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Abstract

Blind signal classification and parameter estimation plays an important role in

both military and civilian applications. The classification and estimation task provides

signal information, such as modulation typ

carrier frequency, signal bandwidth,
and symbol timing, for the design of effective communication systems. In general,
blind signal classification and parameter estimation is very challenging, particularly

in cnvironments involving a low

ignal-to-noise ratio (SNR) regime, short observation

periods, fading channel conditions and relaxed a priori information

Duc to its casy implementation and widespread usage in legacy communications
cquipment, the frequency shift keying (FSK) modulation continues to be very com-
mon, especially in the VHF and UHF bands. On the other hand, minimum shift-
keying (MSK) scheme is also widely used in wircloss communication systems as it
possesses many advantages, such as bandwidth efficiency and constant-envelope prop-
erty. Thus, the blind classification and parameter estimation of FSK and MSK signals
becomes an attractive rescarch arca. Most of existing approaches for FSK and MSK

signal classifi

wtion and parameter estimation require pre-processing such as symbol

timing and carrier recovery, and only additive Gaussian noise (AWGN) ¢

el is

considered.

In this thesis, the cyclostationarity-based FSK and MSK signal classification and

parameter estimation are studied. The first- and second-order cyclostationarity of



FSK and MSK s

gnals affected by fading is inves

tigated. Bascd on the first-order

cyclostationarity of FSK signals, a joint class

fication and tone frequency spacing
estimation algorithm is proposed. Furthermore, a symbol period estimation algorithm
for 'K signals is proposed based on the propertics of sccond-order eyclostationarity.
By combining the propertics of first- and sccond-order cyclostationarity of FSK and

MSK signals, a joint cl ation algorithm for FSK and MSK signals is proposed.
Simulation and experimental results are carried out to show the efficiency of proposed
algorithms. It is proved that reasonably good performance can be obtained at low

SNRs, using

short. observation period, under the fading effect, and with relaxed a

priori information
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Chapter 1

Introduction

1.1 Blind signal classification and parameter esti-
mation

The rescarch on blind signal classification and parameter estimation investigates the
processing of received signals for the purpose of extracting required information with-
out or with very limited knowledge of the original signal. Rescarch on the signal
classification problems mainly focuses on identifying the signal modulation types,
whereas the estimation problems study how to estimate the value of parameters that
can ot observed direetly. It is of practical importance in wircless communication that
classification and estimation task be completed based on limited prior information of
received signals. Applications of blind signal classification and parameter estimation

are found in many areas, such as clectronic surveillance, interference identification

suitable jamming signal selection, and speetrum monitoring [1]-
In wircless communications, blind signal classification and parameter estimation

e be used to obtain basic signal information such as modulation type and symbol

timing so as to facilitate the effective design of receivers. Morcover, blind classification



and estimation task can also improve the transmission cfficiency by reducing the data
overhead and training sequence. These advantages make blind signal classification and
parameter estimation very attractive for software defined radio (SDR) application (3]

In the SDR system, the hardware is controlled by internal software so that it is able

to adjust its parameters according to the radio environment and support various
processing functions. It is highly desirable that the receiver can perform its functions
by extracting the appropriate information from the received signal, .. modulation
type, coding rate, channel bandwidth, and antenna configuration

Another important application for blind signal classification and parameter esti-
wation is in cognitive radio (CR) [4]. Recently, the progressively increasing demand
for radio communications services has aggravated the problem of spectrum scarcity.
The observation that many of the licensed spectrum bands are, on average, under-
utilized [5] has led to the notion of the CR as a way of resolving the spectrum scarcity

problem. The key idea is to allow CR users access unutilized channels (spectral

whitespace) allocated to the primary (incumbent) users, if they do not cause harmful
interference, The ability of a CR to dynamically adapt to the radio environment is
critically dependent on speetrum sensing and awareness [4]. These functions involve
signal detection, classification, and parameter estimation. By classifying the modu-
lation type or estimating important parameters of the transmitted signals of primary
users, CR users are able to obtain the knowledge of spectrum ocenpation

meter estimation has been extensively stud-

Blind signal classification and pa

The vast majority of rescarch focus on

ied on various types of modulation schem

and quadrs

single carrier linear modulations such as phase shift keying (PSK) |

ture amplitude modulation (QAM) [7

sion” multiplexing

, orthogonal frequency i
(OFDM) [8]- [9], and frequency shift keying (FSK) [10]- [21]. Various approaches

have been developed to extract the important signal parameters such as modulation



order, symbol timing, carrier froquency, signal bandwidth, cte. In gencral, blind signal
classification and parameter estimation is very challenging, particularly in environ-

ments involving a low signal-to-noise ratio (SNR) regime, short obscrvation periods,

fading channel conditions and relaxed a priori information

In this thesis, we focus on the blind signal classification and parameter estimation

ification of FSK signals arc extensively

of FSK and MSK signals.  Although cl:
studicd, most of work only considered the additive Gaussian white noise (AWGN)
channel condition. Morcover, very little work has been carried out on FSK signal
parameter estimation and MSK signal classification. Thus, it s our goal to develop

classification and parameter estimation algorithms for FSK and MSK signals in fading

channels which does ot require prior knowledge of reccived signals

1.2 FSK signal classification

Due to its casy implementation and widespread usage in legacy communications sys-
toms, the frequency shift keying (FSK) modulation continues to be a common choice
for communication cquipments, especially in the very high frequency (VITF) and ul-
tra high frequency (UHF) bands. Considerable rescarch work has been conducted to
explore the FSK signal classification, which can be grouped into two broad categories,
likelihood-based (LB) and featurc-based (FB) methods. The LB approach is based
on the likelihood function of the received signal using a likelibood ratio test for the

classification decision, whereas the FB approach utilizes the existence of the extracted

features of reccived signals to identify the modulation type.

The LB approach is investigated in [10]- [11], in which a higher-order correlation
FB algorithm is also jointly considered with the LB method. Signal parameter infor-

mation such as symbol rate, tone frequency spacing, and signal and noise powers, is



required. A wavelet transform (WT) FB method is proposed in [12]. This requires
symbol timing recovery to achieve an acceptable classification performance at lower

ented

SNRs. An FB method based on the mean of the complex signal envelope is pres
in [13], however, symbol timing recovery is also required. A Fourier transform is

employed in [14] to classify FSK signals. First-order cyclostationarity was utilized

for amplitude modulation (AM) and FSK signal detection and classification in [15

signals are identified based on the zero-crossing sequence. Another

[17]. In [18], FSK

algorithm that classifies FSK signals versus other signal classes, such as PSK, is stud-

ied in [19] by employing the information provided by the instantancous frequency.

However, carrier recovery is required for the algorithm to function

Channel cffects may have big impact on signal classification and parameter es-
timation, particularly in terrestrial environments. An additive white Gaussian noise
(AWGN) channel is considered in [10]- [19]. Classification of FSK signals in Raylcigh
fading channels is studied in [20] based on the LB approach, by assuming known
symbol timing. When the timing information is unknown, the likelihood function is
averaged over the timing offset, which inevitably increases the computational cot-
plexity. In addition, the symbol period still needs to be known, and the performance

is sensitive to a carrier frequency offsct. An instantancous frequency FB method is

21]; however, it requires the

proposed when the FSK signals are affected by fading

knowledge of the tone frequency spacing and symbol period

1.3 FSK signal parameter estimation

For FSK signals, tone frequency spacing and symbol period are two important. pa-
rameters for further processing. In the previous studics, not much work has been

conducted on tone frequency spacing cstimation, A Fourier transform based method



is proposed in [14], where the tone frequency spacing is caleulated according to the
distance between spectrum peaks.

On the other hand, WT-based methods for FSK signal symbol period estimation

have been studied in [22)- [24]. By utilizing WT to locate the transients produced
from frequency changes and the separation between transients, symbol period can be
estimated.

In [22], the WT magnitude is autocorrelated to reduce the noise and cxploit

the periodicity so that the peaks from transients become apparent. The separation of

peaks provides the possibility of symbol period estimation. This algorithm is improved

| by taking the Fourier transform of WT magnitude before estimation. After
applying the Fourier transform, significant peaks are obtained in the spectrum which
provides a more accuracy estimate of symbol period. In [24], the carrier frequency of
received signal is moved to zero before WT and therefore obtains a better estimation

performance, However, prior knowledge of carrier frequency is required

1.4 Joint classification of FSK and MSK signals

Continuous Phase Modulation (CPM) systems have gencrated great interest due to

their bandwidth efficiency and constant-cnvelope property [26)- [27). As an important
form of CPM, minimum shift-keying (MSK) scheme is widely used in wireless com-
munication systems. Thus, algorithms which can effectively identify MSK signals are

required in various applications [28]- [31]

In (28], a decision-theoretic approach is proposed to classify different digitally

modulated signals including MSK signals. A set of key features are considered at the

classificr, such as the standard doviation of the normalized instantancous frequency

and the maximum value of the power spectral density (PSD) of the normalized in-



stantancous frequency. Since MSK signals have less frequency components than FSK
signals, the PSD of instantancous frequency for MSK signals is less than that of FSK
signals. This feature can be utilized to distinguish MSK and FSK signals. Another
method is proposed in [29], which utilizes the instantancous amplitude to separate
FSK and MSK signals from lincarly modulated signals. By examining the peaks in the
spectrum, MSK and FSK signals can be distinguished. The algorithm proposed in [30]
calculates the spectral correlation of the received signals for MSK signal classification

based on the position of spectral peaks.

1.5 Thesis objective

The drawbacks of the previously proposed work for FSK and MSK signal classification

and parameter estimation make it necessary to develop more efficient algorithms which

Rs, using short observation

are able to achieve a reasonable performance at low
periods, under the fading channel conditions, and with relaxed a priori information

lostationarity of FSK and

The first objective of this thesis is to investigate the cy
MSK signals. We study the first-order cyclostationarity of FSK and MSK signals in
particular, under the fading channel conditions, and we extend the study to sccond-
order cyclostationarity. To the best of our knowledge, there is not such work carried
out for the study of sccond-order cyclostationary propertics of FSK and MSK signals.

The second objective of this thesis is to develop blind classification and param-
cter estimation algorithms for FSK and MSK signals based on their cyclostationary
properties. The proposed algorithms do not require pre-processing such as timing and
carricr recovery. The first-order eyclostationary propertics of FSK signals are used for

P

K signal classification and tone frequency spacing estimation. Classification and

estimation tasks are carried out jointly. Besides tone frequency spacing, symbol pe-



-

riod is also an important parameter for FSK signals. Thercfore, we further explore the
second-order cyclostationary properties of FSK signals for symbol period estimation
By combining the first- and sccond-order cyclostationarity of FSK and MSK signals,
a joint FSK and MSK classification algorithm is proposed. The performance of the

proposed algorithms arc evaluated using extensive simulations and experimental tests.

1.6 Thesis organization

The rest of the thesis is organized as follows.

In Chapter 2, the signal model and cyclostationarity of reccived FSK and MSK
signals arc introduced. The FSK signal model affected by fading channels and ad-
ditive Gaussian white noise is presented. Based on the proposed signal model. the
first- and second-order cyclostationarity of reccived FSK signals arc obtained. includ-
ing time-varying moment, cyclic moment, and cycle frequencics. The model of the
received MSK signal is then presented, and findings on its first- and sccond-order
cyclostationarity arc also given.

In Chapter 3, algorithms for FSK and MSK signal classification and FSK signal

parameter estimation are proposed. Based on the properties of first-order cyclo-

stationarity of FSK signals, FSK signal classification and tone froquency estimation

algorithm is proposed. The modulation order of FSK signals can be determined based
on the number of detected cycle froquencies (CFs), and the tone frequency spacing can
be caleulated according to the position of CFs. Then, the propertics of sccond-order
cyclostationarity of FSK signals arc developed. The absolute value of the sccond-
order eyclic moment at zero CF has a serics of spectrum peaks, and the peak pattern
changes when the delay cquals the symbol period. Basced on this property, the FSK

signal symbol period estimation algorithm is proposed. Furthermore, by combining



the first- and sccond-order cyclostationary propertics of FSK and MSK signals, a joint
FSK and MSK classification algorithms is proposcd

In Chapter 4, Monte Carlo simulations are conducted to evaluate the performance
of cach proposed algorithm. Simulation results show that the proposed algorithms
provide reasonably good performance even under short observation period, low SNRs,
and in fading channel conditions. The performance can be further improved by ex-
ploring the spatial diversity at the receiver side. Morcover, experimental results are
also given for FSK and MSK signal classification and FSK tone frequency estima-

tion. As expected, the experimental results match well with those obtained through

simulations.

Finally, the conclusions and suggestions for future work are provided in Chapter

1.7 Major contributions of the thesis

The major contributions presented in cach chapter are:

o Chapter 2: Analytical expressions of first- and sccond-order cyclostationarity
for FSK and MSK signals affected by fading.

o Chapter 3: (1) First-order cyclostationarity based FSK signal classification and
tone frequency spacing estimation algorithm. (2) Second-order cyclostationarity based
FSK signal symbol period estimation algorithm. (3) Joint FSK and MSK signal
classification algorithm.

« Chapter 4: Performance evaluations of the proposed algorithms through com-
puter simulations. Evaluation of FSK and MSK classification performance and FSK

signal tone frequency spacing using laboratory experiments
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Chapter 2

Signal models and corresponding

cyclostationarity

2.1 Introduction

signals. The former is mainly used

In this chapter, we investigate FSK and MS]
in VHF and UHF bands, and its advantages such as case of implementation and
abundant legacy of equipments make it still common used in various applications
The latter is a continuous phase frequency shift keying signal, which is bandwidth and
cnergy efficient. In the following section, we first present the model of FSK signals, and
then study their first- and second-order cyclostationarity. Then we present the model
of MSK signals, their first- and sccond-order cyclostationarity. The cyclostationary
propertios of FSK and MSK signals will be further exploited in Chapter 3, where we

propose signal classification and parameter estimation algorithms



2.2 FSK signal model and its cyclostationarity

2.2.1 FSK signal model

The received signal affected by block fading and additive Gaussian noise can be ex-
pressed as

Prsi(f) = a0 S Iy (1T s (1), (21)

where @ and ¢ represent the amplitude and phase introduced by the channel, re-
spectively, Af, is the frequency offset, s, is the data symbol transmitted during the
ith period, which takes values from the alphabet Ag = {£1,3,... & (2 - 1)}, with
cqual probability and € denotes the modulation order, f; equals half of the tone
frequency spacing, T s the symbol period, ur(t) is the signal pulse shape function.
which equals 1 over the symbol period and zero otherwise, and w(t) is the zero-mean
additive Gaussian noisc. Following proofs are based on the assumption that [ = f,T,

Linteger.

2.2.2 First-order cyclostationarity of FSK signal

Given the first-order cyclostationarity of the signal r(t), its first-order moment 1, (t) =
E{r(t)} is an (almost) periodic function of n, which can be expressed as a Fourier

],

series [3

() = ¥ My (@)oot

Here E{.} denotes the expectation operator, M, (a) is the first-order cyclic moment

(CM) at the cycle frequency (CF) a, and & = {a s M,(a) # 0} represents the set of

first-order CFs. The first order CM is defined as

e
My(a) = im 1 ’/w iy (£)e 2ot dt (2.3)
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By following the approach presented in [17), the first-order CM of the FSK signals

affected by block fading can be obtained as

Mypo () = 2 ae?®, (2.4)

with the CFs belonging to the set

' Linteger).  (25)

k={aza=ql i+ AL g =2l Q- D), (= fy

Note that the first-order CM s zero at frequencies other than the CFs. From the
above equation, we further note that the number of first-order CFs is equal to two,

four, and cight, for 2-FSK, 4-FSK, and 8-F$

signals, respectively.

2.2.3 Second-order cyclostationarity of FSK signal

For a cyclostationary process (1), the sccond-order time-varying moment is given

m(t,7

E{r(t)r (t-7)} (2.6)

Here, 7 is the time delay and * represents the conjugate operation. As r(f) is a

cyclostationary process, m,(f,7)2, accepts a Fourier series with respect to time f,

mo(t.7) = ¥ Mo (B, ), (2.7)

where the Fourier coefficient M, (3, 7) is the second-order CM at eycle frequency (CF)

i, and & = {5 M,(5,7) # 0} represents the set of second-order CFs. For the reccived



13

FSK signal®, the second-order time-varying moment, CM, and set of CFs are given in

(2.8), (2.9), and (2.10), respective

Mepg (1,7) =

Mypge(a,7) =

't
final result

LA Sl el (up (¢~ i)
Xt = 1T = To) + Bty 52rlim S i)

xup(t = iT)ur(t - (i - )T - 1)),

aterrALer L
g T2 T8 eitnlin-su) a(=iT)
w2 lato (up(t - T Yup(t - iT - 70)

+up(t = iT)up(t - (i - )T - 1)),

A il i (U (@) + 5 T2

xUz(a = (8m = $u)fa)):

RN

1y Zil 2 (U -

G = 3u) ) + Ua(0r = G

Su)fa))s

M, (a,7) 0},

. The proof is subsequently provided.

I7|<T,
(2.8)
72T,
|r|<T,
(2.9)
|27,
(2.10)

component. The noise contribution needs to be added to the
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In these equations, p cquals -1 if 7 < 0, and 1if 7 > 0, 5, and 3, arc indepen-
dent and identically distributed (ii.d.) random variables, drawn from the alpha-

bet Ay = {£1,43,.. + (2 - 1)}, Ui(a) and Up(a) are the Fourier transforms of

wr(t)ur(t =) and up(tyur(t + uT =), given respectively as
Ur(a) = (T = [rol)sine((T - [ro])a )77, (211)

Un(a) = [rofsinc(jrola)e (el (2.12)

Proof of (2.8), (2.9), and (2.10)

By substituting (2.1) in (2.6), one can write the sccond-order time-varying moment

of the reccived FSK signal as

Mgy (1,7) = E{a2ei 7807 3 5 (205 falt-) -2 (1K)
7%

xup(t—iT)up(t- kT -7)} (2.13)

The delay 7 can be considered as 7 = pT' + 79, with p = [7/T], if 7 < 0, and p =
|7/T], if 7> 0. From (2.13), one can notice that the none-zero values of the product

wp(t = iT)ur(t - kT = 7) can lead to n0n-7er0 11,y (1, 7). Furthermore, one can see

p;

that this product is non-zero in the following cascs: 7 = 0 (Figure 2.1) and k =
7 < 0 (Figure 2.2) and cither k=i - por k=i -p+ 1; 7 > 0 (Figure 2.3) and cither

k= i-pork=i-p-1. By applying the above relationships between i and & to (2.13),

one can further express the second-order moment of the reccived FSK signal as



|
5 s 5] - s T8
O [ |

Figure 2.1: Relationship between the transmitted symbol and delayed symbol when

7=0

Figure
rell

Figure 2

7> 0.

.3: Relationship between the transmitted symbol and delayed symbol when

a2eiznater g, Bty (t - i Yup(t-

T = 79) + QI8 alt-iT) gi2msicy famo

xtp(t = iTYup(t = (i = p)T = 79)}, Ir|<T,

My (,7) = (2.14)

Q2T (s ) ali-iT)

el (t - iTYur(t - iT - 1)

(1) g2 fato

(= iTYur(t = (i - )T = 7)) [r 2T,
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where i cquals -1 if 7 < 0 and 1if 7 > 0. By considering that the data sym-

bols 81, 81 $ip and sy, are iid. random variables with values drawn from

iopoe

Ag = {#1,43, ... £ (2~ 1)}, the statistical average in (2.8) can be expressed, and after

taking the Fouricr transform of (2.8) and using (2.7), onc can straightforwardly obtain
(2.9) and (2.10). Notc that U;(a) and Us(a) in (2.9) arc the Fouricr transforms of
the products up(t)ugr(t - 79) and up(t)up(t + pT - 75), which appear in (2.8)

2.3 MSK signal model and its cyclostationarity

2.3.1 MSK signal model
The received MSK signal affected by block fading and additive Gaussian noise can be
expressed as

Parsic (1) = ae0er AN P P Sult-D) 3 S syt~ T + w(t), (2.15)

s, is the data symbol transmitted during the ith period, which takes values from the
alphabet Aysie = {~1,1} with cqual probability, and A = 2f,7 is the modulation

index which equals § for MSK signal

2.3.2 First-order cyclostationarity of MSK signal

According to (2.2) and (2.15), the first-order moment of the reccived MSK signal is

given by

1
Ty (1) = aeP0e* A S Bl u=T)) [T B{e3™ Yup(t - iT) (2.16)
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As s € Aysie = {~1,1}, it is obvious that E{e5™} =0, which implics the nullity of

My (1). Thus, the MSK signal docs not exhibit first-order eyclostationarity.

2.3.3 Second-order cyclostationarity of MSK signal

For the received MSK signal, the sccond-order time-varying moment, CM, and set of

CFs are given in (2.17), (2.18), and (2.19), respectively. The proof is subsequently

provided

a2t ALr
T

D Lalt=iT) i 57 =50) (1-p)

Tocinct

5w (t - iTYar(t - iT - 1), T<lr|<2T,

i farag

2 2
5% edmsndioyp(t - iT)ur(t - iT - 7o)
My (67) = et

P2 G5 (t-iT) o}

xug(t - iT)ur(t - (i - p)T - 70), 0<|r|<T,

0, otherwise,
(2.17)



marer 2 & inco e Lns,
% T ¥ ed s w) pidnsu i i3 i

xUr(a = (8w = 3u)fa), T <|r|<2T,

Mryge(,7) = {22530 5 5 i () + 376 500010

=1

xei2rialan

o= S fa). 0<lr|<T,

(a

0, otherwise,

(2.18)

i, integer, My, si (o, 7) # 0}, (2.19)

Proof of (2.17), (2.18), and (2.19)
By substituting (2.15) in (2.6), one can write the sccond-order time-varying moment
of the reccived MSK signal as

Mg (1.7) = B{aRe 05T 3 ¥ (20 fa-T) 337 i o
3

xe-I2msifa(t-KT=

I3 e Sy (t - iTur(t - KT - 7))}, (2.20)

20), none-zero my,,, (t,7) is obtained when the product wp(t-iT)up(t-kT'-

7) is none-zero. This is similar to the proof for FSK signal sccond-order time-varying

moment. Thus, we apply the same relation between i and k in Section (22.3): 7 =0,

p+1;79>0, and cither k =

and k=i~ p; 7 <0, and cither k=i -por k

=i-p-1, and (2:20) can be further expressed as



Phasgige (BT =

By considering that data symbols s, arc i.id. random variables and E{c*/47} =

Q2IBLT S B2 s fat- G g2y

wr(t - Ty up(t = iT = 70)

=S 4 (-G 281t famo P 2™

xup(t—iT)urp(t - (i +1)T - 19)}, <0,
(2.21)

2msiopfuro

@2I2BLer 3 B (simsen) a1

i T

xe wp(t = iTYur(t =iT =)

ei2nlsios:

LT g5t amo

sur(t - iP)ur(t - (i - )T =10)}, 720,

the second-order moment of the received MSK signals can be further written as

W (BT) =

Q2L 3 {2 W fa(t=iT) e (si=si-) (1)

eI Bmsudato e S wug (1 - iTYup(t - iT =)}, T<|r|<2T,

@ei8er 3 B{ermsdioup(t - iT)up(t - iT - 70)

(=) falU-iT) o=

A=) i2asic o

sur(t = iTYur(t - (i - )T = 1)}, 0<lr<T,

0, otherwise

(2.22)
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By considering that the data symbols s, arc i.id. random variables with values drawn
from Ak = {~1,1}, (2.17) can be casily obtained, and after taking the Fouricr

 one can straightforwardly reach (2.18) and (2.19)

transform of (2.17) and using (2

2.4 Summary

In this chapter we present the mathematical models of the FSK and MSK signals.

nd

These are considered to be affected by block fading, additive Gaussian noise.
frequeney offset. Furthermore, the analytical expressions for the first- and sccond-
order cyelic moments and associated eyele frequencics of the FSK and MSK signals

arc obtained



Chapter 3

Proposed algorithms

3.1 Introduction

The cyclostationary propertics of signals have been explored for modulation classifi-
cation and parameter estimation for more than two decades [16]- [17]. The advantage

of cyclostationarity-based approaches is that they do not require preprocessing, such

as timing and carrier recovery. In this chapter, we exploit the cyclic statistics of FSK
and MSK signals to propose signal classification and parameter estimation algorithms.
The proposed algorithms are able to classify received FSK and MSK signals affected

by block fading and additive Gaussian noisc, as well as to estimate the tone frequency

spacing and symbol period of FSK signals

3.2 First-order cyclostationarity based FSK signal
classification and tone frequency estimation

The first-order CM magnitude of received FSK signals is shown in Figure. 3.1. As in

the figure, peaks of [mA (a’)| are obtained at CFs, and insignificant magnitudes are

21
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N

at frequencies other than the CFs. The number of first-order CFs is equal to two,
four, and cight, for 2-FSK, 4-FSK, and 8-FSK signals, respectively. The proposed

algorithm in this section relies on the number and position of the first-order CFs. The

signal is applied to the algorithm input after being normalized to the root square of
the received power. Accordingly, the normalization factor needs to be included in the
previous exprossions for the first-order CM. From (2.5), the following propertics of

the first-order CFs can be observed:

o (P1) The number of CFs equals the modulation order;

o

2) The distance between adjacent CFs equals the tone frequenc

spacing;

« (P3) The distance between any two CF

is an integer multiple of the tone frequency
spacing. We refer to this property as to the integer multiple relationship (IMR).
A flowchart of the proposed algorithm is depicted in Figure. 3.2; this consists of six

steps, as follows

Step 1: Selection of candidate frequencics. Since the CM magnitudes at CFs are si

nificant, the frequencies for which the CM magnitude exceeds a cutoff value V,, [17]

are selected as candidates. If the nimber of selected candidates, Ny is below 2 (i.c,

the minimum FSK modulation order), an adaptive procedure for setting V,, based on

the biscction method [33] is triggered. This procedure ends when a desired number of
candidates is sclected, which equals the maximum expected FSK modulation order,
Qnaa-

Step 2: Local maximum refinement. We retain the adjacent candidates which are lo-

cated at a distance greater than a minimum allowable distance dy. This is determined
using the property (P2) provided above, and equals the ratio between the single-side
signal bandwidth and €,,,,. For adjacent candidates placed at a distance below d,

the candidate with the higher CM magnitude is retained.
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[ Step 11 Selection of candidate frequencies

‘w“ i Application of cyclostationarity test ‘

!

J Step 5: Decision making ]

!

[ Step 6: Tone frequency spacing estimation ‘

Figure 3.2: Flowchart of the proposed algorithm.

Step 3: IMR based refinement. The distances between pairs of candidate frequencies
selected in Step 2 are caleulated, and the IMR s verified (see property (P3) above)
If the IMR is satisfied, the corresponding frequency candidates are retained. Further-
more, based on the fact that CFs are separated by equal distances, the position of
missing frequencies can be inferred, and these are included as candidates. 1f the CF
IMR property is not satisfied by any of the candidate frequencies, Step 3 is skipped.
Step 4: Application of a cyclostationarity test. The cyclostationarity test proposed

is used to check if the previously selected candidate frequencies are CFs. A

in [1

first-order CM based statistic value is estimated for cach candidate CF and compared

to a threshold, T' which is determined from the probability of declaring that a can-

didate is a CF when it is not (Pp,). If the statistic value exceeds the threshold, the



corresponding candidate is declared a CF.
Step 5 Modulation order determination. The decision on the FSK modulation order

is based on the number and position of the first-order CFs. The received signal is

decided to be 2-FSK when two first-order CFs appearing on different sides of the cen-
tral frequency are detected. Further, the received signal is considered to be Q-FSK
(Q = 2m.Q > 4) if at least 2" + 1 out of the Q first-order CFs are detected and
the distances satisfy the IMR condition. The output is cither the modulation order
or "Cannot decide.” The latter decision is made if cither the CF number or the CF

position conditions arc not satisficd.

Step 6: Tone frequency spacing estimation. The minimum distance between adjacent

CFs is calculated. Note that for Q-FSK (9

™ Q2 4) signals, although some CFs
may be missed, since at least 21+ 1 CFs are utilized, the minimum distance between

adjacent CFs provides the tone frequency spacing

3.3 Second-order cyclostationarity based FSK sym-
bol period estimation algorithm

From (2.9) one can notice that the magnitude of M, (., 7) depends on a, T, Ag, Uy(.),

and Uy(.). For example, for a = 0, [M,(0,7)] is

il Bt 2T lano (U, (0) + 5 £, Ua((GGo = 5) )]
Ir|1< T,
- (3.1)
T I (U (50 - 8) i)

|M,(0,7)]

|72 T

V(8 = 3) fa))



It is noteworthy that [M, (0, 7)s,1| exhibits peaks if cither ¢/278 /a0 = 1 or ¢/278nfuto

for 8, n=1,2,.., € this is obtained for 7 = 0(2/,)"!, v integer. We can further express
(3.1) for different modulations. For example, one can easily show that for 2-FSK (3.1)

becomes

L1U, (0)cos(27 fimo) + SU2(0)cos(2m furo)

S ACTA N st
[Ma-psic(0,7)] = o

LILU(0)cos(27 fmo) + 3U2(0)cos(27 faro)

+3U2fa)er i + 3Us (2 g)errhim], tr27]

Figure. 3.3 shows [Ma-psi (0, 7)|/|Ma-psi (0,0)] versus 7, with the signal parameters
as provided in Chapter 4; this confirms the positions of the peaks. The proposed
symbol period estimation algorithm relies on the existence of peaks in [AL(0,7)[,
at delays 7 = 0(2,)1, v integer, Qe Py = [M(0,0(2f2)31)]. For such delays,
by using (2.11) and
Ur((80 = 8 fa) = Ur((80 = $0) fa) = 0 unless §, = §,,,, and

one can find that U,(0) = T = [rol, Ua(0) = |rol. and

(1= G5 o(2fa)). [o(2f) | < T,
[, (0,0(2f) )] = (33)
T [o(2fa) 2 T.

I Jo(2f0)!] < T, the peak value decreases with incrasing [0(2f4)"], whereas if
|v(2f4)"" 2 T|, the peak values is a constant cqual to a?/€2. It is noteworthy that
the first constant value of the peaks is attained at delay 7. Thus, by distinguishing
the pattern of peak values, we can find the position of the first constant peak value,
and consequently obtain the symbol period estimate.

The leader-follower clustering approach [25] is employed to distinguish different pat-
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Figure 3.3: Normalized magnitude of the 2-FSK signal sccond-order CM at zero CF,
with no noise and fading cffect

terns of the peak values. First, the last obtained peak value is selected as a cluster
center. If the difference between a peak value and the cluster center is less than a

presct threshold «, this value is categorized to belonging to the constant peak value

pattern, and the cluster center is updated by the mean value of the existing members
of this pattern. This procedure continues until no peak values can be categorized
to the cluster center. According to (3.3), the constant peak value pattern starts at

=T, Thus, we estimate the symbol period by caleulating the minimum |7| of the

peak values belonging to this pattern. The proposed algorithm is formally stated

below.

Step 1: The received signal is down-converted, band-limited through filtering, over-
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sampled, and normalized by the square root of the received signal power 1.
Step 2: Estimate the absolute value of the sccond-order CM of the received sig-
nal at zero CF over a large enough delay range, and the peak values are retained

, N -1, with N as the number of obtained

Py = N, (0,0(2f4) ")), where
peaks.

Step 3: Initialize the cluster center to the last obtained peak value, Py = Py_;, and

add Py into the sct of constant peak value pattern, %, which is initialized as ¢ = 6

: Calculate the minimum difference between the cluster center and all the peak

Step

values, except for the members in ¢,

d; = argminp,c|Pe - P (34)

Step 5 If d; < e, add P, into the set ¢, update the cluster center by the mean

value of the members in ', then go back to step 4. 1f d, > &, go to step 6

Step 6: - The symbol period of the received FSK signal is estimated as

7 = argming, ee{|o(2/2) "1} (3.5)

3.4 Joint classification of MSK and FSK signals

K

From (2.5) and (2.16), one can notice that the number of first-order CFs for the
signal equals the modulation order, whereas the MSK signal does not have first-order
CFs. Thus, it is straightforward to distinguish MSK and FSK signals according to

cived signal to the reccived

" TNote this is cquivalent to normalizing the second-order CM of the
signal power, [M, (0.0)]



Figure 3.4: Normalized magnitude of the MSK signal sccond-order CM at zero CF.

the number of first-order CFs. However, the nullity of first-order cyclostationarity

for MSK signal is obtained when considering an infinite number of symbols. If the

abservation period is short, the received MSK signal may also exhibit significant values
in the first-order CM magnitude, and thercfore leads to a misclassification. Thus, we

additionally apply the second-order cyclostationary propertics of the roceived MSK
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and FSK signals to improve the classification accuracy. According to (2.18), we have

faroeimin

| 5§ et Omn
mei et

xUy((3u = Sw) fa)ls T<|r|<2T,

: 2 2 Ln(s ap
|Mrysxc (0,7)| = 2 '”Z:l‘”);‘ e dan [, (0) + ¢3 im0 (1= (3.6)

xed2inanUy((5n = 5m) fa)l, 0<|rf<T,

0, otherwise,

When compared with | M, ., (0,7)], which is introduced in the previous section, [ M (
docs not exhibit a serics of constant peak values when 7 > 7' (see Figure 3.4). Such

a difference is used to further distinguish MSK and FSK signals. The flowchart of

the proposed joint classification algorithm is shown in Figure 3.5; this consists of two
stages.

In the first stage, the first-order cyclostationarity of the received signal, which is

normalized to the root square of the received power, is investigated. As in Figure
3.5 (b), we first select candidate frequencies based on a preset cutoff value. The
following steps, such as the Local maximum refinement, IMR based refinement. and

Cyclostationarity test, further examine if the selected candidates are real first-order

CFs. The received signal is considered to be €

PSK (=2, Q> 4) if at least 271 + 1
out of the € first-order CFs are detected and the distances satisfy the IMR condition.
Otherwise, the proposed algorithm gocs to the second stage.

In the second stage, we estimate the absolute value of the second-order CM of
the received signal at zero CF over a large enough delay range, [, (0,7)], and the

local maximum values of [ My (0,7)] are selected. We take the last obtained local

0,7)|
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maximum value as an initial cluster center, and use the Leader-follower clustering
method; which is introduced in Section 3.2 [25], to group the local maximum values
which are close to the cluster center. Then, we check if the neighbor distances between

alues have IMR

grouped local maximum

The received signal is considered to be Q-FSK (€ =2, Q> 4) if at least 21 + 1

out of the € first-order CFs are detected in the first stage and their distances satisfy
the IMR condition (sce Scetion 3.3). A received signal is considered to be 2-FSK if

les of the central frequency are detected

two first-order CFs appearing on different
in the first stage and the neighbor distances between grouped local maximum values
in the second stage have the IMR property. A received signal is considered to be MSK
signal if the IMR property is not satisfied in the second stage. The case "Otherwise”
in the first stage occurs under the following conditions: less than two first-order CIs
are detected, two first-order CFs appearing on the same side of the central frequency
are detected, and more than two first-order CFs without IMR property are detected

have

For such case, if the neighbor distances between grouped local maximum valus

IMR in the second stage, the output of the algorithm is *‘Cannot decide’

3.5 Summary

In this chapter, we exploit the cyclostationary propertics of the FSK and MSK signals
to propose three algorithms for signal classification and parameter estimation. Based
on first-order cyclostationarity, we determine the modulation order and the tone fre-

Based on the second-order cyclostationarity, we can

quency spacing of FSK signal

Morcover, by combiningg the first-

further estimate the symbol period of FSK signa

and second-order cyclostationarity, we distinguish FSK and MSK signals.
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Chapter 4

Performance of proposed

algorithms

4.1 Simulation setup

We consider MSK and FSK signals, =2, 4, 8, f, = 1/T with the single-sided band-
width equal 4 kHz (=Q/T). The sampling rate f, is 50 kHz, and the froquency offset
Af. cquals 250 Hz. A Butterworth low-pass filter of order 9 is used to remove out-
of-band noise at.the receiver. The -3dB bandwidth of this filter is set to 4 kHz, and
the in-band SNR is considered. Unless otherwise mentioned, the observation period

symbols, 1000 4-FSK

is 1 see, which corresponds to 2000 MSK symbols, 2000 2-FS
symbols, and 500 8-FSK symbols. The channel is Rayleigh fading with an average

power of 1. For the classification and estimation algorithms, the performance is in

terms of probability of correct classification, P.(Q - FSK|Q - FSK) or P.(MSK|MSK),
and probability of correct estimation, P..; these are caleulated based on 1,000 Monte

Carlo trials.
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4.2 Performance of the first-order cyclostationar-

ity based FSK signal classification and tone
frequency spacing estimation algorithm

4.2.1 The magnitude of the first-order CM estimate

The magnitude of the first-order CM estimate of &-FSK signals s plotted in Figure
1.1 to show the candidate frequencies for diverse SNRs. It is observed that the relevant

peaks, which correspond to the CFs, are more predominant when compared with the

noisy floor as the SNR increases. In addition, one can notice that for a very low SNR
(¢, -10 dB), the initial preset cutoff value does not allow the selection of enough
candidates (see Figure. 4.1 (a)). In such a case, the mechanism to adaptively change

the cutoff value is triggered, as deseribed in the selection of candidate frequencies step,

in Section 3.2 At higher SNRs (c.g., -5 dB) not all first-order CFs are selocted (see
Figure. 4.1 (b)); however, missing CFs can be recovered based on the CF properties
mentioned in P2 and P3 (sce Section 3.2). As the SNR increases further, (e.g., 0 dB3)

cight CFs can be exactly scl

d (see Figure. 4.1 (c)), and a further increase in the

SNR can result in more than cight candidates (see Figure. 4.1 (d)). In the latter case,

false candidates are rejected in the local maximum refinement step (sce Seetion 3.2)

4.2.2 Initial cutoff value setup

Figure. 4.2 shows the probability of correct classification as a function of the initial

cut-off value, V,,. Note that when V,, is low, the probability of correctly classifying

SK and 4-FSK signals increases with increasing Vi, (sec Figure. 4.2 (a) and (b)),
while the probability of classifying 8-FSK signals does not (see Figure. 4.2 (c)). This

can be explained as follows. For a reduced V,, more CF candidates are selected in



(a) -10 dB SNR (b) -5 dBB SNR

(c) 0 dB SNR d) 10 dB SNR

Figure 4.1: The magnitude of the first-order CM cstimate of §:
dB SNR, (b) -5 dB SNR, (c) 0 dB SNR, and (d) 10 dB SNR

SK signals at (a) -
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the selection of candidate frequencies step (see Section 3.2). Those candidates which
are very close to the CFs are rejected in local maximum refinement step; however, for
signals with lower modulation orders there are still false CF candidates which pass
local maximum refinement, which in turn lead to performance degradation. As Vi,

Thi

further increascs, performance degradation ocer because, at high V,, some
of the CFs are missed even when an adaptive V,, search process is used if the minimum
number of candidates is below the minimum modulation order (€2 = 2). We consider

an initial cutoff value of 0.05, which provides a reasonably good probability of correct

classification for different modulation types and at diverse SNRs.

4.2.3 Cyclostationarity test threshold setup
Table 4.1 and 4.2 provide the SNR required to achieve Po(€2 - FSK|Q - FSK)=0.8

and P.(Q-FSK|Q-FSK)=0.9, 2=2,4,8, with various values of the threshold, I', used

in the cyclostationarity test of the proposed algorithm (sce Section 3.2). As in the

tables, for increased I, the required SNR tends to decrease for 2-FSK signals and
increase for 8-FSK signals. For 4-FSK signals the required SNR exhibits a relative

local optimum. This can be ct

xplained as follows. For 2-FSK signals, an incorr

decision is expected when the number of candidates passing the cyclostationarity test
of the algorithm exceeds two, and, thus, a higher threshold is beneficial. On the other
hand, an incorrect decision for the 8-FSK signals is obtained when an excessively high
threshold results in the rejection of valid candidates when the cyclostationarity test

is applied. Finally, both scenarios apply for 4-FSK signals. We select T' = 5.9914 as

providing a relatively good performance, P.(2 - FSK|Q - FSK), Q=2, 4, 8
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Table 4.1: SNR (dB) required to achicve a P.(€2 - FSK|Q2 - FSK)=0.8

0 e . 4.60517 5.99147 7.37776 10.5966 13.816

2-FSK -11.8 -11.8 -11.8 -12 -12.7
-7.1 -7.2 -7.2 -7.1 -6.3
-1.9 -1.9 -1.7 -1.1 0.2

Table 4.2: SNR (dB) required to achieve a P(€ - FSK|Q - FSK)=0.9.

;2\\ I 1.60517 5.99147 7.37776 10.5966 13.816
-8.5 -8.5 -8.5 -8.6
-3.6 -3.6 -3.6 -3.5
1.6 1.6 1.7 21

4.2.4 FSK signal classification performance

Figurc. 4.3 plots the probability of correct classification, P.(2 - FSK|2

2, 4, 8, versus the SNR. The classification performance improves with increasing
SNR; a probability of correct classification approaches 1 at 2, 9, and 13 dB SNR
for © = 2, 4, and 8, respectively. Confusion matrices are provided in Table 4.3
(SNR = 0 dB) and Table 4.4 (SNR = 10 dB). Clearly, there are cases for which the
algorithm cannot make a decision, especially under low SNR conditions. Also, miss-
classification can oceur, particularly for higher-order modulations. This is due to the
miss-detection of CFs; and higher-order modulations are miss-classificd as lower-order
modulations. Morcover, Figure. 4.4 plots the 8-FSK signal classification performance
of the proposed algorithm and that in [17]. Clearly, the proposed algorithm benefits
significantly from the exploitation of the CF propertics in the local maximum and

IMR refinement steps.



Table 4.3: Confusion matrix for SNR=0 dB.

e Input

Ou t;{. L 2FSK 4-FSK S-FSK
2FSK 993 ] 18
IFSK 0 957 12
SFSK 0 0 869
Cannot decide 7 29 101

Table 4.4: Confusion matrix for SNR=10 d

Tnput _— - —
Output 215K 4-FSK 8-FSK
2FSK 1000 0 5
AFSK 0 999 1
8-FSK 0 0 993
Cannot_decide 0 ) 5
1
0981
096
094

PQFSKIQFSK)
s

084

082

08s Kl 5 0
SNR (dB)

Figure 4.3: Classification performance versus SNR for Q-FSK signals, §2 = 2,4, 8.
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ure 4.4: Cl; L Y e i between the proposed algorithm

and that in [17].

In Figure. 4.5, P,(8-FSK|8-FSK) is shown versus SNR for different observation
periods. As expeceted, a longer observation period leads to a better performance, as
more accurate CM estimates are obtained. It is noteworthy that a good performance

i achicved with relatively short observation periods.
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ure 4.5: Classification performance versus SNR for 8-FSK with different observa-

tion periods.

In Figure. 4.6, the impact of the Riccan K factor on the performance of the

as N inerc

proposed algorithm is studied. As expected, the performance improve

for K = oo, the performance approaches that in the AWGN channel.
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Figure 4.6: Classification performance versus Riccan K factor for 8-FSK, at -5 dB, 0

dB, and 5 dB SNR, respectively

4.2.5 Tone frequency spacing estimation performance

Sstimation of the tone frequency spacing is carried out in the last step of the algo-
rithm, after a decision on the modulation order is made (sce Figure, 3.2). Hence,
the decision on the modulation order affects the performance of the tone frequency
spacing cstimate, If the decision for the modulation order is *Cannot decide, then

the algorithm cannot output an estimate for the tone frequency spacing. For 4-|

<
and 8-FSK signals, a large error in the estimation of the tone frequency spacing comes
from the wrong decision for the modulation order, .., if the decision is €2 = 2 instead

of 2 =4 or 8. On the other hand, for

FSK, crrors in the tone frequency spacing

estimation can also occur when the decision for the modulation order is correct; this



092f

Figure 4.7: Probability of corrcet tone frequency spacing estimation versus SNR for
(L-FSK signals, 2 =2,4,8,

is duc to the fact that IMR property, (P3), mentioned in Section 3.2 does not provide
a strict constraint, unlike in 4-FSK and 8-FSK signals.

The probability of the tone frequency spacing estimate is plotted in Figure. 4.7

versus SM

R, for 2-FSK, 4-FSK, and 8-FSK signals. As expected, a better estimation
performance is achieved for lower orders, as a better classification performance is
also achieved in such a case. Furthermore, results in Figure. 4.3 and 4.7 are close;
this is expected, as correct estimation is obtained when classification makes right

decision. For higher modulation order

ignals, the P (Q - FSK) is slightly greater

s attributed to the cases that mi

than P,(Q- FSK|Q - FSK). This

letection of CFs
results in wrong classification decision whereas the distance between detected CFs

still provides correet tone frequency spacing estimate.
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Figure 4.8: Probability of corre

tone frequency spacing cstimation versus SNR for
SK signals with different observation periods

Figure. 4.8 depicts the P, of the tone frequency spacing for 8-FSK signals with
different observation periods. The proposed estimator performs well with a relatively

short observation period, and the estimation accuracy improves as the observation

period increases

4.2.6 Receiver spatial diversity for FSK signal classification
and tone frequency spacing estimation

Spatial diversity can be applied at the receive-side by utilizing the sclection combining

(SC) scheme to further improve the performance. The signal at the output of the



combiner is given by

so(t) = (1), 1= argmax,_ o, E{lrn(t)?}, (1.1)

where L represents the number of receive antennas, and ry(¢) is the signal for the I-th

antenna, 1=1,2,..., L.

P_BFSKBFSK)
o
@

_
3 38
~S
i

/
084
082 —%—1 receive antenna
—B—2 receive antennas, SC
08 -
B 5 0 5 10 15

SNR (dB)

Figure 4.9: Classification performance versus SNR for 8-FSK with one and two receive

antennas

Figurc. 4.9 shows the probability of correctly classifying 8-FSK signals when cm-
ploying a single reccive antenma and two reccive antennas with selection combining,

respectively. As expected, improved classification performance is achieved when ex-

ploiting spatial diversity. For example, a 3 dB SNR gain is achieved with two reccive

antennas when reaching a probability of correct classification of 0.9, Moreover, Fig-
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ure. 410 compares the probability of correct tone frequency spacing estimation for
$-FSK signals when using a single antenna and two receive antennas with selection
combining, respectively. As expected, the performance is improves. Since the com-
biner sclect the antenna with highes reccived signals power, channel estimation is not

required when using SC.

1 /a/qf

082 —&—1 receive antenna
—8—2 receive antennas, SC

08 :
- E o 5 10 15
SNR (48)

Figure 4.10: Probability of correct tone froquency spacing estimation versus SNR for

8-FSK signals with one and two reccive antennas.
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4.3 Performance of second-order cyclostationarity

based FSK symbol period estimation algorithm

4.3.1 Setting the threshold value ¢

Figure. 4.11 shows the probability of correct estimation, P, as a function of the

reases with increasing e, This is

threshold value e, Note that when ¢ is low, P, iner
because the peak value at delay 0(2f4)7 = T is loss likely to be missed when using a

serformance degradation oceurs,

greater threshold =, However, as ¢ further incre
since the peak values at delays v(2£,) < T are wrongly included in the set of constant
value pattern (see Section 3.3 for the algorithm description). We select a threshold

value of 0.05, which provides a reasonable good P, for different modulation orders.

dor 002 003 004 005 006 007
¢

Figure 4.11: Probability of correct symbol period estimation versus the threshold

1-FSK, and 8-FSK signals, at 5 dBB SNR.

value, &, for 2



4.3.2  Symbol period estimation performance

The performance of correct symbol period estimation for different FSK signals versus

as the modu-

SNR is shown in Figure. 412 The cstimation performance improv
lation order increases. This is because for higher-order modulations, the difference
between peak values at [v(2/,) 2 T and those at [v(2f,)| < 7 is greater than
for lower-order modulations, according to (3.3). Thus, the peaks patterns can be

distinguished more casily, and the pattern clustering is more accurate,

3
SR (68)

Figure 4.12: Probability of correct symbol period estimation versus SNR for Q-FSK

signals, 2 =2,4,8

Figure. 4.13. shows the estimation performance for 2-FSK using different observa-
tion periods. As expected, a better performance is obtained with a longer observation

period. Note that a reasonably good performance is obtained with relatively short



obscrvation periods.

3
SR (68)

Figure 4.13: Probability of correct symbol period estimation for 2-FSK signals versus

SNR with different observation periods.

Figure. 4.14 shows the probability of correctly estimating the symbol period for
2-FSK signals when employing different numbers of receive antennas with selection
combining. As expected, an improved estimation performance is achieved when cm-

ploying multiple antennas
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6
SNR (48)

FSK signals v

Figure 4.14: Probability of correct symbol period estimation for 2

SNR with one and two antennas.

4.4 Performance of joint classification algorithm of

MSK and FSK signals

The probability of correct classification, P,(ili) i=2-FSK, 4-FSK, 8-FSK, and MSK,
is shown in Figure 4.15. As shown in the figure, a P,=0.8 for MSK signals is obtained
at 2 dB SNR, and P. approaches 1 at 18 dB SNR. Although the probability of cor-

rectly classifiying MSK signals is lower than that for FSK signals, a reasonable good

performance is obtained
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Figure 4.15: Classification performance versus SNR for FSK and MSK signals with 1

see observation period

Morcover, Figure 4.16 shows the performance of MSK signal classification using
different. observation periods. As expected, a longer observation period leads to a
better performance, as more accurate CM estimates are obtained. Note that the
effect of the observation period is more significant for MSK signal classification than
for FSK signals. A longer observation period is required for MSK signal classification

to obtain a performance similar to for FSK signals.
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Figure 4.16: Classification performance versus SNR for MSK signals with different

observation periods

Figure 4.17 shows the MSK signal classification performance with one and two

antennas using sclection combining. One can observe that better perfor

obtained when utilizing receive spatial diversity.
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Figure 4.17: Classification performance versus SNR. for MSK signals with one and

two receive antennas.

4.5 Experimental results

4.5.1 Equipment description

4.5.1.1  Agilent N5182A RF vector signal generator (VSG) and signal
studio software

The Agilent N5182A RF vector signal gencrator (Figure 4.18) combincs state-of-the-

art RF and digital signal processing to gencrate RF test signals. This is able to

generate RF signals with a frequency range from 100 KHz to 6 GHz; the internal

s. The

bascband generator has 100 MHz bandwidth and sample rate up to 125 M
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Figure 4.18: Agilent N5182A RF VSG

signal parameters such as carrier froquen

amplitude, modulation type, puls

shape,
and symbol period can be adjusted. Users can also define the gencrated signal through
the arbitrary waveform generator (ARB)

There are two approaches to gencrate signals. The first one is by using the multi-

purpose mode of the instrument, where users can setup signal characteristics, such as

the modulation type, symbol period, bandwidth, ete. The sccond approach is to use
popular software programs, such as MATLAB, to gencratc signals and download such
data files to the VSG memory. Then, the VSG is then able to generate RIY signals

based on the MATLAB signals,
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Figure 4.19: Agilent Signal Studio toolkit

In our work, we use the second approach to generate experimental signals. The
Agilent signal studio toolkit (Figure 4.19) is used to download MATLAB signals to
the ARB, then using the digital-to-analog convertor (DAC) and up-conversion of the

signal to the carrier frequency

4.5.1.2  Keithley 2820 vector signal analyzer (VSA) and Agilent V2901A

SignalMeister

(Figure 4.20) is used to analyze reccived signals

20 RF vector signal analyz

this has a bandwidth up to 40 MHz, and accepts a carrier frequency from 400 Mz
to 6 GHz. The received signal is down-converted to the intermediate frequency, ban-

dlimited by a lowpass filter, and digitized by an analog-to-digital converter (ADC)
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Figure 4.20: Keithley 2820 RF VSA

A: spectrum analysis, vector signal

There are three major functions of the
analysis, and signal capture. In our work, we mainly apply the function of signal
capture, which is able to capture a signal waveform with the duration up to 30 scconds.
The captured signal data files are compatible with MATLAB. We upload these files
to a personal computer, and apply our proposed algorithms for signal classification

and tone frequency spacing estimation.

00 VSA serves as the signal receiver, and the SignalMeister (Figure 4.21) Sig-

nalMeister receiver project (Figure 4.21) is used to operate the signal capture and

record received signal data in the PC. Here, the block of 2800 VSA serves as the
signal recciver, and General Purpose 1x Analysis is able to capture the received signal

with a preset sweeping time and receive filter bandwidth



X Aglent Sgnalerster
Fle View Project Worksheets Elements  Help
I @ s 4 aAX,

Tasbor | v X

)

|wian | lmaredpoes

1 36PP UL
1 3607 D1
i3z
EETe
1 Diaol Video
*| Operations
el Mot | 200 vsm Genens unpose ¢ Ansvas
&) Fies
1 ignal Gonorators
& Stanal Anolyzors
| Genoral Pupose An.
) Standard Tomplate

I My Templates | 5y

status -x

Comnact Mode CFF

Figure 4.21: SignalMeister Software.

4.5.1.3  Hardware setup

Paiow X

In our experimental work, the cquipments are connected as shown in Figure 4.2,

which include an Agilent N5182A RF VSG, an 2820 RF VSA, and a personal com-

puter. The transmitted signals are generated with the Agilent N5182A RF VSG.

and roceived signals are captured with the 2820 RF VSA. The received signal is then

uploaded to the personal computer, where we apply the proposed algorithms for clas-

sification and tone froquency spacing estimation.
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Figure 4.22: Experimental sctup

4.5.2  Experimental performance evaluation

We studied FSK and M

{ classification and F

tone frequency spacing algorithms

experimentally. The parameters of FSK and MSK signals were set up as in Section 4.1.
The performance of the algorithms in term of the probability of correet classification

and estimation was caleulated based on 300 Monte Carlo trials.
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ure 4.23: Simulation and experimental results for FSK and MS

jgnal classifica-

tion.

Figure 4.23 presents the performance for FSK and MSK signal classification. As
the figure shows, the simulation and experimental results are very close. This indi-
cates that our proposed classification is practically efficient. Figure 4.24 shows the
performance of the FSK signal tone frequency spacing estimation. As expeeted, the

simulation and experimental results match.



60

1
[ETS
0%
094
092 7
80
088
086 — @ -2-FSK, Simulation
— B ~4FSK, Simulation
084 — -BFSK, Simulation
—6—2FSK, Experiment
082 —B—4-FSK, Experiment
—9—B-FSK, Experiment
08 H L -
-15 -10 5 0 § 10 15

SNR (dB)

Figure 4.24: Simulation and experimental results for O-FSK signal tone frequency

spacing estimation,

2,4,8.

4.6 Summary

In this chapter, we presented the simulation results for three proposed algorithms:
first-order cyclostationarity based FSK signal classification and tone frequency spac-
ing estimation algorithm, sccond-order cyclostationarity based FSK signal symbol

period estimation algorithm, and joint FSK and MSK s

ignal classification algorithm.

Morcover, the experimental results for signal classification and tone frequency spac-
ing cstimation were presented; these mateh the simulation results, which provides

confidence in the design of the algorithms



Chapter 5

Conclusions and future work

In this thesis, we proposed signal classification and parameter estimation algorithms
for FSK and MSK signals affected by fading. The first-order cyclostationarity of FSK
signals is investigated. Based on the first-order cyclostationary propertics of FSK
signals, we proposed a novel FSK signal classification and tone frequency spacing
cstimation algorithm. Then, we further exploited the second-order cyclostationarity
of FSK signals, and proposed a symbol period estimation algorithm. Morcover, we
studied the first- and second-order cyclostationarity of MSK signals. and proposed a
joint FSK and MSK signal classification algorithm. Simulations were carried out to
cvaluate the performance of the proposed algorithms under diverse scenarios, such as

different observation periods and SNRs. Simulation results showed that the proposed

algorithms provide a reasonably good performance with short obscrvation periods and
low SNRs, yet affected by fading. The performance can be further improved with spa-
tial diversity at the receive side. The proposed algorithms do not need pre-processing,
such as timing and carricr recovery. The performance of the proposed algorithm is

additionally investigated through laboratory experiments. The experimental signals

are generated with the Agilent N5182 RF VSG, and captured with the Keithley 2820

61
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VSA. Simulation and experimental results mateh, which proved the applicability of

the proposed algorithms to real scenarios.

Future work

o In the first-order c

velostationarity-based algorithm, a preset cutoff value V,,
was used to select candidate frequencies. Although we introduced an adaptive V,

to improve the algorithm performance, this i

s triggered only when loss than two
candidate frequencics are selected. A cutoff value which can be set adaptively under
all conditions may farther improve the performance of the algorithm,

® The second-order eyclostationar:

v of FSK

ignals is derived under the condition

that f,T

I,  integer. Deriving analytical expressions of the second-order cyclosta-
tionarity of any FSK signal represents an important aspect of future work. In the FSK
symbol period estimation algorithm and joint FSK and MSK classification algorithm,
we estimate the second-order cyclic moment of the reccived signal for a large enough
delay. Such a large delay range increases the computational cost for real applications.

Setting the delay range adaptive

should be considered in future work
o In the proposed work, we considered block fading. Other channel models need to

be considered, as well, such as t 1 ive channels. This

presents a dircction

of future work. Additionally, a

single transmit antenna was considered.  Multiple
transmit antennas can be considered to improve the performance of the proposed

algorithms; this also represents a direction of futurc investigation.
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