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Abstract

Mnltivariate control charts are widely used in industry to monitor changes in the

process mean and process variability. The classical estimators, sarnple mean and

sample variance, used in control charts are highly sensitive to outliers in the data. In

Phase-I monitoring, the control limits are set based on the historical data after the

outliers have been identified and removed. The identification of the outliers in Phase-l

is not straightforwa,rd. We propose robust control charts with high-breakdown robnst

estimators based on the re-weighted minimum covariance determinant (R1VICD) and

the re-weighted Ininimum volunle ellipsoid (RMVE). These charts monit.or the process

mean and the process variability in the historical Phase-I dat.a in the case of individnal

l1lultivariate observations.

To monitor t.he process mean, we propose using Hotelling's T 2 control charts with

RMCD and RMVE estimators of the mean and the covariance matrix. We set t.he

control limit.s empirically based on a large nnmber of Mont.e Carlo simulations. We



iii

asscssed the pcrformance of thcsc methods by considcring djft'crcnt data sccnarios and

fonnd that our methods improve on existing nlethods. 'vVe suggest using robnst '1'2

charts based on RMCD estimators for data with large samples and large dimcnsions

and R1VIVE estimators for data with smaller samples and smaller dimensions. We

also propose using robust versions of the MEW IS/IVIEWMV schemes to monitor

proccss variability in Phase-I. The control limits of these robust control charts a.re

sct cmpirically, and the cha.rts inlprove on existing methods. Vvc a.1s0 cxtcndcd thc

concept of robust estimation in the context of generalized linear models.
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Chapter 1

Introduction

1.1 Overview

Quality has become the basic consumer decision factor in a competitive market. Con­

slllncrs who havc long-standing relationships with thc samc supplicrs may selcct al­

tCrIlativcs whcn better-quality products or scrviccs are availablc. Thc quality of a

product or service can be defincd as the SUln of thc characteristics that impact its

ability to satisfy thc statcd and implicd nccds of thc custonlcr. Thc manufacturing

and service industries are placing more emphasis on the quality of their products alld

scrviccs as thcy rcalizc that "thc cost is long forgotten but thc quality is rcnlcnl­

bcred for ever." As the expectatious of customers grow, businesses must continually
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improve the quality of their products ami services iu order to remaiu competitive.

High standanb do not happen by chance; they evolve over time as a result of con­

tinuous improvement. Organizations can secure their future by engaging in continual

improvement and adopting new processes for conformity assessment. A product or

service should meet high standards in terms of both quality of the design and quality

of conformance. The quality of the design reflects the custOiner requirements, and

quality of conformance is achieved when the actual product or service is as close as

possible to the design.

Statistical process control (SPC) is a set of statistical tools used to monitor and

control a process to ensure that it produces a conforming product. SPC techniques

help to identify the root causes of quality and productivity problenls, so that appro­

priate corrective and preventative measures can be taken. SPC is usually applied to

nlHIJufacturing processes, but it is suitable for any process with a mea.o.;lII'ahle output.

The use of SPC in industry has increased in recent years because of improvement in

data collection and data-handling systems. The most widely used SPC technique is

the control chart.

Control charts arc important and effective SPC tools. They arc used to identify

and remove the assiguable causes affecting a process, thereby ensuring that the process

is in statistical control, i.e., it is aJl'ected by chance causes alone. Control charts arc
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graphical devices for detectiug changes in the manufacturing conditions due to the

presence of assignable causes by comparing the observed values with linlits derived

from the historical (Phase-I) data. The Phase-II data analysis cousists of mouitoriug

future observatious based on the coutrol limits found from the Phase-I cstiluates to

determine whether or not the process continues to be in-control. The most comlllouly

used variable-type control charts for univariate data arc X-R charts and X-s charts,

where the X-chart is used to monitor the process mean, and the ll-chart (or s-chart)

iH used to ulouitor the process variability.

1.2 Multivariate Process Monitoring

Iu luany applications in industrial quality control, llIore than one quality characteristic

is of interest, and hence multivariate control charts are more relevaut than univariate

charts. Individual charts for each quality characteristic can also he used. However,

when the quality characteristics are correlated, multivariate control chartH are more

effective than multiple charts. The most commonly used multivariate chart to monitor

the process mean is Hotelling's T 2 control chart (Hotelling, 1947). The 52 chart,

G-Clmrt, luultivariate expoueutially weighted UleaIl square (MEWIVIS) chart, aud

multivariate exponentially weighted moving variance (MEvVMV) chart are lIsed to
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monitor thc proccss variance in thc multivariatc ca<;c. A brief dcscription of thcsc

charts is givcn in thc following scctions.

1.2.1 Monitoring Process Mean

Hotclling's T 2 control chart monitors shifts in the proccss mean F1ssuming that all

thc quality charactcristics are normally distributcd. In many situations, nmltivari-

ate data arc collected according to a rational-subgroup concept, i.e., salnple data

are collected at some time point in the process. Let Xl, X 2 ,' ., XI' be the 1J qual-

ity characteristics of interest.. 'INc assumc that X= (X1,X2 , .. ,XJI)' is normally

distributed with nmltivariFite mean It and covFlriance matrix E. We collect 111 sam-

pIes (subgroups) of size 1/. each at regular intervals. For the ith subgroup, w(' have

n samples of p-dimensional observations: (X'ill,X'jI2,'" ,Xii]»" (:1:;21,:1:;,22, .. ,Xi2J1)',

... , (Xi"l, :1:j,,2, .. , :1:;111')' The sample mean vector and s!uuple covariance matrix for

this subgroup arc estimated F1<;:

Xj = (iii, .1:i2, ... , Xii))' = ~t Xij and

Si=(n~l)t(Xij-X;)(Xij-Xi)" i=1,2, ",Tn (1.1)

where X;j = (:I:ijl, :l:ij2,' ., :1:ijJl)' is the j-th (j = 1,2, ","11.) p-dilnensional observa-

tion from the i-th subgroup. The mean p. and covariance matrix E are estimated by
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averaging the sample means and sample covariances over all '111, subgroups:

x=~~x;

5= ~tSi'
Hotelling's T 2 statistic for the 'ith subgroup is

(1.2)

(1.3)

The Phase-l and Phase-II control limits of the TI
2 chart are foulld based ou the F-

distribution with (p, mn-m-p+l) degrees of freedom.

However, it is time-consuming and difficult to collect rational subgroups of size

greater than one when the processing time is too large or the production rate is too

slow. When the differences among repeated measurements are due to laboratory or

analysis error, as in many chemical processes, it is not convenient to collect subgroups

of size greater than one. Hence, individual multivariate observations are important.

To monitor a multivariate process mean in this case, for the ith individual multiv<u"iate

observation from a sample of size 'In, we calculate

(1.4)

where Xi =(:1:;1, J:i2, .. , Xil')" i = 1,2,· ", 'In, are the p-variate observations. The
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~alllple mean X and ~all1ple covariance matrix 5. are

5. = m ~ 1 ~(Xi - X)(Xi - x)'.

A~ ~hown by Tracy, Young, and Mason (H)92), the Phase-I control limit~ of the T}

chart are found based 011 a beta distribution with (p/2, (rn-p-1)/2) degrees of freedOln,

and the Phase-II control limits are based on an F-di~tribution with (p, Ill-p) degree~

of freedom.

1.2.2 Monitoring Process Variability

Alt and Smith (1988) proposed multivariate control charts for monitoring proces~

variation in the Phase-I data when the data are collected in subgronps where each

]J-dimen~iona.l data point follows a lI1ultivaria.te normal distribntion with mean /1. and

covariance matrix ~. They have extended the univariate 52 chart to the mnltivariate

case. The 52 chart i~ based on the likelihood ratio te~t Ho : ~ = ~o v~ ~ 01 ~o.

Given m, ~ubgroup~ each of ~ize 11. from ]J-dimen~ional multivariate data, we define

the ~tatistic Wi for each subgronp i = 1,2, ", Tn:

Wi = -p(n -1) - (11. - l)ln(1 5i I) + (n -l)ln(1 ~o I) + Cn - 1)t'l'(~oI5i) (1.5)
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where In is the naturalloga,rithm, tr is the trace function, 1 ,lis the determinant, and

Si is defined as in Eq, (1.1), When 2::0 is known, the value of Wi is conlpared with

the upper control limit (UCL)= X~)(I'+I)/2.(I-")I' where 1 - (1' is the confidence level.

If the valne of 2::0 is not known, it can be estimated by I s' 1= ±L::I 1Si I, Alt

and Smith (1988) showed that £(1 S' I) = bl 12::0 1where bl = (1I~1)/' n~=I(1I - j),

Therefore, an nnbiased estimate of 2::0 is I~: 1 and we can constmct the S2 chart

using the statistic lVi . The UCL is found empirically by Monte Carlo simulation snch

that the overall false alarm probability is (1'.

Alt and Smith (1988) introduced another chart known as the I S 1
1
/ 2 chart nsing

the property that most of the probability distribution of I S 1
1
/
2 is contained in the

interval

(1.6)

rr 2::0 is known, the UCL for the 1S 11/2 chart is

12::011/2(b3+3~). (1.7)

If 2::0 is not known, 1 2::0 1
1/2 is estimated using I S':3

11
/
2

, where IS" 1
1
/
2 is calcnlated

by ±L::I lSi, 1
1
/
2

, and the UCL is

IS"11/2 (1+3~).
b3

(1.8)
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Levinson, Hohnes, and Mergcn (2002) suggcstcd the G chart, bascd on thc conl-

parison of the sample covariance Inatrix of each subgroup with iUI ovcrall cstilnate

of L:o· They calculated the weighted average of Si in Eq. (1.1) and S in Eq. (1.2)

as S2(i) = ml~(~ ~)~:~:=~~Si. For each subgroup, the statist.ic for the control

chart is

OJ = k x (n - 1) {In(1 SAil I) - 'In x In(1 S I) -In(1 S; Il} (1.9)

where k = 1 - {n1~\ x 2P:(:~);) I}. The UCL of the G chart. is xtJ(p+ll/2.(I-"l]'

where 1-n is the confidcnce Icvel. The process variability is monitored by comparing

t.he value of G; with the VCL, as for the other control charts, with LCL = O.

As discnssed earlier, obtaining samples with a subgroup si"e greater than one

is difficult in many practical situations, nnd the monitoring of variability based on

individual obscrvntions is prefcrred in such circunli>tanccs. Huwang, Ych, and Wn

(2007) proposed two control charts that use individual observations to monitor the

process variability. They considcrcd thc following two situations:

• Changes in the process vaJ·iability when there is no shift in the process mean;

• Changes in the process variability coupled wit.h n shift in the process nleall.

They introduced charts based on the MEWIVIS scheme for thc firi>t case H.nd the

MEWMV scheme for the second ca.-;e, using the trace of the unbia.-;ed estimate of the
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covariance matrix. They ~howed that the~e two chart~ perform better than multiple

cumulative sum charts (IVICUSUM) and multiple exponentia.lly weighted lIloving av-

('rage (I\IEWMA) charts for variou~ scenarios. However, they could not explain the

situation in which in-control and out-of-control covariance matriccs have t.he sallie

Memar and Niaki (2009) ~uggc~ted new chart.s to overcome this deficiency. Thcy

1II0dified the cont.rol chart~ of Huwang et al. (2007) by introducing the L,. nonn

function for any vector Z= (.::" Z2,' ., zl') of length p as:

(1.10)

In~tead of t.he t.race, they considered L J and L2 function~ (~UIII of absolut.e values or

~Ulll of ~quare~) of the deviation of each diagonal clement of t.he unbiased e~timate of

the covariance Inat.rix from it~ t.arget value. They ~howed that their AIEWMSL"

l\fEWMSL2 , MEWMVL" and MEWMVL2 charts perform better than that. of

Huwang et a1. (2007) under varioll~ ~cenarios.

1.3 Background of Problem

The hist.orical Pha~e-I data is analyzed t.o determine whet.her the data indicat.es a

~table (or in-cont.rol) proce~s and t.o est.imat.e t.he proce~~ paramet.er~ and con~t.rllct.ion
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of control limits. The Phase-II data analysis consists of monitoring future observations

based on control limits derived from the Phase-I estirnates to determine whether the

process continues to be in-control or not. But trends, step changes, outliers and

other unusual data points in the Phase-I data can have an adverse effect on the

estimation of parameters and the resulting control limits. ie. Any deviation from

the main assumption (in our case, identically and independently distributed from

Inultivariate nOlTual distribution) may lead to out of control situation. So it becomes

very important to identify aud elinlinate these data points prior to calculating the

control limits. In this thesis, all these uuusual data points are referred as "outliers".

Care should be taken in the analysis of the Phase-I data, especially when outliers are

preseut. Control limits based on data from unstable (or out-of-control) processes that

contaiu outliers will be inaccurate, leading to inefFective Pha!;e-II monitoring.

It is more difficult to detect outliers in rrnrltivariate data than in univariate data.

Univariate outliers can be easily ideutified graphically but identifica.tion of multivari­

ate outliers are often not possible in higher dimensions. More over, there are luan)'

ways that multivariate outliers can come from an out-of-control process such as:

a) a few or cluster of outliers due to changes of location in random clirections;

b) multiple clusters of outliers in different directions;

c) clata points with the sallle location as the good data but with more variability;
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d) a shift in some of the clements of the location vector but not all of thcm.

11

c) multiple outliers arc present and inflate the estinwtes in such a way that they mask

each other so that it is difficult to detect.

Rocke and Woodruff (1996) stated that the most difficnlt multivariate outliers to

detect are those that have the same variance-covariance matrix. These outliers are

referred to as "shift outliers" because their center has been shiftcd from the center of

the other data points. If shift outliers can be detectcd by robust estimation methods,

then such methods will likcly to work well for all other types of outliers.

The classical estinlates, sample mean and sample covariance, are highly sensitive

to outliers; we need estimation methods that are more robust. Sullivan and Woodall

(1996) proposed an estimate of the covariance matrix based on snccessive differences

of the multivariate observations to reduce the effect of shift outliers. This is eqnivalent

to the use of the moving range to construct a Shewhart individual control chart in

the univariate case.

Sullivan and Woodall (1996) defined the vector Vj to be

Vj=Xj+I-Xj , j=1,2, ... ,(m-1).

When the control chart is constructed, the unbiased estimator of the covariance

matrix, 5.(1) = 2(,,:-1) L7~~1 VjV;, replaces the covariance matrix 5. in Eq. (1.4).

Successive-dif!"crence charts are effective for detecting sustained step changes but not
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for detecting multiple multivariate outlier:;. Robu:;t e:;timation method:; are :;nitable

for detecting nndtivariate outlier:; because of their high breakdown point:;, which

en:;ure that the control limit:; are reasonably accurate.

Vargas (2003) introduced robust control charts that used two robust estimates of

the location and :;catter, namely the minimum covariance determinant (I\ICD) and

the minimum volnme ellip:;oid (MVE), to identify multivariate outliers. The exact

di:;tribution of T 2 with the robu:;t e:;timator:; ba:;ed on MVE and MCD was not

a.vailable, so the control limit:; were obtained empirically. .Jen:;en, Birch, ami vVoodal1

(2007) showed that the T'ileD and T'iIVE control charts have better perfornmnce in

the presence of outliers.

The MCD/MVE estimators have low statistical efficiency because they usc only

some of the data points. We propose control charts ba:;ed on the re-weighted miu-

ilnum covaria.nce determinant (R.MCD) and the re-weighted mininJlnn vohnne ellip­

:;oid (RMVE) to monitor the :;hift in the proces:; mean and the :;hift in the variability.

R.MCD/R lIVE estimators are :;tatistically more efficient than I\ICD/MVE cstima-

tors and have a manageable asymptotic distribution. Chenouri, Steiner, and Variyath

(2009) Jlsed RMCD estimators to monitor the Phase-II data when there is a :;hift only

in the location. However, in many :;itnation:; Pha:;e-I control charts are necessary to

as:;ess performance and to identify ontlier:;.
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Varga.'; and Lagos (2007) proposed the robust G eontrol ehart (RG ehart) to

lnonitor the covariance matrix in the case of subgronp data. They modified the

G chart suggested by Levinson et al. (2002) by using the MVE estimator of the

covariance matrix of the full data, instead of the pooled covariancc cstimator S nsrd

by Levinson et al. (2002). They showed that the RG charts are able to detect changes

in the variability. However, to date there are no robnst control charts that 1Il0nito!

the covariance matrix for individual multivariate observations.

The problelll of presence of outliers in the individual IIlnltivariate data can be

viewed in three different perspectives:

• A shift in the mean vector of the process.

• A change in the covariance matrix process.

• A shift in mean vector together with a ch<Ulge in the covariance nIatrix.

The goal of this thesis is to address the ontlier detection problelll from these three

perspectives with emphasis on robust e::;timators and to highlight the applications of

the RMCD and R.MVE in the area::; of statistical quality control. We propose to nse

robust control charts based 011 RlVICD/RMVE estimators and arrive the control limits

empirically as the corresponding statistics do not have c1osed-forIll distribntions. We

fit a nonlinear regression model to find the control limit::; for a given sample size
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in the case of RIVICD/RMVE-based T 2 charts. Our simulation studies show that

RMCD/RMVE-based charts perfol'lu well cOlupared to existiug c1mrts iu Inonitoring

the shift in the process mean and the shift in the process variability. ''''e also propose

to nse the outlier detection method with RMCD/RMVE estimators when estimating

the parameters of a generalized linear regression model

The remainder of this thesis is organized as follows. In Chapter 2, we discnss

existing robust estimation methods, and we formally introcluce the RMCD and the

RIVIVE. In Chapter 3, we discnss the proposed robnst charts for nlonitoring shifts in

the mean vector for inclividnal ul\lltivariate ob 'ervations for Phase-I data. We conl-

pare the performance of the charts via simulation studies. In Chapter 4, we discuss

mnltivariate coutrol charts for individual observations to monitor process variability

when the process exhibit shift in mean as well as variability. We compare the per­

formance of the charts via simnlation studies. In Chapter 5, we cousider nsing the

IlIVICD/RMVE estimators to identify and remove outliers in the covariate data and

to fiud robnst estimates of the regression parameters in the generalized liuear model.

In Chapter 6, we summarize our results alld discuss directions for future research.



Chapter 2

Robust Estimators

To study a variable of interest and its properties, we need to know the parHmeters

that characterize its distribntion. In practical situatious, the true parameter val­

ues are unknown and we lllust estimate them from the sample data. For eXHmple,

suppose a p-variate Cluality characteristic follows a multivariate normal distributiou

characterized by mean vector II, and covariance matrix ~. These parameters are often

estimated by the sample mean anel the sample covariauce matrix, since they have

most of the characteristics of good estimators. However, these estimators are highly

sensitive to the presence of outliers. In coutrast, robust estimators are not uuduly

aflccteel by outliers. If outliers are present in the elata, robust estimators are more

appropriate. There are a Ilumber of such estimators cwa.iJable in the literature but
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varying properties.

2.1 Desirable Properties of Robust Estimator

A good robust estimator has the following properties:

• Affine equivariance;

• High breakdown point;

• Statistical efficiency;

• Computational efficiency.

16

Affine eqnivmiance: Consider a multivariate data set XIIl = (XI, X2, ... , x lIl ) with TIl.

observations where Xj = (Xjl, 1;j2, ", Xjl')' represcnts thc jth Imiltivariatc obscrva-

tion with dimension p, j = 1,2, .. , m. Estimators Tin of the location parametcr II.

and C m of thc covariance matrix L: are affine eqnivariant if for any nonsingnlar pxp

matrix A and vector b E IRP ,

T",(AX + b) = AT", (X) + b

C",(AX + b) = AC",(X)A'. (2.1)

Snch estimators arc nnchanged or change in appropriatc ways whcn thc measuremcnts

and the parameters are transformed. Affine equivariance is important because it
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makes the analysis independent of the measurement scale of the variables and of

transformations or rotations of the data.

Br'eakdown point: The breakdown point concept introduced by Donoho and Hu-

ber (1983) is often nsed to assess robnstness. The breakdown point is "the sntallcst

proportion of the observations which can render an estimator meaningless." For eXfun-

ric, let X'" be a random sflmple of m. observf1.tions f1.nd T", (X m) be the corresponding

estimator of the para,meter of interest. Consider replacing k: poilltS in Xu, byarbitmry

values and let the new data be represented by Xm(k) The finite-sample breakdown

point of the 10cf1.tion estimator T", for the sample X'" is the smallcst fraction ~ of

outliers that call carry the estimate over all bounds. It is given by

(T X m) - . ,.. {k. liT (X 1JI (k») T (Xm)ll- }f. Tn, - 111,'l11 -, sup m - m - 00
1n X ... (kj

where 11.11 is the Enclidean nonn.

(2.2)

If ~(T"" X m
) is independent of the initial sample XIII, we say that the estimator T,"

has the universal finite-sample breakdown point ~m(Tm)' We can then calculate its

limit ~ = l'im",_oo~",(T",), which is often called the asymptotic breakdown point or

the breakdown point. A higher breakdown point implies a more robnst estimator. The

highest attainable breakdown point is ~ in the case of the median in the nnivariate

case. The breakdown point of asample mean of size Tn is 11m" fl,nd hence for nnivariate

data, the sample median is 1I10re robust than the sample mean.
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It i;; diff1cult to find an affine-equivariant robu;;t e;;timator ;;ince affine equivariance

and high breakdown do not occur ;;imultaneou;;ly. Lopuhaii allCl Rou;;seeuw (1991) allll

Donoho and Ga~ko (1992) pointed out that no affine-equivariant estimator can attain

a finite-sample breakdown point of S::,--.!;~\\. The largest attainable finitc-sa.Jnple

breakdown point of any a.ffine-equivariant e;;timator of the location and scatter matrix

is ("';;:~I) (Davies, 1(87). R.elH.xing the aff1ne-equivariance condition to invariance

under the ortllOgonal transformation make;; it easy to find an e;;timator with the

highest breakdown point of ~.

Statistical efficiency: An estimator is said to be stati;;tically efficient if it estilnatcs

the quantity of interest in the best possible manner. The definitiou of "best possible"

dcpcnds on thc choice of loss function, the function that quantifies the relativc degrcc

of undesirability of estimation error;; of different magnitudes. The most common loss

function is quadratic, resulting iu the rnean ;;quared error (lVISE) criterion of optinlal-

ity. Hence, we consider a.n estimator to be efficient compared to somc other estirnator

if its IIISE is snla.llcr for at lcast somc valucs of thc paramctcr. For example, for a

sample of size 7/1, from the normal distribution with mean p. and standard deviation

1, thc sample mcan and sampIc nlcdian are unbiased estimators of It and their MSEs

are l/m and 1r /2m re;;pectively. The mean i;; more eff1cient than the median since its

MSE is smaller.
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Computational efficiency: It should be possible to calculate the estimator in a

reasonable amount of time. However, it is better to usc a,n efficient method that

takes a reasonable time but finds all the outliers than one that takes a lesser time

andnlisscs many of them.

The sample mean and the covariance matrix of the location amI scatter parall1-

ct('rs arc affine equivariant but their sample breakdown point can be as low as ;!;,

where Il1 is tlte sample size. Several multivariate robust estimators of I-t aud I; have

been proposed. These include the M-estimators (Maronna, 1976), the Stahel-Douoho

estimators (Stahel, 1981; Donoho, 1982), the S-estimators (Rousseeuw and Yohai,

1984; Davies, 1987; Lopuhaii, 1989), and the IV/VE andMCD estimators (Rousseeuw,

1985). The l\lf-estimators are computationally cheaper, but their breakdown point,

under some general conditions, cannot exceed Ph (Nlaronna, 1976; Huber, 1981),

and the breakdown point reduces as the dirnension increases. The Stahel-Donoho

estimators are reasonably efficient and have the sample breakdown point ("'~:::+2)

(Donoho, 1982), but they arc cOlnpntationally expensive. The S-estimators can at­

tain the sample breakdown point ("';::~I) but are also computationally expensive. The

MCD and MVE estimators have the highest possible finite-sample breakdown point

("';::~I) The rate of convergence is m- 1/ 2 for MCD and m- 1/ 3 for MVE. However,

these estirnators have low asyrnptotie efficiency under normality. RMCD and HMVE
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have better efficiency without compromi~ingon the breakdown point and the rate of

convergence. In the next two ~nbsection~, we discu~s the MCD and MVE estimator~

and their re-weighted version~ and the as~ociated computational procedure~.

2.2 MVE and RMVE Estimators

The [\lIVE estimators of louttion and scatter of a distribution nre determined by the

ellip~oid of rninilTlnm volume tha,t cover~ the subset of data points of ~ize h = 111*1'

where (0.5 :::; I' :::; 1) . Here f = 1 - I' represents the breakdown point of the MVE

estimators. The ~lVE location estimate i~ the geometrical center of the ellip~oid,

and the MVE ~catter estimate i~ the matrix that defines the ellip~oid, mnltiplied by

an appropriate con~tant to ensure consistency (R.ous~eeuw and Van ZOineren, 1000;

Woodruff and Rocke, 1(04). Thus, the MVE estimator does not correspolICl to the

sample mean and the sarnple covariance matrix of the data, points that const.itnt.e

the ellipsoid of minimum volnme. The MVE estimator has its highest possible finite­

sample breakdown point when II, = (m+~)+l) (Davies, 1992; LOllpllha~i and R.ollsscellw,

1991). It ha~ an m- 1/ 3 rate of convergence and a non-normal asymptotic di~tributioll.

Calculating the exact MVE for a data set X'" would require examining all C'~~)

ellip~oid~ containing II, observations of X'" to find the ellipsoid with the ~mallest
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volume. \Vhile the l\IVE is interesting, finding the l\IVE estimator Cilll be difficult

in practice; it is essentially a two-step proccss. The first step is to find the best half­

set consisting of h points. The second step involves finding the ellipsoid of minillluni

volume that covers the selccted half-set. A given half-set is covered by many ellipsoids.

Titterington (1975) found that the second step is equivalent to finding a D-optinlH.l

desigll for a, design region where the points in the half-set are the design points.

Thus, iterative algorithms that find D-optimal designs could be used to find the best

covering ellipsoid. The first step is referred to as the subset problem, aml the second

step is referred to as the covering problem.

As the sample size m and the data dimension p increase, the computational effort

required to find the half-sets increases exponcntially. For example, if 1/1. = 25 am!]) =

2, so that h = (25+2+1)/2 = 14, then there are a total of (28!)/(14!14!) = 40, 11G, GOO

half~set.s. 'vVhen the best half-set has been found, additional calculations are needed

to find the best covering ellipsoid.

Computing the !\!lYE estinlators is expensive or impossible for large sanlple si7.es in

high dimensions (Woodruff and Rocke, 1994). Rous..eeuw and Leroy (1987) proposed

an approximate sub-sampling algorithm to find thcse estimators. This algorithm

considers a fixed number of random sllbsets, known as elemental subsets, each con­

taining p + 1 points. For ea,ch elemental subset, the sample nleall vector and sanlple
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variance-covariance matrix are calculated, determining the ~hape of an ellip~oid. The

~i7,e of this ellipsoid is then inereaHed by multiplying by a constant until it coven; at

least h data points. The ellipsoid with the ~mallest volume i~ then u:;ed to obtain

the IVE estimates. It has been shown that this :;ub-sampling algorithm retains the

affille-equivariance property of the MVE e~timator. lVloreover, if all CJ~J ~nbset~ of

si7,e ]J + 1 arc con~idered, t.hen the solution of the algorit.hm ha.<; t.he same breakdown

value aH t.he exact. MVE (Ron:;:;eeuw, 1985).

Cronx and Haesbroeck (19D7) nlOdified t.he st.andard sub-~anlpling algorit.lnn by

t.aking t.he average of t.he solut.ions corresponding t.o several near-opt.ilnal :;nb:;et.~

in:;tead of considering only t.he opt.imal solut.ion. They showed t.hat. their average so-

lut.ion maint.ains t.he breakdown value and has bet.ter fillit.e-salnple efficiency (Croux

and Haesbroeck, 2002). Davies (1987) updat.ed t.he cent.er and ~c:at.t.er estimates corre­

sponding t.o t.he best :;nb~et., using h ob~ervat.ions in t.he MVE. Davie~ (1992) ~how('cl

t.hat. the MVE e~t.imat.or~ of loca.tion a.nd :;catter converge at rat.e '1'/1.-1/3 t.o a non-

Gau:;~ian dist.ribution. Thi:; low rate of convergence illlplie:; t.hat. t.he asympt.ot.ic

efficiency of t.he MVE est.ilJlat.or~ is 0%.

If robnst ITlnlt.ivariat.e estinIators arc to be of practical usc in ~t.at.ist.i('al inference

t.hey ~hould oft'er reasonable efficiency under t.he normal model and a manageable
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asymptotic distribution. A t.wo-stage or re-weighted procedure provides both robnst­

ness and efficiency. A highly robust but perhaps inefficient estimator is first compnted.

This is used as a starting point to find a local solution for detecting outliers and COI1l-

pnt.ing the sample mean and covariance of the cleaned dat.a set; see R.onsseenw and

Van Zomeren (1990). This involves discarding those observations whose IVlahalanobis

distances exceed a fixed threshold.

The RMVE estimators are the weighted mean vector,

(2.3)

and the weighted covariance matrix,

where cn ,1' and d~:;~J are the multiplication factor for consistcncy (Croux and Hacs­

broeck, 1999) and the finite-sample correction factor (Pison, Van Alcst., and Willems,

2002). The weights are based on the robust distance:

(2.5)
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The RD(x;) is compared with ;q;;, where (j" is the (l-a)100% quantile of the chi-

square distribution with ]J degrees of freedolTl, and weights arc assigned to the corre-

sponding observation as :

{

IiI' flD(x;)::;;q;;
'Wj=

o otherwise.

(2.6)

It has been shown that the R lIVE estimates do not improve on the convergence rate

(and tllUS the 0% aSylnptotic efficiency) of the initial MVE estinJator (Lopnhah and

nousseeuw, HJ91; Pison et aI., 2002). As an alternative, a one-step M-estimator can

be calculated with the I(VE estimat.es as the initial solution (Croux and Haesbroeck,

1997; Woodruff and Rocke, 1990). This results in an estimator with the st.andard

1rI,-1/2 convergence ra.t.e t.o H. nOl'lnal asylllptot.ic distribntion. This wb-sH.lnpling al-

gorit.hm has been implemented in SPLUS, n, SAS, and MATLAB.

2.3 MCD and RMCD Estimators

An altemH.tive high-breakdown est.imat.or is based on t.he MCD; it. was first proposed

by Rousseeuw (1984). It. is obt.ained by finding t.he half-set. t.hat gives t.he minimum

value of the det.erminant of t.he variance-covariance matrix. The resulting est.imator

of the loeat.ion is the sample mean vector of the point.s that. arc in the half-set. The

estimator of the dispersion is t.he sample variance-covariance matrix of the points
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multiplicd by an appropriate constant to ensure consistcncy, as was done for thc

IIYE. In contrast to thc rYE, thc MCD cstimators corrcspond to thc mcan and

covariance of a specific half-sct. The MCD estimators are simple to calculatc oncc

the best half-sct has bccn found; they do not rcquirc a solution to the coveriug

problem.

The MCD estimators of the location and scatter of the distribution are dctennined

by the subset of observations of size h = 111*,., whcrc (0.5 ::; ,. ::; 1) whose covariancc

matrix has the smallest possible determinant. Here E = 1-,. represcnts thc breakdowu

point of the MCD estiuta.tors. The MCD location estimate XhlCIJ is the average of

this subset of It points. The MCD scatter estimate is given by ShlCD = a.,.1' * b~.1' *

ChlCD, whcrc ChlCIJ is thc covariancc matrix of thc subset, thc constant a.',1' is the

multiplication factor for consistency (Croux and Haesbroeck, 1999), and b~,1' is thc

finitc-sample corrcction factor (Pison ct al., 2002).

The IVICD cstimator bas its highest possiblc finite-samplc breakdown point whcn

It = (m+~)+I). It has an m.- 1/ 2 ratc of convcrgcncc but low asymptotic cfficicncy undcr

uormality. Computing the exact IVICD estimators (XhlCIJ , Shlcn) is expensive 01

impossiblc for largc samplc sizcs in high dimcnsions (Woodruff and Rockc, 1994) and

so, as for the MYE, various approximate algorithms have been suggested. A fast

algorithm was proposcd indcpendcntly by Hawkins and Olivc (1999) and Roussccuw
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and Van Drie,;,;en (1999). The algorithm of Rous,;eeuw and Van Drie,;,;ell, known a,;

FAST-IVICD, typically finds the exact IVICD for slnall data sets ami an approxillIate

l\ICD for larger data sets. The FAST-IVICD is implemented in SPLUS, R, SAS, and

l\IATLAB.

A,; j,; the case for IVIVE e,;timator,;, IVICD e,;timators are not efficient. Hence, a

re-weighted version similar to that for IVIVE ha,; been propo,;ed by ROlls,;eellw and vall

Drie,;,;en (1999). Thb two-,;tep procedure improve,; the efficiency while retaining the

other properties of the IVICD estimator. The asymptotic convergence rate of the l\ICD

estimator is 11/.-1/2, and hence it is considered the best choice for the initial estillliltor

of a two-step procedure. Based on the two-step approach, the [{l\ICD estimator' arc

m m

SIIAICIJ = C(q, * d~:~) * L 1JJi(Xi - X/lA/CIJ)(Xi - XIIAICIJ)'/ LlIJi (2.8)
·i=! i=1

where c"'I' ami d~:~' arc the Ilmltiplication factor for consistency and the finitc-sample

correction factor. The weight,; 1JJi= 0 or 1 are ba,;ed on the robust distancc as for

Rl\IVE:

(2.9)

Thi,; re-weighting techniqlle improve,; the efficiency of the initial MCD/MVE e,;ti-

lIlator,; while retainillg (mo,;t of) it,; robu,;tne,;,;. Hence, the RIVICD/RMVE e,;timator,;
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inherit the affine eqllivariance, robll~tnes~, and asymptotic nornlHlity properties of the

!VICD/MVE e~timators with improved efficiency.

[n this the~is, we propo~e ll~ing RMCD/RMVE estimator~ to construct robll~t

control charts. Tn Chapter 3, we discnss the 1'2 control chart for Phase-I with

Rl\ICD/RMVE estimators and in Chapter 4 we propo~e robnst versions of the charts

of Hnwang ct a.1. (2007) and MernaI' and Niaki (2009) for monitoring proces~ variabil­

ity.



Chapter 3

Robust Control Charts for

Monitoring Process Mean

3.1 Robust Control Charts

As discussed in Chapter 1, outliers in the Phase-I sample may unduly influencE' the

performance of the Hotelling's T 2 chart. The use of RMCD/RMVE estimators will

make the standard T 2 chart robust. We propose using T 2 charts with robust estima-

tors of the location and dispersion parameters to monitor changes in the mean vector

when individual Inultivariate observations <,re considered. The RJVICD/RMVE esti­

mators inherit the properties of MCD/MVE estimators such as affine equivariance,
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robustness, a.nd asymptotic normality while achieving higher efficiency. 'We now de­

fine robust T 2 statistic using R.MCD/R.MVE estimators for the i-th Innltivariate

observation Xi. = (.1:;1, X;2, ... , X;1')' as

T~A1CV(Xi) = (x; - XRAlCD)'SR~/CD(Xi - XRAlCD)

T~A1I/Io·(Xi.) = (Xi - XIlA/IIE)' SR~/III';(Xi - xllAll/d (3.1)

where XRAlCD and XRAlIIE are the location estimators and SIlAlCD and SIIA/II/" are

the scatter estinIators under the R.MCD/RMVE methods based on 'ITI. nndtivariate

observations. The exact distribution of T 2 is not available, so the control limits for

Phase-I data are obtained by inverting the empirical distribution of the T 2 vaJnes.

In the next section we use Monte Carlo simnlation to estimate the quantiles of the

distributions of T~A/CD and T~AI\IE for several sample sizes and dimensions. As will

he seen shortly, the choice of T~A/CD or T~A/III:; depends on the sitna.tion. For each

dimension, we fit a. smooth nonlinear model to find the cOlltrol limits for a given

sample size.

3.2 Computation of Control Limits

We perforrned a la.rge IllImber of Monte Carlo simnlations to obtain the control lilnits.

The limits are found by inverting the empirical distribution of T~A1CD and T/~A/III:;'
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'vVe generated n = 200,000 :;anlple:; of :;ize m. from a :;tandard llIultivariate normal

distriuntion lVIVN(O, 11') with dimension]J. l3ecanse of the invariance of the 1'~AlCD

and 1'~AlVE :;tatistics, these limit:; are applicable for any values of ~L and 2::.

Using the re-weighted JVICD/1VIVE estimators XIlAlCD , SIlAlCD, X/lAII'I;, and

SIlAlVb' with breakdown value 1'=0.50, we calculated 1'2 stati:;tics for each ob:;er­

vation in the data set nsing Eq. (3.1) awl recorded the maximlnn valne attained for

each data :;et. We inverted the empirical distribution of the maximum of 1'~AlCJ) aud

1'!IAIVE to find the (1- a)100% quantiles. We nsed the R. function CovMcdO in the

ITCOV package to find the RMCD/Rl\IVE estiulates.

We found the quantiles of 1'2 for m=(30, 31, ... , 50, 55, .. , 100, 110, ... , 150, 175,

200) and p=(2, 3, ... 10) and derived the quantiles for n = (0.05, 0.01, 0.001). Scatter

plots of the quantile:; and the :;ample sizes for difl'erent dimensions :;nggest a family

of nonlinear model:; of the form:

(3.2)

where al(p,l-n), (L2(1',I-n) and a3(1'.I-n) are the model parameters which depends on the

values of p and (1'. The parameters can be estimated for various values of 7) aud n

using the method of least square:;.

The scatter plot:; of the actual and fitted value:; of the quantiles of 1'~AICD amI

1'~AIIII:: for p = 2, 6, and 10 and 0' =0.05 and 0.01 are given in Fig:;. 3.1,3.2, and 3.3.
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Figure 3.1: Scatter plot of TkMCO/TkMVE control limits and fitted curve for p = 2

Figure 3.2: Scatter plot of TkMCD/TkMVE control limits and fitted curve for p = 6

31
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Figure 3.3: Scatter plot ofT~MCD/T~MVE control limits and fitted curve for p = 10

The figures show that the non-linear fit is good, which helps us to find the T~MCD

and T~MVE control limits for any givcn samplc size and givcn valucs of p and n using

Eq. (3.1) if the model parameters are available. The least-square estimates of the

parameters al(p,1-a),a2(p,l~a) and a3(p,l-a) for dimensions p=(2, 3, ... ,10) and for a =

(0.05, 0.01,0.001) corresponding to T~MCD and T~MVE charts rcspcctively arc given

in Tables 3.1 and 3.2.
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Table 3.1: E~tirnates of modcl paramcters (L1(1'.I_rt), (J,2(p, I-a) , (1:1(1',1-,,) for dinlCnsions)J =
(2, ... ,10) and confidcnce levcb n = (0.05,0.01,0.001) for T!?AJCU control charts

Jl il 1. ,J ,O.95 02.".0.% (i~I.,}.O.9a ill.,},D.fl!) (l2.IJ,O.!)!J a:~.P,lJ.!J!J (il.p,O.!}!)!) l;'2.,J.O.9!)9 (;:I,J',O.fHm

Table 3.2: Estimates of model panuneters (L1(1',I_aj, Cl2(1',I-a), (LJ(/l,l-a) for dirncnsions p =
(2, ... ,10) and confidence leveb 1-n = (95%, 99%, 99.9%) for T~AJ\lf'; control charts
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Vile assess the performance of the proposed charts when outliers are present in the

data due to the shift in the proccss mcan. .Jcnscn et al. (2007) concluckd that

IVE/ IICD-based T 2 control charts perform well in terms of dctecting outliers due

to shift in proccss mcan. Thcreforc, we cOlnp<\rcd thc pcrformancc of Olll' methods

with fliICD/MVE-based T 2 charts and standard T 2 charts. For cach combination of

]i, m, and IT, we gencratcd a number of data scts. Of the Til observations, TIl. x IT a.re

random data points generated from the out-of~control distribution, and the remain-

ing'ln X (1 - IT) arc gcncratcd from thc in-control distribution so that thc sample

of 'lit data points may contain somc outlicrs. vVc sct IT to 0.20 to cnslll'c tha.t thc

sample contains a few outliers. \Vithout loss of gcnerality, we considcr the in-control

distribution to be N(O,Il')' Thc out-of~control distribution is a multivariate normal

with a small shift in the mean vector and with covariance matrix fl" Thc mean shift

is dcfincd by a non-centrality parametcr (8), which is givcn by

(3.3)

wherc (~!I -/1,) is thc shift in thc mcan vector. Wc calculatcd thc proportiou of data

sets with at lcast one TJ~MCD (or T~AJvd statistic greater than thc control limit;

this is the cstimatcd probability of signal for detecting outlicrs. Wc comparrd t.he
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performance of tlte::;e chartij with T 2 chart::; with MCD and NrVE eijtillmtor::; and the

::;tandard T 2 chart. 'vVe considered the probability of signal for dillcrent val lies of

6 = (0,5,10, ",30), rn = (30, 50, 100, 150), ]J = (2, 6, 10), and 7r = (10%,20%).

'We generated 50,000 data sets of size 1n for each combination of 1/1,71, 7r, and 6 and

the probability of signal was estimated for C1' = 0.05,0.01, and 0.001. Figllres 3.4 to

3.15 ::;how the probability of signal for C1' =0.05 and 0.01 and difrerent valnes of]J and

Figure::; 3.4 to 3.15 show that when the valne of the non-centrality panl.lneter

i::; zero or close to zero, the probability of a signal is close to Ct, as expected for

an in-control process. As the value of the non-centrality parameter increal;e::; the

probability of a signa.l also increases. Using this, we select the best method for

identifying outliers. If the probability of a signal does not increase for an increase in

the non-centrality pararneter, then the estimator hi\::; broken down ,wd is not capable

of detecting outlier::;.

A careful examination of Figs. 3.4 to 3.15 shows that, for ::;mall values of Jl and

11/., T~AlVE perform::; well. A::; m and ]J increase, the T~AlcJ) chart is ::;uperior. For

example, from Figs. 3.4,3.5,3.6, and 3.7 we sec that T~Jllv" has ,\ slight advantage

over T~MCf)' All the plots ::;how that the T~MCf)/T~MVEchart::; perform better than

the T;,cD/Tl,vE: cha.rts. When]J is large, T~JIICf} has a clear advantage over T/~AlV8;
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:~~ ---I~ j. • ,-i!t~~:;:~=~
o 51015202530

Figure 3.4: Probability of signal for RMCD/RMVE control limits for p= 2, m= 30

~~~ --I:r:~:~r-:~:=~
o 51015202530

Figure 3.5: Probability of signal for RMCD/RMVE control limits for p= 2, m= 50
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Figure 3.6: Probability of signal for RMCDjRMVE control limits for p= 2, m= 100

:1~~=~=~1
o 51015202530
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Figure 3.7: Probability of signal for RMCDjRMVE control limits for p= 2, m= 150



3.3 PERFORMANCE ANALYSIS

;;~~~~,,'gD I~ :::- ~~~O •= _ RMVE _.~~

:._._~o=.~'::q_q

o 51015202530

38

~~ I.-.-.-.-.-~§§:~

:~~ I

: j.-.-.-.-•.".,.~~
o 51015202530

Figure 3.8: Probability of signal for RMCD/RMVE control limits for p= 6, m= 30

~j~ I
~ J. ,.-.-.-.~.~!
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Figure 3.9: Probability of signal for RMCD/RMVE control limits for p= 6, m= 50



3.3 PERFORMANCE ANALYSIS

:1§~~1
o 51015202530

39

Figure 3.10: Probability of signal for RMCD/RMVE control limits for p= 6, m= 100
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Figure 3.11: Probability of signal for RMCD/RMVE control limits for p= 6, m= 150
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Figure 3.12: Probability of signal for RMCDjRMVE control limits for p= 10, m= 30
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Figure 3.13: Probability of signal for RMCDjRMVE control limits for p= 10, m= 50
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Figure 3.14: Probability of signal for RMCD/RMVE control limits for p= 10, m=
100

o 51015202530

Figure 3.15: Probability of signal for RMCD/RMVE control limits for p= 10, m=
150
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sec Figs. 3.14 and 3.15. It is clear that the standard T 2 control clia.rt lias a linlitcd

ability to detect ontliers, and TilCD andl~?/\!I; do not perfol'ln cOIn pared to tlic cliarts

bi:lSed on the re-weighted estimators.

As p incref\8es for a fixed valuc of 'lit, the breakdown points of R. ICD and Il IVE

estimators decrease since the breakdown value is given by (''';::,+1). This suggests

that the larger the value of p, the larger m, will need to be to nJaintain the breakdown

poiut; this is demonstrated in Figs. 3.14 and 3.15. For dimensions 6 and 10, 1/1, = 3D or

50 is too small to detect outliers; sec Figs. 3.8, 3.9, 3.12, and 3.13. In general, either

RMCD or RMVE was superior for all the values of the non-centrality parameter,

provided the proportion of outliers was not :;0 high that the estimators broke down.

This greatly silnplifies the conclnsions about when RJVICD or R lIVE estimators arc

preferred to MCD or MVE estimator:;.

When m, < 100, T~AI\!I; is the best choice for snlall dilnension:;. When 'III,:::: 100,

T~A1CD is preferred. A:; p increases, the percentage of outlier:; that can be detected by

T~Al\f E decreases. For both charts, the higher the value of p, the lower the Inlmber of

outliers that can be detected for smaller sample :;izes. For Phase-I applications where

the nnmber of outliers is unknown, T~AI\!I; should be used only for smaller :;,unp]e

sizes, and it is also computatioually feasible. 1/~A1CD should be used for larger sample

sizes or when it is believed that the nmnber of outliers is large. When the dirnension
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i::; large, larger ::;ampJe ::;izc::; arc Heeded to en::;ure that the estimator doc::; 1I0t break

dOWIi. HCIlCC, for larger dilIlCIl::;iollS, TflAlCD i::; preferrcd with large salIlplc sizc::;.



Chapter 4

Robust Control Charts for

Monitoring Process Variability

"Ve have seen that the robust versions of Hotelling's T 2 charts are good for moni­

toring the process mean for both Illnltivariate observations with snbgronp oata. allCl

individual observations. To monitor multivariate process variability, control charts

based on either the generali7,ed variance (the determinant of the sitlnple covariance

matrix) or the likelihood ratio test for testing the equality of covariance matrices are

generally nsed (A It and Smith, 1988; Levinson et al., 2002). For these charts, the

snbgroup size shonlo be larger than the nnmber of quality characteristics of interest

to ensure that the sample covariance matrix has full rank.
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For individual ob~ervation~, nOlle of the~e procedure~ arc applicable because the

sample covariance matrix is not defined. The monitoring of multivariate prace~~

variability for individual ob~ervations has received little attention in the literature,

although it is often more critical far improving the quality of manufactlll'ing processes

by reducing the variability rather thau the detection of proce~~ mean ~hift~. However,

ba~ed on the regres~ion-ad.iustedvariables, Hawkins (1981, 1991) developed control

chart~ for univariate ob~ervation~ to monitor the proce~~ mean and extended theJll to

nlonitor the proce~s variability. Woodal al\(I Ncube (1985) extel\(led this to individnal

nndtivariate ob~ervations via nudtiple CUSUM and EWMA charts that combined p

univariate charts. However, Illultiple charts are not effective if the quality character-

istics are correlated. MacGregor and Harris (1993) developed exponentially weighted

mean ~qua.re error (EvVMS) and exponentially weighted moving variance (EWMV)

chart~ far individual univariate ab~ervatians to detect changes in the process variabil­

ity. Thi~ cancept was extended by Huwang et al. (2007) to individua.l multivaria.te

observations. They developed the MEW!VIS and IVIEWtvlV controJ charts. A brief

review of these chart~ is given below.
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Let the random vector 9 = (91,92, .. ,91')' represent the process data with ]I quality

characteristics, which follows a. llIultivariate nonnal distribution with meHn /1..'/ a.nd

covariance matrix 2::.'/. It is assumed that the e:;timators of the parameter:; arc either

known or estilnated froln the Phase-I analysi:; of the in-control procc:;:; with /L.'/ = flo

and 2::.'/ = 2::0 , Consider the tran:;formation of the proces:; variable g to x, :;0 that x

follows a lnultivariate nonnal di:;tribntion with mean /1. and cova.riance matrix 2:: as

defined below:

x = 2::~1/2(9 -/LO)

fL= 2::~1/2(fI'9 -/1'0)

2:: = 2::~1/22::!J2::~1/2

(4.1)

Obviou:;ly, for an in-control process the distribntion of x is N(O, III)' where I" is a

pxp identity nIa.trix.

For individual observation:;, although the :;ample covariance matrix is not avail-

able, the matrix xx' of each observation provides an nnbiased estimator of 2:: when

the proce:;s mean does not shift (i.e., f.L = 0). However, XXi is not a positive definite

ntatrix. Hence, for the I.-th iudividual observation x, = (:Cll' :r:/.2, ....1:/1')', Hll\vang ct
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al. (2007) defined the multivariatc exponentially weighted moving averagc as

St = WXtX; + (1 - W)SI_J , t, = 1,2,3...

whcrc W is a smoothing constant, O<w<l, fUld Su = XIX'J.

This can bc simplificd to

SI = L CiXi X ; = X'ex
i=1
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(LI.2)

(4.3)

aJJCI e = diag(c" ('2,'" , cd.

Hllwang et al. (2007) showed that if the mean vector does not shift SI is positive

dcfinite for /. 2 ]J with probability 1 and E(St) = E. Onc way to mcasurc thc

overall variability in a covariance matrix is to reduce the matrix to a single sunmmry

statistic. Two commonly uscd statistics arc thc dctcnninant and thc tracc. Sincc thc

trace represcnts thc total variation of thc ]J quality charactcristics of thc covariancc

matrix, Hllwang et al. (2007) proposed llsing thc tracc of St to monitor thc changcs

in E. Thcy showcd that thc tracc of Sf can bc writtcn

(4.4)

Thc mcan and variancc of tr(Sf.) arc 7J aJJCl2p 2:~=1 c; rcspcctivcly, whcrc 2::=1 (;f =

(2::'w) + ~(1 - W)2(t-I) which will converge to (2::'w) as t --> 00. The control limits
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for the !l/IEWIVIS control chart arc
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(4.5)

where the vaJue of L can be found by Monte Carlo simulation bascd on the in-control

avcragc I"Iln lcngth (ARLo). Huwang et al. (2007) found thc valuc of L by simnlation

for p = 2,3, W = 0.1,0.2, .. ,0.9, aud ARLo = 370.

4.2 MEWMV Control Charts

Thc MEVVMS chart is dcsigncd to monitor thc covariancc llIatrix uudcr thc asslllup-

tion that the process mean does not shift. However, the mcan and the variability

can vary simultaneously during the monitoring pcriod. Thcreforc, it is dcsimblc to

construct a chart thclt can detect both changes in the process variability and shifts

in the proccss mcan.

Huwang ct a1. (2007) proposed the MEWMV chart based ou thc statistic V;. Thc

construction of II; is similar to that of 5 t cxccpt that thc dcviation of Xt is takcn from

Yt, a prcdictcd valuc of thc mcan shift at sampling point t. Thcy dcfincd \It to bc

II; = w(Xt - Yt)(Xt - Yt.J' + (1 - w)II;_" t = 1,2,3,... (4.G)

where w is a smoothing constant, O<w<l, and Vo = (XI - y,)(x, - Y,J'.
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The YI. valnes, the predicted mean shifts at sampling point t, are obtained by the Innl-

tivariate exponentially weighted Inoving average of XI proposed by Lowry et al. (1992).

Huwang et al. (2007) defined Yt to be

Yt= AXt+(1-A)yt_I,I.=1,2,3, ..

where Yo=O, and A is a smoothing constant (0<A<1).

(4.7)

They showed that when t. ~ p, II, is a positive definite nlatrix with probability 1

and E(II,) ---> 2g=~~2 L: as I. -> 00 so 2(~=~F II, ean be used to estimateL:. Finding

the mean and variance of V, is not as easy as it was for SI, and hence II, is expressed

in matrix form:

\II. = (X - Y)'C(X - Y)

= X'(/I - M)'C(11 - M)X

=X'QX

where II is a I x t. identity matrix and X, Y, lVI, C, and Q are givell by

YI

(4.8)

X= , y =

YI.

, M=
A(1- A)

A(1- A)t-I A(1- A) A
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Therefore, the trace of 11,. can be simplified to
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1-,.(\11.) = 17'(.X'QX) = I:,.(QXX') = ttfJ;j t:rik:l::ik' (4.9)
;,=1 j=' k=1

The Illean and variance of tr(v,) arc p x f1'(Q) and 2p x 2:::=1 2::~=1 qJj respectively.

Thus, the control limits for the t[EWMV chart are

where the value of L can be fonnd nsing IVlonte Carlo simulation based on ARLo.

Hnwang et al. (2007) found the valnes of L for 71=2,3, w = 0.1,0.2, .,0.9, ami A =

0.1,0.2, .. ,0.9, and ARLo = 370.

They cOlnpared the performance of MEWMS and MEWMV charts with that of

multiple CUSU I and EVlMA charts (Hawkins, 1981, 1991). They used the regression

adjusted variables Illethod based on the out-of-control average run length (ARL,);

ARLo was set to be the same in every case. A bivariate norlllal process was considered

with mean Ii and covariance matrix L::

The following shift scenarios were considered for an O\.lt-ot~control sitnation:

• lJ"T =1.00 and lJ"i set to 1.00, 1.25, 1.50, 1.75,2.00,2.50, and 3.00.
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• Correlation coefficicnt p ~ct to 0, 0.25, 0.50, and 0.75 .

• Shift in mean (!LI or /L2) ~et to 0, 0.25, 0.50, 1.00, 2.00, and 3.00.
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They found that the iEWMS chart outpcrforms the multiple CUSUIVI, multiple

EWMA, and MEWIVIV charts when there is no location shift and when w :S 0.4 in

the ca:;e~ where a~, a?, and p change. The MEvVMV chart olltperform~ the mnltiple

CUSUM and EWMA chart~ for w :S 0.2 and A :S 0.4 and for srnaller shifts in a~. If (i

change~ while a~ and a? are constant, the MEWMS and MEWMV charts olltperform

the multiple CUSUM and EWJ\lIA charts. However, if there is a location shift, only

MEWMV charts can be used (w, A:S 0.4) since the IVIEWIVIS, multiple CUSU il, and

EWl\lA charts arc ~ell~itive to location shifts.

4.3 Control Charts Based on Lcnorm Function

The trace of the estimator of the covariance matrix wa~ used to derive the MEW lIS

and MEvVMV charts. However, in many out-of~control instances some of the diagonal

clements of the covariance matrix increase while others decrease. In the~e instan('e~,

the trace of the ~hifted covariance matrix will not have any con~iderable deviation

from that of the in-control covariance matrix. Tbe MEWMS and MEWMV nletbods

can not detect such situation~.
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To overcomc this problem, instead of tracc, Mcmar and Niaki (2009) snggestcd

nsing the SImi of the absolute values or the snm of the sqnares of the deviation of

each diagonal element frolll its target value. For c 2: 1, they defined the L,.-norln

fnnction for a vector Z = (ZI, Z2, .. , zl')'of length p as II Z 11,.= (I:;=I I Z nl/,. Using

this £,.-norm fnnction, lVlemar and iaki (2009) modified the charts of Hmvang ct

al. (2007) to overcome the problem of the in-control and ont-of-control covariancc

llIatrices having the same trace. They proposcd control charts named AfE\;\I M S01,

to improve the performance of the MEvVMS and IVIEWMV charts.

They defined variables similar to those of Huwang et al. (2007) by transforllling

the process variable g to x so that x ~ N(/L, L:) if the process is ant of control and

x ~ N(O,Ip) if the process is in control. Let L:ii denote the ith diagonal element of

thc covarianc(' matrix L: of dimcnsion p x p. Thcn the vector of diagonal clclllC'nts of

L: is (L: 1I , L:n , ... L:pp )' and the diagonal elements of II' are (1,1, ··,1)' = 11" The

LI-norm and £2-nonn distances between the vector of diagonal elelllents of L: and its

expected value 11' are labeled D I(L:) and D2 (L:) respectively and are given by

D,(L:) =11 (L: 11 ,L:22 , .. , L:pp ), -11' II = t 1L: ii -11 (4.11)
i=l

D2 (L:) =11 (L: 11 ,L:22 , .. ,L:pp )' -I'l 11 2 = t(L:;i -If (4.12)
1=1
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D1(I:) and D2 (I:) are cqual to zero when thc proccss is in-control, and thcy have

positivc valucs whcn thc proccss is out-of-control. This allows us to monitor thc

variability of individual observations. Since E(5,.) = I:, J\!Iemar and iaki (2009)

introduccd thc !II EWlIf5L 1 and MEWlIf5L2 charts bascd on 0 1(5,) ami 0A5,)

with the MEWMS scheme:

D 1(5,) =11 (5'{I1),5'(22)' .. ,5,(1'1'))' -11' II = t I 5/ Ui ) -11 (4.13)
';=1

D 2 (5,) =11 (5'(11),5'(22), .. ,5,(1'/'))' -11' 11 2 = t(5'(h) -lr (4.14)
i=1

As for MEvVMS charts, the control limits call be fonnd using Monte Carlo siIrln-

lation bascd on ARLo. Sincc 0 1(5,) and O2 (5,) arc always non-ncgativc, only nppcr

control limits are considered. Similarly, E(V,) = 2(~=~)2I: for large valnes of t and

hcncc thc lIfEWlIfVL 1 and MEWJ\/VL2 charts bascd on D1(V,) and 02(V,) with

the IE\"rJ\!IVschcmeare

D1(V,) =11 (V,(II), V,(22), .. , v,(I'I'))' - 2(1- ),Y/(2 - ,\)11' II

= t I V,(ii) - 2(1 - >·l/(2 - A) I (4.15)

D2(v,) =11 (11,(11),11,(22), .. ,11,(1'1'))' - 2(1- >·l/(2 - A)ll' 11 2

= t[\!i(ii) - 2(1 - A)2/(2 - AW· (4.16)
i=1
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II; can be tram;formed to ~' = 2(~:::~)21!t a.nd the process variability can be 1I10ni-

to red with respect to ~' as given below:

't1V,(ii)-ll
i=1

(4.17)

D2(v,') =11 (V,(II)' ~(22)' .. ,11,(1'1'))' - 11' 11 2 = 't(II,(ii) - 1)2 (4.18)
i=1

Here too, upper control limits are found by 'Ionte Carlo simulation based on )),

W, A, ami ARLu. MernaI' and Niaki (2009) tabulated t.he UCLs for all fo1ll' cha,rts for

W = (0.1,0.2, ... ,0.9), A = (0.1,0.2, ... ,0.9), and ))=2 and 3.

IVlelnarand Niaki (2009) cOlllpared t.heperforlllanceoft.he /IfEW /lfSL I . /IfEIV/lfSL2 ,

MEW /If VL 1 , and MEW MV L2 charts with the IVLEWMS and MEWIVIV chart.s in

t.erms of t.he ARL criterion. All scenarios are considered in t.he bivariat.e case with

ARLo = 370 and different values for the process mean vector /1. and t.he covariance

matrix 6:

The following scenarios were considered for an out-of-control situat.ion:

• a} =1.00 alld o~ set. t.o 1.00, 1.50, and 2.00.

• Correlat.ioll coefficient. p set t.o 0,0.10, and 0.90.

• Shift in meall (ILl or j.L2) set t.o 0, 0.5, 1, and 1.50.
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l\lemarand iaki (2009) setw=(O.l, 0.2, 0.3, 0.4) for thc MEWAI5, AIEWAl5L1,

and AIEWi\15L2 charts and w=(O.l, 0.2, 0.3, 0.4) and A=(O.l, 0.2, 0.3, 0.4) for thc

MEWMV, MEWMVL 1, and MEWMVL2 charts. When the proccss standard de­

viation shifts, whcthcr or not thc corrclation cocfficicnt changcs, the 1\1EW AI5L 1 ane!

1\1EI VAI5 L2 charts perform better than the l\lEW1VlS chart, ane! the AIElVAIVL1

a.Jl(I AIEW AIVL2 charts pcrform bcttcr than thc MEWMV chart. Whcn th('rc arc

shifts ill the covariancc matrix, MEW M 5 L 1 genera.lly outperforms J\1EWM 5L2 and

1\1EW AIVL 1 gcncrally outpcrforms MEWMVL2 . Howcver, if only thc corrclation

cocfficicnt changcs, thc lE\-\' lIS ane! 'lEW IV charts ontpcrform thc 1\1Ell'1\15 L I ,

J'vIEWM5L2 , MEWMVL 1, and MEWMVL2 charts.

4.4 Robust Control Charts for Monitoring Vari­

ability

Huwa.ng et a.l. (2007) alld Memar a.nd Niaki (2009) assumcd that the in-control pa-

ramctcrs /l.o and Eo arc known whcn thc control charts arc constructcd, and thcy

uscd thc in-control limits constructcd undcr thc assumption to monitor thc Phasc-ll

data. III practice, these parametcrs are not known and we have to estimate thcm from

historical e!ata or Phasc-I data. Thc sam pic mcan and samplc covariancc matrix arc
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unbia::;ed and efficient estimator::;, but they a.re highly l:icnsitive to the presence of out-

licrl:i. It is thcrcforc important to idcntify and climinatc outlicrs prior to calculating

the control limits.

Sincc thc RMCD/RMVE estimators arc not unduly affcctcd by outlicrs, wc pro-

pol:ie using thc I\IEWMS, /IIEWAfSL, , MEl\I/IISL2 , MEWMV, /IIEl\I/IIVL" and

/IIEW /II VL2 charts with thc RMCD/RMVE cstimators. Thc proccss variablc g =

CI}I, .lJ2 ... .lJl')' is considcrcd to be from a lIIultivftriate normal distribution with mcan

fig and covariancc matrix L:!J" If thc Phasc-I data contain outlicrs, wc havc to dctcct

and rcmovc thcm bcforc procccding furthcr. 'INc usc thc robust Cl:itilflators of thc

location and disperl:iioll parameters based on RMCD/RMVE to conl:itruct chartl:i for

monitoring individual multivariatc observations. Thcsc estirnaton, inhcrit thc prop-

elties of affine equivariance, robustness, and asymptotic norma.lity while achieving

highcr cfficicncy in thc transformcd variablc x.

Thc ncw tranl:iformed variablcl:i are found by repla.cing the cl:itinlatorl:i in Eq. (4.1):

x' = S~~{~'DCq - XnAlCD)

x" = S~~{~/d!J - XnAlVI;)

(4.19)

whcrc XRAlCD and XnAiVE arc thc nlcan vcctors and SRMCD and SnMvl, arc thc

dispcrl:iion ll1atricel:i under the RMCD/RMVE methods.
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The new robust control charts are based on the transformed variables x' and

x" with the MEWMS, MEWMSL 1, MEWfltfSL2 , MEWMV, ME\iIlMVL 1, and

AlEWMVL2 schemes for monitoring the process variability, with the mean vcctOl

constant or changing, as defined in Eqs. 4.4, 4.13, 4.14, 4.9, 4.17, and 4.18 respectively.

Since the statistics considered in these equations are positive, we found upper control

limits only. We performed 100,000 IVlonte Carlo simulations for various values of p,

W, and A and confidence levels ct =0.05, 0.01, and 0.0027. The control limits found

for robust control charts under ME\I\'MS schenle arc given in Tables 4.1 for W =

(0.1,0.2, ",0.9). The control limits found for robust control charts under IEWl\IV

scheme are given in Tables 4.2 to 4.5 for W = (0.1,0.2, .. ,0.9), A = (0.1,0.2,0.3,0.4)

4.4.1 Performance Comparison for Phase-I Monitoring

We are analysing the performance of the proposed charts when outliers are present

due to a c1mnge in the process variance without a shift in process IIlean and a change

in the process variance along with a shift in the process mean. The performance of

the charts was a.~sessed based on the probability of outlier detection. When the data

come from all in-control process this probability shollld be close to a specified nominal

value. vVhen the data come from an out-of-control process, this probability should
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Table 4.1: COlltrollimitti for robutit cOlltrol clmrtti with MEWMS tichcllIc; p=2 alld 111=50
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Table 4.2: Control lilllits for rob list control charts with MEWMV schcme for variolls valllcs

ofw, '\=0.10, p=2 and 1ll=50
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Table 4.3: Control limits for robust control charts with I[EW~IV schcmc for various valucs
of w, A =0.20, p=2 alld 111=50

I1.MCD

19.2128
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Table 4.4: Control limit~ for robust control chart~ with MEWMV schcmc for various

valuesofw, A =0.30, p=2 itucllu=50
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Titble 4.5: Control liJllit~ for robu~t control charts with MEWMV scheme for varion~ valnes

ofw, A =0.40, p=2 a.nd In=50
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be large comparcd to the specified nomiual valuc.

Following Hnwaug ct iI,1. (2007) and Mcmar and Niaki (2009), wc considcr a bi-

variate process with mean f-L ilnd covariance matrix l:: where

For an in-control process, the parametcrs arc set to /1'1 = /1'2 = 0, crT = cr~ = 1,

and p = O. If anyone of thcse parameters is shifted, the process is out of coutrol.

'vVc gcneratcd a number of data scts with Tn. = 50 and p = 2. Of the 'III. obsrrvations,

71/. X 'If are random data points generated from the out-of-control distribution, and the

rcmaining 7It x (1 - 'If) arc gcncratcd from thc in-control distribution. Wc set 'If to

0.20 to ensure that the sample contains a fcw outliers. The following shift sccnarios

were considered for an out-of-control situation:

• crT =1.00 and cri set to 1.00, 1.25, 1.50, 1.75,2.00,2.50, and 3.00.

• Correlation cocfficient p sct to 0, 0.25, 0.50, and 0.75.

• Shift in mean (/'£1 or /'£2) set to 0, 0.5, 1, and 2.

Following Hmw\ng et al. (2007) and Mernar and Niaki (2009), we considered

smoothing paramcters w = (0.2,0.3,0.4,O.G) and), = (0.1,0.2,0.3,0.4). For each chart,

we consider the staudard as well as robust versions based on MCD, nMCD, MYE,
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and flMVE. The probability of a signal is estimated as the proportion of data. sets

with at least one data point greater than the control limit. \Ne consider n = (0.05,

0.01, 0.0027). Figures 4.1 to 4.16 show the probability of a signal for (l; = 0.01 and

difl'Nent vahws of p and TI/.. The plot:; for (\' = 0.05 and 0.0027 are omitted to :;ave

space. We show the probability of a :;ignal for the :;tandard chart, robu:;t chart:; based

on the I[CD/MVE estimators and the proposed charts in each of the :;ix nlethod:;.

We ca.n see that the proposed charts perform better than these MCD/MVE chart:;

ami standard chart in most of the scenarios considered. Each figme display:; plots

for four different values of p, showing the effect of changes in p. The perfol'lnance of

the proposed robust control charts are consistently better for all six chart:;. We have

presented only a selected set of plots to save space.

From the plots, we :;ee that the probability of a signal increases as the vallie of

lTi increases for the proposed chart:;. In contrast, the cha.rts based on the classical

estinIaton; break down and perform poorly C'OInpared to the proposed chart:; a.nd the

charts based on MCD/MVE. From Figs. 4.1 to 4.3 we see that the probability of a

signal increases as p increases. This clearly indicates that as p increases, the pro-

posed charts perform better and the perfol'lnance of the charts based on the classical

e:;timators deteriorate:;.

Figmes 4.4,4.5, and 4.6 show thitt IInder the ME'vVMV scheme, the chart detects
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Figure 4.1: Probability of signal for robust 111 EWM SL I control chart for p= 2, m=
50, w =0.30, J.L1 =J.L2=0

Figure 4.2: Probability of signal for robust MEW M S L2 control chart for p= 2, m=
50, w =0.40, J.L1 = 1~2 = 0
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Figure 4.3: Probability of signal for robust MEWM S control chart for p= 2, m= 50,
w=0.50, J.ll =J.l2 =0

Figure 4.4: Probability of signal for robust MEWMV control chart for p= 2, m=
50, w =0.30, ,\ =0.10, III = /12 = 0.50
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.~~ ~J:~~~;;~~~~~:::
1.0 1.G 2.0 2.G ::'.0

Figure 4.5: Probability of signal for robust MEW MV control chart for p= 2, m=
50, w =0.30, oX =0.10, J1.! = J1.2 = 1.00

Figure 4.6: Probability of signal for robust MEW MV control chart for p= 2, m=
50, w =0.30, oX =0.10, J1.! = /12 = 2.00
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Figure 4.7: Probability of signal for robust MEWMV £1 control chart for p= 2, m=
50, w =0.30, /\ =0.10, 1-'1 = 1-'2 = 0

~~~~~~~I
1.0 1.5 2.0 2.5 3.0

Figure 4.8: Probability of signal for robust MEWMV£1 control chart for p= 2, m=
50, w =0.30, A =0.20, 1-'1 = 1-'2 = 0
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Figure 4.9: Probability of signal for robust MEWMVL 1 control chart for p= 2, m=
50, w =0.30, A =0.30, J.L1 = J.L2 = 0

Figure 4.10: Probability of signal for robust MEWMVL 1 control chart for p= 2, m=
50, w =0.30, A =0.40, J.L1 = 1£2 = 0
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Figure 4.11: Probability of signal for robust MEWMV£2 control chart for p= 2, m=
50, w =0.40, ,\ =0.10, /11 = /12 = 0

Figure 4.12: Probability of signal for robust MEWMV £2 control chart for p= 2, m=
50, w =0.40, ,\ =0.20, /11 = /12 = 0
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Figure 4.13: Probability of signal for robust MEWM\I L2 control chart for p= 2, m=
50, w =0.40, A =0.30, J.ll = J.l2 = 0

~~~~~I
~ ..----

1.0 1.5 :2.0 2.5 3.0

Figure 4.14: Probability of signal for robust MEWM\IL 2 control chart for p= 2, m=
50, w =0.40, A =0.40, J.ll = J.l2 = 0
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the shift in location as well as the shift ill variability. The probability of a signal

increases as the shift in mean increases from 0.50 to 1.00 alld increases flll'ther when

it increases to 2.00. The MEWMS scheme fails to detect the shift in the nlean

especially when the magnitude of the shift is large.

Figures 4.7 to 4.10 and 4.11 to 4.14 show the effect of the changes in variability

for varions values of A when W= 0.3 and 0.4. Clearly, as a? increases, the probability

of a signal also increases. The changes in the value of a? along with the chauges in

the value of p are also well detected by the proposed charts; sec Figs. 4.7 to 4.14.

All these plots clearly iudicate that our robust charts with R i[CD/RIVIVE est.imates

perform well compared to the other charts.



Chapter 5

Robust Regression

Regression analysis includes many techniques for modeling and analyzing several vari-

ables, when the focus is on establishing the relationship between a dependent vari­

able (the response variable) and olle or more independent variables (the eovariates).

Specifically, regression ana.lysis helps to explain how the va.lue of the response variable

changes with changes in the covariates. Linear regression is a common regression tech­

nique with some basic assumptions of normality and independence for the response

variable. The general form of a. linear regression model is

:t!; = x;fi+ Ei, 'i = 1,2, (5.1)

where 1!; is the vallie of the ith response variable, Xi = (.1:·il, :I:i~, .. , :1:;1')' is a vecLor

of values of cova.riates corresponding to the ith response, (3 = ((3" (32, .. , (31') is the
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cffects of thc covariates Xi on Yi, and Ci is thc random error in thc observed responscs.

Thc random cnors arc assumcd to bc indcpcndcntly and idcntically distrihntcd as

normal with zero mean and constant variance (>2 \/I,/e wish to estimatc thc rcgrcssion

paramctcr /3 from thc observed rcsponses and covariatcs.

The generalized linear model (CL 1) is a flexible gencralization of linear rcgression

that allows rcsponsc variablcs with non-norma.! distribntions. Thc CLIVI allows thc

linear model to be rclated to the responsc variable via a link function and allows thc

variancc of cach mcasurcmcnt to bc a function of its prcdictcd valuc. Hcncc, CLIVI

cncolnpasscs not only lincar rcgrcssion for norrnally distributcd rcsponses, but thc

logistic model for binary data, the log linear model for count data., and many othcr

useful statistical modcls via its gcncral formulation.

All these regression models work well when there are no outliers in the responsc

and in thc covariatc data. Outlicrs, cspecially in the covariates, may undnly influcnce

the estimation of thc rcgrcssion paramcters. This causcs bias and hcnce inconsistcncy

in thc cstimators. Spccifically, if thcrc arc no outliers, wc can obtain a consistent

estimate of the regression parameters. It is therefore important to identify outliers in

thc covariatc data.

In the following section, we review the CLIvI, especially the Poisson and logistic
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regression models. Then we introduce robust regression by identifying ami down­

weighting the outliers in the covariate data using the squared robnst flilahalanobis

distance and perform simulation' to assess the performance of the proposed method.

5.1 Generalized Linear Model

The randoln component of a, generali>'.ed linear mooel consists of a response variable

Y with independent observations (YI,Y2' .. ,V,,) from a distribntion in the natura.!

exponential family. This family has a probability density fnnction or mass fnnction

of the form

f(Yi,(3i) = a((3;)b(Yi) exp[YiQ((3;J. (5.2)

The term Q((3i) is called the natural parameter. The systematic component of a, CLiVI

relates a vector (Til, Tl2, ", Tin) to the explanatory variable through a linea,}' Illodel.

Let x; = (.1:;.1, :ti2,' " :ti,,) be the values of the p-covariates for the ith case. Then

(5.3)

where (3 is a (p x 1) vector of unknown pannneters. The link connects the random

and systema,tic components of the model.

Let Pi = E(1];), i = 1,2, .. ,n. The model links j.ti to 11; = g(j.t;). Thus, 9 links
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£(17;) to the explanatory variables through the formula
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17i = g(fI·;) =x;(3 'i = 1,2, .. ,n. (5.4)

The link function that transforms the mean to the natural parameter is called the

C'<lJIonical link. For this link, 9(fli) = Q((3i) where

Q((3;) = x;(3 'i= 1,2, (5.5)

5.1.1 Poisson Log Linear Model

Let Y denote a count which follows a Poisson distribution, and let It = £(V). The

Poisson probability Illass function for Y is

e-/
1

It 1J (1)f(y: It) = -, = exp(-II.) -, exp(y.loglt).
y. y.

(5.6)

The natural parameter is log It, so the canonical link function is the log link,

"1 = log fl.· The nlOdel using this link is

(5.7)

where x; = (1'i!, 1:i2, .. , XiI') is the vector of covariates for the i-th response and

(3 = ((3" (32, .. , (31')' is the regression parameter.

Consider a data set containing COllnt responses Yi for i = 1,2, ",11 and a (p x 1)

vector Xi = (Xii, 1:i2, .. , Xi,,)' of covariates associated with the response. Let (3 =
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(fJ1,fh, .. ,fJl'l' be a (p xl) vedor of unknown regression paramctcrs. Supposc thc

rcsponsc Vi. has thc Poisson distribution with Incan Tni = eX ;f3, thcn thc probability

mass function of Vi is given by

The log-likelihood function is

f(v;)
e- m '7ny'

1}j!
(5.8)

10gL = c - tex;ri + tYiX:fJ
';.=1 ';.=1

(5.0)

where c is a constant. The estimating equation of the parameter vcctor can he

obtaincd by taking thc partial derivative of the log-likelihood with respect t.o (j;

which is givcn by

DlogL /I , I/.

--otJ = R(fJ) = 8(:1); - ex ,(3)x; = 8Ri(Yi,Xj,fJ) = O. (5.10)

Since t.here is no closed-form solution to Eq. (5.10), we use the Newton naphson

it.erative met.hoc! to estimate the regression paranlCter fJ:

(5.11)

where /It is the estimate of f3 in the tth it.eration, R(fJ) = 2::'=, fl~(Yi, Xi, fJ) =

2::'=1 (Yi - cX
:
(3 )x;, and R' (fJ) is t.he first derivative of R((j) wit.h rcspect t.o (3
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5.1.2 Binary Logistic Regression Model
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Let Y be 1 or 0, repre;;enting the succe;;;; or failure of a Bernoulli trial with specific

probabilitie;; P(Y=I)= n aJl(1 P(Y=O)= 1-n, and E(Y)= n. Thi;; i;; a special case of

the binomial di;;tribution with '11 = 1, and the probability ma;;;; function for Y i;;

f(y : n) = nY(1- n)l-y = (1- n)e.xp (Y 10g~) . (5.12)
1-n

The natural pftrameter is log 1 : n ' so the canonical link fnnction is the log link

'vVemfty write the link a.s

1:1;;~;i~?j3); i= 1,2, .. ,'II. (5.13)

This is ca.lled the binary logistic model, where x; = (.X;I, Xi2, ",1';,,) contftins the

value;; of the p-covariates for the ith response and the (p x 1) parameter vector

Suppose the re;;pon;;e )Ji, i = 1,2, .. , Tt, has a binary di;;tribution with n(x;) =

1 :1;:'~;i~?{:J)' then the estimate;; of (3 can be obtained by ;;olving the likelihood

estimating equation using the ewtoll Raphson method, as for the Poisson log-linear

regression.
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5.2 Robust Generalized Linear Regression
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As discussed earlier, the regression models work well when there are no outliers in the

response or iu the covariate da.ta. Outliers, especially in the covariates, may unduly

influence the estimation of the regression parameters. There me many methods iu

the literatme to down-weight these observatious so that bias correction cau be carried

out. \Ne propose identifying and down-weightiug outliers in the covariate data so that

out.lier-free data can be used to fit the regression models. We use the squared robust

distance based on t.he RMCD/RMVE estimators of the meau and covariance of the

covariat.e data t.o ident.ify out.liers.

Consider the generalized linear model for discrete dat.a (biuary dat.a or count

data), where Yi, i=1,2 ... ,n, is t.he discret.e response collect.ed from the ith individual.

Let Xi = (:[-iI, ;[i2, .. , :[il')' be the corresponding p-dirnensional observed covariate

vector corresponding to the response Yi and let (3 = ((3" (32, .. , (3J be the effects of

the covariates Xi on the response Yi. We consider the situation where the data coutain

a covariate outlier corresponding to the jth observation Yj, i.e., Xj is cont.aminated. It

is of primary iuterest to estimate (3 = ((3" (32, ", (31')' based on the uncontaminated

covariates Xi' However, the observed Xi'S iuclude the contaminated Xj' This causes

bias and hence inconsistency in the estimators. If t.here were uo outliers, we could
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obtain a con:;i:;tent e:;timate of (3 by :;olving the e:;timating equations. Our approach i:;

to identify and down-weight the outliers in order to get a consistent estimate of (3. In

this the:;is, we consider the :;ituation where the covariate data ha;:; few coutaminated

data and the re:;ponse data arc free of outlier:;. We also assume that the covariates

follow a normal distribution.

The /Iahalanobi:; distance (Mahalanobis, 1936) and leverage are often used to

detect outlier:;, e:;pecially in linear regres:;ion modeb. A data point that has a larger

(sqnared) Mahalanobis distaIlce than the rest of the sample is said to have higher

leverage since it has a greater influence on the slope or coefficient:; of the regression

equation. Note that the :;quared Mahalanobi:; distance for any :;ample data point Xi =

(1:il,Xi2, .. ,1;il')' is similar to the Hotelling T 2 :;tatistic for individual observations

as given in Eq. (1.4) and reproduced below:

(5.14)

where the :;ample mean x and :;ample covariance matrix 5 are based on 1/. :;ample

points. The sample mean and sample covariance arc highly sensitive to outliers, and

hence robu:;t estimation methods are preferred. The proposed RlVICD/RMVE-based

squared robust distance is used to identi(y and eliminate outliers in the covariate data.
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The robust Hotelling T 2 statistic (Eq. 3.1) discnssed in Chapter 3 is reproduced below:

T17A1cD(i) = (Xi - XIWCD)' STi~/CD(X; - XIlA/CD) (5.15)

T~A/lld·i) = (x; - XFU III I:;)' SJi~/lIdxi - XIlA/II/.;)

where XRA/en and XRA/III': are the location estimators and SnA/CD Hnd SRA/I'I; are

the scatter estimators under thc R.MCD/RMVE Inethods based on 11. covariate data.

These valncs can be compared with the quantiles fonnd via Eq. (3.2) and Tables 3.1

and 3.2 depending on the dimension and the confidence level. Observations with

T~A/CD/T~AIIII; valnes greater than the qnantiles are considered ontliers and nccd

to be down-weighted. A step-by-step approach for estimating the robust regression

parameters is as follows:

i) Compnte the robust estimates of the mcan and covariance of the covariate dn.t.a.

ii) Compnte the robust T 2 sta.tistic for the covariate data for each response using

Eq. (5.17).

iii) Find the critical values for the T 2 statistics for a given confidence level and

dilnension nsing Eq. (3.2).

iv) Identify the responses for which T 2(Xi) > the critical valne; these are ontliers.
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v) Assign weight W; = 0 to the response and to the covariates identified as outliers;

otherwise assign weight 'til; = 1.

vi) Est.imat.e the regression paranl('ters hy solving the weighted score equation

We conduct a simulation study for the Poissou log-linear model and the binary logistic

regression Inodel t.o study t.he eA'ectiveness of 0111' method.

5.3 Simulation Studies

\~!e have conductcd a large mnnber of simulatiou studics to assess the performallcc

of 0111' method for the Poisson regression model and the binary logistic regression

model. We examined the performance by estimating the regression parameters under

nlOdels with one or two outliers. vVe repeated each simulation 10,000 tinlcs and

computed the simulat.ion means (SM), the standard errors (SSE), and t.he relat.ive

bias (IlB) of these estimators. The relative bias for eaeh regression paramcter is

RE(/h) = I:;;;~:'\I x 100. We used the R function ghnO in the sta.ts library to estimate

the regression parameters.
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5.3.1 Poisson Regression Model
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We considered (3 =(3,3.5,0,0,2) with 11=(150,200,250) for the Poissonlllodcl and

11=(200, 250, 300) for the binary 11Iode!. Wc gCllcrated the covariates Xi for thc ith

respollse by assuming that it follows a multivariate normal distributioll with mean

and covariance as givcn bclow and fI = 0.50.

L:= , /1.= (5.16)

Data 'lIJ'dh a single outlier. To generate 7/. count observations with one outlier, we

first assume that ontlier-free data Yl, Y2, ", Yn are generated following the Poisson

density P(Y; = Yi) = el':~;;Y; , with Iii = ex;f3 where Xi = (Xii, Xn, ", ;i;il') are the nn-

contaminated covariates. ow cOIU;ider Yj as an outlying value among the n responscs

corresponding to thc eontaminatcd covariate Xj' To gct this Xj, wc shift thc valncs

of Xj by adding b > °to all 11 components of Xj and set Xi = Xi for all i =I j. We take

b =5.0 and thus YI, Y2, ", Yn arc a sam pIc of TI count observations with covariates

corresponding to Yj as the single outlier. 'vVe estimated the regression estimates based

a) The contaminated data of size n.
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b) The data excluding the contaminated covariate and the corresponding response.

c) The proposed method.

Table 5.1: Silllulated llIeans (SM), standard errors (SSE), and relative biases (RJ3) of esti­
llIatesofregression parameters under Poisson model withf3= (3.0,3.5,0,0,2.0) in presence
of single ontlier

13:1

{J'I

13:1

{J'I

{J"

(3'1 0.22,1

0.200

tJ,
(h

{J:I

{J"

{J,

Table 5.1 summarizes the results for the Poisson model with one outlier. \Ve

see that the regression estimates arc bia.sed by the outlier. However, the regression

estimates ba.sed on the outlier-free data and the estimates ba.sed on our method arc
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elo~e to the true regre~~ion parameter~. The relative bia~ corre~pollding to the~e

e~timators i~ also very slllHll. It i~ worth noting that for n! = 150, 200, and 250

the R!lICD method identifies the outlier~ in 99.36%, 99.45%, and 98.57% of the

silllnlations, and the R tIVE nlethod identifics thcm in 99.42%, 99.44%, and 99.59%

of the simulations. The method identified some outliers other than those gencrated,

but this is ncgligiblc.

Da.ta with two outliers. For thc Poissou model with two outlyiug observatioll ., the

couut responses are generated iu a Illanner similar to that for a siugle outlier. Aftcl

generating n count observatious frOln a Poisson model with the covariate valucs, wc

create two covariate outliers, namely Xj and Xk, j # k. The cOlltaminated covariates

Xj and Xk arc obtained by adding (j > 0 to ali]) componcnts of Xj and suhtracting fJ

from all]) components of X,,, with Xi = Xi for ftll 'I # j, k, i = 1,2, .. , n. 'vVe consider

(j = 5.0 for convenience and Table 5.2 summarizes the results.

'vVe see that the regression estimates are more biased whcn there are two ontlicrs.

The estimatcs based on the outlicr-frce data and those based on our method arc close

to the true regression parameter', and the relative biases are also small. For 171 =

150,200, and 250 the RMCD method idcntifies thc ontliers in 95.11%, 97.59%, and

98.30% of the simulations, and the RMVE method identifies them in 93.26%, 96.61%,

and 97.64% of the simulations. The method again identified some ontliers other than
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Table 5.2: Sinl1llateo means (SM), standard errors (SSE), and relative biases (RI3) of csti­
nlates of ·regression parameters nndcr Poisson model with (3 = (3.0,3.5,0,0,2.0) in prescnce

Salllplcsizc

(3,

(32

fh
(i.,

(i"

(3.,

0.8'16

0.82"

by RMCD fh

(3.,

those generated, but these proportions are negligible.

5.3.2 Binary Logistic Model

Data with a single outlier. For the contaminated binary model with a single olltlier,

we first generate n binary responses, YI, Y2, ", y,,, assuming that they do not contain
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any outliers. We generated n responses following the binary logistic model P(Y; =

1) = with 11. covariatcs so that Xi = (iii, .ii2, .. , iiI') and fJ = (fJ1, fJ2, .. ,(j,,).

The values of the covariates are chosen as for the Poisson model from IVIV (j.t,~)

with p =5. To create an ontlier covariate for the jth observation, we change the

corresponding covariate values Xj as for the Poisson model by adding 6> 0 to all p

components to get Xj' We again set 6 = 5. We retain Xi = Xi for all'i # j as for the

Poisson model. Table 5.3 surnmarizes the results.

Table 5.3: Silllulated means (SM), standard errors (SSE), and the relative biases (RIJ) of
estin\H.tesoftheregression parameters under the binary model withfJ= (3.0,3.5,0,0,2.0) in
the presence of single outlier

PI'. OrSCICcLion =0.6 111=200 111=250 1Il=300

SalllplcJ;izc Parnlllct.cl 8~1 88E IlB 8~1 881, IlB S~I S81, RIJ

\VithOlltlirr {J, 2.t185 1.035 50 2.531 0.880 53 2.54~ 0.780 58

{Jo 2.961 1.166 4(j 3.004 0.994 !iO :1.02" 0.883 5·1

{Jo -0.042 0.365 11 -0.O:J9 0.314 12 -0.035 0.285 12

{J" -0.0'18 o.:ms I:J -0.O:J7 0.317 12 -O.O:JI 0.283 II

(Jr. 1.629 0.755 49 1.670 0.640 52 1.678 0.569 57

vVit.hollLOtltlicl II, :\.:12!J 0.78!! 42 ~t 255 0.660 :1U :.1.202 O.5(j!) :\6

130 3.888 0.923 42 3.798 0.762 39 3.74:1 0.660 37

{J" 0.005 0.143 1 -0.002 0.:17(; 0 11.000 0.:1:1'1 0

{J" -0.006 0.4:J7 1 0.000 0.379 0 0.002 0.:1:12

{Jr. 2.22:1 0.600 :i7 2.177 0.505 :J5 2.1:15 0.'1:17 31

Outlier fJ, :J.28 1 0.81U :J4 3.226 0.678 33 3.182 0.58[, 31

dOwllwciglll.ed 130 :U~:J5 0.%5 :I!\ :1.767 0.782 34 :1.721 0.(;75 :13

by 1l~ICD II" 0.003 0.'138 1 -0.00:1 0.373 -0.001 0.332 0

{J" -0.008 0.<13:1 2 -0.002 0.377 0 0.001 0.330 0

{Jr. 2.191 0.620 31 2.157 0.515 31 2.122 0.·"17 27

Olltlier fJ, 3.288 0.852 3·' 3.231 0.671 34 3.181 0.588 :J1

dOWllwcighl,('d {Jo :1.840 0.!180 35 3.773 0.78:1 35 :J.714 0.6~0 31

by H.~IVI;: fJ" 0.004 0.·136 I 0.ull1 0.370 0 -0.00'1 0.3:15

{3., -0.004 0.438 1 -0.00:\ 0.:171 0.002 0.3:J2 0

fJ5 2.188 0.641 29 2.158 0.518 31 2.118 OAll!) 26
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We ~ee that the e~timator~of the regre~~ion parallleter~ arc biased by the ontlier~.

The e~tinJa.te~ based on the outlier-free data ami tho~e based ou 0111' method arc close

to the true parameters, and the relative bias corresponding to these e~tillla.tors is

also small. For m = 200, 250, and 300 the Rl'v[CD method identifies the outliers in

97.00%, 97.90%, and 98.24% of the simulations, and the RMYE method identifiC's

them in 96.62%,97.74%, ami 98.10% of the ~inllI!ations. The method again identified

~ollle outlier~ other titan tho~e generated, but the~e proportioll~ are negligible

Data with two outliers. For the contarninated billary model with two outliC'rs,

we first generate 'I/. binary responses in a manner sirnilar to that for a single outlier

when the covariates are chosen from the MY (tt, L;) with dimension p. Suppo~e

tha.t two outlying covariates Xj and Xl' arise as a. result of a shift in the covariate

va.lue~ as for the Poisson model by adding b > °to all p components of Xj and

subtract (5 fronl all p components of Xl', keeping the remaining values of the covariates

unchanged. \\Te again set b to 5 and Table 5.4 summarizes the re~ult~. We see

that the regression estimates arc more biased by two outliers than by one outlier

(Table 5.3). The regression estimates based on the outlier-free data alld those based

on 0111' method arc close to the tl'lle regression parameters, and the relativC' bias

corresponding to these e~tiIl1ators is small. For Tn = 200, 250, and 300 the RMCD

nlethod identifies the outliers in 98.44%, 98.78%, ancl 99.05% of the ~inllllations, ancl
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Table 5.4: Simulated ll1ean~ (SM), standard error~ (SSE), and the relative biH.~e~ (11.13) of
estinmte~ofthe regression parameters uuder the bina.ry model with {3 = (3.0,3.5,0,0,2.0) in
the presence of two outliers

/1:.

/3.,

(i,

/1,

by n~ICD {h

f3.

{3,

dowllwcigllt.cd Ih

Ih

{3.,

the nl\lVE method identifies them in 98.20%, 98.66%, and 99.02% of the simulations.

The method again identified somc outliers other than those generated, bnt thc~c

proportions arc ncgligible. This shows the effectiveness of Ollt' method for cstimating

regression paramcters with a InininlH.I effect from contaminated data.
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5.4 Comparison Study

90

We compared the re~;ults of our method with the fully standardized Mallow's type

qua.'ii-likelihood (FSMQL) estimation approach of Sari and Sntradhar (2010) in Pois-

son and binary regres::;ion models. The FSMQL approach is a robust version of the

quasi-likelihood estimation approach; brief details are given below. Qna.'ii-likelihood

estimation produces inconsistent estimates for the regres::;ion effects of f3 when out-

liers are present in the covariate data for GLMs for binary and count data. The

quasi-likelihood estimating equation for estimating f3 in the GLM is

(5.17)

where ii; = E[Y;] = exp(X;f3) and V(iid = var[Y,] = Pi for Poisson count data, and

(i.i = E[Y,] = and V(/i.;) = var[Y,] = /Li(l - iii) for binary data.

Cantoni and Ronchetti (2001) introduced a working Mallow's type quasi-likelihood

(Wl'vIQL) approach. They suggested reducing the effect of outliers by introducing

Huber's robust function for 1·; = ~ as

1/Jc(T;) = { 1·;

c si.gn(-r;)

if IT;I::;c

otherwise

(5.18)

where c is a tuning constant. The WJVIQL estimating equation j::;

(5.19)
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W(l:;) =~ for both Poisson and binary data, where hi is the ith diagonal

clement of the hat matrix H = X(X'.)C)-IX' with X = (XI,X2, .. ,x,,)' bcing thc

n x p covariatc matrix.

Bari and Sutradhar (2010) introduced FSlVIQL estimatiou approaches by modify-

iug the robust weights and gradient functions to varCtPc(1';)) and iJl/J~;;") respectively.

They demonstrated that the FSMQL approach produces almost unbiased and hencc

consistcnt cstimatcs for thc rcgrcssion effcct whcn outlicrs arc prcscnt in thc covariate

data. Thc FSMQL cstimating cquation is

(5.20)

They named this FSIVIQL 1• In FSMQL2 they used the deviance 'tPc(1';) - £C1,,,(1';))

instead of 1/J,.(1·i) - ~ L:;" £('I/)<:(1'i)) and the corresponding estimating equatiou is

vVe examiucd the performance of om method by estimating the regression pa-

rameters (3 uuder both Poisson and binary models with one or two outliers. The

simulation designs considered arc similar to those of Bari and Sutradhar (2010) for



5.4 COIVIPAR.ISON STUDY 92

llIeallillgful comparisons: 'n= 50 and p= 2 with (3 = ((31,(32) =(1.0,0.5). We ca.lcnlated

the SM, SSE, and TIS of these estinIators based on lOOO silllniations.

5.4.1 Poisson Case

Data with a single o'lLtlie7' : To generate n count observations with one outlil'r, first

assnllle that in the absence of outliers, YI, Y2, .. ,Yn are generated following the Pois­

SOil density P(Yi = y;) = r/';/:"', with p.; = ex:1! where X; = (Xi.I,X;2). The values of

these two covariates are chosen from

iii ~ N(O.5,O.25)and xi2 :i:.! N(O.5,O.5)

for i = 1,2, ", n. To make Yj the ontlying response, shift the valnes of Xjl and i j2

as follows:

and set fJ =2.0. Retain Xii = Xii and Xi2 = ii2 for all i i= j. Tlnls, YI,Y2, .. ,Y" arc

a sample of '11 connt observations with Yj as the single outlier.

Data with two outliers. For the Poisson modrl with two ontlying observations, the

count responses are generated in a manlier silnilar to that for a single ontlier. The

two covariates :ri1 and are chosen as

iii ~ N(1.25, 0.25) and Xi2 ~ N(2.25,0.S).
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Aftcr genera.ting n count obscrvations from a Poisson modcl with thesc covariatc

valucs, wc crcatc two outlicrs by shifting thc covariatc valucs :/;)1, and :/'k1, :Ck2 as

follows:

and = :ril and .ii2 = Xi2 for all i =!= .7, h:, i = 1,2, .. , TL Wc again sct b = 2.0.

Table 5.5 summarizes the results for the Poisson model, hcrc wc rcproduce rcsults for

FSMQL mcthods from Bari and Sutradhar (2010).

Tablc 5.5: Simulatcd mcans (S II), standard crrors (SSE), and rclativc biascs (RI3) of
cstimatcs of rcgrcssion parametcrs for sampic of sizc = 60 undcr Poisson modcl witli (J =
(1.0,0.5)inpresenceofoneortwoontliers

rSMQL, rS~IQL.,
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From Table 5.5, we sec that the regression pa.rmneter estimates using our nlethod

arc close to the estinIated values of the existing methods. They arc close to the

estimated values from the outlier-free data, and the relative bias is also close to that

of the outlier-free data. ate that the method has identified 100% of the outliers in

the one-outlier case and 99.35% in the two-outlier case.

5.4.2 Binary Case

Dala willi. n. single ouUie.,.. For the contaminated binary model with a single outlif'!'.

we first generate 'I/, binary responses, YI, Y2, ... , y" assuming that they do not contain

<lnyoutliers. We generated these 11. good responses following the binary logistic model

P(Y; = 1) =

Snppose that the values of these two covariates arc chosen fronl

:iii ~ N(-1.0,0.25) and :1:i2 ~ N(-1.0,0.5)

for 'j = 1,2, .. , n. To create an outlier f'ovariate Xj, we change the corresponding

covariate values Xjl and Xj2:

with :I:il = Xii and :£i2 = Xi2 for all i i= j. We set (5\ =3.0 and 61 =4.0. The renlaining

covariates are unchanged, i.e., iii = :I:il and in = Xi2 for 'j i= .1, k, i = 1,2,
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The jth response Yj is replaced with a binary value corresponding to P(Yj =1)= 1r =

0.60 and 0.90.

Data with two outliers. For the contaminated binary model with two outliers, we

first generate n binary responses in a manner similar to that for a single outlier with

two covariates Xii and 1:i2 chosen from the normal distribution as XiI ~ N(0,0.25)

and 1:i2 ~ N(0,0.5) for i = 1,2, .. , n.

Suppose that two covariate outliers Xj and Xk arise as a result of a shift in the

(5.21)

We retain XiI = Xii and 1:i2 = Xi2 for all i =I j, k. Consequently, for the large values

of 01 =3.0 and 02 =4.0, the covariates corresponding to Yj and Yk become outliers.

The j-th response Yj is replaced with a binary value corresponding to probability

1r = 0.60 and the kth response Yk is replaced with a binary value corresponding to

probability 1r = 0.40. Table 5.6 summarizes the results for the binary model, here too

we reproduce results for FSMQL methods from Bari and Sutradhar (2010).
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Table 5.6: Simulated mean~ (SM), ~tandard error~ (SSE), and relative bia~e~ (RI3) of
e~timat~ of regre~~ion paraJlleter~ for ~aJllple of ~i7.e = 60 under binary model with f3 =

(1.0,0.5) in pre~ence of one or two ontlier~

We see that the parameter estimates using our method are close to the tme pa-

rameter values, and the relative bias is also small, as for the Poisson mode!. ote that

the estimates based 011 011I' method arc close to the estimates based on the outlier-free

data, and the method has identified 100% of the outliers in the three cases considered.



Chapter 6

Conclusions and Future Work

There is llluch interest in control charts that monitor the process mean and process

variance when individual multivariate observatious arc collected froln an indust.rial

process. The existiug methods are influenced by outliers in the Phase-I data, which

affect their efficiency in t.he Phase-II monitoring. Hence, it. is important to develop

methods that are not unduly influenced by outliers. III this thesis, we have proposed

robust. control charts using t.he high-breakdown robust estinlation methods Rl\/CD

and Rl\IVE to lllonitor t.he process mean and the process variance for individua.l

mnltivariat.e observat.ions. We have also discussed the use of robnst estimation in

generalized linear regression nlOdels.
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We have proposed robust Hotelling's T 2 charts ba:;ed on the TlMCD/RMVE csti-

mators for the Phase-I monitoring of the process mean, when individual multivariate

observations are collected. The control limits for these chalts are found empirically

and a nonlinear regression model is used to find the control limits for any sanlple

size. 'vVe studied the performance of our charts under various data scenarios using a

large number of IVlonte Carlo simulatious, ami they performed better than the sta.u­

dard I-Iotelling's T 2 chart. We also compared our proposed charts with robust control

charts I.nU:ied on MCD/MVE estilnators using the coucept of the probability of a sig-

nal. Our charts provided superior perfol'luance. Our simulation studies indicate that

rr:lvIVE-based charts perform well for smaller sample sizes and smaller dimensions

and RMCD-based charts perform well for larger sample sizes and larger dimensions

in the case of robust T 2 charts.

We have proposed robust control charts using the MEWMS/IVIEWMV schemes

based on Rr../ICD/RMVE estimators for Pha:;e-I monitoring of the process variance

when individual nlllltivariate observations arc collected. Vve compared the perfor­

mance of our charts under variOll.· data scenarios using a large number of Monte Carlo

simulations. They perform better than existing charts, namely the MEWMS anel

MEWMV charts proposed by Huwanget al. (2007) and the MEWMSL I , lV1EW/lfSL2 ,

JlIEWIHVL I , and MEWMVL2 charts proposed by Memar Hnd Niaki (2009). The
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performance of the chart:; was :;tudied for slllall value:; of the smoothing panuneter:;

wand '\, ami they were found to be better than the existing methods. We would like

to extend the concept of robust control charts to the Phase-II monitoring of the pro-

cess variance when individual multivariate observations arc collected since detC'cting

process variability changes is often more critical for improving qnality than det.ecting

process mean shifts.

Outlier:; in regression data, e:;pecially in the covariate:;, may unduly inflnence

the estimate:; of the regression parameters. We have propo:;ed a robust rcgrC'ssion

approach that identifies and down-weights these outliers using the squarcd robust.

tllahalanobis distance based on the RMCD/RMVE estimators of the covariate data.

We assessed the performance of our method nsing a large Illnnber of MOlltC' Carlo

:;imlliations. We showed that it j:; effective ill freeing the GLM rcgre:;sion p:;timaton;

from the effects of ontlying covariates. We wonld like to ext.end t.he nse of robn:;t.

e:;timates of the multivariate mean and covariance matrix to rcgres:;ion mode\:; with

correlated data.
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