who conclude that complete sa linization wo uld have takcn - 5000

years , largely prolonged by the high river input into the Black Sea dur ing the early

Holocene. This is in ag reement with the ostraco d data from co re MA R05-50 which

showe d that sa linity cond itions reached near modern levels in Bio-zone 6 starting at

- 2300 ca l yr BP, which is - 5000 years after the faunal turnover is observe d at 7450 ca l yr

BP.

The result s of this study are also similar to the findings of Gi unta ct al . (200 7)

who noted thr ee "ecozones" in sediment co res from the western Black Sea . These

authors simi larly showe d a gradual increase in salinity in the Black Sea afte r - 7600 ca l yr

BP. Base d on changes in the ca lcareo us nann opl ank ton E. huxley and B. bigelowii they

interpre ted a sa linity of less than II psu pr ior to - 7600 ca l yr BP and 17 psu afte r this

time unt il - 3 100 ca l yr BP which is in agree ment with sa linity va lues given for these

interva ls by Hiscott et al. (2007), Mudie et a!. (2007) and Marret et a!. (2009) . In

addition, the autho rs state that the co lonizatio n of the Black Sea at - 3 100 ca l yr BP by E.

huxley marks the onse t of salinity conditio ns simi lar to those observe d today which the

ostraco d data supports . Giunta et a!. (2007) also noted that litho logica l bound aries always

preceded the biostrat igraphi c bound aries "probably because co lonization of the new

hab itat by ca lcareo us nannoplankton is gradua l" which is a lso in line with th is study and

the revised Flood Hypothesis (Major et al., 2006).
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7.3.1. Comparison ofOstraeod Date from Cores MAR05-50 and MAR02-45

Co re MAR02-45 was taken from the southwestern Black Sea she lf dur ing a cruise

of the RV Koca Piri Reis in 2002. This core site is - 70 km from the cor e site of MAR 05­

50 (Fig . 7.2). The ostracod data from this core are publi shed as a Master of Science

research report compl eted at the Unive rsity College London (Evan s, 2004 ) and briefl y

summarized in Hiscott et al. (2007). The fund amental simi lar ities and di fferences

betw een these two cores are described below.

7.3.1.1. Timing and Nature of Faunal Turnover in cores MAR02-45 lind MAR05-50

The most notabl e similarity between these two cores is that core MAR0 2-45 also

shows an analogo us turno ver from a brackish to marine ostracod asse mblage at

approx imate ly the sa me tim e as core MAR05- 50 (Fig . 7.3) . Th e turno ver in core

MAR 02-4 5 begin s at - 7600 ca l yr BP whi ch is - 150 yea rs earlier than the turn over in

core MAR05-50, and is fully changed ove r to a marine asse mblage by 6400 ca l yr Bl', In

core MA R02-45 the ratio of marin e to bracki sh spec imens incr eases stead ily until

eve ntua lly the samples become essenti all y full y mad e up of marine spec ies in - 800 years.

This is di fferent from the turnov er in core MAR0 5-50 in which the ratio of bracki sh to

marine specimens fluctu ates irregularl y for - 1000 yea rs until the marin e species finall y

domin ate (Fig. 7.3).

Obvi ous question s are : Why does the tran sition begin - 150 yea rs earlier at core

site MAR0 2-45 when it is farth er from the Bosphorus Stra it? And why is the tran sition

more rapid and stea dy at core site MAR0 2-45 ?

There are a few simple point s that can ex plain this small tim e difference. First.
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Figure 7.2. Regional map showing the locations of cores MAROS-SO(blue diamond ) and

MA R02-4S (red star) - 70 krn northwest.
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Figure 7.3. Co mpar iso n of changes in % abund ance of Pont o-Caspi an and Mediterra nean

os traco d species in co res MAR 05-50 and MAR 02-45. Both cores sho w an ana logo us

turn over fro m bracki sh to marin e os tracod spec ies at approxima te ly the sam e tim e. In

core MAR0 2-45 the refle ctor whi ch laterall y corr elat es with the UJ unc onformity is a

conforma ble surface (das hed gree n line). Likewise, in core MAR0 5-50 the latera l

equ iva lent of the U2 uncon formity (das hed blu e line) is a co nfo rma ble surface while it is a

clear unconformity in core MA R02 -45.
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thc standard deviation for the dates bracketing 7500 cal yr BP is between ± 60 and ± 80

(Table 3.1; Hiscott ct al., 2007, their Table I) which could account for the observed

di fference. Also, thc Ager program used to obtain thc da tes for all depths in core

MAR05-50 has the fundamental limitation that it extrapolates and interpolates dates by

assuming constant sedimentation rates between actual dated depths. If the actual

sedimentation rate was fluctuating then the dates could be slightly too old or too young.

Another reason the brackish to marine faunal turnover at core site MAR05-50 is

more irregular compared to core MAR02-45 (Fig. 7.3) is probably because of the

immediate proximit y of the former to the complex area of mixing near the Bosphorus

Strait where the two water masses interact. The slightes t variation in Mediterranean

water input or Black Sea water output could have affec ted the abundance of marine and

brackish species. Core site MAR02-45 is relatively far from the Bosphorus Strait and

thus, not as sensi tive to small variations in the water masses passing through the

Bosphorus Strait.

Finally. it must be remembered that while salinity is a major control on the

distribution of ostracods it is not the only factor. The substrate. avai lability of food and

predation also influence distribution. Therefore , if these parameters were more favorable

at core site MAR02-45 it could also explain why the Mediterranean ostracods colonized

that area earlier than at core site MAR05-50.

7.3.1.2. Comparison of Species Fo und in Cores MA R1l2-45 and MA R05-511

Most of the ostracod species present in core MAR02-45 (Evans. 2004) arc also

present in core MAR05-50. Although some have differing or unidentified species names
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in core MAR02-45. the author believes they are the same based on SEM images

published in Evans (2004). C. edwardsi, P. jonesii, and P. polita are three notable

Mediterranean species from Bio-zones 5 and 6 (- 4350 cal yr BP onward) in core

MAR05-50 which were not recorded in core MAR02-45. The transitional species L.

littoralis appears in core MAR02-45, but makes a far more significant show in core

MAR05-50 (Fig. 6.1). Although L. littoralis was found in core MAR02-45 (indentificd

as Loxoconcha sp. 3 by Evans) it was only present in very low abundances at only 3

widely spaced sample depths (Evans, 2004). In core MAR05-50 L. littoralis has a much

more significant role essentially dominating the whole transitional interval and Bio-zone

3.

The reason that L. littoralis is abundant in core MAR05-50 and not in MAR02-45

is simply that this species was only able to rapidly colonize the immediate area at the

northern exit of the Bosphorus Strait into the Black Sea for - 1000 years. This species did

not make its way to core site MAR02-45 in such massive numbers. P. agili s (called P.

g il l/ ala by Evans, 2004) became the dominant species after the turnover in core MAR02­

45, just as in core MAR05-50. essentially skipping over the L. littoralis initial

colonization "step".

The Mediterranean species C. edwardsi, P. jon esii and P. polita apparently enjoy

high salinities as indicated by their late arrival to the core site MAR05-50 (Fig. 6. I). As

with L. littoralis, these species are present at core site MAR05-50 but not at core site

MAR02-45 simply due to the close proximity of core MAR05-50 to the Bosphorus Strait.

A slightly lower salinity at core site MAR02-45 is not likely to be a contributing factor

because these species were present since - 4300 cal yr 81' (Fig 6. 1) when the salinity on

149



the Black Sea shelf was likely lower than modern levels, because shelf waters are

genera lly we ll mixed by wave s and currents.

7.4. Comparison of Depth and Age Data Factor Analysis Results

Factor analysis extracted five R-factors in both the dept h (Fig. 5.6) and age (F ig.

6.2) domains. The plots of R-factors 1--4 and Q-fac tors 1--4 in both the depth and age

domains yie lded esse ntially the same results (F ig. 7.4; Fig. 7.5). A discrep ancy ar ises at

the extraction of the R-factor 5 and Q-facto r 5. The R-fact or 5 (and Q-factpr 5) extra cted

from the depth data is not similar to the R-factor 5 (and Q-facto r 5) extracted from the age

data (Fig. 7.6) .

From the depth data, ana lysis shows that R-factor 5 is cont rolled by L.

multipun ctata and C. variablis with a negat ive corre lation with 1'. agi lis. In this case. Q-

factor 5 (Fig . 5.7) looks simi lar to the abundance plots of L. multip unctata and C.

variabilis (Fig . 5.5a). If this is truly the R-factor 5 then Rvfactor 5 is a co mpo nent of'Bio­

zones 4 and 5.

However. R-factor 5 extrac ted from the age da ta is contro lled mainl y by the

occ urrence of C. carina ta and H. rubra and the corres ponding Q-fac tor 5 (Fig. 6.3) docs

indeed have a trend very similar to that of C. car inata (Fig. 6. 1). In th is case. R-f~lctor 5

is a component of a ll three marin e Bio-zones 4- 6.

These result s most likely mean that in this study the factors begin to lose their

meanin g at the 5th fac tor level. The prog ram is forced to ex tract as many facto rs as

requested by the user. As more facto rs are extra cted, thc less sig nifica nt and interp retabl e

they beco me .
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Figure 7.4. R-factor analysis of the depth (blue) and age (green) data yielded esse ntially

the same result s for the fi rst four extracted factors.

151



Q-factorl Q-factor 2 Q-factor3 Q-factor4
00.20.40.60.81.000.20.40.60.8 1.000.2 0.40.60.81.0 00.20.40.60.8 1.0

O f--rJ- --'--'-....L-.J

Figure 7.5. Q-factor plot s from depth (top) and age (bottom) data are essenti ally the same

lor the first four extr acted factor s, showing distinct lower, middl e and upper divisions.
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Figure 7.6. A compari son of R-factor 5 (left) and Q-factor 5 (right) from the depth data

(blue) and age data (green) shows that these results do not concur.
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7.5. Summary and Comment on Validi ty of Three Hypothe ses of Reconnection

In summary, detai led identification and interpretation of ostracod s in 89 samples

from core MAR05 -50 revea led that during the early Holocene, from ~ 1 1 400 to ~7500 ca l

yr BP the southwestern Black Sea shelf was part of a brackish water " lake" which had no

large or con tinuous input of water from the World Ocea n. The ostr acod fauna show the

presence of a diverse and thriving brackis h water ostracod community do minated by L.

sublepida and L. lep ida until 7580 cal yr BP. After 7450 cal yr BP the first

Mediterra nean specie s L. Iittoralis began to aggressively colonize the southwestern Black

Sea shelf nort h of the Bosphorus Strait. For - 1000 years the origina l Ponto -Caspian

ostracod species and the new Mediterra nean imm igrant species lived at the MA R05-50

core site in more or less equal abundances. After - 6400 ca l yr BP the Mediterra nean

species bega n to diversify and dominate the core site on the southwestern Black Sea shelf.

The Ponto-Caspia n ostracod spec ies and the Mediterranea n species L. littoralis were

replaced by new Mediterranean ostracod spec ies, the most abundant being!'. agilis.

The sedimentological data from core MA R05-50 and the findings of other authors

sugges ts that a two-way flow between the Black Sea and the Mediter ranean Sea was

initiated at - 8500 cal yr BP. Therefo re, there is a lag of - 1000 years betwee n the fi rst

persistent entry of Med iterranean water into the Black Sea at ~8 5 00 ca l yr BP and the

discern ible colonization of the area by Med iterranea n ostracod spec ies at - 7500 cal yr

BP. This lag is interp reted as the amount of time necessary for the water at the MAR05­

50 core site to reac h salinity levels favorable to ostraco ds migrating from the more saline

enviro nme nt of the Mediterra nean Sea . Statistical analyses of the ostracod data show 6

Bio-zones with distinct ostraco d asse mblages ; changes in those assemblages indicate a
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gradual and sequential sa linization of the Black Sea bottom water as a result of steady

inflow of Medit erranean waters since - 8500 cal yr BP. The uppermost l3io-zone 6

contains ostraco ds which favor marine salinities, some of whi ch can inhabit depth s of 100

rn or more, sugges ting that sea leve l and salinity values in the Black Sea were near modern

values by - 2300 ca l yr BP.

The main objec tive of this thesis was to delineate the paleoenvironm ental

evolution of the post-glacial Black Sea and to eva luate the va lidity of the three ex isting

hypotheses regar ding the post-glacial reconnection of the Black Sea with the

Mediterra nean Sea (i .e., the Flood Hypothesis, which argues for a catastrophic floodin g of

an isolated Black Sea by Mediterranean water at - 9150 cal yr I3P; the Outflow

Hypothesis, which argues for Black Sea outflow since at least - I 1900 cal yr I3P and a

systematic reco nnec tion with the Mediterran ean Sea through the Bosphorus Strait

sometime between 8500 ca l yr I3P and 8000 ca l yr I3P and a subsequent gradual

salinization of the Black Sea bottom water ; and the Osc illating Hypothesis which argues

for neith er a catastrophic nor a gradual reco nnection but a cycle of transgressions and

regressions ove r the Holocene after a temp orary lowstand of - -50 m sometime between

- 12700 cal yr BP and - 10000 cal yr I3P (Chepalyga, 2002; Yanko-Hombac h et al., 2007;

Ivanova et al., 2007).

The ostraco d data do not support the Flood Hypothesis. The statistical analysis

clearl y indicates an ordered and progressive replacement of Porno-Caspian ostraco d

species by Mediterra nea n species. First of all, the ostracod data show that the core

location was transgressed by brackish water and not subaerially ex posed or cove red by

fresh water as the Flood Hypothesis would require. Furthermore , the marine l3io-zones 4-
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6 strongly sugges t that the post-reconnection saliniza tion of the Black Sea was gradual

and involved steps of increasing salinity ove r - 5000 years. The first Medit erranean

species to appear is a single immigrant (L. Iiuoral isi , not the introducti on of many new

species which would be expected with a catastrophic inundation. The ostracod data do

not sugges t a catastrophic floodin g of the Black Sea by Med iterranean water at 9 150 cal

yr BP from a lowstand of - -95 m as proposed by Ryan et al. (2003) .

With regard to the Osci llating Hypothesis, the ostrac od data do not support or

refute a regression and disconnection from the Marmara Sea between - 12700 cal yr BI'

and - 10000 cal yr BP. First of all, core MAR05-50 only contains sediments beginn ing at

- 11500 cal yr BP, so the ostracod data cannot sugges t what was hap pening on the

southwestern Black Sea shelf before that time. Also, there are no ostraco d data from

10600 cal yr BP to 8500 cal yr BP because there was a depositional hiatus at that time.

The ostracod data from 11400 cal yr BP to 10600 cal yr BP do not conflict with a

drawdown of water to -50 m dur ing that time. Proponents of the Outflo w Hypothesis also

agree that the Black Sea level was as shallow as - -40 m during the ea rly Holocene but

that it remained high enough that outflow was co ntinuous. Sea level osci llations outlined

by Chepalyga (2002) for the Holocene are only on the order of a few tens of meters up to

- -40 rn. These wate r depth s would have still been suitable for the ostraco ds living there.

Furthermore, modell ing by Soulet et al. (20 10) indicated that a catastro phic

marine breakth rough into the Black Sea (i.e., the Flood Hypothesis) would have had little

effect on sa linity. Sa linity changes assoc iated with relatively gradual and smaller sea leve l

transgressions and regressions (i.e., the Osci llating Hypothesis) would not have caused

discernibl e changes in the ostracod asse mblage. Therefore, the ostracod data from core
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MAROS-SO neither contradicts nor confirms the sealevel oscillations in the Black Sea

through the Holocene and the author agrees that the oscillating scenario suggested by

Chepalyga (2002) , Yanko-I-Iombach et at. (2007) and lvanova et al. (2007) is entirely

plausible.

With regard to the Outflow Hypothesis, the ostracod data from core MAROS-SO

do support the scenario of a transgressed southwestern Black Sea sheIf at least by ~ 11500

cal yr BP. Furthermore, the Outflow Hypothesis argues for a low salinity Black Sea

before a gradual and progressive reconnection with the Mediterranean sometime between

8500 cal yr BP and 8000 cal yr BP which is supported by the ostracod data from core

MAROS-SO. Most importantly, the statistical data point to a successive and gradual

turnover from brackish to marine ostracod species starting at 7450 cal yr BP alter an

- 1000 salinization lag and subsequent step-wise changes in the ostracod assemblages

reflecting a progressive salinization of the Black Sea bottom water as argued by the

Outflow Hypothesis. However, a caveat is necessary because Soulet et at. (20 I0) showed

that a catastrophic inundation of the Black Sea by Mediterranean water would have had

little effect on salinity, and even with such a catastrophic flood the subsequent salinity

variations would still have been gradual up to ~2000 cal yr I3P.

7.6. Future Work

7.6.1. Ostracod Geochemistry

Considerable information can be gained from ostracod shell chemistry. Because

the ostracod moults quickly its carapace preserves a precise record of the ambient water

conditions at that time. Also, because ostracod shells do not have chambers they are
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often smooth and are less likely to be contaminated than other types of shells (Dwyer et

al., 2002). Holmes and Chivas (2002) and Dwyer et al. (2002) give good overviews of

applications of ostracod shell chemistry.

Trace elements are partitioned into the ostracod valve at the time of shell

secretion. The main trace elements in the ostracod shell arc Mg. Sr. Na, K, and Ba

(Anadon et al., 2002). Mg/Ca and Sr/Ca ratios and oxygen isotopes in the ostracod valve

can be used to interpret paleotemperature and paleosalinity but this application is not yet

fully understood (Holmes and Chivas, 2002; Boomer et al., 2003) and there may be inter-

and intra-specific variation in trace clement uptake (Dwyer et al., 2002). Ostracods might

also have the potential to be valuable indicators of water pollution by measuring the

content of heavy metals such as Co, Ni, Cu, Zn, Cd and Pb in their valves but so tar this

has not been studied adequately (Holmes and Chivas, 2002).

An ostracod carapace is made of carbonate and thus, if younger than 50000 years,

contains a proportion of radiogenic 14C. Therefore. radiocarbon dates can be obtained

from ostracod shells. According to Holmes and Chivas (2002) it is possible to obtain a

radiocarbon date from a single large ostracod valve.

For geochemical results to be meaningful. the most pristine material must be used.

Pristine ostracod valves of most species are abundant in cores MAR05-50P and MAR05­

51G. For future work, extraction of geochemical data from the ostracod valves from

these cores is recommended to further illuminate the Holocene paleoclimatic and

paleoceanographic evolution of the Black Sea. The original material (i.e., ostracod

valves) used in this thesis is archived at the Earth Sciences Department at Memorial
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University of Newfoundland for such studies in the future.

7.6.2. Cores

In future, it would be interesting to examine ostracod valves from older sediments

than those recovered in core MAR05-50 (i.e., older than - 11500 cal yr BP) and

particularly from along the Bosphorus "corridor" heading southeast into the Marmara Sea

to investigate whether ostracod records could point to a continuous or interrupted Black

Sea outflow during the Late-Glacial- Holocene transition.
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CHAPTER 8

CONCLUSIONS

The main objective of this thesis was to further elucidate the post-glacial

paleoclimatic and paleoceanographic evolution of the Black Sea using the microfossil

Ostracoda while also highlighting Black Sea ostracod taxonomy and the usc of the

ostracods in paleoenvironmental studies. The following salient conclusions were reached

in this thesis:

I . A chronostratigraphic framework was constructed for the latest glacial to

Recent sediments recovered in a 737 ern-long piston core (MAROS-SOP) and its 157 ern­

long gravity core (MAROS-S1G) raised from 91 m depth on the southwestern Black Sea

shelf on the eastern levee of a channel which accommodates the inflow of dense, saline

Mediterranean water into the Black Sea. A 787 ern-long Composite core MAROS-SOwas

constructed from the two above cores by adding the top 50 em of core MAROS-Sl G to the

top of core MAROS-SOP to account for an estimated core top loss of 50 em from core

MAROS-50P. Fourteen radiocarbon dates were obtained from fossil material from the

above cores and an age model was constructed for core MAROS-SO using nine of the

fourteen radiocarbon dates, omitting dates considered to be unreliable. MAROS-SO

recovered a sedimentary record of the southwestern Black Sea shelf for essentially the

entire Holocene epoch from - 11500 cal yr BP to present. An unconformity known as U I

occurs at 695 em depth in core MAROS-SO. The sediments directly below and above

unconformity UJ were dated by extrapolation to delineate a depositional hiatus at the core

site on the southwestern Black Sea shelf from - 10600 cal yr BP to - 8500 cal yr BP.
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Based on sedimentological data from core MAR05-50 and geochemical data from core

MAR02-45, a persistent inflow from the Mediterranean Sea is interpreted to have begun

at - 8500 cal yr Bl' ,

2. Ostracod valves were collected from 89 samples extracted from cores MAR05­

SOP and MAR05-51G at 10 ern intervals. With the aid of taxonomic literature 45

individual ostracod species were identified on the basis of gross morphology of the

valves. From the base of core MAR05-50 dated at 11490 cal yr BI' to 7580 cal yr BI' the

ostracod assemblage is clearly dominated by species known to be Ponte-Caspian types.

This ostracod assemblage from this lower interval of core MAR05-50 is referred to as the

"brackish assemblage". At 7450 cal yr Bl' there is an abrupt change in the ostracod

assemblage in core MAR05-50. The Mediterranean species Loxoconcha littoralis

becomes the dominant species in the interval from 7450 cal yr BI' to 64 10 cal yr 131'. The

ostracod assemblage from this interval is referred to as the "transitional assemblage".

During this interval L. littoralis co-exited with the brackish water species in more or less

equal abundances. At 6280 cal yr 131' another change occurs in the ostracod assemblage.

The first Mediterranean species L. littoralis and the Porno-Caspian species arc replaced

by new species from the Mediterranean Sea. This interval from 6280 cal yr Bl' to the

present is fully dominated by Mediterranean species and is known as the "marine

assemblage".

3. There was a time lag of - 1000 years between the initiation of persistent inflow

from the Mediterranean Sea at - 8500 cal yr Bl' and the colonization of the Black Sea

shelf by the first Mediterranean ostracod species L. Iiuoral is. This lag is interpreted as
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the time needed for enoug h water to enter the Black Sea to mix w ith the bott om water to

raise the sa linity to level s favora ble to Mediter ranea n ostra cod species.

4 . CO N ISS clu ster ana lyses was abl e to furth er divide the above obse rved

asse mblages into 6 Bio-zone s wher e distinct changes in the os tracod asse mblages

occ urre d refl ectin g ecologic al chang es which evo lved at the MAR05-50 co re site since

11490 cal yr BP . Bio-zon e I and Bio-zone 2 togeth er con stitut e the low er, bracki sh

asse mblage. T he main species that co mprise thi s assemblage are L. sublepida . L. lepida ,

T. amnico la donetziensis, C. schweyeri, A. olivia and A. quinqu etuberculata. Sm all

changes in abunda nces se parate Bio-zones 1 and 2 but the main species present rema in

the same . Based on the modern occurr ence s of Bio- zon e I and 2 spec ies in the Cas pian

and Azov Seas and es tuar ine areas around the Black Sea , the ecology of the Black Sea

durin g the interval 11490-7580 cal yr BP is thought to hav e been low salinity, possibl y as

low was 5 psu up to ~ I O psu , and the sea level was prob abl y a few ten s of meters

sha llowe r than toda y.

5. Bio -zone 3 equates to the transition al asse mblage wher e sa linities were raised

eno ugh for the Medit err anean species L. littoralis to rapid ly move into the area . L.

littoralis might indica te that the sa lini ty of the Black Sea bott om water at that tim e (745 0­

64 10 cal yr HI' ) could have been aro und 13-1 5, with an upp er limit of ~18 psu , which

would see m to be at the upp er tole ranc e lim its for the bra ck ish wate r spec ies wh ich pre fer

more redu ced sa linities .

6. CON 1SS se parated the upp er, marine assemblage into Bio-zones 4, 5 and 6.

Bio-zo ne 4 is the first marin e bio-zone whe re the Med iterranean species P. agilis, H.

rubra, C. carina ta, L. multipunctata and C. variabilis first dominate the core site from
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6280 cal yr BP to 4350 cal yr BP. At 4350 ca l yr BP Bio-zone 5 begins with the

introduction of two new sublittora l Mediterranean species : P. jon esii and C. edwardsi.

The introdu ct ion of the se two spec ies to the MAR 05- 50 core site is interp reted to refl ect

an increase in salinity and possibly an increase in wate r depth . Based on the sa linity

tolerance given by (Nea l, 1988 ) for P. jon esii of 26- 35 psu the sa linity might have been

near or in this range dur ing the Bio-zone 5 interval. The upp erm ost Bio-zo ne 6 is marked

by the introdu ction of ano ther new mar ine species P. poll ia, which lives today in the

Mediterranean and Nor th Atlantic wa ters , and an increase in the abundances of P. jo nesi i

and C. edwards! and the virtua l d isapp earance of Bio-zone 4 and 5 spec ies L.

multipunctata and C. variabilis. This clear asse mblage change mu st indicate ongoi ng

eco log ical change and probabl y cor responds to salinity levels approac hing levels modern

values . The result s of statistica l ana lyses described above clea rly shows that the ostraco d

asse mblage of co re MAR0 5-50 underwent progressive, step-wise changes driven by

salinity changes over - 5000 yea rs.

7. The fi nal objec tive of this thesis was to evaluate the va lidity of the three

ex isting hypotheses regar ding the post-glacial reco nnec tion of the Black Sea with the

Mediterranean Sea . The three prevailing hypoth eses are: the Flood Hypoth esis, which

arg ues for a ca tas trophic flood ing of an isolated Black Sea by Med iterranean water at

- 9 150 cal yr BP ; the Outflow Hypoth esis, whi ch argues for Black Sea outflow since at

least - 11900 ca l yr BP and a reconn ection with the Mediterranean Sea through the

Bosphor us Stra it sometime between 8500 ca l yr BP and 8000 ca l yr BP and a subsequent

gradual sa liniza tion of the Black Sea bottom water ; and the Osci llating Hypothesis whi ch

arg ues lor neither a catas trophic nor a grad ual reconn ection but an osc illat ing Black Sea
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level betw een -50 and app roximat ely current level a fter a temp orary Early Holocene

low stand as ea rly as - 12700 cal yr BP to - 10000 ca l yr BP. The os tracod data do not

agree with the Flood Hypoth esis. After Medit erranean inflow was establi shed at - 8500

cal yr BP, the area around the core site was colonize d by one Medit eran ean spec ies (L.

Iillorali s ) wh ich had been present in low abund ances pre-reconn ection. When the sa line

water began to flow in this spec ies was able to thri ve. If there had been a sudden

inundati on of Medit erranean wat er, an influ x of many Medit er ranean spec ies wo uld be

ex pec ted. The ostraco d dat a do not sugges t a catas tro phic floodin g of the Black Sea by

Medit erranean water at 9 150 ca l yr BP as proposed by Ryan et al. (2003). The regressio n

propose d by Yank o-H omb ach et al. (20 07) between - 12700 cal yr BP and - 11200 ca l yr

BP cannot be refuted becau se core MA R05-50 only contain s sed iments as old as - I 1490

cal yr BP, so the ostraco d data cannot sugges t what was happ enin g on the so uthwes tern

Black Sea she lf befor e that time. More data from olde r sedime nts is needed to further

shed light on the latest glacia l to Holocene tra nsitio n. The os traco d data neith er

contrad icts nor co nfir ms the sea leve l oscillations in the Black Sea throu gh the Holocene

as sugges ted by Chepalyga (2002) , Yank o-H omb ach et a i. (2007) and Ivanova et al.

(2007) . The author ack now ledges that an oscillating Holocene Black Sea level is entirely

poss ible. Similarly , the ost racod data are in genera l agree me nt with the Outflow

Hypothesis in that the southwes tern Black Sea shelf was covered by brack ish water by the

early Holocene and a reconn ection with the Med iterranean Sea happ ened in a gradual and

ordere d mann er. However , the os tracod data cannot confirm or refute the sce nario of an

uninterru pted post-glacial Black Sea outflow . Future wor k is needed to further test the

va lidi ty of the Outflow Hypothesis and the Oscillating Hypothesis.
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Appendix A - Origina l Sample Data

MAROS-SOI'
Sump DryW t >63 1101 # V COli A H C D E F G It
0 3 1.2 1 0.60 235 7.53 78 65 18 8 42 7 7 I
10 25.68 0.82 19 1 7.44 104 16 15 10 23 7 I 2
20 28.79 0.22 58 2.0 1 18 8 I 2 28 0 I 0 0
30 27.75 0.18 77 2.78 35 2 6 25 ') I 0 4
40 3 1.79 0.32 98 3.08 52 ') 8 2 1 7 I 0 2
50 27.85 0.4 1 34 1.22 13 3 5 9 0 0 0 0
60 22 .9 1 0.28 147 6.42 70 12 I I 39 0 I I I
70 29.00 0.21 262 9.03 101 3 13 24 2 0 14 43

80 29.80 0.22 282 9.46 140 8 II 34 32 17 0 12 4
90 25 .60 0.05 34 1.33 I I I 3 5 7 0 0 5 0
100 29 .54 0.13 39 1.32 27 I 0 3 5 I 0 0 0
110 28 .71 0.09 99 3.45 4 1 I I 16 10 15 6 0 0 0
120 27.95 0.15 69 2.47 36 3 5 13 8 0 2 0 0
130 26 .8 1 0.20 32 1.19 14 4 5 0 3 0 2 0
140 27 .12 0. 10 5 0.18 4 0 I 0 0 0 0 0
150 26 .79 0. 13 48 1.79 20 7 8 10 0 0 0
160 29 .2 1 0.09 26 0.89 13 2 ') 7 0 0 0
170 30.22 0.25 182 6.02 113 5 8 20 3 6 I
180 29.24 1.16 192 6.57 108 6 20 39 3 5 0
190 28.87 0.09 I I 0.38 5 0 0 6 0 0
200 31.06 0.16 70 2.25 43 I 7 9 3 0
210 32.14 0.32 128 3.98 72 ') 2 1 14 10 0
220 31.11 0.14 99 3.18 69 7 I I I 0
230 30.64 0.15 122 3.98 70 10 21 5 0
240 32.33 0.15 140 4.33 83 17 14 5 0
250 32.33 0. 15 205 6.34 126 23 39 I 0 0
260 29.09 0.14 30 1.03 9 I 14 0 0 0
270 32.12 0.43 255 7.94 152 II 25 3 1 7 6 2
280 32.0 1 0.76 403 12.59 236 8 32 53 0 43
290 29.49 0.56 346 11.73 2 10 II 28 47 I 17
300 34.76 0.52 553 15.9 1 326 12 48 67 14 47
310 32.54 0.42 3 17 9.74 18 1 10 27 47 I 34
320 30.34 0.38 354 11.67 205 2 1 34 45 5 23
330 33.15 0.63 661 19.94 330 5 56 12 12 32
340 36.54 2.75 222160.78 0 0 0 35 18 89
350 34.48 0.22 104630.34 0 0 0 4 10 56
360 30.86 0.13 68122.07 555 0 37 6 8 52
370 3 1.6 1 0.10 56 1 17.75 467 0 18 2 4 44

380 32.32 0.5 1 1127 34.87 0 0 79 19 117
390 3 1.28 0.16 82326.3 1 622 0 67 II 67
400 3 1.29 0.12 54 1 17.29 394 0 59 6 27
4 10 30.99 0.07 258 8.32 176 0 24 0 27
420 29.30 0.36 6432 1.94 5 17 0 84 II 10
430 31.9 1 0.56 65 2.04 47 0 13 I
440 29.13 0.86 220 7.55 182 0 16 6 4
450 33.69 0.32 297 8.82 23 1 0 39 13 0
460 30.58 0.95 191 6.25 134 0 35 13 4

470 3 1.35 0.92 19 0.6 1 6 0 10 3 0
480 35.55 0.90 161 4.53 46 0 48 50 0
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490 31.62 0.54 148 4.68
500 3 1.66 0.36 74 2.34
5 10 35.15 0.99 25 1 7.14
520 33.06 0.90 168 5.08
530 35.28 0.78 129 3.66 10
540 35.87 1.17 190 5.30 ")

550 33.65 0.34 203 6.03
560 34.63 0.42 97 2.80
570 41.45 0.32 128 3.09
580 36.03 0.4 1 58 1.61
590 35.84 1.00 282 7.87
600 34.69 0.47 148 4.27
6 10 40.28 0.78 486 12.07
620 34.63 0.65 192 5.54
630 40.27 0.60 193 4.79
640 42 .39 0.99 509 12.0 1
650 35.23 0.59 92 2.6 1
660 36.87 0.2 1 70 1.90
670 4 1.56 2.14 250 6.0 1
680 36.60 0.60 96 2.62
690 36.03 2.40 244 6.77
700 34.04 0.42 48 1.41
710 35.92 0.52 32 0.89
720 35.48 0.94 223 6.29
730 35.52 1.59 128 3.60
MAROS-SIC
10 2 1.09 0. 14 95 4.50 39 10 6 7 20
20 24.62 0.52 150 6.09 57 28 13 12 2 1 12

30 24.02 0. 10 108 4.50 47 27 6 7 19 0
40 24.49 0.09 116 4.74 46 23 6 6 14 13
50 24.09 0. 11 66 2.74 38 I 2 16 I
60 24 .36 0.24 54 ")")") 18 12 4 8 3
70 24 .05 0.16 56 2.33 32 5 4 6 8
80 22.6 1 0.13 64 2.83 32 4 6 6 II
90 22.59 0.38 158 7.00 75 8 16 13 44
100 24.34 0.14 243 9.98 100 7 2 1 19 8 1
110 25.92 0.29 8 1 3.12 40 I 7 13 8
120 25.45 0.10 56 2.20 12 3 7 10 22
130 24.67 0.6 1 156 6.32 56 13 II 25 40
140 24.49 0.16 70 2.86 35 2 15 14
150 26.4 2 0.15 65 2.46 37 3 6 10
MAROS-SO

J M 0 R S U V

0 0 0 0 4 0 0 0

10 I 0 0 4 0 0 0

20 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0

40 I 0 0 0 0 0 0
50 0 0 0 0 0 0 I

60 0 0 0 0 0 0 0

70 3 13 I 0 0 0 0

80 0 0 0 0 0 2

90 0 0 0 0 0 0
100 0 0 0 0 0 0
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110 0 0 0

120 0 0 0
130 0 1 0
140 0 0 0
150 0 0 0
160 2 0 0
170 W 0 0
180 4 0 0
190 0 0 0
~ 5 0 0
2 10 1 4 0 0
m 0 6 0 0
230 0 5 0 0
240 I 10 0 0
250 0 4 0 0
~ 0 2 0 0
270 0 II 0 0
280 I 16 0 0
m I 2 1 0 0
300 4 21 0 0
3 10 I 4 0 0
320 3 6 0 0
330 3 15 0 0
340 15 10 0 0
350 6 19 0 0
360 17 3 0 0
370 6 14 0 0
380 25 9 0 0
390 30 13 0 1
400 W 25 0 0
4 10 ~ 6 0 0
~ 16 0 0 I

430 1 0 0 0

~ 12 0 0 0
450 14 0 0 0
~ 5 0 0 0
470 0 0 0 0
480 4 0 0 4
~ 0 0 0 ~

~ 2 I 0 n
5 10 0 0 0 139
ill 0 0 0 ~

530 0 0 0 49
540 0 0 0 W
550 0 3 0 107
560 I 0 0 II
570 0 4 0 D
580 0 0 0 I
590 0 0 0 0
~ 0 0 0 2
6 10 I 0 0 I
~ 0 0 0 I
630 0 0 0 0
~ 2 0 0 0
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650
660
670
680
690
700
7 10
720
730 0
MAROS-SIG
10 0
20 0
30 0
40 0
50 0
60 0
70 0
80 I
90 0
100 I
110 0
120 0
130 2
140 0
150 0
MAROS-SOP

o
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
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230
240
250
~

270
280 0
m 0
300 0
3 10 0
320 I 3
330 I 0
340 II 17
350 0 0
360 0 I
370 0 2
380 0
390 0
400 0 0
4 10 0 0
420 0 0
430 0 0

~ 0 0
450 0 0
460 0 0
470 0 0
480 ? 4

m 37 0
500 ~ 5
5 10 18 39 18
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KEY
Samp: Samp le depth in the co re (em)
Dry Wt: Weigh t of samp le after oven drying
>63 um: We ight of >63 um fraction after sievi ng
# V: Number of va lves in the sample
Con: Co ncen trat ion (# of va lves per gram of dry sediment)

SPECIES KEY
A P. ag ilis
B C. edwar dsi
C P.jonesii
o H. rubra
E C. carinata
F Bytho cyth ere sp.
G Pi polita
1-1 L. multipun ctata
I C. diffusa
J X sp. aff. corne lii
K C. variab ilis
L L. devexa
M A. propinqua
N Cytherop teron sp.
o B. sub ulata rec tangularis
P Hemicyth erura sp.

Q Semicytherura sp.
R C. semipunctata
S Leptocythere sp. I
T Si gewe muel len
U P. simile
V L. lilloralis
W Unknow n sp. 3
X Pontocythere sp.
Y Unknow n sp. I
Z C. sp. af f.ji lscala
AA C. acronasuta

BB L.lep ida
CC L . sub lepida
DO L. spp. j uveniles
EE T. amn icola donetziensis
FF A. quinqu etuberculata
GG A. olivia
1-11-1 L. immodu lata
II A. cymbula
JJ A. sub caspia
KK A. casp ia
LL C. schweyer i
MM E. (M.) lopatici
NN A. striatocosta ta
00 A. bacua na
PP A. pediformi s
QQ E. sp.aff.relicla
RR A. volgensis
SS Unknow n sp. 2
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