

41
0lilm. N \)‘\0

L} m'w

061311

Flexible and Resource Efficient Design for
Hardware Implementation of the Advanced
Encryption Standard

by

(© Cheng Wang, M.Sc., B.Eng.

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy

Faculty of Engincering and Applied Scicnce
Memorial University of Newfoundland

March 2012

St. John’s Newfoundland Canada

Abstract

In this dissertation, we i i the pes c of a broad range of hardware im-

plementations of symmetric key block ciphers. The major focus of this dissertation is

dedicated to the investigation of the pes ce of hardware i ions of the

Advanced Encryption Standard (AES) influenced by the implementation architecture.
The flexibility of the AES algorithm allows an extensive variety of implementation

cs of

architectures making it necessary to investigate the performance characteri:

these architectures. On the one hand, this investigation identifies the most resource-

efficient architecture for the AES i ion targeted at
applications; while, on the other hand, this discloses the unique performance trade-

offs from the different architectures allowing flexible implementation of AES.

In this di two pe ives of the i i i of AES

are explored: 1) the pipeline configuration of the AES S-box with the composite field
structure and 2) the datapath architecture of AES. For the S-box pipeline configu-
ration, a gate-level approach for the pipeline of 2 to 7 stages and a component level
approach for the pipeline of 2 to 4 stages arc evaluated. For the datapath architec-
ture, parameterized architectures with the datapath width of 8, 16, 32, 64 or 128 bits
and the unrolling factor of 1, 2, 5 or 10 for the 128-bit width arc evaluated, among
which the 16, 32 and 64-bit architectures are novel designs.

Generic and typical models for these architectures are built. The performance

of these implementations in terms of timing, arca, power and energy is benchmarked

based on Complementary Metal-Oxide Semiconductor (CMOS) technology following

Application-Specific Integrated Circuit (ASIC) design flow. The benchmark results

demonstrate the ially significant performan

3 I by selecting an ap-
propriate architecture under given throughput requirements compared with other
architectures.

For the investigation of S-box pipeline configurations, we examine the perfor-

mance of the S-box i ation for the 9 i over a wide range of

throughput requirements. Based on the results, we analyze the influence of the
pipeline configuration on the performance and identified the regular trends of the
resource costs varying with the pipeline configurations and the throughput require-
ment/timing constraint. Numerically, there are maximum reductions of 51% in
area and 69% in power/energy with an appropriate pipeline configuration through-

put requirement/timing constraint comparing with other configurations including no

pipeline. For the inves of datapath archi we examined the perfor-

mance of the datapath implementation for the 8 datapath architectures over a wide
range of throughput requirements. The quantitive performance of the architecture
implementations is presented, compared and analyzed. The most efficient architec-
ture implementation in arca, peak power and cnergy, as well as in the overall resource
cost is identified. The performance trade-offs over a range of architecture parameter
values are disclosed. In contrast to conventional belicf, the most compact architec-
ture implementation with the 8-bit width does not help to minimize, but actually
increascs, the cnergy consumption even running at a low clock frequency. As well,
compact implementations do not result in the minimal peak power. In our rescarch,

we also combine the most energy efficient S-box pipeline configuration and datapath

architecture identified from the above and demonstrate the further reduction in en-
crgy consumption by the combination. It is found that the combination consumes
about 50% less energy than solely the most energy efficient datapath architecture
implementation and 80% less energy than the 8-bit width datapath architecture im-
plementation.

The last chapter of this dissertation discusses the design of a newly proposed

block cipher named PUFFIN2. PUFFIN2 is desiy for 1i

with modest security strength requirements. PUFFIN2 has an involutional structure
and can lead to a very compact implementation, which is smaller than the previous

most compact block cipher PRESENT.

Acknowledgements

Twould like to decply express my sincere appreciation and respect to my supervisor Dr.
Howard M. Heys. Being his student is really a beneficial and pleasurable experience.

His wisdom and knowledge guided me through the difficulties in my studies and

rescarch. His kindness and tolerance added lots of flexibility and comfort to my life
during the studics and rescarch. His rigorous scholarship and justice convineed me
to follow him for lifctime.

I also need to direct my thanks to my supervisory committee members Dr. Ra-
machandran Venkatesan and Dr. Lihong Zhang, who made cfforts to support me,
review my thesis and give valuable suggestions. 1 would also like to thank Dr. Cheng
Li and Dr. Theodore S. Norvell for their helps.

It is my great joy to know and get along with many good friends and lab mates

in the university, including Dr. Yuanlong Yu, Xiaoning Zhang, Jiankang Wang, Amir

Zadeh, Ruoyu Su and Zehua Wang. Thanks for their accompany, support and encour-
agement. Special gratitude to Dr. Yuanlong Yu for listening to me, understanding
me and encouraging me all along the days we work towards Ph.D. degree.

I am grateful to my landlords Betty and Steve, with whom I live since the first
week I came here. They accommodate me with a comfortable and carcfree home so
that 1 can concentrate on my work at the university, They leave a light on every
night for my late getting home, which makes me fecl warm even in the coldest days.

Finally, I would like to mention that there is no way to fully appreciate my
parcnts for their love and support and there is also no way to crase my regret not

able to accompany them over the years as the only child of them.

Contents

Abstract
Acknowledgements
List of Tables

List of Figures

1 Introduction
1.1 Motivation
1.2 Dissertation Outline

2 AES and the Hardware Implementations
2.1 The AES Algorithm

211 Round Function . .
212 Datapath
213 Key Schedule

2.1.4 Modes of Operation

Hardware Implementation of AES .

221 S-Box Implementation

2211 Hardware Structurcs of the AES S-Box
2212 Performance of the AES S-Box Structures
2213 Pipelined AES S-Box Implementations .
2214 Potential for S-box Pipelining

2.2.2 Datapath Implementation
2221 High Throughput Implementation . .
2222 Low Resource Cost Implementation
2223 Potential for Different Architectures

223 Characterizing Datapath Impl fon Architectures with
Parameters

23 Summary

of Hardware ion and Performance Evalu-
ation

3.1 Hardware Implementation

3.2 Performance Evaluation

3.2.1 Evaluation of Timing and Arca

322 Power C and Energy Consumption .

3221 Dynamic Power Consumption

3222 Static Power Consumption .
3223 Encrgy Consumption .
323 Evaluation of Power and Encrgy

33 SUmMMATY ...

4

Cl

Using Pipelined AES S-Boxes for Resource Efficient Purpose: An
Example

4.

Introdu o el R R AR

4.

(9

Architecture Design

421 The ShiftRows Component

422 S-Box

423 The MizColumns Component
424 Key Expansion Component
425 Overall Design oooett

4.

s

Implementation Results and Discussion

4.4 SUMMATYI s 3o e Nk S e e e S e e P S

Exploration of S-Box Pipeline Configurations for Flexible and Effi-
cient Implementation
B Tokrotlootle.x ; s 555 23 s emsmimans ensmim b 0w

5.2 The S-box Structure for Pipelining

5.3 Applicabi

 of the Pipelined AES S-Box
5.4 Pipelining the AES S-Box
5.4.1 Pipelining at the Component Level
5.4.2 Piplining at the Gate Level

543 Comparing Placement Approachcs

o
&

Methodology o oo
5.5.1 Deriving the Candidate Implementations

5.5.2 Evaluation of the Performance

viii

60

56 Experimental Results and Analysis 63
5.6.1 Performance versus Timing Constraints 63
562 Performance versus Pipeline Configurations for the Minimized

Timing Constraint 66
5.6.3 Performance versus Pipeline Configurations for Given Timing
Constraints 67
5.6.3.1 Arca versus the Number of Pipeline Stages 71
5.6.32 Power/Encrgy versus the Numbers of Pipeline Stages 72
5.6.3.3 Arca versus the Placement Approaches 73
5634 Power/Encrgy versus the Placcment Approaches . . 73
5.6.35 Encrgy-wisc Costs 7
5.6.3.6 Trendsin One Picture K6l
564 Benefits of Using Pipelined S-Box Implementations 7
5641 Benefits over Non-Pipelined Implementations 76
5.6.4.2 Benefits over Other Pipeline Configurations 76
5.6.4.3 Benefits of Providing More Performance Options/Trade-
0 - R S 7

5.7 Generality of the Methodology and Results 7

58 SUMMAIY . . ottt 8

of Datapath Archil for Flexible and Efficient Im-

plementation 80

6N InEroduction RNy R e R R e e Ee R e 81

6.2 The Datapath Architectures of AES

<

621 CommonIsames . = .o :wsme soismeds gt s o sms 83

6211 S-box Structure 83
6212 Koy Expansion 84
6213 Impact of Modes of Operation 84
622 Partial Datapath Architectures 85
6221 S-boxes 86
6.2.2.2 ShiftRows Components 86
6223 MizColumns Components 80

6.2.24 Novel 16-bit, 32-bit and 64-bit Datapath Architcctures 91

6.2.3 Complete Datapath Architectures 95
6.3 Methodology - . « o vt i e 96
6.3.1 Deriving the Architecture Implementations97
6.3.2 Evaluation of the Performance 99
6.4 Experimental Results and Analysis 100
(6.4:1 ATO8. e el e iore e v o e e i et e e e o e 100
6.4.2 Peak Power Consumption 102
6.4.3 Average Energy Consumption 104
6.4.4 Overall Resource Cost N 1
(i) N 111
Demonstration of Combined Effects for Energy Efficiency 13
7] Imbodeetlono ccvvecnvnaniasas s cnisnisnai 113
7.2 TheMethodology14
7.3 Results and Analysis 115

74 Summary . . T BT

8 Design of a Lightweight Block Cipher PUFFIN2 122
81 Introduction e B]
82 Cipher Specification P P PP PPN 125

821 Overall Structure L1
822 Basic Components 127
823 Encryption and Decryption Process BT
8.24 Key Schedule . e E e R -
8.3 Sccurity Analysis o R 134
831 Differential and Linear Cryptanalysis - 134
83.2 Related-Key Attacks e o 136
833 Weak Keys R L7
83.4 Updated Cryptanaly 137
84 Serialized A for Hardware e 138
85 Hardware Implementation Res 142
86 Summary L4

9 Conclusions 145
9.1 Summary of Rescarch and Contributions 145
92 Suggestions for Future Work S 148

Bibliography 151

A Description of the Operation of the ShiftRows Components 163

xi

B Description of the Operation of the MizColumns Components 166

List of Tables

4.

EOR S

44

6.

6.

&

6.4

e
&

Register states of the round operation data path
Register states of the key expansion component
Implementation results

e ison of the i using a single

S-box with different number of stages

Comparison of 32-bit AES datapath architectures

Assig s of the timing ints (in ns) for the archif ures ac-

cording to the given throughputs

Arcas of the archi i jons (ized to 978 GE) . .

Ratios of the arca to the i of the archi

(normalized to the value of U10)

Peak powers of the archi imp ions (ized to 66.8

aw) .

Average energy for the encryption of 128-bit plaintext of the architec-

ture implementations (normalized to 0.73 nJ)

xiii

102

103

105

6.

i

6.

@

6.

©

71

7.

o

7.

)

7.

-

54

= ® &
o e W

g
S

Average energy incurred due to static power for the encrypti

bit plaintext block of the architecture i ions (ized to

Average energy incurred due to dynamic power of the registers for
the encryption of 128-bit plaintext of the architecture implementations
(normalized to 34.2 pJ)

Overall resource cost of the

to the value of W32 under 2.13 Gbps)

of the timing ints (in ns) for the archi un-

der comparison according to the given throughputs

Arcas of the combined architecture and sclected datapath architecture
implementations (normalized to 978 GE)
Peak powers of the combined architecture and selected datapath archi-
tecture implementations (normalized to 66.8 W)
Average energy for the encryption of 128-bit plaintext of the combined
architecture and sclected datapath architecture implementations (nor-

AIEED 10 0,35 0T). -« s v v s viv i v n e s e e e

S-box mapping of PUFFIN2 (in hexadecimal)
64-bit Permutation of PUFFIN2

Description of the components of the key schedule
Round distribution of PL64, PR64, L64 and R64
Implementation results of PUFFIN2 and serialized PRESENT

Count of hardware components of PUFFIN2 and serialized PRESENT

110

116

u7

118

119

126

127

131

131

141

143

A.

A

B.

B.

9

e

~

Y

@

Contents of the registers of the 8-bit width ShiftRows component at

the selected clock cycles

Contents of the registers of the 16-bit width Shi ft Rows component at
the selected clock eyeles
Contents of the registers of the 32-bit width Shift Rows component at
theselected clockcycles
Contents of the registers of the 64-bit width Shi ft Rows component at

theselected clockeyeles,

Contents of the registers of the 8-bit width MizColumns component
for the clock cycles during a complete operation (m =n+1)
Contents of the registers of the 16-bit width MizColumns component
for the clock cycles during a complete operation (m =n+1)
Contents of the registers of the 32-bit width MizColumns component

for the clock cycles during a complete operation

xv

List of Figures

2.

2.

o

«

3.

©

3.

&

34

(o
&

3.

>

-~

-
9

@

@
©

Layout of 128-bit plaintext/State block, key and state.

The ShiftRows operation of AES

General digital ASIC design flow [53]

Charging current of the load capacitance of a CMOS inverter [53] . .
Short circuit current between supply power and ground of a CMOS
IVERer [55]

Static leakage currents of a CMOS inverter [55)

Power consumption and encrgy consumption

Power Evaluation flow using PrimePower

Block diagram of the proposed AES encryption core architecture . . .

Architecture of the AES cneryption core with a 4-stage pipelined S-box

The typical data path i of the AES: (a) loop- lled archi-
tecture, (b) round-iterative architecture, (c) fully serialized architecture
Component level pipelined S-box architectures: (a) 1-stage (no pipelinc),

(b) 2-stage, (c) 3-stage, (d) 4-stage

o

5.

5.

6.

6.

P9

-

&

6

9

©

By

Derivation of the candidate implementations from the source HDL de-

scription of the S-Box

Ilustration of the gate level approach of pipelining into 3 stages by
register retiming
Normalized performance versus target timing constraints (ns), grouped
according to the pipeline configuration

N lized versus pipeline ions under the syn-

thesis constraint of minimized critical path delay

Normalized perf versus pipeline configurations under given

timing requirements (from 0.35 ns/2.86 GHz to 1.50 ns/667 Miz) . .

Normalized versus pipeline configurations under given

timing requirements (from 1.75 ns/571 MHz to 3.0 ns/333 MHz) . . .

) i versus pipeline fons under given
timing requirements (4.0 ns/250 MHz and 8.0 ns/125 MHz)
Trends of optimal pipeline configurations for the throughput require-

ments from high t0 1ow

Generic model of the partial datapath architectures with width w €
{8,16,32,64). . . o oo
Structure of the Shift Rows component for the partial datapath archi-
tectures with the width of 8 bits.
Structure of the Shift Rows component for the partial datapath archi-

tectures with the width of 16 bits.

xvii

68

69

6.

6.

6.

[}

=

&

>

=

@

9

5

i

-

Structure of the Shift Rows component for the partial datapath archi-
tectures with the width of 32 bits. TP
Structure of the Shift Rows component for the partial datapath archi-
tectures with the width of 64 bits. . . 5= g 5o Y 88
Structure of the MizColumns component for the partial datapath
architectures with the width of 8 bits. 89
Structure of the MizColumns component for the partial datapath
architectures with the width of 16 bits. 90
Structure of the MizColumns component for the partial datapath
architectures with the width of 32 bits. kapacpsminae W
Generic model of the complete datapath architectures with the un-
rolling factor r € {1,2,5,10}. « v v cmumipins s niose 98
Structure for unrolled architectures of the round function. 94
Structure for unrolled architectures of the last round function for r €
T D on e s)

Structure for unrolled architectures of the last round function for » = 10. 95

Block diagram of the encryption (top) and decryption (bottom) processes129
Block diagram of the key schedule 132
Serialized architecture of PUFFIN2 138

Contents of the 144-bit register at clock cycles 6, 37, 45, 53 and 57 140

xviii

Chapter 1

Introduction

In 2002, the Advanced Encryption Standard (AES) was cstablished as the symmetric
key encryption algorithm that is officially endorsed by the United States govern-
ment for the next decades [1). Since then, this algorithm has been widely adopted
by applications requiring security featurcs. This has led to intensive rescarch and

development of the efficient hardware implementation of AES. Although AES was

introduced around a decade ago and the most recent effort on the cryptanalysis has

been able to reduce the computational complexity for a key recovery by a factor of

1/4 compared with a brute force attack [2], its security is still regarded to be sufficient
for future needs.
Since the information security provided by AES is often realized through the en-

cryption and/or decryption of data transmitted over communication channels, a basic

requirement for a hardware i fon of AES is the Upon meeting

this basic requirement, the resource cost of the implementation is expected to be as

low as possible. The resource cost of an implementation includes the manufacture

cost and the running cost. The manufacture cost is related to the complexity of the
circuit, which is usually measured by the arca of the circuit. The running cost usu-
ally denotes the power consumption and/or energy consumption when running the

Power ion and energy ion of the impl ion

are significant metrics for passively powered devices (c.g., contactless smart cards

and RFID tags) and battery powered devices since the battery life and the potential

workload are determined by these consumptions.

1.1 Motivation

Due to the round-iterative nature of the AES algorithm, as well as the highly reg-
ular and repeating operations defined in the datapath, the design of the datapath
architecture for the hardware implementation of the algorithm is extremely flexible

and, as a result, there exists a number of possible datapath architectures. However,

in the previous literature, only a small part of them have been discussed and inves
tigated. In addition, the AES S-box, as the most complex component in an AES
implementation, suffers from a long critical path and is conventionally pipelined only
for the benefit of speedup. However, there exists more pipeline architectures than
those adopted in previous works and also unexplored potential benefit for resource
efficiency when using pipelining.

Since cach of these architectures (including both the datapath architectures and

the S-box pipeline archi could lead to the i fon with unique per-

formance characteristics and performance trade-offs. it is necessary to conduct an

investigation of them for the comprchensive understanding of the performance varia-

tion under the different architectures, especially with the focus on the resource-related
performance. On one hand, this would identify the most resource-efficient architec-
ture for the AES implementation targeted at resource-constrained applications. On
the other hand, the performance trade-offs from these architectures would provide
more options for the flexible implementation of AES.

The design of the block cipher PUFFIN2 is motivated by the demand for block

ciphers targeted at lightweight applications. Since AES has relatively high imple-

as is i by the algorithm, there is demand for an
alternative block cipher algorithm that leads to lower implementation complexity
suitable for low price and low power applications. For these applications, the block
cipher is not required to be as strong as AES in terms of security level (i.e. the effort
required to crack the cipher) but the implementation complexity is expected to be as

low as possible.

1.2 Dissertation Outline

The dissertation is outlined as the follows. Chapter 2 is the review of the AES algo-
rithm and the previous works on the hardware implementation of AES. Through the

analysis of the previous work, the necessity of the work presented in this dissertation

is shown. In Chapter 3, the methodology of the hardware implementation and the
porformance cvaluation adopted in this dissertation is introduced. Chapter 4 is a
preliminary study of using pipelined AES S-boxes for resource efficient purpose. In
this work, we replace the two S-boxes in an ultra compact AES implementation with

one pipelined S-box and are therefore able to double the throughput while the arca

of the implementation remains very lar. Inspired by the work in Chapter 4, we

conduct a ive study of the of the pipelined AES S-box with
various pipeline configurations in Chapter 5. This work shows a more complete pic-
ture of the value in using pipelined S-boxes over non-pipelined in terms of resource
cfficiency and design flexibility. Based on the results in this chapter, we also ana-
lyze the generalizable trend of the variation of the appropriate pipeline configuration
over the different throughput requirements. In Chapter 6, we investigate the resource

efficiency and performance trade-offs of the datapath implementation of AES with

various datapath archi and i In contrast to conven-
tional belief, this investigation discloses that the most power and energy efficient
datapath architectures under a given throughput requirement are not achicved by
the most compact architecture and there is significant reduction in power and energy

by using other appropriate datapath architectures. In Chapter 7, we demonstrate the

combined effectiveness in improving resource efficiency of the results from Chapters 5

and 6 by cxamining the of the i with the combination of

a S-box pipeline configuration and a datapath architecture. In Chapter 8, we present
the design of PUFFIN2 with the relevant background of lightweight block cipher de-
sign. Chapter 9 is the summary of the rescarch and contributions in this disscrtation

and the suggestions for future work.

Chapter 2

AES and the Hardware

Implementations

In this chapter, the algorithm of AES is introduced. Previous work on high perfor-

mance and resource efficient AES hardware implementation is reviewed. The necessity

of the rescarch presented in this dissertation is shown based on the review.

2.1 The AES Algorithm

AES is a block cipher algorithm with a block size of 128 bits. The key size of AES
can be independently specified to 128, 192 or 256 bits, and accordingly there are 10,
12 or 14 iterative rounds to be performed for the encryption or decryption of a block
of the plaintext or ciphertext [1]. In the next section, a 128-bit block size and 128-bit
key size are used for demonstration. The 128-bit plaintext block, key, round keys and
the intermediate results (called the State) between operations in AES are organized
in a rectangle array of bytes, as shown in Figure 2.1. Such an arrangement of bytes

5

Byte | Byte | Byte | Byte
00 [01 |02 |03
Byte | Byte | Byte | Byte
10 | 1112 |13

Byte | Byte | Byte | Byte
20 [21|22 |23

Byte | Byte | Byte | Byte
30 | 31|32 (33

Figure 2.1: Layout of 128-bit plaintext/State block, key and state

facilitates some of the operations of AES which work on rows or columns of an array.

2.1.1 Round Function

A round function of AES can be described in pseudo code notation as:

Round(State,Round Key)
SubBytes(State);
ShiftRows(State);

MiaColumns(State);
AddRoundKey(State, Round Key);

All round functions are the same in AES except. the final round which is slightly

different and expressed as:

FinalRound|(State, Round Kcy)

SubBytes(State);
ShiftRows(State);
AddRoundKey(State, Round Key);

}

6

In the notation above, State denotes the intermediate result produced by the preced-

ing operation. SubBytes, ShiftRows, MizColumns and AddRoundKey arc operations

in round functions and they are defined in the next section.

The SubBytes operation works as the substitution layer of AES. The 8-bit non-

lincar transformation of SubBytes is referred to as the S-box. The operation per-

forms the non-lincar transformation of cach byte in the State according to the S-

box mapping of AES. The S-box mapping is the composition of two transforma-

tions: (1) the multiplicative inverse over GF(2%) with the irreducible polynomial

m(z) = 28+ + 2%+ z + 1 (with the exception of mapping zcro to zero) and (2) an

affine transformation defined by

% 1
n 1
Y2 1
w| |1
n 1
us 0
Yo 0
wn 0

0

0

1

0

1

1

1

1

1

1

1

1

0

1

1

0

(21)

where z,, and y, are the (n+1)-th bit of the input byte and output byte, respectively,

of the affine transformation.

The ShiftRows operation cyclically shifts left the bytes in the rows of the State

with different offsets as illustrated in Figure 2.2.

State State’

0]01[02]03 00[01/02]03
Byte[Byte|Byte|Byte

10[11[12[13 Shift- 1,1]12]13[10
Rows

20)21[22]23 22/23[20]21

30]31[32[33 33]30(31]32

Figure 2.2: The ShiftRows operation of AES

In the MizColumns operation, the columns of the State arc considered as poly-

nomials with cocfficients in GF(2%) and multiplicd modulo m(z) = #* + 1 with a
fixed polynomial c(x) = 0324 + 01a? + Olz + 02. Given the (n + 1)-th column,
n € {0,1,2,3}, of the State Bon, By, Ban and By, (n + 1)-th column of the State

after MizColumns can be realized by the matrix multiplication as

By, 02 03 01 01| | By
Bia 01 02 03 01| | By
"= (2.2)
B}, 01 01 02 03 | | By
Bl 03 01 01 02 | | Bya

The ShiftRows operation and MizColumns operation can be viewed as a lincar trans-
formation on the State.

The AddRoundKey opceration performs the bitwise XOR of the State and the
round key. Each byte of the State is XORed with the byte of the round key with the

same position in the array.

2.1.2 Datapath

ze has ten rounds in the

An AES cipher with 128-bit block size and 128-bit key

datapath. The datapath for encryption is described in pseudo code notation as:

Datapath(Plaintext, Round Key)
AddRoundKey(Plaintext, Round Key|1));
Jor (i=1;i < 10;i ++)
Round(State, Round Keyli + 1]);
FinalRound|(State, Round Key[11));

Note that 11 round keys are required: one prior to the first round and one for each

round. The datapath for decryption is achicved by reversing the encryption datapath.

2.1.3 Key Schedule

The key schedule of AES consists of two components: (1) the key expansion where
the 128-bit key is expanded into 44 32-bit vectors; (2) the round key selection where
the 44 32-bit vectors are segmented into 11 128-bit vectors, cach of which is a round

key. The key expansion is described as follows:

KeyExpansion(byte Key|16], word W/[44])

for (i=0;i<45i++)
WI[i] = (Keyld %], Key[d = i + 1], Key[d x i +2), Key[d =i + 3));
for (i =4;i < Nbx (Nr+1);i ++)

temp = Wli —1];
if (%4 == 0]
temp = SubBytes(RotBytes(temp)) @ Reonli/4];

9

Wil = Wi - 4] & temp;
}

In the above description, RotBytes denotes a cyclic permutation operation that rotates
left the bytes in the word by one byte (e.g. a word (a, b, ¢, d) is shifted to (b, ¢, d,
a)) and @ is bitwisc XOR operation; Reon[i/4] is a pre-defined constant. The round

key sclection is described as:

SubKeySel(word W[44], 4-word Round Key[11])
{

Jor (i=1i<=1L;i++)
Round Keyli] = (W[4 i, W[dxi+1),W[d+i+2,W4xi+3);

2.1.4 Modes of Operation

As a block cipher, AES needs to work under a certain block cipher mode of opera-
tion when used in applications. Basic block cipher modes of operation include Elec-
tronic Codebook (ECB) mode, Cipher Block Chaining (CBC) mode, Cipher Feedback
(CFB) mode, Output Feedback (OFB) mode and Counter (CTR) mode [3]. Block
cipher modes of operation can be categorized as cither feedback modes (e.g., CBC,
CFB, and OFB) or non-feedback modes (c.g., ECB and CTR) depending on whether
cach eneryption/decryption using the block cipher depends on the output of the pre-
vious eneryption/decryption. In this disscrtation, some of the implementations arc

assumed to work under non-feedback modes only.

2.2 Hardware Implementation of AES

to the

Since AES was proposed in 2001, there has been intensive investigations
efficient hardware implementation of AES. Generally, these investigations focus on
two arcas: 1) the implementation of the AES S-box with low resource cost and 2) the
implementation of the entire cipher or the datapath of AES for a varicty of design
requirements from high throughput to low resource cost. The following is the review

of the S-box and datapath implementations.

2.2.1 S-Box Implementation

In the hardware implementation of an AES cipher, the S-box typically has a complex-
ity significantly higher than other functions and therefore has a major impact on the

and

performance of the overall AES implementation in terms of timing, arca, pow

energy. For this reason, various hardware designs of the S-box have been proposed
BY 3

aiming at the improvement of the efficiency in these perspectives of the performance.

2.2.1.1 Hardware Structures of the AES S-Box

The most straightforward realization of an AES S-box is a lookup table. A table
lookup in hardware can be constructed with cither a ROM or a combinational circuit.
The ROM approach requires the space of 256 bytes to store the lookup table, which

is costly in hardware arca, particularly when multiple copics of the S-box need to

be imp in an AES i ion. The combinational circuit approach
usually relics on a synthesis tool to translate the lookup table into the circuit and,

duc to the high nonlinearity of the lookup table, the synthesis tool has to interpret

11

the transformation as a random mapping, resulting in a circuit with large arca being

generated.

To achieve better area efficiency, some advanced approaches are proposed by e

ploiting the mathematical propertics of the S-box mapping. Since the most costly

men suggested in [4]

operation in the S-box is multiplicative inverse over GF(2%),
to decompose the finite field GF(2) to its sub-field GF(2!) so that an clement a in
GF(2%) can be represented by a polynomial a = b + ¢ with b, ¢ in GF(2*), and then
the computation of the multiplicative inverse over GF(2%) is converted to operations
over GF(2') which have much lower complexity in hardware. An ASIC implemen-
tation of this approach is shown in [5]. This approach is further developed in [6] by
decomposing the clements in GF(2') to polynomials with coefficients in GF(22), and
in such a way the multiplicative inverse in GF(22) can be implemented in hardware

with only a swap of the two input bits. With the same decomposing approach, bet-

ter area efficiency is achieved in [7] by using claborately sclected normal bases for

clement ion and other optimizati i These ‘hes are all

based on the decomposition of the operations in GF(2%), so they are generally known
as S-boxes with composite field structures. There are other S-box structures proposed

based on the composite field structures, which further improve the performance in

timing, arca and/or power through extensive ion of the possible

configurations using polynomial basis (e.g., [8]), normal basis (c.g., 9], [10], [11] and

[12]) or mixed basis (c.g., [13)).

The S-box impl ion with low power ion can be achieved by re-

ducing the switching activity of the circuit. A typical switching reduction design

is present in [14]. It employs a decoder-permutation-cncoder structure where the

12

decoder converts the binary representation of the 8-bit input to the onc-hot repre-
sentation of 256 bits and the encoder does the inverse. In this way, any transition
of the S-box input can only cause the transitions of the signals on two lincs in the

permutation (one from 1 to 0 and the other from 0 to 1), so the switching activity is

minimized in the permutation. Further, the decoder and encoder are also built with
power efficiency through the extensive search of all the possible structures. A low
power structure targeted at ASIC implementation of the composite field structure of

the AES S-box is

shown in [15]. In this work, a multi-stage two level logic structure

with buffers is used to balance the signal arrival times of gate so that the power

consumption caused by dynamic hazards in the circuit are reduced. Other low power
designs of the composite field structure of the AES S-box include [16] and [17). The
implementation in [16] is a full-custom circuit design using pass transistor logic, which
usually has better power efficiency compared with the conventional CMOS logic. The
work in [17] has a T-stage pipelined S-box with the composite field structure based on
Algebraic Normal Form (ANF) representation and it achieves low power consumption

by reducing the hazards in the circuit through pipelining.

2.2.1.2 Performance of the AES S-Box Structures

The performance of the S-box structures mentioned above in terms of timing, arca
and power are characterized based on a 0.25-um standard cell CMOS process in [18].
According to this characterization, the composite field structures have a small range

of performance in all perspectives compared with other structures under examina-

tion. By varying the synthesis ints, the i ions of the

field structures can be built with the critical path delays in the range between 4.93

13

ns to 9 ns, the arcas in the range between 303 GE to 625 GE (where 1 GE or Gate

Equivalent is the size of a two-input NAND with the lowcst drive strength in the pro-

cess library), and the normalized power consumption (with respect to 4.45 pW and

measured at 50 MHz) in the range between 1.51 to 2.0. The implementations of the
combinational circuit structure for a lookup table has the performance in timing, arca

and power in the ranges of 1.95 ns to 6.61 ns, 1301 GE to 1545 GE, and 1.00 to 1.18,

respectively. The performance for the i ions of the decod
encoder structure ranges from 1.86 ns to 3.31 ns, 1399 GE to 2016 GE, and 0.27

to 0.42, respectively. The pe of the composite field structures in [8], 9],

[10], [11], [12] and [13] is not included in the above characterization, but according
to the comparisons in the original papers, their performance are very close to those
composite field structures examined in [18] compared with lookup table structure and
the decoder-permutation-encoder structure. For the low power designs of the S-box
with the composite field structures like [15], [16] and [17), according to the original
papers, the power consumption of [15] is about 1/4 of [6]; the power consumption of
[16] is very closc to [15]; and the power consumption of (17] is about half of [15].
These characterization results from [18] reveal that the composite field structures
are superior in arca efficiency but inferior in timing and power consumption. On the
contrary, the lookup table structure and the decoder-permutation-encoder structure
have the performance with the reverse trade-offs. Thus, they are usually targeted at

applications with different design requirements.

2.2.1.3 Pipelined AES S-Box Implementations

The straightforward effect of pipelining is the reduction of critical path delay at the
cost of the hardware overhead of pipeline registers. As is mentioned above, the com-
posite field structures lead to implementations with low complexity and high critical
path delay compared with the lookup table structure and the decoder-permutation-

encoder structure. The low complexity implies fewer number of pipeline registers

g and the high critical path delay implies more potential in delay reduc-

pip

tion by pip g. Therefore, the composite field structures are more suitable for
pipelining than the other structures.
Previous work using pipelined S-boxes with composite field structures are tar-

geted at high throughput implementations with the fully unrolled architecture. Typ-

ical examples include ASIC implementations [19] [20] or FPGA implementations [21]
[22). In [20], a throughput of around 66 Gbps is achicved by the AES implementation
with 3-stage pipelined S-boxes using a 0.18-um CMOS technology. In [22], the im-
plementation produces a throughput of around 31 Gbps with the S-boxes pipelined
into roughly 7 stages on a Xilinx Spartan-Ill FPGA. In [21] and [22], the relation
between the critical path delay and the number of cascaded Lookup Tables (LUTs)
is analyzed and, based on the analysis as well as the consideration of the availability

of routing resources, the minimum realistic numbers of LUT-levels of 3 and 2 arc

determined for one pipeline stage and accordingly the 4-stage and 7-stage pipelines
are adopted to produce the maximum throughput, respectively. In [19] and [20], the
trade-off between throughput and area of the overall implementation is explored by

adjusting the number of pipeline stages. However, only 2 and 4 stages are considered

in [19] and 2 and 3 stages in [20]. The design in [17) is another FPGA-based design
applying pipelining. However, the focus of the work is the comparison between an
T-stage pipelined S-box based on the optimum construction of the composite field
proposed by the author, an 5-stage pipelined S-box based on an conventional con-
struction of the composite field and the S-box from [15]. The results show that the
7-stage pipelined S-box with the proposed construction of the composite field has the
similar power consumption but much higher throughput compared with the other
designs.

Pipclining the AES S-box implementation involves the decision concerning where
is the appropriate placement of the pipeline registers. While this is carefully inves-
tigated towards the realistic minimum critical path delay in [22], the FPGA-specific
approach is not applicable in a standard ASIC design flow. For the ASIC implemen-
tations in [19] and [20], a similar placement approach is adopted that has the pipeline

the mul

registers inserted only between the components of the S-box (e.

inverter and the multiplier). Since this is a coarsc-grain approach, the critical path
delays are not necessarily well balanced duc to the unbalanced complexitics in the
components. As well, the limited positions for register insertion of this component
level approach would prevent implementing more pipeline stages than the 4 stages in

[19] and [20].

2.2.1.4 Potential for S-box Pipelining

Bascd on the review above, it can be seen that the AES S-box implementation for high
speed, low arca and low power purposcs has been extensively explored. However, the

pipclined S-box i ons arc ively targeted at high and only

the advantage in timing or some trade-offs between timing and arca are considered.
In addition, the appropriate placement of the pipeline registers is not explored based
on ASIC technology. For these reasons, the rescarch presented in Chapter 5 is the

investigation of the pipelined S-box implementations in terms of timing, arca, power

and cnergy and this is based on an cxtensive exploration of the placement of the

pipeline registers targeted at ASIC including an ic pl

approach for 2 to 7-stage pipclincs and an manual placement approach for 2 to 4-

stage pipe

2.2.2 Datapath Implementation

As is shown in the algorithm of AES, AES has a round iterative structure where round
functions arc identical (with the exception of the last round) and in cach round func-
tion the SubBytes operation on cach byte and the MizColumns operations on cach
4-byte group are identical. This nature of AES allows for the high flexibility in the im-
plementation architecture of AES in the way that different amounts of the parallelism
of the identical operations in the implementation leads to different implementation
architectures. As the general trade-off, the more parallelism in the implementation,

the more throughput is achieved but the higher complexity is incurred. By exploring

the trade-off, different design requirements of AES implementation can be fulfilled

with different implementation architectures. The previous work on the overall im-

plementation of AES usually focuses on the fulfillment of the design requirements of

cither high throughput or low resource cost.

2.2.2.1 High Throughput Implementation

The implementation with high throughput is usually fulfilled with the fully unrolled

architecture with round-level pipeline, which provides the maximum level of paral-

lelism of the identical i and the i An-

other factor that affects throughput is the critical path delay of the implementation.

As the most complex

an AES i ion, the S-box along with

other components in a round can be pipelined for short critical path delay, which is

known as inner round pipelining. Pipelined S-boxes/rounds are uscd in the implemen-

tation with the fully unrolled i for further imp: of the h
An example of the fully unrolled architecture with round-level pipelining is 23]
where a fully pipelined AES impl jon achieves the of 17.8 Gbps

based on an Xilinx Virtex-II FPGA. There are many more works

estigating inner
round pipeline for maximum throughput, including ASIC implementations of [19] and
[20] and FPGA implementations of [21], [24] and [22]. In [20], a throughput of around
66 Gbps is achicved by the AES implementation with 3-stage pipelined S-boxes using

a 0.18-um CMOS technology. In [24], the AES implementation has 5-stage inner

round pipelinc for cach of the rounds and achicves a 26.64 Gbps based on a Virtex

FPGA. In [22], the i ion produces a of around 31 Gbps with

the S-boxes pipelined into roughly 7 stages on a Xilinx Spartan-111 FPGA.

2.2.2.2 Low Resource Cost Implementation

In contrast to the high throughput implementation, typical low resource cost imple-

mentations of AES exploit the reverse trade-off between throughput and complexity.

While the high throughput implementations of AES usually have a fully implemented
datapath of 10 rounds with 128-bit width, lower complexity of the implementation can
be achieved by reducing the number of rounds implemented and the datapath width
based on a loop structure. While the reducing of the complexity, the throughput is

also ised since the llclism in ing of data is reduced.

Depending on the design requi for and y, many AES
implementations have been proposed based on a loop structure with various datapath
widths. Among those mostly scen are the implementations with one round loop and
the datapath widths of 128-bit, 32-bit or 8-bit. A typical example of the 128-bit width
implementation is shown in [25]. For the lower complexity AES implementation, there
are 32-bit AES implementations that reuse the datapath for 4 times for the operation
of one round, as is scen in [26], (27], [28] and [29]. By breaking the 32-bit operation
of MizColumns into scrialized operation on 8-bit data, some recent designs realize
the AES implementation with a 8-bit datapath width for even lower implementation
complexity. Designs with an 8-bit width datapath include [30], [31] and [32]. The 8-bit
AES implementations are also referred as the implementations with a fully serialized
architecture.

Regarding the performance of these low resource cost implementations, there is
usually no uniform benchmark for the comparison between them in the way that
they are usually implemented based on different platforms (ASIC or FPGA) with
different technologies or devices and the performance variation caused by difference
in implementation technology is not ignorable. It is also necessary to point out
that these implementations with the fully serialized architecture are targeted at the

design requirement of low resource cost, which means low in arca, power and cnergy.

19

Howover, while it is straightforward to scc the achicvement of low arca and that power
consumption can be scaled down by decreasing the clock frequency, it is not clear if

these implementations lead to low cnergy cost. The detailed distinction between the

power ion and the energy ion of an ij jon is i

in Section 3.2.2.

2.2.2.3 Potential for Different Architectures

According to the above review, most of the previous work focuses on a specific archi-

tecture for a specific design requirement, usually either the high throughput imple-

mentations with the fully unrolled datapath architecture or the low arca implemen-
tations with loop based 128-bit, 32-bit or 8-bit width datapath. However, there has

been i on the of other datapath architectures as

well as the evaluation of the performance of the various datapath architectures based
on the same benchmark, especially in terms of power and energy. In Chapter 6, we
conduct the investigation of an extensive range of the datapath architectures for their

performance in timing, arca, power and cnergy based on a 90-nm standard ccll ASIC

gy. These archi include with the data-
path width of 8, 16, 32, 64 or 128 bits and the unrolling factor of 1, 2, 5 or 10 for
the 128-bit width. Through this investigation, the performance trade-offs between

timing, area, power and energy over the different architectures are shown and the

power and energy efficient architectures are identified.

20

2.2.3 Characterizing D. h Impl ion Archi es

with Parameters

Since AES-E128 performs 10 rounds on a plaintext block of 128 bits to complete the
encryption, the algorithm inherently processes data in a batch of 128 bits. For the
datapath architectures with the width of 8, 16, 32 and 64 bits, the round of AES-

E128 is partially implemented in hardware and the reuse of the hardware for 16, 8, 4,

and 2 times is required to complete one round, respectively. These architectures are
called partial datapath architectures throughout this dissertation. When referring to
a partial datapath architecture, the notataion Un is used where n is the width of
the datapath architecture. For the 128-bit width architectures, since the complete
round function is implemented, they are called complete datapath architectures in this
dissertation. Depending on the number of rounds implemented, a unrolling factor of
1,2, 5 or 10 is used to characterize the complete datapath architectures, while the
notation of Un is used to refer to a complete datapath architecture with the unrolling
factor of n. When pipelined S-boxes are used in the datapath architectures, the
notation of Gn or Pn is used to indicate the S-boxes are pipelined into n stages with

gate level pipelining or level pipelini pectively (refer to Chapter 5

for details about gate level pipelining and component level pipelining).

The architectures of previous work on AES implementation can usually be char-
acterized by the datapath parameters mentioned above. For example, [23] corresponds
to U10. [20] includes U10, U10P2 and U10P3. [25] is UOL. [26], [27], [28] and [29] are
W32. [30), [31] and [32) arc examples of WOS. In this disscrtation, it is assumed that

the AES datpath architectures with the same datapath width, unrolling factor and /or

21

pipclining stage numbers have the similar performance and the performance of the

datapath architectures built in this dissertation is used to represent the performance

of the archi with the same | s, including those proposed in previous
work.

It should be noticed that the key expansion component and the controller for

the AES implementation are not included in the datapath architectures that are con-

sidered in this dissertation. The reason is that, for a specific datapath architecture,
it would not significantly vary with different implementations of the datapath archi-

tecture while the key expansion component and the controller can be highly flexible

and independent on that datapath i pecially for the key
component, which can be either implemented in order to generate the keys on-the-fly
or not implemented so that the keys are generated offline and stored for the use by

the datapath implementation.

2.3 Summary

In this chapter, the AES algorithm and the state-of-th t hardware imp

of AES are reviewed and analyzed. Through the review and analysis, the potential for

the increase of the i efficiency or the trade-offs is shown by
exploring the architecture configurations of the S-box and the datapath. The rescarch
presented in Chapters 4 to 7 is the deployment of the investigation of the potential.
As the foundation of the rescarch work in this dissertation, the methodology used

for the hardware i ion and ance ion in Chapters 4 to 8 is

presented in the next chapter.

22

Chapter 3

Methodology of Hardware
Implementation and Performance

Evaluation

Since the rescarch in this dissertation is based on the performance characterization
of the hardware implementation of various AES architectures, the methodology used

archi s and cvaluating

for building the hardware imp ion of the AE

the performance of the implementations is presented in this chapter.

3.1 Hardware Implementation

The hardwarc implementation performed in this dissertation is based on ASIC tech-
nology. The general digital ASIC design flow [33] is shown in Figure 3.1, which mainly

involves four stages: algorithm modeling, RTL coding, synthesis and layout.

23

Test
Vectors

—
Technology
Library

—
=

Technology
Library

Figure 3.1: General digital ASIC design flow

Algorithm
Modeling
Behavioral

Function
RTL Coding

In this di ion, the RTL description of the hardware impl is coded

| VHDL. The synthesis tool is Synopsys Design Compiler (DC, version X-2005.09)
[34] with the 0.18-um CMOS standard cell library from TSMC (for the work in Chap-

ters 4 and 8) or DC (version B-2008.09) with the 90-nm CMOS standard cell library

from STMicroclectronics (for the work in Chapters 5, 6 and 7). In this dissertation,

the estimation of the pel of the i relies on the synthesis tool

instead of the measurement of the fabricated circuit, so the physical layout stage

in Figurc 3.1 is skipped and, i s performed in the

cad, an virtual layout proccs
topographical mode of DC during the synthesis process. The topographical mode

of DC allows layout aware RTL synthesis, which can perform a coarse placement

of the cells and extracts the i i and i from that and
this process is called a virtual layout process [34). With virtual layout, the parasitic

capacitances of the physical layout of the design can be estimated more accurately

compared with the wircload model-based istical imati The
of capacitances ensures good correlation of the estimation in timing, arca and power
based on the synthesis result to that of the final physical design. For the virtual

layout, the height-to-width ratio of the placement arca and the arca utilization [34]

arc set to 1 and 0.7, respectively, for all the i jons. The synthesis process

s are then

generates the technology-dependent gate-level designs (netlists). The netlis
used to estimate the timing, arca, power consumption and energy consumption of the

1 i Although the estimation of the e based on synthesis tool

does not accurately reflects the realistic per ce when the i i are

fabricated, all the implementations built in this dissertation arc based on the same

technology library and follow the same synthesis process, and therefore the relative

25

comparisons should hold closcly, leading to a fair and objective comparison.

3.2 Performance Evaluation

The performance of the implementations in this dissertation is evaluated in terms

of timing, arca, power jon and encrgy i In the next section,

the evaluation of timing and area is presented firstly. After that, since the power

consumption and the energy ion of an i ion are distinguished in

this dissertation, the basic concepts of power ion and cnergy

is introduced before the consideration of their evaluation.

3.2.1 Evaluation of Timing and Area

In this dissertation, the timing of an implementation denotes the critical path delay.

The ¢

cal path delay and arca of an implementation are acquired from the synthesis

report and the area is converted to Gate Equivalency (GE), where 1 GE is equal to

the arca of a two input NAND gate with the lowest drive strength in the technology

library. Although the metric GE does not exactly reflect the size of the implemen-
tation after fabrication, the relative comparisons between different implementations

should hold closely and these arc of most interest in this dissertation.

3.2.2 Power Consumption and Energy Consumption

sts of dynamic power cos

The total power consumption of a CMOS circuit cons

sumption and static power consumption. Dynamic power consumption is the power

., the output of the gate is changing. Static

consumed during gate switching,

26

Figure 3.2: Charging current of the load capacitance of a CMOS inverter [55]

power consumption is the power consumed when the gate has voltage applied but is

not switching.

3.2.2.1 Dynamic Power Consumption

The primary source of dynamic power consumption is switching power consumption,
which is principally the result of charging of the load capacitance (output capacitance)
of a gate [35]. The charging of the load capacitance of a CMOS inverter is illustrated
in Figure 3.2. For cach time the output of a gate changes from 0 to 1, the load

capacitance is charged and the energy consumed is

9y = CLViy (3.1)

where €y, is the load capacitance and Vg is the s

pply voltage. Then, the switching

27

Vin Vout

Figure 3.3: Short circuit current between supply power and ground of a CMOS

inverter [55]

power can be deseribed as

Puiter = CLVjiPro-s fak (3.2)

where Pro.,; is the probability of the output switching from 0 to 1 and fuy is the
clock frequency.

In addition to switching power, internal power also contributes to dynamic power.
Internal power is caused by the short circuit between power supply and ground when

the PMOS and NMOS are cond ly during the switching

of the input, as shown in Figure 3.3. The cnergy consumed by the short circuit per

switching period is

Energysnort = tseViaalpear (3.3)

28

where t, is the time both transistors are on and I represents the short circuit

current. Therefore, the internal power consumption can be described as

P = tscVaalpeak PP switen feik (3.4)

where Pryuue is the probability of the change in the input.

As a sum, the dynamic power can be expressed as

Payn = (CLViaPro-s1 fan) + (tscViaalpeak Prvitch k) (3.5)

Since the internal power only occurs during the ramp time of the input signal of
the gate which is normally very short, the overall dynamic power consumption is
dominated by switching power [35], and therefore, the dynamic power consumption

can be approximated to

Pagn = CLVigProo fa (3.6)

According to the above expression, it is casy to sce that, in the case of implementations
with standard ccll CMOS technology, Pry.,; and fuy are the factors that can be

considered in the design and implementation to scale down the power consumption,

while for full custom CMOS technology, more factors, including C, and Vg , can be

taken into consideration for low power design.

29

Vin=0

Figure 3.4: Static leakage currents of a CMOS inverter [55]
3.2.2.2 Static Power Consumption

Static power consumption in a CMOS gate can be expressed as

Pyat = TstatVaa (3.7

where I, is the total leakage current that flows between power supply and ground

for the period the gate is not switching. Current Iy, consists of source or drain

leakage current and sub-threshold current. Source or drain leakage current is the
leakage current between the source or the drain and the substrate of a transistor,
and sub-threshold current is the leakage current flowing from the drain to the source

of a transistor operating in the weak inversion mode [35]. An illustration of these

phenomena is

own in Figure 3.4
Since all gates in a circuit suffer from static power consumption during non-

switching period, it is obvious that static power consumption is proportional to the

gate count of the circuit, i.c. the arca of the circuit.

3.2.2.3 Energy Consumption

Energy consumption is the accumulated effect of power consumption over time, as

expressed as
E /[J(l)l“ (3.8)

where p(t) is the power consumption at time t. The relation between energy con-
sumption and power consumption can be illustrated by Figure 3.5 where the curves
are instantancous power consumption and the arcas under the curves are energy con-
sumption. The two approaches shown in Figure 3.5 have different power consumption
(Py > P,) over time but their total energy consumptions are same (By = By). Un-
der the assumption that a computation task of a device can be completed with cither
of the two approaches (i.c., in time Ty for approach 1 and time T for approach 2),
approach 1 is preferred if the device is powered by a battery because the task is com-
pleted carlier (Ty < Ty), and approach 2 should be sclected if the device is passively
powered and Py can not be well supplied. Consider now that using approach 1, it is
possible to complete the task in a time Ty < T} . In this case, for energy constrained
(i.c., battery powered) devices, it is clearly preferable to use approach 1, since less en-
ergy is used to complete the task, even though the instantancous power consumption

is higher than for approach 2.

31

Power

Approach 1
- op
T T Time
Power
Approach 2
:l:]_.
T Time

Figure 3.5: Power consumption and energy consumption
3.2.3 Evaluation of Power and Energy

The power consumption of the candidate implementations is cstimated using Prime-

Time PX (version B-2008.06-SP2) from Synopsys [36]. The estimation is a gate-level
power analysis based on the the switching activity of the netlist. According to the
definitions provided in the previous section, the dynamic power of a circuit can be
caleulated based on its power parameters (c.g., parasitic capacitances), timing infor-
mation (c.g., clock frequency) and switching activity. The parasitic capacitances of
the circuit are predicted and extracted in the synthesis and virtual layout process us-
ing the topology mode of DC. The switching activity is obtained from the gate-level
simulation of the netlist with certain simulation vectors.

The power evaluation flow using PrimePower is shown in Figure 3.6. As is shown,

after the synthesis stage, a forward Switching Activity Interchange Format (SAIF)

37] file is generated by Design Compiler as input to the simulation stage. The for-

ward SAIF file contains the annotations about which circuit elements are to be traced

during simulation. Then, the simulator runs gate-level simulation on the netlist with
the simulation vectors that represent the typical tasks of the design. The switching
activity during the simulation is captured and recorded in a backward SAIF file in
the form of timing and toggle attributes of pins and ports. PrimcPower calculates
the power consumption using the backward SAIF file, the netlist file, the timing in-

formation, the parasitic information and the technology library. Since the calculation

of power consumption by PrimcPower heavily relies on the switching activity driven

by th

simulation vectors, a large number of random simulation vectors need to be
generated to imitate the practical usage of the design in order to achieve accurate

imePower can report both the real-time power consumption of

power estimation. P
the circuit at any time point during the simulation period and the average power
consumption over the period. With the report of real-time power consumption, the

leu-

peak power consumption of the circuit is also known. Encrgy consumption is
lated by multiplying the average power consumption with the duration of the period

of interest. In this di ion, the cnergy is i over a period of time for

the implementation to produce onc unit of throughput, such as a byte for the S-box

implementation and a 128-bit block for the datapath implementation.

3.3 Summary

In this chapter, the methodology for the hardware implementation and the evalua-

tion of the performance of the implementations in this dissertation is described. In

summary, the ASIC design flow based on standard cell technologies is adopted for the

eval-

hardware implementation. The performance of the hardware implementa

33

RTL Design Synthesis
Timing Constraint using Design
Technology Library Compile
Timing Constraint Gate level Netlist
Simulation vectors Simulation Delays (SDF)
using ModelSim Forward SAIF file
i Neti
Backward SAIF fle :‘_’:"9; ?’::I_}'is:e -
gl l i
Timing Constraint 9 Gl
le— Technology Library

Figure 3.6: Power Evaluation flow using PrimePower

uated based on the netlist from the synthesis results of the RTL design for timing,

arca, power and energy. The estimated parasitic s of the i
tions from the virtual layout process are used for estimation of power and cnergy

consumption.

Chapter 4

Using Pipelined AES S-Boxes for
Resource Efficient Purpose: An

Example

In this chapter, we propose a compact ASIC implementation for AES encryption
with 128-bit keys which employs a single 4-stage pipelined S-box shared by the data
path operation and the key expansion operation. Compared with the previous small-
st encryption-only ASIC implementation of AES [31], it achicves an increase in

throughput of 2.1 times while slightly reducing the gate count. This result indicates

that pipelined AES S-boxes are applicable in AES hardware implementations tar-
geted at low resource applications. The content of this chapter is also presented in

39)

4.1 Introduction

An AES cncryption core with an 8-bit data path was presented in [31] where two S-
boxes are implemented, one used by round operations and the other used by the key
expansion. Even though the throughput of this design is higher than other compact
designs, the critical path, which determines the maximum clock frequency and con-
sequently the throughput, is quite long because it comprises the entire critical path
of the S-boxes. S-boxes are the most complex component in an AES implementation
and it generally involves a large number of gates on its critical path. Commonly in an

AES on for high speed the S-boxes are pipelined to several

stages in order to reduce the critical path of the overall design. However this method

is scldom applied to compact i jons for i because
it is assumed that pipeline registers would incur large hardware overhead, which is
not affordable for the compact implementations targeted at low cost applications. In

this chapter, the applicability of using a pipelined S-box in compact AES hardware

implementations is cxamined. A new VLSI architecture design for AES implementa-
tion is proposed to accommodate a 4-stage pipelined S-box and the implementation
results show that the new design can achieve more than double the throughput of

[31] while slightly reducing the gate count. In the following of this disscrtation, the

design from [31] is referred to as the reference design.

36

MixColumns.
with Pa Seri

| Key Expansion J

Figure 4.1: Block diagram of the proposed AES encryption core architecture
4.2 Architecture Design

The block diagram of the proposed architecture design is shown in Figure 4.1 In
the architecture, the round operations have an 8-bit data path, and on the path, the
ShiftRows, SubBytes, MizColumns and AddRoundK cy operations arc performed

byte by byte in sequence by the i T plete the operation

of one round of AES encryption, all the bytes of the State need to traverse the round
operation data path once, so totally 10 traversals are required to encrypt an 128-bit

plaintext after the data path loads it. The key expansion component also has an

8-bit data path and generates round keys on-the-fly using 128-bit keys. One S-box is

used alternately by round operations and the key expansion. During the period the

S-box is occupied by the key i ponent, the round ions are frozen
by clock gating. The proposed design is developed based on the reference design [31)
and adopts the same Shi ft Rows, MizColumns and S-box structures. The proposed

design has modified i ion between key

and data flow which allow the interleaved use of one pipelined S-box between the

37

SiorsI698 YIS WM ULNOOXN

| ;
jany
[
H

Figure 4.2: Architecture of the AES encryption core with a d-stage pipelined S-box

38

data path operation and the key expansion operation. The detailed architecture of
the proposed design is shown in Figure 4.2. All the paths in Figure 4.2 have a width
of 8 bits except those between two consccutive pipeline stages in the S-box have the
widths as the internal data widths of the S-box at the places where the pipeline

registers are inserted. The blocks marked with "R” are 8-bit registers. The operation

of cach component and their interaction will be described in the following sections.

4.2.1 The ShiftRows Component

connected in series and there

The Shift Rows component cor

of 128-bit registes

are shortcuts from its input and every fourth register to its output. The component
takes bytes arriving in the order of State columns and reorders the bytes while they

are passing through. The detailed operation of the component is described in [31].

4.2.2 S-Box

The S-box adopted in the proposed design is developed in [7]. Since the computa-

tion of multiplicative inverse over GF(2%) can be converted to the computatio

subfields, in [7] the S-box structure is examined for a number of representations of

subfields, including both polynomial bases and normal bases, and the one leading
to the implementation with the smallest gate count is identified. In the proposed

architecture, the S-box is pipelined to 4 stages. The pipeline registers arc placed

between two consccutive stages but not shown in Figure 4.2. The regi placement

is performed at the gate level. The exact register placement is not presented. Refer

to Chapter 5 for the details.

39

4.2.3 The MizColumns Component

serial-in, parallel-out matrix multiplicr. It takes

The MizColumns component is
one byte input per clock cycle continuously for 4 cycles to receive a column of the
State. At every fourth clock cycle, the computation of the MizColumns operation
on the current column of the State is completed and the first byte of the result is
available at the output while the remaining three bytes are fed to the input of the
parallel-in, scrial-out shift registers incorporated in the MizColumns component
Subscquently, the three bytes are shifted out in the following three eycles. The blocks
X02 and X03 in Figure 4.2 generate the products of the current input byte and 02H
and 03H, accordingly. The AND gates arc used to bypass the XOR gates. This is
done by setting EN to 0 and thus ensuring that the XOR operation docs not change
the data. During the loading of a 128-bit plaintext, only the shift registers at the
right side of the component are working to shift in and shift out the plaintext bytes

in serial. Refer to [31] for a detailed cxplanation of the component.

4.2.4 Key Expansion Component

The key expansion component has an 8-bit data path, which is implemented mainly
by circularly conneeted shift registers R17 to R32. The bytes of a round key are

culates through the shift registers and the generation

generated while the key state ci

of a round key is completed every time all of the key state has circulated along the

path once. The computation of the next round key involves the substitution of the

last four bytes of the current round key. This is realized by an 8-bit multiplexer

switching the input of the S-box between the round operation data path and the key

40

expansion data path. During the load period of key bits, the AND gate has EN sc

to 0 to bypass the XOR gate on the shift register path.

4.2.5 Overall Design
In order to clarify the operation of the architecture, the states of the numbered
registers in Figure 4.2 in certain selected clock cycles are shown in Table 4.1 and

Table 4.2 for the round operation and the key

respectively. For both tables, the output of the register during a clock period is

regarded as the state of the register. In Table 4.1, for cach state N,, (0 < N <
10,1 < m < 16), N represents the N-th round within which the byte of the State
is processed (with the exception that N' = 0 indicates the initial plaintext) and m
represents the m-th byte of the State in the order of columns. The state N,, represents

the m-th byte of the State after the MizColumns operation in the N-th round (after

the SubBytes operation in the final round). Similarly, in Table 4.2 the state of a

register N,, indicates the m-th byte of the N-th round key with the original key
represented with N = 0. In both tables, X indicates a state holding a uscless byte.
The operation of the multiplexers and the AND gates can be casily determined from
Table 4.1 and Table 4.2. Clock gating is applicd regularly to both round operation and
key expansion components. The selected cycles that demonstrate the occurance of
clock gating arc marked with * in Table 4.1 and Table 4.2. The registers that require
clock gating and the cycles when clock gating is active can be deduced from Table 4.1

hown in Table 4.1 and Table 4.2,

and Table 4.2. It should be mentioned that, as

the architecture works in a way for the final round operations slightly differently from

41

that for other rounds because the MizColumns operation is skipped in the final
round. It takes 256 clock cycles to complete the encryption of a 128-bit plaintext

including loading and unloading, and since there is overlapping of three clock cycles

during loading and unloading, the effective clock count of the architecture is 253 for

the ceneryption of a 128-bit block of plaintext.

4.3 Implementation Results and Discussion

The proposcd AES architecture design with a 4-stage pipelined $-box is synthesized
using Synopsys Design Compiler version X-2005.09 under 0.18-um CMOS standard

cell technology from TSMC. The synthesis results of the proposed design with the

constraint of minimum arca arc reported in Table 4.3. Since it is difficult to com-
pare performance of implementations with different technologies, the implementation
results under 0.13-um technology from [31] are not quoted for comparison here, and
instead, the reference design is implemented and synthesized with the same tool and
technology as the proposed design. The results are presented in Table 4.3. It can
be seen that the design with the pipelined S-box uses slightly fewer gates than the
reference design and achieves an increase in throughput by a factor of 2.1. Although
the overhead of control logic is not included in the comparison, the slight increase in
gates used for the controller of the proposed design would be countered by the slight
decrcase in gates on the data path. The implementation results and comparison show
that, even though the pipelined S-box would introduce the latency of several clock
cyeles per round operation compared with the reference design, the reduction of the

critical path delay by using the pipelined S-box compensates for the increased latency

42

Table 4.1: Register states of the round operation data path
Cycle | R | Ro | Ry | Re | Ry | R | Br | Rs
2 x| x| x| x| x|x|x|x
15 X || || L|l|l|
620 | 4 [L | L | L | 1|l | 10| s
21 PO I PR I VA I P PR O M I PR I
28 To | 1o | 1s [l |l [le| 17 | 36
29 1o | 1s |l | |l |20 | 1 | X
Midd |20 | 2 | 2 | 2% | 2% | 2% |2 | 2%
*230-236 | 10, | 10, | 105 | 10, | 105 | 106 | 107 | 105
241 | 10, | 107 | 105 | 105 | 1050 | 105 | 1052 | 1013
2 | X | x| x|x|x|x|x|x
Cycle | Ry | Rig | R | Riz | Rus | Rus | Ris | Rug
2 x| x| x| x| x|x|x]|on
15 Ty | do | Lo [o | X | Lo Ly | 1
*1620 [lg [Lo |1 |l | X |l | L | Lis
21 To | b | Lo | Ly | X | L | b | Lo
28 X | x| X[x| |1]|y |y
29 x| x| x|y |y|n|n
144 | 2 | 20 | 20 | 2 | Vs | 10 | Vs | Ve
*232-236 | 10y [1059 | 100 | 1002 | 95 | 954 | %5 | %6
241 [10 [1055 | 10, [X | 107 | X | X | X
256 | X | x| X | X [10] 0| 02 | 0

43

Table 4.2: Register states of the key expansion component

Cycle | Ryz | RigeeeesRos | Ras | Rag | Rar | Ras | Rag | Rao | Ra | Rz

1 X X X | X | X|X|[Xx|x|X]|X

17 0, 03 ... 09 Oy0 [105 | 1042 | 1043 | 1014 | 1045 | 10,6 | Oy

20 05 Og evone 0y2 013 | 1014 [1045 | 1046 [0y 0, 03 | 04

21 05 [012 | O | O | Oy | Oug | 02 03 L [0

*24-28 | 05 | Og 012 O3 [Oia | Ois | O | 1y 1z 13 1y

29 0 | O7..... 013 O [05 | Oy | I 1z 13 14 05

31 0 [015 016 1, 1y 13 14 15 1 | 07

44 | I [Yool [D [L [Lis [Lo | L | 22| 25 | 04

M5 | 15 | Ig e Lz [s [L [Lis [Le | 12 | 13 | 20 | Lt

*237 | 95

*240 [95 | 96 oo 912 | 93 | 914 | 95 | 96 | 101 | 10> | 105 | 104

*241 | 95 9 woeree D2 93 | 9 | 95 | 9 | 10y | 102 | 105 | 104

256 107 | 105 104y | 1042 | 1043 | 1014 | 1045 | 1046 | 10, | 10 | 105

Table 4.3: Implementation results

Arca Max. Freq. Clock Cycles Max. Throughput

(GEs) (MHz) per block (Mbps)
Proposcd 2730 233 253 17.9
Reference design [31] 2815 69 160 55.2

44

Table 4.4: Normalized p . son of the using a single

S-box with different number of stages

Pipeline Stages 1 2 3 4 5
Arca 093 096 099 1 1.05
Throughput 037 065 082 1 115

Ratio (Throughput/Arca) 0.40 0.65 083 1 1.1

and brings significant boost, to the throughput. Therefore, when throughput is a con-
cern for a low gate count AES hardware implementation, the proposed design with a
pipelined S-box is a much better choice than the reference design with two S-boxcs.
Only the performance comparison with the reference design is presented here because
the reference design uses the lowest hardware cost among published works based on
an ASIC platform [31].

In order to determine the influence of the number of pipeline stages on the overall
performance of a compact design, the scenarios for varying number of pipeline stages
are investigated. The area and throughput performance of the architecture using a
single S-box with a varicty of pipeline stages is normalized to the 4-stage pipeline
scenario and shown in Table 4.4. It should be noted that the architecture in Figure
4.1 only works with a 4-stage pipelined S-box and for other stage numbers up to 5
the architecture requires minor changes to fit. For more than 5 stages of pipeline, a
major modification on the architecture is required since it is getting complicated to
share the S-box between the datapath and the key expansion when the latency of the

S-hox becomes larger than 5 clock cycles. The differences in area between pipeline

45

stage numbers come from the different amount of pipeline registers used in cach case.
The figures of one pipeline stage in Table 4.4 indicate the scenario of using a non-
pipelined S-box. From Table 4.4, it can be scen that the ratio of throughput/arca is

gradually improved as the number of the pipeline stages increascs. The architecture

with a 4-stage pipelined S-box is sclected to be specified in this chapter because it

has the best performance for an architecture with an arca smaller than the reference

design (7). The information in Table 4.4 also indicates the performance variance over
different numbers of the pipeline stages of the S-box implementation is worth investi-
gation in order to identify the appropriate number of pipeline stages for certain design
requircments. In the next chapter, a detailed and comprehensive investigation on the
pipeline configurations of the AES S-box is performed through the characterization
of the performance of the different pipelined S-box implementations under a variety

of throughput requirements with a 90-nm CMOS standard cell technology.

4.4 Summary

In this chapter, a new architecture design for compact hardware implementation of an
AES cncryption corc is presented. The new design is featured with a 4-stage pipelined

smallest

S-box. The implementation results show that, compared with the previos

nerypti ly AES hardware i ion, the new design uses the same amount.

of gates to achieve an increase of 2.1 times in throughput. The implementati
indicate that not only are pipelined S-boxes are applicable to compact implementa-

tions of AES, they can actually be used to improve performance. The content of

this chapter is a preliminary attempt to improve the performance of the AES imple-

46

mentation with pipelined S-boxes. Table 4.4 also shows some preliminary results of
the exploration of the performance trade-offs with the different number of pipeline

stages. Inspired by these results, in the next chapter, a comprehensive investigation

of the performance improvement and trade-offs provided by pipelined AES S-boxes

is performed and presented

Chapter 5

Exploration of S-Box Pipeline
Configurations for Flexible and

Efficient Implementation

In this chapter, we present a comprehensive investigation of the pipeline configura-
tions for ASIC implementations of the Advanced Encryption Standard (AES) substi-
tution box (S-box). We consider pipeline configurations for the S-box with a typical
composite field structure by varying the number of pipeline stages and the placement
approach of pipeline registers. Besides the conventional placement approach at the
component level of the S-box, we adopt a new placement approach at the gate level
to achieve a fine-grained pipeline. The characterization shows that there is notable
performance improvement in timing, arca, power and/or energy cfficiency by using an
appropriate configuration compared with other configurations including non-pipelined

implementations.

5.1 Introduction

In contrast to the conventional usage of pipelined S-boxes in high throughput im-
plementations, there are very few previous works that investigate the potential of
pipelined S-boxes for resource efficiency so that they can be applied to resource-

is duce to

constrained applications, such as lightweight embedded applications. Thi
the fact that the arca overhead introduced by the pipeline registers appears to con-
flict with the effort of reducing area and consequently reducing power and energy
consumption.

In the next section, based on a typical composite field structure of the AES S-
box, we consider an extensive variety of pipeline configurations and investigate their

influence on all perspectives of the performance, including timing, area, power and

energy. The pipeline configurations consist of the number of pipeline stages of 2
to 4 for the component level register placement approach and 2 to 7 for the gate
level register placement approach. We introduce the application of the gate level
approach for the pipeline of S-box implementations. It exploits the retiming function

by the synthesis tool to achieve the fine-grained pipeline at the gate level without the

violation of the standard ASIC design flow. The performance of the pipelined S-box

benchmarked with a 90-nm CMOS standard cell technology.

implementations is

Through the analysis of the performance, some obvious trends that reflect the
influence of the pipeline configurations on the performance are identified. In addition
to the timing improvement, notable improvements in terms of arca, power and cnergy
efficiency are also observed by using an appropriate pipeline configuration compared

with implementations with no pipeline. These improvements occur under the wide

49

range of timing requirements we have examined, including the requirements to which
lightweight AES implementations are targeted. These results are strong cvidence
that pipelined S-box implementations are not only suitable for high throughput AES

implementations, but also valuable to resc flicient AES impl ions. The

results also show that pipelining provides many more performance options that al-

low more flexible implementation of the AES S-box compared with non-pipelined

implementations.

5.2 The S-box Structure for Pipelining

As is mentioned in Scction 2.2.1, the composite field structures have low complex-
ity and this allows for more cfficient pipelining in terms of the number of pipeline
registers. Therefore, the composite field structures are most suitable for pipelining.
Although quite a number of composite field S-box structures are available, in-
cluding [5], [6], (7], [8], (9], [10] and [13], there is typically little difference between

them. They tend to be very close together in performance compared with the other

groups of S-box structures [18]. Since our purpose is to investigate the general effec-
tiveness of pipelining the S-box with a composite field structure, we use the one from

[5] as a typical and common composite field structure for the study in this chapter.

Although it is not the one with the best performance among all the composite field

structures, it has a relatively simple and clear structure and can be casily pipelined.
The pipeline of the S-box in [19] and [20] is also based on this structure. Further,

since the S-boxes for cneryption and for decryption have very similar structure, we

focus our inve

tigation on the encryption S-box.

FJ—|Aﬂﬂ~aunaxey

A

2y

l_léh_\ A
o]

= S
o L
/

. |)
=i
E |

[
/
a2
s
[

[romar [
] 3y i
N

[

‘AddRoundKey

‘AddRoundKey

ByteSub (16 S-boxes)

1/16 BytoSub (1 S-box)

174 MixColumn
‘AddRoundKey

©

®)
Figure 5.1: The typical data path architectures of the AES: (a) loop-unrolled
1

architecture, (b) round-iterative architecture, (c) fully serialized architecture

5.3 Applicability of the Pipelined AES S-Box

When considering replacing non-pipelined S-boxes with pipelined S-boxes in an AES

implementation, the primary concern is whether it would impact the throughput of

the cipher. Actually, the answer to this concern varies with the contexts, including
the architecture of the cipher and the mode of operation of the cipher. In the next
section, the impact on the throughput will be discussed in the contexts of three typical
data path architectures of AES and the two groups of the commonly used block cipher
modes of operation: the non-feedback modes and the feedback modes

Three typical AES hardware architectures are the loop-unrolled architecture [19]
[20], the round-iterative architecture [39] and the fully serialized architecture (with a
datapath width of 8 bits) [31] [32], and the illustration of them is shown in Figure 5.1.
The loop-unrolled architecture is usually adopted for high throughput implementa-
tions while the fully serialized architecture targets at low arca implementations. The
round-iterative architecture provides a trade-off option in between. Non-feedback

clude clectronic codebook (ECB) mode and counter (CTR) mode, and feed-

modes
back modes include cipher-block chaining (CBC) mode, cipher feedback (CFB) mode
and output feedback (OFB) mode. In cach context, two scenarios are considered
after the replacement of the non-pipelined S-boxes with the pipelined S-boxes: (a)
the cipher runs at the same clock frequency, and (b) the cipher runs at higher clock

frequency. For convenience, the assumption is made that the inputs and the round

keys are able to be fed to the data path whenever they are required

The loop-unrolled ard is developed particularly for the non-feedback

modes in order to fully exploit its capability to produce a 128-bit output per clock

cycle and, therefore, it is assumed that this architecture is only used for the non-

nario (a), there is no impact on the throughput after the

feedback modes. For s

replacement. For scenario (b), the throughput would increase.

For the round-iterative architecture working in the non-feedback modes, the

throughput can be kept the same (scenario (a)) or increased (scenario (b)), due to

the fact that the number of inputs that can be processed simultancously is cqual to

the number of pipeline stages. In the cases of the feedback modes, there

only one
input that can be processed at one time duc to the dependency between the current
input and previous output, and consequently the throughput drops by a factor of the
number of pipeline stages for scenario (a). However, if this cipher works under one of
the feedback modes but serves for parallel independent data streams/channcls with
the number equal to or larger than the number of pipeline stages, as is also assumed
in [40], the throughput can be kept the same for scenario (a) or increased for scenario
(b).

The fully serialized architecture with one S-box takes at least 16 clock cycles
to complete one round function and iterates for the number of rounds to produce
one input. It is not able to handle more than one input at a time, so there is no
difference caused by the mode of operation in evaluating the impact on throughput
by pipelining. Assuming that the fully serialized architecture takes 16 clock cycles
to complete one round function and leads to the throughput 7' before an n-stage
pipelined S-box (n > 2) is used, the number of clock cycles for one round function
becomes 16+ (n — 1) after the replacement and the throughput becomes 167/(15+n)
in scenario (a). Considering that the fully serialized architecture is usually used in

the applications running at low clock frequency, the decline of the throughput after

53

the replacement is slight and acceptable if the pipelined S-box has a small number

of stages. For scenario (b), the throughput can be increased above 167/(15 + n) by

increasing the clock frequency. It will be shown in the following that there is no or

very little penalty on the area and energy efficiency if the clock frequency is increased
for the S-box implementation built for running at low clock frequency.
In this work, the pipelined S-boxes implementations are compared mostly under

scenario (a), so that the throughput of the S-box remains the same for pipelined and

pipelined i i of the number of pipeline stages. Bascd

is,

on the above analysis, this context is prevalent

5.4 Pipelining the AES S-Box

S-box implementations with the composite field structures create a long critical path
delay for the overall AES implementation. For most AES implementations, the critical
path of the overall implementation lies in the hardware of one round function. A

round function would perform the operations SubBytes, ShiftRows, MirColumns

and AddRoundKey in scquence in the data path part. Among these operations,
MizColumns can be built with 3 XOR gates on its critical path [19], AddRoundK ey
is single XOR gates in parallel, and ShiftRows is a crossover of wiring in hardware.
Thercfore, the critical path of the S-box takes up almost the whole critical path of
the overall implementation. Pipelining the S-box would effectively reduce the critical
path delay of the overall implementation. In this section, we investigate the possible

pipeline configurations applicable to the S-box with a composite field structure. We

refer to a pipeline configuration as a combination of a placement approach of pipeline

54

registers and a number of pipeline stages.
Another benefit of pipelining an S-box with long critical path delay is the re-

duction of glitches in the circuit and consequently the reduction of power and energy

consumption. Glitches are the unnecessary transitions of signals in a circuit. They
are generated when the input signals do not arrive simultancously at a gate and these
glitches may propagate to generate more glitches throughout the circuit. Since the
dynamic power consumption of a circuit is proportional to the number of transitions
in the circuit and dominates the total power consumption of a circuit in the CMOS
process, the negative influence on the power consumption caused by glitches can be
severe if the amount of glitches is large. According to the transition simulation per-
formed in [41] on a dircction detector that has a long critical path delay, about 80%

of the total transitions in the circuit are glitches. An effective approach to reduce

glitches is to insert flip-flops in the circuit, as is shown in [42). The work in [11] also
shows that there is significant reduction in power consumption if the optimal number
of flip-flops is used. Since the AES S-box with a composite field structure is also a
combinational circuit with long critical path delay, it is reasonable to belicve that
pipelining can contribute to the power and energy efficiency of the S-box implemen-
tation through the reduction of glitches and this is confirmed by the characterization

results in this chapter.

5.4.1 Pipelining at the Component Level

Pipelining at the level s a coarse-grained ent approach. An exam-

ple that pipelines the S-box structure of [5] into 2, 3 and 4 stages is shown in Figure

o
&

UONBULIOJSUBL] BUIYY

@ | -
o } - -
ol : 4 -
o oo 1o} . - =

Figure 5.2: Component level pipelined S-box architectures: (a) 1-stage (no

pipeline), (b) 2-stage, (c) 3-stage, (d) d-stage

5.2, where A and B are clements in GF(2'), @ and @ arc addition and multiplication
over GF(2*), respectively, and e is the constant in hexadecimal notation. The dotted
lines represent the positions of the registers for the corresponding number of pipeline
stages indicated at the bottom. The 2-stage and 3-stage pipelining are the same
as used in [20]. Pipelining at the component level can be realized at the Register
Transfer Level (RTL) in the HDL description of the S-box. The registers are placed
according to the estimated complexity or delays of the components before the S-box
is synthesized into the gate-lovel design. For this placement approach, the number
of pipeline stages is cxamined up to 4 in this chapter since there becomes severely

unbalanced critical path delays in the stages when the number is larger

56

5.4.2 Pipelining at the Gate Level

A fine-grained placement approach for pipelining may be desired since it can avoid
the problem of unbalanced delays. The most fine-grained placement can be achieved
by pipelining at the gate level

In the ASIC design flow using standard cell librarics, a gate level design, also

know as a netlist, is generated from the synthesis process applied to the RTL design
It should be noted that inscrting registers into the RTL design, as is done for the
component level pipeline, would not lead to a desirable gate level pipeline with the

well balanced delays since the delays can not be accurately estimated before the

synthesis. On the other hand, after the synthesis, the manual insertion of registers

into the netlist for gate level pipeline is not compliant with the standard ASIC design

flow and could violate the optimization effort of the synthesis, considering that the

manual pipeline would impose a major modification of the netlist that has been well

nthesis

optimized by the synthesis towards constraints. To get rid of this dilemma,

we adopt the retiming function of the synthesis tool to perform the gate level pipeline
during the synthesis process. In this way, a non-pipelined RTL design of the $-box

process. The details

would generate the gate level pipelined netlist after the synth
of the implementation of this approach in our experiment are described in Section

5.5.1.

n be shortened

For the gate level approach, theoretically, the critical path delay
to the minimum by increasing the number of pipeline stages until there is only a single

gate left on the critical path of a stage. When the number of stages becomes large

and the gate delay on the critical path is close to the delay of the register, there is

g

@

little or no improvement of timing from more pipeline stages. In this chapter, the
number of pipeline stages is examined up to 7 for the gate level approach in order to

observe the saturation in timing improvement.

5.4.3 Comparing Placement Approaches

Despite its superiority in terms of balanced delays, the gate level placement approach

is inferior in terms of the number of pipeline register bits required. Compared with the

component level approach that only places register bits on the input or output ports of
a component, the gate level approach usually requires a expanded number of bits for

pipclining when the components are decomposed into gates. On the other hand, the

flexibility in register placement of the gate level approach allows the synthesis process
to have more optimization potential. Thercfore, there is no straightforward way to
tell which approach leads to overall better performance on the implementations until
a comprehensive characterization and comparison is conducted, as is done in this

chapter.

5.5 Methodology

Although the number of pipeline stages is the essential factor determining the critical
path delay of pipelined S-box implementations, the synthesis tool can tune the imple-
mentations with different pipeline configurations to meet the same timing constraint.
In this way, they can be compared to reflect the performance variation while varying
the pipeline configuration to identify the appropriate configurations that lead to the

most desired performance for different timing constraints. The S-box implementa-

=10

WUEASUGD DUt = 01 558014 MOAE IEMAN PUB SIS = OTFNAS SISEaY Jo 0N = 2 .

@ @.....O @

@.....@

I
[[| Il

%M

Figure 5.3: Derivation of the candidate implementations from the source HDL

description of the $-Box

tions of different pipeline configurations are referred as candidate implementations

in the next sections. The candidate implementations are tuned and compared against

the same timing constraints because timing usually has the first priority as a design
requircment. This is the basic methodology we adopt for the investigation of pipeline

configurations

5.5.1 Deriving the Candidate Implementations

The derivation of all the S-box implementations based on the source HDL deseription
of the non-pipclined AES S-box is shown in Figure 5.3. The source HDL description
of the non-pipelined S-box in Figure 5.3 is the structural description of the S-box with
the composite field structure from [5], and the structure is shown in Figure 5.2. Both

the input and output ports in this HDL description are registered, as is indicated by

the dotted line at the input and output of the S-box in Figure 5.2

In Figure 5.3, three categories of the HDL descriptions are derived firstly from the
source HDL description and then cach of the HDL descriptions is used to gencrate
a number of the implementations under different timing constraints. Each of the
HDL descriptions reflects a pipeline configuration. Each of the implementations is
generated from a synthesis and virtual layout process based on the HDL description.

The first category of HDL descriptions contains that of the non-pipelined S-box,

which is exactly the same as the source HDL description. It is used to generate

the non-pipelined candidate i as the 5. The second category
contains the HDL descriptions of the pipeline configurations with the component level

placement approach. They arc derived by inserting the registers as D-flip flops into

1 1]

S-Box Stage 1

Non-Pipelined
S-Box

S-Box Stage 2

1

Row of S-Box St 3

=t o L

Figure 5.4: lllustration of the gate level approach of pipelining into 3 stages by

or retiming

the source HDL description according to Figure 5.2. The third category is the pipeline
configurations with the gate level placement approach.

The gate level approach is performed with the register retiming function pro-
vided by Synopsys Design Compiler [34]. The register retiming function moves reg-
isters through the combinational logic of a design to optimize timing and arca. An
illustration of how this function works is shown in Figure 5.4. Before the register
retiming, rows of registers need to be inserted in the source HDL description of the
S-box according to the target number of stages and they can be simply placed at the
outputs of the S-box. Each row of registers initially has a width of 8 bits and while
it is moved to the appropriate position during the register retiming, the width will

be adjusted to fit the width of the data path at the position. It should be noted that

although the design produced by the retiming process is subject to formal verific

61

tion, the correctness of our pipelined S-hoxes can be casily verified by a exhaustive
test. Since the retiming process is automatic and the placement of registers may vary
from one candidate implementation to another, the detailed locations of the pipeline

registers are not presented in this chapter.

For cach pipeline configuration, a number of different timing constraints are used

in the synthesis process to produce different candidate implementations. These timing

constraints consist of minimized delay (timing constraint is set to 0) and some selocted

constraints covering a wide range of timing requirements. These sclected timing
constraints include 0.35 ns, 0.40 ns, 0.60 ns, and 0.80 ns as the tight constraints,
1.00 ns, 1.25 ns, 1.50 ns, 1.75 ns and 2.00 ns as the medium constraints, and 2.50 ns,

3.00 ns, 4.00 ns and 8.00 ns as the loose constraints. A candidate implementation is

omitted if it cannot meet its target timing constraint.

The synthesis and virtual layout process is performed in the topographical mode
of Synopsys Design Compiler, as is described in Chapter 3. The synthesis library is

the 90-nm CMOS standard cell library from STMicroelectronics with a core voltage

of 1.2V and standard threshold voltage.

5.5.2 Evaluation of the Performance

After the candidate implementations arc achieved from the above process, their per-
formance in terms of critical path delay, arca, power and encrgy is estimated accord-
ing to the performance evaluation methodology deseribed in Chapter 3. The power
consumption is estimated at the clock frequency corresponding to its target timing

constraint, and this may differ from the maximum clock frequency at which it is able

62

to work. For the candidate implementations that arc built under the constraint of

minimized delay, the maximum clock frequency is used for the estimation. The en-

crgy consumption of a candidate fon is calculated as the product of its

power consumption and the clock period applicd to it. This encrgy consumption is
normalized to be the average energy consumed to produce one byte output

The power of the candidat is cstimated using

PrimcTime PX from Synopsys. The switching activity s obtained from the gate-
level simulation of the netlist with 10,000 random byte inputs. The same set of

random byte inputs is used for all the candidate implementations.

5.6 Experimental Results and Analysis

cction, there are 10 HDL d

Following the methodology described in the last riptions

derived from the source HDL description and totally 127 candidate implementations
are built from them. We investigate the effect of the pipeline configurations upon the

performance of the candidate implementations in three ways. Firstly, cach pipeline

raints examined. Sec-

configuration has its performance under different timing cons

ondly, the candidate implementations from different pipeline configurations with the

minimized timing constraint are compared. Thirdly, the candidate implementations

from different pipeline configurations with given timing constraints are compared

5.6.1 Performance versus Timing Constraints

The normalized area, power and cnergy of the candidate implementations with the

same pipeline configuration are placed in the same subfigure of Figure 5.5 according

63

(715 GE9.55 mW/T.35 pl)

—o—Arca —@-Power —A—Enerey | g NP
! 06
NP: No Pipeline
Gin: Gate level placement with n stages 04
Pu: Component level placement with n stages 02 —
0
o - - - n oo
gtasiy
(a)
| A GE02 W79) | G ESRGEI26mVS AP (680 G WA
= 3
o8 Gl os o4
06 06 H 4 o6

0: A 11.4 W‘ 04 ‘.“.—’C“
04 \‘ E \

02 02 02
. o e e . o 4 “iw—-
0 0
ce-—-pbpN co -
SRS EER SRS ERR
(b) ©
(123 GE/16.7 W5 01 pl) (625 GE/148 W44 pl)

1

0.6 0.6

04 A 04 \
., N

02
e
0
oo = 5o
(609 GENL1LO mWA4S1 p)) | g6 GELI WA 20)
08 \ P3 os P4
|
06 06
o ==
4 &
02 g 02 -
e . .,
0 0
SELasYa 28Zgsel
@) U]

Figure 5.5: Normalized performance versus target timing constraints (ns), grouped

according to the pipeline configuration

64

to their timing constraints. The pipeline configuration of the component level or

the gate level placement approach with the pipeline of n stages is denoted as Pn or

Gn, ly, and the non-pipelined configuration is denoted as NP. The area,
power and energy costs are normalized with respect to the leftmost values, which arc
shown at the top of the subfigure, respectively. The performance of the candidate
implementations with the timing constraints of 4.00 ns and 8.00 ns is not shown in
Figure 5.5 because they have the same area and negligible difference in power and
cnergy compared with the implementations at 3.00 ns.

According to Figure 5.5, all the pipeline configurations have similar trends in
area, power and energy with the variation of the timing constraint. The trends reflect
the trade-offs between timing and the resource costs. When the timing constraint is
loosened, the area of the pipeline configuration drops until the minimal is reached.
In Figure 5.5, each of the pipeline configurations has the candidate implementation
with the minimal arca under a certain timing constraint and for the further loosened
timing constraints, the arca remains same. Another common feature shared by almost
all the pipeline configurations is that the trend in energy does not exactly follow the

ca trend. While the arca is being reduced to the minimum, there is a noticcable

increase in cnergy. This indicates that the implementation with minimal arca docs
not lead to the minimal energy consumption. For each pipeline configuration, the
candidate implementation that has the minimum energy indicated in Figure 5.5 can
be used at the lower clock frequencies for better energy cfficiency than those candidate

tions achieved for the cor ing timing These lidats

implementations lead to the energy-wise costs of the pipeline configurations that are

cexamined in Section 5.6.3.

(0.30 ns/2489 um?/9.55 mW/4.29 pl)

ODelay WArea MPower OEnergy ||

NP: No Pipeline
lacement with ' stages

Pi: Component level placement with # stages

NP G2 G3 G4 G5 G6 G7 P2 P3 P4
Figure 5.6: Normalized performance versus pipeline configurations nnder the

nthesis constraint of minimized critical path delay

5.6.2 Performance versus Pipeline Configurations for the Min-
imized Timing Constraint

When the t of the S-box i ion is expected to be as high as

possible, the implementations with the minimized timing constraint from different
pipeline configurations are considered. Figure 5.6 shows the performance of these
candidate implementations. The delay, arca, power and energy in Figure 5.6 arc
normalized with respect to the corresponding minimum values, respectively, which
are shown at the top of the figure.

As expected, the critical path delay decreases with the increase of the number of
pipeline stages until it reaches the minimum for the pipeline configuration G5. After

35, the delay remains the same for G6 and G7 and this indicates that the saturation

66

of timing improvement is reached, as is anticipated in Section 5.4. Among G5, G6

considerably better then the other

and G7 that have the same minimal delay, G6

two in arca, power and cnergy. Therefore, increasing the number of pipeline stages

beyond 6 does not improve the performance in timing, arca, power or cnergy.
Dircetly comparing pipeline placement approaches, it can be seen that the gate

level approach leads to shorter delays, while the component level approach leads to

smaller arca and less power and cnergy through comparisons between G2 and P2,
@3 and P3. and G4 and P4. This confirms the conjecturc in the analysis of the
two approaches in Section 5.4 that the gate level approach has the advantage of the
well balanced critical path delay, while the component level approach requires fewer
pipeline register bits (due to the datapath width at the component ports) and this

contributes to efficiency in area, power and energy.

5.6.3 Performance versus Pipeline Configurations for Given
Timing Constraints

In the circumstance that a given throughput is expected from the S-box implementa-

tion, the of the pipeline ions with the same timing constraint

arc compared, as is shown in Figures 5.7, 5.8 and 5.9. The timing constraint as well
as corresponding clock frequency are presented at the top of each subfigure of Figures
5.7, 5.8 and 5.9. The arca, power and cnergy costs are normalized with respect to the
leftmost values, respectively, that are shown at the top of the subfigure. Since energy
is the same metric as power under a given clock frequency, they share the same bars

in Figures 5.7, 5.8 and 5.9.

67

035 1286 Gz 250GHz 0.6088/167 Gz
14,1 W) 12.6mW) 3 G0 GEA79 W)
1 1 12 mg
o i i
09 23
! i it
08 i
08 0 2
I
L H. 08 =<
o L 06 07 QO
35385 s3s852: gsssssoz [E3
@) @ ¥
es
080 08/1.25 Gl 1.00n5/1.00GH 17 38
; (57 Gl 44) i (374 G397 2 &
0o 2 g3
12 g
s X g
07 . ' g5
06 09 H [
05 08 i 28
58
04 07 H g2
gz
03 I g &
02 05 L g5
$3338852aTEg sgsadsesezr |27
” 0 R M 28 12w
g8
. &
e 1.2505/800MHz (299 GE/2.27 mW) =%
Is o
14 &
13 S
12 = — |
I 1 == = -
! =] e Q@F
09 L = HE 3
5 Z
08 = uiFs
" o
0)
z 8 388w zFZT s ELE k-]
® 35
. 1.50ns/667MHz (272 GE/1.65 mW) o
7 8
16 — o
is €
14 z
L B :
[] g
| =l El
09 g
0 ?
e N A S 3 38 850z |°
5 883885« ¢ gggegges s
@ = 2

Figure 5.7: Normalized performance versus pipeline configurations under given
timing requirements (from 0.35 ns/2.86 GHz to 1.50 ns/667 MHz)
68

o 1.75n5/57IMHz (272 GE/1.40 mW)
16 —— (mO
15 1 — | 3>
14 B H
i3 w - H
12 — - F]
I = 2
! = 8
09 =
08 -
£ 3338862 z33388822z2 (FF
® oo
- e s
2.00n5/S00MHz (272 GE/1.21 mW) 37
17 o
16 —
is M —|82
14 = ==
3 H g5
12 - HH 88
0 [- -
1 oy Bl ® 3
09 gz
08 E ;
$ 8838886z E 3 gz [T
® z .,
- 2.50n5/400MHz (251 GE/1.14 mW) L]
18 =@
i
13 -]
13 = = H 3
13 =HE o o o
12 | HHHH
i HH o
b § 8%
b = 57
06 3
s 8 B8 I8 S E RO ¥ & P]
$ 838338385 ag 388 EE]
e = Z8
@ 13
- 3.00n5/333MHz (250 GE/0.99 mW) m &
i g
o
i3 3
13 HHE £
12 I z
5 5
09 g
0% 3
07 5
06 Z
s 883885 ezgg gz =
@ - | S
Figure 5.8: Normalized performance versus pipeline configurations under given

timing requirements (from 1.75 ns/571 MHz to 3.0 ns/333 MHz)

69

Gn: Gate level placement with n stages
0 Area Pn: Component level placement with n stages
M Power/Energy NP: No Pipeline
EGn/EPn/ENP: Encrgy-wise Gn/Pn/NP
. 4.00n5/250MHz (250 GE/0.72 mW)
7
6
3
3
i
!
0%
07 i
06
R R
m,
" 8.00ns/125MHz (250 GE/0.36 mW)
17 1
1o
Is
14
13
i £
1
0%
0.7 L
06
®

Figure 5.9: Normalized performance versus pipeline configurations under given

timing requirements (4.0 ns/250 MHz and 8.0 ns/125 MHz)

70

According to the discussion in Scction 5.6.1, for a given pipeline configuration,
the most energy efficient implementation is generated with modest but not necessarily
the loosest timing constraint. These candidate implementations are estimated for
power/energy at the clock frequencies lower than the frequency corresponding to
their timing constraints. Their power /energy consumption, if applicable, is reported

at the right in the subfigures according to the actual frequency, along with the areas

costs of the pipcline

of these implementations, and are marked as the “Encrgy-w

configurations. To distinguish from the ener; ise costs, the costs shown in the left

part of the subfigures are called regular co
In the next seetion, we analyze the variance of the arca and power/energy costs
for different pipeline configurations under the various timing constraints based on

Figures 5.7, 5.8 and 5.9.

5.6.3.1 Area versus the Number of Pipeline Stages

The arca cost roughly follows the trend that, for a tight timing constraint, the in-
crease of pipeline stages gradually reduces the cost until the minimal is reached by an
appropriate number of stages. This trend is reflected in the cases from 0.35 ns/2.86
GHz to 1.25 ns/800 MHz. As the timing constraint is loosencd to medium and below,
the cost gets larger with the increase of pipeline stages, as is shown in the remaining
cases of Figures 5.7, 5.8 and 5.9, where no pipeline leads to the minimal arca cost

reasonable because the

This trend of arca cost varying with timing constraints i
increase of pipeline stages could relieve the timing constraint imposed in cach stage

and consequently improve the arca efficiency for the tight timing constraint. Although

the increase of stages would raise the arca cost by introducing more pipeline registe

0!

there could be overall gain and the appropriate number of pipeline stages maximizes
the gain. When the timing constraint is further loosened, the effect on area reduction

becomes less significant compared with the area increase by more pipeline stages

and thercfore more stages would no longer reduce the arca cost. Finally, when it is

realizable for the given timing constraint, the non-pipelined imy fon results

in the minimal arca and the more pipeline stages, the more arca is incurred.

5.6.3.2 Power/Energy versus the Numbers of Pipeline Stages

xeluding those cnergy-wise valucs)

By looking at the regular power/cnergy values
in Figures 5.7, 5.8 and 5.9, it is able to scc the trend in power/encrgy cfficiency is
very similar to that of area efficiency and the reasoning follows similarly. The only

obvious difference between the trends is that pipelined implementations leads to better

power/energy efficient tion than non-pipelined fons even for

the medium to low throughput cascs, as is shown in the cases from 1.50 ns/667 MHz
to 8.0 ns/125 MHz. This can be attributed to the reduction of glitches by using the
pipeline registers. It is supported by our experiment that, when the pipeline registers
of P2 in the cases of 4.0 ns/250 MHz and 8.0 ns/125 MHz arc manually removed, the
power and energy increase to that of NP.

Overall, for a given timing constraint, the number of pipeline stages leading to
the best power /energy efficiency tends to be in the middle of the possible numbers.
A similar feature is observed in [41] where the increase of flip-lops gradually reduces
the power of a direction detector until the minimum is reached and then, as more

flip-flops are added, the power increases.

5.6.3.3 Area versus the Placement Approaches

Comparing the two approaches under the same number of pipeline stages where both

are applicable, the overall trend is that the component level approach is the more

efficient approach for the timing constraint ranged from tight to modest, as is reflected

in the cas

s from 0.60 ns/1.67 GHz to 1.50 ns/667 MHz. An exception occurs in the

casc 0.40 ns/2.50 GHz where G4 is better than P4. This is because the target timing
constraint of P4 (0.40 ns) is very close to the minimal it can reach (0.38 ns), as is
shown in Figure 5.5 (j). When the timing constraint is further loosened, the arca cost

of the component level increases above that of the gate level approach, as is scen in

the cases from 1.50 ns/667 MHz to 8.0 ns/125 MHz. This is explainable since the

te level approach has the flexibility in the placement of registers for further area

reduction while the component level approach has no potential for arca reduction

over the tighter g constraint cascs, as is scen in Figure 5.5 (h) to (j).

5.6.3.4 Power/Energy versus the Placement Approaches

The trend of the power/energy versus the placement approaches does not exactly

follow that of the arca versus the pla

ment approaches. Similarly, the gate level
approach is more efficient in power/cnergy for the timing constraints from tight to

medium. For the further loosened timing constraints, while the gate level approach

leads to less arca, it consumes more power/cnergy compared with the component
level approach. This means that the less arca comes at the cost of compromised

power/encrgy cfficiency, as is also found in Scction 5.6.1.

e I PowsiEresy

DB Co0| N[G2 G3 G+ Go Ga G7| P2 Pa pa |WP[G2 G3 G4 Gs Go G7] P2 P3P

0.35 152,06 GHZ Pz Pz \ o
060 05/ 67 GHz y

0,80 15125 GHz i

700 ns/1.00 GHz

725 ok 4

750 ns/667 MHZ g

high

N

5.10: Trends of optimal pipeline configurations for the throughput

requirements from high to low

Energy-wise Costs

andidate

The energy-wise costs in Figures 5.7, 5.8 and 5.9 are generated by the
implementation with the minimal energy consumption (according to Figure 5.5) run-

ignated frequency. These power

nergy

ning at the clock frequencies lower than its de

costs are lower than the corresponding costs generated by the candidate implementa-

but res

tion designated for the clock frequent alt in higher arca (c

By comparing between the energy-wise costs, the trends follow those of the regular
costs under the loose timing constraints. With the decrease of pipeline stages, the

minimal arca is achicved by ENP while the minimal power/cnergy remains at EP3.

The component level approach is better than the gate level approach for both arca

and power/cnergy.

5.6.3.6 Trends in One Picture

on of the trends analyzed above, the values shown

For a more intuitive comprehe

in Figures 5.7, 5.8 and 5.9 are converted to a gray scale map in Figure 5.10, where a

level of gray -ates the cost (the brighter, the lower) of the pipeline configuration
compared with others under the timing constraint. For any row in Figure 5.10, the
brightest and the darkest correspond to the lowest and the highest costs, respectively,
in the corresponding subfigure of Figures 5.7, 5.8 and 5.9, while the other shades in
the row are determined to be between them. The energy-wise costs in Figures 5.7,
5.8 and 5.9 arc used for the power/energy columns.

Figure 5.10 shows a highly regular variance of arca and power/cnergy costs under

the pipeline if ions and timing i The arrows indicate the trends

of the most efficient pipeline configurations while the timing constraint varies from

tight to loo

5.6.4 Benefits of Using Pipelined S-Box Implementations

Through the analysis of the candidate implementation results, the benefits of us-

th an fate pipeline configuration arc

ing pipelined S-box i

clearly seen. These benefits can be sorted into three categori 1) benefits over

non-pipelined implementations, 2) benefits over other pipeline configurat wnd 3)

trade-offs.

benefits of providing more performance optior

5.6.4.1 Benefits over Non-Pipelined Implementations

These benefits lie in the timing, area, power and energy for high throughput require-
ments or lie in power/cnergy for medium to loose timing constraints. According to
our experiment, there is maximum reduction of the critical path delay of 61% for the
minimized timing constraint (NP vs. G6 in Figure 5.6). There are maximum reduc-
tions of 51% in arca and 69% in power /encrgy for a given tight timing constraint (NP
vs. P3 in the case 0.80 ns/1.25 GHz of Figure 5.7 (d)). There is maximum reduction
of 30% in power/cnergy for a medium to loose timing constraint (NP vs. P2 in the
case 3.0 ns/333 MHz of Figure 5.8 (d))

It is worth noticing that, even under the very loose timing constraints, there
is a considerable reduction in power/energy of 28% (NP vs. P2 in both cascs in
Figurc 5.9) or 16% (ENP vs. EP3 in both cases in Figure 5.9) with compromised
arca cfficiency. This encourages the application of pipelined S-box implementations
in lightweight AES implementations, which usually run at a low clock frequency and

have traditionally rarcly usc pipelined S-box implementations.

5.6.4.2 Benefits over Other Pipeline Configurations

These benefits always exists for an appropriate pipeline configuration that leads to
the most efficient implementation. The appropriate pipeline configuration varies with

the timing constraints, as is displayed by Figure 5.10.

76

5.6.4.3 Benefits of Providing More Performance Options/Trade-Offs

The performance options/trade-offs can be significantly increased by using pipelined
S-box implementations compared with using only non-pipelined implementations. In
this way, besides the most efficient pipeline configuration, other pipeline configura-
tions could also lead to an implementation with desirable performance. For example,

in the case 1.50 ns/667 MHz of Figure 5.7 (g), NP and EP3 are the most efficient

pipeline configurations in terms of area and power/energy, respectively. As a trade-off
between them, P2 costs less arca than NP and less power /encrgy than EP3. Such a
combination of arca and power/cnergy of P2 may be preferable for the design with a

combined requirement compared to an individual requirement for best arca from NP

or power/cnergy from EP3.

5.7 Generality of the Methodology and Results

In this scction, we discuss the generality of the methodology and the experimental
results presented in this work.
In our methodology, the influence of the pipeline configurations on the perfor-

mance of $-box implementatio

is drawn based on the analysis of our experimental

results. We believe this is the most straightforward method to have a realistic evalu-

ation of the influence since the experimental implementations are achicved following
the same design flow with which realistic implementations are built. All the experi-
mental implementations are benchmarked upon the same technology library, leading

to a fair and objective comparison between the pipeline configurations. Although the

absolute quantities of the experimental results are technology-specific, the relative

kg

comparisons should hold closcly if another technology is applied and our analy
conclusions arc mostly based on the relative instead of the absolute valucs. As well,
we also try to mitigate the impact of the technology-specific performance by using

gate cquivalence as the metric for arca.

Another issue related to gencrality is the gate level placement approach. This

approach is synthesis tool dependent since it relies on the retiming function of the

tool. However, this dependency should not have a major impact on the general

conclusions considering that whatever synthesis tool is used, the retiming function
should work towards the similar goal as the one we use and hence the results should

not significantly differ.

5.8 Summary

This chapter presents a comprehensive study of pipeline configurations generally ap-
plicable to the AES S-box with a composite field structure. In particularly, we in-
vestigate an extensive range of pipeline configurations for their influence on the per-
formance of the S-box implementations in terms of timing, arca, power and energy.
The pipeline configurations consist of no pipeline, a component level pipeline with
the number of pipeline stages from 2 to 4 and a gate level pipeline with the number
of pipeline stages from 2 to 7. The gate level pipeline utilizes the retiming function
of the synthesis tool for the feasible and effective register placement that is compliant
with the standard ASIC design flow. Totally 127 S-box implementations with varying
pipeline configurations are built with a 90-nm standard ccll CMOS technology under

a varicty of timing constraints

8

Based on the performance of these implementations, the influence of the pipeline

is discussed with trends that indicate how the appropriate pipeline

configuratior

configurations for certain perspectives of the performance vary with the timing c
straints. The trends arc found to be highly regularly and cxplainable. They can

be used as the general reference for choosing the appropriate pipeline configurations

under a given design requirement in timing. By using the appropriate pipeline con-

notable p c can be achieved compared with the

pipclined case. This indicates the merits of applying pipelined S-box implemen-

tations for resource-cfficient purposes, including lightweight applications. In addition

to the appropriate pipeline configurations that lead to the most efficient implementa-

tions, it is also shown that other pipeline configurations are able to provide desirable
performance trade-offs in S-box implementations.

This work is the first that extensively investigates the pipeline fons for

the AES S-box with a composite field structure and the resulting performance trade-
offs. It is also the first work that applies pipelining to AES S-box implementations

for resource efficient purposes, as is contrary to the conventional pipelining purpose

of speedup. It discloses the benefits of pipelined S-box implementations in terms of

resource cfficiency. It also introduces the retiming function as a practical and effective

register placement approach for the gate level pipelining of S-boxes.

In the next chapter, we look at another perspective of the architecture of AES im-

plementations, the datapath architecture, and investigate the performance improve-

ment and trade-offs provided by different datapath architecture

79

Chapter 6

Exploration of Datapath
Architectures for Flexible and

Efficient Implementation

In this chapter, we present the investigation of the performance of a variety of AES
datapath architectures based on the S-boxes with a composite field structure. These
architectures are parameterized by a datapath width of 8, 16, 32, 64, or 128 bits
and, for the 128-bit width, an unrolling factor of 1, 2, 5 or 10. Through this char-
acterization, the performance trade-offs affected by the architecture parameters are
extensively explored. The parameters leading to the best performance are identified
It is found that the 8-bit width datapath, which is conventionally adopted for resource
cfficient purposes, has the worst energy efficiency and does not result in the minimal

and 6 IS dat-

bit width /

peak power among the architectures. As well, the 16,

apath architectures are newly considered or represent improvements over previous

80

work.

6.1 Introduction

The flexibility of the AES algorithm allows izable datapath archi for

hardware i jons. There are two that can specify the datapath

architecture of an AES implementation, the datapath width and the unrolling factor.
Generally, the possible parameters include the datapath widths of 8, 16, 32, 64 and
128 bits and the unrolling factors of 1, 2, 5 and 10 for the 128-bit width. The fully

unrolled pipelined architecture and the fully serialized architecture can be parame-

tel ely. It is

d as an unrolling factor of 10 and a datapath width of 8 bits, respec

obvious that these two i can lead to the imple: ions with
the maximum throughput and the minimal arca, respectively. However, there are

design i other than the i or the minimal arca (c.g.

low power/energy or trade-offs between area and throughput). It is unclear which one

\ provide superior performance for such d

among the possible architectures c

sign

the perform

requirements. This motivates this work to character wce of imple-

mentations specified by the architecture parameters. We consider the performance in
terms of the arca, peak power consumption and average energy consumption under
a given throughput requirement and there are a variety of throughput requircments

considered.

wce therc s no standard architecture for given datapath parameters, we con-

sider generic parameterized AES datapath architectures for the characterization and

implement them based on the same standard cell CMOS technology so that the char-

81

acterization results are i These i are desi 1 to perform
the AES cneryption with 128-bit keys (referred to as AES-E128 in the following).
S-boxes with a typical composite field structure are adopted in these architectures.
The storage clements in these architectures are all based on registers or shift registers
that arc composed of only standard cells in the CMOS technology.

A similar work based on FPGA technology is scen in [43]. However, it limits its
investigation to the architectures with an unrolling factor of 1, 2, 5 and 10 and only

the trade-offs between area and delay are explored. As well, for each architecture, only

the i ion sy ized for the il h is idered. Since dif-

ferent timing constraints for synthesis could lead to quite different implementations

with different performance properties, they can not all be realized by synthe

under the tightest timing int for the i The

in this work are synthesized with a variety of timing constraints that fit the through-

put requircments of a wide range of AES applications, so that a panoramic view of

the perfc e of the i ions affected by the i is

presented.

Another contribution of the work is the characterization of the novel shift reg-
ister based 16, 32 and 64-bit width datapath architcctures. This provides more per-
formance trade-offs between the 8-bit and the 128-bit width architectures. These
architectures are designed for efficiency and generality. The number of clock cycles
required to complete an AES round is the minimal for the width, which is 8, 4 and
2, respectively. No specific memory macro is required since all the components in the

architectures are composed of standard cells.

82

6.2 The Datapath Architectures of AES

In this chapter, we consider the datapath architectures that include the datapath
widths of 8, 16, 32, 64 and 128 bits and, for the 128-bit width, the unrolling factors
of 1, 2, 5 and 10. Correspondingly, we build the generic parameterizable datap-

ath S| ing these for AES-E128, which performs the

encryption-only operation and has the key size of 128 bits and accordingly 10 rounds.

6.2.1 Common Issues

The common issues related to the datapath architectures charact chapter

are described in the following.

6.2.1.1 S-box Structure

All the datapath architectures are based on the S-boxes with a composite field struc-

uch as such as minimized

ture from [5]. Although there are other S-box structures, s
combinational logic functions from the truth table [18] and decoder-permutation-
encoder structure [14], S-box implementations with a composite field structure pro-
vide for balanced performance over timing, arca and power [18] and arc frequently

such as in [19] and [20]

adopted for AES implementations with various architectures,

with a fully unrolled architecture and in [30] and [32] with an 8-bit width datap-
ath architecture. Therefore, we also adopt a composite field structure for the S-box
implementations in the architectures. There are a number of composite field struc-

tures available, including (5], [6], (7], (8], [9], [10] and [13]. The performance of these

a typical

ficld structures are s

composite nilar. We pick the one from [5] since it i

83

composite field structure and the generic architectures characterized in this chapter
are expected to show the typical performance that can be provided by the parame-

terized architectures.

6.2.1.2 Key Expansion

Since we only consider the encryption datapath of AES without the key expansion,
for all the architectures, it is assumed that the round keys are fed as inputs to the

architectures whenever they are required.

6.2.1.3 Impact of Modes of Operation

The datapath architectures also differ when considering the impact of block cipher
modes of operations. We consider the two groups of modes of operations, non-
foedback modes (c.g., clectronic codebook (ECB) mode and counter (CTR) modc)
and feedback modes (c.g., cipher-block chaining (CBC) mode, cipher feedback (CFB)
mode and output feedback (OFB) mode). While all of the architectures can work
under any mode of operation, the complete datapath architectures with the unrolling
factors of 2, 5 and 10 would not be fully utilized when working under feedback modes
since only the encryption of onc plaintext block can be processed at one time duc
to the dependency between the current encryption and previous encryption. For this
reason, we exelude the situation of the architectures working under feedback modes

when comparing performance.

wbit
4 Round_Key
webit w-bit
w/8 S-Box(es)
Last_Rd_Key
Ciphertext
w/32 MixColumns
webit

Figure 6.1: Generic model of the partial datapath architectures with width

w € {8,16,32,64}.
6.2.2 Partial Datapath Architectures

A generic model of the partial datapath architectures is shown in Figure 6.1 where
w is equal to the datapath width of a specific architecture and @ denotes the bitwise
XOR operation for AddRoundK ey

Basically, the architectures have a w-bit datapath and on the path, AddRoundK cy,
SubBytes, ShiftRows, MizColumns operations are performed in the sequence. A
128-bit plaintext block is loaded in w-bit picces in serial, and after the required num-

ber of iterations over the architecture, the ciphertext block is loaded out in the same

way. The round keys are also loaded in w-bit picces. The last round key of cach en-

cryption is loaded through the specific input Final_K

y-In, so that the next plaintext

can be loaded in while the current ciphertext is being loaded out. This allows the

utilization of the architectures without any idle hardware during loading

Figure 6.2: Structure of the Shift Rows component for the partial datapath

architectures with the width of 8 bits.

plaintexts/cipertexts. On average, the datapath architecture with w-bit width can
complete the eneryption of a plaintext block with (128/w) x 10 clock cycles (i.c., 160,
80, 40, 20 cycles required for the architectures with 8-bit, 16-bit, 32-bit and 64-bit
width, respectively).

In addition to the datapath width, the partial datapath architectures differ in
the number of S-boxes, the Shi ft Rows component and the MixColumns component.

The details are presented as follows.

6.2.2.1 S-boxes

Each architccture has w/8 S-box(cs) in parallel on the datapath. The S-boxes perform
the SubBytes operation and have a composite field structure from [5]

6.2.2.2 ShiftRows Components

Each of the partial datapath architectures has a specific shift register based compo-

nent for the ShiftRows operation. The structures of the components arc shown in

86

Figure 6.3: Structure of the ShiftRows component for the partial datapath

architectures with the width of 16 bits.

Figure 6.4: Structure of the Shift Rows component for the partial datapath

architectures with the width of 32 bits.

87

Figure 6.5: Structure of the Shift Rows component for the partial datapath

architectures with the width of 64 bits.

88

Figure 6.6: Structure of the MizColumns component for the partial datapath

architectures with the width of 8 bits.

Figures 6.2, 6.3, 6.4 and 6.5. The components are composed of registers and mul-
tiplexers. Each path in Figures 6.2, 6.3, 6.4 and 6.5 has the width of 8 bits. The
ShiftRows component for the 8-bit datapath architecture in Figure 6.2 was proposed
in [44]. These components work as shift registers with the multiplexers determining
the flow of the data. The components can work without idle cycles by feeding inputs
and producing outputs continuously in cach clock cycle. For the architectures with
the widths of 8, 16, 32 and 64 bits, it takes 16, 8, 4 and 2 cycles, respectively, to
complete the ShiftRows operation of a State. The details of the operation of the

components are described in Appendix A.

6.2.2.3 MirColumns Components

MixColumns is defined as an operation on 32-bit data. For the datapath architecture
with the width of 32 or 64 bits, onc or two complete MixzColumns operations are
implemented on the datapath. For those with the width of 8 or 16 bits, MizColumns
can be partially implemented as 1/4 or 1/2 operation, respectively, and the imple-

mentation is reused to complete one MizColumns operation. The structures of the

89

Figure 6.7: Structure of the MizColumns component for the partial datapath

architectures with the width of 16 bits.

[
r

¢
4

el
r

L]
o

Figure 6.8: Structure of the MizColumns component, for the partial datapath

architectures with the width of 32 bits.

90

Table 6.1: Comparison of 32-bit AES datapath architectures

Ours [26] [27] [28] [29]
Storage Element (in bits) 128 128 256 256 224

Clock Cycles 40 64 40 80 40

components are shown in Figures 6.6, 6.7 and 6.8, respectively.

The components are composed of registers, multiplexers, xtime (XT) compo-
nents, XOR gates and AND gates (if applicable). The xtime operation is cquivalent
to the multiplication of the input byte with the hexadecimal value 02 in GF(2%) mod-
ulo m(z) = a¥+a*+ 2%+ 2+ 1. It can be implemented with 3 XOR gates, as is shown
in [45]. The AND gates are used to bypass the attached XOR gates. Each path in
Figures 6.6, 6.7 and 6.8 has the width of 8 bits. The MizColumns component for the
8-bit datapath architecture in Figure 6.6 was proposed in [31]. The MizColumns
component for the 64-bit datapath architecture consists of two copics of that for
the 32-bit datapath architecture (Figure 6.8). The 8-bit, 16-bit, 32-bit and 64-bit
MixColumns components perform the complete MizColumns operation on a State
in 16, 8, 4 and 2 clock cycles, respectively, by feeding inputs and producing outputs
continuously in cach clock cycle. The details of the operation of the components arc

described in Appendix B.

6.2.2.4 Novel 16-bit, 32-bit and 64-bit Datapath Architectures

The partial datapath architectures with the width of 16, 32 and 64 bits arc novel

architectures. Architectures with 16-bit or 64-bit datapath widths have not been

91

disct

ssed in previous literature. The 64-bit architecture requires the minimal amount
of storage cquivalent to a 128-bit register and the minimal number of clock cycles to
complete an cneryption (20 cycles) for a 64-bit AES datapath architecture. For the
16-bit architecture, although it is possible to be built with the minimal amount of
storage cquivalent to a 128-bit register, we found that the overall arca can be smaller

with 16 more bits of storage (totally cquivalent to a 144-bit register) while still using

the minimal number of 80 cycles clock cycles to complete the eneryption of a plaintext
block for a 16-bit AES datapath architecture.

Architectures with a 32-bit datapath width have been investigated in previous
work, including [26], [27], [28] and [29]. Since the results of previous work are cither
based on older ASIC technology than used in this work ((26]) or based on FPGA
technology ([27], [28] and [29]), we make a rough comparison between these archi-
tectures based on the size of storage and the number of clock cycles to complete the

own in Table 6.1.

ryption of a plaintxt block, as

The storage in an architecture is necessary to hold the updated States in an AES
datapath and usually takes up a significant amount of the total hardware overhead of
the architecture. The minimal size of the storage for an AES datapath architecture is
128 bits. The number of clock cycles per encryption of a block and the critical path

delay determine the of the i i Considering

that the architectures under comparison all have the critical path delay determined

by the operation of the round function, the critical paths of the architectures would
be similar if they are based on the same technology and, hence, the number of clock
eycles becomes the dominant factor determining the throughput.

According to Table 6.1, our 32-bit AES datapath architecture is superior in at

92

128-bit

Round_Key
128-bit
. X (r-1)
.

128-bit

form1,2,015 | 128-bit

128-it

Figure 6.9: Generic model of the complete datapath architectures with the unrolling

factor 7 € {1,2,5,10}

least one of the two metrics compared with the previous works. Among the architec-
tures under comparison in Table 6.1, the storage of [26] and [29] is based on registers

while the storage of [27] and [28] is based on memory. The ShiftRows operation

in the register-based architectures [26] and [29] is not realized as efficiently as in

our design so that cither more clock cycles or more registers are required. For the

memory-based architectures [27] and [28], the ShiftRows operation is realized by

the iate add while tra ing the State bytes between two 16-byte

memorics, and hence the storage of 256 bits is required. Doubling the number of

clock cycles is required for the architecture [28] compared with that of [2

since [28)

has scparate loops for the SubBytes operation and the MizColumns operation

93

Input
128-bit

Round_Key

128-bit

16 S-boxes

Figure 6.10: Structure for unrolled architectures of the round function.

Input
128-bit

EH Round_Key

128-bit

16 S-boxes

ShiftRows

Figure 6.11: Structure for unrolled architectures of the last round function for

re{1,2,5)

94

Input
128-bit

e Round_Key

128-it

16 S-boxes

ShiftRows

128-bit Register

Figure 6.12: Structure for unrolled architectures of the last round function for

r = 10.
6.2.3 Complete Datapath Architectures

A gencric model of the complete datapath architectures is shown in Figure 6.9 where
is equal to the unrolling factor. The complete datapath architecture with the unrolling
factor r, r € {1,2,5,10}, contains r round functions in scrics, a 128-bit multiplexcr
(for r € {1,2,5}) and a 128-bit bitwise XOR operation, denoted by @. To allow for

simultancous processing of 7 cneryptions in the datapath, the round level pipeline is

employed, which means there are pipeline registers placed between the hardware of
two consceutive rounds

The round functions are identical except for the last round function. The struc-

ture of the round function is shown in Figure 6.10 and the structures of the last

round function for r € {1,2,5} and for r = 10 arc shown in Figures 6.11 and 6.12,
respectively. The round function in Figure 6.1 is able to work as cither the ordinary

round function, as in Figure 6.10, or the round function without the MizColumns

The last round function in Figurc 6.12 only

operation for the last round of AES.
performs the round function without the MizColumns operation.

The ShiftRows components in Figures 6.10, 6.11 and 6.12 are implemented
simply as crossover wiring according to the definition of the ShiftRows operation.

The MizColumns components in Figures 6.10, 6.11 and 6.12 arc implemented with

four copics of the 32-bit MizColumns component in Figure 6.8 concatenated in
parallel

For r € {1,2,5}, the architecture has an itcrative loop within which r plaintext
cncryptions arc being processed. The data iterates for the required number before
the ciphertext is gencrated. For r = 10, the system processes 10 encryptions simulta-
neously and the plaintext goes through the datapath once to generate the ciphertext.
For the maximum utilization of the architecture, r plaintext blocks can be loaded con-
tinuously and processed simultancously in a pipeline by the r round functions. This
is allowed for the cipher using a non-feedback cipher mode, such as counter mode.
For maximum utilization, the loading of the following plaintext blocks is paralleled
with the unloading of current ciphertext blocks. With the maximum utilization, on
average, the architectures with » € {1,2,5,10} take 10 clock cycles to complete the
cneryption of a plaintext block. Hence, the throughput is determined as r blocks

every 10 clock cycles.

6.3 Methodology

In order to characterize the performance of the datapath architectures, all the archi-

tectures presented above are implemented with a 90-nm standard cell CMOS tech-

96

nology from STMi ics. The performance of the are estimated
bascd on the synthesis results of the implementations. The performance we consider
for an implementation includes arca, peak power consumption and average cnergy

consumption. The method to derive the architecture implementations and to csti-

mate the performance are described in the following

6.3.1 Deriving the Archi e Impl tation:

In practice, AES i i arc built for applications with various

requircments, from high throughput for high speed applications to low throughput

for lightweight applications. In order to present the results adapted to a wide range

cture is synthes

of applications, cach da d with a varicty of timing

apath archit

constraints to generate the architecture implementations meeting a number of selected

throughput requirements that range from high to low.
The timing constraints for a datapath architecture are determined in the way

that the implementations are clocked to produce the selected throughputs. The list

of the sclected t and the s of the timing con-
straints for cach of the architectures are shown in Table 6.2. In Table 6.2, the partial
datapath architectures with the width of w bits are denoted as Ww and the complete

datapath architectures with the unrolling factor of 7 are denoted as Ur. Since the

minimal realistic critical path delay of the architcctures is very close to 1.50 ns under

the given technology library. Hence, the timing constraint of 1.50 ns is regarded as

the tightest realistic constraint. In Table 6.2, cach timing constraint indicates there is

an implementation built with the architecture of the row and meeting the throughput

Table 6.2: Assignments of the timing constraints (in ns) for the architectures according to the given throughputs

853 427 171 853 427 213 107 533 800 800 800
Gbps Gbps Gbps Gbps Gbps Gbps Gbps Mbps Mbps Mbps kbps

W08 N/A N/A N/A N/A N/A N/A N/A 150 100 1000 1k
WI6 N/A N/A N/A N/A N/A N/A 150 300 200 2000 2k
W32 N/A N/A N/A N/A N/A 150 300 600 400 4000 4k
W64 N/A N/A N/A N/A 150 300 600 120 800 8000 8k
U0l N/A N/A N/A 150 300 600 120 240 160.0 16k 16k
U02 N/A N/A 150 300 600 120 240 480 3200 32k 32k
U05 N/A 150 375 750 150 300 60.0 1200 8000 &k 80k

U110 150 300 750 150 300 600 120.0 2400 1.6k 16k 160k

of the column clocked at the frequency corresponding to the timing constraint (c.g.,
the timing constraint of 3 ns corresponds to the clock frequency 333 MHz) and N/A

indicates that the i is not achi for the datapath archi-

tecture even under the tightest timing int. The

arc assumed to work with the maximum utilization, i.c., under a non-feedback cipher

mode with continuously available plaintext and round keys.

The synthesis and virtual layout process is performed in the topographical mode

Design Compiler, as is described in Chapter 3. The synthesis library

of Synops

the 90-nm CMOS standard cell library from STMicroclectronics with a core voltage

of 1.2V and standard threshold voltage.

6.3.2 Evaluation of the Performance

After the architecture implementations arc built, their performance in terms of arca,
peak power and average energy is estimated following the performance evaluation
methodology described in Chapter 3. The average power and peak power consump-

tions are estimated for the implementation running at the clock frequency that pro-

duces the corresponding selected throughput. The average energy consumption of an

architecture implementation is calculated as the product of its average power con-
sumption, the clock period and the clock cycles per encryption of a plaintext block.
Thus, the energy consumption is normalized to be the average energy consumed to

cnerypt one 128-bit plaintext.

The average power and peak power ion of the ar

tations arc cstimated using PrimeTime PX from Synopsys. The switching activity

99

is obtained from the gate-level simulation of the netlist with 10,000 random 128-bit
plaintexts and the corresponding random round keys and control signals. The same
set of random plaintexts and round keys is used for the power estimation of all the

architecture implementations. PrimeTime PX can also break down the average power

of an implementation into the average dynamic power and the average static power or
the average powers of the combinational logic and the sequential logic of the circuit

Accordingly, the average energy caused by the dynamic power and the static power

or the inati logic and the ial logic can be

6.4 Experimental Results and Analysis
The performance of the implementations of the various architectures are presented

and analyzed in this section.

6.4.1 Area

Table 6.3 presents the ized arcas of the a impl 5. As is

expected, the arca grows with the datapath width and the unrolling factor. For a
given architecture, the arca drops with the loosening of the timing constraint until

the minimal arca is reached and the resulting implementations with looser timing

constraints with the same arca are actually the same implementation. According to
Table 6.3, the most arca-cfficient implementation is achieved by the architecture with

the width of 8 bits (WO8), around 1/47 of the size of the datapath with the unrolling

factor of 10, under the t| by the W08 (from 533

Mbps to 800 kbps).

100

STLY STLY STLY STLY STLY STLY STLY STLY STLY TSy 1009
TLYT TLVC TLVC TLWE TLVC TLVE TLWT TLVE LLLE FR9E VN
GZ0T S0l G20l G201 <20l G201 S20T TPO0l IE€l V/N
g€ CE'e gEe GES 9ge 9ge 8FG €L V/N V/N
16T 16T 16T 16T 16T € V/N V¥/N V/N
SLT SLT ST 8LT 98T 80C V/N V¥/N V/N
82T 8T 81 621 ¢1 V/N V/N V/N V/N V/N

T 1 I eIl V/N V/N V/N V/N V/IN V/N
sdgy sdqy sdquy sdqy sdqn sdqn sdqp sdqp sdqn sdqn sdqn
008 008 008 334 L0T €TT LTV €S8 TLL LTF €S8

01

<on

zon

100

oM

(a9 8.6 03 pozifeutiou)

SUOHRIUOWIOIAIL DINIINIYIIE DY) JO SLITY :€°9 [qBL

101

Table 6.4: Ratios of the arca to the of the architectu

(normalized to the value of U10)

Architecture Wos W16 W32 W64 U0l U02 U05 U10

Arca/Throughput 2.96 2 139 126 122 111 123 1

We also determine the arca to ratio of the imp yiclding

the maximum throughput for cach of the architectures and Its, normalized to the
U10 result, are shown in Table 6.4. For example, the implementation of W32 with
the throughput 2.13 Gbps and the implementation of U02 with the throughput 17.1
Gbps are used to derive the corresponding values in the table. In this comparison,
U10 is the most efficient architecture in terms of the area cost yielding the one unit of
throughput. Roughly, the efficiency becomes worse with the decrease of the unrolling
factor or the datapath width. Architecture WOS, which leads to the most compact

implementations, results in the least efficient architecture and is about 3 times worse

than U10 in its arca to throughput ratio.

6.4.2 Peak Power Consumption

For the AES implementations targeted at passively powered devices (c.g., contactless
smart cards and RFID tags), there is rigorous constraint on the peak power con-
sumption since these devices usually have a very tight budget on power consumption
that is sharcd by all the components on the device. For this reason, the peak power

consumption of the architecture implementations is investigated in this section.

102

€01

Table 6.5: Peak powers of the architecture implementations (normalized to 66.8 pW)

Wos
W16
W32
W64
Uo1

uo2

853 427 171 853 427 213 107 533 80.0 800 800
Gbps Gbps Gbps Gbps Gbps Gbps Gbps Mbps Mbps Mbps kbps
N/A N/A N/A N/A N/A N/A N/A 172 146 146 146
N/A N/A N/A N/A N/A N/A 147 134 132 132 132
N/A N/A N/A N/A N/A 124 112 108 108 108 108
N/A N/A N/A N/A 158 107 1 1 1 1 1

N/A N/A N/A 350 194 122 123 123 123 123 123
N/A N/A 58 266 226 226 226 226 226 226 226
N/A 1784 935 585 585 585 585 58 585 58 585
1987 1316 1139 1139 1139 1139 1139 1139 1139 1139 1139

Table 6.5 presents normalized peak power of all the architecture implementations.
For a given architecture implementation, the peak power would not vary with the

clock frequency, as is shown in Table 6.5. Under the same given throughput, the

hitecture resulting in the minimal peak power is W64. It is obvious that the peak
power of an implementation is related to its arca. This is the reason that the increase
of the unrolling factor beyond U01 increases the peak power. However, for the partial
datapath architectures, the decrease of the datapath width leads to the increase of the
peak power according to Table 6.5. This reflects the fact that there are more intense

instantancou:

vitching activitics incurred by the partial datapath architecture with
a smaller datapath width. Especially for W08 and W16, they have more registers
than other partial datapath architectures and a register consumes more power than
other CMOS cells and is updated cvery clock cycle. Between W64 and UL, W64
also leads to less instantancous switching activitics and achicves the overall lower

peak power.

6.4.3 Average Energy Consumption

Energy consumption is usually a crucial constraint for battery-powered devices since

the capacity of the battery is limited. It is preferred to perform as many tasks as
possible under a given capacity of the battery. The average energy required to encrypt
a 128-bit plaintext block for cach architecture implementation is shown in Table 6.6.

It can be seen in Table 6.6 that, for any architecture, loosening the timing con-

straint would lead to the implementation with less energy consumption when working

for the designated throughput until the minimal is reached. Past this point, more

6716 S00T 61 eIt 90T €01 0T T T 0T 9T 01N
S6'8F 609 81 ¥l LT PET PET EET LETT 8T V/N s0n
GL6T Te €1 71 91T ST STl €1 €61 V/N V/N zon
601 Llzz TFT €8T €T T T FT V/N V/N V/N 100
gg9 ST €T @l @l 92T 8¢T V/N V/N V/N V/N wm
¥r el ¥CT el €T 8¢l V/N V/N V/N V/N V/N Em
8¢ ST PET €T LT V/N V/N V/N V/N V/N V/N 9Im
e T 60T PZ V/N V/N V/N V/N V/N V/N V/N som
sdgy sdqy sdqpy sdqiy sdqn sdqn sdqn sdqp sdq sdqn sdqy

008 008 008 €6 0T €IC LZF €98 TLL LT £98

(rugro

03 pozieuLon) suonejomoduI dIM3P0YIE a1 Jo Pxotureld 31q-8ZT Jo uondAnUL oy 10§ Brouo 9BeINY 90 IQRL

105

¥9°0S86C TR'S86S LT'S6S EL68 TOTF CPET SSTI ELG 4 T 9T 010
€6VTE OEGPIE SFPIE 60LF POEC SP6 S8TL E€LT LTE SPT V/N S0n
0pZZl Lzlzgl LTEC SPRT 8T6 98¢ F9T LT E€LT V/N V/N 200

STZPE9 9€089 60€9 L26 I6F €T G¥T 96T V/N V/N V/N 100

SYOISE 298 99GE LZS F9T €L9 60E V/N V/N V/N V/N oM

16901z Sv0lc 9Tz 60€ 81T ¥9T V/N V/N V/N V/N V/N 2Em

T8PeET 60T STGT T ¥Z V/N V/N V/N V/N V/N V/N 9Im

egeeel €11 ¥9Tl € V/N V/N V/N V/N V¥/N V/N V/N som

sdgy sdqpy sdqy sdqiy sdqn sdqn sdqn sdqn sdqn sdqn sdqn
008 008 008 €S 10T €T g7 €98 TLL LT €9

(¢d 1T 01 pozipeusion) suoneuousadu

21n30931PIE 9y} Jo ¥oo[q Ixajurerd J1q-gZT Jo uondAIUD a7y 10} Jomod d1eIS 03 NP PaLINOUL AFIUD dFLIAY 119 QBT

106

cnergy is 1 when the i work for lower For these
cases, the increase of energy consumption is incurred by the static power of the circuit
and is independent of the switching activity but related to the duration the circuit is
powered on,

The average energy incurred by the static power of the architecture implementa-
tions is shown in Table 6.7. It can be scen in Table 6.7 that the cnergy consumption
due to static power rises dramatically with the drop of the throughput (i.c., the slow-
ing down of clock frequency). This indicates that the highest energy efficiency of
the implementation can only be reached with the appropriate clock frequency under
which the total energy consumption (the energy by both the dynamic power and the
static power) is minimal, such as 80.0 Mbps for W08, 1.07 Gbps for U01 and 17.1

Ghps for U10. C ly, AES targeted at appli-

cations arc usually made to work at an extremely low clock frequency. According to

the above analysis, this, in fact, does not necessarily save cnergy but may consume
more due to static power.

Comparing the implementations with the lowest average cnergy consumption
from cach of the architectures, it can be scen that the UL0 implementation with
the throughput of 17.1 Gbps or 8.53 Gbps is the lowest for U10 while the W08
implementation with the throughput of 80.0 Mbps is the lowest for W08, which is
about 2 times that of U10. By comparing the average cnergy consumption of the

as the most energy

nplementations for a given in Table 6.6, U10 remains

efficient architecture for a wide range of the throughputs, from 85.33 Gbps to 533
Mbps. For lower throughputs, since the energy incurred by the static power gradually

becomes dominant in the total encrgy, the architecture implementations with smaller

107

arca become more energy efficient. For example, the WO8 architecture is substantially
more energy efficient than U10 at 800 kbps.

For morc in-depth analysis of the energy consumption of the architecture im-
plementations, we also break down the energy incurred by the dynamic power into

the energy used by the combinational logic and the energy used by the registers in

the implementations. We have found that there is significant difference in the energy

caused by the dynamic power of the registers, as is shown in Table 6.8, 1t can be

scen in Table 6.8 that the energy consumption of the registers of the partial datapath
architectures is approximately proportional to the clock cycles required to complete

the encryption of a 128-bit plaintext block, which are 160, 80, 40 and 20 cycles for

W08, W16, W32 and W64, respectively. s reasonable considering that the par-

tial datapath architectures have a similar number of registers and the registers are
updated approximately 160, 80, 40 and 20 times to complete the encryption, respec-
tively. On the other hand, for the complete datapath architectures, they all need to
update the similar number of registers 10 times to complete one encryption. There-
fore, these architectures have relatively similar energy consumption of the registers
and that is about 1/16, 1/8, 1/4 and 1/2 of the encrgy for W08, W16, W32 and
W6d, respectively. This finding inspired us to investigate the further reduction of
the encrgy of the complete datapath architectures by removing the registers between
the consecutive round functions (excluding the architecture UO1). However, our ex-

perimental results show that these architectur

consume significantly more energy
after the registers are removed due to the increment of energy caused by the severe
increase of glitching. Roughly, U02, U05 and U10 consume 2, 5 and 10 times more

energy after the registers arc removed.

108

601

Table 6.8: Average energy incurred due to dynamic power of the registers for the encryption of 128-bit plaintext of the

(to 34.2 pJ)

83 427 171 853 427 213 107 533 800 800 800

Gbps Gbps Gbps Gbps Gbps Gbps Gbps Mbps Mbps Mbps kbps
W08 N/A N/A N/A N/A N/A N/A N/A 1875 1845 1845 1845
W16 N/A N/A N/A N/A N/A N/A 913 926 88 88 88
W32 N/A N/A N/A N/A N/A 459 446 402 402 402 402
We4 N/A N/A N/A N/A 297 315 239 239 239 239 239
UOl N/A N/A N/A 155 168 103 103 103 103 103 103
U02 N/A N/A 152 18 114 114 114 114 114 114 114
U5 N/A 191 143 135 135 135 135 135 135 135 135
U0 149 176 1 1 1 1 1 1 1 1 1

[Uas

Table 6.9: Overall resource cost of the architecture implementations (normalized to the value of W32 under 2.13 Gbps)

Wos
W16
W32
W64
Uo1

Uo02

u10

853 427 171 853 427 213 107 533 800 800 800
Gbps Gbps Gbps Gbps Gbps Gbps Gbps Mbps Mbps Mbps kbps
N/A N/A N/A N/A N/A N/A N/A 557 2479 26594 4648.7
N/A N/A N/A N/A N/A N/A 21 276 2127 24118 4916.7
N/A N/A N/A N/A N/A 1 155 28 1937 23809 6830.48
N/A N/A N/A N/A 126 122 225 449 3115 42843 15751.6
N/A N/A N/A 279 217 267 520 1055 7499 120691 5808231
N/A N/A 45 273 44 882 1779 3571 26898 58258 37108489
N/A 1792 135 1464 2045 5897 12027 244.96 21147 TI34851 5732672.21
1048 972 2042 4099 8291 1682 34815 735.52 8277.6 43783135 39855107.53

6.4.4 Overall Resource Cost

In the previous sections, we have evaluated the cost of the architecture implementa-

tions for cach of the performance perspectives scparately. In this section, we evaluate

the overall resource cost (ORC) of the archi i jons by
their performance in area, peak power consumption, average encrgy consumption
and throughput, as

Area x Peak Power x Energy
Throughput :

ORC =

‘This metric reflects the combined cost required to yield the unit throughput and the

lower the cost, the higher the efficiency. The overall resource cost of the architecture
implementations is shown in Table 6.9.

According to Table 6.9, the architecture implementation W32 under the through-

put 2.13 Gbps provides the lowest overall resource cost and the implementations close

to that one also have low cost, such as W64 under 2.13 Gbps, W16 under 1.07 Gbps

d W08 under 1.07 Gbps. It can also be scen from Table 6.9, when the throughput

decreases, the overall resource cost increases dramatically.

6.5 Summary

In this chapter, the performance of parameterizable AES datapath architectures are
benchmarked based on a 90-nm standard cell CMOS technology in terms of arca,

peak power consumption and average encrgy consumption. For this purpose, generic

and representative datapath architectures are built with the architecture parameters

including the datapath widths of 8, 16, 32 and 64 bits and the unrolling factors of

111

tectures, the

1, 2, 5 and 10 for the datapath width of 128 bits. Among these arcl
16-bit and 64-bit width architectures have not been discussed before in the literature
and the 32-bit width architecture is a novel architecture with the benefit of reduced
storage and /or fewer clock cycles compared to previous work.

For cach of the architectures, a number of timing constraints arc applied to

The

derive the architecture implementations fit for different throughput requirements.

quantitive pe of the archi ons are presented, comparcd

and analyzed. The most efficient architecture implementation in area, peak power
and energy, as well as in the overall resource cost are identified. The performance
trade-offs over a range of architecture parameter values are disclosed. In contrast
to conventional belicf, the most compact architecture implementation with the 8-bit,
width docs not help to minimize, but actually increases, the cnergy consumption even
running at a low clock frequency. As well, compact implementations do not result in
the minimal peak power.

Since the datapath architecture parameter values examined in this work cover an
extensive range of the possible values and the architecture implementations are fairly
compared based on the same standard cell CMOS technology, the results from this

chapter are generalizable and scalable to other technologies. Therefore, this work can

serve as a general reference for e-efficient and flexible)l ion of the
AES datapath.
In the next chapter, we combine the most energy efficient S-box pipeline config-

uration from Chapter 5 and datapath architecture identified in this

chapter, in order
to demonstrate the overall effectiveness of the research results presented in the two
chapters

112

Chapter 7

Demonstration of Combined

Effects for Energy Efficiency

In this chapter, we demonstrate the improvement in energy efficiency of the AES
datapath implementation by combining the appropriate pipeline configuration and
datapath architecture that are identified in Chapters 5 and 6, respectively. The
result shows significant reduction in energy consumption for the datapath imple-
mentation with pipelined S-boxes compared with the datapath implementation with

non-pipelined S-boxes.

7.1 Introduction

The results in Chapters 5 and 6 show the performance improvements and performance
trade-offs under a variety of pipeline configurations for the S-box and architectures for
the datapath. In terms of the improvements in resource efficiency, the combination
of the appropriate pipeline configuration and the appropriate datapath architecture

113

would further improve the resource efficiency. In the following of this section, we
demonstrate the combined effect in resource efficiency by applying the energy-efficient
pipeline configuration from Chapter 5 into the energy-efficient datapath architecture
implementation from Chapter 6.

Specifically, we apply the 2-stage and 3-stage component level pipeline configura-
tions to the 128-bit datapath architecture with the unrolling factor of 10. According
to Chapter 5, the component level 2-stage and 3-stage pipeline arc the two most
cnergy-efficient configurations for the timing constraints where they are applicable.
According to Chapter 6, the datapath architecture with the unrolling factor of 10
achieves the lowest energy consumption among the datapath architectures. We will
build the implementations with the combined pipeline configurations and the dat-
apath architectures and compare the performance with the implementations of the

non-pipelined S-box datapath architecture with the unrolling factor of 10 and the dat-

apath architccture with 8-bit width. The 8-bit datapath architecturc is conventionally

adopted for low power/cnergy impl ion of AES. Thesc i ions do not

contain key expansion and it is assumed that the round keys are fed as inputs to the

implementations whenver they are required

7.2 The Methodology

The methodology for implementing the combined architectures and cvaluating the
performance follows that used in Chapters 5 and 6. In the following, the datapath
architecture with the unrolling factor of 10 and 2-stage component level pipelined

S-boxes is denoted as UIOP2 and the datapath architecture with the unrolling fac-

114

tor of 10 and 3-stage component level pipelined S-boxes is denoted as UIOP3. The

denotations of other datapath architectures follows from Chapter 6.

The st of the sclectod and the cor d i of the
timing constraints for the combined architectures is shown in Table 7.1. The sclectod
throughputs include those used in Chapter 6 and some higher throughputs which are
achicvable for the architectures duc to the pipeline. It should be noted that, after
introducing the pipelined S-boxes in the datapath architectures, the implementation

can still produce a 128-bit output every clock cycle

7.3 Results and Analysis

The normalized arca, peak power and average cnergy of the implementations of the

y. For com-

combined architectures are shown in Tables 7.2, 7.3 and 7.4, respectivel
parison, the performance of the datapath path architectures W08 and U10 are also
presented in the tables.

It can be scen that the combined architectures UIOP2 and UI0P3 can lead to
lower arca than the datapath architecture U10 under the throughput 85.3 Gbps in
Table 7.2. Also, the combined architecture UIOP3 has more pipeline stages in the
S-boxes but can lead to lower arca than UIOP2 under the throughput 171 Gbps

There is significant reduction in energy by using the combined architectures

snsidering the minimal energy for cach of the archi s under com-
parison (i.c., W08 under 10.0 Mbps, U10 under 2.13 Gbps, U10P2 under 5.33 or 2.13
Gbps and U10P3 under 5.33 Gbps) in Table 7.4, the combined architecturcs U10P2

and U10P3 can save maximally around 40% and 50% cnergy, respectively, compared

115

09T 9T 9T 0°0FC 0021 009 006 OCT 09L 00 05T GL0 050 EJOIN

M09T 9T 9T 00K 0021 009 008 0CT 0SL 00€ 08T S20 V/N 2doin

09T 9T NOT 00K 00T 009 008 0T 0L 00€ 0ST V/N V/N 010

A 0001 00T 09T V/N V/N V/N V/N V/N V/N V/N V/N V/N som

sdqy sdqpy sdqy sdqiy sdqo sdqn sdqn sdqo sdqn sdqn sdqp sdqn sdqo

008 008 008 €& L0T €17 L2V €98 TLL LT €98 1L 99
syndySnoryy

woA18 o} 03 FuIp1000€ UOSLIRAWIOD JOPUN SIINIOVNIYDIE dY} 10§ (Su UT) SJUNRIISUOD FUIML OY) JO SIUGWUTISSY "L O[qR],

116

998G G9'8G G9'8G G9'8G S9'8G 998G G9'8G 998G S9'8G S9'8G 6L8G G619 ¥6'96 €dOIN
€8'7C ESPS €8PS €8PS €8PS €8S €8PS €8PS €8S €8PS G6'GS SETL V/N 2d0IN
STLY STLY STLV STLY STLY STLY STLY STLY STLY TSV V/N 010
1 T 1 2T V/N V/N V/N V/N V/N V/N V/N V/N V/N som
sdqyy sdqpy sdqpy sdqy sdqp sdqp sdqp sdqp sdqn sdqn sdqn sdan sdgp
008 008 008 €85 L0T €I'c Lg¥ €98 TLT LTh €68 LT 95T
(@

816 01 pozijeuLiou) suojeuwo[duIl

ooy Yrederep polos pue 1300

P2 POUIqUIOd O} Jo SBATY 7L d[qRL

117

98'6T 9E'6T 96T 9E6T 9E6T 9E'GT 96T OE6T OLGT OL6T €E0Z L8'GZ F'¥G €£d0TN
T8°GT TI8GT I8GT I8GT TI8GT I8CT I8CT I8GT ISl I8ST 9TLT ¥L¢ V/N 2doin
8UL 8LL SLL SLL 8LL SLL 8LL 8L 8LL 668 LSET V/N V/N 01
1 1 T 8IT V/N V/N V/N V/N V/N V/N V/N V/N V/N som
sdqy sdq sdqy sdqy sdqH sdqp sdqH sdqn sdqn sdqn sdqp sdqn sdqn
008 008 008 €€¢ L0T €17 g7 €98 TLL L% €8 TLI 99C

M7 899 03

) suon;

1e yyederep pojoofos pue dIj00YRIE POUIGUIOD dY) Jo stomod yeod ‘gL O[qBL

118

611

Table 7.4: Average encrgy for the encryption of 128-bit plaintext of the combined architecture and selected datapath

architecture implementations (normalized to 0.35 nJ)

256 171 853 427 171 853 427 213 107 533 800 800 800
Gbps Gbps Gbps Gbps Gbps Gbps Gbps Gbps Gbps Mbps Mbps Mbps Kbps

W08 N/A N/A N/A N/A N/A N/A N/A N/A N/A 494 432 463 809
v10 N/A N/A 239 209 206 207 209 213 219 233 392 20.74 188.82
U10P2 N/A 168 128 123 123 124 1.26 1.3 1.38 153 3.27 21.65 205.62

U10P3 224 111 1.01 1 101 102 104 108 116 133 322 2319 22287

with the most cnergy efficient architecture U10 found in Chapter 6. Compared with

the datapath architecture W08 which is regarded as the most lightweight implemen-

tation architccture for AES, the combined architectures UL0P2 and U10P3 require as
low as around 1/5 of the minimal encrgy consumed by W08. The cnergy reduction
by the combined architectures UI0P2 and U10P3 compared with U10 comes from the
energy reduction by using the component level 2-stage and 3-stage pipelined S-boxcs,
as is shown in Chapter 5. ULOP3 can consumer less cnergy than UL0P2 because
the component level 3-stage pipelined S-box has lower energy consumption than the
component level 2-stage pipelined S-box as scen in Chapter 5.

These energy reductions come at the cost of the increased peak power. As is
scen in Table 7.3, WO8 remains as the architecture with the minimal peak power and
compared with U10, U10P2 and U10P3 under the minimal encrgy consumption, the
peak power of WOS is about 1/8, 1/16 and 1/20 of them, respectively.

it is clear that, for solely low cnergy purpose, the

Based on above analys
architecture U10P3 should be adopted and the implementation should be constrained
and run under a high (but not the highest) throughput (c.g., between 85.3 Gbps and
4.27 Gbps). The architecture UIOP2 leads to the implementations with the similar
scenario but has around 7% decrease in arca (54.83 vorsus 58.65 in Table 7.2) at the
cost of around 23% increasc in cnergy (1.23 versus 1 in Table 7.4). In terms of arca
and peak power, the architectures W08 and W64 identified in Chapter 6 remain as

the most efficient solutions, respectively.

The siguificant energy reduction found in this scction indicates that those AES
implementation architectures that cmploys the minimal datapath width for low power

purpose (characterized as W08 in this dissertation, such as [31]) actually consume

120

much more encrgy than those i built for high purpose (char-

acterized as U10, U10P2 and U10P3, such as [20]).

7.4 Summary

In this chapter, we demonstrate the combined effect proving energy efficiency by

the appropriately combined S-box pipeline configuration and datapath architecture.

We combine the component level 2-stage and 3-stage pipelined S-boxes with the

datapath architecture with the unrolling factor of 10. The performance evaluation of

! hif shows there is significant energy

the i of the combined

reduction achieved by the combined architectures compared with the most cnergy
cfficient datapath architecture identified in Chapter 6 or the most compact datapath

architecture conventionally used for low resource purposes.

121

Chapter 8

Design of a Lightweight Block

Cipher PUFFIN2

In previous chapters, we have focused on analyzing the implementation of AES. As the
alternative of AES, many others have proposed lightweight block cipher algorithms
targeted at low complexity implementation. In this chapter, we present a block cipher,

PUFFIN2, which is designed to be used with applications requiring very low circuit

arca. PUFFIN2 is designed to be impl exclusively with CMOS technologies
and in a serialized architecture, so that the maximum reuse of hardware components
is achicved resulting in a very compact implementation. PUFFIN2 has a block size of

64 bits and a key size of 80 bits. Compared with a scrialized implementation of cipher

PRESENT, which has the same block size and key size and is claimed as the smallest
practical block cipher implementation to date, our cipher has 16% fewer gates using

the same CMOS technology. Further, PUFFIN2 inherently supports both encryption

and decryption while the serialized PRESENT is an encryption-only implementation

122

The content of this chapter is also presented in [46].

8.1 Introduction

Lightweight applications usually refer to the applications with extremely constrained

requirements on cost gy consumption, such as RFID

omplexity), power and/or en
tags and sensor networks. The block ciphers that are targeted at those applications
arc usually called lightweight block ciphers. Although there have been plenty of
efforts put into the investigation of the implementation of AES with low complexity,
the complexity inherent in the algorithm imposes a lower bound on the complexity.
Most of the efforts on the efficient implementation of AES are actually the exploration
of the trade-off between arca and delay where the sacrifice of one major aspect of the
performance is unavoidable.

Lightweight block cipher design is one of the recent trends in symmetric key
cryptography. There are many attempts made to investigate the potential of designing
lightweight block ciphers that lead to compact implementations without. significant
compromise of the delay. Lightweight block cipher algorithms include PRESENT
[47)[48), mCRYPTON [49], ICEBERG [37], HIGHT [50], SEA [51], PUFFIN [52],
KATAN, KTANTAN (53], MIBS[54] and LBlock [55]

It is well known that an efficient method to minimize hardware arca is to reuse
the single picce of a hardware component for multiple times instead of replicating
identical picces for simultancous operation. This hardware reduction method, also
known as a serialized architecture, is well suited to block ciphers which usually involve

cryptographic components consisting of identical function blocks, ¢.g. non-lincar

123

t of identical S-boxes. Although this reduction of

tution layers generally con

hardware arca comes at the penalty of increased exceution time, the compromised

timing performance is still for many applications at which

block ciphers are targeted. The serialized architecture is firstly exploited and applied
to PRESENT in [48] and this is the smallest known implementation of a practical
block cipher. In the reminder of this chapter, this implementation is called serialized
PRESENT.

PUFFIN2 is a block cipher named after its predecessor PUFFIN and designed
to be implemented exclusively with a serialized architecture. The differences between
PUFFIN and PUFFIN2 lic in the number of rounds, function order in a round and
the key schedule which is fully redesigned for PUFFIN2 in order to perform it with
the datapath. Both PUFFIN and PUFFIN2 have the capability of both encryption
and decryption. In the next section it will be shown that the datapath of PUFFIN2
is exactly the same for encryption and decryption, so there is no hardware overhead
to accommodate the difference between encryption and decryption operations.

PUFFIN2 is more efficient than PRESENT for hardware implementation with
serialized architecture. PUFFIN2 has the same block size and key size as PRESENT,
64-bit and 80-bit, respectively. Compared with the widely adopted 128-bit key size
and 128-bit block size of AES, an 80-bit key size with a 64-bit block size can result
in a compact implementation and still provide sufficient security for typical low cost
smart devices. Based on our ASIC implementation experiments, PUFFIN2 is realized
with 1083 gates which is 16% less than scrialized PRESENT with 1296 gates. For
those block ciphers appeared after PUFFIN2, including KATAN, KTANTAN [53],

MIBS(54] and LBlock [55], they are very similar or cven larger arca compared with

124

PRESENT according to the comparison in these works. For this rcason, PRESENT

is adopted as the reference for comparison in this chapter.

8.2 Cipher Specification

A block cipher is generally constructed from two parts: datapath and key schedule.
The datapath is in the form of a product cipher from Shannon’s theory [56] where
a number of identical or similar functions arc concatenated to multiply the sccurity

strength of the block cipher. The cipher is composed of a number of rounds, where the

operations within a round are referred to as a round function. Each round function
takes the output from the previous round (or the plaintext for the first round function)
and also receives a set of information (referred as to a round key or round key) from
the key schedule, and generates the input for the following round (or the ciphertext for
the last round function). Confusion and diffusion are two basic techniques introduced
by Shanmnon [56] to obscurc plaintext into ciphertext. Confusion complicates the
relationship between the plaintext, the ciphertext and the key, while diffusion spreads

the influence of confusion.

8.2.1 Overall Structure

The proposed block cipher, PUFFIN2, adopts a simple involutional Substitution Por-
mutation Network (SPN) [57] with a data block size of 64 bits and key size of 80 bits

and consis

s of 34 rounds. Encryption and decryption processcs are identical so the
same datapath can be used for both processes. The key schedule of the cipher gener-

ates 64-bit round keys for each round on-the-fly (that is, in parallel to the processing

125

of the cipher data).

In a block cipher using an SPN structure, confusion and diffusion are performed
with the substitution layer and the transposition or permutation layer in a round func-
tion, and the security is enhanced by concatenating the round functions. Compared

cal Feistel structure [58] where only half of the data block is processed

with the
in parallel, the entire data block is processed at one time for the substitution and
permutation operations of a round function. An involutional structure allows the ci-
pher to have identical encryption and decryption processes, which is one of the design
goals of PUFFIN2. In general, a block cipher using an SPN structure has different
datapaths for encryption and decryption because the reverse of the encryption pro-
coss, which is equal to the decryption process, is usually not designed to be the same
as the forward cncryption process. In PUFFIN2, we design the same forward and
reverse processes for the encryption by adopting the involutional components in the
cipher whose forward operations used for encryption can be the same as the reverse
operations used for decryption. In this way, there is no seperate eneryption datapath
and decryption datapath required in the implementation, although encryption and

decryption canmot be done simultancously since they share the same datapath.

Table 8.1: S-box mapping of PUFFIN2 (in hexadecimal)

Input [0 [1|2]|3|4|5[6|7|8|9|A[B|C|D|E|F

o

Output 7 2|9|A|C|1|F[4|5|E|6]|0|B|8

126

Table 8.2: 64-bit Permutation of PUFFIN2

Co|Ci|Co|Cy|Cy|C5|Cs|Cr

Ro [13| 2 |60 |50 (51271036

Ry (25| 7 (32|61 | 1 (494719

8.2.2 Basic Components

Each round function of PUFFIN2 consists of 3 layers, a nonlincar substitution layer
S, a key addition layer A and a permutation layer P. The nonlinear substitution layer
$ is composed of 16 identical 4 x 4 S-boxes, which are the same as the S-boxes used
in PUFFIN and the S-box mapping is shown in Table 8.1. 4 x 4 S-boxes (which are
small compared to the 8 x 8 S-boxes of AES) are often found in lightweight block
ciphers because their implementations are compact and their comparative weakness
in sccurity strength can be compensated by an increased number of rounds. The
key addition layer A performs a bitwise XOR with the 64-bit data block and the
64-bit round key provided by the key schedule. The permutation layer P is a bit
transposition of the G4-bit data block.

The permutation scheme of PUFFIN2 is borrowed from the 64-bit data block

127

permutation of PUFFIN which fulfills the criterion that no two outputs of a 4 x 4
S-box are connected to the same S-box in the next round. The permutation scheme
is given in Table 8.2. According to this table, the (8 x m +n + 1)-th input is mapped
to the N-th output where N is the value located at C, and R,,.

As can be scen from Tables 8.1 and 8.2, both the S-box mapping and the per-

A

mutation arc i ding to the property of cry

introduced in [59], the cipher with a tree-structured SPN and a specifically designed
permutation can achieve the completeness property within the fewest rounds, which
would be 3 for 64-bit cipher with 4 x 4 S-boxes [59]. In PUFFIN as well as PUFFIN2,

1 a tree-structured SPN can not

duc to the requires of i

be adopted to achieve the completeness property in only 3 rounds. However, it can

be shown that the completeness property can still be reached after five rounds of

PUFFIN and PUFFIN2 with the S-box mapping and permutation presented above

[60).

8.2.3 Encryption and Decryption Process

The encryption and deeryption processes are shown in Figure 8.1, where K, denotes

the r-th round key and K]=P(K,). The whole process consists of 34 rounds plus an

extra substitution layer. The explanation of sclecting 34 as the number of rounds
given in the next section. The extra substitution layer is required to form identical
encryption and decryption processes. For cach round of the encryption/decryption
process, the 64-bit input data goes through the substitution layer S, the permutation

layer P and then adds with the round key to generate the input of the next round.

128

K1 Ks3 K34

— =
H 3
2 =
Elsls|P[Al>eee—ls|P|Al>S|P|A[+S|>2
]
2 5
— Round 1 und 33 und 34 —

K'as K2 K1
5 (15

3

Slsls[p|afrece—ls|P|atsls|P|Al+s|+E
S ©
5} o
— Round 1 und 33 und 34

Figure 8.1: Block diagram of the encryption (top) and decryption (bottom)

processes

129

According to Figure 8.1, the encryption process of PUFFIN2 can be represented
as follows:

ag[Ki, Ko, Kya) = O (S0 PoAgy) oS, (81)

In the above expressions, the notation o means the concatenation of the basic opera-

tion in one round such as substitution S and permutation P. The notation O is used

to represent the concatenation of 34 rounds of operation of (S o P o A). Decryption

should be as follows:

azi[K1, K, K] = S0 0Ly (AxroPoS) (82)

= O} 4(SoAk.0P)oS. (8.3)

Because the substitution layer § and the permutation layer P are involutional,

we can have the following relationship:
AgroP =PoApin, (8.4)
and therefore, we can obtain the following:

g Ky, Koy oKyt = O3 (S0 Po Apgien) o S. (85)

The above expression is consistent with the decryption process shown in Figure
8.1, which means the decryption process is similar in form to the cneryption process
In the decryption process, the round keys used in cneryption are permuted with P

and applicd in the reverse order.

130

Table 8.3: Description of the components of the key schedule

Component Function

$80 Substitution of the 80 bits

PL64 Permutation of the left 64 bits

PR64 Permutation of the right 64 bits

L64 Selection of the left 64 bits

R64 Selection of the right 64 bits

Table 8.4: Round distribution of PL64, PR64, L64 and R64

Round # Permutation | Selection
r=1,2,33,34 PL64 L64
r=3,4,31,32 PRG4 R64

r=5+dn0<n<6 PR64 R64
r=6+4n0<n<6 PR64 R64
r=7+4n0<n<5 PL64 L64
r=8+4n0<n<5 PLG64 L64

131

Decrypt/ Encrypt Key

Figure 8.2: Block diagram of the key schedule

132

8.2.4 Key Schedule

The key schedule of PUFFIN2 operates on an 80-bit key and generates a 64-bit round
key for each round on-the-fly. The components used by the key schedule are listed

in Table 8.3 and the key schedule is demonstrated in Figure 8.2, The key schedule

consists of 34 round functions plus an cxtra substitution layer at the beginning. Each
of the round functions is comprised of a permutation layer PL64 or PR64 and a
substitution layer S80. PL64/PRG4 permutes the left /right 64 bits of the 80-bit round
input and then S80 performs the substitution on the 80 bits of key data. Depending
on the selection component (L64 or R64), cach 64-bit round key is gencrated by taking
the loft or right 64 bits of the 80-bit intermediate value that feeds to the corresponding
round function. The detailed distribution of PL64 and PR64 along with L64 and R64
is shown in Table 8.4. The irregular distribution of PL64 and PR64 for cach round
is intended to prevent related-key attacks and will be discussed in Section 8.3.

In order to maximize hardware resource reuse to achicve a compact implemen-

sist of 4 x 4 S-boxes that

tation, the substitution component S80 is designed to co

s, and the

are the same as the S-box used in the encryption and decryption proces

64-bit permutation mapping in PL64 and PR64 is also the same mapping as in the

permutation layer in the encryption and decryption process

The key schedule of PUFFINZ is designed to be involutional to fulfill the design
goal of a full involutional block cipher. The involutional property is achicved through
the following measures. In the first place, all basic components in the key schedule
arc involutional. Sccondly, the distribution of PL64 and PR64 along with L64 and

PG4 is symmetric, and in order to achicve this, the round number of the key schedule

133

has to be a number that is double of an odd number and consequently 34 is sclected
as the round number of the key schedule as well as the encryption and decryption
processes. As will be noted in Section 8.3, 34 rounds are also adequate to achieve an
appropriate level of security. Thirdly, there is an cxtra substitution layer S80 at the
beginning of the key schedule which makes the forward path of round key gencration
identical to its backward path. The PL64 and S80 in the last round (round 34) of
the key schedule are only useful to compute the decryption key corresponding to an
cneryption key. By applying a decryption key to the key schedule, the round keys
would be generated in the reverse order of that made by the encryption key. It is
also necessary to note that the round keys generated for decryption are permuted
versions of the round keys used in encryption, and this featurc is required to provide
the correct decryption round keys for the decryption process mentioned in the Section

8.2.3.

8.3 Security Analysis

In this section, we analyze the security strength of PUFFIN2 under differential and

lincar cryptanalysis and two major key schedule attacks.

8.3.1 Differential and Linear Cryptanalysis

Our proposed block cipher PUFFIN2 sharcs the same S-box and permutation mapping
in the encryption and decryption process as PUFFIN, so the differential and linear

cryptanalysis results of PUFFIN2 can be casily derived from that of PUFFIN in [60].

For di ial cry ysis [61], the i differential characteristic prob-

134

ability of the S-box is ps = 1/4 and, based on the 4 x 4 S-boxes and the involu-

tional permutation, cach round has at least one active S-box to form the path for a

differential characteristic. Hence, the upper bound of the differential characteristic

probability over 32 rounds s given by:

pas<pf =27 (8.6)

The differential characteristic probability po indicates that about 2°* chosen pl

text/ciphertext pairs would be required to mount a successful attack, the comple:

of whi close to a brute force dictionary attack on a 64-bit cipher. Therefore, it is

reasonable to consider PUFFIN2 to be resistant to differential cryptanalysi:

For lincar cry is (62, the maximum lincar imati ility bias

of the S-box is |es| = 1/4. Similar to the case in differential cryptanalysis, there is at
least one active S-box involved in cach round to form a lincar approximation. Hence,

the upper bound of the lincar approximation bias &, of 32 rounds is calculated with

the piling-up lemma [62) as follows:

(8.7)

According to [62], the number of the known plaintexts required to perform lincar
cryptanalysis is proportional to 1/¢2, which means an effective attack on PUFFIN2

with lincar cryptanalysis requires about 2° known plaintext/ciphertext pairs and

therefore is considered to be an impractical attack.

It i necessary to mention that the success chance of the eryptanalysis may be

by the ilities of the dil ial and lincar imations cal-
culated above. For differential cr lysis, the dil ial characteristi babil

is calculated based on the assumption that the data entering different S-boxes are in-
dependent and there is only a single differential approximation path involved for
the selected input and output differential patterns. In realistically, there are usually
multiple differential approximation paths involved on the same input and output dif-
ferential patterns so that the actual probability of the differential approximation is

larger than the probability calculated when considering only a single

path. This concept is referred to as differentials [63]. Similarly, for lincar cryptanaly-

sis, the actual lincar approximation probability is larger than the estimation above by

taking into account the d of the S-box imati and multiple lincar
approximation paths with the same plaintext bits and data bits at the input to the

last round (referred to as a lincar hull [64]).

8.3.2 Related-Key Attacks

The related-key attack was proposed in [65]. It exploits the regularity of the rela-
tionships between key schedule rounds and uses the chosen key relations to retrieve
the secret key information. The related-key attack generally finds its application on
those block ciphers that use the same algorithm to gencrate round keys for all the

rounds, such as the variants of variants of LOKI [66] and Lucifer [67].

It is casy to sec that our block cipher does not have this regularity property in

the key schedule because the permutation layers PL64 and PR64 are not regularly

dis stant to the related-key attack.

ributed among rounds, and hence it is r

136

8.3.3 Weak Keys

Weak keys [68] are keys that make the key schedule produce identical round keys for
all or some of the rounds. For the key schedule of PUFFIN2, due to the existence of

nonlinear substitution layers, we do not find any weak key in the key space.

8.3.4 Updated Cryptanalysis Results

After PUFFIN and PUFFIN2 were proposed, the security strength of them has been
analyzed by other rescarchers, as is shown in [69] and [70]. In [69], a lincar cryptanal-
ysis against PUFFIN is performed by taking into account lincar hulls and recovers
4 bits of the last round key with the complexity less than 2%, In (70, differcntial
cryptanalysis is mounted on both PUFFIN and PUFFIN2, The cryptanalysis in [70]
recovers the 80-bit key of PUFFIN2 with 2747 operations using 2% chosen plain-

texts. This cryptanalysis complexity is lower than the estimation in Scction 8.3.1

since it takes into account multiple differentials (following the framework presented

results show the underestimation of the cost for

in [71)). The updated cryptanalysis
key recover by our own analysis. As a simple way to enhance the sccurity strength
of PUFFIN2 in order to thwart the lower attack cost found in [70], the number of
rounds of PUFFIN2 can be increased and in doing so the arca of the hardware im-

plementation of PUFFIN2 based on the loop-iterative structure is not increased.

137

[61:64) [77:80] | [141:144] [1:140]

[81:144]

Plaintext
[Ciphertext
+Key

Ciphertext

IPlaintext [81:144]

Figure 8.3: Serialized architecture of PUFFIN2

8.4 Serialized Architecture for Hardware Imple-

mentation

The proposed block cipher PUFFIN2 is designed to be efficiently implemented with

hitecture where

ed architecture is the

riall

a serialized hardware architecture. A
multiple identical hardware components that work for multiple tasks simultancously
are mapped to one picce of the hardware component that works for the multiple
tasks in serics. Generally, a serialized architecture can lead to the minimal hardware
implementation among a variety of implementation architectures. In this section, we
introduce a serialized architecture for which the proposed block cipher PUFFINZ is

well suited in and that results in an ultra compact implementation

138

The serialized architecture for PUFFIN2 is shown in Figure 8.3. This architecture
is constructed with two 4-bit 2-to-1 multiplexers, a 64-bit 2-to-1 multiplexer, a 4-bit
XOR adder A, a 4 x 4 S-box S, a 64-bit permutation P, and a 144-bit register.
The architecture conceives a 144-bit wide datapath (for both data and key) and the
hardware components operate on the datapath.

It is also worthy to mention that there is a 4-bit rotation structure on the data-
path, which is crucial to ensure the hardware resources are shared properly in serics
and the block cipher algorithm is running correctly in the architecture. The 4-bit
rotation structure is realized by crossover wiring that maps bits 1 to 140 to bits 5 to
144 and bits 141 to 144 to bits 1 to 4 (through the adder A and the S-box S).

The 4-bit 2-to-1 multiplexer with a dashed 4-bit zero input in Figure 8.3 is called
the first 4-bit multiplexer and the other one is called the second 4-bit multiplexer
The first 4-bit multiplexer is able to output a zero vector independent of its two
inputs, and this is achicved by ANDing the 4-bit output of the multiplexer with a
signal bit from the controller.

In the next section, we describe the work flow of the serialized architecture with
the example of plaintext and key loading procedure and the first round of the encryp-
tion process. We call the bits that carry plaintext information and key information

during the cneryption process as internal plaintext bits and internal key bits, respec-

tively. A G4-bit plaintext plus an 80-bit encryption key is loaded in units of 4 bits

through the first 4-bit multiplexer to the datapath. The first 4-bit unit is presented

lable at

to the input of the 144-bit register in the first clock cycle and becomes av
the output of the register in the second clock cycle. Each subsequent 4-bit unit is

added with a 4-bit zero vector and then fed through the S-box before being stored

139

o P
(@) | egistr il content (z0r0s) I
B 20 T

Figure 8.4: Contents of the 144-bit register at clock cycles 6, 37, 45, 53 and 57

in the 144-bit register. The 4-bit zero vector is generated by the initial output of
the 144-bit register. The 4-bit rotation structure makes sure cach 4-bit unit is added
with a 4-bit zero vector and stored in the register bits next to the last 4-bit unit. The
loading procedure of the plaintext plus the key takes 36 clock cycles and during this
period the first substitution layers in the encryption process and key schedule are also

uted

performed. In the 37th clock cycle, the 64-bit internal plaintext bits are pern
with the 64-bit permutation by selecting position 1 of the 64-bit 2-to-1 multiplexer,
and then the rightmost 4 bits of the updated internal plaintext bits are added with
the rightmost 4 bits of the left 64 bits of the internal key bits by selecting position 0
of the second 4-bit multiplexer. It takes 16 clock cycles to complete the key addition
of 64 bits and this ends at the 52nd clock cycle. In the 53rd cycle, the rightmost 4

bits of the 80-bit internal key bits are added with a 4-bit zero vector in A and then

140

Table 8.5: Implementation results of PUFFIN2 and scrialized PRESENT

Arca Max. Freq. Clock Cycles Throughput
(GEs) (MHz) per 64-bit block @100 Kz

PUFFIN2 1083 326.8 MHz 1240 5.2 Kbps
Serialized a4)
PRESENT 1296 346.0 MHz 563 11.4 Kbps

substituted by the S-box. In the 57th cycle, the left 64 bits of the 80-bit internal key
bits are permuted with the 64-bit permutation. In order to better demonstrate the
work of the architecture, the contents of the 144-bit register at clock cycles 6, 37, 45,
53 and 57 arc shown in Figure 8.4 (a), (b), (c), (d) and (c), respectively. The dotted
4-bit block in Figure 8.4 (b) is the 4 bits to be added with the rightmost 4 bits of the
internal plaintext (after the permutation) in the 37th cycle.

The 64-bit internal plaintext bits and the 80-bit internal key bits are rotated
within the 144-bit register and it takes 36 cycles to complete a full rotation. The
period of 36 cycles is also the time to complete a round of the eneryption/decryption
process. Hence, the total time to complete the entire encryption/decryption including

the 16 cycles for the initial loading of the plaintext is given by:

(16 + 36 x 34)cc = 1240ce, (8.8)

where cc represents one clock cycle.

141

8.5 Hardware Implementation Results

The block cipher PUFFIN2 with the serialized architecture has been implemented and
synthesized with the 0.18-um CMOS standard cell library from TSMC. Synopsys

Design Compiler version X-2005.09 has been used as our synthesis tool. We also

implemented the serialized PRESENT from [47) which is claimed as the smallest

implementation of a block cipher with 64-bit block size. Both of the implementations

are datapath-only implementations, which means their controllers are not included

in the implementations, and in both cases the controllers are negligible because they
can be realized with a small counter and a small amount of combinational logic. Our
implementation results of PUFFIN2 and the serialized PRESENT are shown in Table
8.5. In the table, the metric of gate equivalents (GEs) is used, where a unit of 1 GE
represents an arca equivalent to a 2-input NAND gate.

According to Table 8.5, the implementation of PUFFIN2 is 16% smaller than the
serialized PRESENT implementation. As a trade-off PUFFIN2 takes almost double
the time of the serialized PRESENT to process the same amount of data. This is
because the datapath of PUFFIN2 is reused for the key schedule and the datapath op-
cration can not be performed simultancously as the key schedule operation. However,
in most lightweight applications, a large running time is not a serious issuc.

It is necessary to point out that the gate count of the serialized PRESENT im-
plementation claimed in [47] is 1075 GE. The 221 GE overhead of our implementation
of the serialized PRESENT could be caused by the different synthesis library and the
use of scan flip flops with integrated multiplexers in [47] instead of the normal flip

flops and separated i found in our i ion. The same area reduc-

142

Table 8.6: Count, of hardware components of PUFFIN2 and scrialized PRESENT

Components PUFFIN2 Soraliced
64-bit register (384 GE) 1(35.5%) 1(29.6%)
80-bit register (480 GE) 1 (44.3%) 1 (37.0%)
64-bit 2tol multiplexer (153 GE) | 1 (14.1%) 1(11.8%)
80-bit 2tol multiplexer (192 GE) 0 1(14.8%)
4bit 2tol multiplexer (10 GE) 2 (18%) 3 (2.3%)
4x4 S-box (30 GE/32 GE) 1 (2.8%) 1(2.5%)
4-bit XOR adder (11 GE) 1(1.0%) 1(0.9%)
5-bit. XOR adder (14 GE) 0 1(11%)

4 2-input AND gates (5 GE) 1(0.5%) 0

Total gate count 1083 GE (100%) | 1206 GE (100%)

tion effect can be achieved in our implementation of PUFFIN2 with scan flip flops as
long as the 144-bit register is moved to the output of the 64-bit 2-to-1 multiplexer to
form the integrated flip flops and multiplexers. The position of the 144-bit register is
flexible in the serialized architecture, so this change would not have any influence on
the functionality.

In order to have a clear comparison between the hardware complexity of PUF-
FIN2 and the serialized PRESENT, we list the count of the hardware components
required for both implementations in Table 8.6. The 144-bit register in PUFFIN2
is divided into a 64-bit register and an 80-bit register in Table 8.6, and the 36 4-bit
2-to-1 multiplexers in the two shift registers of the serialized PRESENT are merged
and shown as a 64-bit 2-to-1 multiplexcer and an 80-bit 2-to-1 multiplexer in Table

8.6,

143

From Table 8.6, we can sce the major arca difference between PUFFIN2 and the
serialized PRESENT comes from the 80-bit 2-to-1 multiplexer, which accounts for

14.8% of the total arca of the serialized PRESENT and does not exist in PUFFIN2.

It is also noticcable in Table 8.6 that the 144-bit register takes 80% of the hardware
resource of PUFFIN2, and this fact allows us to believe that the serialized imple-
mentation of PUFFIN2 has approached the arca limit of the block ciphers that have

similar block size and key size.

8.6 Summary

In this chapter we have proposed a new block cipher PUFFIN2 based on an involu-

tional SPN structure. The cipher with a 64-bit block size and an 80-bit key size can

provide sufficient security for low cost embedded devices and support both encryption
and decryption. We also introduced a serialized architecture based on which PUF-
FIN2 can be implemented with an ultra compact size. Compared with the scrialized
PRESENT implementation, the datapath of PUFFIN2 uses 16% fewer gates. In gen-

eral, the PUFFIN2 block cipher is a secure, area-efficient structure in comparison to

other proposed compact block ciphers.

144

Chapter 9

Conclusions

Implementation of AES with minimal resource cost or desired cost trade-off is typi-

his disscrtation presents the investigation

cally the goal of hardware design of AES

that helps to reach the goal from the aspect of implementation architecture. In the

next section, this dissertation is concluded with the summary of rescarch and contri-

butions and the suggestions for future work.

9.1 Summary of Research and Contributions

The rescarch and contributions of this dissertation include the following:

Performance Characterization of AES S-Box and Datapath Implementa-

tion Architectures

The rescarch is the first work in literature that examines and compares the per-

formance of an extensive range of AES S-box and datapath implementations in terms

of timing, arca, power and energy based on the same implementation technology.
Previous rescarch usually focuses on the techniques that improves certain perspece-
tives of the performance based on a specific implementation architecture, rather than
exploring the performance variation by different implementation architectures. The
architecture range investigated in this dissertation covers most of the possible typi-
cal architectures of hardware AES implementation, which include the S-box pipeline
configurations of component level 2 to 4 stages and gate level 2 to 7 stages and the
datapath architectures with the widths of 8, 16, 32 and 64 bits and unrolling factors

of 1,2, 5 and 10 for 128-bit width. The performance of these implementations is char-

acterized based on the same implementation platform under a variety of throughput
constraints which covers a wide range of design requirements for various applications
of AES. The performance characterization allows for better understanding of the in-
fluence on the performance from the aspect of implementation architecture. The

characterization results show the extensive performance trade-offs offered by different

implementation architectures and can serve as a general reference for flexible and

efficient AES implementations.

Identification of Resource Efficient AES S-Box and Datapath Implemen-

tation Architectures

The research is the first work in literature that applies pipelining to the S-box
implementation for resource-efficient purpose, instead of the high throughput pur-

pose that is investigated in previous rescarch. Obvious resource reduction in terms

of area, power and/or energy is achieved with the appropriate pipeline configurations

146

pared with the non-pipelined S-box fon under the same
constraint. The research also identifies the power/energy efficient datapath architec-
ture. It finds that the most energy efficient architecture is not achieved by the most
low power architecture, which is used for both low power and low energy purposecs
previously. By combining the appropriate pipeline configuration and datapath archi-

tecture, the energy consumption is further significantly reduced compared with the

most low power architecture.

Development of Novel and Efficient AES Datapath Architectures

The rescarch develops the AES datapath architecture with 16, 32 and 64-bit
width. While the 16 and 64-bit width architectures are newly presented, the 32-
bit architecture has novel aspects which give the benefit of reduced storage and/or
fewer clock eycles compared to previous work. All of these architectures arc designed
to complete the operation with the minimal number of clock cycles and with the
minimal number or close to the minimal number of registers. No specific memory

1 since all the are 1 of

macro is required for these
standard cells. The development of these architectures contributes to the flexible

implementation of AES.

Design of a Lightweight Block Cipher PUFFIN2

PUFFIN2 is a lj ight block cipher developed based on its p PUF-

FIN. The cryptanalysis of PUFFIN2 shows that it can provide modest sccurity

lightweight sceurity applications. PUFFIN2 has a in-

strength suitable for many

147

volutional structure and the datapath can be used for key generation. These features

allow for very compact serialized hardware implementation. Compared with the pre-
vious most compact block cipher PRESENT, which requires different hardware for
cneryption and decryption operations, PUFFIN2 can be built with smaller arca and

has the same hardware for both encryption and decryption operations.

9.2 Suggestions for Future Work

Duc to the limit of time, some further in-depth rescarch has not been conducted and

included in this dissertation. These work is mentioned in the following:

Investigation of Pipeline Configurations for Specific AES S-Box Structures

The i of pipeline figurations for the AES S-box is based on a

typical composite field structure from [5] in order to show the typical effect on perfor-
mance by pipelining. There exists a number of other composite field S-box structures,
including [6], [7], [8], [9], [10] and [13], and these structures arc usually claborately
developed to achieve certain performance benefits over the typical structure we adopt
in this dissertation. It can be expected that investigating the pipeline configurations
for each of the specific S-box structures would result in pipelined S-box implemen-
tations with better performance than those examined in this dissertation. It is also
worthwhile to investigate new composite field structures that are specifically devel-
oped for pipelined structure. Morcover, the placement of pipeline registers examined

in this dissertation is determined cither by the synthesis tool at the gate level or

by the virtual component boundary at the component level. There actually exi

148

many more options for register placement and this can be explored and optimized
for performance improvement. It is also necessary to conduct the performance com-
parison between the pipelined AES S-boxes based on composite field structures with

the S-boxes of structures other than composite field structures, such as the decoder-

permutation-encoder structure for low power purpose in [14]. In this way, a more

complete picture of performance characteristics of the hardware implementation of

the AES S-box is achieved.

Investigation of AES Datapath Architecture with Inner Round Pipeline

In this dissertation, we only investigate the architectures with outer round pipelin-

ing, i.c., pipeline that is only applied between two consecutive round functions for the

128-bit width datapath, and some cases of inner round pipelining (the pipeline within

the round functions) by using the pipelincd S-boxes (as is shown in Chapter 7). By

considering the entire hardware implementation of the round function of the AES
including ShiftRows and MizColumns, there is more datapath architecture pipeline
options available for the exploration of better performance and more performance

trade-offs.

Investigation of the Influence on Side Channel Attacks under Various AES

Datapath Architectures

Due to the increasing significance of the ability to resist side channel attacks for

block cipher it would be i ing to i i the behaviour

of the different AES datapath architectures under side channel attacks. Attention

149

could be given to the investigation of the behaviour of the architectures under power

analys

ince these architectures have quite different power characteristics as are

shown in this dissertation.

Design of the Successor of PUFFIN2 with Improved Security

According to the recently proposed cryptanalysis against PUFFINZ in [70], PUF-
FIN2 docs not fully achicve the originally claimed security strength and the vulnera-
bility lics in the involutional property of the cipher. It would be desirable to design
the new lightweight block cipher based on PUFFIN and PUFFINZ that has the en-
hanced sceurity resistent to the recently proposed cryptanalysis while still featuring

an involutional structure so that the compactness and the support for both encryption

and decryption remains

150

Bibliography

[1] US National Insitute of Standards and Technology, “Advanced Encryption Stan-

dard,” Federal Inf

Processing Standards F C , no. 197, 2001

[2] A. Bogdanov, D. Khovratovich, and C. Rechberger, “Biclique cryptanalysis of the

full AES,” in of the 17th international conference on The Theory and
Application of Cryptology and Information Security, Lecture Notes in Computer

Scicnee, pp. 344-371, Springer-Verlag, 2011.
3] W. Stallings, Cryptography and Network Security. Prentice Hall, fourth cd., 2005

[4] V. Rijmen, “Efficient Implementation of the Rijndacl S-Box.”
http://www.csat.kuleuven.ac.be/rijmen /rijndacl/.
(5] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC Implementation

of the AES SBoxes,” in Proccedings of Topics in Cryptology (CT-RSA 2002),

vol. 2271, pp. 67-78, 2002,

=

A. Satoh, S. Morioka, K. Takano, and S. Munctoh, “A Compact Rijndacl Hard-

ware Architecture with S-Box Optimization,” in F of Advances in

Cryptology (ASIACRYPT 2001), vol. 2248 of Lecture Notes in Computer Sci-

ence, pp. 239-254, 2001.

7] D. Canright, “A Very Compact S-Box for AES,” in Proceedings of the Inter-

national Workshop on Cryptographic Hardware and Embedded Systems (CHES

2005), vol. 3659 of Lecture Notes in Computer Science, pp. 441-455, 2005.

=

X. Zhang and K. K. Parhi, “On the Optimum Constructions of Composite Ficld
for the AES Algorithm,” IEEE Transactions on Circuits and Systems I1: Express

Briefs, vol. 53, pp. 1153-1157, 2006.

=

S. Nikova and V. Rijmen, and M. Schlaffer, “Using Normal Bases for Compact
Hardware Implementations of the AES $-Box,” in Proceedings of the 6th Con-
Jerence on Security and Cryptography for Networks (SCN 2008), pp. 236-245,

2008.

[10] M. M. Kermani and A. Reyhani-Masolch, “A Low-Cost $-box for the Advanced
Encryption Standard Using Normal Basis,” in Proceedings of the IEEE Inter-
national Conference on Electro/Information Technology (EIT 2009), pp. 52-55,

2009.

[11] M. M. Wong, M. L. D. Wong, A. K. Nandi, and I. Hijazin, “Construction of
Optimum Composite Field Architecture for Compact High-Throughput AES S-
Boxes,” IEEE Transactions on Very Large Scale Intergration (VLSI) Systems,

vol. 99, pp. 1-5, 2011.

[12] M. M. Wong, M. L. D. Wong, A. K. Nandi, and L. Hijazin, “Composite Ficld
GP(((2)")") Advanced Encryption Standard (AES) $-box with Algebraic Nor-
mal Form Representation in the Subfield Inversion,” IET Circuits Devices Sys-

tem, vol. 5, pp. 471-476, 2011

13]

[14]

(16]

[17)

(18]

Y. Nogami, K. Nekado, T. Toyota, N. Hongo, and Y. Morikawa, “Mixed Bases for
Efficienct Inversion in GF((2%)?)? and Conversion Matrices of SubBytes of AES,”
in Proceedings of the International Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2010), Lecture Notes in Computer Scicnce, pp. 234

247, 2010.

G. Bertoni, M. Macchetti, L. Negri, and P. Fragneto, “Power-Efficient ASIC

Synthesis of Cr hic S-Boxes,” in F of the 14th ACM Great

Lakes symposium on VLSI (GLSVLSIOf), pp. 277-281, 2004.

S. Morioka and A. Satoh, “An Optimized S-box Circuit Architecture for Low
Power AES Design,” in Proceedings of the International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2002), Lecture Notes in Com-

puter Scicnce, pp. 271-295, Springer-Verlag, 2003.

Y. Zeng, X. Zou, Z. Liu, and J. Lei, “A Low-Power Rijndacl S-box Based on
Pass Transmission Gate and Composite Field Arithmetic,” Journal of Zhejiang

University - Science A, vol. 8, pp. 1553-1559, 2007.

S. Morioka and A. Satoh, “A High Throughput Low Powcr Compact AES S-
Box Implementation Using Composite Field Arithmetic and Algebraic Normal
Form Representation,” in Proceedings of the 2nd Asia Symposium on Quality

Electronic Design (ASQED 2010), pp. 318-323, 2010.

S. Tillich, M. Feldhofer, T. Popp, and J. GroBschiidl, “Arca, Delay, and Power

Ch istics of Standard-cell ions of the AES S-Box,” Journal of

Signal Processing Systems, vol. 50, pp. 251-261, 2008.

19

[20]

21

[22)

[23]

[24]

X. Zhang and K. Parhi, “High-speed VLSI Architectures for the AES Algorithm,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12,

pp. 957-967, 2004

A. Hodjat and 1. Verbauwhede, “Area-Throughput Trade-offs for Fully Pipelined

30 to 70 Gbits/s AES Processors,” IEEE Transactions on Computers, vol. 55,

pp. 366372, 2006.

T. Good and M. Benaissa, “AES on FPGA from the Fastest to the Smallest,” in
Proceedings of the International Workshop on Cryptographic Hardware and Em-
bedded Systems (CHES 2005), vol. 3659 of Lecture Notes in Computer Science,
pp. 427-440, 2005.

T. Good and M. Benaissa, “Pipclined AES on FPGA with Support for Feedback
Modes (in a Multi-Channel Environment),” IET Information Security, vol. 1,
pp. 1-10, 2007.

K. U. Jiirvinen, M. T. Tommiska, and J. O. Skytté, “A Fully Pipelined Memo-
ryless 17.8 Gbps AES-128 Encryptor,” in Proceedings of the 2003 ACM/SIGDA
eleventh international symposium on Field programmable gate arrays, pp. 207

215, 2003.

N. Iyer, P. Anandmohan, D. Poornaiah, and V. Kulkarni, “High Throughput,

Low Cost, Fully Pipelined Architecture for AES Crypto Chip,” in Proceedings

of the 2006 Annual IEEE India Conference, pp. 1-6, 2006.

M-Y. Wang, C-P. Su, C.-L. Homng, C.-W. Wu, and C.-T. Huang, “Single- and

Multi-core Configurable AES Architectures for Flexible Security,” IEEE Trans-

154

actions on Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 541-552,

2010.

[26] S. Mangard, M. Aigner, and S. Dominikus, “A Highly Regular and Scalable AES

Hardware Archi » IEEE Tr ions on Computers, vol. 52, pp. 483-491,

2003.

[27] P. Chodowicc and K. Gaj, “Very Compact FPGA Implementation of the AES Al-
gorithm,” in Proceedings of the International Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES 2003), vol. 2779 of Lecture Notes in Com-

puter Science, pp. 319-333, 2003.

[28] N. Pramstaller and J. Wolkerstorfer, “A Universal and Efficient AES Co-

processor for Field Programmable Logic Arrays,” in Proceedings of the 14th

Annual International Conference on Field-F ble Logic and A

(FPL 2004), pp. 565-574, 2004.

[29] C. Chang, C. Huang, K. Chang, Y. Chen, and C. Hsich, “High Throughput 32-

bit AES ion in FPGA,” in Proceedings of the 9th IEEE Asia Pacific

Conference on Circuits and Systems (APCCAS 2008), pp. 1806-1809, 2008.

[30] J. R. V. Feldhofer and M. Wolkerstorfer, “AES Implementation on a Grain of

Sand,” IET Information Security, vol. 152, pp. 13-20, 2005.

[31] P. Himilii T. Alho, M. Hénnikii and T. D. Hamaléi “Design and

Implementation of Low-Arca and Low-Power AES Encryption Hardware Core,”
in Proceedings of the 9th EUROMICRO Conference on Digital System Design
(DSD 2006), pp. 577-583, 2006.

155

132]

33)

[34)

=
&=

[36]

137

[38]

39]

T. Good and M. Benaissa, “692-nW Advanced Encryption Standard (AES) on
4 0.13-um CMOS,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 18, pp. 1753-1757, 2010.

D. A. Group, Digital ASIC Design: A Tutorial on the Design Flow. Lund Uni-

versity, Sweden, 2005.
Synopsys, Design Compiler User Guide Version D-2010.05-SP2. 2010

M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power Method-

ology Manual: For System-on-Chip Design. Springer, 2007.
Synopsys, PrimeTime PX User Guide Version D-2010.06. 2010.

F.-X. Standaert, G. Piret, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat, “ICE-
BERG : An Involutional Cipher Efficient for Block Encryption in Reconfigurable
Hardware,” in Proceedings of the 11th International Workshop on Fast Soft-
ware Encryption (FSE 2004), Lecture Notes in Computer Science, pp. 279-299,

Springer-Verlag, 2004.

C. Wang and H. Heys, “Using a Pipelined S-Box in Compact AES Hardware
Implementations,” in Proceedings of the 8th IEEE International NEWCAS Con-

Jerence, pp. 101-104, 2010.

A. Hodjat, D. D. Hwang, B. Lai, K. Tiri, and . Verbauwhede, “A 3.84 Gbits/s
AES Crypto Coprocessor with Modes of Operation in a 0.18-um CMOS Tech-
nology,” in Proceedings of the 15th ACM Great Lakes symposium on VLSI

(GLSVLSI 2005), pp. 60-63, 2005.

[40] S. K. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A. Agarwal, S. K. Hsu,

(a1]

[42]

[43]

[44]

H. Kaul, M. A. Anders, and R. K. Krishnamurthy, “53 Gbps Native Composite-
Ficld AES-Encrypt/Decrypt Accelerator for Content-Protection in 45 nm High-

Performance Microprocess

ts,” IBEE Journal of Solid-State Circuits, vol. 46,

pp. 767-776, 2011.

A. van der Werf, J. L. van Meerbergen, E. H. L. Aarts, W. F. J. Verhacgh, and

P. E. R. Lippens, “Efficient Timing Constraint Derivation for Optimal Retiming

High Speed Processing Units,” in Proceedings of the 7th international

on High-level synthesis, pp. 48-53, 1994

J. Leijten, J. van Mcerbergen, and J. Jess, “Analysis and Reduction of Glitches

in Syncl Networks,” in / g5 of the 1995 European conference on

Design and Test, pp. 398-401, 1995

J. Zambreno, D. Nguyen, and A. Choudhary, “Exploring Area/Delay Tradeoffs in
an AES FPGA Implementation,” in Proceedings of the 14th Annual International
Conference on Field-Programmable Logic and Applications (FPL 2004), pp. 575

585, 2004.

P. Himiili T. Alho, M.

T. D. Hamildinen, T. Jivinen,

P. Salincla, and J. Takala, “Efficient Byte Permutation Realizations for Compact
AES Implementations,” in Proceedings of the 13th European Signal Processing

Conference (EUSIPCO 2005), 2005.

157

[45]

[46]

[47]

48]

[49]

50]

H. Li and Z. Friggstad, “An Efficient Architecture for the AES Mix Columns Op-
cration,” in Proceedings of the 2005 IEEE International Symposium on Circuits

and Systems (ISCAS 2005), pp. 4637-4640, 2005.

C. Wang and H. M. Heys, “An Ultra Compact Block Cipher For Serialized

Archi ions,” in Proceedings of the 2009 Canadian Conference

on Electrical and Computer Engineering (CCECE 2009), pp. 1086-1090, 2009.

A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw,

Y. Scurin, and C. Vikkelsoe, “PRESENT: An Ultra-Lightweight Block Cipher,”

in £ of the | Workshop on Cr Hardware and
Embedded Systems (CHES 2007), vol. 4272 of Lecture Notes in Computer Sci-
ence, pp. 450466, 2007.

C. Rolfes, A. Poschmann, G. Leander, and C. Paar, “Ultra-Lightweight Imple-
mentations for Smart Devices - Security for 1000 Gate Equivalents,” in Proceed-
ings of Smart Card Rescarch and Advanced Application Conference (CARDIS

2008), vol. 5189 of Lecture Notes in Computer Science, pp. 89-103, 2008,

C. Loon and T. Korkishko, “mCrypton - A Li ight Block Cipher for Sccurity

of Low-Cost RFID Tags and Scusors,” in Proceedings of Information Security
Applications (WISA 2005), vol. 3786 of Lecture Notes in Computer Science,

pp. 243258, 2008.

D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee,
K. Jeong, H. Kim, J. Kim, and S. Chee, “HIGHT: A New Block Cipher Suit-

able for Low Resource Device,” in Proceedings of the International Workshop

[54

on Cryptographic Hardware and Embedded Devices (CHES 2006), vol. 4249 of

Lecture Notes in Computer Science, pp. 46-59, 2006.

F.-X. Standacrt, G. Piret, N. Gershenfeld, and J.-J. Quisquater, “SEA: A Scal-

able Encryption Algorithm for Small Applications,” in F
of Smart Card Rescarch and Applications (CARDIS 2006), vol. 3298 of Lecture

Notes in Computer Science, pp. 222-236, 2006.

H. Cheng, H. Heys, and C. Wang, “PUFFIN: A Novel Compact Block Cipher
Targeted to Embedded Digital Systems,” in Proceedings of the 11th EUROMI-
CRO Conference on Digital System Design Architectures, Methods and Tools

(DSD 2008), pp. 383-390, 2008.

C. Cannicre, O. Dunkelman, and M. Knezevie, “KATAN and KTANTAN - A
Family of Small and Efficient Hardwarc-Oriented Block Ciphers,” in Proceedings
of the International Workshop on Cryptographic Hardware and Embedded Sys-

tems (CHES 2009), Lecture Notes in Computer Scicnce, pp. 272288, Springer-

Verlag, 2009.

M. Izadi, B. Sadeghiyan, S. Sadeghian, and H. Khanooki, * MIBS: A New
Lightweight Block Cipher,” in Proceedings of Cryptology and Network Security
2009 (CANS 2009), Lecture Notes in Computer Science, pp. 334-348, Springer-
Verlag, 2009.

W. Wu and L. Zhang, “LBlock: A Lightweight Block Cipher,” in Proceedings of

the 9th I ional Conference on Applied C: and Network Security

[60]

61]

62)

[63]

(ACNS 2011), Lecture Notes in Computer Science, pp. 327-344, Springer-Verlag,

2011.

C. Shannon, “Communication Theory of Sccrecy Systems ,> Bell System Tech-

nical Journal, vol. 28, pp. 656-715, 1949,
D. R. Stinson, Cryptography Theory and Practice. CRC Press, third cd., 2006.

H. Feistl, “Cryptography and Computer Privacy,” Scientific American, vol. 228,

1973.

J. B. Kam and G. I. Davida, “Structured Design of Substitution-Permutation

Encryption Networks,” IEEE Transactions on Computers, vol. C-28, 1979.

H. Cheng, Compact Hardware Implementation of Block Cipher with Concurrent

Error Detection. Master Thesis, Facult of Engincering and Applicd Science,

Memorial University, 2007

E. Biham and A. Shamir, “Differential Cryptanalysis of DES-like Cryptosys-
tems,” in Proceedings of Advances in Cryptology (CRYPTO 1990), vol. 537 of

Lecture Notes in Computer Science, pp. 2-21, 1991

M. Matsui, “Lincar Cryptanalysis Method for DES Cipher,” in Proceedings ofAd-

vances in Cryptology (EUROCRYPT 1993), vol. 765 of Lecture Notes in Com-

puter Science, pp. 386-397, 1994

X. Lai, J. L. Massey, and S. Murphy, “Markov Ciphers and Differential Crypt-

analysis,” in Proceedings of Advances in Cryptology (EUROCRYPT 1991), Lec-
ture Notes in Computer Science, pp. 17-38, Springer-Verlag, 1991

160

64]

6]

(67]

o8]

69

[70]

K. Nyberg, “Lincar Approximations of Block Ciphers,” in Proceedings of Ad-
vances in Cryptology (EUROCRYPT 1994), Lecture Notes in Computer Science,

pp. 439-444, Springer-Verlag, 1995.

E. Biham, “New Type of Cryptanalysis Attacks Using Related Keys,” in Pro-
ceedings of Advances in Cryptology (EUROCRYPT 1993), vol. 765 of Lecture

Notes in Computer Science, pp. 229-246, 1994.

L. Brown, J. Picprzyk, and J. Scberry, “LOKI: A Cryptographic Primitive for

Authentication and Secrcey Applications,” in P of Advances in Cryp-
tology (AUSCRYPT 1990), Lecture Notes in Computer Scince, pp. 229-236,
1990.

A. Sorkin, “Lucifer: a Cry ic Algorithm,” IEEE Tr on Com-

puters, vol. 8, pp. 22-41, 1984.

J. H. Moore and G. J. Simmons, “Cycle Structure of the DES for Keys Having

Palindromic (or Antipalindromi of Round Keys,” IEEE Transac-

tions on Software Engineering, vol. SE-13, pp. 262-273, 1987.

G. Leander, “On Lincar Hulls, Statistical Saturation Attacks, PRESENT and
a Cryptanalysis of PUFFIN,” in Proceedings of Advances in Cryptology (EU-
ROCRYPT 2011), Leeture Notes in Computer Science, pp. 303-322, Springer-
Verlag, 2011.

C. Blondeau and B. Gérard, “Differential Cryptanalysis of PUFFIN and PUF-
FIN2," in ECRYPT Workshop on Lightweight Cryptography 2011, pp. 3554,
2011.

161

[71] C. Blondeau and B. Gérard, “Multiple Differential Cryptanalysis: Theory and
Practice,” in Proceedings of the International Workshop on Fast Software En-
cryption (FSE 2011), vol. 6733 of Lecture Notes in Computer Science, pp. 35-54,

2011

162

Appendix A

Description of the Operation of the

ShiftRows Components

The operation of the ShiftRows components shown in Figures 6.2, 6.3, 6.4 and
6.5 is controlled through the multiplexers. All the 8-bit registers are driven with a
continuous clock. In order to demonstrate the operation of these components, the
contents of the registers at some selected clock cycles are shown in Tables A.1, A2,

A.3 and A4 for Figures 6.2, 6.3, 6.4 and 6.5, respectively, where the first clock cycle

is denoted as CC00 and the n-th clock cycle after CCO00 is denoted as CCn. The

content of a registe a byte of the State following the notation in Figure 2.1

Table A.1: Contents of the registers of the 8-bit width ShiftRows component at

the selected clock cycles

RO1 | RO2 [RO3 | R04 | RO5 | RO6 | RO7 | RO8 | R09 | R10 | R11 | R12
CCO0 | Boo | Buo | Bao | Bso | Boa | Bua | Bax | Bay | Boa | Bia | Baz | Bsz
CCOL | Bio | Bao | Bso | Boa | Bun | Bay | Baa | Boa | Bia | Baz | Bsa | Boa
CCO4 | By | Buo | Bao | Bso | Boa | Bra | Box | Baa | Boa | Bus | Baa | Baa
CCO05 | Bio | B2o | Bso | Boz | Bia | Bax | Bsa | Bog | Bia | Bas | Bsz | Bio
CCO9 | Bio | Bao | B | Bos | Bus | Baa | Bz | Boo | Bio | Bio | Bio | Bon
CC12 | Bos | Bio | Bay | Bsa | Byo | Bio | Bao | Bio | Boa | Bia | Bia | Bia
CCI6 | Byo | Bio | Byo | Byo | Boa | Bia | Bay | Baa | Bia | Bio | Baa | Bia

Table A.2: Contents of the registers of the 16-bit width Shift Rows component at

the selected clock eycles

RO1 [RO2 | RO3 | R0O4 | RO5 | RO6 | RO7 | RO8 | R0O9 | R10 | R11 | R12
CCO00 | Boo | Bio | B2o | Bso | Boa | Bia | Bay | Bsy | Boa | Biz | Baa | Bsa
CCO1 | Bao | Bso | Boa | Bro | Bay | Bsa | Boz | Bia | Baa | Bsa | Bos | Bis
CC02 | Boy | Bio | Bay | Bso | Boa | Bra | Bap | Bsa | Bos | Bis | Bas | Bsa
CCO3 | By | Bso | Boz | Bro | Bao | Bsa | Bos | Bus | Bas | Bsz | Bho | Bio
CC05 | Bzo | Bsa | Bos | Buo | Baa | Bsz | Bio | Bio | Bio | Bso | Bia | Bis
CCO6 | Bog | Bio | B | Bsa | Boo | Bio | Bho | Bio | Boa | Bl | Baa | Bia
CCO8 | By, | Biy | Bio | Bio | Bon | Biu | By | Bsy | Boa | Biz | Brz | Bia

Table A.3: Contents of the registers of the 32-bit width Shift Rows component at

the selected clock cycles

RO1 | RO2 | RO3 [R04 | RO5 | RO | RO7 | ROS | R09 | R10 | R11 | R12
CCO0 | Boo | Bro | Bao | Bso | Boa | Buy | Bay | Bsa | Boa | Bra | Baa | By
CCOL | Boy | Bio | Bay | Bso | Boz | Bua | Bao | Bay | Bos | Bus | Bas | Bsa
CCO2 | Boa | Bro | Bao | Bsa | Bos | Bis | Bay | Bsa | By | Big | Bio | Bio
CCO3 | Bos | Buo | Ba | Bsa | Boo | Bio | Bao | Bio | Boa | Bia | Baa | Bia
CCO4 | Byo | Bio | Bao | Bio | Boa | Bia | Bau | Bia | Boz | Bia | Baa | Bia

Table A.4: Contents of the registers of the 64-bit width Shift Rows component at

the sclected clock eycles

RO1 | RO2 | RO3 | RO4 | RO5 | ROG | ROT | ROS
CCO00 | Boo | Bio | Bzo | Bso | Boa | By | Bay | Bsa
CCOL | Boa | Bio | Bao | Bsz | Bos | Bia | Baa | Baa
CCO2 | Byo | Bio | Bao | Bio | Boa | Bia | Baa | Bia

165

Appendix B

Description of the Operation of the

MixColumns Components

The operation of the MizColumns components shown in Figures 6.6, 6.7 and 6.8
is controlled through the multiplexers and the AND gates. All the 8-bit registers
are driven with a continuous clock. In order to demonstrate the operation of these
components, the contents of the registers at the clock cycles of an operation are shown
in Tables B.1, B.2 and B.3 for Figures 6.6, 6.7 and 6.8, respectively, where the first
clock cycle is denoted as CC00 and the n-th clock cycle after CCO0 is denoted as

CCn. The content of a register is a byte following the notation in (2.2)

166

Table B.1: Contents of the registers of the 8-bit width MizColumns component for

the clock cycles during a complete operation (m = n + 1)

RO1 R02 RO3 RO4
By ® 028, Bon ® Bin® 03By ® Bin
CCoo Bom
03By @ By | 02By ®03Bs, | ®Ban ® By
Bon® Bia® | 03Bon® Bin
ceol don’t care Bogn ® Bim
0285, ®03Bsn | ®Byy ® By
03Bon ® Bin 03By
CCo2 don’t care don’t care
@By © By By ® By
028y, ® 03By,
C€CO3 | don't care don't care don’t carc
®Bam ® Bym
RO5 ROG ROT
CCoo Bom 03B, 02By,
CCO1 | 03By @ Bim | 02Bom ® 03Bym | Bom ® 02B1,m
02Bym® Bom ®02B13 | Boon ® Bim
ccoz
03B1m By ®©03B2m ©02By
Bon @ 02B1® | Bon @ Bim® | 03Bom & Bim
CCo3
03B ® By | 02B2m ® 03By | ®Bam @ Bam

167

Table B.2: Contents of the registers of the 16-bit width MizColumns component

for the clock cycles during a complete operation (m = n + 1)

RO1 RO2 RO3
Boy ® Bin®
Ccoo Boyu ® Bigu | 02Bom ® 03By
02By,, 03By

02Bo, @ 03B1m | Bon @ Bim®
ccot don’t care
©Bo @ Bym | 02By ® 03B3.

RO4 RO5 ROG
03B, ® By
ccoo 03By ® Biyn | Bogn 0281,
@Byn @ Bon

By ®02B1,® | 03By ® Biw
Cccol don’t care

03By @ Bym | &Bom © Bagn

Table B.3: Contents of the registers of the 32-bit width MizColumns component

for the clock cycles during a complete operation

RO1 R02 RO3 RO4

02Byn @ 03B1n | Bon ®02B1,2@ | Bou ® Bin® | 03By @ Bin
CCoo

DByn ® Byn | 03By @ By | 02By, © 03By, | ©Bop @ By

168

L, ST

JUL 18 1978
o

2

e o
Op TORIAL NN [\ ©
& NEWFOUNDLES

	0001_Cover
	0001a_Inside Cover
	0001b_Blank Page
	002_Title Page
	003_Abstract
	004_Abstract iii
	005_Abstract iv
	006_Acknowledgements
	007_Table of Contents
	008_Table of Contents vii
	009_Table of Contents viii
	010_Table of Contents ix
	011_Table of Contents x
	012_Table of Contents xi
	013_Table of Contents xii
	014_List of Tables
	015_List of Tables xiv
	016_List of Tables xv
	017_List of Figures
	018_List of Figures xvii
	019_List of Figures xviii
	020_Chapter 1 - Page 1
	021_Page 2
	022_Page 3
	023_Page 4
	024_Chapter 2 - Page 5
	025_Page 6
	026_Page 7
	027_Page 8
	028_Page 9
	029_Page 10
	030_Page 11
	031_Page 12
	032_Page 13
	033_Page 14
	034_Page 15
	035_Page 16
	036_Page 17
	037_Page 18
	038_Page 19
	039_Page 20
	040_Page 21
	041_Page 22
	042_Chapter 3 - Page 23
	043_Page 24
	044_Page 25
	045_Page 26
	046_Page 27
	047_Page 28
	048_Page 29
	049_Page 30
	050_Page 31
	051_Page 32
	052_Page 33
	053_Page 34
	054_Chapter 4 - Page 35
	055_Page 36
	056_Page 37
	057_Page 38
	058_Page 39
	059_Page 40
	060_Page 41
	061_Page 42
	062_Page 43
	063_Page 44
	064_Page 45
	065_Page 46
	066_Page 47
	067_Chapter 5 - Page 48
	068_Page 49
	069_Page 50
	070_Page 51
	071_Page 52
	072_Page 53
	073_Page 54
	074_Page 55
	075_Page 56
	076_Page 57
	077_Page 58
	078_Page 59
	079_Page 60
	080_Page 61
	081_Page 62
	082_Page 63
	083_Page 64
	084_Page 65
	085_Page 66
	086_Page 67
	087_Page 68
	088_Page 69
	089_Page 70
	090_Page 71
	091_Page 72
	092_Page 73
	093_Page 74
	094_Page 75
	095_Page 76
	096_Page 77
	097_Page 78
	098_Page 79
	099_Chapter 6 - Page 80
	100_Page 81
	101_Page 82
	102_Page 83
	103_Page 84
	104_Page 85
	105_Page 86
	106_Page 87
	107_Page 88
	108_Page 89
	109_Page 90
	110_Page 91
	111_Page 92
	112_Page 93
	113_Page 94
	114_Page 95
	115_Page 96
	116_Page 97
	117_Page 98
	118_Page 99
	119_Page 100
	120_Page 101
	121_Page 102
	122_Page 103
	123_Page 104
	124_Page 105
	125_Page 106
	126_Page 107
	127_Page 108
	128_Page 109
	129_Page 110
	130_Page 111
	131_Page 112
	132_Chapter 7 - Page 113
	133_Page 114
	134_Page 115
	135_Page 116
	136_Page 117
	137_Page 118
	138_Page 119
	139_Page 120
	140_Page 121
	141_Chapter 8 - Page 122
	142_Page 123
	143_Page 124
	144_Page 125
	145_Page 126
	146_Page 127
	147_Page 128
	148_Page 129
	149_Page 130
	150_Page 131
	151_Page 132
	152_Page 133
	153_Page 134
	154_Page 135
	155_Page 136
	156_Page 137
	157_Page 138
	158_Page 139
	159_Page 140
	160_Page 141
	161_Page 142
	162_Page 143
	163_Page 144
	164_Chapter 9 - Page 145
	165_Page 146
	166_Page 147
	167_Page 148
	168_Page 149
	169_Page 150
	170_Bibliography - Page 151
	171_Page 152
	172_Page 153
	173_Page 154
	174_Page 155
	175_Page 156
	176_Page 157
	177_Page 158
	178_Page 159
	179_Page 160
	180_Page 161
	181_Page 162
	182_Appendix A - Page 163
	183_Page 164
	184_Page 165
	185_Appendix B - Page 166
	186_Page 167
	187_Page 168
	Z001_Blank Page
	Z002_Inside Back Cover
	Z003_Back Cover

