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Abstract

Encouraged by recent experiments on multiferroic systems using high-resolution nl-

trasonic measurements, we measured the temperature and field dependence of the
velocity of acoustic modes in order to determine the magnetic phase diagram of the
monoclinic multiferroic cupric oxide (CuO). A new transition at Tyy = 230 K, cor-

responding to an intermediate state between the antiferromagnetic incommensurate

non-collinear spiral phase (AF2) observed below Ty K and a paramagnetic
phase (PM), is revealed. Anomalies associated with a first order transition to a com-
mensurate collinear phase (AF1) are also observed at Ty, = 213 K. Our dielectric

constant measurements confirm that only the spiral phase supports a spontancous

37T

electric polarization. As well, we report on a spin-flop transition between 11

beriments were

in the low temperature AF1 collinear phase with B || b. Most of the e

carried out in Memorial University of Newfoundland with the exception of the high
magnetic field (B > 7 T) measurements which are part of Professor Guy Quirion’s
short visit to I'Université de Sherbrooke. In addition, a non-local Landau-type free
energy is developed for CuO and similar monoclinic multiferroics. In contrast with

previous results of other groups, but in support of a recent proposal, onr analysis

the nece

clearly reveals ity for an incommensurate collinear phase (AF3) hetween
the PM and the spiral AF2 states. Such a phase has been shown, both theoreti-

cally and experimentally, to occur in other geometrically frustrated antiferromagnets



where symmetry allows for uniaxial an

otropy at second order and in multiferroic
compounds similar to CuO. We compare the model predictions to the B-T phase dia-
gram of CuO obtained using nltrasonic velocity data. The same sequence of magnetic
phase transitions is observed as in other multiferroic systems with spiral spin-driven
ferroelectric order such as MoWO,, AMSi,Og, some of the orthorhombic systems

RMnOy, the Kagomé-related compound NigV,0y and LiCuVO,.
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Chapter 1

Introduction

The transition metal monoxide cupric oxide (Cu0) has been studied for more than

80 years due to its important and interesting physical properties. Despite the fact
of being an apparent simple binary compound, the numerous studies carried out so
far have not been enough to completely satisfy scientific curiosity. Initial rescarch
in 1929 on this compound began as a mere magnetic properties’ characterization
experiment [1]. Later, scientific interest was awakened in 1986 by the high-T¢: su-
perconductivity (HTSC) discovery of Bednorz and Muller at the IBM laboratorics in
Zurich [2]. With this breakthrough the cuprate family of superconductors was born
and speculation arose regarding the role played by CuO, planes. One of the shared

s between CuO and the cuprates is the fact that they are insulators and

characteris

order antiferromagnetically at high temperatures with magnetic moments (~ 0.67 i3

significantly smaller than what is expected (~ 1 jup) for § = L localized spins.

In the first section of this chapter the outline of the thesis is given. In the second
section a brief account of spin-driven magnetoelectric multiferroics is provided, fol
lowed by a section on frustrated magnetism. These two topics are closely related, and

as shown later, associated with CuO. Therefore, a significant part of the Introduction



is devoted to their explanation. In the last section, I comment on some of the initial

and final motivations in the course of this project

1.1  Outline of thesis

stal structure, the

Chapter 2 describes the particular properties of CuO such as the ¢

magnetic properties, and its high-temperature magnetoelectric nature. The reader
will find details on previous observations such as anomalous experimental results,

anisotropy, 1 s lity, heli ism, magnetic frustration, and theoretical cal-

culations,
In Chapter 3, the experimental setup is described together with an explanation
of the technique. This includes the high-resolution ultrasound pulsed ccho velocity

it measurements, the sample,

measurements, the capacitance bridge dielectric cons

surements

and the low-temperature high magnetic field me:

ssociated with the experimental tech-

In Chapter 4, the theoretical background
nique and the data analysis is explained. Elasticity theory is summarized and the

ctions and magnetoelastic coupling are introduced. This

concepts of exchange inter
is important in order to understand how sound velocity measurements reveal magnetic

phase transitions.

In Chapter 5, the relevant experimental data are presented and meticulously an-

alyzed by comparing the temperature and magnetic field dependence of the sound
velocity measured along the principal crystallographic directions. The two known
phase transitions are observed at 213 and 230 K. Two additional phase transitions

field (13 = 0) and the other as a spin-flop

have been found: one close to 230 K with z

Also, measurements of the dielectric constant along

trausition for 11 < B < 13.5 T

reveal the magnetoelectric coupling.  All these measurements have been

the b axi



used in order to determine the magnetic field-temperature phase diagram of CuO.

Chapter 6 is devoted to the description of the Landan model developed for the anal-

ysis of the magnetic properties of CuO. First, the general concepts of the theory are

explained. Then, symmetry arguments are used to identify the possible anisotropic

contributions. Finally, the model predictions are presented and discussed. In sum-
mary, the theoretical magnetic phase diagram reveals the stabilization of three zero-
field and three high-field magnetically ordered states.

Finally, in the last chapter, the conclusions regarding the full project are enu-
merated and compared to previous theoretical and experimental results. Tmportant
remarks concerning the multiferroic mechanism in CuO, relative to other spin-driven

multiferroics, are emphasized. As the proposed model is expected to be relevant for

monoclinic mutliferroics in general, two other compounds are briefly discnssed. A

last, some future work is proposed.

1.2 Spin-driven magnetoelectric multiferroics

The induction of magnetization by an external electric field or the induction of an elec-
trie polarization by the application of a magnetic field, referred as the magnetoelectric
effect, was predicted in the late 1800's by Pierre Curie [3] based on symmetry consid-

effect involves electric and magnetic

erations [4]. By definition, the magnetoelect
fields which restrict the observation of these phenomena to systems with no center
of inversion [4]. However, a few decades of failed experimental attempts had to pass
until Landan and Lifshitz realized that the magnetoelectric response is only allowed

ems where time-reversal symmetry is broken as well [5]. Then, Dzyaloshinskii

in sy:
demonstrated for the first time that the magnetoelectric effect is theoretically possible

in Cry04 [6], which was experimentally confirmed in 1960 [7, 8, 9, 10]. This discov-



ery was particularly significant as it offers new technological applications based on

, data storage and switching, optical

the magnetoclectric effect: modulating dev
diodes, spin waves generation, amplification and frequency converter [4]. However,

s of the existing magnetoclectric ma-

the coupling strength and the physical proper

terials were not large enough until the 1990°s when two new classes of magnetoclectri
materials were introduced: composite materials and multiferroics [1]

sociated

In the composite materials, the magnetoelectric effect was primarily
with structural transformations due to piezoclectric and magnetostrictive effects. In
multiferroics, at least two of the four ferroic parameters exhibit long-range order. The

s and

first ferroic parameters were established by Smolenskii e al. [11]: ferromagne

ferroelectricity; one was introduced by Hans Schinid [12]: ferroelasticity; and the last

one defined by Manfred Fiebig [4]: ferrotoroidicity. In multiferroic crystals these

wn all coexist in a single phase crystal. The prefix ferro implics uniform order

orders

(zer0 wave vector), which is often accompanied by the formation of domains [13]. It
comes from the family of first discovered magnetic materials (magnetites) which are
mainly made of iron (ferrum in Latin) oxide. Later this prefix would be preserved
as a convention to refer to uniform order of any type in matter. The more complex
ordering is also included in this definition for all of the ferroic orders mentioned,

s it is intended

uch as: antiferromagnetic, antiferroclectric, ete. [4]. By single phe

to mean solid, homogencous and crystallized composition [14]. Thus, a ferroic order

macroscopic property, also called an order parameter,

described as a spontancous
which is induced by the collective alignment of a microscopic property.

Until recently there were no known multiferroic materials with a magnetoelectric
effect that was large enough for applications. In 2003, Kimura e al. [15] discovered

A spin-order (type-1T),

a new type of multiferroic where ferroelectricity is induced |

leading to a giant magnetoelectric and magnetocapacitive effects in the perovskite



manganite ThMnOy.  Unfortunately, most of the type-II multiferroics exhibit low

Néel temperature (< 40 K), for reasons that will be more evident in Section 1.3.

So far, multiferroics can he classified in several groups: independent multiferroics,

. spin-driven multiferroics, charge-

lone-pair multiferroics, geometrical multiferroic
ordered multiferroics, collinear multiferroics, ete [16]. The main differences hetween

sses rely on the mechanism that induces ferroelectricity, the magnitudes of

all these ¢

polarization, and more important, the magnitude of the magnetoelectric coupling. No

description will be given for all of these multiferroic classes, however curious readers

In general, multiferroics can be classified in two

are invited to look at Ref. [1

groups: type-I where ferroclectricity and magnetism have different sources and type-11

where magnetism causes ferroelectricity and thus there is a prominent magnetoclectric
coupling [17]. In particular, in the type-II, spin-driven ferroelectricity is induced
by non-collinear magnetic structures. These are usually referred as spiral magnets

because of the spiral-looking arrangement of the magnetic configuration.

i magnetic structures with along wave-

There are different. types of non-un
length: sinusoidal, screw, cycloidal, and conical (sce Figure 1.1). In a sinusoidally
modulated spin structure, all magnetic moments are pointing in the same direction
but with a modulated magnitude characterized by a wave vector Q. When the spin

s in Figure 1.1b, the arrangement yields

rotation axis (S; x ;) is parallel to Q,
serew spiral, also called proper screw. If the spin rotation axis is perpendicular to Q

a cycloidal spiral (see Figure 1.1¢). In the coni-

the spin configuration is referred

ts with the screw or eycloidal spiral.

cal structures a ferromagnetic component coes
More literature regarding the standard cycloid scenario can be found in Refs. [19, 20].
So far, the relevant interactions that can be responsible for the magnetoclectric ef-

feet are: single-ion anisotropy, symmetric superexchange, antisymmetric interactions,

eral theoretical models have been de-

dipolar interactions, and Zeeman encrgy [4]. S



a b c d e
Srew Cycloidal Conical (1) Conical (11)
ol lsixs ol | 8sixs)
-

Figure L1: Magnetic structur
wavelength:

s in a 1D array of magnetic moments with a long
a) the collinear sinusoidal, b) the non-collinear screw (also known as

proper-screw), ¢) cycloidal. d) conical longitudinal. and ¢) conical transverse. ey
stands for a unit vector connecting the neighboring magnetic moments. (S, x ) is
the spin rotation axis, Q is the magnetic wave vector and P the electric polarization.
Adapted by permission from Annual Reviews, Ine (18], copyright 2007

veloped in order to explain the mag; ric effect associated with this long-range
ordered magnetic structures. One of them is the Katsura-Nagaosa-Balatsky (KNB)
microscopic model [21]. Tn this model, the magnetoelectric effect in non-collincar
magnets is directly related to a spin current of the form S; x S;. The phenomeno-
logical theory of the magnetoclectric effect, together with the origin of non-collincar
magnetic ordering and its relation to ferroclectric orders, was discussed in the carly

1960's by

veral groups [22, 23, 24, 6]. Tn a few words, magnetic frustration makes a

single lowest-energy c ration of collinear spins impossible inducing a more exotic

configuration such as a spi

1 spin structure instead. As a result, the spiral magnetic
structure breaks inversion symmetry activating the antisymmetric DM-interaction.

The DM-interaction term in the free energy leads to relativistic corrections that fa

vor

non-collinear ordering and are proportional to the spin-orbit coupling [20). Then, the



=

DM-interaction forces the positive and negative ions to shift apart inducing the fer-

roelectric order (22, 23, 24, 25, 26]. In the KNB-model, the spin-orbit interaction and

change interactions, and there

the non-collinear ordering is realized by competing ¢

is no DM-interaction involved [21]. In general, both of these models give a relation

for the electric polarization (P) as follows

P e, x (S x S)), (L.1)

the

where e;; is a unit vector connecting neighboring magnetic moments and S
magnetic moment associated with the ion. As emphasized, in both cases magnetic

frustration plays a crucial role and this is the topic of the next section.

1.3 Frustrated magnetism

Frustrated magnetism is a rich field of new states and propertics of matter that

on in the carly

emerged from the new kind of insulator proposed by P.W. Ande
1970's [27]. Classically, the term frustration is understood as competing interactions
hampering the minimization of the energy (28], Initially, it was aseribed to quantum

s of materials

s extended to other class

however, it

stems such as spin glassc

after further studies. Generally, frustrated systems can have three different origins:

quenched disorder, competing interactions, and geometry [28]. In the following. a

brief account of frustrated magnetism due to geometry and competing interactions
will be given as these two mechanisms are relevant to the area of multiferroics (a

literature review can be found in Refs.

8, 29)).
In the case of frustrated multiferroic systems the frustration is often not too big.
Nevertheless, it is responsible for exotic magnetic structures that can induce ferroelec-

tric orders. The important consequences of this frustration are: low ordering temper-



ature, increased degeneracy of the ground state, and tendency to form non-collinear

spin structures [30] (such as the ones just described in Section 1.2). Thercfore, spin-

driven magnetoelectric multiferroics manifesting magnetic frustration normally have

a low Néel temperature.

In geometrical frustrated magnetism, a geometrical restriction, such as a triangular
lattice, frustrates the magnetic moments. As shown in Figure 1.2, when two magnetic
moments in a triangular antiferromagnet. are collinearly aligned, the third moment
is said frustrated since it cannot satisfy the antiferromagnetic exchange interaction

with both of its nearest-neighbors simultancously. Conseq; ly, it costs less energy to

res

wge all three moments in a 120° configuration, inducing a non-collinear magnetic

state.

a) b)

Figure 1
exchange interaction. ) One magnetic moment is frustrated and unable to pick a
direction. b) The magnetic moments get rearranged in a 120° configuration,

Magnetic frustration by geometry in a triangular lattice. .J represents the

In the case of magnetic frustration by competition, for example in an antiferro-

magnetic square lattice, the competition arises between nearest-neighbors exchange

If the NNN coupling is also an-

(NN) -y and next-nearest-neighbors (NNN) -

tiferromagnetic and strong enough compared to the NN interaction, frustration can

arise as in the Ji-Jy checkerboard model [31]. This is also called the crossed chain

model, that is often found in spin-liquids (s



Figure 1.3: Square lattice magnetic frustration. The arrows represent. spin-up and
spin-down, J; and .J, are the exchange interactions, different colors (solid lines/dashed
lines) are used to represent different strengths of the exchange interactions.

1.4 Motivation

CuO is an unusual high-temperature magnetoelectric multiferroic (Ty ~ 230 K)
As a result, people have been speculating about its magnetic properties and its high
ordering temperature with the objective of finding out how to tailor high-temperature

multiferroic compounds for new commercial applications. Tn Table 1.

a list of several
multiferroic compounds, together with some of their characteristics, is provided. The
first one, BiFeOy, is a model compound of the type-I multiferroics and one of the most

studied due to its room temperature ferroelectric order. However, as it was mentioned

before, in type-II multiferroics there is a stronger magnetoelectric coupling and higher
values of spontancous polarization have heen discovered. Therefore, there are great
expectations on these compounds, wherein CuO has one of the highest ferroelectric

temperatures

with a high spontancous polarization according to a recent. publication
in 2008 [32].

Forsyth et al. [40] published a work on neutron diffraction in CuO and mentioned

that the ic state unex|

ndenses to a spiral antiferromagnetic

state at Ty = 230 K. As Giovannetti ef al. [41] pointed out recently, from a theoreti
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Table 1.1: List of some multiferroics. Al of them with the exception of BiFeOy are
type-Il multiferroics. In the case of CuFeO, a magnetic field (B) has to be applied to
reach the magnetoelectric state.

Compound | Structure] Ferroelectric | Spontancous | Magnetic | References
temperature | polarization order

(K) (pC m?) i

BiFeO; R3c < 1103 75 type-l [16]
Cu0 c2/e 213-230 150 cycloidal 32]
MuWo, Pe/2 7-12.5 55 ! 33]
RMnO;y Pbnm <28 500 " [15]
LiCuVO, | Pnma <3 20 ¢ [34]
LiCu0, i <23 4 ¥ 35]
NizV,05 mmm 3.9-6.3 100 " [36]
AMSLOg | 2/ <6 14 ? 37]
CuFeO, R3m <11 300(BLc) serew 38]
ACIHO, U < 30 2 [39]

point of view, it is not clear what is the microscopic origin of the type-Il multiferroicity
in CuO. In other words, how is CuO a type-II multiferroic at high-Ty and what is the
key ingredient for high-Ty type-1I multiferroics? Tolédano ef al. [42] made a comment
on the unexpected sequence of magnetic phase transitions of CuO and developed a
Landan model to try to understand the reasons for this behaviour. Their results
revealed a strong coupling which is associated with strong magnetic frustration. On
the contrary, Jin et al [43] obtained a relatively weak frustration from their DFT

caleulations.  All these theoretical studies [41, 42, 43] support the direct transition



11

from the paramagnetic to the spiral state. However, different from these studies,

Sakhnenko et al. [44, 45] revealed the existence of what they call the "praphase” of

e between the paramagnetic and

*is 0 magnetic pha

The "praphas

magnetoelectrics
the spiral phases. It has been suggested that CuO should exhibit this phenomenon,

e has not

as it is the case for MuWO, and CuCl,. They emphasized that this phe

been yet observed in CuO and suggested some experimental work to support. their

theory.
A few experimental methods are adequate for this investigation and ultrasound
is one of them. Experimental techniques that are traditionally used for the study

of magnetic phase transitions in antiferromagnets are based on measuring physical

properties such as the heat capacity, the magnetic susceptibility, sound velocity, etc.

Measurements of the heat capacity and the magnetic susceptibility of CuO have been

vidence of an intermediate phase. This can possibly be

already published with no
due to the lack of resolution. Measurements of the sound velocity are nonexistent and

the high-resolution ultrasound technigue is well suited to look for phase transitions as

a result of the magnetoelastic coupling. Moreover, magnetic fields can he applied to

observe the field dependence of the phase transitions in order to construet a magnetic
field-temperature phase diagram of a single crystal CuO for the first time. Surpris-
ingly, only one publication was found regarding a spin-flop transition in a powder
sample [46]. Furthermore, the capacitance can be measured simultancously with the
sound velocity in order to detect magnetoelectric phase transitions. This approach

rated

and frus

is certainly appropriate for the fundamental physics of multiferroics
magnets such as CuO.

In the course of this project, two additional magnetic phases were found, a spin-flop
transition to a high-field phase which coincides with previous susceptibility measure-

ments on a powder sample [46] and an intermediate phase observed between the spiral



order and the paramagnetic state. A theoretical approach was chosen since no other
experimental tool, for an extended study of this new magnetic states, was accessible.
Landan theory has been used earlier for this class of materials and has provided good
results that can account for the ultrasound experimental data of related magnetoelec-
tric compounds [47, 48, 49]. Tt can provide a solid theoretical support for experimental
findings. It is a good tool for analyzing phase transitions and sometimes it can give
extra information about the nature of the phenomena such as specific details regarding
the magnetic structures.

In summary, our ultrasound data revealed two magnetic phases, and Landau theory
helped us learn more about the magnetic structures associated with them and confirm

the proposed magnetic ficld-temperature phase diagram.



Chapter 2

Properties of CuO

As mentioned in the Introduction, CuO is associated with the HTSC cuprate family

and it is a high-temperature magnetoelectric multiferroic. Moreover, other phenomena
have been observed such as magnetic frustration, orbital ordering, quasi-1D antiferro-
magnetism, and it has been described as a strongly correlated system. Thus, for this
project purpose, this chapter describes its crystal structure, the magnetic properties,

and the magnetoelectric effect in CnO.

2.1 Crystal structure

As a transition metal monoxide, CuQ is expected to have a fee crystal structure as in
its parent compounds, the type-11 antiferromagnets (MnO, FeO, CoO, NiO), however
it does not. This disparity can be attributed to the fact that Cu*' is a d® Jahn-
Teller ion and thus the rock salt structure is not energetically favorable due to the

al structure

degeneracy of the orbitals dyx and dyz_ [30, 50]. As a result the crys

is monoclinic with a C2/c (€%,) No. 15 space group symmetry and lattice constants

a=468A, b=3 29 A and = 99.54° at room temperature [32]. The

symmetrical crystallographic axis of the 2-fold rotation is the b axis, so b || b*. The

13
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3D erystal structure can be seen as two zigzag chains with different Cu-O-Cu bond
angles (see Figure 2.1). Therefore, different exchange interactions would be expected

due to a different type of magnetic interactions and orbital overlapping,

(o] >
oxygen copper

Figure 2.1: Four primitive cells of CuO, with four Cu-O groups in each unit cell,
the numbers in parentheses distinguish different Cu fons. M. Ain, A. Menelle, B. M
Wanklyn and E. F. Bertaut, Magnetic structure of CuO by neutron diffaction with
polarization analysis. J. Phys.: Condens. Matter 4 (1992) 5327-5338. 10P Publishing
Ltd. [51].

Figure 2.2 is a sketch of one CuO sheet normal to the b axis, with the red atoms
representing the Cu?t jons and the green ones O*~ ions. Note that in the crystal
there are two of these CuO sheets per unit cell with an AB stack configuration. The
angles for the two zigzag chains along the [101] and [101] directions are specified in

this figure.



gure 2.2: Crystal structure of CuO. Adapted by permission from Macmillan Pub-
|, copyright 2008.

lishers Ltd: Nature Materials

2.2 Magnetic properties

CuO is a magnetic material containing Cu®* magnetic ions that have a 3d hole with
an orbital moment that is expected to be quenched. As a result, it has been considered
as an isotropic spin-only S = § system. However, neutron scattering publications [40,
52] reported a considerably lower moment of ~ 0.65 y B in the low-temperature
phase, where 1y B is expected for a spin-only Cu** ion. Naturally, this indicates
that CuO is by far a more complicated system than the isotropic spin-only § = 1
system. In particular, the crystal structure has four main different angles which are
associated with four superexchange interactions. The two dominant J; and Jy are

described in Figure 2.1 and Table 2.1 [53]. It has been noted that a value of 69 meV,

i estimated for a 1D antiferromagnetic (AFM) Heisenberg chain [51] in agreement
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with the fact that J; has the largest angle ~ 145.82° along the [101] direction. With
this in mind, the magnitude of the strongest superexchange interaction, ;. has been
derived from experimental data and two different values have heen obtained: 67

meV [55] and 91 meV [56]. The second strongest superexchange interaction, o, is

ferromagnetic with an angle of 108.85° along the [101] direction and no experimentally
derived value was found in literature. However, a manifold of magnitudes for these

exchange interactions, and other possible ones, have been proposed by different density

functional theory (DFT) calculations [41, 43, 57, 58] in agreement with a quasi-1D

AFM

Table 2.1: Angles of superexchange interactions at room temperature. The magnitude
of Jy is the average value derived from different experimental studies [55, 56 The
magnitude of J, is an estimation resulting from the averaging of the ratios given
in Refs. [41, 43, 57) '

Bond [ Cu(2)-0-Cu(3) | Cu(1)-0-Cu(4)
Exchange I )
Angle 145.82° 108.85°
(meV) 70 ~05

In superexchange the coupling between two cations (Cu**) is mediated through a

non-magnetic anion (0-). When the angles along the honds are close to 180° the he-

limagnetic structure has strong antiferromagnetic interactions and when it approaches
90° weak antiferromagnetic interactions are expected by the Goodenough-Kanamori
rule [59). A rough sketeh illustrating the frustration in CuO is shown in Figure 2.3

The NN are coupled by the exchange interactions .J3 and Jy with a different b co-

ordination. The NNN can be defined as a first-NNN coupled by the FM supere:
change J» and a second-NNN coupled by the AFM superexchange J;. Thus, since the
second-NNN exchange is much stronger than the NN coupling, frustrated magnetism

is caused by competing interactions and the lattice stabilizes crossed AFM-chains and
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FM-chains inducing a spiral magnetic order relative to the layered b planes [51]. No-
tice that Jy and J are the dominant interactions and they do not lead to frustration
within the CuQ sheet as all couplings are fully satisfied (see Figure 1.3). However,

due to the C-type monoclinic structure, the next plane along the b direction (in or-

ange) forms an AB stack structure with neighboring planes (in red). a result,
these magnetic moments are frustrated since they cannot satisfy an antiferromagnetic

interaction (or ferromagnetic) simultancously with its neighbours.

Figure 2.3: Frustration in CuO arises from the overlapping b plane magnetic Cu?
jons. Plus/minus represent in/out magnetic moments, red/orange are planes with
different b coordination, .J; is AFM (continuous line), /5 is FM (dotted line). and Jy
(dash-dotted line) / J; (dashed line) are frustrated

Furthermore, high-resolution powder x-ray diffraction suggested relatively small
variations of the lattice constants with temperature [60]. This lattice distortion, at-

tributed to the displacement of O atoms along the b axis and the chains, could signif-

wry the vale of the superexchange couplings and therefore induce more con-

icantly
petition while the temperature is changed [50, 61, 62]. The temperature dependence

of these exchange interactions has been speculated based on mid-IR experiments,

theoretical investigations, and resonant soft x-ray magnetic scattering [63. 64. 65
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Consequently, besides being a distorted version of the frustrated fee AFM (the tran-

sition metal monoxide family), the Jahn-Teller distortion accounts for orbital order

and the competing interactions give rise to helimagnetism, providing to CuO several
sources of magnetic frustration. Whether this frustration is weak or strong remains,
an open question.

On another matter, early magnetic susceptibility measurements revealed an anoma-
lous behaviour (see Figure 2.4). Instead of the usual Curie-Weiss dependence (y ~ 71),
a broad maximum at 550 K and a dominant exchange interaction along the AFM-

chain was observed in the paramagnetic state (46, 56], see Figure 2.4 [46]. This is in

agreement with the initial cons

ideration of CuO as a 1D AFM. Further investigations
showed magnetic excitations above ~ 230 K (again, in the paramagnetic state) in nen-

tron scattering studies

55, 66, 67], magnetic susceptibility measurements [68, 69, 70],

and an infrared study [64]. These results are strong evidence that CuO is a quasi-1D

Heisenberg, AFM mainly due to the AFM-chains presenting important. anisotropic
effects.

From measurements of the heat capacity [1] and magnetic susceptibility [71] two
phase transitions have been identified (~ 215 K and ~ 230 K). An example of the mag-
netic susceptibility data of a CuO single-crystal is presented in Figure 2.5, Two picces

of information can be extracted from this figure. First, the transition at ~ 230 K,

labeled Ty, is clearly of second order appearing o

a cusp whereas at ~ 212 K, Ty,
a first order transition with a step-like behaviour is observed. Second, CuO is mag-
netically anisotropic since the measurements undoubtedly depend on the direction.
Additionally, anisotropic behaviour was observed along the b axis, the AFM-chains
and the FM-chains, in neutron scattering studies [67, 72, 73], magnetic susceptibility
measurements [69, 70, an infrared study [50], high-resolution x-ray diffraction [60],

electric polarization measurements [32, 65], and resonant soft x-ray magnetic scatter-
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Figure 2.4: Magnetic susceptibility measurements of CuO powder. The dotted line
shows the estimated 1D curve from Ref. [54]. Reprinted by permission from the
Journal of Physical Socicty of Japan, Vol. 57, No. 10, pp. 3293, copyright 1988, O.
Kondo, M. Ono, E. Sugiura, K. Sugiyama and M. Date, Figure 2. [46]

ing [65]. It is important to emphasize that, despite the obvious anisotropic character

of CuO, only two theoretical studies have explicitly considered the anisotropy as an
important contribution to their Hamiltonian Heisenberg model [43, 58]
These phase transitions are of a magnetic nature and thus attributed to different

magnetic orders. Neutron diffraction experiments on single-crystals with polarization

have been used to resolve the spin configurations. First, Yang et al.
corroborated the magnetic susceptibility measurements of a single-crystal by finding

a second order magnetic phase transition at Ty, from a paramagnetic state to an

ATFM spiral state and a first order phase transition from the AFM spiral state to an
AFM collinear state. Then, below Ty ~ 213 K the magnetic structure was resolved
as a commensurate collinear state with the magnetic moments along the monoclinic

b axis (easy axis). In this magnetic state, there are two characteristic chains: an

AFM-chain along the [101] direction (see Figure 2.6 [32]) and a FM-chain along [101],

with a commensurate modulation vector Qeay = Note that the b axis
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Figure 2.5: Magnetic susceptibility measurements of a CuO single-crystal along the

three erystallographic axes. In the left side of the figure [100] is on the top. Springer
and Zeitschrift fir Physik B - Condensed Matter, 82, 1991, , On the magnetic
anisotropy of CuO, U. Kobler and T. Chattopadhyay, Figure 1, with kind permission
from Springer Science and Business Media. [68]

is the symmetrical crystallographic axis and the magnetic casy As the temper-
ature increases, a phase transition occurs, at Tys ~ 230 K, to an incommensurate
cycloidal spiral (non-collinear) state with half of the magnetic moments in the ac

plane with Qrear = [0.506 0 — 0.483) and a spiral plane parallel to the b

axis and

v = 0.506a* +1.517¢* [51]. Notice that in Figure 2.6 two different b planes are shown
with no distinction, the consecutive AFM-chains [101] belong to a different plane. For
example, in the AF2 phase the magnetic moments that are pointing along the b axis
correspond to a different plane from those pointing in the ac plane. Another remark

is that the difference between these two pointing directions of the magnetic moments



appears to be 90°
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Figure 2.6: Magnetic structures of CuQ, the cross means a magnetic moment pointing
into the page and the dot a magnetic moment pointing outside the page. Adapted by
permission from Macmillan Publishers Ltd: Nature Materials [32], copyright 2008

2.3 Magnetoelectric effect

CuO has been used for several applications such as a pigment in coramic, dictary

itly, in 2008, scientific interest in CuO was awakened

supplement in animals ete. R

when Kimura ef al. [32, 26] discovered the multiferroic nature of Cu0. 1t was then

classified as a magnetoelectric (type-11) multiferroic [74]. The mechanism responsible
for the induced ferroclectricity was explained as a eycloidal scenario, since the spiral

plane is nearly parallel to Q and the spontancous electric polarization P is parallel

1 measured in a single-crystal

to the b axis. The magnetic susceptibility was
and anomalies in the dielectric constant revealed a transition that could correspond

No anomalies were

to a ferroclectric order in the spiral state (see Figure



observed along directions different from the b axis. The ferroelectric order was then

confirmed by electric polarization measurements along the b axis as a function of

shown in Figure 2.8 [32]. For these measurements the crystal was subject

temperatur

to an electric field of 117 kV/m in the paramagnetic phase and then cooled down to

removed and finally the

the spiral state (poling process). Then the electric field it
pyroelectric current, which is a discharge current resulting from a warming process,
is registered as a function of temperature [75]. Finally, the pyroelectric current is

integrated to calculate the spontancous electric polarization. This study indicates that

a ferroelectric order coexists with the AFM spiral state between 213 K < T < 230 K

ates is of second

Moreover, the transition from the paraclectric to the ferroclectri
order whereas an abrupt drop (first order phase transition) is observed at 213 K
The induced ferroelectricity in the cycloidal scenario is in accord with proposed

models such as the Dzyaloshinskii-Moriya (DM) interaction and KNB-model [21, 76,

77]. However, other theoretical models have been suggested over the past two years to

justify the high-temperature of the multiferroic state (AF2) compared to most spin-

driven multiferroi Tolédano et al. [42] developed a theoretical description for the

unusual sequence of transitions based on an irreducible representation analysis and a

Landau type free-energy, with some antisymmetric DM-interaction type terms. They

obtain dramatic results such as two consecutive first order phase transitions despite
what has been demonstrated experimentally. Babkevich ef al. [78] have introduced

what they call a ferroaxial crystal class where P is induced through the coupling

between the chirality of a magnetic structure and a structural rotation. They proved
that the chiral magnetic order is coupled to the ferroelectric order, but there is no
evidence of such a structural rotation yet (see Table 2.2)

As can be seen, the ferroaxial model is based on a DM-interaction, with a similar

Hamiltonian, the main difference is the term with the chirality 0,4 1€,41. This
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Figure 2.7: Magnetic susceptibility and dielectric constant measurements of CuO
from Ref. [32]. The inset shows a magnified view at 100 kHz for the dielectric con-
stant around Ty, Adapted by permission from Macmillan Publishers Ltd: Nature

Materials [32]. copyright 2008

term is the coupling between the chiral magnetic order and the predicted structural
rotation. Since this term does not exist in the traditional DM-interaction, the energy

associated with this coupling involves a different mechanism.
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Figure 2.8: Electric polarization along the b axis of CuO. The arrows indicate the
direction of the temperature sweep. Reprinted by permission from Macmillan Pub-
lishers Ltd: Nature Materials [32], copyright 2008.

zation in CuO. P is the
sen displacements, e is

Table 2.2: Models for the induced spontancous electric polai
electrical polarization, A is a coupling term, u are the oxy
unit vector connecting two sites, (S, x S,41) is a spin current, and o — +1 is the

chirality of the magnetic structure.

Model Hamiltonian term
DAEinteraction [76, 7] Hinr = 30 Mty X €i) - (Su X Surt)
Ferroaxial DM (78] Hpar = u(Prast X €unit + Tunii€unst) - (S X Supr)




Chapter 3

Experimental Setup

For the experimental part of this project, two main instruments were nec
high-resolution interferometer and a capacitance bridge. The high-resolution interfer-

ometer is used for ultrasonic velocity measurements with a pulse echo method; the first

section explains the technique and the setup involved. In Section the capacitance
bridge, used to measure the dielectric constant temperature dependence, is described
Then, the experimental configuration in order to carry out simultancous diclectric

ally, a few details are given

and ultrasonic velocity measurements is illustrated

perimental considerations

and high magnetic fields

ding the "low" temperatur

=

3.1 Ultrasonic measurements and interferometer

For this investigation, sound velocity measurements have been used in order to probe

cal properties of CuO. Since the sound velocity depends on the

the macroscopic phy:

restoring forces between atoms, any variation of these forces has an effect on the
value of the velocity. As a result, any type of phase transition (structural, magnetic,
electric, ete.) is in principle measurable by this technigue. In the case of CuO, as the

magnetic moments are localized on ions, the sound velocity is sensitive to the coupling
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between the lattice and the spin, also called the magnetoelastic coupling. Therefore,
the technique deserves explanation since it is used to interpret our results. Figure 3.1

olution (1 ppm) acoustic interferometer

is a diagram of the high-re

Variable
attenuator

Low frequency
amplifier

Figure 3.1: Setup with the high-resolution acoustic interferometer inside the dotted

box.

The interferometer has one input (the RF synthesizer) and one output (the com-
puter). First of all, the frequency synthesizer provides a continuous signal which is
split into two equal power signals by the power splitter (referred 1o as the sample
and the reference signal). Gate 1 is used to shape the sample signal into a ~ 0.4 s
low power pulse at a repetition rate of ~ 1kHz, which is then amplified by a 1T W
broadband amplifier. The pulse power is then adjusted using a variable attenuator.
The sample signal is then directed to the sample via the circulator, the role of this
clement is to prevent a high power signal to be reflected back to the synthesizer. The
sample signal is converted to an acoustic wave by a piezoelectric transducer via the

inverse piezoelectric effect. After a round trip a fraction of the acoustic echo energy



v
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is converted into a RE signal by the piezoelectric effect using the same transducer
(reflection configuration). These processes are not simultancous and cannot interfere

with each other. In gate 2, the initial pulse is filtered to prevent the saturation of the

RE amplifier. Then, the sample and the reference signals are compared in the phase
detector (mixer) which gives a signal proportional to the phase shift hetween both

A boxcar is used instead of a voltmeter since the signal is not continuous and

signa
the boxcar can do the measurement in given periods of time. Also, this hoxcar is part
of a retroactive loop where the computer keeps the phase difference equal to zero by
changing the frequency of the RF signal, so that during the experiment the in-phase
condition is fulfilled, 42 = 0.

As the phase difference (¢,) depends on the time of flight At,,, the time for a round
trip (transducer to transducer) of the acoustic wave in the sample, the phase shift
simply reduces to

Ay _grpar, = ATl (31)
=

¢n =2

T

) MHz). In the ideal case, multiple

where [ = 4 is the frequency of the signal (~ ¢

echoes are observed on the oscilloscope at different times. Thus, the n” ccho has a

time of flight Af, = £, where L is the distance traveled (£ = 2nl for reflection mode,
where £ is the length of the sample) and v is the sound velocity at a frequency f (see
Figure 3.4). For any echo, the relative phase difference variation can be derived from
the last expression leading to

A¢ AL A[  Av

Lo =t (3.2)

T

In general, as the sample expansion (4%) as a function of temperature or field is

smaller than the relative sound velocity variation (22) by a factor 10 Therefore,
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the measured relative frequency variation (A/[) can be related to the relative velocity

v

ation using

whenever %:’ = (0. The high-resolution relies on the fact that the RF synthesi:

stable at 10 Hz and the frequency of operation is 30 MHz — resolution = 0l < |

ppu. Thus, small anomalies can be observed by measuring relative sound velocity

variations.

3.2 Capacitance Bridge and dielectric constants

Sound velocity measurements can be used to gain information about physical prop-

erties coupled to the lattice. In our case, we are trying to detect phase transitions

and their nature. As described in Section 2.3, the observation of a spontancous ele

tric polarization, via pyroelectric current measurements [32], revealed that the order
between 213 and 230 K in CuO is also ferroelectric. Moreover, it has been shown
that this magnetoelectric active phase can also be identified using diclectric constant
measurements [32, 15] which show a distinct anomaly at the critical temperature,
The dielectric data have been obtained using an extremely accurate and stable AH
2550A Ultra Precision 1 kHz capacitance bridge. The measurable properties are the,
capacitance and the loss (component of the impedance that is 90° out of phase). The

aceuracy

s around 5 ppm with a resolution of 0.5 attofarad (an atto is 10°'%). The

operating frequency is 1 kHz with a 30 ms minimum limit for repeated measurements.

Figure 3.2 is a rough diagram of the full setup with the inclusion of the Capacitance
Bridge.  As can be seen, everything is controlled by the computer in a way that

repeated simultaneous me

irements are achieved. The Capacitance Bridge operation
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is based on the balance between a controllable capacitor (C7,), a psendo-resistor (R.).
and the impedance to be determined. A microprocessor minimizes the voltage across

a detector connected to the controllable and unknown capacitances. The electronic

circuit allows one to independently balance the resistive (R,) and capacitive (C)

components of the unknown impedance using

Interferometer

Sample

Figure Full setup,

G_h (3.4)
C "
R Vy
R,V

where Vi is the voltage for the controllable branch. and Vi is the voltage for the

unknown branch. The high precision relies on the three-terminal connection where the
unknown impedance is measured between the central conductors of the BNC coaxial
connectors that is used between the capacitance bridge and the sample. A shielding

surrounding the connections avoids undesired capacitance added to the actual value
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3.3 Sample preparation, transducers, and electrodes

For velocity measurements, plane acoustic waves were generated using 30 MHz LINDO,

piezoelectric transducers bonded to the erystal faces. These transducers operate hy

the inverse piezoelectric and the piezoelectric effect for the transmission and reception

stie wave is generated by

of sound waves. In the inverse piczoclectric effect an acon
a mechanical stress caused by an applied electric field. This is due to the alignment,
induced by the electric field, of the electric dipole moments giving rise to strain. The

I tudinal transducers

transducers can be of two kinds: longitudinal or transverse.
generate acoustic waves with a polarization parallel to the direction of propagation
Transverse transducers generate acoustic waves with a polarization perpendicular to
the direction of propagation. Therefore, for every direction of propagation we have
access to three independent polarizations.

For the purpose of this study a CuO sample was grown using a floating zonc
technique as described in Ref. [32] by Kimura et al. in Osaka University. A single
crystal was cut with faces perpendicular to the monoclinic axes a*, b* = b, and ¢*

(4 x 4 x 3 mm?®) (see Figure 3.3). The sample was then polished to obtain parallel

faces in order to avoid nonparallelism effects and ensure a good honding with the

trans rs. For the t configuration two transducers, mounted on opposite

lucer is used for the reflection configuration

faces, are necessary while only one trans
As the capacitance measurements require the use of electrodes, custom-made brass
plates were bonded on opposite faces (see Figure 3.4). These electrodes were bonded

ince this direction (¢3) is the one showing

to the faces perpendicular to the b a:

the largest variation at the magnetoelectric phase transition. Therefore, simultancous

ible for most of

sound velocity variations and dielectric constant measurements are pos:
the acoustic modes with the exception of those where acoustic waves are propagating

along the b axis. Previous alginment of the sample was performed by our collahorators




in Osaka University.

Figure 3.3: CuO single crystal sample.

1

Transducer

Distance |
traveled |
o

Figure 3.4: Reflection configuration

3.4 Low-temperature and high magnetic fields

The range of temperature of interest is 200 to 240 K: however, some measurements

were carried out at lower temperatures for exploration purposes. Cryogenic liquids

are involved in all

for high magnetic fields using a superconducting magnet

of our experiments for decreasing the temperature and especially

Naturally

cryostats were
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used in this investigation with liquid nitrogen and liquid helium as cryogenics. At

Menmorial University of Newfoundland, magnetic fields up to 7 T were applied whercas
at I'Université de Sherbrooke magnetic fields up to 16 T were attained. High magnetic
fields were indispensable for the investigation of the magnetic phase diagram of CuQ.
The temperature control is crucial as well, this system uses an algorithm called PID
control (for Proportional-Integral-Differential). The tuning of three variables allows
to adjust the power input of the heater in order to stabilize the temperature at a

specific value or at a desired rate of change.



Chapter 4

Crystalline Elasticity

Crystalline elasticity plays an important role in measuring the sound velocity by
associating the elastic constants with the measured sound velocities. This chapter
summarizes the part of elasticity theory that is necessary to understand the sound
velocity measurements carried out for this thesis. We begin by describing the basic

, then continue with

brief explanation of dynamic elas-

principles of static elastic
ticity where the Christoffel equation is derived and close with the concepts of exchange
interactions and magnetoelastic coupling. It is assumed that the reader is familiar

and

with the subjects of Hooke’s, Newton’s and Curie’s laws, symmetry operations.

Hund’s rules. For more details regarding the sections about static and dynamic elas-

ticity the reader is invited to have a look at the Refs. [79, 80, 81] and for the section

actions and magnetoclastic coupling at Refs. [82, 83).

on the exchange inte

4.1 Static elasticity

The collective deformations in a solid are called strain and are labeled e. First we will
limit our description to one-dimensional systems for simplicity and later fully extend

the description to three-dimensional systems.

33



3

When a force F¥ is exerted on a solid, a change in length from L to L’ is observed as
in Figure 4.1. Since this deformation is not necessarily macroscopically homogencons,
it is instead defined over a small portion, where it is assumed to he homogencous

when taking the infinitesimal limit

L
[,
A B,
-j > X
¢ X N ]
x+Ax H
v
d
A’ P! F
X
x+u() 0
x+Ax+u(x+Ax) .

Figure 4.1: 1D deformation of a string,

From Figure 4.1, for a segment A3 = Aw, the deformation induced by the force

(4.1)

By definition, the strain of the string at = (which is dimensionless) is the limit when

Az =0

ule + Ar) —u(r) du



In three dimensions the local deformations can occur in all possible directions. Hence,
we use a x; where i = 1, 2, and 3 represent the indices of the coordinate system

Therefore, we now have a vector deformation u(r;) and thus

0
duy = S, (1.3)
s

where the summation from 1 to 3 over repeated indices is used. The square of the

distance between two points (dx’ = dx + du) is now

(dx')? = (dx)? + 2(dx) - (du) + (du)>. (4.4)
If the scalar product is expanded
(dx')? — (dx)? = 2 da; du; + dug dug, (4.5)

and substituting for du using Eq. 4.3,

(1.6)

symmetrical form

(4.7)

(dx')? - (dx)? =

D 0w 0.

Qus oy ihl“hu] p

with

Dy, duy
D, O O

The nine elements of e;; constitute the strain second rank tensor. Assuming that the
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deformations are small, or that the relative variations of distances are

O,
o

<<, (4.9)

the second order term 9% 2% is negligible. This reduces the strain tensor to

1 o
e == + . 1.10)
L) or; ‘
where it is obvious that 2% and 9% are interchangeable, so the strain tensor is further
reduced to six components
e = eji. (111)

Therefore, the general matrix form is

e c oen ey |- (4.12)

These constants can be classified in two groups due to the nature of their physical
meaning. For i = j, we have longitudinal deformations along the i direction while for

i # j the strain elements e;, correspond to shear deformations (see Figure 4.2)

Figure 4.2: a. Longitudinal deformation. b. Shear deformation.
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Now that we understand how to describe a deformation, we have to find a way to

define the forces acting on and within a solid (also called stress). Using the same logic

as for the strain, we can think of an infinitesimal force AF acting on an arbitrary

infinitesimal area AA. One can think of this 2

s a generalization of the definition of

pressure: p = L. This analogy is valid since the direction of F could make any angle

1

with the vector defining A. Let AF; be the i component of F exerted on the arca
element AAy, which is perpendicular to the k axis, in the positive direction. The

stress (T34) is defined as the limit, when AAy goes to zero of the ratio S5

I

=i S (4.13)

Tik
where Ty are the stress components that constitute a second rank tensor as the strain.
Thus, Ty is the i component of the stress on a unit area perpendicular to j. Here
we assume that the solid is initially in static equilibrium, as a result the net force

acting on the crystal is necessarily equal to zero. Thus the sum of the torques ahout

any point is zero as well. By "initially" we refer to first Newton’s law of motion which

says that every object continues in its state of rest unless compelled to change that

state by an external force. In other words, if it is initially in static equilibrinm it will
remain in static equilibrium since we are not applying any net external force. As a

result, the stress tensor is also symmetric

(4.14)

ions as for the strain. There are only six independent

leading to the same conclu

constants for a crystal with no symmetry, besides the identity symmetry (£)

From Hooke’s directly proportional to

law we know that the length of a spring

the applied force (I = —ka where k is the spring constant). This can be translated
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to our elasticity terminology as the strain being proportional to the stress. Therefore,

this can be rewritten as stress-strain relation

Tij = Cijuen, (4.15)

where i, j, k, | 2, 3 for the three coordinates system and Cjjy stands for the

elastic constants. Thus, the clastic tensor has 81 components (' that constitute

the elastic stiffness fourth rank tensor. However, since e and T, are symmetrical

(Eqs. 4.11 and 4.14), and from Hooke’s law, the elastic potential (7 = Lka? is rewrit-

ten as in Eq. 4.18) imposes a strain encrgy independent of the path. Thus Cyjy will

necessarily have several symmetries as well

= s (4.16)

Ty Tjiy (4.17)
. 1. 1.

4 3Cumeien = 5Ckijency, (4.18)

Cijkt Cutij = Ciikt = Cljuk (4.19)

nmetry by

leaving only independent components. We take advantage of this
using the Voigt notation (i, j, k, 1) = (a #), where pair of indices are replaced

» 4, (13) = (31) >

accordingly to (11) = 1, (22) — 2, (33) — 3,
5, (12) = (21) = 6. Then, the elastic constants ', can be represented by a 6 x 6,

matrix
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Cn Ci Gy Cu Cis Gy
Cia Cnp Oy Oy Cos O
Ciy Oy Oy Oy Cyy Cyg

C- . (1.20)
Cu Cu Oy Cu Ci Cy

Cis Cys Oy Ciy Oy

Ci Cy Gy Cig Csg Cog

Since the symmetry operations of a crystal represent transformations (rotations,

symmetry with respect to a point or a plane, etc...) that keep the crystal unchanged

from the reference frame regardless of the orientation, the physical properties of the

al should remain unchanged as well. Therefore, the three tensors eg, T;;. and
s need to be invariant under any symmetry operation associated with the crystal in

question. Consequently, the number of independent components is usually reduced,

with the exception of triclinic point groups. For example, the generating clements

of the monoclinic space group C2/c are Cy, (2-fold rotation with respect to the y

axis) and I (Inversion) [84]. For the case of the clastic stiffness tensor, the invariant
condition is [80]

Cijue t\:"n"’u‘k‘u}'( iniriops (4.21)

where af, o af, and af represent the elements of one symmetry operation and are

given by the following matrices
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and

N(Cyy) = 0 1 0 (4.23)

The inversion symmetry does not reduce the tensor since w; — —r; and this is an even
product (for example, xaax — waxx). However, Cy, changes & — —r and = = —=
while y does not change (y = y). Therefore, clements with an odd product of x and
2 must be zero in order to keep the tensor invariant (for example, Ciy (Craye)

Cyg (Ciagy) = 0). The elastic stiffuess tensor is then reduced to

4.2 Dynamic elasticity

Whenever there is a restoring force giving rise to equilibrium in a physical systen,
this system can be used as a medium of propagation. In our case, we will limit our

study to acoustic waves propagating in solids and we start by defining a force density

a1y

fi=3

gl

responsible for producing a local acceleration (atomic displacements away from equi-

Jibrium). According to Newton's second law of motion (F = ma)



Pu, I

on? O

where p is the mass density. We can now use the stress-strain relation Eq. 4.15 with

stitute,

the definition of strain from Eq. 4.8 (e = §2) and sul

NCijuaen) Py
= _q, ' 1.27
KO (420)
For plane waves, the solution to this equation is
= ugie'®T9Y =123, (4.28)

where g, = ugdy is the wave polarization (or the particle displacement direction),
while k is the wave vector and w the frequency. When we substitute Eq. 4.28 in

Eq. 4.27 we get

(o8t = Cigpabejkn) o = 0,

which is possible to simplify by using the expression of the phase velocity (v = %)

(0?6 — Cyanmi)uor = 0 (4.30)

This is the Christoffel equation, where n; and ny represent the cosine direction of
the wave vector relative to the proper axis of the crystal system. We can imagine a
dummy second rank tensor, Iy = Cyygnmng, and solve for the velocity of sound waves

in the secular equation where p is assumed to remain constant

0. (4.31)




lastic constant tensor and the acoustic wave

This relation (Eq. 4.31) between the cl

velocities is what we use in the next chapter to associate the ultrasonic velocity

measurements with CuO elastic constants.

4.3 Exchange interactions and magnetoelastic cou-

pling

agnetic

In order to understand antiferromagnets, it is necessary to consider the
interaction between magnetic moments. As pointed out by Asheroft and Mermin [82],
the term magnetic exchange interaction is nsed to deseribe the dependence of the
energy due to the relative orientation of two or more magnetic moments. The origin
of this interaction is usnally electrostatic electron-clectron interaction. Other sources
of magnetic interactions, such as magnetic dipole-dipole interaction and spin-orbit

reference,

coupling, are often weak compared to the clectrostatic interaction. A

numeri

il values of magnetic dipolar interaction energy and electrostatic energy in a

TV, and a fraction of an

magnetic solid given in Asheroft and Mermin [82] are 10
eV, respectively. Regarding the spin-orbit coupling in transition metal ions from the
iron group, Curie’s law is obeyed when some modifications are done to Hund’s rules
due to a crystal field splitting phenomenon known as quenching of the orbital angular

momentum (L = 0). The quenched orbital moment in these transition metal ions

oceurs because their partially filled d-shells are strongly influenced by the crystalline

environment. This erystal field is much larger than the spin-orbit coupling so that
to a first approximation the spin-orbit coupling could be ruled out. However, one

break rotational symmetry in spin space, such as dipolar

must include terms tha
interactions or spin-orbit, in order to take into account anisotropic coupling,

In a simple two electron system the linear combination of the four spin states leads




13

to one state with S = 0 known as singlet and three states with S = 1 known as the

triplet. The associ

ed lowest eigenvalues are J2, for the singlet and % for the triplet,
then the ground state depends on whether F, is less than or greater than /. A spin
Hamiltonian operator can then be expressed, representing the molecular system as
a simple linear combination of four lowest states, to analyze the energetics of spin

configurations. The cigenvalues are the same as the four-state system Hamiltonian

and the eigenfunctions give the spin of the corresponding states. In the case of the

two electron system, each electron spin operator satislies

%. (4.32)

giving a total spin
T - o
(Si+82)" = 5 +25,- S, (4.33)

Since the eigenvalue of 8 is S(S + 1) in state S, it follows that the operator S, -

has the cigenvalue — in the singlet state and § in the triplet states. As a result, the

spin Hamiltonian operator is constructed

H = 2(E, = 3E) — (B, — E)S) - Sy, (4.34)

L
1

where the firstterm can be omitted by redefining the zero energy, giving

with J v In this convention, J < 0 when the singlet state has the lower

cigenvalue which is related to antiparallel spins and J > 0 when the triplet state has

the lower eigenvalue which is related to parallel spins, Thus, the Heisenberg spin



Hamiltonian summed over all pairs of ions is

H==3JySiSp, (1.36)

where Jj; are known as the exchange interactions.
Magnetoelastic coupling can be accounted for by allowing variation of the exchange

83]. Assuming there is a distortion from the

interactions with interionic distance

equilibrium positions (rg) in the paramagnetic state (similar to Section 4.1)

r = 1o+ u(ry), (4.37)
the exchange interaction can be expressed to a low order as
J( =) = J(r) — ro) + [u(r)) — u(re)] - VJ(xg) + .. (4.38)
With the exp
, o ’
u(r’) =u(r) + rig—+ .y (4.39)
or,

where 7 = ¢ = r, i = &,y 2 and the summation convention is used. The relation in

- 4.38 is then expressed as

() = J(70) + e Kij(70), (1.40)

where ¢;; are the strain components. The symmetric magnetoelastic coupling coefli-

cients are then given by

. 1[og o)
Kij(ro) = 5 L,,_’T, t ar, ,L (4.41)



Such a coupling term provides a mechanism for ultrasound meas s to probe

the magnetic states of solids.



Chapter 5

Experimental Data

The acoustic modes were studied, using the sound velocity measurements, in order to
identify anomalies associated with phase transitions that are presented herein. Ex-
haustive velocity measurements as a function of temperature and magnetic ficld were
carried ont and dielectric measurements were used as support to avoid ambiguity

A thorough study of the transverse mode propagating

for a magnetoelectric analy

, hereafter called V. [¢], helped determine

along the a* axis polarized along the ¢*
the magnetic phase diagram for B || b. This mode in particular shows the foremost
evidence of a new magnetic phase transition. First, some characteristics of the tem-
perature dependence of the acoustic modes are pointed out. Then, the behaviour with

applied magnetic fields and dielectric constant measurements are presented. Finally,

the experimental magnetic phase diagram is described.

5.1 Temperature dependence

Fig, 5.1 shows the relative sound velocity for the longitudinal mode propagating along

the a* direction (V). The heating and cooling processes are presented since the

anomalies are dependent on whether we are increasing or decreasing the tempers

16



a7

ture. Two anomalies, associated with phase transitions, are clearly visible in both

nsition at the lower temperature (213 K) is identified as Ty,

5. The tr:

of the curve

while the one at ~ 230 K is labeled as Ty for reasons that will be established in

on temperatures is the following: the

next section. The way we identify the transi
transition temperature is where a clear peak or dip is observed, or the mid point
in step-like anomalies. As it can be seen, the anomaly at Ty has a different he-
haviour for the heating and cooling cycles. We attribute this phenomenon to a first
order transition based on previous measurements on other compounds which exhibit
a similar hysteretic behaviour [85, 86]. Morcover, magnetic neutron scattering mea-

surements [55] revealed hysteresis around this transition. In elasticity theory it can be

associated with crystal domains developing with the lattice relaxation when changing

the temperature. In this case, it might be related to the fact that Ty, is the crossover

ate.  Furthermore, the step-like anon

from a ferroclectric to a paraelectric
consistent. with a first order phase transition, which is evident from susceptibility
measurements [46]. An explanation of this argument will be given in Ch. 6 based on
Landau theory for phase transitions. The other anomaly observed at Tyy — 230 K
manifests a continuous variation (second order) and, contrary to what we observe at
Tyy, it is independent, of the temperature sweeping process.

s the transverse mode propagating along the b direction polarized

Fig,

s (Vyla']). Again, the anomaly observed at Ty, has a step-like be-

along the a*

order transition. Also, there is a

haviour corroborating the argument of being a fi

small anomaly at Ty showing a temperature dependence similar as the one obtained

steeper compared

for the longitudinal mode V,,. However, the slope of Vyla*] is
to V,, indicating more stiffness associated with the magnetoelastic coupling. Tn a

paramagnetic phase, one mechanism for the temperature dependence of the sound

velocities comes from the theory of lattice vibrations when anharmonic terms in the




V. —— cooling
heating

210 215 220 225 230 235
T(K)

Figure 5.1: V. acoustic mode for the cooling and heating process.

interatomic displacements are taken into account [87). For example, in three-phonon
processes the anharmonic effect involves higher order interactions of phonons where
one phonon causes a periodic elastic strain modulating in space and time the clastic
constant (sound velocity), a second phonon perceives the modulation and is scattered
to produce another third phonon. Therefore, the stiffening is commonly associated

with the population of phonons. In this case, the evident change of

pe at the
magnetic ordering temperature (Tys) is an indication of the magnetoclastic coupling

contribution. Otherwis

. the slope would remain the same as designated by the dotted

line:
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V,lal

AVV(10*)

N3

Al

AN AR ARt
210 215 220 225 230 235 240 245 250 255
(

the dotted line is to guide the

Figure 5.2: Vyla*] acoustic mode for the heating proc
eye and show the difference between the paramagnetic and first magnetically ordered

states

3 shows the temperature dependence in the region of Ty of six transverse

acoustic modes. The curves were arranged purposely in this order to compare the
data between equivalent acoustic modes. For example, the two acoustic modes on
the top, Ve[t and Vyfe*], have similar slopes and anomalies. The two modes in
the middle, Vi[a*] and V. [b], have exactly the same slopes and a slightly different
behaviour for the phase transition anomaly. As well, the two modes on the bottom

<[a*] and V. [e*], ave congruently equivalent. Besides the fact that the anomaly is

larger for these two modes, they reveal evidence of a smaller anomaly that is later, in
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the next section, proven to be another transition. Notice that the last curve is a bit
shifted in temperature, the reason for this is that these data have been obtained from
experiments done at I'Université de Sherbrooke. Since these experiments were carried
out using another probe, the temperature gradients that depend on the position of the
thermometer are slightly different and thus the transitions are observed at different

temperatures. For V

0*] and Vo[e] it is hard to tell which is Ty due to the fact
that two small humps are observed. Therefore the transition is assumed to be in the

mid point.

AVV(10%)

Figure § Transverse acoustic modes for the cooling process.

Despite several attempts, the longitudinal mode propagating along the b axis could



not be measured due to a poor signal in the refiection or transmission configuration

The longitudinal mode along the ¢ axis was measured; however no useful data conld

be obt

ined. Anomalies associated with Ty, were observed for all transverse modes

but they were not as

gnificant as those already presented (data not shown).

5.2 Magnetic field and dielectric constants depen-
dence

In Figure 5.4 we present the results for simultaneous ultrasonic velocity and diclec-

trie constant measurements in black and green, respectively. Magnetic fields were

applied along the b axis up to 7 T for the simultancons measurements and up to
16 T for the ultrasonic velocity measurements only. The data corresponds to the

transverse acoustic mode propagating along the a* axis and polarized along the ¢

axis (Vge[e']). In the inset we show the magnetic field dependence in the tempera-

ture range of Ty, = 213 K for the cooling process. The two step anomaly indicates

a different magnetic ordering process from that previously reported. The paramag-

netic transition was thought to oceur at 230 K. In our measurements a new small

anomaly, in close proximity to another much larger anomaly, is obscrved. Thus our

high-resolution velocity measurements for B || b reveal two indisputable anomalies

near the stabilization of the spiral order at T~ 230 K. We ascribe these anomalies

3K and T

230.0 K. Previously, these phase

to two phase transitions, N

transitions were thought to occur at a single transition and most probably overlooked

due to the small temperature range in which this intermediate phase exists. As the

field increases, the amplitude of the step-like variation observed at 229.3 K,

This confirms

as well as the temperature difference between Ty, and Ty increasc

the ex

istence of a new intermediate magnetic order AF3. The magnetic ficld was also



applied along the a® and ¢* axes and no field dependence was observed (results not

shown).

T

228 229 230 231 232
T(K)

Figure 5.4: V,,.[¢*] acoustic mode temperature and magnetic field dependence (B]| b)

for the cooling process. Diclectric constant measurements in green. Ty in the inset

Diclectric measurements: The above results are supported by supplementary di
electric measurements along the b axis, also shown in Fig. 5.4 Notice that, as the
stability range of the intermediate phase is small (AT ~ 0.7 K, which agrees with
the prediction of Ref. [44]), velocity and diclectric data have been collected simulta
neously to avoid any ambiguity regarding the actual critical temperatures. As shown

in Fig. 5.4, for B = 0 and 7 T, the anomaly observed on the dielectric constant ¢,



coincides very well with Ty, determined using velocity data, while no variation is
noticeable at Tys. These results also indicate that the new phase AF3 is not ferro-
clectric, while magnetoelectric coupling exists for the AF2 phase. The comparison

of our dielectric constant measurements and the recent measurements from another

group (in Figure 2.7 [32]) made us distinguish a difference in magnitudes. This could

be due to parasitic contributions as mentioned in Ref. [75

the presence of other

insulators in the sample’s region may yield competitive effects. Magnetic fields were
also applied for the acoustic modes V- and V,..[b] along the a* and b axes up to
7T but no significant field dependence was observed (therefore, these measurements

are not presented). Simultaneous dielectric constant measurements along the b ax

s

and ultrasonic velocity measurements for the acoustic modes V;,

Vilb] and Vela']

were carried out as well. These results revealed that their anomalies close to 230 K

correspond to Ty and not 7

Spin-flop: Tn Figure 5.5 we present. the magnetic field dependence, with B || b, of

the velocity of the acoustic mode V, obtained at different temperatures. For these

measurements, the temperature is kept constant while the magnetic field is increased

from 0 to 16 T. A minimum is observed in the relative sound velocity variations for

most of the temperatures with the exception of 10 K, 50 K, 202 K and 220 K, where a

maximum is observed or the minimum is not very clear. This minimum has an obvious
temperature dependence since its magnitude and position (in the field range) change
with temperature. As the magnetic moments are known to be parallel to the field
in the AF1 commensurate collinear state [32, 40], we attribute the observed anomaly

to a spin-flop transition. As pointed out in Ref. [86] for the guasi-one-dimensional

antiferromagnet CsNiCly, these features indicate a spin-flop transition. At 10 K, the

spin-flop magnetic field is Bgie = 11 T and increases slowly up to 135 T at Ty,

This is in good agreement with magnetic susceptibility measurements performed on



powder samples [46]. This is the first time that the spin-flop transition is measured

in a single crystal sample of CuO. Generally, a lower magnetic field is necessary to

flip the magnetic moments when they are both parallel. Therefore, stronger magnetic
fields are expected to be necessary for this transition to happen when the field and

the magnetic moments are perpendicular (e, the case of B in the ac plane)

AV(10°)

B(T)

Figure 5.5: Spin-flop transition for B || b at different temperatures for the V. [c

mode.



5.3 Experimental phase diagram

In Fig. 5.6 we present the magnetic phase diagram of CuO determined up to 16 T

)

At B = 0, as the temperature is lowered from the paramagnetic phase, three phase

for B | b using ultrasonic velocity measurements with the acoustic mode V

transitions are observed. The new AF3 intermediate phase exists along the magnetic
field range attained and the temperature stability range increases from AT ~ 0.7 K
up to AT ~ 1.0 K. The spiral state (AF2) extends up to 16 T, as well, with a small
decrease of the temperature stability range at higher magnetic fields. In general,
the critical temperatures Ty, Tya, and Tys are weakly field dependent, while By
increases with temperature. At the tricritical point Bypep ~ 13.5 T and Trep ~
212.5 K, AF1, AF2 and HF1 meet and for higher magnetic fields a crossover from
AF2 — HF1 is found. This is the first time the magnetic field-temperature phase

diagram of CuOQ is determined.



B||b
v [c]

B(T)

AF1

L
100

150 200
T(K)

Figure 5.6: Magnetic phase diagram of CuO for the V,-[¢*] mode with B || b (lines

are used to guide the eye).



Chapter 6

Landau Theory of Phase

Transitions: Application to CuO

The Landau theory of phase transitions is a general mean-field formulation in the

context of ¢ al statistical mechanics [88]. Landau theory generalizes the single

fon, otherwise called order parameter, retaining the idea of Gibbs

mean magnetiz
free energy optimization to obtain the equilibrium state. The order parameters char-

acterize different types of long-range ordering that define states of matter such as a

ferromagnetic state, a ferroelectric state, ete [89] that are associated with deviations
from the disordered equilibrium state [90]. In this framework, the physical macro-
scopic properties are represented by a free energy functional that is minimized with

respect to the order 1 s. This yields a phenomenological macroscopic model

that describes the phase transitions, that can be first order (discontinuous) or second
order (continuous). In this chapter a Landau-type free energy (F1) is adopted. Hence

the thermodynamic potential would be ®(7',.5) = ®(T) + Fi(T, S).

4



6.1 Order parameters and the free energy

The Landau-type free energy is derived from a few principles. The order parameter

is.

umed to be small near the phase transition allowing for a Taylor series expan-
sion. This is valid close to the paramaguetic state (S = 0). In principle, the order
parameter depends on temperature, and other external parameters, and it is a known

specific physi

al quantity that differs in the two phases [91]. Thus, it is used to define
the degree of order below the transition temperature, or ecritical temperature (7,).
In continuous phase transitions (of second order), the order parameter continonsly

decreases to zero as the

is approached from below. Tn discontimious phase transi-
tions (of first order), the order parameter discontimously decrenses to zero as the 7,

iss approached from below (sce Figure 6.1)

S] s i

TT

Thus, every magnetic s
energy. This free energy must be invariant under the symmetry operations of the

high-temperature phase leading to a reduction of the number of terms, as with the

tensors ey, Ty, and Cyyyr in Chapter 4. In our case, the spin polarization vector
(8) is chosen as a magnetic order parameter and thus every term of the free energy

must be invariant under inversion and time reversal (S— -S, H— -H) symmetrics



since the high-temperature phase is paramagnetic. This way we can expect at least

two states: a disordered state with S = 0 and an ordered state where S # 0. The
first order term in the expansion should be zero as it is imposed by the extremum
condition 9% = 0 and in our case all odd power terms are not allowed due to the

time inve

ion symmetry. An expansion of the Landau free energy to the 4™-order of

the order parameter S would be of the form

i lllfs‘ (6.1)

As a convention, A is used to represent a temperature dependent parameter given hy

a function such as A(T) = a(T — Ty), with a > 0 for reasons that will be given in

the next section. The coefficients a, Ty and B are a priori unknown phenomenological

parameters that can be estimated by fitting to experimental data.

6.2 Phase transitions

Second order phase transitions: An equation of state can be derived by winimizing

Eq. 6.1 with respect to the order parameter S

S(A+ BS?) =0, (6.2)

leading to two solutions: the trivial S = 0 and the non-trivial

§=%\-% (6.3)

The trivial solution represents a paramagnetic state since the order parameter is the

spin polarization and S = 0 is attributed to no long-range magnetic order at all. The

stability condition, associated with a minimum in the free energy, is given by
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A0 (6.4)

This indicates that the paramagnetic region is 7' > Tj) and if we substitute A with our

ans

A(T) = a(T = Ty) = Ty = T., where a > 0. The non-trivial solution 5 # 0

would be stabiliz

If we substitute Eq. 6.3,

(T) = =2A(T) = =2a(T = T,) > 0, (6.6)

05?*

establishing two conditions: A(T) < 0 and B > 0 in order to have a minimum of 17,

that is a stable state, meaning that the S # 0 region is below T,. This also

means that our ansatz was a good guess after all. Albeit with this ansatz we are
assuming that the function A(T) has no singularity at 7, and can be expanded near
the transition.

Notice that in the paramagnetic state only one solution exists S = 0 whereas for the

non-trivial case there are two minima (£) for the free energy due to the square-root

in Eq. 6.3. This last remark represents the fact that if we had c.g. a ferromagnetic

state for the non-trivial case, there would be two possible equivalent solutions: all

spins up and all spins down.
First order phase transitions: One way to discuss first order phase transitions in a

Landau basis is by adding higher degree terms in the order parameter expansion [91].

For the case of only one component order parameter, the free energy expansion is

€

B, Cos
6

Tia
1 +
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where a first order transition is described when 3 < 0 and €' > 0 are assumed. By

minimizing the free energy we get the following relation

ary
a5

(S)=S(A+BS*+ 05 =0, (6.8)

where there are three solutions 0 and

—-B+VB?*-4AC

20

(6.9)

The first solution represents the paramagnetic state whereas the two other are ordered
states below the critical temperature. Since A is temperature dependent, we can
consider four different cases.

For B2 — 4AC < 0, A has to be > 2 and substituting the ansatz for A

B _
T>Ty+— (6.10)
la(

If this equation is satisfied there is no solution and the free energy can only be mini-

mized by S = 0.

For B? —4AC =0

5
A (6.11)
o
and
B
S(T) = — 6.12
) =55 (©6.12)

For T = T,, the critical temperature is obtained using the equilibrium condition

(6.13)
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50T =

0

Finally, for ' = T}, we need to solve Eq. 6.8 and we need Eq. 6.7 to be equal to 0.

B
16aC""

=T

5 (S = 0 and Eq. 6.9), or

s to the equal stability of the two phas

This 7} corre

SPOIC

is the temperature at which

where the two free energies are equal (Fy = F). Thi

o would most probably take place. However, first order

the first order phase trans

phase transitions are characterized by a coexistence region, delimited by 7, and 17
with two metastable phases. This is generally called a thermal hysteresis, where the

transition temperature will not be the same on the heating and cooling processes

6.3 Anisotropy

Au important subject concerning magnetic phenomena is anisotropy. In a few words,
magnetic anisotropy refers to the dependence of the magnetic properties relative to
the direction [92]. In magnetocrystalline anisotropy the magnetization tends to align

along a preferred crystallographic divection, the easy direction. The energy required

em away from the eas

to rotate the spin s axis is proportional to the energy that is

necessary to overcome the spin-orbit coupling. The orbitals are in general overlapping
and coupled to the lattice. As a result, the magnetocrystalline anisotropy has always

I structure. For example, in order to find the invariant

ame symmetry as the cr
terms of the free energy of a monoclinic compound that belongs to the C2/c space
group, the symmetry generators which are the inversion and a € rotation can he

136 but

used. Assuming a similar Hamiltonian with two interacting spins as in Eq.

in the matrix form
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=3 Jusasi, (61

where ., are the exchange coefficients. Since these are the same symmetry operations
as for the crystal structure, following the same procedure as for the elastic stiffness

tensor in Eq. 4.21 (Ju, = af Jyun) leads to

0 . (6.16)

Then the invariant Hamiltonian is represented by the terms

H = g% Syt + 2, (6.17)
this can be rearranged as
H = Joul2 4+ 824 82 + (yy = o) s2 - (oe = Spa)2 4+ 2asasee (6.18)

where the first term represents the isotropic exchange contribution and the other

three anisotropic exchange terms. A brief demonstration on how to do this operation

is shown in the Appendix A.
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6.4 Landau Model for CuO (and Monoclinic Mul-
tiferroics)

A Landau model is here presented based on the principles of the previous sections and

general characteristics of low symmetry monoclinic compounds. The special case of

CuO is developed with the purpose of explaining the experimental results from Chap-
ter 5 and with the intention of learning more about the two new magnetic phases (AF3

and HF1). However, s malitative with other ¢ Is is expected

due to the Landau-type formalism which is based on symmetry arguments and thus

should be applicable to systems similar to CuO. First, the Landau free energ

¢ together

with the order parameters is given. At last, the results of its analysis (minimization)
are shown and discussed. This model is inspired by work on geometrically frustrated

magnets defined by the Hamiltonian and the lattice structure [93]

6.4.1 Landau free energy and order parameters for CuO

The basics of the mathematical formulation and assumptions for the free energy are
described in the following subsections. Starting from the Hamiltonian, continuing
with the Landau free energy and ending with a brief explanation of how the order
parameters are found using the analytical expressions for the temperature and mag-
netic field dependence. As first order phase transitions are anticipated, analytical and

numerical calculations were necessary.

6.4.1.1 Invariant terms and Hamiltonian

The starting point is the Heisenberg model Hamiltonian (the most general type of

symmetric quadratic interaction)



H =3~ JarSaSh, (6.19)

o
where a,b = x,y, z and the Hamiltonian should be invariant with respect to the gen-
crators of the symmetry group. If we use the symmetry arguments for the monoclinic

shown in the

space group C2/c, mainly involving a 180° rotation along the y axi

previous section the matrix (/) is reduced and leads to

DY (sTs

"= %Z‘/,,s, 8;+ Dy Y (V) + D. Y ( —H-Y s, (620)
i i i i

where J;; represents the isotropic exchange interaction, H is an applied magnetic

field, {D,, D.. D,.} are single-ion anisotropic terms allowed by symmetry which are
responsible for the magnetoelectric effect, revise Section 1.2. For J; > 0 the coupling
is antiferromagnetic while for the anisotropic term, 12 > 0, the energy is minimized
by a planar configuration and when D < 0 the energy is minimized by an axial

configuration of the spins.

6.4.1.2 Landau free energy

Total free energy: Assuming that the physical propertics of a phase can be doseribed

by a maguetic order, the integral form of the Landau-type expansion of the free energy

|

functional up to fourth order in terms of the spin density s(r) is given by [91, 47, 83,



66

F, = B+Fi—Fa-Fy (6.21)
1

F= 5 /ur.dr,,.ur,.r?]s(m-s(m. (6.22)
1

Fi = [ devdnadeade, Birrarry) s(e) -sr) () s, (6.23)

Fi = g [ DI (0) + D05 00(0) + D) ()0 dr, 6:21)
S
=g

The local spin density, s(r), is defined in terms of a non-local spin density p(r)

s(r) - H dr (6.25)

that describes the long-range magnetic order of the ions

s(r) = %Z/z(rm[rfR,\ (6.26)
"
p(r) = m+ Se'QT 4 §te QT (6.27)

where the monoclinic structure of Cu0 is given by a unit cell of four Cu?* magnetic

ions (see Figure 6.2).

A
b~ "¢

Figure 6.2: Unit cell. Orange means the ions have a different coordination on the b

axis.



The positions of the ions are defined by four basis vectors wy = 0, wy = a4

3b, wy = ibtic, wy = fatje (where R = Ryt w; and Ry = vatobtwe). Vis the

volume of the crystal, N represents the number of Cu** magnetic ions, S is the spin

polarization vector. Morcover, the long-range magnetic order is described by a single
wave vector Q while m s the induced uniform magnetization due to the magnetic
field. The coefficient from Eq. 6.22 is given by A(r) = akyT8(r)+j*J(r) providing the
temperature dependence and J(r) are the exchange interactions [83]. The coeflicient
from Eq. 6.23, B(r), is assumed to be only spatially dependent and independent of
temperature. Furthermore, to account. for non-collinear spin configurations, we write

the complex spin polarization in terms of real and imaginary parts as S = Sy + i S,

These vectors are parametrized by the angles , 5, and 0 through (also see Ref. [94])

cos ffcosy § + siny pal,

Ssin Bleos py + sinO(cosy § + siny pa),

where py and py are two orthogonal unit vectors normal to the casy ax

gl

The direction of the moments in the ae plane is accounted for by defining the wnit

veetors py and py relative to Cartesian vectors, py =

VR b sina 2 (8] %) and

P sina X cosa 2, where asets the direction of the magnetic moments on the ac
plane. It is assumed that Eqs. 6.28 and 6.29 provide suflicient flexibility to describe
the magnetic ordering in CuO. Note that 3 is an order parameter, not to be confused

with the angle # of the monoclinic structure from Figure 6

2nd-order contribution (F): Within the present model, the value of Q can be

determined by simply considering the quadratic exchange contributions [47
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%/(/rylr_’ Ay = 12) 8(r1) - 8(r2), (6.30)

Agm® + AS* where §? = §-8* and Aq = aT + Jo. with Jg

which leads to F

being the Fourier transform of the exchange integral J(R),

Jo =Y J(R)AAR, (631)
7

Considering the C-type monoclinic cell with four Cu** magnetic ions, we obtain

J(Q) 201 1(Q) + LL2(Q) + Jafa(Q) + Ji[(Q)]
N(Q) = cos(mga - 7q.)
1(Q) = cos(mge + 7q.)

[5(Q) = cos(mqs — wqu) + cos (7qa + 7q)

J1(Q) = cos(mq, — mq.) + cos (nq, + 7q.).

where J; and J, represent the nearest-ncighbours exchange interactions along the
AFM-chain and the coupling between chains on the same plane normal to b, respec-
tively, while Jy and J; represent the nearest-neighbours exchange interactions along
a and ¢ between Cu®* jons on different planes (see Fig. 6.3).

The value of Q is then obtained by finding the extrema of Jg (Eq. 6.32) as a
function of the exchange interactions. Results of our numerical Fortran algorithm are
summarized in the Jy — Jy phase diagram shown in Fig. 6.4 for AFM chains (with
Ji = 1), This algorithm is based on a minimization technique called downhill simplex

method and an example is given in the Appendix B. For different J; values, we
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AF1(collinear)
J2

J3

Figure 6.3: Exchange interactions

obtain three phases: an incommensurate phase with Qe = [0, 0. ] (left side) and
two commensurate phases (top and hottom right side). Depending on the sign of
Jy relative to Jy, the commensurate wave vector is cither Qey, = [100] or Qe

[001]. More interestingly, with J3 = J; = 0 we obtain the expected commensurate

for Jy < 0 (dash line in Fig, 6.4). Morcover, an

wave vector Qey =
ICM state with a modulation vector comparable to that of the experimental value

Qienr = [0.506 0 — 0.483] is stabilized whenever J; and/or Jy are non-zero but small

relative to Jy (for example, Jo/Jy = —0.3, Jy/Jy = 0017, and Ji/Jy; = 0 leading

to Jo/Jy = —2.6). These relative values are also in good agreement with estimates
obtained by density functional theory [11, 57, 58] and are consistent with the quasi
1D magnetic character of CuO. Unfortunately, there is not enough inelastic neutron
seattering data in order to specify the real values of these exchange interactions
fth-order contribution (Fy): Adopting the same approach for the fourth-order term,

we obtain
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Figure 6.4: Jy — Jy phase diagram for different values of J; = 0,3, 1 with J, = 1
One incommensurate phase with Qe = [¢a. 0, ¢.] (left side) and

phases (Qear = [100] and Qe = [001]) are obtained

1
t

0 commensurate

1 ! .
Fi = BiS'+5BS-SP+ [ Bym' + 2B m -S|

34 1 .
+Bym?*S* + —IB, [(S-8)* +c.c]Aiqe - (6.33)

where as in Ref. [95]



B = Ba-qa-a

B: = Baaq-a-a

By = Baqaa

Note that the umklapp term Aq . arises directly from the lattice periodicity [47]

1
v %« "R Aqc.

where G is a monoclinic reciprocal lattice vector. This term is crucial in order to
account for the first order phase transition observed at Ty in CuO where a commen-

tabilized.

surate collinear state is s

noted in the Ref. [95], the 2Q umklapp term
is already included by a suitable renormalization of the spin density amplitude, and

for this case terms different from 4Q are omitted. Moreover, the sign of By deter-

mines the type of spin polarization that minimizes the free energy. For example, in a

collinear system the second term in Eq. 6.33, §3,[S - S # 0, whereas in a simple he-

lical spin density with S = X +19) the factor (S - S) = 0. Therefore, non-collinear

spin conligurations are stabilized when By > 0. Similarly, spin-flop transitions in

I of By >0 [9:

antifer oceur

Anisolropic contribution (Fy): In addition to the usual second order exchange
term, we also include single-ion anisotropic contributions. As demonstrated hefore,
considering the symmetry of monoclinic crystals (C2/c), we identified three invariants

which are given by

(6.38)

1 2 L2
Fa = 5/),,“m- + Dyl Syl® + DsqlS:[* + Dz



While D, can be used to set the magnetic moments along b, the other terms are

necessary in order to define the direction of the moments in the ac plane. The degree

of anisotropy has not been experimentally determined yet; however, it is still possi-
ble to propose some estimates that give a qualitative agreement with some indirect
experimental results.

The free energy with respect to the order parameters (S, 3, 6, v, a, and m) is

given by the following expressions.

Py (6.39)
Fy = .5 (4sin' 3 cos? 0 — dsin® B cos? 0 + 1)
in® Beos?f — 1) + B;
%/x(‘s'(m“',i(z cos? 0) — dsin® B(2 — cos?0) + 1), (6.40)
Fa = %1),,‘,;,:‘ t DyoS? cos? (1 — sin® B cos® )
+%n:qsl [.siu ~(sin 20 sin® B sin 20 + 2 cos® a sin )
+sin? oot 0(sin® a(3 — cos 29) — 2sin’ )|
+2D,.08? [sin acosa (1 0(3— cos2y) M..ﬁ«)
(6.41)

+5 00520 sin® B sin 7y sin zy]

6.4.2 Theoretical phase diagram

L with Ag = a(T —Ty)

Minimization: The total free energy, Fy, = Fy+ Fy— Fy—
and Ay + Dy = a(T +Tp). is then numerically minimized for the order parameters
(S, 3, 0,7, a, and m) in order to find the theoretical phase diagram and the spin

As in Ref. [04],

configurations of the respective states (see Appendices A and B ).

most cocflicients are set using analytical solutions associated with phase boundaries of
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second order transitions. This is done by assuming an ansatz of order parameters that
give the right spin configuration for the known magnetic states and then analytically
caleulating the solutions to the phase boundaries by finding the derivatives of the
respective free energies. Since we are interested only in qualitative features of the
phase diagram, arbitrary units are used for the parameters. For example, when the
only anisotropic contribution taken into account is 1), the phase boundaries for the

phase transitions temperatures (7

and Tys), the tricritical point where AF2 and

AF3 meet (T and Hy), and the critical field for the crossover to the paramagnetic

state () are

Tny = To— % (6.42)
Tne Ta !)"”‘—J 1 ”l‘,%”“' (6.43)
Ty To + ,::.Q/:f (6.44)
1", Dyo(Dyo(Bs — If:‘)“IE 2aB4(Ty — 7},])2. (6.0

g, 9= TUBTa 1)~ BT = )Y o

Therefore, a = 1, T = L18, Dy = —0.02, By = 0.103, and Bz = 0.011 result by
assigning reasonable values for the eritical temperatures at zero field (Tyg = 1.2 and

Tya = 1.12). From the minimization of the free energy with respect to a, we obtain

0, (6.47)

(6.48)




4

This result indicates that the direction of the magnetic moments in the ac plane is

proportional to the anisotropy ratio Dy.q/Dag. We must have D.g < Dyq. since

Dy corresponds to the easy magnetic and we set D.q —0.01 while the

direction of the spins in the ac plane (a, ~ 70°) [51] is used to determine the

ratio Dy.q/Deg =

).42 (Eq. 6.48). The last coefficients are determined using the
temperature of the multicritical point (where Ty and Tyg boundaries meet - Ty, and
Hyy) and the maximm field He(T = 0 K) (Eq. 6.46). From this exercise, we find
By = 0.063 and B, = 0.013, while B5 = 0.1 was set arbitrarily. Finally, 5, 0.035
is used to obtain Ty = 0.77, so that the transition occurs at about 20 % from Ty,

as it has been observed experimentally. Fig. 6.5 shows the magnetic phase diagram

ion of the free enery

resulting from the minim For comparison, we also present

results obtained without the anisotropic terms D.g and D,.q (dotted lines)
Depending on the scenario considered, we can get 5 or 6 magnetic phases illustrated

in Fig. 6.6, described by the order parameters listed in Table 6.1. At zero-field, both

models (with and without D, and D,.) predict the same phase sequence, consistent

with our experimental observations shown in Fig. 5.6. At low temperatures, a collinear

phase AF1 with the moments along b is predicted (see Fig. 6.6) while the AF2 phase
corresponds to a spiral configuration in agreement with nentron scattering data [10]
According to our numerical caleulations, the new intermediate phase AF3 is associated
with a collinear phase where only half of the moments order with S || b. As the ficld

i applicd, two spin-flop transitions (AF1— HFT and AF2 — HF2) are found. The

comparison of both phase diagrams indicates that the role of the anisotropic terms

D and D,.q is to reduce the critical field of the AF1— HF1 transition, decrease the

stability range of the intermediate phase AF3, and lead to a new magnetic order HE3
in which half the moments align into the ac plane. Depending on the values of D.q

and D, these findings could account for the fact that no spin-flop phase transition



=1

0 L
0.5 1.0
T

sure 6.5: Magnetic field - temperature phase diagram of CuO for H || b derived from
the Landau free energy. Dotted lines represent prediction with only one anisotropic

term included, Dyg. The solid line is for the case where all anisotropic terms are

considered

has been observed experimentally up to 16 T for the spiral phase AF2. while the
spin-flop transition is observed at ~ 13 T in the commensurate collinear phase AF1

In a recent publication [96], the magnetic phase diagram of a doped version of

MaWO, (Mny(Fe.ZnMg),WO,) is well described using Landan theory. Tn this
study, the free energy is based on a Heisenberg, Hamiltonian with single-ion anisotropy

and in a symmetry basis, just as we did for Cu0O, and as was done previously for

CuFeO, [47].
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AF3(collinear) HF3(collinear)

[+} [}
,><°><°><: ,,X(X;X'
'@ o
AF2(spiral) HEZ{apiral ®

[+} W (spiral)

& e /.><,
AF1(collinear)
Cur
a ,© L HF1(collinear)

Figure 6.6: Spin configurations in a magnetic cell of 8 ions (red and orange circles)
Red circles represent maguetic fons at b = 1/2. The +/- symbols represent spins
in/out of the page. When no direction is specified (as in AF3 and HF3), spins on
these sites are not ordered

Antisymmetric DM-interaction: The present model is based on purely isotropic and

anisotropic magnetic interactions allowed by

vmmetry. However, the spontancous
electic polarization can be caleulated assuming that it is a result of the antisymmetric

DM-interaction. Such approach indicates that the proposed transition to HF2 would

involve a ferroelectric order, induced by the magnetoclectric coupling, along some
direction in the ac plane. This electric polarization flop would reduce the symmetry
by a possible structural transition to a triclinic phase when losing the 2-fold rotation
The general form for the induced polarization by antisymmetric DM-interaction is

given by

P =33 a(r;—r;) r; x [S(r;) x S(r})] (6.49)

)



Table 6.1: Order parameters,

70°

160°
70°
70°

Using our local spin density Eq. 6.26, the induced pola

ation can be expressed as

P= b Sa(r) (197 9y x (8 x §°), (6:50)

where 7 = Ry — Ry, the distance between NN, This is then simplified to

1
P= /\Z a7 x (S) % S)sin(Q-7) (6.51)
This sum can be solved for the 6 theoretically predicted states to show that no induced

polarization is expected for states other than AF2 and HF2, which give the following

relations in cartesian coordinates

Papz = 25 cos Bsin B(sina — cosa) || [010], (6.52)

53)

cosBsin || [101] (©

Thus, an induced polarization flop is expected in the crossover AF2 — HF2 from
the b axis to some direction in the ac plane. Note that this order parameter (a)
depends on the ratio between the anisotropic terms as given in Eq. 6.48. This might

imply that the magnetoelectric coupling, if it is mediated by the antisymmetric DM-

interaction, is due to the magnetic anisotropy. The above argument can be tested with



a = 45°, which results in a screw structure with no spontaneous electric polarization

as expected for the DM-interaction basis.



Chapter 7

Conclusions

Our principal and most important conclusion is that a new collinear phase (A

3),
which oceurs between the paramagnetic and the previously identified spiral phase
(i agreement with recent predictions [14]), has been detected by high-resolution
ultrasonic velocity measurements, then confirmed and explained by a Landau-type

free energy model based on a Heisenberg-type Hamiltonian and rigorous symmetry

arguments. In contrast w

MC s

h previous mulations of Refs. [41, 43, which omit

anisotropic contributions, we find that the spin-lattice coupling is not required to
account for the observed magnetic ordering,.

Morcover, the magneti

field vs temperature phase diagram for B || b has also
been determined, revealing the existence of a spin-flop phase (HE1). Complementary

ist in the

dielectric measurements also confirm that magnetoelectric effects only ¢
non-collinear phase.

Bvidently, the single-ion anisotropy plays an important role in the stabilization
of the intermediate phase (AF3), where the three contributions provided arise from

symmetry arguments. The low symmetry allows for such a behaviour and further

experiments of the magnetic susceptibility and neutron scattering could clarify the
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magnitudes of these coeflicients.

The newly identified HF2 phase shows a spiral behaviour o

AF2 and according to

the Dzyaloshinskii-Moriya interaction an electric polarization flop from the b axis to
the ac plane would be expected as in ThMnOy [15]. However, in this case the electric

polarization would be in the ac plane, leading to a reduction in the crystal symmetry.

The new phase (AF3) is what has been predicted in Ref. [44, 40, 45], implying

that the mechanism behind the multiferroicity does not require a strong coupling
but a weak pseudoproper coupling between the order parameters as it was argued in
Ref. [42, 97]. This supports the idea of ferroclectricity in magnetoclectric multiferroics
from purely symmetrical interactions 98]

Our findings imply that the multiferroic mechanism in Cu0 s similar to a tradi-
tional cycloidal spin-driven type, such as in MaWO,. The three zero-ficld magneti-

cally ordered st

es are stabilized by spin-only contributions which include frustrated

exchange interaction

8], spin-orbit induced anisotropy, and an Umklapp-type mech-
anismi giving rise to the lower temperature commensurate phase. Furthermore, the
oceurrence of such a collinear state, just above a non-collinear state, is confirmed in

well studied frustrated orthorhombic

gstems RMnOy 99, 100], the kagomeé compound

NigV,05 [36] and LiCuVO, [34]. Finally, the proposed model accounts for the exper-
imental phase diagram of CuO determined in this work and is potentially useful for
the description of other monoclinic multiferroic systems, in particular MnWO, [101]
and AMSi;Og [37]. In Table 7.1, details on some of the important characteristics
of similar spin-driven multiferroics are presented. These compounds have different

magnetic casy axis which is an intrinsic property of the materials. They all have an

AF2 cyeloidal spiral magnetoelectric state with the exception of AMSiyOg that to our

knowledge its magnetic order has not been resolved.  As well, electric polarization

flops have been experimentally demonstrated for all of them with the exception of
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CuO and NizV,0g. Moreover, MnWO, and CuO share the same sequence of zero-
field states with characteristics such as the types of transitions, magnetic ordering,
ICM AF2 and AF3 states and 1D-chain behaviour.

Therefore, CuO is a type-II multiferroic via the standard cycloid scenario as the

rest of the type-II multiferroics. The good news is that the high-Ty type-II multi-
ferroics key ingredient is the strong exchange interaction. Hence, the strength of the

magnetic coupling is not just responsible for high-7¢- in the superconducting layered

cuprates [35] but also for high-Ty multiferroicity in spin-driven eycloidal multiferroics.
The next question is how do we make high-Ty type-IT multiferroies with high lectric

polarization. Future work:

@ Resolve the new intermediate state AF3 to confirm its magnetic ordering,
o Experimentally verify the electric polarization flop, phase transitions and mag-
netic structures theoretically predicted at high magnetic fields

Do similar studies to the rest of the compounds in Table 7.1 in order to develop

a generalized Landau model for the type-IT multiferroics with cycloidal spiral

spin-driven ferroelectric order
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Appendix A

Mathematica notebook

The Mathematica code related to some of the calculations necessary for this project
is attached here. In Section A.1, T show how to calculate the sound velocities. In
Section A.2, a similar demonstration is done for the anisotropic exchange coeflicients.

In Section are caleulated nsing

3, all the terms in the Landan-type free energy

the spin density. The expressions for the phase boundaries, in the case of only one

anisotropic contribution - magnetic easy axis (), are deduced. Lastly, a simple
example of the numerical minimization for a given temperature and magnetic field

values is presented
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A.1 Sound velocity

The solutions for the velocities can be calculated by using the Christoffel equation for different directions of propagation.

v2p eigenvectors
L <C" + Ca— \/Ch — 2050y + 4T, + Cﬁ) _ —Cu+Cast vf,;n CutiChACE )
[100] |} €11+ Css + /O — 2C5sCur = 4CE = C3) ‘ 01
Cos 10
Ca 10
(A1)
(010] | (Cuu+ Coo /O — 2CuaCus = 45 = i) 01
4 (Cur+ oo+ /O = 2CuaCus = 4 = i) 01
Cy 0 10
001] | 4 (€0 + Cos = /Oy — 2C5sCan + 45, = 3 z E 01
i (c.‘.i + Css+ /Cla — 20503 + 405 + cga) 01




A.2 Anisotropy

Same procedure is followed to calculate the invariant exchange coefficients that must be considered in the Hamiltonian.

JT2 = Table [J;;, {i,3}, {4,3}];

For[i=1,i <3,For[j = 1,j < 3,J5s = Jijs j++];i++];
Print[“Exchange coefficients”]

Print[* J = *,JT = MatrixForm{JT2]]

sfla_, =Tt Tom @]li, plle{ls, alICCllp, gll;
Print[“Generator”]

a2y = RotationMatrix[Pi, {0,1,0}];

Print ["C} = *, a2y]

Print[“Symmetry operation”]

Print [ = *," 3, ¢, "MatrixForm|a2y], MatrixForm|a2y]MatrixForm[JT]

Exchange coefficients

6



Generator

-10 0
G=[o0 10
0 0 -1
Symmetry operation
-10 0 -10 0 Ju i
010 01 0 Jiz Joe
0 0 -1 0 0 -1 Jia Jas

JTP2 = Table[0, {i,3}, {4, 3}];
Forli = 1,i < 3,For[j = 1,j < 3,JTP2[i, j]] = sfla2y, i, , JT2); j++]; i-++]
DIF = Simplify[JTP2 — JT2);
For [s

1,i <3,For[j = 1,j < 3,If[DIF([i, j]}===0,, Jij = 0] ; j++];i++]
Print[“Invariant exchange coefficients”]

Print[* J’ = ”, MatrixForm[JTP2]]

s ={s1,52,83};

H = Table[0, {i,1,3}, {4, 1,3}];

Jis
Tog

(A3)

(A4)

6



H =55 50 TP, Vsl [uls{[v]);
Print[“Invariant Hamiltonian”]
Print[“H = ”, Simplify[H]]

Invariant exchange coefficients

Invariant Hamiltonian

2 > .
H = Jus} + sy + Jussy + 2J13s153

A.3 Landau model

slv = {~SCos[B|Sin[+]Sin[], SCos[8]Cos|], SCos[B]Sin[y]Cos[a] };
52v = {5Sin[B](Cos[f]Cosla] — Sin[f]Sin[|Sin[e]), SSin[]Sin[6]Cosfy],

(A5)

(A.6)

St = (S1+iS2)e™;
Sc =St/ — —i;
SrSc = Simplify[ComplexExpand[SrSc]];

Siny]Cos|a] + Cos[6]Sin[a])};

10]
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subS = {S17 — 81.81,82 - 52.82, 8182  S1.82};

Print["S.5* = ",SrSec = SrSc/.subS]

Print ["Sy Sy* = ", SryScy = Expand[SrSc]/. {812 - S1ySly, $2* — S2yS2y, 5152  S1yS2y}|
Print [*Sx Sz° + Sx* Sz = ",

xSz = Expand](St/.{S1 - s1v[[1]], 52 - s2v[[1]]})(Sc/.{S1 -+ s1v][3]], 52 — s2v[[3]]})]+
Expand|(Sc/.{81 — s1v{[1]],52 — s2v[[1]]})(Sr/.{S1 — s1v{[3]],52 — s2v[[3}})]]

Print (S S2° = *, SrzScz = Expand[SrSc]/. {S1? — S12512,52* — 522527, 5152 — S12822}
Print[“(S.S) = ”,SrSr = Expand[StSt]/.subS]

Print [*(S.S)* = ",SSrc = StSr/.{2i — ~2i}]

Print [*(S.5")* = ",SrSc2 = Expand [SrSc?]|

Print [*[S.S]? = *,552 = Expand[SrSrSrSrc]]

$4U = Expand [StSe® + StSrc?] ;

¢ = ComplexExpand [Expand [S4U/.4 — 1/.¢74 — 0] 6 + Expand [S4U/.e™# — 1/.e4 — 0] 74| ;

5.S* = S1.81 + 82.52 (A7)

SySy* = Sly? + S2y? (A.8)

LG
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(1Y) (@828) = A(eST1S)F + 181828 TST — A (15718) = ;IS°8]
(e1v) (@57T8) + 151528°2ST + L (1S'1S) = ;(.5°S)

(z1'v) TSTSoiz-? — TS TSerz-2C — 1S TSerz-2 = .(S'S)

(1rv) TS'TSoi? — TS TS6ir?C + 1S 1S6r? = (S'S)

(oT'v) ZES+ 218 = .78 7S

(6'v) (%) ws (o)uss (g) 500 (v)s00 .57 —

(g) s (g)uss (L)uss (g)s02 (0) 500 .§T + (¢) ws (g)wss () uwrs (v) s (g)s0d .57 —

(¢) s (v)uts (g),509 (0)509 ;5T + (g) us () ;ws (L) uts (v)uis (0)s00 ,GT— = 2§ X§ + .25 X§



A.3.1 Only one anisotropic contribution - (D,)

subm = {§* - $.5,(5")* > 5.5", 85" = 5.5, mS — m.5,mS* » m.5*};
p[R_] =m+ SeiR + S*e~iR;

xx = Expand|p[R]p[R]}/.subm;

vy = Expand|p[R]p[R]]/.subm;

22 = Expand[xxyylzz0 = 22/. {Aqe —= 0, A — 0, Asg.c — 0, Asgc — 0};
Simplify 2z — 220/. {Aag.c = 0, Asgc — 0, Msgc — 0}];

Simplify [zz — z20/. {Aqc — 0, Asgc — 0,A40c — 0}];

Simplify [2z — 220/. {Aag,c — 0,Aqc —+ 0, Asgc — 0}];

2z = Simplify [z — 220/. {A2g.c — 0, Asgc = 0,Aqe — 0}];

subm = {mS1 — m.S1,mS2 — m.S2};

subm = {mS1 — m.S1,mS82 — m.82};

mSrmSc = Expand|(Expand|(mSr)]/.subm) (Expand](mSc)] /.subm)}];

Print[

"Fi = AQS.S" + D, |S, + By (S.5°) + 1BaISS]* + Bu((S.8)+(5".5)) Aug + sA;m? + 1Bym'+ 2 Byjm.S]?
+ Bsm? S.5*- m.H"|

Print ["F = *,F2 = AQSrSc + DySryScy]
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Print [*F; = ", F4 = B1SrSc2 + 82852
Print ["Fy = ", FU = BYs4U]

Print ["FH =", FH = }A0(m.m) + 1B3(m.m)? + 2B4mSrmSc + B5m.mSrSc — m,H]

1 BT 5
F = AQS.S"+D,|S,? + By (8.57) + 532\5.5\2 - %r(S,S)-'(:" S Awe + é.«!,,m' EE %B‘;m‘
+ 2B;jm.S|* + Bsm? S.S*- m.H (A15)
Dy (S1y? + $2y%) + AQ(S1.81 + $2.82) (A.16)
1
Fi=3B2

((s1.81)* — 252.5281.81 + 4(S1.52)° + (S2.52)%) + B1 ((S1.81)* + 252.52S1.51 + (S2.52)?) (A17)

001



Fy o= %Bl'(f’“"(Sl.Sl)lv €42(S1.81)* — die~*°S1

S1 + 4ie*°S1.8281.51 — 2e~*°52.5251.S1

— 2¢%982.5281.51 — 4e~*9(S1.52)? — 4€*%(S1.52)% + e~ 49(52.52)? + €%9(52.52)? + die~*°51.52

—  4ie*'°S1.5252.52)

1 , . A0m.m
Fy = {B3(mm)* + —=

+B5(S1.81 + $2.82)m.m + 2B4 (m.S1)? + (m.$2)?) — m.

A.3.1.1 Only one anisotropic contribution - Reduced

mv = {0, mb, 0};

Hv = {0,hb,0};

subv = {S1 - s1v,52 - s2v,Sly — s1v{[2]], S2y — s2v[[2]], m — mv, H — Hv};
subt = {Cos[8]? — 1 — Sin[]?, Sin[6]? — 1 — Cos[6]?, Siny]? — 1 — Cos[y]2,a — 0};
F2 = Expand|Expand[F2/.subv/.subt]/.subt];

F4 = Expand[Expand[F4/.subv/.subt] /.subt];

FU = Expand[Expand[FU/.subv/.subt] /.subt];

FH = Expand[Expand[FH/.subv/.subt] /.subt];

(A19)
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Print[“S8 = S Sin(8)"]

Print[“¢ = Cos(6)"]

Print[“x = Cos(7)"]

Print [F; = ", F2t = Expand [F2/. {Cos[y]* — &, Cos[6]* — ¢%,Sin[8]* - £ }]]

Print["Fy = ",

Fit =

Expand [F4/. {Cos[6]* - 2, Sin[B]* — %, Sin[]2 + &, Sinfy]* — (1 — x2)*, Cos[]? — K2, Cos[6]* — ¢4, Sin[g]* — (1 - ¢?)?,
Cos[y]* — x*}]]

Print["Fy = ",

FUT =

Expand [FU/. {¢ — 0, Cos[6]* — (%, Sin[8]* — 5, Sin[8]* - 5, Sin[y]* — (1 — #2)? , Cos[]* - K2, Cos[f]* - ¢*,
Sinfg]* — (1 - ¢?)*, Cos]* — w*}]]

Print [*Fyy = *, FHt = Expand [FH/. {Cos|]* — 2, Cos[6)* — 2, Sin[g]* — 55 }]|

S3 =S Sin(3) (A-20)

¢ = Cos(h) (A21)

awnl



& = Cos()
F, = Dyx?S? + AQS? — DyS3%¢%x?

gt
Fy = BIS' + B% — 2B2S3%C2S? + 2B2S 3¢

BU,
2

3mb* 22 5
= B3mb L B5SPmb? + 2B1SN2mb? — 2BASFCIuPmb? +

AOmb?
. 9

A.3.1.2 Only one anisotropic ibution - Phase bo

FSF =FT/.{88 - SSin [§] ¢ » L,k > &};
DS = Expand [2ES]];

DS5 = Expand 25341

Dm = D[FSF, mb];

4
Fr = DU 4BUSS%S? + 2BUS3%(%S? + 4BUS3* — 2BUSSY(

— hbmb

(A.22

(A.23)

(A.24)

(A.26)




Solve [(FSF/.x = 0) — (FSF/.x — 1) == 0/.mb — \/fm, mm] ;
mSF = /mm/.%([1]];

Solve [DS == 0/.mb — mSF/.§ — V58, ];

SSF = v/55/.%([1]);

Solve[Expand[Dm/.mb — mSF/.S — SSF] == 0, hb;

HSF = hb/.%[[1]);

FSF3 = (FT +FUT)/. {88 - SSin (5] ,¢ - 0};

D83 = Expand [25524]

D853 = Expand 255381

Dm3 = D[FSF3, mb];

Solve [(FSF3/.x — 1) — (FSF3/.x — 0) == 0/.mb — /&, mm] ;
mSF3 = /mm/.%((1]};

Solve [DS3 == 0/.mb — mSF3/.5 — v/5§, 58] ;

SSF3 = v/S5/.%([1]};

Solve[Expand[Dm3/.mb — mSF3/.S — SSF3/.¢ — 0] == 0, hb;
HSF3 = hb/.%[[1]};

HSF31 = Simplify[HSF3/.x — 1];

HSF30 = Simplify[HSF3/.x — 0];

o1



T=
Simplify[Solve[htn3 == 0/.{A0 — a(T — To), AQ — a(T — TQ)}/.{x — 1}, T};
Print [*T, = ", TN1s = T/.%[[1]]]

Expand[Solvefh2 == 0/.{A0 — a(T — To), AQ — a(T — TQ)}/.{x — 1}, T]];

Print ["Ti, = ", TN2s = T/.%[[1]]]

Simplify [Expand [mtn3? — mtn2?] /.x — 1/.{A0 — a(T — To), AQ - a(T — TQ)}];
Simplify{Solve(% == 0,]);

Print ["Ty = ", T™ = T/.%[[1]]]

He2T = Simplify [1tn3/.{A0 - a(T — To), AQ > a(T — TQ)}/.x = 0];

Print [*Hc = ", H2CT0 = %/.T — 0]

T\,:TQ,T (A.27)

Dy _BIDy
2= — =2 +—24T A2
i 2 a2 ¢ (4.28)
Ty =B 19 (4.29)
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a*TQ(B3TC
B35

B5To)?

Hc = (A.30)

A.3.2 All anisotropic contributions

Print[

"F = AQS.S" + D, |S,[? + DaS;S. + D, |S.[? + By (S.5°) + LBalSS]? + Bu((S.8)+(S".5")) Awg + 3Am?
+ 1Bym*+ 2 Bym.S|* + Bsm? S.5°- m.H--]

F2 = AQSrSc;

F4 = B1SrSc2 + 52882;

FA = DySryScy + DzSrzScz + DxzSxSz;

FU = BUsqu;

FH = 1A0(m.m) + 1B3(m.m)? + 2B4mSrmSc + B5m.mSrSc — m.H;

mv = {0,mb,0};

Hv = {0,hb,0};

subv = {S1 - s1v,52 — s2v, Sly — s1v[[2]], S2y — s2v[[2]],m — mv, H — Hv,S1z — s1v[[3]], S2z — s2v[[3]]};
subt = {Cos[8)* — 1 — Sin[A]?, Sin[6]? ~ 1 — Cos[6]2, Sin[y]2 — 1 — Cos[r]2, Sin[y]* = 1 — 2Cos[]2 + Cos[r]*,
Sin[g]* - 1 — 2Cos[6]2 + Cos[6]4} ;

F2 = Expand|(F2 + FA)/.subv/.subt];

001



F4 = Expand|Expand[F4/.subv/.subt] /.subt];

FU = Expand[Expand[FU/.subv/.subt]/.subt];

FH = Expand[Expand[FH/.subv/.subt] /.subt];

subs = {Cosy]2 — k2, Cos[6]* — (2, Cos[f]* — ¢*,Sin[B]* — S, Sin[B]* — S, Cos|y]* — &4, Sin[y]2 - 1
F2t = Simplify[F2/.subs];

F4t = Simplify[F4/.subs];

FUT = Simplify[FU/.subs];

FHt = Simplify[FH/.subs];

Expand [0,F2/.6 - 0/.y - 0]

an =N [2(70)];

N([Coson];

Solve [9,F2 == 0/. = 0/.4 = 0/.a — Nlan], Dxz];
Axzs = —Dxz/.%([1]};

Azzn = 0.01;

Axzn = Axzs/.Dz — Azzn/.a->am;

coef = {TQ — 1.18, T0O —+ —1.0, Tu — 1.15,a — 1.0,Dy — —0.02, Dz — —Azzn, B1 — 0.1025, B2 — 0.0108, B3 — 0.0633,

B4 — 0.0125, BU — 0.0352,B5 — 0.1, Dxz — Axzn};
FTn=.

201



FT = F2t + F4¢ + FHY;
FTn[T_, hb_] = FT/.AQ - a(T — TQ)/.A0 — a(T — T0)/.88 —» SSin[8]/.x — Cos[y]/. — Cos[6]/.coef;

2+ B, (3.5 + %B;\S S| + %((s.sh(s- S*2Asgc

F = AQS.S" + Dy |S,|* + Dx,S.S. + D. |

+ %.«\,,ml + %B;m‘— 2 BymSP + Bsm? 8.5° m.H

A.3.2.1 Minimization

Tx=09;
Hx=15;
Minimize[FTn[Tx, Hx/.a — 1.22173, {S, 8,6, v, mb}]

{-0.722369. {S — 1.08901. 3 — —0.848537.9 — 458709 x 1072, 5 — —8.26924 x 107'*, mb — 0.684081}}

(A.31)

(A.32)
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Appendix B

Fortran code

This Appendix contains a copy of the Fortran code that was used for the numerical

minimization process in order to ¢

leulate all of the data points from the theoreti-
cal magnetic field-temperature phase diagram. Different code files were necessary for
for the ficld

doing temperature and magnetic field sweeps, this one in particular i

sweep. As well, the isotropic exchange interactions for the 2nd-order contribution to
the free energy were minimized with the same logic. A document can he provided by

Professor Guy Quirion explaining the method with more details and with the instruc.

tions regarding the application of the code.

PROGRAM fieldsweepch2

1 Amoebasub is the minimization subroutine. Nrtype and Nrutil define parameters

and subroutines used by Amochasub.

USE amocbasub

USE nrtype

109
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USE nrutil
IMPLICIT REAL(DP) (A-H.O-Z)

! Define all variables and parameters.
1 - x(6) is used for the variables $,beta,theta,gamma,m alpha.
! - epsr is the tolerance of the free energy output. The smaller it is the more accurate
the results are (to a degree).
! - FREE is the function in the program that takes in x(6) and returns the free energy
at that point
! - a,Ab.Tq,T0,Tu,B1,B2,B3,BU.B4.B5 H, T BUs, TnAzz are the paramcters of the
function FREE
- y(7) is the array that holds the calculated free energies at the 7 inital points.
1~ p(7,6) is the array holding the 7 inital starting points.
! - iter outputs the number of iterations needed to converge to the given output

! - SEED is used for the random number generator.

REAL(DP) x(6),xn(6),xu(6),x2(6),ftry(1000000),xtry(6,1000000).cpst
REAL(DP) :: FREE

COMMON /PARAM/ a,Ab,Tq,T0,Tu,B1,32,33,BU.B4,B5,H,T.BUs. Tn Azz
REAL(DP), DIMENSION(7) :

v

REAL(DP), DIMENSION(7,6) = p
INTEGER iter, i, SEED

INTERFACE
FUNCTION FREE(x)

use nrutil
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use nrtype

REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP) :: FREE

END FUNCTION FREE

END INTERFACE

! Read in the parameters and create the data file to save the output

OPEN (UNIT=2,FILE="spmu’)

OPEN (UNIT=4,FILE="newhsweepm.dat’)

READ(2,*) Tq
READ(2,*) TO
READ(2,) Tu
READ(2,) a

READ(2,*) Ab
READ(2,%) Az
READ(2,%) B
READ(2,*) B
READ(2,*) B3
READ(2,*) BU
READ(2,*) B4

%)

(
READ(2,%) B
READ(2

READ(2,*) H1
READ(2,*) H2
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READ(2,%) NUMT
READ(2,*) num
READ(2,*) epsr
pii=DACOS(-1.d0)

{pii—pii*2.d0

! Format the parameter ontput.

WRITE(4,%) "Program tempsweep.{90°
WRITE(4,%) "

WRITE(*,*) *a Ab B1 B2 B3 BU B4 B5 *

WRITE(*,503) a,Ab,B1,B2,B3,BU.B4.B5

WRITE(**) " H E §2 $h2/52 22 kappa c(a)2 m’

WRITE(4,%) " T Bl B2 B3 BU B4 B5 Tu *

WRITE(4,503) T,B1,B2,B3,BU,B4,B5,Tu

WRITE(4,*) " H E §2 $h2/52 72 kappa c(a)2 m’

WRITE(4,*) **

503 FORMAT(8f8.4)

! Open SEED which will be used to generate random numbers.

OPEN (UNIT=3FILE="SEED’)



READ(3,*) SEED

! Define initial starting value’s range (Ex. 0 < S < smax)

smax = 1000.d0

emin=10000.d0

ANUMT=DBLE(NUMT)

dH=(H1-H2)/ANUMT

DO 666 It=1, NUMT+1
H=H2+dH*(It-1)

! minimization with umklapp

emin=10000.d0

BUs = BU

Tn = Tu

DO 15 itry=1,num

! Define initial points using random number generator.



(1)=smax*ran(SEED)
X(2)=2*pii*ran(SEED)
X(3)=(pii/2.0)*ran(SEED)
X(4)=(pii/2.0)*ran(SEED)
(5)

(6)

#

x(5)=xmma

Cran(SEED)
X(6)=(pii/2.0)*ran(SEED)

! Change SEED so we get new random numbers in the next iteration.

SEED = 1000000*ran(SEED) + 1

! Define the array of the starting points.

p = reshape( (/x(1), x(1)+10.0, x(1), x(1), x(1), x(1), x(1), &
X(2), X(2), X(2)+1.0, x(2), x(2), x(2), x(2), &
3), x(3)41.0 x(3), x(3), x(3), &
L x(4) x(4)41.0, x(4), x(4), &
X(5), X(5)+1.0.x(5)&
5). x(6), x(6), x(6), 1.0/). shape(p))

B
]

! Caleulate the free energy at cach point,

doi=1,7
v(i) = FREE(p(i,))

enddo
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! Call the minimization subroutine.
CALL amoeba(p.y,epsr,FREE,iter)

! Save the minimum to test. If it gives a free energy less than the one before it is
saved and the next minimum is

! compared to it until the free energy no longer decreases.

xtry(Litry)=p(1,1
xtry(2,itey) =p(1,2
xtry(3,itry)=p(1,3]
xtry(4,itry)=p(1,4
xtry(5,i
(

xtry(6,itry)=p(1,6

x2(1)=xtry(Litry)
2(2)=xtry(2,itry)
2(3)=xtry(3,itry)

(5)=xtry(5.itry)

(2)=

(3)=
x2(4)=xtry(4,itry)

(5)=

)=:

x2(6)=xtry(6.itry)

frry(itry) =FREE(x2)

IF(itry.EQ.1) GO TO 15
IF(FREE(x2).GT.emin) GO TO 15
cmin — FREE(x2)
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imin =itry

15 continue

cminu=cmin
xu(1)=xtry(1,imin)
xu(2)=xtry(2,imin)

xu(3)=xtry(3,imin

xu(4

(¢
xtry(4,imin
(
(

xu(5)=xtry(5,imin

)
)
)
)

xu(6)=xtry(6,imin

! minimization with no umklapp
emin=10000.d0

BUs =0

Tu = Tq

DO 555 itry=1,num

! Define ini

ial points using random number generator.

x(1)=smax*ran(SEED)
X(2)=2*pii*ran(SEED)




X(3)=(pii/2.0)*ran(SEED)
X(4)=(pii/2.0)*ran(SEED)
X(5)=xmmax*ran(SEED)

X(6)=(pii/2.0)*ran(SEED)

| Change SEED so we gt new random munbers in the next iteration.
SEED = 1000000*ran(SEED) + 1

! Define the array of the starting points.

3), x(3)+1.0 X(3), x(3), x(3), &
), x(4) x(4)+1.0, x(4), x(4), &
5), x(5) X(5), x(5)+1.0,x(5).&
), x(6)

! Calculate the nergy at cach point.

doi=1,7
v(i) = FREE(p(i,5)

enddo

! Call the minimization subroutine,



CALL amocha(p,y.cpst,FREE iter)

! Save the minimum to test. If it gives a free energy less than the one before it is
saved and the next minimum is

! compared to it until the free energy no longer decreases.

xtry(Litry)=p(1,1)
xtry(2;itry)=p(1,2)
p(1,3)

(
xtry(3,itry’
xtry(4,itry)=p(1,4)
(5
(

xtry(5,itry)=p(1.5)

xtry(6,itry)=p(1,6)

X2(1)=xtry(Litry

X2(2)=xtry(2,itry

X2(4)=xtry(4,itry
=xtry(5,itry

=xtry(6,itry’

)
)
3)=xtry(3.itry)
)
)
)

x2(6

firy(itry) =FREE(x2)

F(itry.EQ.1) GO TO 555
IF(FREE(x2).GT.cmin) GO TO 555
emin = FREE(x2)

imin =itry
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555 continue

eminn=emin
xnn(1)=xtry(1,imin)
xin(2)=xtry(2,imin)
xun(3)=xtry(3,imin)
xn(4)=xtry(4,imin)
xnn(5)=xtry(5,imin)
xu(6)=xtry(6,imin)

D

X(6)=xn(6)

emin=cminn

! Compare the energies - umklapp and no umklapp

T (emin LT.cminn) x(1)=xu(1)
T (emin LT cminn) x(2)=xu(2)
TF (eminu LT eminn) x(3)=xu(3)

) x(1)=xu(4)

IF(eminu.LT.eminn
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I (eminu. LT cminn) x(5)=xu(5)
IF (eminu. LT cminn) x(6)=xu(6)

I (eminu. LT eminn) emin=eminu

| Convert the angles from radians to degrees.

= dsin(x(2))*dsin(x(2))

zeta2 = deos(x(3))*deos(x(3))
g2 = deos(x(4))*dcos(x(4))

ca2 = deos(x(6))*deos(x(6))

! Formatted output.

WRITE(*,333) H.emin,ss,sbs2 zeta2,cg2,ca2,x(5)

WRITE(4,

3) H.emin,ss,s

FORMAT(f7.3,1x,e11.5,1x,e11.5,1x,f7.3,1x,f7.3,1x,17.3,2x,{7.3, 1x,e1 1.3)

666 continue

REWIND 3
WRITE(3,*) SEED

sTor
END PROGRAM fieldsweepch2



! Free energy that is being minimized.

1x(2) = beta
1 x(3) = theta

! x(4) = gamma
1x(5) = m

1 x(6) = alpha

FUNCTION FREE(x)
USE amoebasub

USE nrtype

USE nrutil

IMPLICIT REAL(DP) (A-H,0-7)

REAL(DP) x(:), xm2, xmd, $2, $4, xm
COMMON /PARAM/ a,Ab,Tq, T0,Tu,B1,132,133,BU,B4,B5,H,T,BUs, Tu, Az

S=x(1)
beta=x(2)
theta=x(3)
gamma=x(4)
xm = x(5)

alpha = x(6)
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S2=S*S

S4=82*S2

xm2 = xm*xm

xmd = xm2*xm2

G2 = deos(gamma) *deos(gamma)
Gi = G2FG2

Sb2 = $2*dsin(heta)*dsin(beta)
Shd — $h2*Sh2

72 = deos(theta)*deos(theta)
74 = 72¥72

ca2 = deos(alpha)*deos(alpha)
sa2 = dsin(alpha)*dsin(alpha)
Axz = 0.5%Azz

ca = deos(alpha)

= dsin(2*alpha)
2a = deos(2*alpha)
is = dsin(gamma)
Zs2 = dsin(2*theta)
saca = dsin(alpha)*dcos(alpha)

stet = dsin(theta)*deos(theta)

AQ=a*(T-Tu)
A0=a*(T-T0)

F2 = AQ*S2 - Ab*G2¥S2 + Ab*Sh2¥Z2¥G2



Al = Axz*(s2a%((G2-1)*S2-Z2*(G2-2)*Sh2) +Sh2*c2a* Gs*Zs2)

A2 = Azz*(ca2¥(Z22%(G2-2)*Sh2-(G2-1)*S2) +2*Sh2*saca*Gs*stet +22*Sh2)

F4 = B1*S4 + 0.5¥B2*54 - 2¥B2*Sh2*72*S2 + 2¥B2*Sh4*72

FU = BUs*(0.5%S4 - 4*¥Sh2*S2 + 2*Sh2*Z2*82 + 4*Shd - 2*Sha*72)

FH = 0.25*B3*xm4 + B5*S2*xm2 + 2*¥B4*S2*G2*xm2 - 2*B4*Sh2*Z2*G2*xm2 +

0.5*A0*xm2 - xm*H

FREE = F2 + F4 + FU + FH + Al + A2

RETURN
END
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