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Abstract

Respose

laptive designs have been extensively

studied and applicd in clinical trials.
However, few research is for longitudinal data and less is known on limiting allocation

propertics when respons

adaptive desigus are used in a longitudinal setting. Zhang

ct. al. (2007) proposed a general covariate-adjusted response-adaptive (CARA) de-

sign for non-longitudinal clinical trials and explored its

symptotic properties. The
objectives of this research are to extend the general CARA design to clinical trials

with longitudinal responses, and to study the a

ymptotic properties of the parameter
estimators and the allocation proportion. The explicit expressions for the limiting al-

location proportions of the extended design are obtained. The gencralized estimating

equations and martingale theories are used to develop the asymptotic propertics of

regression parameters and allocation proportions. This research is also the first study

on covariate-ndjusted response-adaptive design with longitudinal clinical responses

and with more than two competing treatments,
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Chapter 1

Introduction

This chapter introduces the background of response-adaptive designs of clinical trials,

and gives a brief review of some important works that have heen done in this field.

1.1 Introduction to Response-Adaptive Designs of
Clinical Trials

“A clinical trial is basically an experiment designed to evaluate the heneficial and
adverse effects of a new medical treatment or intervention.” (Rosenberger and Lachin,
2002). The focus of this research is on eliuical trials that aim at comparing two or
more treatments, where a group of new therapy treated subjects may be compared to
o group of conventional therapy treated subjects or a group of subjects who receive
a placeho control.

Randomization is a fundamental principle that has heen widely applied throngh-

out the design, conduct and analysis of clinical trials. The use of randomization



allocating patients

serves several important purposes in a clinical study. Tt prevents
to treatments from personal bias, and provides a firm basis for most of the statistical

methodology nsed to assess results of the trials. Most importantly, it promotes the

comparability among the treatment groups by distributing both the known and un-
known variables in a random way, which also ensures the interpretation of an observed
group difference largely unambiguous (Brian and Andrew, 1999 )

v. The most chal-

nical trials also create much controvers

However, randomized cl

lenging issue is the cthies of randomization. Response-adaptive designs were des
oped as one of the solutions to this ethical issue, and have been widely studied. The

following sections will further discuss the ethies of randomization and the development

of response-adaptive design.

1.1.1  Ethical Issues in Randomized Clinical Trials

Ethical issues generally exist thronghout the design, conduct and analyze of clinical
trials, while randomization is often identified as the central ethical issue in clinical

Brian

trials which relates directly to the statistical aspects of design and analysis

and Andrew (1999) illustrated the potential risk of employing randomization to as-

sign participants in clinical trials through the example of using zidovudine (AZT) to

treat AIDS. When the trials of AZT as a therapy for AIDS “were first announced,

there was a large, vocal lobby against testing the drug in a controlled clinical trial

ccessarily some patients would receive an “inferior treatment”. Later, however,

where

when the severity of some side effects was identified and the long term effectiveness

of the drug in doubt, an equally vocal lobby called for AZT treatment to be aban-



doned. Expanding networks of “support gronps’ makes these problems increasingly
likely.” (Brian and Andrew, 1999)
This example shows the uncertainty of treatment effects in clinical trials, and the

concern of adverse impacts on patients who participate in the study, which reveal

the major problems exist in randomly assigning pa

ients to treatments in a study.

When using probability as a method of assigning treatments to patients in clinical

trials for randomization purpose, it gives patients a chance of heing assigned to a

potentially cffective treatment, but also a chance not to receive a treatment which
wight potentially be very beneficial or miss the best time for receiving treatments

In addition, it ¢

xposes patients to the risk of receiving a treatment which m

y turn

ont to he highly toxic. This concern is referred to as “individual ethics™ (Schwartz
and Lelloueh, 1971), the goal of which is for individual paticnts to receive the hest
possible treatment

Despite not bringing individuals their best interest, randomized clinical trials have

been embra

cod by most of today’s scientists. Since when taking into consideration
of “collective ethics” where to find the best treatment for the entire patient group is
of concern (Schwartz and Lellonch, 1971), the fact that randomization can provide

a solid foundation for inference of treatment effects, thus leading to a scientilic

i

parison of treatment effects and the advancement of public health is ver

¢ iuportant
to our socity.

To achieve the balance between “individual ethics™ and “collective ethics™ is natu-

searchers,

rally challenging, and

still the subject of many As one of the attempts
t0 solve this problem, information of accumulated respouses in a clinical trial is used

to skew the assignment of future paticnts in favour of the treatment that so far has



performance. Response-adaptive designs were thus proposed.

1.1.2 Development of Response-Adaptive Designs

Response-adaptive randomization is developed as an effort to mitigate the conflict

between “individual ethics™ and “collective ethics”. In a response-adaptive random-

ized trial, “the probability of being assigned to a treatment is changed throughont

the trial according to data which have already accrued about the treatment effect.”
(Rosenberger and Lachin, 2002). The goal is to assign more patients to the potentially
“hetter” treatment for the benelit of “individual ethics”, while the allocation proce-

dure s still fully randomized for the inference of treatment effect which will henefit

the “collective ethics™. The early work on response-adaptive designs may be traced

he-winner rule by Zelen (1969). The work considered clinical trials

bick to the play
with two treatments. The incoming patient’s assignment depends on the response of
the last patient in the study. If it was a success, the incoming patient is assigned

to the same treatment, otherwise, to the opposite treatment. However, there design

introduces selection biases. To deal with this issue, differcut allocation procedures
liave been proposed by many scholars, among which two major approaches have been
broadly studicd

The first appronch is based on an intuitive rule to adapt the allocation probabilities

when assigning new patient to a treatment, which is not designed to target some
specific allocation proportions. It is completely nonparametric but is not considered as
optimal in a formal seuse. Most designs using this approach are realized in the context

of various urn models (Hu and Rosenberger, 2006; Rosenberger and Lachin, 2002).




Wei and Durham (1978) proposed the randomized play-the-winner rule based on
Zelew’s research (1969). The two competing treatments A and B are cach representod
by a balls in an urn. A ball is drawn and replaced. Paticnt s assigned to the treatment

represented by the ball. A success will result in 3,(3 > 0) balls representing the same

treatment as the patient was assigned to added to the urn, a failure will result in

4.3 > 0) balls representing the opposite treatment being added to the urn. Their

design ske

s the probability of treatment assignment to favor the potentially “hett
treatment, rather than switching deterministically between treatments as in Zelen’s
(1969) play-the-winner rule. Athreya and Karlin (1968) proposed the generalized
Friedman’s urn model which is a natural design for clinical trials with K (K > 2)

iable whose

treatments. The allocation of incoming patient depends on a random vi
distribution s related to the previous treatment assignment.  Wei (1979) further
explored the generalized Friedman’s urn model and proposed a simple allocation rule

based on the original work. Some other popular desigus are the birth and death urn

(Ivanova, Roseuberger, Durham, et al. , 2000), and the drop-the-loser rule (Ivanova,

2002) in which a tenary urn model is used and the variability of allocation proportions

1 to attain the lower bound of the variance of alloc:

was prove fou proportions. (Hu

et al. 2006).
The second approach is based on parametric models and designed to target the

ion is

allocation proportion hefore the start of a trial. The target allocation propor
a fanction of parameters which represent the treatment effects. Responses of sequen-
tially acerued paticnts are used to update estimates of unknown parametrs in most

desigus. This approach is often refereed to as sequential estimation procedures (Hu

and Rosenberger, 2006). To obtain an initial estimate of unknown parameters, some



data must be available to compute the estimates. In practice, a sequential estimating

trial usnally begins with a certain number of patients as:

igned to cach treatment

before the proposed procedure begin

Melfi and Page (1995), and Melfi, Page and

Geraldes (2001) explored properties of the sequential maximum likelihood procedure

targeting

the Neyman allocation defined by the ratio of the standard deviations of

two competing treatments. Jennison and Turnbull

2000) proposed a group sequen-

tial adaptive design to targeting a predefined optimal allocation ratio for the differ-

ence of normal means. Eisele (1991), and Eiscle and Woodroofe (1995) proposed a

doubly-adaptive biased coin design to achie

e any dosired allocation proportion when

comparing two treatment

The doubly-adaptive biased coin design yields a large

family of sequential estimation procedures. Hu and Zhang

004) generalized the

des

ign to multi-treatment cases, and derived the strong consistency and asymptotic

normality of the design under some widely satisfied conditions.

1.1.3 Covariate-Adjusted Response-Adaptive (CARA) De-

signs

Although response-adaptive ization s

ntilize accnmulated informa-

tion in responses in a study to assign more patients to a “better” treatment, as the

complexity of modern clinieal trials grows,

adaptive designs based solely on paticuts
responses to treatments are inadequate to address unique covariate structures un-
derlying each patients’s prognosis. The covariate information associated with each
patient may have strong influences on comprehensive evaluation of the effectiveness

of treatment

For example, the effectiveness of asthma treatment may depend on



whether the patient is a smoker or non-smoker and which age group the paticnt

belongs to. The covariate-adjusted rs wdaptive (CARA) desigus are thus in-

troduced.

ariates into

Rosenberger et al. (2001) firstly used a logistic model to incorporate co

the allocation scheme. Even though they did not give any theoretical justifications and
asymptotic properties, their simulation study indicated that their approach, together

with the inclusion of the covariates, significantly reduced the percentage of treatment

failures. Bandyopadhyay et al. (2007), developed a two-stage allocation rule for

i

incorporating covariates. They showed several exact and limiting

responses

properties for the proportion of alloeation and treatment failures in their work. Zhang

et al.(2007) laid out a framework for a general CARA design, which can be applied
to clinical trials to compare K treatments (K > 2) and are suitable for hoth discrete

and continuous responses. Asymptotic properties of this general CARA design under

certain widely satisfied conditions have also heen studied

As have been discus: tensive research have heen conducted towards response-

adaptive designs. However, the methodology discussed above are ouly suitable for
clinical trials i which responses are only observed once. When the respouses of cach

patient are repeatedly recorded throngh a certain period of time, more complexity

us with I

are added. The following diseussion is on response-ndaptive desi

responses.



1.1.4 Response-Adaptive Designs with Longitudinal Responses
The responses of patients may often be observed repeatedly over ditferent monitor-

iing times which make the data of responses longitudinal in nature. For example, a

randomized clinical trial was conducted for treating drug addiction where two treat-
wents (Buprenorphine and Methadone) were compared for their ability to reduce
opiate use among a group of 162 addicts (Johuson R E. ct al., 1992). The outcome
of this trial is a vector of repeated binary responses of whether an individual failed
a urine test at each of 3 visits per week (on Monday, Wednesday and Friday) over

a 17 period. The reasons for collecting longitudinal data in clinical trials are

to obtain a more precise estimate of the outcome and hence the treatment effeet or
to evalnate the treatment effect over time (Albert P, 1999). Therefore, if repeated

responses are used in response-adaptive design to update the allocation probability of

the incoming patient, intuitively it would be more efficient to assign more patients to
the potentially “better” treatment. However, this setup is usually complicated due to
the correlation within the longitudinal responses of cach patient and the dependency

results from the adaptation of treatment allocation. The literature in this case is also

seanty.
Biswas and Dewanji (2004) developed the lougitudinal randomized play-the-winner

(LRPW) rule, which i he-winner

urn design that extends the randomized play-

(RPW) rule to accommodate longitudinal binary responses. Biswas and Dewanji
(2004) applied this design to investigate the effect of pulse electro-magnetic field
(PEMF) for the treatment of patients with rhenmatoid arthritis in the study con-

ducted in the Indian Statistical Institute, Kolkata. The design successfully assigns



more patients to the better performing treatment. However, they did not consider
the available covariates such as gender or age which may have significantly influenced

the treatment effects

and the allocation procedure of the design was restricted to

clinical studies with only two competing treatments.  Sutradhar, Biswas and Bari

(2005) introduced a binary response-based longitudinal adaptive design. They uti-
lized a similar allocation rule as the LRPW, but proposed a weighted generalized
quasi-likelihood (WGQL) approach for the consistent and efficient estimation of the

regression parameters including the treatment effects. Subsequently, Sutradbar and

Jowaheer (2006) applied WGQL approach to analyze longitudinal count data accrued

in clinical trials. However, these designs still did not go beyond the LRPW rule of

Biswas and Dewanji (2004), and the current patient’s covariate were not considered

in the allocation design. The extension of allocation procedure to clinical trials with

more than two competing treatments had not heen studied.

Bisy

s et al. (2010) considered clinical trials with two competing treatments and

proposed a cc

riate-adjusted longitudinal response-adaptive (CALRA) design using
the log-odds ratio within the Bayesian framework. Their main allocation scheme
is as follows. First, a total number of patients in the trial N is fixed before the

study begins. To begin the adaptive process, 2m (m € N*) patients were assigned

cqually to the two competing treatments using a restricted randomization procedure

at the first stage. The sccond stage involves the remaining (N —2m) patients, during

which patients with covariate vector X is assigned to the default treatment with

probability p = p(X). The allocation rule is a function of the covariate of the incoming

patient, and is based on all the available data up to that time point. To determine

P(X) appropriately, they define an utility function hased on the likelibood function

9



of the available information. The correlation within the response

s of each subject

are assumed to follow an AR(1) structure. By maximizing the utility function, the

allocation function of the incoming patient p(X) is determined. The CALRA des

s
the first optimal design in clinical trials with longitudinal responses. It also managed

to incorporate covariate information of the current patient into a longitudinal response

setup and obtained its statistical properties through some optimality eriterion.

However, this design can only be applied to clinical trials with two competing

treatments, and it only designed for clinical trials with binary responses. The condi-
tion on using this design is too restrictive to generate to more general cases or other
types of responses. The CALRA design also docs not have an explicit expression for

the variability of the design allocation and the limiting allocation proportion. Only a

numeric study and an example on the effect of pulsed electro-magnetic flield (PEMF)
for the treatment of rhenmatoid arthritis were provided to illustrate the effectiveness

of the CALRA design.

1.2 Objective of This Research

The objectives of this rese ion of the general €/

RA

reh are to extend the applic

design to clinical trials with longitudinal responses and to study the asymptotic prop-

erties as well as to give explicit expressions for the limiting allocation proportions of

the extended design. The gencralized estimating cquations and martingale theory

are used to develop the asymptotic properties of regression parameters and allocation

proportions. This research is also the first study on a covariate-adjusted response-

adaptive design with longitudinal responses and more than two competing treatments

10



Chapter 2

General CARA Design with

Longitudinal Responses

This chapter is devoted to extend the application of the general CARA design (Zhang
et al., 2007) to clinical trials with longitudinal responses. In section 2.1, we describe

the framework and asymptotic properties of the general CARA design. In section

2.2, we give the iework and the general data setup in the longitudinal clinical

trials. In section 2.3, the proposed allocation procedure for longitudinal clinical trials

is introduced

2.1 Introduction to the General CARA Design

The general framework of the CARA design is introduced by Zhang et al.(2007) and

is reproduced in this section

Zhang et al.(2007) considered a clinical trial with K treatments.  Let Xj be

th

the random treatment assignment for the i patient (i 2,--), where X;

11



(r

“rge ). IF A patient is assigned to treatment k (k= 1,2,..., K), then

ri = 1 while 2y, = 0,(j # k.j = L,2....,K). Let N} be the mumber of subjects

assigued to the A treatment among the first n patients. Write N, = (N}..... NJ).
then N, = Y20, X,.. The observed respouse of a patient assigued to the £ treatment
is denoted as Y, the covariate vector of whom is denoted as €& The response and

covariate vector are supposed to satisfy
E[Yilg] = pi(01,6) Ok € O (2.1)

where (-,

k= 1,2, K, are known functions, and 6,

¢ unknown parameters.

The sequence {(Vur, .., Y. &) m = 1,2, } is assumed to be independent and

identically distributed as that of {(Vi,.... Vi, &)}

To start, a restricted randomization is wsed to assign m (mg € N*) paticuts to
cach treatment. Assume that m(m > King) patients have already been assigned to
treatments. Let B, be the estimate of @ at that stage. When the (im + 1) patient
is ready to enter the study, the covariate of whom &, is recorded and the patient

will be assigned to treatment k with probability

U= P(Xmprs = UF &it) =m0 &) K

where Foy = o(Xi, o X Yigoo Yo €y, €) s the sigma field of the history

and () are some given functions that satisfy 0 < 7 1 for each &, and

S ml) = 1 The vector function m(+,+) = (m( Jai(,-)) s called an
allocation function.
Lot
9(B°) = E(mi(B"€). v = gu(0) = E(mi(0,§)) (23)

12



Then write
9(0) = (01(0).....9x(0)) (2.4)
v= (.. vk) (25)

Under the assumption of the continuity of the allocation function (6, €). Zhang ct

al.(2007) derived the following results. If for each treatment k (k = .. K), the
parameter estimators satisfy the following equation
. IS - /2
Ok — O = — 3" Xunshu(Viup £,)(1+0(1) +0(n™"2) s, (2.6)
1 m=1

where hy are K functions with E(hy(Yi, €)|€) = 0, and E|[hy(Yi, €)[1* < oo, then the
allocation proportion for the & treatment has a limiting value of .. For patients

with certain specific covariates €, the limiting allocation proportion to treatment k

is m(B, £). The convergence rate for the allocation proportions and the estimators
of parameters are O (\/’J’_.L) The allocation proportions and the estimators of
parameters hoth have asymptotically multivariate normal distributions

Zhang et al.(2007) examined a large applicable case where generalized linear mod-

els are used in the estimation of regression parameters for the exponential family.

They defined
I = L(0) = E(mi(0,€)[(0k|€)), k=1,....K @7
where 1,(0]€) = —E[Z120/01800 | ] — 41(y0,)hy (€07 )ETE is the conditional Fisher

information matrix. If I; are nonsingular, then under certain condition, the asymp-

totic variance of the design is V.
To extend their work to the longitudinal clinical trials, we need to set up a frame-

work for longitudinal data in addition to their original notations.

13



2.2 Longitudinal Response Setup

Let Xi = (a1 --c) be the treatment assignment for the i patient. Let

v

Y = (s --yk) be a T, x 1 vector which denotes the responses of the i

patient
allocated to the A treatment collected over T; different time points.

Assume there are p different covariates considered in the evaluation of patients”
i

response, lot & = (€ €m,)' be the T, p matrix that denotes the covariates

of the i patient corresponding to the T different collecting time points.
Without lose of generality, we assume cach patient’s responses and covariates

are repeatedly examined and recorded for the same fixed times denoted as T, ie.,

iination are

T, = T.(i = 1,2,...). The time interval between all the patients’ o
equally spaced, and we treated it as a unit time, This assumption is reasonable when
dealing with real life problems. Since most of the time, we would prefer combining
the same amount of information from each individual to draw conclusions about

s. Unbalanced information from different individual

treatment effects in clinical tri

may result in biases.

Patients are assumed to sequentially enter into the study. Patients’ fist covari-

e observed every time right before they entering the trial, and their following

tos awe observed at the saue time point as their repeated respouses heing ob-
served. Paticnts” responses are also assumed to be able to be collected immediately
after they are assigned to the treatment and after they are repeatedly examined over
different time points.

Responses from different paticnts are assumed to be independent. However, the

responses collected over different time points from the same patient are usually de-



pendent. The correlations between responses of each individual introduce much com-
plication to the statistical inference for the designs. Varying from diferent problems
we are dealing with, the covariates of each patient at different time point may change
through time or may stay the same as collecting time point changing. Similarly, We
assume that the covariates from different patients are independent, and the covari-
ates collected from cach patient have an independent and identical distribution as a
known random variable € = (€1, .. , &)

Suppose given &, (= 1,2,...,T). that the response of a trial to the treatment &

k=1,

LK) at measure time point t y¥ has a marginal density in an exponential

family with the form

L 1€) = exp{lufOF — an(0)]0* + bu(uf, 6)} (28)

where 6f = h(yf) with gf = €8 and B* € O(k = 1,2--- K) are the p x
1 veetor of unknown parameters. ©F ¢ R is the parameter space of . Write

B= (Y- p¥

BX’) and © = O x - x OK. Lot o*(k = 1,2,

-+, K) be the

possibly unknown scale parameters.

2.3 Allocation Procedure of the General CARA
Design with Longitudinal Responses

We consider clinical trials where patients sequentially cnter the study. For the allo-
cation of paticuts, we modify the scheme used in the general CARA design to adapt
to the longitudinal data setting.

First, assign io patients to cach treatment by using a restricted randomization

15



and collect T times responses and covariates of all patients, Assume that i(i > Kiy)

paticuts have already been assigned to treatments. By the time the (i-+1)" paticnt is

ready to be assigned to a treatment, the covariates of the (i +1)™ patient are observed

for the first time and denoted as 41,1 Until then, the response aud covariates of the

it patient are only observed once, which are recorded as Y¥ = (44

(k=1

LK)
and & = (&1)". The responses and covariates of the (i — 1)™ patient only have
two repeatedly measured records which are denoted as Y& | = (45 |,k

= (i1

2 (k=

12, K) and &

In general, the responses and

_1,2)" respectis
covariates of the (i —t+1)™ patient by the time the (i +1)™ patient entering the trial

have t (t = 1,2..., T~ LA(i— Kiy)) repeatedly measured records denoted as Y2, =

1

(€I N N (3 ) and &g = (Gicearn - e Eimerrenr)’

for responses and covariates respectively. If (i — i) > T, then the first (i — T + 1)

patients would have their T times repeatedly observed responses and covariates
After the (i + 1) patient is assigned to a treatment, the response of whom will

be observed for the first time and recorded as Y&, = (4,,). The responses and

will be observed

covariates of the previous (i —#+1) (1 <t < T—1A(i —iy)) patients
and recorded again.

Usnally, T is small but the total mumber of patients n in a trial is large, i.c., when
s large, ouly T patients do not have completely recorded responses and covariates
before the i patient entering the trial, and this number is small compared to the

number of patients with fully T records. Therefore, for notation simplicity, we still

wse YA and €1 to denote the responses and covariates of the (i — ¢ + 1)

patient. The difference is when T — 1 < £ < i, Y, isa T x 1 vector and &_p41 is

a T x p matrix, whereas when 1 <+ < T~ 1,YE s at x 1 vector and &y isat x p

16



matrix.

Let F, = o(Yi, X1, €1, - - Vi, Xiy &) be the sigma field generated from the entire

¢ a " N 3k
history of all previous patients before the (i + 1) patient enters the trial. Let 3;
be an estimate of @*(k = 1,2, K), which is based on the observed responses and

their corresponding covariates among those previous i patients who were assigned to

treatment k. Then B; = (BY,. .., B5’) is an estimate of 8 = (8Y,..., B%) before

the (i +1)" patient entering the study. Suppose that the (i + 1)!* paticut is assigned

to treatment k with probability

P(Xinig = WFi&ipr) = m(Bis i), k= K (29)

(-, ) are some given functions that satisfy 0 < () < 1 for each &, and

z/il () = 1. We use the same notation as that in Zhang et al. (2007), and

refer the vector function (-, ) = ) as a allocation function. Let

9x(B%) = E(m(B%,&1)). Then

P(Xiix = 1F) = Ee(P(Xigr = 1Fi &igr))

(2.10)
=a(B). K oy
Define
M = g(B) = Ee(m(B, &1)) 5K (2.11)
and
A=A Ak) (2.12)

Wihen 3 are the real parameters from the distribution of responses and the distri-
bution of the covariates are known, A is the allocation proportion among the K
treatments based on the scheme deseribed above. As discussed in Zhang et al.(2007).

different choices of (-, +) can generate different classes of desigus.

17



Patients enter the trial sequentially and are allocated to treatments sequentially.
The assignment of treatment to the (i + 1) patient depends only on the previously
collected information F; and his/her covariates & 1,1 Therefore, the above equation

(1.4) can also be written as

P(Xipix = UFisbira) = P(Xivin = UFi igrn) = mBi €irrn), k=12 K
(2.13)
The described allocation procedure above will be performed every time when a

new patient entering the trial and their re

sponses as well as the co

sponding covari-
ates will e measured and recorded cach time, We follow this allocation method until
the last patient enters into the trial and all the patients’ responses and covarites over

T time points are recorded



Chapter 3

Asymptotic Properties

This chapter first introduces different methods for longitudinal data analysis. A de-
tailed introduction is given for the generalized estimating equations which was used to
analyse the longitudinal data in our design. The estimation of regression parameters
is followed. Then the asymptotic properties of the estimators of parameters and the

allocation proportions of our proposed designed are studied. A lemma and a theo-

rem are proposed, the proofs to which are given respectively. At last, a comparison
between our design and the general CARA design proposed by Zhang ct al. (2007)

is discussed. A comparison between our design and other designs with longitudinal

responses is also discussed in this chaptr

3.1 Longitudinal Data Analysis

The data obtained from a longitudinal study are characterized by the fact that re-
peated observations for a subject tend to he correlated. When the ontcomes are

continous, some common methods are mixed linear model (Laird and Ware, 1982:
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Ware, 1985) and the general linear mixed-effects model (Verbeke and Molenberghs,

s (Zeger.

2000). These models sometimes are referred to as subject-specific (SS) mod

Liang and Albert, 1988), since the focus of which is usually on the response for an

individual rather than for the population. Whereas in population studies, such as in
clinical trials, where the difference in population-averaged response between several

treatments is more of concern than the change in an individual’s response, marginal

ang and Al-

models are usually used instead of a full likelihood procedure (Zeger, Li
bert, 1988).

Liang and Zeger (1986), and Zeger and Liang (1986) developed generalized esti-
wating equations(GEE) procedure, which are essentially extended generalized linear
models for the situation of correlated data. With the possible application to contin-
nous data, GEE is most commonly used for discrete measurement sequences. The

fon parameters with moment-

method combines estimating equations for the regr

correlation as-

based estimation for the correlation parameters based on the “working’

sumption. The model requires only the correct specification of the univariate marginal

distributions provided the primary concern s on the regression parameters, not on

the correlation structure (Liang and Zeger, 1986). It is assumed that the corre

tion matrix R, thus ;. depends on a vector of association meters denoted as

. The “working” correlation matrix is assumed to be of the same structure for all
subjects which represents the average dependence among the repeated observations

acro

subjocts.

may ocenr in

There are some theoretical considerations for the problems t
the GEE estimation procedure. Crowder (1995), Sutradhar and Das (1999) argued

that the strong difference betwoen the “working” correlation and the true underlying
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structure might result in efficiency loss of the estimator, and in some special cases
there might not be consistent estimator for the “working” correlation. However,
since the “working” correlations are only treated like nuisance parameters and used
as devices to support estimation of the regression parameters, they should not be
wade a part of formal iuference (Molenberghs and Verbeke, 2005). The GEE method
vields consistent estimates of the regression coefficients and their standard crrors,
even with misspecification of the correlational structure. The loss of efficiency due
to the misspecification of the correlation structure can be lessened as the number of

subjects gets large (Molenberghs and Verbeke, 2005). Consistent variance estimates

are also available under the weak assumption that a weighted average of the estimated
correlation matrices converges to a fixed matrix (Molenberghs and Verbeke, 2005)
When GEE is deemed unsatisfactory in the cases when the correlation structure

is of interest, there are some extension of GEE methods one can turn to, such as

second-order exter

sions of these estimating cquations, which are usually referred as
GEE2 (Zhao and Prentice (1990)). and alternating logistic regressions (Carey, Zeger,
and Diggle (1993))

Since the regression parameters are the primary concern in this paper. we will
wse GEE method to estimate the longitudinal data collected in the clinical trial. The

following section will give a detailed introduction to the GEE models,

3.1.1  Generalized Estimating Equations

Let Y, = (it o) be the T3 x 1 vector of outcomes

and & = (... &) be

the p x T, matrix of covariate values for the i subject (i = 1,...,n)



The marginal density of y;, is assumed to be in an exponential family having the
density

S (yil&ie) =

exp{ [yl — a(0:)]6 + by #)} (3.1)

where 6, = h(ia), 1 = €}B. As such, the first two moments of g, are given by

E(ya) = d'(0r), Var(yi)

a"(Bi)p (32)
Let Ri(a) be a Ty x T, symmetric matrix which fulfills the requirement of being a
correlation matrix, and a be an s x 1 vector which fully characterizes Ri(ar). Ri(cr)
is called a “working” correlation matrix
Define

Vi= Al Ri(a)Abo. (

Vi will be the covariance matrix of g, cov(Yi). if Ry(e) is indeed the true correlation

wiatrix for the Y,’s. The gencral estimating equations are defined to he

S Drvi'si=o0 (3.4)
=
where D, = 0(a'(0,))/0B = AiiXi, A, = diag(#t). Equation can be reexpressed

g a by (Y, B.0), ant

as a function of B alone by first repla onsistent estimator

of ac when B and ¢ are known. In addition, we replace ¢ by ¢(Y; B), a n'- consistent

estimator of ¢ when B is known. Then the estimating equation has the form
D UAB, &(B.0(B) =0 (35)
=

and 3, is the solution of the above equation.

Solving the GEE involves iterating between a modified Fisher scoring for estimat-

ing 3 and moment estimation for estimating ac and ¢ as a function of 3. Essentia

it involves the following steps as suggested by Liang and Zeger (1986).
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L. Compute initial estimates for 8, say By, assuming independence hetween re-

peated responses first, or, in other words, using conventional linear regression.

2. Compute the Pearson residuals from the equation below based on the current
value for 8.
Fie = (g — a(G)/\ @ (6) (3.6)
The specific estinmator of a depends on the choice of Ri(a). The general
approach is to estimate @ by a simple function of
» 3.7
The value of ¢ can be estimated by
"
=3 > aQ-p) (338)
e
where Q = Y
3. Based on the above estimation, Ri(a) can be computed, as well as V; from
Vi = AIRi(@)A?¢ (3.9)
1. Then, given the current estimate of @ after m iterations, say 3,,, update the

estimate for B by

iy, D1, s "
Buurs = B \Z o‘/‘a a/‘;* - ‘x[z MV - )] (@10)

ape

Repeat step 2, 3, 4 until convergence.




3.2 Estimation of Regression Parameters

The GEE approach is generalized to the response-adaptive designs with longitudinal
responses in this section.

Binary data and count data are two most common types of responses obtained
from clinical trials. In our design, we will mainly focus on these two types of response.
We nse the longitudinal data set up as described in section 2.2. The exponential family
with the marginal density function as in equation (3.1) will accommodate these two
important discrete distributions, binary and poisson, when ¢* are constants. We
assume ¢oF = 1, & = (1,2,...,K) in the following discussion. The results can be
generalized to situations where ¢*, k = (1,2,..., K') are unknown.

The mean and

variance of the response at time point ¢ are thus given by

E(yf 16, BY) = ap(0f)  var(yf|&, BY) = al(6}) (3.11)
Let
i = E(Y}€, 84
= (e oty piky)
= (a0, (0). -~ (1))
diag(ofy,--- ohy-- oly)

= diag(a (08, ai(05)., - a{(0}y))

For patients being allocated to the & treatment (k = 1,2,..., K), we define a

likelihood function for 8 denoted as I(Y¥, 1¢#|3%) based on ™ patient information

in a similar way as the quas

likelihood function (Wedderburn, 1974). The likelihood



fimction satisfies the following condition

%’3 =V ) (Y ) (3.13)

where
Vi(a¥) = (Af) Ria*) (A, (3.14)
Ri(a*) is the “working” correlation for the k" treatment, and V;(a*) is the variance-

covariance matrix of the responses from the i paticnt towards the K% treatment
which is fully characterized by an unknown s x 1 vector parameter a. According to
the propertics of quasi-likihood function and its resemblence with the log-liklihood,

we define the likihood function for 8 based on i patient information as:

K
L(Ysy il B) = D wul (Y, k| B%) (3.15)
Suppose the n' patient just entered the trial. For each k,the estimating equation for
B is
L(YiyuilB) - Y k3%
o Z Tk gk
B = B
z Dk (YK, k| B%)
- it 4187)
9w O (3.16)
72 Tik ka HaM) (Y — u)
=0
That is, the GEE estimating equation for 8 is
(AN 3.17)

Uﬁk



One thing needs to be noticed is that the information of the (n — #)™ (¢

1,2...,T) paticnt is not complete. However, since consistency and efficiency of the

estimators will not be affected by the unbalanced responses (Liang and Zeger, 1956),

GEE estimation procedure can still be applied

3.3 Asymptotic Properties of the Estimators and

Allocation Proportions

This section examines the asymptotic propertics of the GEE estimators and the al-
location proportion. To start, we firstly need to give some new notations and some

assumptions,

Suppose there are already n patients entered the study, lot

Gi = 0(Fibis&iors- - Gimr42) (3.18)

for (i < n), then G, is the o—field generated by all the available information of

previ

us i patients when there are already n(n > i) patients entered the study. It

h

includes the repeated responses aud covariates of the (i + 1) patient which is not

available in F,, when the patient first entered the study. Then, F, € G, is trivial

fy ce

The allocation functions (-, -) need to sat conditions similar as those

assumed in Zhang et al. (2007), which are as follows:

Condition 1. Assume that the parameter space Oy is a bounded domain in R”, and

that the trae value B is an interior point of Oy (k = 1,2, K). Furthermore,
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1. For cach fired & m(B",€) > 0 is a continuous function of B, k = 1,2,.... K

2. For cach k = 1., K, m(B",€) is differentiable with respect to B* under the
capectation, and there is a 8 > 0 such that

a(B%) = a(B) + (B — ﬁ)(:)l;. )" +o(lIB° = BII'") (3.19)
. where i = (i Vo)

Apply similar notations as used in GEE (Liang and Zeger, 1986). Lot

o,
Df=— = Ak St= 3.20
t = o = AL 5! (3:20)
Then we first introduce the following lemma,
Lemma 1. Let
B~ LS BB €)(DYYV I DY) (@21)
L=

and

BY = E(mi(B,6)(D*)'V7'DY),

where D* = A*(B)€’
If the allocation functions satisfy condition 1., and B;, i € N'*is a consistent estimator

of the parameter B, then

B - B* ws as n 00

Proof. Let
1u(€) "; w(Bie1, &) DY)V D (3.21)
=

and

J(&) = (B, &) (D*)'V DM
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Under the assumptions in the lemma, for cach fixed & (8%, €) > 0 is a continuons

function of g%, k = 1,1

. K, and

Bi>B as.  asi—oo

We have, for each fixed &,

Ju€) = [(€) as.  as n oo,

Also, since for all n,
1£a®)] |§ﬁmé‘,.,e.)(n*)’w‘o"\ < DYVt (3:28)
Aceording to the Lebesgue’s dominated convergence theorem,
B(fu(8) = E(f(§) as. as n— o0, (3.29)
That is,
BY = E(} iljmﬂ._.,cx)n'v”m

> E(mi(B, &) (DY)V DY) (330)

BY as. asno o

Additional assumptions about the estimating cquations are also needed.

Condition 2. Fork = 1,..., K, assume the estimating cquations satisfy the following
conditions:
1@ converges to some limit as n — 00, and &* are n'-consistent estimators for
a given B*,
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2. B¥, BX wre nonsingular for all n € N*

8 Y0, Var(e (B¥) " DV, SilGio1) = 00 as n = 00

4 XLy EVar(eu DV DilGia) < 00 as n - 00

5. [[(B*) ™' DV, Sull2 < 00 for all n € N*
Theorem 1. Under mild reqularity conditions, and Condition(1) and Condition(2),
we have for k= (1,...,K)

Plage=1) = My Plawg = 1Fu1.€,, =€) > m(B,€") as (3.31)

and

ﬁ;/\—o( /w/hn/n) ﬂ‘,.-g:o( ”"!’,’L’l’l) s o
n Vo Vo

Further, let

Vart = (BY)™ Elm(8,&)(D*)'V ™' Cou(Y|€)V ' D¥(B*) !

Var = diag(Var',...,Var¥)

K
- LI g k99 \r
% = diag(A) — A’ A+.’;('wkwﬂf (5%

Then

7.\) % N(0,Z), ﬁ(ﬁ,,fa) 2, N(0, Var) (3.33)

Proof. We complete the proof in three steps. First, we prove the result 3.32.
Let
Ui(B*, @) = (D) Vi(a¥) ' SE. (3:31)



For notation simplicity. we drop the superseript & in the estimating equation (3.6)
from all the term except for 8% and x for the moment, and use r;x, B only to

represent that it is the A treatment that we are dealing with. Then, the estimating

equation for 8% can be written as,

L A
0=} é—g,g(A:&(u)A:r'(Y. )

- D) s,

AT

2
Let 3, denote the solution to the estimation equation (3.35), under the first term

in Condition 2, when there are n patients in the trial. There exists ¢ > 0, such that

S vt aBh)
A +Z%ﬁf(”wﬁ — B +o(IB% — B4])
=

(3.36)

Thus
" e
[ Y

SLU@ &) | X

ni

Lk _ gy 4 UBE —
N (B - ) + B
(3.37)

Since
OUL(B*, &(BY)) Da(B*) :
t & (3.38)

AU(B", &(BY)  OUK(B*, G(B*
Capr gt
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and AELAED) e linear combinations of i — pi. the expectation of y; — pt; given

£ is0.
We have,
"~ OUL(B*, (B da(p" EE
3T o 2GR =00 @)
MU(B*,6(8) V- :
L{?)ﬂ:\ B8Y) _ DV Dy (3.10)

3.38), (3.30), (3.40)

Then according to equations

n n

+o,(1) (3.41)

3 . — U
Fix 3%, use Taylor expansion to expand function S V@8

- b AlEM o, BN ) .
L OB a(8Y) _ Bl Ui3he) | B B ) oY)
ut ut
(3.42)
for a y/n-consistent estimator of a, /n(a —a) = O,(1).
Thercfore,
n e
i 1) +ou(l) (3.43)
According to equations (3.37), (3.41). (3.43)
n vt "
by Q‘T?'L[ﬂy.%1/§* —py = ZRUBh) o gy
ut
Write
M, = Y [eaDiVi Dy — E(uDiVy ' DilG,-1)] (3.45)
f=



For m < n, we have

E(My[Gn) = E(Y_ 4D Vi "Dy — E(rDiV; ' Di|Gi1)][G)

P

=Y B DV, DilG) ~ Y EE(riDV, T DG 1) (6]

= Y EuDV ' DilG) + Y eaDiV; Dy
=

it (3.46)
= > E(eu DV DilG) ~ Y E(@uDiVi ' DifG,-1)]
= Y DV Dy~ E(eu DV DilGi)

=
=M,

srding to the definition, M, is a martingale, and
A M; = M; — M;_,
(3.47)

= 4uD{V;"'Di = E(24 DV ' DilG,1)

is a martingale difference.

Under the fourth term in Condition 2,

> i,E(Au,.A MlG) =D L Var(eixDV; ' D;|G,-1) < 00 (3.48)
n

According to the lw of large numbers for martingales, £Af, — 0 with probability 1.



From lemma 1, BY converges almost surely to B, Thus we have

Y waDVi Di = Y B(ra D}V DifGi ) + ofn)
=
=Y BBV DilGi 1. &) + oln)

=3 B(mBi1, ) D'V D) + o(n) (3.49)
=
=nBE +o(n)
=nB* +o(n) s
Under the fifth term in Condition 2, matrix BY and BY are nonsingular. Substitute
cquation (3.49) into (3.44),
o e , ) S )
VB =8 = (Y Bt g D Do B UL o)
- .
(BY) ‘Li"'u"(ﬂ 29 | on})
= ‘;ﬁqﬂ‘)";v,ADjK"S, ton i) as
(3.50)
Let
Qui = (B Y wuD(V'S; (3.51)
=
A Qua = i (B¥)'DL V'S, (3.52)



Then, from equation (3.50)
" 1 -
 _ g% = —(B)'Y 2DV, 'Si + o
B — B = (B4 3 s DV Si+ ol

= I—Q...k +o(n2) a.
"

Therefore,
E(8 QuilGu-1) = E(ras(B*) 7D, V,7'S,(G,1)

= E(E(rau(BY) DLV, 780G 1.6))

= E(musE((BY) "' DLV, 7' S0(Go-1.61))

-0

For m < n, it holds that

E@alGn) = E( Y] 5 Qilgn) +Qu

smi

= Qm

3.51)

(

That is, Qy is a martingale, and {A Qux,Gu.n > 1} is a martingale difference

sequence. Under the fifth term in Condition 2,

118 Qually = lrix(B*) T DLV,7 Sull2

B (B DL, 8,8,V DB )

<(BY DLV, Sl

<00

(3.56)



Therefore,

1Qul = \/E(QuaQis)

= JE E(A Qui A Q)
=

fdiimuf,,)

et 1
=0(vVn)
Under the third term in condition 2, Y0, Var(r, o D{V; ™" Si[Gi1) = 00 as n - oo,

according to the iterated law of logarithm for martingales,

Qui = O(y/nloglogn) as (3.58)

Thercfore, from (3.53)

f—-p=0 <\/M) as (3.50)
n

Let Ly = Y0 (rix — E(eisl Fir)). For j <,



Bl F) = E(Y (i — Bl Fio0)|F)
=3 B(wlF) = Y B(E@ul Fio)lF)
= -

. ;
rikt Y ElriglF) = (O EGialFio) + Y ElrialF))
=

J
) rz:; i=j+l i=j1
i
= > (e~ BlwualFi)
P
= [
(3.60)

Then I, g is a martingale. We use A Lo = Lo = Locige = @up = Bl gl Fat) to
denote the martingale difference, and Iy = (L., L), Since || A Ll < 1,

L= 50y & L, we have
Ialls = \/E(ELI,)

= Juuz ALY aLay)

=t

Jﬁ(i AL, AL, *ZZi Aluol)
ot

o =1 j=m (3.61)
_ JZ E(AL, AT
fr=t
=\ E@ )

==

<VKn

Therefore, [[Iu[|l2 = O(v/n).



According to the law of the iterated logarithm for martingales,

I, = O(/nloglogn) ~a.s

For cach k = 1,2...., K, notice that .5 can be written as

Tk = ivs — E(ria sl F) + 0B,
Then

NE =g+ i:-"-k

et

= E(e1alFo) + (onx = E(eralFo)) + Y [rivnw = ECripialF) + gu(B)]
=

,. ast
= E(eaalFo) + Y (ros— Blwial Fio)) + 3 on(Bi)
= =
ast

= E(eyalFo) + s+ 3 ox(Bi)
=

Therefore
-
NE = = L+ 3 gklBima) — (0= Dan(B)
=
= L+ D ((Bima) — 9u(8))
-t

D
7,,‘»2,«% m("")'wua. 8l

,mzzw @y "”‘»wzuuﬁ. Al
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(3.62)

(3.63)

(3.64)

(3.65)



Substitute (3.33) into the above equation (3.65),

ot = e S ol 4 Y ol - B
=) ﬁ" = o
(3.66)
=L +ZZ Q” ‘)‘" )’ Fo(ut) as

That s,
n K
N,‘—nA—I,.JrZZ(%)’if—y.)' +o(nt)
,I,‘+ZZAQ”) 7[”) Z;fmu) as. (367

From equations (3.67) and (3.62), we have

" K S
N —nA = O(/nloglogn) + 3~ 3~ Ologlogn)

=it " (3.68)
= O(y/nloglogn)
Therefore,
N, logle
AL T L (3.69)
E "

From cquations (3.59) and (3.69), we have proved cquation (3.32)

According to condition 1, the continuity of the allocation function 7, and the

cquation 3.32, equation 3.31 can be proved

Next, to prove the asymptotic normality of the estimator of regression param-

cters and the allocation proportion, we first notice the equation (3.50). According

to the central limit theorem, as n — oo, n*(3* — B*) has an asymptotic Normal



distribution with mean 0 and variance-covariance matrix Var® where

XL (B4 U8 )
g

Cou(Y wu(BY) ' DVi(a) ' S)
=

Vark = lim Coo(

= lim
e

= limy :(r’:‘:(i.A',A(B")"D:V.(u)"s.b(i r(BY) T DVi(a) 'Sy
- =1

- 1-:<i M(Bk)“DZK(n)"S.mi (BY) ' DVi(e) 'S}

= =

- lim ! ‘;‘14[:;(.-;(‘(u*)f'u;v:'s,s;v;‘D.(u‘)")\g.,..e‘]
i l tEHB“)"D.’V:‘E(',&\g,,,.s‘)k(s‘szwg‘,..s,)w‘D.(Bk)"\
Jim ,‘;ZlEmtﬁf,.,e.>(B")"D:V:‘\'ur(x\e,w{'Ditnkb"\
(BY) " Elm(8,6)(D*)'V ' Cou(Y &)V DH|(B) !
(3.70)

If Ri(a) is indeed the true correlation matrix for the ¥'s, then Vi(a) will he

cqual to Con(Yi|&). Therefore

Vark = (BY) ' E(mi(8, ) (D*)'V ' D*)(BY) !

(3.71)
= E(m(8,&)(D*)'VIDY)
Finally, we prove v/ii (¥~ A) 5 N(0, B). Since
E[(A 1) 8 1G] = diag(g(Bu-1)) = (9(Bu-1)'9(Bu-1)) o

> diag(A) — A'A
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and for all k, j

E(8 Lnk) 5 QuujlGm—1) (3.73)
= El(wmi — E(m il Fue) 2y (B) DLV (Yo = ptan) G

0.
We have
E(8 Qua(d Qua)1Gn-1)
= Elm(Bur, §0)(BY) DLV, (3.71)
5 Elm(B,€)(B*)" (D*)'V~'Cou(Y|£)V ' D*(B*)"]
and
E(A Qumj & QuuklGm—1) = 0. (3.75)
Therefore,
R D 1
var(23 Q) 250 ®.76)
= XI5 T X G Var (B T U3, ) ()
> 20(E 1 (2% Var (25)7))

Var(L,) = Y diag(9(B)) — 9(B)'9(B))
=

3.77)
+ n(diag(A) — A’A)
Let X2 = diag(A) = A'A + 2515 (2 Vark (2", then
iy g
Var(N, — nA) = n(diag(A) — A'A + 22‘;,[;]»)"”"(,,,;1)" +O(n) -
= 3.78

n+0(n)

10



Since N,, — nw are linear combinations of zero mean martingales with bonunded vari-

. we have

ance, by the central limit theorem for martingal

\/;(1%" —A) =n"}(N. —nA) B N(0,3). (3.79)

Equation (3.33) thus is proved o

3.4 Comparison Between the Extended General
CARA and the General CARA Design

We utilized a widly applicable estimation approach to estimate the longitudinal data
acerued in clinieal studies and extended the general CARA design (L-X Zhang et al..

07) to adapt to the trials with longitudinal responses. Becanse of the longitudinal

setting, both the conduct of the design and the analysis of the acerued data are
different from the original design.

Firstly, our extended design becomes much more complicated due to the repeated
examined data. When a new patient enters the trial, the complete information of the
previous T — 1 patients have not been obtained yet, and they have to be observed

and recorded at the same time as the new patient heing observed. In addition, the

probability of a new patient heing assigned to each treatment depends on the esti-
mated value of the parameter 3 = (3Y, ..., 85). In the CARA design with one
time response, ouly one parameter among the K of them is updated from the infor-
mation of previously treated patients. While in design with longitudinal responses,
there ean be more than one parameter updated from the information of the previons

several patients whose responses and covariates are measured repeatedly. With ve-

1



peated measurements, more information are available for the adaptation of treatment
allocations.

Secondly, the

ilt of the general CARA design ean only be applicd to clinical
studics with one-time responses. This thesis extended the result of Zhang et al. to the
longitudinal clinical trials. After careful study of some widely applicable methods for

the longitudinal data analysi

s, we choose the generalized estimating equations (Liang
and Zeger, 1986) to analyze the longitudinal data acerued in the clinical trials, and
successfully derived the asymptotic properties for our design. When there are only
one response from each patient,
B = E(m(B,€)(D*Y'V ™' D) (3.80)
will reduce to
BF = E(mi(B, &1)a"(04)€7€) (3.81)
and
Vart = (BY) ' El[m(8,€) (DY V' Cov(Y[&)V'DH(BY) ' (382)
will reduce to
Var* = (E(m(8,&)a"(64)€7¢) ! (3.83)

which is the cas

when the generalized linear models are used in the sequential esti-

wmation of Zhang et al.’

neral CARA design,



3.5 Comparison Between the Extended General
CARA and the other Designs with Longitu-
dinal Responses

As discussed in section 1.1.4, the CALRA design (Biswas et al., 2010) is the only
optimal design, to our knowledge, for longitudinal clinical trials that consider the
covariates of both the previous patients and the current patient. Compared to the
CALRA design, our extended general CARA design can target any desired allocation
proportion whereas the CALRA design can only target a certain optimal allocation
proportion decided by the utility function they defined. In addition, the extended
CARA design can be applied to clinical trials with more than two competing treat-
ments and any responses which follow a distribution in the exponential family. To
the contrast, the CALRA design is only suitable for clinical trials with two competing

treatments and binary responses



Chapter 4
Conclusions and Future Work

of resp laptive r

We have conducted a review on the it

tion, and have discussed the necessity of res laptive design with

responses. The contribution of this research is that we proposed a general CARA
design for longitudinal clinical trials which extends the framework of the CARA de-

sign by Zhang et al.(2007). Our design considers the covariate information of both

the previous patients in the study and the current patient who is ready for treat-
wment assignment. The design is also the first response-adaptive designs that can be
applied to longitudinal clinical trials with more than two competing treatments, and
an target different desired allocation proportions. We have also explored the asymp-
totic properties of estimators of parameters and proved the asymptotic normality of

t form of the

the regression parameters and the allocation proportion. The expli

ariability of the allocation proportion is also obtained.
The allocation function which is

There are still problems left for further research.

dircetly related to the variability of the allocation proportion only has a general form



in our design. More studies are needed to find allocation functions which will result

in smaller variability for the design, or to look into optimality

criteria for an optimal
allocation function that gives the smallest variability. Also, the design we proposed
requires that the responses of each patient are complete or missing completely at ran-
dom (MCAR) (Cornfield, 1959). The collecting time point for longitudinal responses
are assumed to be equally spaced as well. However, in practice, often some paticnts
drop off the trial hefore their complete responses are collected, or there may be de-
layed responses from some patients, or the repeated measurement of each patient are

wnrealistic to e equally spaced. Little is known about response-adaptive randomiza-

tion with lougitudinal responses when missing data with certain pattern present, and

when the repeated mensurement are not equally spaced. Better methods in analyzing

longitudinal data collected in clinical trials are needed. These will be the direction of

future research.
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Chapter 5

Appendix

5.1 Martingale Theory

This section introduces the definition of martingales and some of its useful properties.

5.1.1 General Definition and Properties of Martingales

Definition L. Let (2, F, P) be a probability space: 2 is a sct, F a a-field of subscts
of Q. and P a probability measure defined on F. Let I be any interval of the form
(a,b), [a,b), (a,b] or [a,b] of the ordered set {—o0,...,~1,0.1,... .00} Let {F.n €
I} be an increasing sequence of o-ficlds of F sets. Suppose that {Z,.n € I} is a

sequence of random variables on Q satisfying
L. Z, is measurable with respect to F,
2. E|Z,| < o
3. E(Zu|F) = Zun a.s for allm < n, mon € I

i



Then, the sequence {Z,,n € I} is said to be a martingale with respect to {F,,.n € I}

We write that {Z,,. F,.n € 1} is @ martingale.

Definition 2. A sequence (Y,,.G,.n > 1) defined on (2,.F, P) is called a martignale
difference sequence if G, C F are increasing o-fields with Y,, being G, measurable and
E(Y,|G,) =0 for alln > 2.

5.1.2  Useful Theorems of Martingales

Theorem 2. (Law of Large Numbers for Martingales):

Let {A i} denotes a margtingale difference sequence, then Sy = Y21 A S; will be
a margtingale. If
S iT2E(a Si A S)) < oo, (5.1)
then
1
~8, >0 as.
"
For each j = L,....n, let S,x be a martingale with respect to nested sigma-

algebras Fue Lot Xoe = Su — Sugcre Suo = 0, denote the martignale differences

Then {Sye Fu}s for k = L...onn > Lis a double sequence of triangular arrays,
called a martingale array (Hall and Heyde(1950)). The central limit theorem for

martingale arrays { Sk, Fu} states as below.

Theorem 3. (Billingsley’s Central Limit Theorem)
Let S, = Y20, X be a zero mean martingale with respet to F,.. Assume the following

two conditions:

ling 'y B
=




and

Theorem 4. (Law of the Iterated Logarithm for Martingales).

Let (Zu Fuyn > 1) be a martingale defined on a probability space (2, F, P) with

E(Z))=0. LetY, = 2,2y, forn 21,2y =0, Fy =

and u, = \/oglogss. If st — 0o and

p. ), 5 = XLy E(VE|Fi).

Yl € Kusufun for n>1 (5.6)

where K, are F,—y measurable and K, 0, then limsup Z,/(s,1,) = |

IF [V, < K for some constant K and 52 — 0o, then the law of the ite

logarithm holds easily by setting K, = Ku, /s,
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