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Abstract

Mathematical studies of infectious  dis

case involve delay differential equations
which are more accurate in representing models with gestation times, incubation
periods, or intracellular delays, and periodic equations which account for impact of

seasonal, or diurnal environments. The purpose of this thesis i

s to investigate the
global dynamics of a time-delayed dengue transmission model and a periodic within-

host virns model.

We begin with mathematical preliminaries for this the:

We provide some mathe-

matical definitions and theorems related to the theory of cooperative delay differential
cquation, uniform persistence and coexistence states, chain transitive sets, and basic
reproduction numbers

In Chapter 2, we prosent a time-delayed dengue transmission model with age

structure for the vector population. We first introduce the basie reproduction number,

and show that the disease persists when Ry > 1. It is also shown that the disease

will dic out if Ry < 1, provided that the invasion intensity is not

rong. We further

establish a s

t of sufficient conditions for the existence and global attractivity of

the endemic equilibrium by the method of fluctuations. Numerical simulations arc

performed to illustrate our analytic results,

Chapter 3 is devoted to the investigation of the effects of periodic drug treatment
on standard within-host virus model. We first introduce the basic reproduction ratio

for the model, then show that the infection free equilibrium is globally asymptotically

stable and the discase eventually disappears if Ry < 1, while there exists at least one

positive periodic state and the discase persists when R > 1. We also consider



optimization problems by shifting the phase of these drug efficacy functions. It turns
out that shifting the phase can certainly affect the stability of the infection free steady
state. A numerical study is performed to illustrate our analytic results,

At last, we summarize the results in this thesis, and also point out some problems

for future investigation in Chapter 6
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Chapter 1

Preliminaries

In this chapter, we present some definitions and known theorems which will be used
i the rest of this thesis. They are involved in cooperative delay differential cquations,
uniform persistence and coexistence states, chain transitive sets and basic reprodue-

tion number.

1.1 Cooperative delay differential equations

Let ¥ be a Banach space with an order cone Y, with nonempty interior IntY,.. For

ZyeY, wowniter < yily—x €Yy <yily—x ey, \ {0}, and & < y if

y - €ty,
For delay differential equation, let r denotes the maximum delay appearing in the

equation, then the space C

C([~r,0],R") is a natural choice of state space. Define
Cyo={p e C:g(0) > 0,—r <0 <0} The notation <, <, < will be used for
the order relations on € generated by Cy. In particular, ¢ < ¢ in € if and only if
$(s) < P(s) holds in R for cvery s € [—r,0].
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Consider system

= [f(t,z), (L.1)

where f : R x D — R is continuous and D C C is open. It is also assumed that f

is Lipschitz in its second argument on cach compact subset of R x D so that initial

value problem associated with (1.1) has unique solutions.

Theorem 1.1.1. ([29, THEOREM 5.2.1]) Assume that if ¢ € D satisfies ¢ > 0,

$:(0) = 0 for some i and t € R, then fi(t,¢) > 0. If ¢ € D satisfies ¢ > 0 and

istence.

to € R, then x(t,tg,¢) > 0 for all t > ty in its mazimal interval of
Definition 1.1.1. f is said to be quasimonotone if for any ¢ < 4 with ¢,(0) = 1,(0)
for some i, we have fi(¢) < fi(1).

Theorem 1.1.2. ([29, THEOREM 5.1.1]) Let f, g :  — R" be continuous, Lipschitz
on each compact subset of 2, and assume that either [ or g satisfies the quasimonotone
condition. Assume also that f(t,¢) < g(t,¢) for all (t,¢) € Q. If (to,8), (to,¥) € Q

satisfy ¢ <, then
#(tsto, 6, f) < x(t,to, 4, 9)
holds for all t > ty for which both are defined.

Next we consider the general nonautonomous linear system

da(t)
dt

= L(t),
where L : R — L(C,R") is continuous and L(C,R") is the space of bounded lincar
maps from C to R". Let L;(t)¢ denote the i-th component of L(t)¢. Then L(t)
satisfies the quasimonotone condition if and only if the following condition holds:
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(K) 17 6> 0 and ¢;(0) = 0, then L(t)6 > 0.

Theorem 1. 29, LEMMA 5.1.2]) (K) holds if and only if there exists a;(t) € R

for 1 < i < n and positive Borel measures n;;(t) for 1 < i,j < n such that

Li(t)d = a;(1)é:(0) + Z/ 5 (0)dan;(1,0) (1.2)

and 1;;(1){0} = 0. Moreover. if (K) holds, then the representation (1.2) is unique and

a,(t) and ;(t) are continuous functions of t

Definition 1. Matriz A = (a;;)uxn is said to be irreducible if for every nonempty

proper subsct I of the set N = {1,2,...,n}, there is ani € I and j € J = N\ I such

that a;; # 0.
We then introduce the following condition
(1) The matrix A(L)(t) defined by
A(LY(t) = col(L(t)ér, L()ea. ... L(t)é)

is irreducible, where ¢; € C'is the clement with i-th component 1 and the other

component 0 for all 0 € [~r,0)

Definition 1.1.3. System (1.1) is said to be cooperative if D is order conver and

df(¢) satisfies the condition (K) for cach ¢ € D.

If system (1.1) is cooperative, then the derivative df (¢) can be represented as in
(1.2) where a; = a;(¢) and 1; = 1;;(¢) arc continuous functions of ¢ € D.
Definition 1.1.4. System (1.1) is said to be cooperative and irreducible if it is coop-

erative and the following conditions hold:



(1) For any ¢ € D, df(¢) satisfies (I);

(2) For cvery j for which ;> 0, there exists i such that for all ¢ € D,

i () ri+e) >0

Jor all small > 0.

tem (1.1), we

To present some results about the stability of an equilibrium of
assume f s continuously differentiable and cooperative in a domain D. Suppose i
is an equilibrium of (1.1), that is o € R is such that f(#) = 0. Then the lincar

variational system corresponding to  is

df (o). (1.3)

y(t)=Ly, L
Definition 1.1.5. The stability modulus of L is defined as
s(L) = max{®A : DetA()) = 0}
where R denotes the real part of \.

Suppose system (1.1) is cooperative and irreducible. Then we ean define a cooper-

ative and irreducible system of ordinary differential equations by ignoring any delays

which appear in (1.1). This leads to the following system

Fa) = /(@) (1)

t,, for all 0 € [-1,0),

where “ denote the inclusion R* — C by & — &, &(0) =

i =1,...,n. Observe that (1.4) has the same equilibria as (1.1).

Theorem 1.1.4. ([20, CORALLARY 5.5.2]) s(L) < 0 (s(L) > 0) if and only if

S(DF(v)) < 0 (s(DF(v)) > 0).



Next we introduce some notations about matrices. For matrices A and B, 0 <

A, 0 < A means that A is entry-wise nonnegative, positive, respectively. A < B

means that 0 < B — A. A is quasi-positive means all of its off-diagonal entrics are

nonnegativ

The exponential of a square matrix A is expressed as exp[A]. Let p(A)

[9)

be the spectral radius of the matrix A. The following standard results (see, e.g,

will be used later,
Theorem 1.1.5. The following statements are valid:

(1) If A is quasi-positive and A < B but A # B, then 0 < exp[tA] < expltB] but

expltA] # expltB], Vi > 0.
(2) if A> 0 and B > 0 has no zero row or zero column, then AB > 0 and BA > 0.

(3) if0< A< B but A# B, then p(A) < p(B)

1.2 Uniform persistence and coexistence states

Suppose X is a metric space with metric d. Let f : X — X be a continuous map

and Xo C X an open set. Define 9Xo == X \ Xo, and My = {& € dXo, [*(x) €

OXo, Vn > 0}.

Definition 1.2.1. A bounded set A is said to attract a bounded set B in X if

lim sup{d(/" (), A)} = 0.
N0 el

A subset A C X is said to be an attractor if A is nonempty compact and invariant
(f(A) = A), and A attracts some open neighborhood of itsclf. A global attractor for
[ X = X is an attractor that attracts every point in X. For a nonempty invariant

5



set M, the set W*(M)

¢ € X ¢ limyc d(f"(x), M) = 0} is called the stable set
of M.

Definition 1.2.2. A continuous map f = X — X is said to be point dissipative if

there is a bounded set By in X such that By attracts each point in X

Theorem 1.2.1. ([42, TueoreM 1.3.1]) If f : X — X is compact and point
dissipative, then there is a connected global attractor A that attracts cach bounded set

in X.
Theorem 1.2.2. ([42, THEOREM 1.3.1 AND REMARK 1.3.1]) Assume that
(C1) J(Xo) C Xy and J has a global attractor A;

(C2) There exists a finite sequence M = {Mi,..., My} of disjoint, compact, and

isolated invariant sets in 9Xo such that

(a) QM) =

reae(t) C U, My
(b) No subset of M forms a cycle in 9Xo;
(c) M is isolated in X ;
(d) WH(M;) N Xo =0 for each 1 <i < k.
Then [ is uniformly persistent with respect to (Xo,dXo) in the sense that there exists

an > 0 such that liminfy e d(f*(x),0X0) > 1 for all x € Xo.

Recall that a family of mappings ®(t),¢ > 0 on X is called a contimous-time

semifiow provided that (0) = 1, (1) i

ontinuous jointly in (£, z), and d(t)odb(s) =

Pt +5) for all £,5 > 0.



Definition 1.2.3. A continuous function p : X — [0,00) is called a gencralized
distance function for ®(t) if it has the property that p(®(t)x) > 0 for t > 0 if cither

) =0 and x € Xo or if p(x) > 0.

Theorem 1.2.3. ([31, THEOREM 3]) Let p be a generalized distance function for

the given semiflow (t). Assume that
(P1) (1) has a global attractor;

(P2) There

s a finite sequence M = {My, My,...., My} of pairwise

isjoint, com-

pact and isolated invariant sets in OXy with the following properties
a) Usenyw(a) C U, M;;
b) No subsct of M forms a cycle in 9Xo;
¢) M, is isolated in X
d) WHM;) N p~'(0,00) = 0 for all 1 < i < k. where W*(M,) is the stable set
of M,.
Then there exists 1> 0 such that liminf,_.. p(®(t)x) > 1 for all + € Xo

Assume X is a closed subset of Banach space E, and that X is a convex and
relatively open subset in X. Then dX, is relatively closed in X. We have the

following result.

Theorem 1.2.4. ([42, THEOREM 1.3.6]) Let S : X — X be a continuous map with

S(Xo) C Xo. Assume that

(1) S: X — X is point dissipative;



(2) S is compact;

et to (Xo,0Xo);

(3) S is uniformly persistent with resp

Then there exists a global attractor Ay for S in Xy that attracts strongly bounded sets

in Xo and S has a coevistence state xg € Ay.

Let @ > 0. A family of mappings ®(t) : X — X, ¢ > 0, is called an w-periodic

semiflow on X if it has the following propertics
(1) (0) = 1, where  is the identity map on X;
(2) Ot +w) = P(t) o P(w), Vt 2 0;
(3) ®(t)a is continuous in (f,x) € [0,00) x X.

The mapping ®(w) is called the Poincaré map (period map) associated with this
P

periodic semiflow.

Theorem 1.2.5. ([42, TurorEM 3.1.1]) Let ®(t) be a w-periodic semifiow on X

with ®(1) Xy C X, V¢ > 0. Assume that S = b(w) satisfies the following conditions:
1) S is point dissipative in X ;

2) S is compact;

Then uniform persistence of S with respect to (Xo, 0Xy) implics that of (1) : X —

1.3 Chain transitive sets

Let @(t),¢ > 0, be a continuous-time semiflow on a metric space X with metric d.

We say ¢ € X is an equilibrium of (1) if ®(t)e = ¢ for all £ > 0.
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Definition 1.3.1. Let A C X be a nonempty, invariant set for d(t). We say A is
internally chain transitive if for any a, b € A and any & > 0, ty > 0, there is a

finite sequenc W = byt e} with 1 € A and t; > by,

Ty = 0,T3,...,2

1<i<m—

such that d((t)a;, wi41) < < for all 1 < i < m—

Theorem 1.3.1. ([42, LiMMA 1.2.1]) Let ®(t) : X — X, £ > 0, be a continuous
time semiflow. Then the omega (alpha) limit set of any precompact positive (negative)

orbit is internally chain transitive.

Theorem 1.3.2. ([42, THEOREM 1.2.2 AND REMARK 1.3.2]) Assume that cach
cquilibrium of B(t) is an isolated invariant set, that there is no cyclic chain of equi-
libria, and that every precompact orbit converges to some equilibrium of ®(t). Then

any internally chain transitive set is an equilibrium of H(1).

1.4 Basic reproduction number

Basic reproduction number of an infectious discase is a fundamental and important

concept in the study of disease control. 1t is defined as the expected number of
secondary infections arising from a single individual during his or her entire infections
period, in a population of susceptible. Usually, the basie reproduction number serves

as a threshold parameter in the sense that the discase dies out if the bas

reproduction

number is loss than unity, and the disease persists in the population if it is greater
than unity. Thus, in order to control the disease, we need to reduce Ry to be less
than 1. The explicit formula of Ry was given in [34] for a large class of autonomous

compartmental epidemic models. In this scction, we present the theory of basic



reproduction ratios for compartmental cpidemic models in periodic environments,
which was developed in [36].
We consider a heterogencous population whose individuals can be grouped into n

liomogencous compartuents

of individuals in cach compartment. Assume that the compartments can be divided
into two types: infected compartments, labeled by i = 1,...,m, and uninfected
compartments, labeled by i = m + 1,....,n. Denote X, to be the set of all disease-

free states:

L m}

Lot Fi(t,2) be the input rate of newly infected individuals in the ith compartment,
V() be the input rate of individuals by other means (for example, births, immi-

grations), and V" (£, #) by the rate of transfer of individuals out of compartment i (for

example, deaths, recovory and emigrations). Thus, the discase transmission model is

governed by an antonomous ordinary differential system

= Fi(

= Vilt,x

=1,...,n (1.5)

where Vi =V =V,

- We assume that the model (1.5) admits a discase-free periodic

solution 2°(t) = (0,..., 0,28, (t),...,a%()" with 2?(t) > 0, m + 1 < i < n for all

AV(t, (1))

toLet f=(fiye.o, fu)”, and define

o (PFAL) .
e (GT) e VO

) _ (it 2"(1)
.\1(:)‘( e >.,.u-.,»~”'

10



It then follows that
F(t) 0 Vi) o
D F(t,a"(t)) = . DY(t,2°(1) =
00 J(t) —M(t)
where J(t) is an (n —m) x n matrix. Denote &4(f) be the monodromy matrix of the

s

linear w-periodic system % = A(f)z. We make the following assumptions:

(A1) Forcach 1 < i < n, the function Fi(1,), V; (t,), and V;"(t,.x) are nonnegative

and continuous on R x R and continuously differential with respect to .

(A2) There is a real number w > 0 such that for cach 1 < i < n, the fnction F(f, ),

Vi (), and Yy (1) are w-periodic in .
(A3) 1f; =0, then V;” = 0. In particular, if &« € X,, then V' =0 for i = 1,....m
(A1) F=0ifi>m
(A5) If x € X,, then Fi(x) =V} (x) =0 for i = 1,....m.
(A6) p(ar(w)) < 1, where p(®y(w)) is the spectral radius of by (w)

(AT) p(®-v(@)) < 1.

Let Y(t,5), t > s, be the evolution operator of the lincar w-periodic system
dy
Y vy
@ )y

That is, for cach s € R, the m x m matrix Y (¢, s) satisfics

d.
Y

V()Y (t,s), Yt < s, Y(s,8)=1,

where 7 is the m x m identity matrix. Set C,, be the ordered Banach space of all w-
periodic functions from R to R™ cquipped with the maximum norm and the positive

11



cone CF = {¢ € Cy : ¢(t) > 0, ¥t > 0}. Then we can define a linear operator

L:C,—Cuby

(Lo)(t) = /‘ Y(t,t — a)F(t - a)é(t — a)da, ¥t € R, € C..
3

We call L the next infection operator, and define the spectral radius of L as the basic

reproduction ratio

for the periodic epidemic model (1.5).
Let W(t,8,A), £ > s, s € R, be the evolution operator of the following lincar
system

% (v + —;\-l"(l))uu teR. (1.6)

useful to numeri

The following theorem is v compute the basic reproduction

ratio Ry.

Theorem 1.4.1. ([36, THEOREM 2.1]) Let (A1)-(A7) hold. Then the following

statements are valid:

(1) IfW(w,0,A) has a positive solution Ny, then N is an cigenvaluc of L, and hence

Ro > 0.

(2) If Ry >0, then Ny = Ry is the unique solution of p(W(w,0,A)) = 1.

(3) Ro =0 if and only if p(W(w,0,1)) < 1 for all A > 0.

The following result shows that R is a threshold parameter for the local stability

of a discase-frec periodic solution 49(1).



Theorem 1.4.2. ([36, THEOREM 2.2]) Assume that (A1)-(A7) hold. Then the

Jfollowing statements are valid:
(1) Ry = 1 if and only if p(®p_v () = 1
(2) Ro> 1 if and only if p(bp_v(w)) > 1.
(3) Ro < 1if and only if p(®p_v(w)) < 1
Thus, 2°(t) is asymplotically stable if Ry < 1, and unstable if Ry > 1.

Finally, we give a numerical algorithm for the computation of Ry (sce [14])

Let ®(t,A), ¢ > 0, be the standard fundamental matrix solution of (1.6) with
®(0,A) = I. For any given A > 0, we can numerically compute all cigenvalucs of
@(w, A) by Matlab, or Maple, and henee, the spectral radius, p(®(w, A)), of ®(w, A).

Let f(A) := p(®(w, \)). Since F(t) is nomegative and —V (#) is cooperative, it fol-
lows that f(X) is continuous and nonincreasing in A € (0, 00). Further, limy . f(A) =

p(®_v(w)) < 1. By the following four steps, we can numerically calculate Ry,

(1) Choose two positive numbers @y < by such that f(ag > 1> f(by)). If there is

10 such ag, then Theorem 1.4.1(iii) implics that Ry = 0.

(2) Define two sequences a, and b, by inductions if f(%$%) > 1, define a,,, =

@utby and b,y = b,; otherwise, define a,y; = a,, and b4y = 24 1t follows
that a, < by, @upr > ay, by, < by, and f(an) > 1> f(b,) for all n.

(3) By step (2), we have [ayp1,b,41] C [an,by] and by, — @, = F(bo — ag). Thus
Tty o = lilyaoo by = Ao > 0. Since f(a,) > 1> f(b,) for all n, we have
(M) = 1> f(Xo), and hence f(Xg) = 1. Consequently, we have Ry = Ao,

13



(1) Since a, < Ry < by, we sce that | a, = Ry |< by = a, =

|
| by = Ro |< by —ay

(bo — ag), and
by — ag). Given an error tolerance =, we can choose

an N > 0 such that g (by — ag) < e. Thus, we have Ry = ay or Ry = by



Chapter 2

A Time-Delayed Dengue

Transmission Model

2.1 Introduction

Dengue fever is the most common viral discase spread to humans by mosquitos, and

has become an international public health concern. Dengue is caused by a group of

and DEN-1;

, D!

four antigenically distinet flavivirus serotypes: DEN-1, D!
and is primarily transmitted by Aedes mosquitos. particularly A. acqypti mosquitos.
Denguc is found in tropical and subtropical regions around the world, predominately

in urban and peri-urban areas. The incidence of dengue has grown dramatically

mic in more than 110 countries in

around the world in recent decades. It is ends

Africa, the Americas, the Eastern Mediterrancan, South-cast Asia and the Western

Pacific. It infects 50 to 100 million people worldwide a year, leading to 50 million

v 6, 7,

ximately 12,500 to 25,000 deaths a ye

hospitalizations, and appr




‘The human is the main amplifying host of the virus, although studies have shown

may become infected and perhaps serve as

that in

some part. of the world monke;
a source of virus for uninfected mosquitos [6). Human may get infected by a bite
from the infected mosquitos, and A. acqypti mosquitos may acquire the virus when
they feed on an infectious individual. Much have been done in terms of modeling and
analysis of disease transmission with structured vector population. Wang and Zhao

35] proposcd a nonlocal and time-delayed reaction-diffusion model of dengue fever,

mics in terms of the basic reproduction nuimber Ry.

hed a threshold dy

and establ

Lou and Zhao [22] presented a malaria transmission model with structured vector
population, and also established a threshold type result, which states that when

se will die out; when Ry > 1,

Ry < 1 and the diseasc invasion is not strong, the dis

casc will persist.

the dis

22)).

In this chapter, we incorporate the stage structure of mosquitos (sce, c.g.
since the development stages of mosquitos have a profound impact on the transmis-

they do

first, the immature mosquitos do not fly and bite human,

sion of d

not participate in the infection cycle; second, mature mosquitos are quite different

In view

from immature mosquitos from biological and epidemiological perspectiv
of realistic consideration, we take these different stages into account. We also include
the time delay to describe the incubation periods of mosquitos and the human pop-
ulations, which is important because there are incubation realistically and the time

ion of Ry in section 3, we can sce those

period s not small. In fact, from the expra

restimated

delays reduce the values of Ry. Thercfore, the neglect of the delay

the infection risk.

The purpose of this chapter is to study the global dynamics of a time-delayed

16



dengue transmission model. In scction 2, we present the model system and prove its
wellposedness. In scction 3, we first introduce the basie reproduction mumber Rq,

and then show that the discase is uniformly persistent when Ry > 1 by appealing to

the theory developed in [5, 31]. Under certain conditions, we also obtain the nonlocal

stability of the discase-free equilibrium when Rg < 1. In section 4, we obtain a set

of sufficient conditions for the endemic equilibrium to be globally attractive by the
method of fluctuations. In section 5, we perform numerical simulations to illustrate

our analytic results.

2.2 The model

In this

section, following the ideas in [35], we present an age-structure dengue model

with time delay for the cross infection between mosquitos and human individuals. We

divide the mosquito fon into two s sses: aquatic population and winged
population. Winged female A. acgypti mosquitoes lay eggs in unattended water. Bags
may develop into larvae from two days up to one week. The larvae spend up to three

days to pas

s through four instars to enter the pupal stage. The pupa develops into

an adult after about two days. The immature mosquitos live in aquatic habitats and

mature mosquitos disperse to scarch for food. Let A denote the density of aquatic
population of mosquites, W be the density of winged population of mosquitos, and
74 be the length of immature stage of mosquitos. Following the model to formulate

a stage-structured population in Aiello and Freedman [2], we suppose the dynamics.



of mosquitos s doscribed by

PO B - ad) - R BIVE - )V 7a),
7‘”;/“) = BV = T)W(E - 7a) — W (D),

where B is the per capita birth rate of adult mosquitos, a is the per capita death rate
of aquatic mosquitos, and sz, is the death rate of adult mosquitos. Following [35], we
assume that the function of B(W)W is the logistic growth rate:

WL -W/K] , if0SW<K

WL = W/K), =
0, ifW>K

For the dynamics of human population, we assume that the density N of the

Juman population obeys
AN
W o H =,
it s

where H is a constant recruitment rate and g, is the death rate.

lividuals, we let

To consider dengue ¢ fon between itos and human
Wy, W, and Iy denote the density of susceptible, exposed, and infections mosquitos
of winged population, respectively; and divide the human population into four com-
partments: susceptible (S), exposed (E), infectious () and recovered (R). Let 7,

be the incubation period of dengue virus within mosquitos and 7, be the ineubation

period of dengue virus within hosts. Following Chowell ct al. [8], we suppose that

the infection rates of susceptible mosquitos and susceptible human individuals are

described by

1 S
bp=Wi, bg—Wa,
Py 15 W
respectively, where b is the mean rate of mosquito bites per mosquito, p is the proba-
bility that a bite by a susceptible mosquito to an infections host will cause infections,
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qis the probability that a bite by an infections mosquito to a susceptible host will

cause infection to the host, and N = S+ E + [ + R is the total density of human
population. Since an infectious mosquito may have lower fecundity than a susceptible
mosquito, we let o € [0, 1] denote the relative fecundity of an infected mosquito to a
susceptible mosquito. Specifically, the infections mosquito has the same reproduction

rate as a susceptible mosquito if o = 1, and have lower reproduction rate if o < 1

Then we have the following model

O 1 O w0 - a0 - ey - LT,
w = re™"[1 - w]ﬂl’"(l = 7a) = puWi(t) = d“‘l(‘(i(ll))”.‘ (1),
(1)
W) = / lm =g, 1(/(;)"'"“""' ©22)
‘m';‘((” = [erem A'(('I’ "";’)n',(: — ) = (o + £0)Walt), (23)
% = II—[I;,S(()—J;,H'-_:(()%. (2.4)
E(t) = /” 1-’”"”’",i,,:3‘(3[1'2(411113. (2.5)
’ifl(") = eyt - n):’,—(("}% — (o + e+ (), (26)
BA = 10 - ko), @7

where W (t) = Wy (8) 4 Wo(t) + Wa(t), Wa(t) = Wi (t) 4 Wa(t) +0Walt), B = bp., B =
bq, v is the recovery rate of infected human individuals, €, and &, are the infection-
induced death rates of infected mosquitos and human individuals, respectively.

Note that the equation for aquatic population of mosquitos is decoupled from the

other equations. 1t then suffices to consider system (2.1)-(2.7) which is an integro-
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differential equation system. Differentiating (2.2) and (2.5) gives

a1 . Y (e
T = PO - Vo) = e g ),

(28)

= ,f,,u:;(r)%-m,gu)- Wt — 1)k :’/)) (29)

ing of (2.1), (28), (2.3), (24), (29), (26) and (27) is an

The system con
ordinary differential system with time delays. For simplicity, we will refer to this

stem as “the model system™ in the rest of this chapter.

Lot 7 = max{74, 7u, 7}, and define C := C([~7, 0], R7). For ¢ = (d1, g, ,¢7) €

€, define || ¢ |= S0, I éi lloer where || ¢ lo= maxoci-ro) | ¢(0) . Then C is
a Banach space. Define Cy = {¢ € C: ¢i() > 0,¥1 < i < 7.0 € [-7,0]}. Then
€, is a normal cone of € with nonempty interior in €. For a continnous function

L74) — R7 with 0, > 0, we define u, € C for cach ¢ > 0 by u,(0) = u(t + 0),

0 € [-7,0].
In view of (2.2) and (25), we choose the initial data for the model system in A,
which is defined as

X = {we (‘+:Za,(.~)2ILV.»E[~r.1l].:,‘>,((l):/
=

O ey 18)00(s) }
bo(0) = [ emag, 2(8)0a(8)
- [ RS

10i(s)

4(s)
Tadis)

for small § € (n’T’,) The following result shows that the model system is well-

posed in Xy, and the solution semiflow admits a global attractor on X

Theorem 2.2.1. For any ¢ € Xy, the model system has a unique nonnegative solution

. Furthermore, the solution semiflow d(1) = u,(-) : Xs — X

sfying uo = ¢

u(t. ) sa
has a compact global attractor.
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Proof. Given ¢ € Xj, define

G(9) = (G1(9), G2(6), G3(6), Ga(9), G5(9), Gs(9), G2(6)),

where

L
i) = realt - BRI o (r) ) i)

4(0)
— 1 (0) = mwu(“),
R E A N Y NP
Guld) = A D 0) = ) P ),
Gal@) = e PTG () (4 0)a(0),
iz Gi(=Tw)

Gilo) = H—mm)—m%mu),
@) = et () — pus(0) - e W),

Zladi(=m)

Gs3(=m) = (un + en +7)66(0),

Lini6i(0)
e P1(=Th)
i 0(-T)

G(¢) = 796(0) = pndz(0).

Ga(9)

Note that X is closed in C, and for all ¢ € X5, G(6) is continuous and Lipschitz in
& in each compact set in R x X5, By [16, Theorem 2.3, it then follows that for any
¢ € X, there is an unique solution of the model system through (0, ¢) on its maximal
interval [0,0,) of existence.

Since Gi(¢) > 0 whenever ¢ € X with ¢;(0) = 0, Theorem 1.1.1 implies that the

stem are nonnegative for all £ € [0,0,). Note that the total

solutions of the model s

host population satisfics

% =H = puN(t) = end (t) = H = (s + ) N(2),

For system % = H — (j +e,)y(t), the cquilibrium —2— is globally asymptotically

stable. For any 0 < § < —t— #| s = H — (u, +£4)8 > 0. So if y(0) > 6, then
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y(t) > &, for any £ > 0. From (2.8). we get

W) + paWe(t))

! (B

R L)

By integrating on both sides from 0 to ¢, we obtain

eI, (1) — W, (0)

[ P () $)ds — ',.um-—n.l I(s
,A, Aoy i) [’ e
[ s, 1) T ey 1)
ill NG )u 1(s)ds — [ ot imlhwh
" e J6)

A./H”u uygay Valo)s

Therefore, if W,(0) = [*, 3, {1, (s)ds is s

ity 1)
o= tho(t=5) 1 9
e ,i,,,—N(&) Wi (s)ds.

£ B©) = [°, e, S s s

sfied, then

E(:)g/i G i,‘%u‘( 5)ds.

This implies that u, € X5, V1 € [0,04)

Note that

- =H- JnN(t) = end(t) < H = N(2).

For system

NG _ i), (2.10)
@
the equilibrinm N* = 22 is globally asymptotically stable.

By the comparison prin-
ciple, it follows that

limsup N(1) < N*. (2.11)
=

9



Regarding the total vector population, we have

AW (1)
dt

= el - L,: A W 1) = V()

< re "”[l—W]d!'(f—m)—/x”l!'(ﬂ

In

U’T‘ — W (t).

reAK

T

For system % = re=™ & — i, y(1), the equilibrium is globally asymptot-
ically stable. By the comparison principle, it follows that

remtTALC

S | € —_
lim s W (1) < -

By (2.11) and (2.12), it follows that @, = oo, all the solutions exist globally,

and are ultimately bounded. Morcover, when N(f) > max{;t, Y and W (1) >

retrAK
T

}, we have

AN _ AV
dt dt

which implies that all solutions are wniformly bounded. Thercfore | the solution
semiflow ®(t) = u(+) : X5 — Ay is point dissipative. By [16, Theorem 3.6.1], (1) is

compact for any ¢ > 7. Thus, (17, Theorem 3.4.8] implies that ®(1) has

compact

global attractor in X;. o

2.3 Threshold dynamics

In this section, we establish the threshold dynamics for the model system in terms of
the basic reproduction number,

We define the ©

scased classes” as the mosquito and human populations that arc
cither exposed or infectious, i.e. W, W, E and 1. To get the discasc-frec equilibrium,
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letting W, = W, 0, we then get R = 0 and

AW, (t Wit = 7 .
1111“ = m*"'r'[lf%],u;u71,..)7,,,,u.(r). (213)
% H = uS(0). (2.14)

(0,0,0,N,0,0,0) and E; = (W*,0,0,N*,0,0,0) are two discase free equilibria,

K(re=

where I+ = K oie) By (43, Proposition 4.1, for system (2.13), the equilibrium

W* is globally asymptotically stable if the following condition is satisfied
(H1) gy < 7e™™ < 3.

Lincarizing the model system at the discase free equilibrium £, we obtain the fol-

lowing system (here we only write down the equations for the discased cl

"”l'((’) = { 7 (I,)—/1.,.ll}(l)7#,,.:""""“‘L,:I(I77',,,),
d
A L -

2 = Bue (=) = (e + ) Walt),
(Ib;lm = BuWalt) — pnE(t) = Bue™"™ ™ Wa(t = 7)),

d

BO et =) = -+ en+ )10

Following the idea in [38], we introduce the basic reproduction number for the model
system. Denote @y, 2, v and 3 be the number of cach discased class at time = 0,

at time f,

and (1), a(t), wa(t) and a,4(t) be the remaining populations of cach cl

respectively, then we obtain

et

Ball) = wge-tura,



The total number of newly infected in cach discased class is

. /m B it we
% = 2y(t)dt =
S ! NGuteatn
Y iid ButPereW*
Iy = ra(t — T)dt =
" / N e e )
= B
& = Puxa(t)dt =
= [ A
~ B
o= / Bue **‘fv'rvr_.(i—n,)rh:7,1":H'
Since
3 0 0 0 )
T2 0 0 0 T2
Ty 0 "% 0 0 vy
4 0 &2 g 0 a4

We can sce that the 2 x 2 matrix:

0 0
0 0
My =
P
0 3= 0 0
0 ’)l” 0 0

is the next infection operator. As usnal, we define the spectral radius of the matrix

My as the basic reproduction number Ry for the model system. It then follows that

Ro=

Our first result shows that the disease is uniformly persistent if R > 1
Theorem 2.3.1. Let (H1) hold. If Ry > 1, then there is an y > 0 such thal any
solution u(t, §) of the model system with ¢ € X5, ¢3(0) # 0 and ¢(0) # 0 satisfies

lim inf(Wa(0), 1(1)) > (1)
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Proof. Define
Xo={6= (b1, 02,....07) € Xs: $3(0) #0, and 64(0) # 0}.

Clearly, we have

3(0) = 0. or ¢4(0) = 0}.

Xy = X5\ Xo

Define
My = {6 € X5 : D(1)é € DXy, Vt > 0}
Claim 1. There exists a6y > 0, such that for any ¢ € Xo, limsup, ... | (0)p—Ey [[>
&
Since 1, < re™, we can choose g > 0 and 8 > 0 sufficiently small, such that

ay
—_— <, Jaz,ag,a1) = (N*,0,0,0) [< &y, (215
P V| (a1, a2, a3, a3) — (M ) |< 6 (2.15)

Jhoo + Bugo < T (1 = (2.16)

where (a1, az, a5, ;) € RY.

nce ¢3(0) # 0, and ¢4(0) # 0, it follows from Theorem 1.1.1, we

For any ¢ € Xj.
get

Wa(t) >0, I(t) > 0,9t > 0. (2.17)

Next we show that there exists a fo > 0, such that Wy(to,¢) > 0, for all ¢ € Xo.

s ¢ € X, such that Wy(t,¢) = 0, for all £ > 0. From (2.2),

Otherwise, there ¢
we get W(t) = 0 for all £ > 7,,, then from (2.1), we get Wy(t) = 0, for all £ > 7,,, a
contradiction with (2.17). Then, by Theorem 1.1.1, Wy() > 0, for all ¢ > fo.

Suppose, by contradiction, that limsup, . || ®(t)y) — Ey [|< & for some ¢ € X,
Thus, || $(1)¢ — Eo [|< 6, holds for all large .
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Then we can choose large mumber ¢, > fo, such that for all ¢ > £, there holds that

a
a =7

e~ ™A1~ : Wit = 7a) = (pt + Buo) Wi(t).

Consider the next lincar and monotone time-delayed system

duw(t 30,
A,,ﬁ—’ = re (L= SNl = 7a) = (e + Buco)u(t) (2.18)
Let Ay be the principal eigg of the cor li problem of

cquation (2.18). Since for any ¢ € C(|=7,0],Ry) with ¢(0) = 0, we have re=m(1 -
301/ K)d(~74) > 0. Thercfore, (2.18) is cooperative, Then we consider the anxiliary
system

% = (re™™ (1= 38,/ K) = (jtu + Buco) ) a(t). (2.19)

By (2.16), the cigenvalue Ay of system (2.19) s re=" (1= 38 /K) = (1 + Buco) > 0,
By Theorem 1.1.4, we get Ao > 0 if and only if Xy > 0. Therefore, Ay > 0.
We can choose > 0 small cnough such that ledt < Wy(1).Vt € [ti.t) + 7a.

Clearly, I’ satisfics (2.18) for all ¢ > £,. Then by the comparison principle, we get
1M < Wy(t), V> b +7a,

Since Ay > 0 and [ > 0, leM — 00 as £ — oo, Thus, limyx Wi(t) = o0, a

contradiction.

Claim 2. There cxists a8, > 0, such that for any ¢ € Xy, limsup,_, || ®(1)p—E, [|>

b

First we consider the following lincar cooperative system



(2.20)

For sufficicntly small & > 0, let Ay(¢) be the principle cigenvalue of system (2.20).
For any ¢ = (¢, é2) € C([-7,0],R2). First, we define

Bt (% = )a(=T) = (1 + €)1 (0)

1) = . X
et (1= )gi(=m) = (mn + n +7)62(0)

It is casy to see that f is continuously differentiable cooperative in the sense that for

any ¢ € C([-7,0],R2), the linear operator L := df () satisfies Li($) > 0 whenever

e C([-7,0],R2) with ¢;(0) = 0 for some 1 < i < 2. Then we consider the auxiliary

system
e 1) = (1 + e Val0),
H N R (2.21)
% = B (1= e)Walt) = (un +en + N1 (0).

Let X;() be the principal eigenvalue of cigenvalue problem of system (2.21). By

calculation, it follows that Aj(<) > 0 if and only if a(e) i= Sehe iy

&)(1-¢€) > 1. When ¢ = 0, a(s) = R} > 1. Since a(<) is continuous with respect

to &, we can choose & small enough such that a(€) > 1, thus X;(<) > 0. By Theorem

114, () > 0 if and only if X;(€) > 0. Thus, we can restrict & small enough such

that A(£) > 0.

For this small ¢, there cxists 8 = () > 0, such that
by
bat b+ b by
bt bytby W
U ol SO basbasie
Tththtl N2> 0 Vb

>1-e>0, and
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Assume, by contradiction, that limsup,_... || ®()é — Ey [|< & for some ¢ € Xo.

st a large number £, such that for all £ > 2,

Then there ¢
I 6(0)p ~ By 1< 6.

Then we can further choose £ > £ large cnough, such that for all £ > £y,

That is, when ¢ > ty, we have

W) 5 et (8 (=720 (p + €W,
> (1= Walt =) = G +en + )10
;

Let v = (v, v2)" be the positive right cigenvector associated with Ay () for system
(2:20), choose [ > 0 small cnough such that
Loy MO < Wy(t), Vit € [ta,ta + 7],

LopeM O < (1), V€ [ty ty + 7],

Clearly, 1M (v, )" satisfies (2.20) for ¢ > ty. Then by the comparison princi-

ple, we get
(Walt), I(£)) > 1M oy, 09),VE > 1y + 7.
Since Ai(€) > 0, letting £ — oo, we obtain
Jim Wa(t) = o0, Jim 1(t) = 00
a contradiction
Let w(¢) be the omega limit set of the orbit of ®(f) through ¢ € As.
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Claim 3. Ugear,w(9) = Ey U E\.

For any ¢ € My, ie. ®(t)p € Xy, we have Wa(t,¢) = 0, or I(t,¢) = 0. If

Wa(t.6) = 0, then from the cquations of S, E and 7, we have limy . S(t,¢) =
T E(t,#) = 0 and limy . 1(,6) = 0. Let ®(t) be the solution semifiow of the

model

stem, which is defined as
D(1)6 = (Wilt,8), Wt 0), Walt, 8), S(t, 0), E(t, 6), 1(t, 0), R(t, 9)), Vo € Xy.

) be the

1, (1) is compact for any £ > 7. Lot w

Following from Theorem 2.
omega limit set of ®(f)¢. It then follows from Theorem 1.3.1 that w is an internally

chain transitive set for ®(1). Hence, we have
w=w x {(0,N",0,0)} x wy
for some wy € C([-7,0],R3) and wy € C([-7,0], Ry). It is casy to see that
(1) | (41,42, 0,N%,0,0,97) = (W1 (1) (41, 12), 0, N*,0,0, Wa(1)4i)

where ¢, ¥y, Y7 € C([=7,0],Ry), ®,(t) is the solution semiflow associated with the

following system

'm;_"w = ey - DT W7, 4 = )4 e - )
r
—maWi(0),
AW, (1) i
m RAG)

and (1) is the solution semiflow associated with

ARG _ R, (2.21)
o

Since w is an internally chain transitive st for ®(), it then follows that w, w,

stem

are also internally chain transitive sets for (1), da(t), respectively.
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(2:24), {0} is the unique cquilibrium point and globally asymptotically stable. Let

W= Wy(1) + Wa(t), system (2.22)(2.23) is cquivalent to
WO~ o T ) -0, @225)
d
AW (1) i
= ()

By [43, Proposition 4.1], 1IW* and 0 are globally asymptotically stable for system (2.25)
and (2.23), respectively. So (W*,0)7 is globally asymptotically stable for system
(2.22) and (2.23) in C([~7,0],R3) \ {(0,0)}. Therefore, by Theorem 1.3.2, we get
@ = {(W*,0)} or {(0,0)}, and w; = {0}. Thus, we have w = {(W*,0,0,N*,0,0,0)}
or {(0,0,0,N*,0,0,0)}.

1 1Wa(1,6) # 0, then there exists fo > 0, such that Wa(fo, @) > 0. We then obtain
that Wa(t,¢) > 0 for all ¢ > to, and I(t,¢) = 0. From the cquations of IV, Wy and R,
we have Timy oo Wo(t, @) = 0, i Wa(t, ) = 0, and limy e R(t.¢) = 0. Hence,
we have

w = wy x {(0,0)} x wy x {(0,0)}
for some wy € C([=7,0],Ry) and wy € C([~7,0),R}). It is casy to sce that
D(1) | (01,0,0,404,45,0,0) = (Py()¢y, 0,0, D4(£) (404, 45), 0,0)
where ¥, ¥, ¢ € C([=7,0), Ry.), ®5(t) is the solution semiflow associated with the

following system

AW (t)

di )IA"(/ —7a) = W (1),

= remall -

W(t—7a
K

and ®4(1) is the solution semiflow associated with

BO ~ 1-msw,
L i), (2:29)
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By [43, Proposition 4.1], W* is globally asymptotically stable for system (2.26) in

(7,01, R, )\ {0}. Clearly, N* and 0 arc globally asymptotically stable for system

(2.27) and (2.28), respectively. Theorem 1.3.2 implies that wy = {W*} or{0}, wy =
{(N*,0)}. Therefore, we have w = {(W*,0,0,N*,0,0,0)} or {(0,0,0,N*,0,0,0)}.

Consequently, we have Ugear,w(

EyUE.

Define a continuous function p: & — R, by

min{ey(0), ¢o(0)}, ¥ € Ay

Clearly, p='(0,00) C Xo. It follows from (2.17) that p has the property that if
cither p(¢) = 0 and ¢ € X, or p(6) > 0, then p((t)$) > 0, for all £ > 0. Thus
p is a generalized distance function for the semiflow ®(1) : X5 — As. By claim
3, we got that any forward orbit of ®(t) in My converges to Ey or Ey, by claim 1

and claim 2, we conclude that Ey and By are two isolated invariant sets in Xj, and

(W*(Eg) UW*(E})) N Xo = 0. Morcover, it is casy to sce that no subsct of {Eo, £}
forms a cycle in 9.Xo. By Theorem 1.2.3, it then follows that there exists 7 > 0 such

that Timinf, . p(@(£)¢) > 5 for all ¢ € Xo, which implies the uniform pers

cnee
stated in the theorem. o
The subsequent result shows that the discase dics out if Ry < 1, provided there
is only a small invasion in the W and [ classes. For any given M > 0, denote
M = {,,, € C([-7,00,[0,M]") = 3" 6i(s) > 6,¥s € [-7.0],
=

L[ ey G0,
$2(0) = L ,i,,vz;il‘{”} 5 ds

#
R

Then we have the following result.




Theorem 2.3.2. Let (H1) hold. If Ry < 1. then for every M > m;\x(ﬁ, =

there exists a ¢ = ((M) > 0 such that for any ¢ € XM \ Ey with (¢(s

[0,¢]2, for any s € [~7,0], the solution u(t,d) of the model system through ¢ satisfies

limy s || u(t,0) — Ey [|=0.

Proof. Let M > max{ 2L,z ak

} be given. From the prove of Theorem 2.2.1, we

see that A is positively invariant for the solution semiflow of the model system. We
then have

u(t,¢) € [0,M]7, Vt>0,0€ XM

Consider the following linear and monotone system

(m:;t/({) - (= 7) = (o + £0) Walt),
I 220)
"f,(,” = B Wt = 1) = (o + e+ DI().

For sufficicntly small & > 0, let A(<) be the principle cigenvalue of this cigenvalue
problem. Clearly, system (2.29) is cooperative. Then we consider the next auxiliary

system

WD)~ e B2 12) — W0,
O it =)~ G+ e+ IO,

lue of the corresponding cig problem of

Let Ay(e) be the principal
i

system (2.30). Then we get Xy(e) < 0 if and only if 3(¢) := ﬁm{{"‘ <1

When e = 0, #(0) = R2 < 1. Since (<) is continuous with respect to &, we can choose
& small enough, such that 4(s) < 1, therefore, Ny(e) < 0. Following from Theorem

114, we get Aa(e) < 0 if and only if X(e) < 0. Thus, we can restrict & small enough
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such that Aa(e) < 0. Let (e1, e2)” be positive right cigenvector associated with Ay(e).
Now we consider the following cquations:

" Wit -,
— el
e K

= H-mN(t)-ab

W (= 7a) = W (1) = e

Choose small & > 0 and large 7 = T(M) > 0 such that for any solutions of

(W(t,6). N(t,6)). We then have
W(t) < W +e, N(t) >N =, VI > T,

Denote the solution of system (2.20) by i(t.¢) = (Wa(t), 1(1)) with respect to
initial data ¢ = (¢1,62) € C([~7.0],[0,M]?). Then for system (2.29), for & > 0,

there exists & > 0, such that if (&ze1, &e2) < (€1,&). Since Ao(g) < 0, we get that
(6201 20y ) < (61,6)). 20 (2:33)

For every solution of the model system through @, there exists a ¢ = (M) > 0

such that

(Walt, @), 1(t,9)) < (€1,61).Vt € 0.T] (2:31)

provided that (¢s(s), da(s)) < (,€)

We further claim that (2.31) holds for all ¢ > 0. Suppose, by contradiction, that

the claim is not true. Then there exists a Ty = Ti(¢) > Ty such that (Wa(t, ¢), (1, ¢)) <

(&0,&), for all ¢ € [0,73), and Wa(Ty,6) = & or I(Th, @) = &. By the comparison

principle, for ¢ € [Ty, Ty, we have
(Walt, #), 1(t,6) < (Walt, ), (1, 6) < (€1.€) (2.35)
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) and (2.35), we sce that

a contradiction. So (2.34) holds for all £ > 0. From (
limy oo (Wa(t, 6), 1(1,6)) = (0,0). Let (t) be the solution semiflow of the model
system, and let w = w(¢) be the omega limit set of ®(t)¢, which is an internally

chain transitive set for (). Hence, we have

wy x {0} x we x {0} X wy

for some ws, wg € C([—7,0],R%) and wr € C([=7,0],R). It is casy to sce that

= (P5(£)(t1,422), 0, P(£) (¢ha, ¥5), 0. D1 (t)¢r)

D(t) | (1,4, 0,004,105, 0,

L, U, Y7 € C([=7,0],Ry), ®5(t) is the solution semiflow associated

where ¢y,

with the following system

AW, Wit — Wit — N .

vl,'tm = remomapy = Wil Z )+ Welt — ) T‘);’\, 2 Ta)) (e = 7a) 4 Wt — 7))
— Wi (1),

I, .

‘—d,ﬂ B hiA0)

@y(1) is the solution semiflow associated with

ds() :
G = 1S,
dE(t) =

o = TmE®

and P7(1) s the solution semiflow associated with

AR(t =

ARG _ ).
It then follows that ws, ws, wr are internally chain transitive sets for 5(1), ®(t),
and s(¢), respectively. By the analysis of system (2.22), (2.23), (2.27) and (224),
we gt ws = {(IW,0)}, wy = {(N",0)}, and wr = {0}. Thus, we have w =

{(W*,0,0,N*,0,0,0)}. It follows that lim,_. u(t,¢) = (W*,0,0, N*,0,0,0). [m]
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2.4 Global attractivity

In this section, we study the global attractivity in the model system in the case where
the discase-induced death rates of infected mosquitos and human individuals are zero,
and the fecundity of infected mosquitos is the same as the susceptible mosquitos. In

this case, the model system becomes

AV e W)y )
2l = et = ST W) = (0 = A 1A
W) o I e g, =T ey
= A0 — W) B T = ),
W) e Tl gy ) — i),

dS(t Lo S(t

BO b usw - a0, 236)
dBW) S o gy S TH)
G = IO )~ B )
# = B - n) =1

PO 10 - mRw

dt

It is clear that when Ry < 0, system (2:36) has only two cquilibria £y and

E\. However, system (2.36) admits a cquilibrium £* := (W, W, W3, S, B 1*, k")

when Ry > 1, where
(B + (i + 1) R3)

Hypo(R§ — 1)
B+ prapn+ ) RE

=




and

(pn + )N erm I
BS*
N e Wy
Bul*
W= (e = Wy,
(e — 1)+

Hn
Jro L
2

The following two results show the global attractivity of system (2.36).

Theorem 2.4.1. Let (H1) hold. If Ry < 1, 0 = 1, and &, = ¢, = 0, then the

disea,

o-free equilibrium Ey of the model system is globally attractive in Xs \ o

Proof. 16 @ = 0 and &, = &, = 0, the whole mosquitos and human populations admit
the following two equations:

WEZT) w1 - 1) a0,

= el -

= H-umN().

dt

Since W* and N* is globally asymptotically stable for the above two cquations, re-

spectively, there exists T = T(e) > 0 such that
W(t)<W*4e, N(O) > N —e, Ve >T.

Thus, when ¢ > T', we have

,m;(/) < e (VG ) = (e )W),
[
"’Tf < B Wt — 1) — (i + €0 + (L)
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When Ry < 1, & small cnough, by the analysis of system (2.20) and the comparison
principle, we then have
Jim (Wa(t), 1(1) = (0,0).
It then follows from the theory of asymptotically semiflows (sce [32]) that
Jim (W40 W2 1), S(0). E(2), R() = (W*,0.N°,0,0)
This completes the proof. o

To obtain the global attractivity of the endemic equilibrium, we need the following

additional assumption:
(H2) Bupen 2 pras(pan + y)e™n.

Theorem 2.4.2. Let (H1) and (H2) hold. If Ry > 1 and <, =0,0=1, then

Jor any 6 € Xy with $3(0) # 0, ¢6(0) # 0, we have limy_oc u(t, ¢) =

Proof. When ¢, =&, =0, g = 1, we have

AW (t w(t-r, > ,
e ""””"lh%]di (t=7a) = WV (1),
dN(D) .

=2 = H—mNQ).

When (H1) holds, (W*,N*) is globally asymptotically stable for system

Hence, we have the following limiting system:
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= Wi (t) = B, I (WA (),

7
Elt;((vl) = B IOWi(t) — paWe(t) — BLe™ ™ I(t — Tu)Wi(t — ),
QB (= Wit = ) = Va0

BO s - A0S0, 249
d%lgl-)- = BWa(t)S(t) — mnE(t) — Be ™ Wyt — 1) S(t — ),

HO Wt = m)Sle - 7) ~ G+ D10,

O~ 210 - mrt)

where A = Wi, B, = Bu/N*, B, = Bu/N*

Lot g(t = ) = Wit = 1) + ™ Wy(t), that is g(t) = Wi (1) + c#mWo(t + 7,.).

follows that
g = W)+ e Wit + 7,)
= A= po(Wi(t) + " Walt +7,,))
= A= jug(t).

Then the equilibrium A/pr,, = W* s globally asymptotically stable. For system

(2.38), we then consider the following limiting system:

fnl’;,;(/) = e (= T (W = () - palVa(l),  (239)
% = H = mS(t) - AS(OWalt). (2.10)
O (e m)Walt 1) — G + DO @1)
dt

Claim.  The set D = C(|—7,0],[0,W*e ] x R2) is positively invariant for
system (2.39)-(2.41).
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To prove this claim, we define (1) :=
et~ )W = Ty (0) = ity (0)
H = jua(0) = B (0)2(0) Vi €D,

Tty (=7 )ea(=74)) = (w4 7)¥(0)

Note that D is relatively closed in C([~7,0], R?), and F(1)) is continuous and Lipschitz
in ¢ in each compact set in R x D. By [16, Theorem 2.3], it follows that for all ¢+ € D,
there is an unique solution of system (2.39)-(2.41) through (0,4) on its maximal
interval of existence. Since Fi(1) > 0 whenever ¢ € D with ¢;,(0) = 0, Theorem

39)-(2.41) are nonnegative for all £ in its maximal

111 implics that the solution of
interval of existence. Furthermore, if v1(0) = W*e7. then Fy(¢) < 0. 1t follows
by [20, Remark 5.2.1] that Wa(t,¢) € W*e™™ for all £ > 0. Thus, D is positively
invariant

By the arguments similar to those in Theorem 2.3.1, it casily follows that system
(2.30)-(2.41) is uniformly persistent in the sense that there exists a 7, > 0 such

€ D with ¢1(0) # 0, $(0) # 0, the solution

that for any given ¢ = (¢, ¢
(Wt ), S(t ), I(t, ) of (2.39)-(2.41) satisfies
lim inf(Wa(t, 9), 1(6,4)) 2 (1, m)-
For any given ¢ € D with ¢,(0) # 0 and ¢4(0) # 0, let (Wy(1),S(t), I(1)) =
(Wt 1), S(t, ), (). In order to use the method of fluctuations (sce, e.g., [18

39]) for system (2.39)-(2.41), we define

Wi = limsup (), Waw = lim inf Wa(0);
e oo

5% = TimsupS(1), S = liminf S(0);
jrists £y

1% = lmsup(t), L = limin 1(0).
ey oo

10



Clearly, W5® > Wy > 1 > 0, §% > Sy and I > Io > 1y > 0. Further, there
exist sequences £, — o0 and of, — o0, i = 1,2,3, such that
lim Wa(th) =
lim Wa(o)) =

lim S(62) =

lim S(02) =
lim I(63) = I I'(t)=0,Vn>1;

lim [(03) = Io.I'(03)=0¥n>1

e e W IN® and my = Bue ™™ [N*. 1t then follows from (2.39) and

Lot my

the above claim that

© > 0> To(m) — B, W5°) — pW3o,

(i, — ALV

= ¥

1°(my = 3, Wase) = W,

10Wasc,

and hence,

(2.42)
G+ B Wane) > 02 H = 8y + ;)
H = Sl + BWane) > 02 H = S+ 3,1V5),
which implies that
8 5 > 3, a (2.43)

——>5%> 5,2 -
s+ B Wase = B W5



In view of (2.41), we obtain

MaSEW5 = (i + 7)1 > 0 > maSoWas — (e + NI,

and hence,

> o s I > M2Salan
IZEE]

oty

(2.44)

Therefore, combining (2.43) and (2.44) together, we get

H  moWae
YA

Ho omalge

- I® 5 T
it B Waoo ety =0 7T T

Comparing (2.42) with (2.45), we obtain

Ho malE .
tn+ B Was i+ = = B, W5’
H  malVax WV

- — <
A

Simplifying the above two inequalitics, we get

Buobn(W® = Wase) < p(pun +7)e ™ (1

Since condition (H2) holds, we have Wi = Waw. By (243) and (2.45), we get

§% = Sy and I = I It follows that lim, o (Wa(t), S(1), I(1)) = (W3, S*.1*) for

any ¢ € D with ¢, (0) # 0 and ¢5(0) # 0.

Now we define for system (2.38) that

W= ((da;,w.m)eC(lfr.nl,le).’]E&(Wg(l“+v)A5(t“+v)A1(1,,+»))T

(s, 61, ) for some £, — 00 as n — oo}.
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it follows that w* is a noncmpty and

By similar arguments as in Theorem

compact subsct of C([~7,0],R2). Since for any £,

im (Wi (= 7o) + e Wa(t))

Thus, we have
i Waty) < Wrerers

Therefore, we obtain that w* C D.

By the above claim and the continuous-time version of [42, Lemma 1.2.2], it follows

that w* is an internally chain transitive set for the solution semifiow of system (:

(2.41) on the positively invariant set D. Then by Theorem 1.3.2, w* = {(V,
or {(0,N*,0)}. By similar argument of Theorem 2.3.1, w* # {(0, N*,0)}. Thercfore,

{(W;3,5*,1*)}. Hence, we have, for system (2.38),

i Wit +) =l (gt +) = 7 Walty + 7+ )

= W' =Wy = Wy, Vi, — 00 as n— oo,

Lot @/(t) be the solution semiflow of system (2:38). By similar argnment as
Theorem 2.2.1 for the model system, we obtain that /(1) is compact for any ¢ > 7.
Let o = /() be the omega limit set of &(1)é. 1t then follows from Theorem 13,1

that @' is an internally chain transitive set for @/(f). Hence, we have

Wi x (W3, 8%)) xwh x {1} x wh

for some w| € C([=7,0],Ry), i = 1,2,3. It is casy to sce that

() | (W2 W = (W7 W (2) W3, S* W (9s), 1, W ()

13



where ¢y, ¥, ¢7 € C([—7,0],R}), @{() is the solution semiflow associated with

dult) _

e prawi(t), (2.46)

W (L = e

®)(t) is the solution semiflow associated with

L) _ w3 - ) = ), (247)

and @4(1) is the solution semiflow associated with

Bl _ e - ). (248
dt

Since w' is an internally chain transitive set for /(f), it then follows that w}, wj, )

are also internally chain transitive sets for (1), ®)(1), ®4(1), respectively. Clearly,

W2, E*, R* are the unique equilibrivm point and globally asymptotically stable for

(246), (247) and (2.48), respectively. Therefore, by Theorem 1.3.2, we get wj =

[m)

(W2}, wh = (B}, and W} = {R*}. Thus, we have o’

2.5 Numerical simulations

In this section, we carry out numerical simulations to illustrate our analytic results.

we fix 74 = 10, 7, = 10, 7 = 5, and then take three sets of values

I view of |
of other parameters to perform the mumerical simulations

=006, B, = 015, r =1, a = 02, v = 0.15, p,, = 0.1,

First, we take /3,

Jue = 0.0001, H = 0.001, K =10, o = 0.8, &, = 0.01, &, = 0.0001. It is casy to

verify that condition (H1) holds, and Ry = 0.174, W* = 2,61, N* = 10. It follows

from Theorem 3.2 that when Wa(s) and I(s), s € [~7,0], are small, the discase will

dic out (sce Figure 2.1).
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Figure 2.1: Long-term behavior of the population of e when Ry < 1 and the

invasion is small.

Figure 2.2: E* is globally asymptotically altractive when R > 1 and conditions (H1)

and (H2) hold.

Second, we take 3, = 0.9, 3 = 05, r =1, a = 04, v = 0.05, p,, = 0.01,

o =0001, H=01, K =10,0 = 1,5, = = 0. Then we get that (H1) and

(H2) hold, and Ry = 17.509, W* 540, N* = 10. By Theorem 2.4.2, we obtain



Figure 2.3: Persistence of infected mosquitos and human individuals.
E* = (1.655,0.275,2.610,0.076,0.049,0.1936, 9.681) is globally attractive (see Figure
2.2).

Third, we take f, = 09, 3 = 0.5,

1, a = 04, 7 = 005, p, = 0.01,

pn=0.001, H =01, K =10, 0 =08, &, = 0.01, &, = 0.0001, we get Ry = 11.462.

We can sce that the discase is uniform persistence. Figure 2.3 indicates the behavior

of the infectious mosquitos and infectious human population.
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Chapter 3

A Within-Host Virus Model with

Periodic Multidrug Therapy

3.1 Introduction

In recent years, mathematical models have shown great values in the understanding
of within-host viral infections. In particular, periodic models are always formulated

to account for impact of seasonal, or diurnal environmental drivers on host-pathogen

interactions such as seasonal changes in host social behavior and contact rates, annual

pulses of host births and deaths changes, and changes in host immune defense system
Ui

Perelson and Nelson [2 [25] provide a standard model, com-

prised of three state variables corresponding to concentration of uninfected target

cells, productively infected cells and free virus particles. Antiviral medicines used to

treat these infections can be incorporated into mathematical models and the effect of



the drugs on the dynamics of the system s an interesting and practical problem to

investigate. In the treatment, the drugs are most commonly prescribed to be taken on
a fixed dose, fixed time-interval basis. For example, in HIV treatment, the P-inhibitor
ritonavir is usually taken once every 12 hours, and the RT-inhibitor tenofovir DF is
usually taken once every 24 hours [12]. Therefore, the drug efficacy functions are
periodic in time. De Leenheer [9] and Browne and Pilyugin [4] took the drug cfficacy
function of the bang-bang type, that is, at each moment during the period of the
treatment cycle, the drug is cither active at a fixed efficiency level or it is inactive.
The drug is thus characterized by two parameters: its efficiency level when active,
and the duration of the activity. Papers [12, 28] provide detailed pharmacokinetic
models, and cha

cterize the drug efficacy functions by a quick rise of the efficacy to

a peak value right after drug intake, followed by a slower decay.

cal within-host virus model [26

As a starting point, we consider a ¢
periodic multidrug treatment. Note that, we focus primarily on HIV models here but,

following by [4, 9], the basic model applies to many other important infections such

as hepatitis B [14] and C [15], influenza [13] and malaria parasite P. falciparum [24]
A brief review of the salient features of HIV in the disease will be helpful. HIV

is a RNA virus. First, the HIV enters its target, CD4+ cell. Inside this cell, it

makes a DNA copy of its RNA genome. In this process, it needs the enzyme reverse

transcriptase (RT). This DNA copy is then integrated into the DNA of the infected

cell. The

iral DNA, called the provirus, is then duplicated with the cell’s DNA

every time the cell divided, and henceforth, the viral particles can bud off the cell

to infeet other healthy cells. Once infected, a cell remains infected for life. Before

leaving the host cell, the virus particle is equipped with protease, an enzyme used to
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cleave

a long protein chain. If this feature is lost, the virus particle is not capable of

successfully infecting other T cells, and the P-inhibitors are the drugs that target this

step. Currently, there are four classes of antiretroviral drugs available in the treat-

ment, of HIV infected patients: nucleoside/nucleotide reverse transcriptase inhibitors,

non-nucleoside reverse transcriptase inhibitors, protease inhibitors, and entry /fusion

inhibitors [4]. The main drugs are RT-inhibitor and R-inhibitor, and in practice,

cocktails of several of these drugs have been very common and most successful [12]

In this chapter, we employ the theory of basic reproduction ratios and wniform

persistence for periodic systems, which are two important techniques to address the

disease dynamics in a periodic environment. The basic reproduction mumber Ry is

defined as the expected number of secondary infections arising from a single individual

during his or her entire infoctious period, in a population of susceptible. The concept
of next generation matrix was used in [11, 34] to define Ry for autonomous epidemic

models, and was further extended in [3, 36] to periodic epidemic models, and the

os such as HIV [21], malaria [22].

developed theory has been applied to various scena

tuberculosis al

[19] and rabies [40]. Pers

tence theory addresses a long term surviv:

of the pathogen in a system, and can be used to show that the pathogen remains

endemic when the basic reproduction ratio is great than one.

The purpose of this chapter is to study the impact of periodic drug treatment

on the dynamic behavior of a standard within-host virus model. Mathematically, we

obtain a nonlinear periodic ordinary differential system, define the basic reproduction

ratio, and establish a threshold result in terms of the basic reproduction ratio (Section

s of the RT-

3). Motivated by [4], we further investigate the optimizing phase shi

inhibitor and P-inhibitor drug cfficacy functions (optimal in the sense of minimizing
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the basic reproduction ratio). If only one drug is used in a treatment, shifting the
phase of the drug efficacy function docs not change the dynamics of the model system.

If, however, both the RT-inhibitor and P-inhibitor arc used, then these phase shifts

In the numer;

can completely change the dynamics al study (Section 4), we first
consider a simple case of HIV treatment, where the efficacy functions arc of the bang-
bang type. Then we investigate the case of using the actual pharmacokinetic models

of the drug cfficacies. A brief discussion section completes the chapter.

3.2 The global dynamics

We first give a brief review on the classical within-host model [26,

ar .
@ = Tk

ar*

& kT -pT g
T = kTt (3.1)
av

Vo ey

it ==

Here T, T*, V denote the concentrations of healthy and infected cells, and free virus

particles, respectively.  All parameters are assumed to be positive. 3 and 5 are

the decay rates of infected cells and virus particles, respectively. kVT', a term of
mass action type, models the rate at which free virus infects a healthy cell, and

is the average number of virus particles budding off an infected cell during its

lifetime. The (net) growth rate of healthy cell population is given by a smooth

function [(T) : Ry — R, which has the property that there exists T > 0, such that
JOOYT = Ty) < 0, for all T # Ty and f/(Ty) < 0. The class of admissible /(1) is

quite large, and contains two most popular choices:



1) Pereson and Nelson [26]: f(T) = fi(T) = a— bT + pT'(1 —

2) Nowak and May [25]: (T) = fo(T) = a - bT.

Clearly, the continuity of f implics that f(y) = 0. It then follows that Ey =

(T4,0,0) is the wunique infoction free equilibrium of (3.1). System (3.1) also admits a

positive equilibrium (endemic equilibrium), £ = (7, 7+, V), provided that f() > 0,

where T'= 2%, . By considering the fate of a single productively

infected cell in an otherwise healthy individual with normal target cell level T

we can determine the basie reproduction number Ry for model (3.1): The infected
cell produces N virions, each with life span 5", which will infect 82 healthy target
colls. Hence, Ry = X0 T torms of Ry, [10] gives an excellent analysis of the global

dynaics of system (3.1).

Theorem 3.2.1. ([10, LEMMAS 3.2 AND 3.5])
IfRa > 1, then Ey is unstable and the infection persists in the sence that there exists
€ >0 such that T infeo(T(1), T*(t), V(1) > (€,6,¢) for initial condition satisfying

T(0) + V(0) > 0. If Ry < 1, then Ey is globally asymptotically stable.

Assuming that currently the HIV cannot be eradicated in an individual, that is,
Ry > 1. Then we incorporate a treatment of two types of drugs, RT-inhibitor and

P-inhibitor, and modify the model as following:

w = [(T) = k(1 = npr())VT,
% = k(1= (VT - BT, (3.2)
v oy e
St = N np()aT =V



where (), p(t) : R = [0,1] are the drug efficacy functions of the RT-inhibitor and
P-inhibitor, respectively. For realistic consideration, we assume ngr (1), np(t) # 0, or
1, and suppose that both nzr(t) and yp(t) are periodic and share a common period
w.

Theorem 3.2.2. System (3.2) has a unique and bounded solution with initial value

in RY. Further, the compact set

STT SA+Th+1,V <

{(7:1".\/) €R

NA(A+To + 1)}
v

is positively invariant and attracts all positive orbits in R} .

Proof. We use the argument similar to that in the proof of [10, Lemma 3.1]. By The-

orem 111, it follows that for any (7'(0),7*(0), V(0)) € R}, system (3.2) has a unique

local nonnegative solution (7(t), 7* (). V(1)) through the initial value (7(0), 7*(0), V/(0)).
Since 50 < f(T), Vt > 0, we see that limsup, _, T(t) < Ty Then for large

t,say t > to, we have T(t) < Ty + 1. Let § = maxyso f(T). By the first two

equations of system (3.2), we obtain that & (7'(t) + 7*(t)) = f(T)

/T

Let A > 0 be such that §A > S+ 1. Then as long as T(t) + 7*(t) > A+ Ty + 1

and £ > fg, we have £(T(t) + 7*(t)) < —1. Clearly, there cx

it s 1y > ty such that

T(t)+T*(1) < A+Ty+ 1 for all ¢ > t,. Clearl

T(t) < A+ Ty+1forall £ >0,

Then we have 0 < NAT* — AV < NB(A+ Ty + 1) — AV for all £ > £, Then we

vt1)

have limy ., V(1) < 2 It concludes that the solution is ultimately bounded.

-

Hence, the solutions of system (3.2) exist globally on the interval [0,00), and D is
positively invariant and attracts all positive orbits in RY. o
We then introduce the basic reproduction ratio Ry for system (3.2) by using the

next generation operators approach (sce [3, 36]). By previous anal; tem (3.2)
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hes cxactly one infection free cquilibrium By. The equations for infected colls and
virus particles of the lincarized system for (3.2) at By are

dT*(t - w—

"0~k amyny -,

; 3.3
/w'“m = N(L=yp(O)BT* = V. (33)

K1 = npr(t))Ty 720
e 0 G-me@%) (0
NB(L = (1)) 0 0 4

Lot (1) and p(®4(w)) be the monodromy matrix of the lincar w-periodic system

40— A(t)e and the spectral radius of ®4(w), respectively. Lot Y(1,s), ¢ > s, be
the evolution operator of the lincar w-periodic system

dy
dt

(3.4)

that is, for cach s € R, the 2 x 2 matrix Y(2, s) satisfics

==G()Y(t,s), Vt > s,

where 7 is the 2 x 2 identity matrix. Thus, the monodromy matrix ®_g(1) of system
(3.4) cquals to Y (£,0), £ > 0.

In view of the periodic environment, we assume that ¢(s), w-periodic in s, is
the initial distribution of infectious individuals. Then F(s)é(s) is the rate of new
infectious produced by the infected individuals who where introduced at time s. Given
1> s, Y(t,8)F(s)4(s) gives the distribution of those infected individuals who were
newly infected at time s and remain in the infected compartments at time £. 1t follows

that

"V (tt - @) F(t - a)p(t - a)da

/ Y (t,8)F(s)p(s)ds




is the distribution of accumulative new infectious at time ¢ produced by all those
infectod individuals ¢(s) introduced at time previous to ¢

Let €, be the ordered Banach space of all w-periodic functions from R to R,
which is equipped with the maximum norm [ and the positive cone C¥ = {¢ €

C.t (1) > 0,1 € R}. Then we

an define a lincar operator L: C, —

by

(Lo) (1) = /]x Y(t,t - a)F(t - a)p(t — a)da, Vt € R, ¢ € Cl. (35)

Following [36], we call L the next generation operator and define the basic repro-
duction ratio as Ry := p(L), the spectral radius of L.

In the special case of r() = mier, 1p(t) = e, ¥ > 0, we obtain

0 k(1 = ner) Ty 5o
(1 = ner) T e

NA(1—1p) 0 0 4

It then follows from [34] that

Ro = p(FG

In the periodic case, let 1V/(£, A) be the monodromy matrix of the lincar w-periodic

m

= <,(:(«)+§F(¢))w. teR (3.6)

with parameter A € (0,00). Since F(1) is nomegative and ~G(t) is cooperative, it
follows that p(IV (w, A)) is continuous and noninereasing in A € (0,00), and limy ..
P(W(w, ) < 1. Ttis casy o verify that system (3.2) satisfies assumptions (A1)~ (A7)
in [36]. Thus, we have the two results as in Theorems 1.4.1 and 1.4.2 corresponding

to our system.
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Theorem 3.2.3. If the basic reproduction number Ry < 1, then the unique infection

Jree equilibrium Ey is globally asymptotically stable.

Proof. By Theorem 1.4.2, we know that when Ry < 1, Ey is locally asymptotically
stable. 1t suffices to prove that £y is globally attractive if R < 1

By Theorem 3.2.2, it follows that for any & > 0, there exists large fo > 0 such that

T(t) < T+ when ¢ > fo. Then for system (3.2), we have, when ¢ > fq, that

% < k(= pre()(To +€)V = BT,
WO N papar - V.
t

Considering the following comparison system

il;l(:_’) = (F(1) = G(t) + M.)h(t) (3.7)

where
0 k(1 = mer(t))e

0 0

By Theorem 1.4.2, we know that Ry < 1 if and only if p(p_a(w)) < 1. We can

choos

< small cnough such that p(®p-_¢:4ur, (@) < 1.

By [41, Lemma 2.1), it follows that there exists a positive, w-periodic function h(f)
such that h(t) = e™h(t) is a solution of system (3.7), where 0 = L n p(®p_4pr, (@)
Since p(®p_aenr, (@) < 1, 0 s 4 negative constant. Therefore, we have h(t) — 0

as £ — oo, For any nonnegative initial value (7*(0), V/(0))" for system (3.2), there

is a sufficiently large M* > 0, such that (7*(0),V(0))" < M*h(0) holds. By the
comparison principle [30, Theorem B.1], we have (7*(0), V(1) < AM*h(t), for all

20, where M*h(t) is also a solution for system (3.7). Thercfore, we get 7*(1) — 0



and V() — 0 as t — oco. By asymptotically autonomous semiflows [32], it then

follows that T(t) — T as t — co. o

Define

Xo:={(T,\T",V) € Ry: T >0,V > 0}, 92X, 2\ Xo.

Let P: Ry — R} be the Poincaré map associated with system (3.2), that is

P(g) = u(w,x0). Vg € R,

where u(t, o) is the unique solution of

em (3.2) with u(0,) = . It is casy to

see that
P™ (o) = u(mw, ), Ym > 0.

Lemma 3.2.1. If Ry > 1, then there exists a o* > 0, such that for any xo € Xo, we

have

) o) > 0" (3.8)

limsup d(P"(

Proof. Since Ry > 1, by Theorem 1.4.2, we have p(®p_c(w) > 1. Then we can
choose & > 0 small enough such that p(®p_g_y, (@) > 1.

Note that the system

A _
S = 1) ko

admits a unique globally as ly stable positive equilibrinm point, denoted as
Ty(a), when o sufficiently small, and Ty(o) — T as o — 0. We fix o small cnough

such that Ty(a) > Ty — e. Denote T(t,0) be solution of (3.9) with initia

value 7(0).



By the continuity of solutions with respect to initial condition, for o > 0, there
exists a 0* = o*(0) such that for all @y € Xo with [lrg — Eyl| < o, there holds
lu(t, x0) = u(t, Bl = lu(t, x0) — Eoll < o, Vt € [0,w).

Assume, by contradiction, that limsup,, . d(P" (xy), Ey) < o for some 2y € Xy
Without loss of generality, we assume that d(P™(xo), Ey) < 0%, Vi > 0. 1t then

follows that
lu(t, P (o)) = u(t, Bo)| < o, V1 € [0,w], Ym > 0.

For any ¢ > 0, let t = mw + ', where ' € [0,w), m is the largest integer less than

or equal to t/w. Therefore we have

lu(t, o — u(t, o)

= Jlu(t', P™ (o) — u(t', Eo)|| < 0, Yt > 0.
Note that (T(t), T*(1), V() = u(t, xg). It then follows that T*(1) < o, V(1) < o,
Vit > 0. From the first equation of system (3.2), we have

dr(t)
dt

= J(T) = k(1 = (D)o = f(T) = ko'

Since Ty(o) is globally asymptotically stable for system (3.9) and Ty(o) > Ty
we obtain for the second and third equations of system (3.2) that, for sufficiently
large £,
dr(t .
O s k= )@ - eV - o1,

3.10
'“.//:/) = N(L=np()BT" =9V C

Next we consider the following system



O 41— )Ty - )V 5T,
Vi N N 3.11)
WO _ N1 = gp)dT -7 {

By [41, Lemma 2.1], we know that there exists a positive w-periodic function, denoting

as (T*(t), V(1))", such that (T*(1), V(1))"

SHTH(1), V()T is a solution of system

(@), Since p(d W) > 1, C is a positive

(3.11), where ¢ = Linp(®
constant. Let ¢ = nw and n be nonnegative integer, then we get

(T (nw), V(nw))" = e(T*(1), V(t))" — (00, 00)
asn — oo, since w¢ > 0 and (T*(t), V(#))" > 0. For any nonnegative initial condition

(T*(0), V(0))" of system (3.10), there exists a sufficiently small m* > 0 such that

(T*(0), V(0))" = m*(T*(0). V'(0))". By the comparison principle [30, Theorem B.1],
we have

(T (), V()" = m*(T*(1), V()" for all t > 0.
where m*(T*(t), V(£))” is also a solution for (3.11). Thus we have T*(nw) — oo,
V(nw) — 00 as n — 0o, which is a contradiction. o

Theorem 3.2.4. When Ry > 1, there exists a § > 0 such that any solution of system

(3.2), (T(), T*(1), V(t)), with initial value (T'(0),T*(0),V(0)) € Xo satisfics
T inf (7°(6), V(1) > (6,).
and system(3.2) admits at least one positive periodic solution.

Proof. By Theorem 3.2.2, the discrete-time system { P },,50 admits a global attractor
in RY, and R is positively invariant. By the sccond and third cquations of system
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, we have

[ O -
dt e
av(t) .
a =

By the comparison principle, we get that T*(1) > 0, V(t) > 0, vt > 0if T*(0) > 0,

V/(0) > 0, which implies that X is positively invariant. Now we prove that {P"},,-0

is uniformly persistent with respeet to (Xo, Xy).

From the first cquation of system (3.2), we get
1Tt
d di ) > WO, (3.12)

By the comparison principal, we get 7(t) > 0 for all ¢ > 0 if 7(0) > 0. When

7(0) = 0, we have

dT(0)

i =10 >0,

then we have T() > 0 for 0 < ¢ < 1, then by (3.12) and the comparison principle,
we get that when T(0) = 0, T(t) > 0 for £ > 0. Then we have for all initial value in

Xo, we have

T(t) > 0, ¥t > 0.

Define
My = {xg € 2Xo: P"(x5) € DXy, ¥ > 0}

We now show that.

{(1,0,0): T >0}
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Clearly {(T,0,0) : T > 0} C Mj. It sufficcs to prove that for any (7(0), 7*(0), V/(0)) €
My, we have T*(mw) = V(mw) = 0, ¥m > 0. If it is not true, for some initial value

(T(0),T*(0), V'

0)) € My, there exists an my > 0 such that (7% (myw), V(mw)) > 0.
If (7% (myw). V (mw)) > 0, by the positive invariance of Xo, we have (T°(1), V(1)
0 for any ¢ > myw, which is a contradiction. Therefore, we have T*(myw) > 0 and
V(mw) = 0 or T*(mw) = 0 and V(myw) > 0. First we consider the case that
T*(mw) > 0 and V(myw) = 0. Since T*(myw) > 0, T*(t) > 0, for all ¢ > myw. By

the assumption of np(1), there exists # € [0,w) such that gp(t') < 1. At £ =t +myw,

i
”T/vu' +mw) 2 NA(L = np(t + mw)T* (¢ + myw) > 0,

Then there exists ¢ > 0 sufficiently small such that V() > 0 for 4+ mw < t <
£+ myw+c. Then by the comparison principle, we get V(1) > 0 for all £ > '+ myw,
which is a contradiction. Similarly, when T*(mw) = 0 and V(mw) > 0, we get a
contradiction, which implics that My := {(7,0,0) : T'>0}.

Clear

. there is exactly one fixed point Eq of P in My. Lemma 3.2.1 implies that

Ey is an isolated invariant set in R} and W*(Ey) N Xy = 0. Note that, every orbit in
Mp approaches to Ey, and Ey is acyclic in M. By Theorem 1.2.2, it follows that P
is uniformly persistent with respect to (Xo, X,). By Theorem 1.2.5, the solutions of
system (3.2) are uniformly persistent with respect to (Xo, OXo). That is, there exists

a8 > 0 such that any solution (T(£), 7*(t), V(#)) of system (3.2) with initial value

(T(0),7*(0), V(0)) € X satisfics
ti inf(7°(8), V(1)) > 6.
Furthermore, Theorem 1.2.4 implics that P has a fixed point, denoted as
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(7.(0),72(0), V.(0)) € Xo. Then 7.(0) > 0, T:(0) > 0 and V,(0) > 0. We further
claim that 7(f) > 0 for some £ € [0,w]. 1f it is not true, then T4(f) = 0, V¢ > 0, due
to the periodicity of T.(t). From the first equation of (3.2), we get

(),
0="35 = 0) >0,

a contradiction. Then we have T.(t) > 0, for all > 0. And the positive invariance of

Xo implics that (74(1), T3 (1), V(1)) € Int(R2), ¥t > 0. Thercfore, (7. (1), 77 (1), Va(t)

is a positive w-periodic solution of

tom (:

From Theorems 3.2.3 and 3.2.4, we sce that Ry is a threshold parameter to deter-
mine whether or not the viral persists in an individual.

In the rest of this section, we investigate the effect that phase shifts of these drug
efficacy functions have on the dynamics of system (3.2). Assume that the drugs is
taken at the same time every day. Then shifting the phase of a drug efficacy function
corresponds to changing the daily drug administration time [4].

Let 1r(T) and yp(t) be given w-periodic drug efficacy functions on R. For ¢y,

s € R, we consider the phase shift problem

DO~ 1)~ 51 = mrte = 9V,
DO 41—ty - 17, (@.19)
WO N1 = ot - )BT — V.

dt

Therefore, the equations for infected cells and virus particles of the lincarizied system

for system (3.14) at Ey are
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= k(= nrr(t =) TV - BT,

= N(1—qp(t — 92))BT* =1V, (3.15)

which can be rewritten as

= B(t, ¢, ¢)T, (3.16)
where
=g k(L= nrr(t =) Ty
B(t.n,4) =
N(1=np(t = 42))3 -y
Then we have
0 k(L= nrr(t = va)To
F(t, v,
N = np(t = v2))8 0
and
30

Gt 1) = G() =

#)(1), and further define

Replacing F(t) in (3.5) with F(t, ), we define Ly

Ro(n,92) = Ly ). We define (i — g )modulo w = 4, where 4 is determined

o — 1 = mw + 9, ¥ € [O,w), m € Z.

Lemma 3.2.2. Ro(¢1, ¢2) = Ro(0, (12 — ¢y )modulo w)
Proof. Let W(t, ¢y, ¢, A) be the monodromy matrix of the lincar w-periodic system

ot

& (-Gt + %F(Y.g",,uﬁz))u‘, teR, A€ (0,00).

= Bt v N (3.17)
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and p(W (1,0,

A)) be the spectral radins of W(t, t,¢,A). Next we use the
argument similar to that in the proof of [4, Proposition 7]. Let I'(t, A) be the principal

fundamental solution to (3.17). Let ®(t,A) be a principal fundamental solution to
o = B+, tr, o, N = B0, (2 — ¢y )modulo w, N
Lot @(,\) := ®(t — ¢, A), then ®(f,\) is a fundamental solution of (3.17) with
b1, A) = I. Then we obtain
Dlw,A) = D(w+ ¢, A) = D(w+ P, D0, A) = D, M (w, A)D(0, 1)
= Dy, A (0, ) (w, A)D(0,A) = &1 (0, )T (w, A) (0, )

Hence, for any given A > 0, the matrix ®(w, A) is similar to matrix I'(w, A), and henee
P(w,N) = p(T'(w, ). 1 p(d(w,\)) < 1 for all A € (0,00), then p(I(w, ) < 1

for all A € (0,00). By Theorem 14.1(iii), we then get Ro(4hr, ¢2) = Ra(0, (42 —

¢n)modulo w) = 0. If there exists Ay such that p(P(w, Ao)) = p(I'(w, M)

Theorem 1A1(i), we get Ro(t, ), Ro(0, (¢ — ¢a)modulo w) > 0. By Theorem

LA41(i), we further have

Ro(tn. Ra(0. (¢2 = yn)modulo w) = N

In conclusion, we have Ro(¥y,12) = Ro(0, (2 — ¢1)modulo w). o

Denote Ro(0, 1) as Ro(t). Observe that The map ¢+ Ro(1) is a w-periodic
function in R. In order to optimize phase shift of (6) and yp(1), we only need to
consider phase shifts, ¥, where ¢ € [0,w) and 4 shifts (t) to np(t — ). Henee,

Imini: 1 dosa

the timing between es of RT-inhibitors and P-inhibitors in the

variable which affects the system dynamics.
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3.3 Case studies

In this section, we numerically study the model with different drug efficacy fnctions,

same duration

First, we consider the efficacy function of the bang-bang type with the
of activity. Second, we consider the efficacy function of the bang-bang type with
different. efficiency level when active and different duration of activity. At last, we

investigate the case of using the actual pharmacokinetic models of the drug efficacics,

3.3.1 Drug efficacies of the bang-bang type

We now consider a simple case of system (3.2), where the drug efficacies are of the
bang-bang type. The bang-bang type is not perfectly to model the real drug efficacy
functions, but some insight can be gained on how the phase shift affect the effective-
ness of the treatment. First, as in 4], we consider () and yp(f) of the same type
of periodic functions, and we refer to the phase shift, 1 € [0,w) as the phase difference
between ngr(t) and np(t — ). Following [4], we define ngr(t), np(t) : R — [0,1) as

periodic function with period w = 1, such that

epr , if t€[0,3 ep , iftefo}
rr(t) = et =

0, ifte(}1) 0, ifte(31)

where epp, ep € [0,1] are fixed. Therefore the efficacy of the RT-inhibitor and P-

inhibitor arc ¢r and ep, respectively, for 12 hours in a day and 0 for the other 12

hours. Hence, if the phase shift ¢ € [0, 4], and on [0, 1)

ep , if te 3+
et —¢) = :

0 ifte[0,p)U(+u1)
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1 ¢ € (4,1), then on [0, 1)

ep , ifte[v,Ul0,¥—

’H‘(’AL'):
0, ifte@-Ly).

e
Figure 3.1: Basic reproduction ratio Ry vs. efficacy for in-phase and out-of-phase
treatments

By using Theorem 1.4.1, we can numerically compute the basic reproduction ratio
Ry. We use the parameter given by Rong et al. (28], which are based on clinical data

and extensive experimental evidence, The parameters are as follows: f(T) = a - bT'

10° ml 1), k=24 x 10 ml

with a = 10* ml™" and b = 0.01 day~" (thercfore, T,

3 day™

day™!, f=1da = 13000, 7 =

We first assume that epr = ep = ¢ € [0,1]. Then evaluate the basic reproduction
ratio, Ry, as a function of drug cfficacy ¢. In figure 3.1, the solid line graphs Ry as a

function of efficacy e with ¢» = 0. The dashed line depicts Ry as a function of efficacy

¢ with ¢ = 0.5. The horizontal linc is Ry = 1. We sce that the in-phase treatments
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Basic reproduction ratio Ry vs. phase difference

Figure 3

do not clear the infection in all circumstances, while the out-of-phase treatments do

clear the infection when ¢ is relatively lrge.

We then fix eqg and ep and caleulate Ry as a function of the phase difference

(Figure 3.2). In Figure 3.2, the dashed curve (which is closer to 0) represents the

case when epr = ep = 0.85 and the solid curve represents the case when eqr = 0.9,
ep =0.5. Since Ry is periodic with respect to ¢, the minimum and maximum exist.

corresponding to the

In Figure 3.2, the minimum, which occurs just before ¢

optimal phase difference, ¢*. From Figures 3.1 and 3.2, we can see that the phase

difference plays an important role in whether or not the infection is cleared

We now approximate the drug cfficacy function with bang-bang type but different

duration of activity:

ey if t€[0,prr], ep , if teo.ppl,
nr(t) = s oue(t) =
0 . if t€ (parw) 0, if L€ (ppw)
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Without loss of generality, we assume that prr < pp. Motivated by [9, Proposition
2, we have the following result
Theorem 3.3.1. Ry is decreasing in cach of the four arguments: cpr. cp, prr and

Pr-

Proof. By the above definition of gz and np, we rewrite (3

dw o
G = GO+ @,
B(t, A enr,ep, par,pr)w, £ € R, A€ (0,00),

poprrspr) be the corresponding monodromy matrix. First, we

and let W(t, A, epr.

prove that p(W(w, A, cprs e, prr pr)) is decreasing in cach of the four arguments:

Crry epy prr and pp.

By (9], p(W (w, X, egr.ep, prr.pp)) is the spectral radius of the following matrix:

AMewrsep,prr.pr) =

expl(w = ) BO,0) expl(pp — pier) BO.cp)| explper Blerr ).

where
-4 k=T
Blewr.ep) = *
Ai-en)d =

Let 0 < e < el < L and pry # 0, then we have
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B(cr.ep) < Blerr,cp) and B(cpy,cp) # Blerr.cp).
0 < explprr B(€her.e,)) < explprrBlenr, )]

and explprr B(Cr, ¢)] # explprr Blerr, ep)]

(by Theorem 1.1.5(1))

0 < expl(w

pr)B0.cp) expl(pp = prr) B(0.cp)] explprr B(chr. ¢,)] <
expl(w = pp) B0, )] expl(pp = prr) B(O, ep)] explprr Blerr, ¢,)],

and expl(w = pp) B(O, ep)] expl(pp = pier) BO,p)] explprer B(¢hr, )] #
expl(w = pp) B0, ep)] expl(pr = prr) B(O,ep)] explprr Blerr. ¢,)]

(by Theorem 1.1.5(1) and (2))

0 < A(¢yrsepprrpp) < Megr.cp,prr,pr),

and N, ep, prr,pp) # Merr, ep,prr.pre),s

P (Crsep,prrpr)) < p(Nerr, cp,prr,pp))-

(by Theorem 1.1.5(3))

Since p(A(egr, ep, prr.pp)) is continuous with respect to egr, €p, prr and pp, the

result remains valid if ¢} = 1. Similarly, we can prove the result with respect to ep.



Let 0 < prp < Py < w, and ep # 0, then

Blegr,ep) < B(0,ep), and Blegr.cp) # B(err,0)

= 0 < exp[(Phr — prr) Blenr, ep)] < expl(Phr — prr) B(O, ep)],
and exp|(pr — prr) Blenr,ep)] # explher = prr) BO,cp)),
(by Theorem 1.1.5(1))

= 0 < expl(r = prr) Blerr,cp)] explprr Blerr, cp)) <
exp|(Per — prer) B(0,ep)] explprrBlenr, ep)),
and exp(pyy = prr) Blerr, ep) explprr Blenr. cp)] #
oxp|(Per = prr) B(0,ep)] explprr Blerr, cp)),
(by Theorem 1.1.5(1) and (2))

= 0 < expl(w = pr)BO,0)] expl(pe — per) BO, )]
exp{(Ber = prer) Bler,ep)] explprer Blenr, ep)] <
expl(w = pp) B(0,0)] expl(pp — pier) B(0.cp)]
xp|(her = prr) BO. )| explprr Blerr. ep)].

Pp)B(0,0)] expl(pp — Pler) B0, ¢p)]

and expl(w
oxp|(Per = prr) Blerrep)] explprr B(err. ep)] #
expl(w = pr) BO.0) expl(pr — Pr) BO, ep)]
expl(pher = pir) BO.ep)] explpur Blexr er),
(by Theorem 1.15(1) and (2))

= 0= Aewr,ep,ppropr) < Mewr,cp.prr.pr),
and Menr,ep ey pp) # Mewr,ep,pir, pr),

= p(Aerr.ep,Pyr.pr)) < p(Merr,cpprr.pr))s
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Since p(A(err, ep, prr-pp)) is continuous with respect to eqr, ep, prr and pp, the
result remains valid in plyy = w. Similarly, we can prove the rosult with respect to
- In conclusion, it follows that for any given A > 0, p(W (w, A, ers . prer,pr)) is

decreasing in cach of the four arguments: eger, ¢p, prer and pp.

Now let us assume that 0 < epp < ¢y < 1. Let Ry be the basic reproduction

ratio corresponding to epr, and Ry as that corresponding to ¢jp. Next we prove that
Ro > Rl). Since p(W (L, M. exr.cp. prr.pp)) is decreasing with respect to epr, cp,

Prr, pp, We have
WA enr e prr.pe)) > p(W (LA Cppsep, prr.pr)-
If p(W (1, A, erers ey prrs pp) < 1 for all A € (0,00), then
PW(LA, Cpep prr.pp)) < 1, VA€ (0,00).
By Theorem 1.4.1(iii), we get Ry = Rj = 0. If there exists Ay such that
PV, overrep, prrapr)) = 1, p(W (LA, Chpsep, prr,pp)) < 1, YA € (0,00),
then Theorem 1.4.1(i) implics that
Ro >0 =Ry,
If there exist Ag and \j such that
PW (Ao, errsepoprr,pp)) = 1, p(W (8N errsep,prr.pr)) = 1,
we have

1= p(W(t, Ao, errsepsprrs ) > p(W (L N, €y o, prer pr))-

70



It follows that

PVt Moy hers eps rrapr)) < W (E, Xgs €l s prer i) = 1

Since p(W (L, o, e ep, prr,pp)) is noninereasing about A, we get Ay > Ay By

Theorem 1.4.1(ii), we have Ry > Rj. a]

We illustrate Theorem 3.3.1 in Figure ! Here we assume that epp = ep = ¢ €

[0,1], and prr = pp = p € [0, 1], and evaluate the basic reproduction ratio Ry as a

function of ¢ and p. Figure 3.3 shows the in-phase case with ¢ = 0, while Figure 3.4

presents the out-of-phase case with ¢ = 0.5. Comparing Figure 3.3 and 3.4, we sce
that the region for ¢ and p such that Ry > 1 in the out-of-phase casc is greater than

that in the in-phase case. This implies that the phase shift helps the clearance of the

infection.

3.3.2  An actual pharmacokinetic model

Note that the bang-bang type control for drug efficacy may not be realistic since
drug concentrations continuously vary due to drug absorption, distribution, and
metabolism in the body [28]. In this scction, we employ a two-compartment phar-

v of two drugs: tenofovir

macokinetic model developed in [12] to determine the effica

DF (a RT-inhibitor) and ritonavir (a P-inhibitor). We first briefly review this two-
compartment model.

The simplest. functionality to estimate the instantancous drug efficacy is repre-
sented as
C(1)

m, (3.18)

nx(l) =
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Figure 3.3: Basic reproduction ratio Ry as a function of efficacy ¢ and duration p

with ¢ = 0. The horizontal surface corresponds to Ry =

T2



Figure 3.4: Basic reproduction ratio Ry as a function of cfficacy ¢ and duration p

with 1 = 0.5. The horizontal surface

corresponds to Ry =



where X' is cither RT or P, IC50 is the concentration at which the drug is 50%
efficacious, and C(t) is the intracellular concentration of the drug. When multiply
doses of a drug are administrated, the concentration of the drug in the blood is given
by

kot
—l — kemkad(] _ oNabalay

kel
D ik hala) (3.19)

where s the bioavailability of the drug, D is the mass of the drug administered in a
dose, Vi is the volume of the distribution, &, and k, are the absorption constant rate
of the drug into the blood and the climination rate of the drug from the blood with
a drug fraction of ', and these two parameters can be determined from experiments.
Iy is the dosing interval and Ny = infeger(t/14) + 1 is the number of doses until time
1, the first dose administered at ¢ = 0.

For the P-inhibitor, the intracellular drug concentration C,(f) may be written as

he cell boundary)

(do not consider the resistance to drug transport acro

Cu(t) = (1= fi) HC(1), (3.20)
where H quantifies the effect of the cell membrane, f, is the fraction of the drug that
is bound to plasma proteins and therefore cannot be transported into the cells. Dixit

ed ritonavir as the P-inhibitor, and the corresponding

and Perclson [12] charact

parameters were chosen as: D = 600 mg, I, = 0.5 day, F = 1, V; = 28000 ml,

14.64 day™". k, = 6.86 day™", H = 0.052, fy = 0.99 and 1C'50 = 9 x 1077 ml~"

The cfficacy function for ritonavir are graphed in Figure 3.5.
The RT-inhibitors are transported in and out the compartment. in a more compli-

cated it usually must undergo three sequential phosphorylation reactions within

K



Drug concent

t(days)

Figure 3.5: Plasma Cy, (red solid line), intracellular C.. (blue solid line) concentrations,

and efficacy np of ritonavir (green dashed line). See the text for parameter values.
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cells to their active forms. To model the phosphorylation of tenofovir DF, a recently
developed drug and only two additional phosphorylation steps are essential for its

activation, the authors of [12] considered the following system:

ic,
= = KaottCr ~ KecutiCe = knyCe+ knyCepn
dt
dC,y esC 4 ks RsCe — FoniCe o ’
T = ~hertiCop k1 Ce = kuCop = bayCop + kCoppe (3:21)
dCp ] . 3
Gt = ecetCop + kg Cop = kCoppr
where C,, Cpp, and C,y, are the intracellular ion of the native, T

phorylated and diphosphorylated forms of the drug, Kueer and ke represent the

absorption and climination rate constants, ively. Note that kg, k., kaop and

kay determine the rates of the phosphorylation reaction among C., C,p, and Ciyy, and
€, is given by
o (A= f)HC,—C. , if (1= fi)HC, —Cc >0,
o 0, otheruwise
Solving (3.21) with initial condition Co(0) = Cyy(0) = Ceyp(0) = 0, and then sub-
stituting C.y,, for C(t) in (3.18), we get the drug cfficacy function for tenofovir DF,

which is plotted in Figure 3.6. Here we choose parameters in [12]: D = 300 mg,

I, = 1 day, F = 0.39, V; = 87500 ml, k, = 14.64 d 9.6 day™", H = 1800,

95.5 day

Jo = 007, kiy = 9.6 day™", ki = 30.3 day™", kay = 270.7 day™",
Facen = 24000 day =", e = 1.1 day~", IC50 = 0.54 ml~*
In order to caleulate the basic reproduction ratio, we need explicit expressions for

both ner () and np(2). For ngr(t), we use trigonometrie Fourier series form
.
J(t) = ag+ Y ajcos(iwt) + by sin(iwt)
=
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Figure 3.6: Intracellular concentrations of the native (C,)(bluc), monophosphorylated
(Cup)(red). and diphosphorylated (Cuyy) (green) forms, and efficacy nger of tenofovir

DF (black). See the text for parameter values
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t0 fit Ceyp(t) which is obtained by numerically solving (3.21). Note that C, () is
periodic in time and with period 1, and the expression f() above is the expression
for one period, that is £ € [0,1). By replacing ¢ by - mod (,1), we obtain the periodic

fitting expression for C,y,(1). We use the powerful software MATLAB to determine

those coefficients a;, b, and w. Therefore we obtain that

J(t) = 17.23+2.251 cos(3.041¢) — 30.15sin(3.0417) — 2158 cos(2 x 3.0411)
—3.178in(2 x 3.041¢) — 2.878 cos(3 x 3.041¢) + 11.92sin(3 x 3.041)
+A.778 cos(4 x 3.0411) + L7Lsin(4 x 3.041¢) + 0.6227 cos(5 x 3.0411)

=1

n(5 % 3.041) — 0.1609 cos(6 x 3.041¢) — 0.1087 sin(6 x 3.011¢).

(3.22)

The comparison of Cypy(t) and f(t) is shown in Figure 3.7, from which we can sc
they mateh quite well for relatively large £ Substituting (3.22) to (3.18) as C(1), we
then gt the expression for nyer(t).

By (3.19) and (3.20), we have alrcady had an explicit expression for efap(t), which
is a quasi-periodic function. We assume the drug efficacy functions to be periodic
with the same period @ (w = 1 here). Therefore, in numerical simulation, we take
a period when ¢ is relatively large (which is reasonable, since we focus on the long
term behavior of the model), and then by replacing ¢ with mod (£,1). we get our
new np(t), which is a periodic function.

Substituting nr(t) and np(t) into system (3.2), we can numerically caleulate the
basic reproduction ratio Ry. Figure 3.8 presents Ry as a function of phase difference.
It is clear that the infection can be cleared, and the phase shift greatly influences the

treatment outcome. Therefore, timing between dosages of tenofovir DF and ritonavir
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Figure 3.7: The concentration of diphosphorylated forms of tenofovir DF,
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can affect treatment effectiveness.

062

ENEE]
v phase afrence)

Figure 3.8: The basic reproduction ratio Ry vs. phase difference .

3.4 Discussion

system is

In general, the global dynamics of a nonlinear periodic ordinary differenti

difficult to analyze. In this chapter, we considered a within-host model with periodic
drug efficacy functions. From the theoretical point of view, we have figured out the
basic reproduction ratio and showed that the infection will be persist if Ry > 1, and
will be cleared if Ry < 1. Morcover, the infection free equilibrium is globally asymp-

totically stable if Ry < 1. The threshold results indicate that the basic reproduction

ratio can serve as the determining parameter on the control of infection. Although

Ry has been evaluated for some autonomous HIV models (sce, [10]), there is

little work on estimating the basic reproduction ratio for HIV models with a periodic
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drug efficacy functions.

In the numerical study, we considered two different types of drug efficacy functions,

one of the bang-bang type and one based on actual pharmacokinetic models. In the

case of bang-bang control, our resul

S with respect to the basic reproduction ratio

coincide with the results in [4] which is with respect to Ay (see [4] for detail). In
the latter case, we use the models and parameters derived from clinical data and

extensive experiments to determine the drug efficacy functions for tenofovir DF

RT-inhibitor) and ritonavir (a P-inhibitor).

Treatments with cockta

s of several drugs have been proved successful and he-

come standard, The timing between periodic dosages of different drugs (when two

or more drugs are used) may affect the tr

ment outcome. In this chapter, we

intere

ing optimal phase shift problem in the sense of minimiz

ing

the basic reproduction ratio. The numerical results shows that, for the model in this
chapter, the phase difference between the dosage of RT-inhibitor and R-inhibitor can
greatly influcnce the treatment outcome. The treatment outcome is different for the
models with the same drug efficacy functions of RT-inhibitor and P-inhibitor but
different phase shift. Therefore, we may easily give a better treatment scheme if we
should be viewed with cantion,

can find an optimal phasc shift. However, our resul

ince the model we used is simplistic and probably docs not capture all relevant dy

namics. More realis

ic models for both the infection and drug efficacy function would
be useful in determining how the phase shift affects the dynamics of the model system

and how much the optimal phase shifts

arc.



Chapter 4

Summary and Future Work

In this chapter, we briefly summarize the results in this thesis and propose some

possible problems for future investigation.

4.1 Research summary

In this thesis, we study the dynamics of a time-delayed dengue transmission model
and a periodic within-host virus model.
Dengue is a mosquito-horne infoction found in tropical and subtropical regions

around the world. In recent years, transmission has inc

ssed predominantly in urban

and semi-urban areas and has become a major international public health concern
Mathematical models may provide an important approach in understanding risk and
planning for discase control in heterogencous environment. Motivated by the nonlocal

and time-delayed reaction diffusion dengue i model in [35], we

a time-delayed model with different infection rates of susceptible mosquitos and sus-

ceptible humans,  We first gave an explicit expression for the basic reproduction
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sing with respect o 74, 7, and 7,

number Ry from which we got that Ry is dec
(the length of immature stage of mosquitos, the incubation period of dengue virns
within mosquitos and hosts, respectively). Our work shows that the prospects of the

success of dengue control depend partly on the basic reproduction number. That s,

sts in the human population, and when Ry < 1 and

when Ry > 1, the discase pers

provided the invasion is small, the discase will be cleared. This project allows us to

study the trends of dengue risk
In Chapter 3, motivated by the within-host virus model in [4, 9], we considered the

igated the dynamics of

case where drug efficacy function is periodic on time, and inves
a periodic model with two drugs (for example, P-inhibitor and Pl-inhibitor for HIV)

ly calculated

We first introduced the basic reproduction ratio, which can be numeri

solution and the discase remain

an endemic periodic

Then we showed that there cx
endemic when Ry > 1, and the discase dics out when Rg < 1. Thercfore, Ry serves as

on. Furthermore, we investigated

the determining parameter on the control of infe

the phase shift problem, which is corresponding to change the daily time of dosage of

two drugs. Our work shows that the phase shift can greatly influence the treatment
outcome. Therefore, we can casily give out a better treatment scheme if we get the

atio for

optimal phase shift. Note that [4] did not define the basic reproduction
the model, and only studied the stability of the model with special types of drug
efficacy function such as of the bang-bang type or a piccewise constant function, and
they established their stability results with respect to Az (see [4] for detail), while we
established a threshold result with respect to the basic reproduction ratio for general

periodic drug efficacy functions.



4.2  Future work

Following the investigations described in this thesis, a number of problems are in-
teresting and worthy to study. In this section, we enumerate some of these possible
directions.

As noted in Chapter 2, Theorem 2.3.2, the discase will die out if Ry < 1 provided

the invasion intensity is small. However, this result may not be right when the invasion

intensity is strong. In this case, reducing the basic reproduction number to be less

than unity may not be enough in order to eradicate the disease. Solving this problem

should be biologically interesting in the control of dengue transmission.

We have shown in Section 2.4 that there exists a unique endemic cquilibrium

which is globally attractive when Ry > 1 for a special case (e, = &, =

What we were not able to accomplish in this work is the existence, unigqueness, or

stability of endemic equilibrium for the original model

ystenm,

Although we have shown in Theorem 3.2.4, Chapter 3 that there exists at least

one positive periodic solution when the basic reproduction is greater than unity, we

did not get any information on the uniqueness, multiplicity, or stability of positive

periodic solution for model (3.2).

As we have indieated in Chapter 3, the model we have used is simplistic and doc
not capture all relevant dynamics. Model (3.2) assumes that the drug is active right

after the dosage, and upon infection cells become productive (be able to produce

virus) instantancously, which is not realistic since it needs time (pharmacological

delay) for drug to be absorbed and then transported and processed into an active

form intracellularly, and it also requires time (intracellular delay) for an infected ccll
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to replicate virus (see, c.g., [20]).

In the appearance of drug treatment, for example in the treatment. of HIV, e
gence of drug-resistant virus is possible, which significantly increase the cost and com-
plexity of achieving cure. According to [23], the competition between drug-resistant
and wild-type strains determines which type of virus will eventually dominate the
virus population during the course of AZT treatment. Therefore, antiretroviral drug
resistance become a major public health problem hindering the control of HIV. The
model involving pharmacological delay, intracellular delay and drug-resistant. strain

i biologically interesting and is part of my future work.
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