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Abstract

Blind signal classification and parameter estimation plays an irnpOltant rolc in

both military and civilian applications. Thc classification and cstimation task provides

signal information, such as modulation type, carrier frequency, signal bandwidth,

and symbol timing, for the design of effective communication systems. In general.

blind signal classification and parameter estimation is very challenging, particnlarly

in environments involving a low signal-to-noise ratio (SNR) regime, short observation

periods, fading channel conditions and relaxed a priori information

Due to its easy implementation and widespread usage in legacy communications

equipment, the frequency shift keying (FSI<) modulation continues to be very com­

mon, especially in the VHF and UHF bands. On the other hand, minimum shift­

keying (MSK) scheme is also widely used in wireless communication systems as it

possesses many advantages, such as bandwidth efficiency and constant-envelope prop-

crty. Thus, the blind classification and parameter estimation of FSI< and NISI< signals

becomes an attractive resea.rch area.. lVlost of existing approaches for FSI< and MSK

signal classification and parameter estimation require pre-processing such as symbol

timing and carrier recovery, and only additive Gaussian noise (AWGN) channel is

considered.

In this thesis, the cyrlostationarity-hasccl FSf< ancl iVrSf< signal classification and

paramctcr estimation arc stucliecl The first- ancl seconcl-orcler cyclostationarity of



FSI< and lVISI< signals afFected by fading is investigated. Based on the first-order

ryclostationarity of FSI\: signals, a joint classification and tone frequency sparing

estimation algorithm is proposed. Furthermore, a symbol period estimation algorithm

for FSI< signals is proposed based on the properties of second-order cyclostationarity

By combining the properties of first- and second-order cyclostationarity of FSI\: and

MSI( signals, a joint classification algorithm for FSI\: and MSK signals is proposed

Simulation and experimental rcsultsare canied out to show the efficiency of proposed

algorithms. It is proved that reasonably good performance can be obtained at low

SNRs, using shorl observation period, under the fading cfleeL, and with relaxed I!

pT'i07'i information
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Chapter 1

Introduction

1.1 Blind signal classification and parameter esti-

mation

The researrh on blind signal rlassifirat.ion and parameter est.imat.ion investigat.es t.he

pl'Ocessingofreceived signals for the purpose of extracting required information with­

out or with very limited knowledge of the original signal. Research on the signal

rlassification problems mainly foruses on identifying the signal modulat.ion types.

whereas the estimation problems study how to estimate the value of parameters that

can not observed directly. It is of practical importance in wireless communication that

classification and estimation task be completed based on limited priorinforrnationof

received signals. Applications of blind signal classification and parameter estimation

arc found in many areas, such as electronic surveillance, int.erference identificat.ion,

suitable jamming signal selection, and spectrum monitoring [1]- [2]

In wireless communications, blind signal classification and parameter estimation

can be used to obtain basic signal information such as modulat.ion type and symbol

timingsoas to facilitate the effective design of receivers. Moreover, blinclclassification



and estimation task can also improve the transmission efficiency by reducing the data

overhead and training sequence. These advantages make blind signal classification and

parameter estimation very attractive for software defined radio (SDR) application [3]

In the SDR system, the hardware is controlled by internal software so that it is able

to adjust its parameters according to the radio environment and support various

processing functions. It is highly desirable that the receiver can perform its functions

by extracting the appropriate information from the received signal, e.g. modula.tion

type, coding rat.e, channel bandwidth, and antenna configuration

Another important application for blind signal classification and parameter esti­

mation is in cognitive radio (CIl) [4]. Recently, the progressively increasing demand

for radio communications services has aggravated the problem of spectrum scarcity

The observation that many of the licensed spectrum bands are, on average, under-

utilized [5] has led to the notion of the CRasa way of resolving thespectrulJI scarcity

problem. The key idea is to allow CR users access unutilized channels (spectral

whitespace) allocated to the primary (inculJlbent) users, if they do not cause harmful

interference. The ability of a CIi. to dynamically adapt to the radio environment is

critically dependent on speetrum sensing and awareness [4]. These functions involve

signal r1(~t.ect;ion, classificat.ion, and paramet.er estimation. By c1assif)ring t.he lJIodu-

lation type or estimating important parameters of the transmitted signals of primary

users, Cn. users arc able to obtain the knowledge of spectrum occupation

mind signal classification and parameter estimation has been extensively stud-

ied on various types of modulation schemes. The vast majority of research focus on

single carrier linear modulations such as phase shift keying (PSI<) [G] and quadra­

tme amplitude modulation (QAlVl) [7], orthogonal frequency division multiplexing

(OFDM) [8]- [9], and frequency shift keying (FSK) [10]- [21]. Various appwaches

have been developed to extract the important signal parameters such as modulation



order, ~ymbol timing, canier frequency, ~ignal bandwidth, etc. In general, blind ~ignal

classification and parameter estimation is very challenging, particularly in environ-

Illent~ involving a low ~ignal-to-noi~e ratio (SNR) reginle, ~hort observation period~,

fading channel condition~ and rclaxed a pr·iori information

In this thesis, we focus on the blind signal classification and parameter estin13tion

of FSI< and lI/lSK signals. Although classification of FSK signals arc extensively

~tudied, most of work only considered the additive Gaussian white noi~e (i\WGN)

channel condition. Moreover, very little work has been canied out on FSl< signal

parameter estimation and MSK signal classification. Thus, it is our goal to develop

c1as~ificationand parameter estimation algorithms for FSK and MSK signals in fading

channels which docs not require prior knowledge of received ~ignals

1.2 FSK signal classification

Due to its easy implementation and widespread u~age in legacy communication~ sys-

teJll~, the frequency ~hift keying (FSK) modulation continue~ to be a COlnlnon choice

for communication equipment~, e~peeially in the very high frequency (VHF) and ul­

tra high frequency (UHF) band~. Con~iderablc re~earch work has been conducted to

explore the FSl< signal classification, which can be grouped into two broad categories,

likelihood-based (L13) and feature-based (F13) methods. The L13 approach is ba.~ed

on the likelihood function of the received signal usingalikelihood ratio test for the

classification decision, whereas the F13 approach utilizes the existence of the extracted

features of received signals to identify the modulation type.

The L13 approach i~ investigated in [10]- [11], in which a higher-order correlation

F13 algorithm is also jointly considered with the L13 method. Signal parameter infor-

Illation ~ueh a~ symbol rate, tone frequency spacing, and signal and noise power~, i~



required. A wavelet tran~form (WT) FB method i~ propo~ed in [12] Thi~ require~

symbol timing recovery to achieve an acceptable classification performance at lowel

SNRs. An FB method based on the mean of the complex ~ignal envelope i~ pre~ented

in [13], however, ~ymbol timing recovery i~ abo required. A Fourier tran~form i~

employed in [14] to clas~ify FSK ~ignab. Fir~t-order cyclo~tationarity wa~ utilized

for amplitude modulation (AM) and FSK signal detection and classification in [15]­

[17]. In [18], FSK signals arc identified based on the zero-crossing sequence. Anothel

algorithm that classifies FSK signals versus other signal classes, such as PSI\:, is stud­

ied in [19] by employing the information provided by the in~tantaneou~ frequency

1I0wever, carrier recovery i~ required for the algorithm to function

Channel cffect~ may have big impact on ~ignal cla~~iricaLion and parameter e~-

timation, particularly in terre~trial environment~. An additive white Gau~~ian noi~e

(AWGN) channel i~ con~idered in [IU]- [I!)]. Cla~~ihcati()n of FSK signab in Rayleigh

fading channeb i~ ~tudied in [20] ba~ed on the LB approach, by a~~uming known

~ymbol timing. When the timing information is unknown, the likelihood function i~

averaged over th(~ tilning offset, which inevitably increases the <Olllputational <on 1-

plexity. In addition, the ~ymbol period ~till need~ to be known, and the performance

is sensitive to a carrier freCIuency offset. An instantaneous freCIuency FB method is

proposed when the FSK signals arc afrccted by fading [21]; however, it reCIuires the

knowledge of the tone frequency ~paeing and ~ymbol period

1.3 FSK signal parameter estimation

For FSK ~ignab, tone frequency ~pacing; and ~ymbol period arc two ilnportant pa-

rameter~ for further proce~sing. In the previou~ studies, not much work has been

conducted on tone frequency ~pacing estimation. A Fourier tran~form based method



is proposed in [14], where the tone frequency spacing is calculated according to the

distance between spectrum peaks

On the other hand, WT-based methods for FSK signal symbol period estimation

have been studied in [22]- [24]. By utilizing WT to locate the transients produced

from frequency changes and the separation between transients, symbol period can be

estimated.

In [22], the WT magnitude is autoconelated to rcdncc the noise and exploit

the periodicity so that the peaks from transients become apparent. The separation of

peaks provides the possibility of symbol period estimation. This algoritilln is improved

in [23] by taking the Fourier transform of WT magnitude before estimation. i\ftel

applying the Fourier transform, significant peaks arc obtained in the spectrum which

provides a more accuracy estimate of symbol period. 111 [24], the carrier frequency of

received signal is moved to zero before WT and therefore obtains a better estimation

performance. However, prior knowledge of canier frequency is required

1.4 Joint classification of FSK and MSK signals

Continuous Phase Modulation (CPM) systems have generated great interest due to

their bandwidth efficiency and constant-envelope property [26]- [27]. As an important

form of CPM, minimum shift-keying (MSK) scheme is widely used in wireless COIII-

lIlunication systems. Thus, algorithms which can effectively identify 1IISK signals arc

required in various applications [28]-[31]

In [21)], a decision-theoretic approach is proposed to classify diflcrent digitally

modulated signals including MSK signals. A set of key features arc considered at the

rlassifi<,r, surh as the st.andard d<,viation of t.lll' nOrJnali",ed instant.ancous frequcnry

and the maximum value of the power spectral density (PSD) of the normalized in-



btantaneous frequeney. Since MSI< signals have less freqllencycolllponents than FSI<

signals, the PSD of instantaneous frequency for MSI< signals is less than that of PSI<

signals. This feature can be utili7.ed to distinguish MSI\: and FSI< signals. Allothel

method is proposed in [29], which utilizes the instantaneous amplitude to separate

FSI< and IvISI< signals from linearly modulated signals. By examining the peaks in the

spectrllm, MSI< and FSI< signals can be distinguished. The algorithm proposed in [30]

calculates the spectral cOtTelation of the received signals for MSKsignal classificatioll

based on the position of spectral peaks.

1.5 Thesis objective

The drawbacks of the previously proposed work for FSl< and MSK signal classification

andparameterestiJnationmakeitnecessarytodevelopmoreefficientalgorithmswhich

are able to achieve a reasonable performance at low SNRs, using short observation

periods, under the fading channel conditions, and with relaxed ap'r'ior'i information.

The first objective of this thesis is to investigate the cyclostationarity of FSI< and

MSK signals. We study the first-order cyclostationarity of FSK and ;vISI< signals in

particular, under the fading channel conditions, and we extend the study to second­

order cyclostationarity. To the best of our knowledge, there is not such work catTied

out for thestudyofsecond-ordercyclostationarypropertiesofFSI< and MSI< signals

Tile second objective of this thesis is to develop blind classification and param-

eter estimation algorithms for FSI< and lVISI< signals based on their cyclostationary

properties. The proposed algorithms do IIOt require pre-processing such as tinlingand

catTier recovery. The first-order cyclostationary plOpeltiesofFSI< si/!;nals arc IIsed 1"01

PSI-( signal classification and ton,~ frcqu'''lcy spacing cstillJation. Classificat.ion and

estimation tasks are ca.rried out jointly. Besides tone frequency spacing, symbol pe-



riod is also an important parameter for FSI< signals. Therefore, we further explore the

second-order cyclostationary properties of FSI< signals for symuol period estimation

By combining the first- and second-order cyclostationarity of FSI< and 1\ISI< signals,

CL joint FSK and MSI< classification algorithm is proposed. The perfolTnCLnce of the

proposed algorithms arc evaluated usingextensivesimulationsandexperimentftl tests.

1.6 Thesis organization

The rest of the thesis is organized as follows

In Chapter 2, the signal model and cyclostationarity of received FSI< and 1\'ISI<

signals arc introduced. The FSI< signal model affected by facling channels and ad­

ditive Gallssian white noise is presented. Based on the proposed signal model, the

first- ami second-order eyclostationarity of received FSI< signals arc obtained, includ­

ing time-varying moment, cyclic moment, and cycle frequencies. The model of the

received MSI< signal is then presented, and findings on its first- and second-ordel

cyclostationarity arc also given.

In Chapter 3, algorithms for FSI< and MSI< signal classification and FSI< signal

parameter estimation arc proposed. Based on the properties of first-order cyelo­

st.ationarity of FSI< signals, FSK signal classification and tone frequency est.imation

algorithm is proposed. The modulation order of FSI< signals can be determined based

on the number of detected cycle frequencies (CFs), and the tone frequency spacing can

be calculated according to the position of CFs. Then, the properties ofsccond-ordcr

cyclostationarity of FSI< signals arc developed. The absolute value of the second­

order cyclic moment at zero CF has a series of spcctrum peaks, and the peak pattern

changes when the delay equals the symbol period. Based on this property, the FSI<

signal symuol period estimation algorithm is proposed. F\rrtherJnore, by comuining



the first- and second-order cyclostationary properties of FSI< and :VISK signals, a joint

FSr\: ami MSr<: classification algorithms is proposed

In Chapter 4, MonteCarlosinlulationsareconductedtoevaluatetheperformance

of each proposed algorithm. Simulation results show that the proposed algorithms

provide reasonably good performance even nnder short observation period, low SNRs,

and in fading channel conditions. The performance can be further improved by ex­

ploring the spatial diversity at the receiver side. Moreover, experimental t'C:;ults arc

also given for FSI< and MSK signal classification and FSI< tone frequency estinIa­

tion. As expected, the experimental results match well with those obtained throngh

simulations

Finally, the conclusions and suggestions for future work arc provided in Chaptel

1. 7 Major contributions of the thesis

The nIajor contributions presented in each chapter arc

• Chapter 2: Analytical expressions of first- and second-order cyclostationarity

for FSI<: and MSK signals affected by fading.

• Chapter 3: (1) First-order cyclostationarity based FSK signal classification and

tone frequency spacing estimation algorithm. (2) Second-order cyclostationarity based

FSI< signal symbol period estimation algorithm. (3) Joint F'SI< and l'vISI< signal

classification algorithm.

• Chapter 4: Performance evalnations of the proposed algorithms through com­

JluLer simulations. Evaluation of PSI< and MSK classification performance and PSI<

signal tone frequency spacing using laboratory experiments
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Chapter 2

Signal models and corresponding

cyclostationarity

2.1 Introduction

In thi~ chapter, we investigate FSI( and MSI< ~ignab The former i~ nlainly u~ed

in VHF and UHF band~, and it~ advantage~ such il~ eil~e of implementation and

abundant legacy of equipments make it still common u~ed in varioll~ application~

The latter i~ a eontinuou~ pha~e frequency ~hift keying signal, which i~ bandwidth and

C'nergyefficient.. In the following ~ection, we fir~t present the model of FSI< signab, and

then study their fir~t- and second-order cyclostationarity. Then we present the model

of MSl< ~ignab, their fir~t- and ~econd-order cyclo~tationarity. The cyclo~tati()nary

propertie~ of FSl< and MSI< ~ignal~ will be further exploited in Chapter 3, where we

flroPOS(~ signal rlassifiration and panl.lnd,cr cst.inlation algorithnls

10
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2.2 FSK signal model and its cyclostationarity

2.2.1 FSK signal model

The received signal affected by block fading and additive Gaussian noise can be ex-

pressed as

(2.1)

where a and ¢ represent the amplitude and phase introduced by the channel, re­

spectively, 6.fc is the frequency ofFset, Si is the data symbol transmitted during the

ith period, which takes values from the alphabet All = {±1,±3, ... ± (O-I)}, with

equal probability and \l denotes the modulation order, frl equa.ls half of the tone

frequency spacing, T is the symbol period, 'U.T(t) is the signal pulse shape function,

which eqnals 1 over the symbol period and zero otherwise, and w(t,) is thezcro-nle,ul

additive Ganssian noise. Following proofs arc based on the assumption that l =j;,T,

l integel

2.2.2 First-order cyclostationarity of FSK signal

Given the first-order cyclostationmity of the signa.l T(t), its first-order mOlllentlll, (t) =

E{l·(t)} is an (almost) periodic function of n, which can be expressed as a Fouriel

series [32],

ih,(t)=~M.,.(o:)cj27TUI (2.2)

llere E{.} denotes the expectation operator, M,.(o:) is the first-order cyclic moment

(CM) at the cycle frequency (CF) 0', and fi, = {a : M,(o:) "* O} represents the set of

first-order CFs. The first order CM is defined as

1\1[,(0:) (23)
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By following the approach presented in [17], the first-order Ci\[ of the FSI< signals

affected by block fading can be obtained as

(2.4)

with the CFs belonging to the set

Ii: ={ex. ex =qr- I 1;1 + 6.1cf.- I
, q =±I, , ±(O - 1)1, 1= j~JT, 1 inteq(')} (25)

Notc that thc hrst-ordcr CM is Z(~ro at fn~qucnci(~s otlwr than thc Cfs. frolll till'

ahovc crjuation, w(~ furth(~r notc that thc nunI!wr of hrst-ordcr CFs is crjual to two.

four, and eight, for 2-FSK, 4-FSK, and8-FSI< signals, respectively

2.2.3 Second-order cyclostationarity of FSK signal

For a cyclostationary process T(t), the second-order time-varying moment is given

by [32].

TII.,(t.,T)=E{T(t)T'(t-T)} (26)

Here, T is the time delay and * represents the conjugate operation. As T(t) is a

cyclostationary process, 111.... (1., T)2,1 accepts a Fourier series with respect to time t,

8s[32]

m.. (t.T)=L:flif.,.(f),T)e)2r.(JI,
pEl'\.

(2.7)

where t.he Fourier coellicient M.,(I3, T) is the second-order CM at cycle frequency (CF)

(J, and h. = {(J. M,((J,T) *O} represents the set of second-order CFs. For the received
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FSI< signaJl, thc sccond-ordcr timc-varying moment, CM, and set of CFs arc givcn in

(2. ), (2.9), and (2.10), respcetively. The proof is subsequently providcd

XU,T(t - iT)u.T(t - (i -I!)T - TO)'

"'eJ;;2"'!cT L.j L'~=l L~=I ej2~(i;,,,-i;,,)f,,(t'-'iT)

ITI <T,

(28)

1i·={~li,iTltegel.,i\I,(O'.T)*O},

ITI<T,

(2.9)

(210)

lllcrc wcconsidcl' only the signal component. The noiscconlribution needs to be added to the

fi"alr"s"lt
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In these equations, j.1 equals -1 if l' < 0, and 1 if l' <' 0, S", and sn are inc!epen-

dent and identically distributed (i.i.d.) random variables, drawn from the alpha-

bet AI! = {±1,±3, ... ± (D -I)}, UI(o:) and U2 (o:) are the Fomier transfolllis of

[/.T(t)'II.T(t -TO) and ·u,'r(t)'UT(t+j.1T-To), given respectively as

Proof of (28), (2.9), and (2.10)

By substituting (2.1) in (2.G), one ca.n write the second-order time-varying moment

of the received FSl( signal as

The delay l' can be considered as l' = pT + TO, with p = rTIT1, if l' < 0, and p =

[TITJ, if l' <' O. From (2.13), one can notice that the none-zero values of the product

·[/.T(t -'iT)'UT(t - kT-T) can lead to non-zero m"FSK(I.,T). Furthermore, one can see

that this product is non-zero in the following cases: 1'0=0 (Figure 2.1) and k='i-p;

TO < 0 (Figme 2.2) and either k = 'i -p or k = 'i -p+ 1; TO> 0 (Figure 2.3) and eithel

k ='i-POI' h: ='i-p-l. By applying the above relationsiJips between i and h' to (2.13),

one can further express the second-order moment of the received FSI< signal as
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I s,

Is;.

2.1· Relationship between the transmitted symbol and delayed symbol when

Figure 2.2: Relationship between the transmitted symbol and clelayed symbol when
T<O

~IS;I"'ISIS"I'"
S, 5: SJ ... I s, I SH I S,_: I

T

Figure 2.3 Relationship between the transmitted symbol and delayed symbol when
T> 0

mTFS,,(t,T) = (214)
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where J.L equab -1 if T < 0 and 1 if T ~ 0 By con:;idering that the data :;ym-

bob 5'i, S;-,O 5i-l" and 5i-I'-I", are i.i.d. random variable:; with value:; drawn from

All = {±1, ±3, ... ± (12-1)}, the :;tati:;tical average in (2.8) can be expre:;sed, and aJtel

taking the Fourier tran:;form of (2.8) and using (2.7), one can :;traightforwardly obtain

(2.0) and (2.10). Note that U1(a) and U2 (a) in (2.9) are the Fomier transform:; of

the product:; 'I1T(t)'I1T(t - TO) and 'U'T(t)'U'T(t + fJ,T - TO), which appear in (2.8).

2.3 MSK signal model and its cyclostationarity

2.3.1 MSK signal model

The received rvISI< signal affected by block fading and additive Gaussian noise can be

expre:;sed as

(2.15)

5i i:; the data :;ymbol transmitted during the ith period, which take:; value:; from the

alphabet AA/sl,' = {-I, I} with equal probability, and h = 2r1T i:; the lnodulation

index which equals ~ for rvISJ( :;igna.l

2.3.2 First-order cyclostationarity of MSK signal

ArcOidinp; t.o (2.2) and (215), t.rw hrst.-OId()r IIIOnl()nt of tht' rcC(,i\wl MSI< sip;nal is

given by
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A~ s" E AMSf( ={-I, I}, it i~ obviou~ that E{ej~7rS"} =0, which illlplie~ the nullity of

TI/,'A/8J«t). Thus, the MSK signal does not exhibit first-order cyclostationarity.

2.3.3 Second-order cyclostationarity of MSK signal

For the received MSJ( signal, the ~econd-order time-varying moment, CiV1, and set of

CF~ are given in (2.17), (2.18), and (2.19), respectively The proof is subsequently

provided

ollwrWlSC,

(2.17)
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a'2 eJ'}.r:;t:J.j/·.,.

-4'-1'-

0,

Proof of (2.17), (218), and (219)

o/'/wl"wise,

(2.18)

(219)

l3y substituting (2.15) in (2.G), one can write the second-order time-varying moment

of the received MSJ< signal as

As in (2.20), none-zero 11I""8,,(t, T) is obtained when the product 'uT(t.-iT)u'T(t-kT-

T) is none-zero. This is similar to the proof for FSl< signal second-order time-varying

nlonlent. Thus, we apply the saille relation between i and /,; in Section (2.2.3): TU =0,

and k =i -]J; TO < 0, and either k = i -]J or k =i -]J+ 1; TO> 0, and either k = i -]J 01

k =i -p -1, and (2.20) can be further expressed as
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T<O,

(2.21)

T;::O

Dy eon:;idcring that data :;ymbob Si arc i.i.d random variablc:; and E{e±j~"",} =0,

thc:;ccond-orclcr momcnt ofthc rcccivcd MSJ< signabean bc furthcr writtcn il:;

TsITI<2T,

ot./i.e-/'wisC'

(222)
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By con~idering that the data symbols s, are i.i.d. random variables with values drawn

frorn AA/s/,· = {-I, I}, (2.17) can be easily obtained, and after taking the Fouriel

transform 01'(2.17) and using (2.7), one can straightforwardly reaeh (2.18) and (2.19)

2.4 Summary

In this chapter we present the mathematical models of the FSI, and MSJ< signals

Th[~se arc' ronsidered t.o be affect.ed by block fa.ding, a.ddit.ive Gaussian noise. and

frequency offset.. Furt.hermore, t.hc analyt.ical cxpressions for thc first.- and sccond­

ordcr cyclic momcnts and associatcd cycle frcqucncies of the FSI< fwd IVJSK signals

are obtained



Chapter 3

Proposed algorithms

3.1 Introduction

The cyclostationary properties of signals have been explored for nlOdulation rlassifi-

cfltionand parall1eterestimation for more than two decades [lG]-[171. The advantage

of cyclostationarity-based approflches is that they do not require preprocessing. such

as timing and carrier recovery. In this chapter, we exploit the c~'clic statistics of FSI<

and ;ISI< signals to propose signal classification and parameter estimation fllgorithllls.

The proposed algorithms are able to classify received FSI< and IVISJ< signals affected

by block fading flnd additive Gaussian noise, as well flS to estimate the tone frequency

spacing and symbol period of FSI< signals

3.2 First-order cyclostationarity based FSK signal

classification and tone frequency estimation

The first-OJ'del' C'M magnitude of received FSI< signab is shown in FigUl'e. J.1. As in

the figUl'e, peaks of Irl/;'«ai)1 are obtained at CFs, and insignificant magnitudes al'e

21
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itt frequencies other than the CFs The number of first-order CFs is equitl to two,

four, and eight, for 2-FSI<, 4-FSI<, and 8-FSI< signab, respectively. The proposed

itlgorithlll in this section rclieson the number and position of the first-order CFs. The

signitl is applied to the algorithm input after being normalized to the root square of

the received power. Accordingly, the nOrllJalization factor needs to be included in the

previous expressions for the first-order CM. From (2.5), the following properties of

the first-order CFscan be observed

• (PI) The number of CFs equals the modulation order;

• (P2) The distance between adjacent CFs equab the tone frequency spacing;

• (P3) The distance between any two CFs is an integer multiple of the tone freqnency

spacing. We refer to this property as to the integer multiple relationship (IMR).

A flowchart of the proposed algorithm is depicted in Figure. 3.2; this consist.s of six

steps, as follows:

Step 1: Selection of candidate frequencies. Since the CIvl magnitudes at CFs arc sig­

nificant, the frequencies for which the CM Illap;nitude exceeds cutoff valul' \1;'0 [17]

itreselectedascandidates. lfthe nurnber of selected citndidates, N,(,· is below 2 (i.e.,

the minimum FSI< modulation order), an adaptive procedure for setting 1'-;0 based on

the bisection method [33] is triggered. This procedure ends when a desired number of

candidates is selected, which equab the maximum expected FSI< modnlation order,

Step 2: Local mitximum refinement. We retitin the adjacent eandidittes which arc lo­

cated at a distance greater than a minimum allowitble distance d,t·. This is determined

using the property (P2) provided above, and equab the ratio between the single-side

signal bandwidth and D",ax' For adjacent candidates placed at it ctistance below d,(,',

the candiditte with the higher CM magnitude is retained
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Figure 3.2: Flowchart of the proposed algorithm

StelJ 3: llvlR Lmsed refinement. The distances bctwecn lJairs of candidate frequencies

selected in StelJ 2 are calculated, and the IMI1 is verified (see IJlOlJerLy (P3) above)

Il' the IMR is satisfied, the coneslJonding frequency candidates are retained. PurLher-

more, based on the fact that CFs are separated by cqual distances, the position of

missing frequcncies can be inferred, and these are included as candidates. If the CF

IJ\!JR propcrty is not satisficr! by any ofthc candidatc frcfJucncics, Stcp 3 is skipp(xl

Step 4: Application of a cyclostationarity test. The cyclostationarity test proposed

in [17] is used to check if the previously selccted candidate frequencies arc CFs. A

first-order eM based statistic value is estimated for each candidate C'F' and compared

to a threshold, r which is determined from the probability of declaring that a can­

didate is a CF when it is not (PJa ). 1£ the statistic value excecds the threshold, the
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corresponding candidate is declared a CF

Step 5: Modulation order determination. The deeision on the FS!< modulation ordel

is based on the number and position of the first-order CFs. The received signal is

decided to be 2-FSK when two first-order CFs appearing on different sides of the crn­

tral frequency are detected. Further, the received signal is considered to be O-FSK

(0 = 2"',0 ;:: 4) if at least 2,,,-1 + lout of the 0 first-order CFs are detected and

the distances satisfy the ]MR condition. The output is either the nlodulation order

or "Cannot decide." The latter decision is made if either the CF number or the CF

position conditions are not satisfied

Step 6: Tone frequency spacing estimation. The minimum distance between adjacent

CFs is calculated. Note that for O-FSI< (0 = 2''',0 ;:: 4) signals, although sonle CFs

Illay be missed, since at least 2""-1 + 1 CFs are utilized, the minimum dist<'111ce between

adjacent CFs provides the tone frequency spacing

3.3 Second-order cyclostationarity based FSK sym-

bol period estimation algorithm

From (2.9) one can notice that the magnitude of /IIf,.(a, T) depends on a, T, ASh UI (.),

and U2 (.) For example, for a=O, IM,(O,T)I is

ITI<T,
IM,(O,T)I= (31)
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It is noteworthy that IM,(O,Th,11 exhibitspeako ifeitherej27T,',,J"To=loreJ27T,,,j,,To =-1

for .'i", n=1,2,«" 0; this is obtained for TO = u(2fri)-I, v integer. We can further express

(3,1) fordiAerent modulations, For example, one can easily show that for 2-FSK (3,1)

becOlnes

(32)

Figure, 3,3 shows IM2_PSI«O,T)I/IJ\;J2_PSI«O,O)1 versus T, with the signal paranletcrs

as provided in Chapter 4; this confirms the positions of the peaks, The proposed

symbol period estimation algorithm relics on the existence of peaks in 1i\l,,(O,T)I,

at delays T = v(2fd)-I, v integer, i,e" Pu = IM,(O,v(2fd)2,\)I, For sllch delays,

by using (211) and (2,12), one can find that U1(O) = T -ITol, U2 (O) = ITol, and

U1 ((';" - '; .... )fd) = U1 ((5" - S,,,,)fd) =°rlltless 5" = S"" and

(33)

If Iv(2fd)-11 < T, the peak value decreases with increasing Iv(2Id)-II, whereas if

lu(2f~I)-1 ~ TI, the peak values is a constallt equal to 0.2 /0, It is noteworthy that

thr first constant value of the p(~aks is at.t.ained at delay T, Thus, by distinguishing

thr pattern of Iwak values, we rail find the position of the first constant peak vallie,

and cOllsequently obtain the symbol period estimate

The leader-follower clustering approach [25] is employed to distinguish diA'ercllt pat-
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l11"o,,,;t,,,,I,, nt' tlw?_P<,1( ~ignal ~eeond-order CM at zero CF,

tern~ of the peak value~ Fir~t, the la~t obtained peak value i~ ~eleeted H~ a clu~tel

cenkr. If the Jifl'erence between a peak value anJ the clu~ter center i~ Ic~~ than a

pre~et thre~hold E, thi~ value i~ categorized to belonging to the eon~tant peak value

pattern, and the elu~ter center i~ updated by the mean value of the exi~ting llIember~

of thi~ pattern, This procedure eontinue~ until no peak value~ can be categorized

to the elu~ter center. According to (3,3), the eon~tant peak value pattern ~tart~ at

ITI = T, Thu~, we e~timate the symbol period by calculating the llIinirnulJ1 ITI of the

peak value~ belonging to thi~ pattern The proposed algorithm i~ formally ~tateel

below

Step 1: The received signal is down-eonverteel, banel-limiteel through filtering, over-



28

sampled, and normalizcd by thc squarc root of thc rcccivcd signal powcr I

Stcp 2: Estimatc thc absolutc valuc of thc sccond-ordcr CM of thc rcccivcd sig-

mt.l a.t zcro CF ovcr a.largc cnough dclay rangc, and thc pcak valucs a.rc rctaincd,

Pu = INI.,(O, v(2f,,)-1 )1, whcrc v=O, 1, 2, ... , N - 1, with N as thc numbcr of obtaincd

pcaks.

Stcp 3: Initiali:cc thc clustcr ccntcr to thc last obtaincd pcak valllc, Pr,' = PN - I , and

add PN - I into thc sct of constant pcak valuc pattcrn, ee, which is initializcd as C{} =4)

Stcp 4: Calculatc thc minimum diffcrcncc bctwccn thc clustcr ccntcr and all thc pcak

valucs, cxccpt for thc mcmbcrs in ctf',

(3.'1)

Stcp 5 H d; ~ c, add P, into thc sct ctf', updatc thc clustcr ccntcr by thc Incan

vailic of thc mcmbcrs in ee, thcn go lJack to stcp 4. If d; >c, go to stcp G

StcpG Thcsymbol pcriod ofthcrcccivcd FS1< signal iscstinmtcd as

(3.5)

3.4 Joint classification of MSK and FSK signals

Fronl (2.5) and (2.16), ont: can not.ict: t.hat. t.he nUlllber of first.-order CFs for t.he FSl<

signal equals t.he modulation order, whereas thc MST< signal docs not have first.-onlcl

CFs. Thus, it is straightforwa.rd t.o dist.inguish 1'v1S1< and FSl< signals according to
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Figure 3.4: Normalized magnitude of the MSl< :;ignal :;econd-order CM at zero CF.

the number of first-order CFs. However, the nullity of first-order cyclostationarity

for MSI( signal is obtained when considering an infinite number of symbols. If the

observation period is short, the received MSK signal may also exhibit significant values

in the first-order eM magnitude, a.nd therefore leads toamisclassification. Thus, we

additionally apply the second-order cyclo:;tationa.ry propcrtie:; of the received MSK
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and F'SI<: signals to improve the classification accuracy. According to (2.18), we have

(3G)

ol.hen1Jise,

When compared with IM.,."S!< (0, T)I, which is introduced in the previous section, 1M,.",,, (0, T)I

docs not exhibit a series of constant peak values when T ~ T (sec Figure 3.4). Such

a diflerence is used to further distinguish MS1< and FSI< signals. The flowchart of

the proposed joint classification algorithm is shown in F'igure3.5; this consists of two

stages

In the first stage, the first-order cyclostationarity 01 the received signal, which is

normalized to the root square of the received power, is investigated. As in Figure

3.S (L), we first select candidate frequencies Lased on a preset cutoff valuc. The

following; steps, such as thc Local n!HXillIUIII rcfillclllcnt, IMll based refilleillcllt. alld

Cyrlostatiollarity test, further eX,lIllille if t.he sclerted ralldidates are n:al first-ordl:J

CFs. The received signal is considered to be O-FSI< (0 = 2''', 0 ~ 4) if at least 2",-1 + 1

Ollt of the 0 first,-order CPs arc det.erted and the distanres satisfy the [MR rollditioll

Otherwise, the proposed algorithm goes to the second stage

111 the second stage, we estimate the absolute value 01 the second-order CM of

the received signal at zero CF over a large enough delay range, 1M,."" (0, T)I, alld the

local maxirnUlI1 valuesofIM'Fs,,(O,T)1 arc selected. We take the last obtained local
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maximum value as an initial clustcr center, and usc the Lcader-followcr clustering

method; which is introduced in Section 3.2 [25], to group the localnlaximulll values

which arc close to the cluster center. Then, we check if the neighbor distances between

grouped local maximum values havelMR.

The received signal is considered to be Il-FSK (11 =2''',11 ~ 4) if at least 2",-1 + 1

out of the 11 first-order CFs arc detected in the first stage and their distances satisfy

the lMH. condition (sec Section 3.3). A received signal is considered to be 2-FSK if

t.wo first-order CFs appearing on different sides oft.he central frequency arc det.ected

in the first stage and t.he neighbor dist.ances between grouped local rnaximum values

in the second stage have the JIvIH. property. A received signal is considered to belVISI(

signal if the LVIH. property is not satisfied in the second st.age. The case "Ot.herwise"

in the first stage occurs under t.he following condit.ions: less than t.wo first-order CFs

arc detected, two first-order CFs appearing on t.he same side of t.he central frequency

me detected, and more than two first-order CFs wit.hout. ll1In. propert.y arc detected

For such case, if the neighbor distances between groupedlocalmaximull1 values have

lMH. in the second stage, the output of the algorithm is "Cannot decide"

3.5 Summary

In this chapter, we exploit thecyclostationary propertiesoftheFSK and MSKsignals

t.o propose t.hree algorit.hms for signal classification and parameter est.imat.ion. Based

on first.-order cyclost.at.ionarit.y, we det.ermine t.he modulat.ion order and the tone fre-

quency spacing ofFSK signals. Based on the second-order cyclostationarity, we can

fmLher est.imat.e t.he symbol period or FSK signals. Moreover, by combining t.he first.­

and second-order cyelostationarity, we distinguish FSI( and MSK signals
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(n)Flowchart.ort.heproposedclassificat.iollalgorit.hll1

(b)First.-ordercyciost.at.ionarit.ybasedclassificat.ion (c) Second-order cyclost.at.ionarit.y based
classification

Figure 3.5: Joint MSI< anel FSI< classification algorithll1



Chapter 4

Performance of proposed

algorithms

4.1 Simulation setup

We con~ider NISI< and FSI( ~ignals, rl=2, 4, 8, J" = liT, with the ~ingle-~ided band­

width equal 4 kHz (=rljT). The ~ampling rate f., is 50 kHz, and the frequency offset

6.fc equals 250 \-III. A Butterworth low-pass Riter of order 9 is used to remove out-

of-band noi~e at the receiver. The -JdB bandwidth of this filter i~ ~et to 4 kHz, and

the in-band SNR is con~idered. Unle~~ otherwi~e mentioned, the ob~ervation period

i~ 1 ~ec, which corre~pond~ to 2000 MSK ~ymbols, 2000 2-FSK ~YJrlbols, 10004-FSI(

symbols, and 500 8-FSI< ~ymbols. The channel i~ Rayleigh fading with an average

power of 1. for the c1as~ification and estimation algorithms, the performancc is in

t,"IIIIS of probability of correct. classificat.ion, Pc(SI-FSKID-FSK) or Pc(lVISKIMSK),

and probability of correct e~tiJllation, Pee; the~e arc calculated ba~ed on 1,000 Monte

Carlo trials.

33
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4.2 Performance of the first-order cyclostationar-

ity based FSK signal classification and tone

frequency spacing estimation algorithm

4.2.1 The magnitude of the first-order eM estimate

Thr: rnagnitudr: of thr: first-ordr:r Ci\f (~stirnatr: of 8-FSK signals is plottr:d in Figurr:.

4.1 to show the candidate frequencies fordiverseSNl1s. It is observed that the relevant

peaks, which correspond to the CFs, arc more predominant when conlpared with the

noisy Aoor as the SNR increases. Tn addition, one ca.n notice that for a vcry low S\R

(e.g., -10 dB), the initial preset cutoff value docs not allow the selection of f'nough

candidates (sec Figure. 4.1 (a)). In such a case, the mechanism to adaptively change

the cutoff value is triggered, as described in the selection of candidate frequencies step,

in Section 3.2. At higher SNRs (e.g., -5 dB) not all first-order CFs arc self'ctcd (sec

Figure. 4.1 (b)); however, missing CFs can be rccovered based on the CF properties

mentioned in P2 and P3 (sec Section 3.2). As the SNR. increases further, (e.g., 0 dB)

eight CFs can be exactly selected (sec Figure. 4.1 (c)), and a further incrcfl.-;e in the

SNR.can result in more than eight candidates (sec Figure. 4.1 (d)). In the latter case,

false ca.ndidates arc rejected in the local maximum refinement step (sec Sf'ction 3.2)

4.2.2 Initial cutoff value setup

Figure 4.2 shOlvs the probability of conect classification as a function of the initial

cut-off value, Yeo' Note that when Veo is low, the proba.bility of correctly classifying

2-FS1< and 4-FS1< signals increa.-;es with increasing Veo (sec Figure. 4.2 (a) and (b)),

while the probability of classifying 8-FS1< signals docs not (sec Figure. 4.2 (c)). This

ca.n be explained as follows. For a reduced Yeo, more CF candidates arc selected in
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Figure 4.1: The magnitude of the first-order Ci'v[ estimate of 8-FSI< signals at (a) -10
c113 SNR, (b) -5 c113 SNR, (e) 0 dB SNR, and (dl 10 dB SNIt



3G

the ~election of candidate frequencie~ ~tep (~ee Section 3.2). Tho~e candidate~ which

aIT very close to the CFs arc rejected in local maximum refinement step; however, for

~ignal~ with lower modulation order~ there arc ~till fabe CF candidatc~ which Pfl~~

local maximum refinement, which in turn lead to performance degradation. As \1;."

further increa~e~, performance degradation occur~. Thi~ i~ becau~e, at high \1;" ~ome

of the CF~ arc mi~~ed even when an adaptive Veo ~earch proce~~ i~ u~ed if the nlinimum

number of candidate~ i~ below the minimum modulation order (0 = 2). We con~ideJ

an initial cutofi·value of 0.05, which provides a reasonably good probability ofcolTect

classification for diftcrent modulation types and at diverse SNRs.

4.2.3 Cyclostationarity test threshold setup

Table 4.1 and 4.2 provide the SNI1 required to achieve Pe(O - FSI<IO - FSK)=0.8

and PoCO - FSI<IO - FSI<)=0.9, 0=2,4,8, with variou~ value~ of the thre~hold, r, u~cd

in the cyclo~tationarity te~t of the propo~cd algorithm (~ee Section 3.2). II.~ in the

table~, for increased r, the required SNR tend~ to decrea~e for 2-FSI< ~ignab and

increa~e for 8-FSI< ~ignab. For 4-FSI<: ~ignab the required SNR exhibits a relative

local optimum. Thi~ can be explained a~ follow~. For 2-FSI< ~ignflb, an incolTcct

deci~ion i~ expected when the number of candidate~ pas~ing the cyclo~tationaritytest

of the algorithm exceeds two, and, thus, a higher threshokl is heneficial. On thcothel

hand, an incolTect deci~ion for the 8-FSI< ~ignaJs i~ obtained when an exee~~ivcly high

thre~hold re~ults in the rejection of valid candidate~ when the eyclo~tationarity test

i~ applied. Finally, both scenario~ apply for 4-FSK ~ignal~. We ~elect r = 5.9914 fl~

providing a relatively good performance, Pe(O - FSKIO - FSK), 0=2, 4, 8
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(c)8-FSI<

Pigure 4.2: IJrot,ability o,teol'rect cla,;sification versus the cutoff value for (a) 2-FSK,
(b) 4-FSI<, and (c) signals at various SNRs.



38

4.2.4 FSK signal classification performance

Figure 4.3 plots the probability of correct classification, PJO - FSI<IO - FSI\), 0,

2, 4, 8, versus the SNR. The classification performance improves with increasing

SNR; a probability of conect classification approaches 1 at 2, 9, and 13 dB SNR

for 0 = 2, 4, and 8, respectively. Confusion matrices are provided in Table 4.3

(SNR = 0 dB) and Table 4.4 (SNR = 10 dB). Clearly, there are cases for which the

algorithm cannot make a decision, especially under low SNR conditions. Also, miss­

classification can occur, particularly for higher-order modulations. This is due to the

Iniss-detection of CFs; and higher-order modulations are miss-classified as lower-ordel

modulations. Moreover, Figure. 4.4 plots the 8-FSK signal classification perfollnance

01 the proposed algorithm and that in [171. Clearly, the proposed algorithm bcnefits

signifirantly fronl th(~ exploitation of the CF properties ill the local lnaxinlUll1 and

IMR.rcfincnlcntstcps
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Figure 4.4' Cla~~ification performallce com parboil uetween the plOpo~ed algorit.llill

and that in [17]

In Figure. 4.5, Pc (8-FSI<18-FSK) is shown v<:rsus SNR. for d iH<: r<: II I, obs<:rvatioll

periods. As expected, a longer observation period leads to a better performallee, as

more accurate CM estimates arc obtained. It is noteworthy that a good perforlllallee

is achieved with relatively short observatioll periods.
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Figme 4.5 Classification performance versus SNR for 8-FSI< with differcnt obscrva-

tionperiods

In Figure 4.G, the impact of the Ricean J( factor on the performance of the

proposed algorithm is studied. Asexpected,theperformanceimprovesas1\" increases;

for 1\" -> 00, the performance approaches that in the AWGN channel
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Figure 4.6: Cla~~ification performance ver~u~ Ricean J( factor for 8-F'SI<, at -5 dB, 0

dB, and 5 dB SNR, re~pectively

4.2.5 Tone frequency spacing estimation performance

E~timation of the tone frequency spacing is carried out in the last ~tep of the algo-

rithm, after a decision on the modulation order is made (sec Figure. 3.2). lIence,

the decision on L1lC modulation order affects the performance of the tone frequency

spacing estimate. If the decision for the modulation order is "Cannot decide," then

the algoritllln cannot output an estimate for the tone frequency spacing. For 4-F'SI(

and 8-FSl( ~ignals, a large error in the estimation of the tone frequency spacing conics

from the wrong decision for the modnlation order, e.g., if the deci~ion is l2 = 2 instead

of l2 = 4 or 8. On the other hand, for 2-FSI<, errors in the tone frequency spacing

e~tinlation can also occur when the decision for the modulation order is correct; thi~
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of correct tone frequency ~pacing e~tilllation ver~u~ SNll 1'01

i~ due to the fact that 1MB. property, (P3), mentioned in Section 3.2 doe~ not providc

a ~trict con~traint, unlike in 4-FSJ< and 8-FSI< ~ignab

The probability of the tone frequcncy ~pacing e~timate i~ plotted in Figlll'e. 4.7

vcr~u~ SNR, for 2-FSl<, 4-FSI<, and 8-FSJ< ~ignab. A~ cxpectcd, a bcttcr c~tillli1.tion

perforJnance is achieved for lower orders, as a better classification perfonnanc(~ is

abo achieved in wch a ca~e. Furthermore, re~ult~ in Figure. 4.3 and 4,7 arc clo~e;

this i~ expected, as correct estimation is obtaincd whcn classification makcs right

deci~ion. For highcr modulation order ~ignal~, thc Pce(O - FSI<) i~ ~Iightly grcatcr

than P,(O - FSI<IO - FSl<). Thi~ i~ attributed to the casc~ that lTli~~-dctcctionof CF~

rcsults in wrong classification dccision whcreas the distance betwcen detccted CFs

~till provide~ corrcct tonc frequcncy ~pacing e~timate



44

6
SNR(dB)

//J~
t=

/'//

//
[21/ /

I /
/ l

/
/ f, /

.~.
/ I -B-- 1 sec

08
-3

Q1l 0.9
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Figure. 4.8 depicts the Pce of the tone frequency spacing for 8-FSI( signals with

dif-ren~nt ohservation periods. The proposed estinlH.tor p(~rfonlls well with a n'lativ(~ly

short observation period, and the estimation accuracy improves RS the observation

periodincreRses

4.2.6 Receiver spatial diversity for FSK signal classification

and tone frequency spacing estimation

Spatial diversity can be applied at the receive-side by utilizing the selection combining

(SC) scheme to further improve the performance. The signal at the output of the
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combincr is givcn by

whcrc L rcprcscnts thc numbcr of rcccivc antcnnas, and T'l(t) is thc signal for thc i-th

antcnna, i =1,2, ... , L.

1

~
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~ 092
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Figlllc 4.9: Classilkation pcrfonnancc vcrsus SNR for 8-FSK with onc anu two rcccivc

Figlllc. 4.9 shows thc probability of corrcctly classifying 8-FSI< signals whcn cm-

ploying a singlc rcccivc antcnna and two rcccivc antcnnas with sclcction combining,

rcspcctivcly. As cxpcctcd, improvcd classification pcrformancc is achicvcd whcn cx-

ploiting spatial divcrsity. For cxamplc, a 3 dB SNH gain is achicvcd with two rcccivc

anLcnnas whcn rcaching a probabiliLy ofcolTcct classification of 0.9. Morcovcr, Fig-
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4.10 comparc~ the probability of correct tone frequency ~pacing e~tilJlation fo!

8-FSK ~ignals when u~ing a ~ingle antenna and two receive antenna~ with ~election

combining, re~pectively. I\.~ expected, the performance i~ improve~. Since the com-

biner ~elect the antenna with highe~ received ~ignals power, channel e~tima.tion i~ not

required when u~ing SC.
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-10

SNR(dB)

Figure 4.10: Probability of correct tone frequency spacing e~timation ver~u~ SNR. fo!

8-FSI< ~ignals with one and two receive antenna~.
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4.3 Performance of second-order cyclostationarity

based FSK symbol period estimation algorithm

4.3.1 Setting the threshold value EO

Figure. 4.11 shows the probability of correct estimation, Pce , as a function of the

threshold value E. Note that when E is low, Pce increases with increasing E. This is

because the peak value at delay v(2J,,)-1 =T is less likely to be missed when using a

greater threshold E. However, as E further increases, performance degradation occurs,

since the peak values at delays v(2J,,)-1 < T are wrongly included in the set of constant

value pattern (see Section 3.3 for the algorithm description). We select a threshold

value of 0.05, which provides a reasonable good Pce for dift'crent modulation orders.

Figure 4.1:1: Probability of correct symbol period estirnation versus the threshold

value, E, for 2-FSl<, 4-FSl<, and 8-FSI< signals, at 5 dB SNn
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4.3.2 Symbol period estimation performance

The performance of correct symbol period estimation for different FSI( signals versus

SNR. is shown in Figure. 4.12. The estimation performance improves as the modu-

lation order increases. This is because for higher-order modnlations, the difrcrence

between peak values at /V(2j;l)-11 2 T and those at lu(2f,f)-11 < T is greater than

for lower-order modulations, according to (3.3). Thus, the peaks patterns can be

distinguished more easily, and the pattern clustering is more accurate

Figme 4.12 Probability of correct symbol period estimation versns SNH for 12-FSI<

signals, 12 =2,4,8

Figure. 4.13. shows the estimation performance for 2-FSI< using different observa­

tion periods. As expected, a better performance is obtained with a longer observation

period. Note that a reasonably good performance is obtained with relatively short
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obscrvationpcriods

Figmc 4.13: Probability of corrcct symbol pcriod cstimation for 2-FSK signals vcrsus

SNRwith diffcrcnt obscrvation pcriods.

Figurc. 4.14 shows thc probability of corrcctly cstimating thc symbol pcriod fOI

2-PSK signals wlwlI cmployillg diffcJ(~IIt. nUIlJiwrs of receive ant.ennas wit.h s('lcet.ion

combining. As cxpcctcd, an improvcd cstimation pcrformancc is achiC'ved whclI CIII­

ploying mult.iple antcnnas
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Figure 4.14: Probability of corrcct symbol period estimation for 2-FSI< signals versns

SNH with one and two antennas

4.4 Performance of joint classification algorithm of

MSK and FSK signals

The probability of correct classification, Pc(ili) i=2-FSI<, 4-FSI<, 8-F'SI<, and NISI<,

is shown in Figurc 4.15. As shown in the figure, a Pc=0.8 for lVlSl< signals is obtained

at 2 dB SNR, and Pc approaches 1 at 18 dB SNR.. Although the probability of cor-

rectly classifiying NlSh signals is lowcr than that for FSI\' signals, a reasonable gooe!

performance is obtained
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Figure 4.15: Cla~~ification performance ver~u~ SNR for FSI< and MSI< ~ignals with 1

~ee ob~ervation period

Moreover, Figure 4.16 shows the performance of MSI< signal classification using

diA·erent observation periods. As expected, a longer observation period leads to a

better performance, as more accurate CM estimates arc obtained. Note that the

cfkct of the observation period is more significant for MSI< signal classification than

for FSI( signals. A longer observation period is required for MSI\ signal classification

to obtain a performance similar to for FSI< signals
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obscrvationpcriods.

Figurc 4.17 shows thc MSI< signal classification performance with onc and two

antennas using selection combining. Onc can observe that bcttcr perfoJ'Jnance is

obtained when utilizing reecivc spatial diversity
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Figure 4.17: Classification performance versus SNR for MSK signals with one and

two receive antennas

4.5 Experimental results

4.5.1 Equipment description

4,5.1.1 Agilent N5182A RF vector signal generator (VSG) and signal

studio software

The Agilcnt N5182A RF vector signal generator (Figure 4.18) combines state-of-the-

art liF and digital signal processing to generate RF test signals. This is able to

generate RF signals with a frequency range from 100 KHz to G Gllz; the illternal

bilseband generator has 100 MHz bandwidth and sample rate up to 125 l\llSa/s. The
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Figure 4.18 i\gilent N5182i\ liF VSG.

signal parameterssueh ascarrierfrequeney, amplitude, modulation type, pulse shape,

and symbol period can be adjusted. Users ean also define the generated signal through

the arbitrary waveform generator (AIlB)

There are two approaehes to generate signals. The first one is by using the ll1ulti-

purpose mode of the instrument, where users can sctupsignal characteristics, such as

the modulation type, symbol period, bandwidth, ete. The seeond approach is to use

popular software programs, such as MATLAB, to generate signals and download sueh

data files to the VSG memory. Then, the VSG is then able to generate RF signals

based on the IvlATLAB signals
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Figme 4.19: i\gilent Signal Studio toolkit

In our work, we usc the second approach to generate experimental signals The

i\gilent signal studio toolkit (Figme 4.19) is used to download !V1ATLi\B signals to

the AHB, then using the digital-to-analog convertor (DAC) and up-conversion of the

signal to the carrier frequency.

4.5.1.2 Keithley 2820 vector signal analyzer (VSA) and Agilent V2901A

SignalMeister

The 2820 HF vector signal analyzer (Figure 4.20) is used to analyze received signals;

this has a bandwidth up to 40 MHz, and accepts a carrier frequency frolll 400 Mllz

to G Gllz. The received signal is down-converted to the intermediate frequency, ban­

dlilllited by a low pass filter, and digitized by a.n analog-to-digital converter (i\DC)
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Figure 4.20: Keithley 2820 RF VSA

There are three major funetions of the VSA: speetrum analysis, vector signal

analysis, and signal capture. In our work, we mainly apply the function of signal

capture, which is able to capture a signal waveform with the duration up to 30 seconds

The captured signal data files are compatible with MATLAB. We upload these files

to a personal computer, and apply our proposed algorithms for signal classification

and tone frequency spacingcstimation.

2800 VSA servcs as the signal receiver, and thc SignalMcister (Figurc 4.21) Sig­

nalMeister receiver project (Figure 4.21) is used to operate the signal captme ami

record received signal data in the PC. Here, the block of 2800 VSi\ serves as the

signal receiver, and General Purpose Ix Analysis is able to capture the received signa.l

with a preset sweeping time and receive filter bandwidth.
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Figurc 4.21 SignalMcistcr Softwarc.

4.5.1.3 Hardware setup

In our cxpcrimcntal work, thc cquipmcnts arc conncctcd as shown in Figurc 4.22,

which includc an Agilcnt N5182A RF VSG, an 2820 R.F VSi\, and a pcrsonal COIl1­

putcr. Thc transmittcd signals arc gcncratcd with thc Agilcnt N5182A RF VSG,

and rcccivcd signals arc capturcd with thc 2820 RF VSA. Thc rcccivcd signal is thcn

uploadcd to thc pcrsonal computcr, whcrc wc apply thc proposcd algorithms for clas-

sification and tonc frcqucncy spacing cstimation
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Figure 4.22: Experimental setup

4.5.2 Experimental performance evaluation

We studied FSI< and NISI< classification and FSI< tone frequency spacing algorithms

experimentally. The parameters of FSI< and MSK signals were set up as in Section 4.1

The performance of the algorithms in term of the probability of conect classification

and estima.tion wa.s calculated based on 300 Monte Carlo trials
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Figure 4.23: Simulation and experimental re~ults [or FSK and MSK ~ignal cla~~irica-

tioll

Figure 4.23 pre~ellts the performance for FSK and NISK signal classification A~

the figure shows, the simulation ftnd experimental results arc very close. This incli­

cates that our proposed clftssification is pmctically efficient. Figure 4.24 shows the

performance of the FSK ~iglml tone frequency ~pacillg e~timation As expected, the

~imulatioll ami experimental result~ match
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Figure 4,24 Simulation and experimcntal results for O-FSI< signal tone frequency

spacing cstimation, 0 = 2,4,8,

4.6 Summary

In this chapter, we presented the simulation results for three proposed algorithms

first-order cyclostationarity based FSK signal classification and tone frequency spac-

ing estimation algorithm, second-order cyclostationarity based PSI< signal symbol

period estimation algorithm, and joint FSK and MSI< signal classification algorithrn

Moreover, the experimental results for signal classification and tone frequency spac-

ing estimation were presented; these match the simulation results, which provides

confidence in the design of the algorithms,



Chapter 5

Conclusions and future work

In this thesis, we proposed signal classification and paramcter cstinlation algorithms

for FSK and MSK signals aHected by fading. The first-order cyclostationarily of FSK

signals is investigated. Based on the first-ordcr cyclostationary properties of FSt<

signals, we proposcd a novcl FSI< signal classification and tone frequency spacing

estimation algorithm. Then, we further exploited the second-order cyclostationarity

of FSI( signals, and proposed a symbol period estimation algorithm. Moreover, we

st.ndied the first- and sccond-order cyclostationarity of MSK signals, and proposed a

joint FSI< and MSI< signal classification algorithm. Simulat.ions wcrc calTied out to

evaluate the performance of the proposed algorithms under diverse scenarios, such as

dith'n,nt obsclI'vatioll periods and SNIls. SiIJlulatiOlI n,sults showc'd that til(' proposc,d

algorithms provide a reasonably good performance with short observation periods ami

low SNRs, yct aft'crtcrl by farling. Thc pcrformanre ran bc further improvc~rl with spa­

tial diversity at the receive side. The proposed algorithms do not need pre-processing,

such as timing and carrier recovery. The performance of the proposed algorithm is

additionally investigated through laboratory experiments. The experimental signals

are generated with the Agilcnt N5182 RF VSG, and captured with the Keithley 2820

Gl
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VSI\. Simulation and experimental results match, which proved the applicability of

the proposed algorithms to real scenarios.

Future work

e In the first-order cyclostationarity-based algorithm, a preset cutofF value \1;·0

was used to select candidate frequencies. I\lthough we introduced an adaptive Veo

to improve the algorithm performance, this is triggered only when less thall two

candidate frequencies are selected. A cutofF value which can be set adaptively undel

all conditions may further improve the performance of the algorithm

e The second-order cyclostationarity ofFSI< signals is derived under the condition

that ItT = l, l integer. Deriving analytical expressions of the second-order cyclosta­

tionarity of any FSI< signal represents an important aspect of future work. In the FSI<

symuol period estimation aJgorithm and joint FSK and MSK classification algorithm,

we estimate the second-order cyclic moment of the received signal for a large enough

delay. Such a large delay range increases the computational cost for real applications

Setting the delay range adaptively should be considered in future work

eIntheproposed work, we considered block fading. Otherchannelnlodelsneed to

be considered, as well, such as time-dispersive channels. This represents a direction

of future work. I\dditionally, a single transmit antenna was considercd. fllultiple

transmit antennas can be considered to improve the performance of the proposcd

algorithms; this also represents a direction of future investigation
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