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Abstract

Multivariate control charts are widely used in industry to monitor changes in the

proce

mean and process variability. The classical estimators, sample mean and

mple variance, used in control charts are highly sensitive to outliers in the data. In
Phase-I monitoring, the control limits are set based on the historical data after the
outliers have been identified and removed. The identification of the outliers in Phase-1
is not straightforward. We propose robust control charts with high-breakdown robust
estimators based on the re-weighted minimum covariance determinant (RMCD) and
the re-weighted minimum volume ellipsoid (RMVE). These charts monitor the process
mean and the process variability in the historical Phase-I data in the case of individual
multivariate observations.

To monitor the process mean, we propose using Hotelling’s T2 control charts with

RMCD and RMVE estimators of the mean and the covariance matrix. We set the

control limits empirically based on a large number of Monte Carlo simulations. We



iii

assessed the performance of these methods by considering different data scenarios and
found that our methods improve on existing methods. We suggest using robust 7%
charts based on RMCD estimators for data with large samples and large dimensions

We

and RMVE estimators for data with smaller samples and smaller dimensions

also propose using robust versions of the MEWMS/MEWMYV schemes to monitor

process variability in Phase-I. The control limits of these robust control charts are

set empirically, and the charts improve on existing methods. We also extended the

stimation in the context of generalized linear models.

concept, of robus
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Chapter 1

Introduction

1.1 Overview

Quality has become the basic consumer decision factor in a competitive market, Con-

sumel

s who have long-standing relationships with the same supplicrs may select al-
ternatives when better-quality products or services are available. The quality of a
product or service can be defined as the sum of the characteristics that impact its

the stated and implied needs of the customer. The manufacturing

ability to satisfy
and service industries are placing more emphasis on the quality of their products and
services as they realize that “the cost is long forgotten but the quality is remem-

bered for ever.” As the expectations of customers grow, businesses must continually
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improve the quality of their products and services in order to remain competitive

a result of con-

High standards do not happen by chance; they evolve over time as

ations can secure th

tinuous improvement. Organi: ir future by engaging in continual

improvement and adopting new processes for conformity assessment. A product or

should meet high standards in terms of both quality of the design and quality

ice

of conformance. The quality of the design reflects the customer requirements, and

quality of conformance is achieved when the actual product or service is as close as

possible to the design.

tical tools used to monitor and

a set of stat

Statistical process control (SPC)
control a process to ensure that it produces a conforming product. SPC techniques
problems, so that appro-

help to identify the root canses of quality and productivit;

priate corrective and preventative measures can be taken. SPC is usually applied to

manufacturing processes, but it is suitable for any process with a measurable ontput.

The use of SPC in industry has increased in recent years because of improvement in

data collection and data-handling systems. The most widely used SPC technique i

the control chart.

tive SPC tools. The

Control char are used to identify

are important and effe

and remove the assignable causes affecting a process, thereby ensuring that the process

is in statistical control, i.e., it is affected by chance es alone. Control charts are
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graphical devices for detecting changes in the manufacturing conditions due to the

presence of assignable causes by comparing the observed values with limits derived

from the historical (Phase-I) data. The Phase-II data analysis consists of monitoring

future observations based on the control limits found from the Phase-1 estimates to

determine whether or not the process continues to be in-control. The most commonly

s and X-s charts,

used variable-type control charts for univariate data are X-R chart

mean, and the R-chart (or s-chart)

where the X-chart is used to monitor the proc

is used to monitor the process variability.

1.2 Multivariate Process Monitoring

In many applications in industrial quality control, more than one quality characteristic
is of interest, and hence multivariate control charts are more relevant than univariate

istic can also be used. However,

charts. Individual charts for each quality charact

characteristics are correlated, multivariate control charts are more

when the quality

effective than multiple charts. The most commonly used multivariate chart to monitor

the process mean is Hotelling’s 72 control chart (Hotelling, 1947). The 5% chart,
G-Chart, multivariate exponentially weighted mean square (MEWMS) chart, and

multivariate exponentially weighted moving variance (MEWMV) chart are used to




1.2 MULTIVARIATE PROCESS MONITORING 4

monitor the process variance in the multivariate case. A brief description of these

chart

is given in the following sections.

1.2.1 Monitoring Process Mean

Hotelling’s T? control chart monitors shifts in the process mean assuming that all

s are normally distributed. In many situations, multivari-

the quality characteristi

c., sample data

ate data are collected according to a rational-subgroup concept, i.

are collected at some time point in the process. Let X, X -, X, be the p qual-

LX)

s normally

ity characteristics of interest. We assume that X= (X, Xy,
distributed with multivariate mean p and covariance matrix £. We collect m sam-

For the ith subgroup, we have

ubgroups) of size n each at regular interva

ples

n samples of p-dimensional observations: (i, @2, -+, @ip) s (Tian, Tizay -+ 44

o, (it Tz, -+ Tinp) - The sample mean vector and sample covariance matrix f

this subgroup are estimated as:

Lo
% = (T, Ty oo, Ty) = — D %y and
n
E

Som (11)

T s R~ i= L

1,2,---,n) p-dimensional observa-

gt ) s the jth (

where x;;

iance matrix ¥ are estimated by

tion from the i-th subgroup. The mean j and cove
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averaging the sample means and sample covariances over all m subgroups:

(1.3)

The Phase-I and Phase-11 control limits of the 77 chart are found based on the F-

distribution with (p, mu-m-p+1) degrees of freedom

However, it is time-consuming and difficult to collect rational subgroups of size

greater than one when the processing time is too large or the production rate is too

slow. When the differences among repeated measurements are due to laboratory or

analysis error, as in many chemical processes, it is not convenient to collect subgroups

of size greater than one. Hence, individual multivariate observations are important

» monitor a multivariate process mean in this case, for the ith individual multivariate

observation from a sample of size m, we calculate

T3() = (xi = %) S0 (xi = %) (1.4)

where x; =(zi1,%a, . .. = 1,2,-++ ,m, are the p-variate observations. The
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sample mean x and sample covariance matrix S, are

-
=Y x
m

So=—— Sxi—x)(xi - %)

As shown by Tracy, Young, and Mason (1992), the Phase-I control limits of the 7

chart are found based on a beta distribution with (p/2, (m-p-1)/2) degrees of freedom,

and the Phase-I1 control limits are based on an F-distribution with (p, m-p) degrees

of freedom.

1.2.2  Monitoring Process Variability

Alt and Smith (1988) proposed multivariate control charts for monitoring process
variation in the Phase-I data when the data are collected in subgroups where each
p-dimensional data point follows a multivariate normal distribution with mean y and

riate s? chart to the multivariate

covariance matrix ¥. They have extended the univ:

case. The S? chart is based on the likelihood ratio test Hy : £ = %y vs ¥ # ¥,

ven m subgroups cach of size n from p-dimensional multivariate data, we define

the statistic W; for cach subgroup i = 1,2,--- ,m:

Wi=—p(n—1) = (n=1DIn(| S ) + (n = Dn(| Lo ) + (n = Der(S5'S)  (1.5)
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where In is the natural logarithm, tris the trace function, | . | is the determinant, and

S, is defined as in Eq. (1.1). When % is known, the value of W; is compared with
the upper control limit (UCL)= x4y 1_ay» Where T — a is the confidence level
If the value of £ is not known, it can be estimated by | §* |= £ Y, | S, | Alt
and Smith (1988) showed that (] 5° ) = by | Sy | where by = gt [T2-y(n = ).

151
O

and we can construct the S? chart

Therefore, an unbiased estimate of ¥ is
using the statistic W;. The UCL is found empirically by Monte Carlo simulation such
that the overall false alarm probability is a.

Alt and Smith (1988) introduced another chart known as the | S [1/2 chart using
the property that most of the probability distribution of | S |'/? is contained in the

interval

E( S| £3\/V(S]'?)

where B(| S [112) = by | S [/2 and V(] S [1/2) = (b — 83) | Sy | with by =

If £ is known, the UCL for the | § |2 chart is

1202 (b.x +3y/b - r,j:), (1.7)

) s —
1f Sy is not known, | 3o |/2 is estimated using % where | §** |/ is caleulated
O3

by LY, 1S V2, and the UCL is

2=l

|G| (1+3 (1.8)
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Levinson, Holmes, and Mergen (2002) suggested the G chart, based on the com-

parison of the sample covariance matrix of cach subgroup with an overall estimate

of ¥y, They calculated the weighted average of S; in Eq. (1.1) and S in Eq. (1.2)

-1 —-1)S;
55(i) = % For each subgroup, the statistic for the control

chart is

Gi=k x (n—1){In(] $:(i)

)—mx (| S) = (| S; )} (1.9)

L5 ot 43p—1
n—1" 6p+1)

where 1—a is the confidence level. The process variability is monitored by comparing

where k = 1 — { }. The UCL of the G chart is B, 1)/ )
the value of G; with the UCL, as for the other control charts, with LCL = 0.

As discussed earlier, obtaining samples with a subgroup size greater than one
is difficult in many practical situations, and the monitoring of variability based on
individual observations is preferred in such circumstances. Huwang, Yeh, and Wu
(2007) proposed two control charts that use individual observations to monitor the

process variability. They considered the following two situations:
o Changes in the process variability when there is no shift in the process mean;
o Changes in the process variability coupled with a shift in the process mean.

They introduced charts based on the MEWMS scheme for the first case and the

MEWMYV scheme for the second case, using the trace of the unbiased estimate of the
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covariance matrix. They showed that these two charts perform better than multiple

cumulative sum charts (MCUSUM) and multiple exponentially weighted moving av-

erage (MEWMA) charts for various scenarios. However, they could not explain the
situation in which in-control and out-of-control covariance matrices have the same
trace.

Memar and Niaki (2009) suggested new charts to overcome this deficiency. They
modified the control charts of Huwang et al. (2007) by introducing the L. norm

function for any vector 7= (3 1%) of length p as:

= (Izl )m (1.10)

Instead of the trace, they considered L; and L, functions (sum of absolute values or

sum of squares) of the deviation of each diagonal element of the unbiased estimate of

the covariance matrix from its

arget value. They showed that their MEWMSL,,

MEWMSLy, MEWMV L, and MEW MYV L, charts perform better than that of

Huwang et al. (2007) under various scenarios.

1.3 Background of Problem

The historical Phase-I data is analyzed to determine whether the data indicates a

stable (or in-control) process and to estimate the proc

parameters and construction
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of control limits. The Phase-IT data analysis consists of monitoring future observations
based on control limits derived from the Phase-I estimates to determine whether the
process continues to be in-control or not. But trends, step changes, outliers and
other unusual data points in the Phase-1 data can have an adverse effect on the

ie. Any deviation from

estimation of parameters and the resulting control limits.

ically and independently distributed from

the main assumption (in our case, identi
multivariate normal distribution) may lead to out of control situation. So it becomes
very important to identify and climinate these data points prior to calculating the
control limits. In this thesis, all these unusnal data points are referred as “outliers™.
Care should be taken in the analysis of the Phase-I data, especially when outliers are

s that

present. Control limits based on data from unstable (or out-of-control) proces

Phase-I1 monitoring.

contain outliers will be , leading to ineffecti
It is more difficult to detect outliers in multivariate data than in univariate data.

Univariate outliers can be easily identified graphically but identification of multivari-

ate outliers are often not possible in higher dimensions. More over, there are many

ways that multivariate outliers can come from an out-of-control process such as:

a) a few or cluster of outliers due to changes of location in random directions;

b) multiple clusters of outliers in different directions;

¢) data points with the same location as the good data but with more va
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d) a shift in some of the elements of the location vector but not all of them.

) multiple outliers are present and inflate the estimates in such a way that they mask
each other so that it is difficult to detect.

Rocke and Woodruff (1996) stated that the most difficult multivariate outliers to

detect are those that have the same variance-covariance matrix. These outliers are
referred to as “shift outliers” because their center has been shifted from the center of

the other data points. If shift outliers can be detected by robust estimation methods,

then such methods will likely to work well for all other types of outlicrs.

sensitive

The classical estimates, sample mean and sample covariance, are high
to outliers; we need estimation methods that are more robust. Sullivan and Woodall

ve differences

(1996) proposed an estimate of the covariance matrix based on suc
of the multivariate observations to reduce the effect of shift outliers. This is equivalent

to the use of the moving range to construct a Shewhart individual control chart in

the univariate case.

Sullivan and Woodall (1996) defined the vector Vj to be

Vi=Xjn—=X; j= sy (m=1).

the unbiased estimator of the covariance

When the control chart is constructe

S VY replaces the covariance matrix S, in Eq. (1.4).

matrix, S.(1) = 5; Gt

Successive-difference charts are effective for detecting sustained step changes but not
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for detecting multiple multivariate outliers. Robust estimation methods are suitable
for detecting multivariate outliers because of their high breakdown points, which
ensure that the control limits are reasonably accurate.

Vargas (2003) introduced robust control charts that used two robust estimates of
the location and scatter, namely the minimum covariance determinant (MCD) and
the minimum volume ellipsoid (MVE), to identify multivariate outliers. The exact
distribution of 7% with the robust estimators based on MVE and MCD was not
available, so the control limits were obtained empirically. Jensen, Birch, and Woodall
(2007) showed that the T3y, and T§yy,p; control charts have better performance in

the presence of outliers.

The MCD/MVE estimators have low statistical efficiency because they use only
some of the data points. We propose control charts based on the re-weighted min-
imum covariance determinant (RMCD) and the re-weighted minimum volume ellip-

soid (RMVE) to monitor the shift in the process mean and the shift in the variability.

RMCD/RMVE estimators are statistically more efficient than MCD/MVE estima-

tors and have a manageable asymptotic distribution. Chenouri, Steiner, and Variyath

(2009) used RMCD estimators to monitor the Phase-II data when there is a shift only

in the location. However, in many situations Phase-I control charts are necessary to

s performance and to identify outliers.
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Va

gas and Lagos (2007) proposed the robust G control chart (RG chart) to
monitor the covariance matrix in the case of subgroup data. They modified the

G chart suggested by Levinson et al. (2002) by using the MVE estimator of the

covariance matrix of the full data, instead of the pooled covariance estimator £

used
by Levinson et al. (2002). They showed that the RG charts are able to detect changes
in the variability. However, to date there are no robust control charts that monitor
the covariance matrix for individual multivariate observations.

The problem of presence of outliers in the individual multivariate data can be

viewed in three different perspectiv

o A shift in the mean vector of the process.
o A change in the covariance matrix process.

A shift in mean vector together with a change in the covariance matrix.

The goal of this the:

s to address the outlier detection problem from these three
perspectives with emphasis on robust estimators and to highlight the applications of
the RMCD and RMVE in the areas of statistical quality control. We propose to use

robust control charts based on RMCD/RMVE estimators and arrive the control limits

empirically as the corresponding statistics do not have closed-form distributions. We

fit a nonlinear regr

ion model to find the control limits for a given sample size
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in the case of RMCD/RMVE-based T? charts. Our simulation studies show that
RMCD/RMVE-based charts perform well compared to existing charts in monitoring
the shift in the process mean and the shift in the process variability. We also propose

to use the outlier detection method with RMCD/RMVE estimators when estimating

3

the 1 s of a 1 linear regression model.
The remainder of this thesis is organized as follows. In Chapter 2, we discuss

existing robust estimation methods, and we formally introduce the RMCD and the

RMVE. In Chapter 3, we discuss the proposed robust charts for monitoring shifts in

ions for Phase-I data. We com-

the mean vector for individual multivariate observ:
pare the performance of the charts via simulation studies. In Chapter 4, we discuss
multivariate control charts for individual observations to monitor process variability
when the process exhibit shift in mean as well as variability. We compare the per-
formance of the charts via simulation studies. In Chapter 5, we consider using the

RMCD/RMVE estimators to identify and remove outliers in the covariate data and

to find robust estimates of the regression | s in the g ized linear model.

In Chapter 6, we summarize our results and discuss directions for future research




Chapter 2

Robust Estimators

To study a variable of interest and i

s properties, we need to know the parameter

that characterize its distribution. In practical situations, the true parameter val-

ues are unknown and we must estimate them from the sample data. For example,

suppose a p-variate quality characteristic follows a multivariate normal distribution

characterized by mean vector 1 and covariance matrix %, These parameters are often

estimated by the sample mean and the sample covariance matrix, since they have

most of the characteristics of good estimators. However, these ¢

timators are highly

sensitive to the presence of outliers. In contrast, robust estimators are not unduly

affected by outliers. If outliers are present in the data, robust estimators are more

There are a number of such estimators available in the literature but

appropriat
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varying properties.

2.1 Desirable Properties of Robust Estimator

A good robust estimator has the following propertics:

o Affine equiv

ance;

® High breakdown point;

o Statistical efficiency;

e« Computational efficiency.

X" = (X1, %, -

Affine equivariance : Consider a multivariate data X;) with m

observations where X; = (iji, @2, , ;) represents the jth multivariate observa-

tion with dimension p, j = 1,2, ,m. Estimators T,y of the location parameter
and C,, of the covariance matrix ¥ are affine equivariant if for any nonsingular pxp

ix A and vector b € R?,

T..(AX +b) = AT,,(X) + b

Co(AX +b) = AC,.(X)A". (2.1)

Such estimators are unchanged or change in appropriate ways when the measurements

and the parameters are transformed. Affine equivariance is important because it
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makes the analysis independent of the measurement scale of the variables and of

transformations or rotations of the dat:
Breakdown point : The breakdown point concept introduced by Donoho and Hu-

robustne

ber (1983) is often used to ass The breakdown point is “the smallest
proportion of the observations which can render an estimator meaningless.” For exam-

ple, let X" be a random sample of m observations and T, (X™) be the corresponding

estimator of the parameter of interest. Consider replacing k points in X" by arbitrary

values and let the new data be repres by X™®. The finite-sampl

point of the location estimator T,, for the sample X™ is the smallest fraction £ of

'y the estimate over all bounds. It is given by

ontliers that can cas

(T X™) = min { £
-

up [T, (X™®) = T (X™)]| = w} (2:2)

where .| is the Euclidean norm.

If ¢(T,,, X™) is independent of the initial sample X™, we say that the estimator T,
has the universal finite-sample breakdown point €,,(T,,). We can then caleulate its
limit € = liny, o€ (T)n), which is often called the asymptotic breakdown point or
the breakdown point. A higher breakdown point implies a more robust estimator. The
highest attainable breakdown point is § in the case of the median in the univariate

case. The breakdown point of asample mean of size m is 1/m, and hence for univariate

data, the sample median is more robust than the sample mean.




2.1 DESIRABLE PROPERTIES OF ROBUST ESTIMATOR 18

It is difficult to find an affine-equivariant robust estimator since affine equivariance

Lopuhaii and Roussceuw (1991) and

and high do not occur si

Donoho and Gasko (1992) pointed out that no affine-equivariant estimator can attain

(m-pt1)

Loertl The largest attainable finite-sample

a finite-sample breakdown point of

point of any affine-cquivariant estimator of the location and scatter matrix

on to invariance

1987). Relaxing the affine-cquivariance condi
under the orthogonal transformation makes it easy to find an estimator with the
highest breakdown point of 1.

aid to be statistically efficient if it estimates

Stati An estimator is

ical efficien

the quantity of interest in the best possible manner. The definition of “best possible”
depends on the choice of loss function, the function that quantifies the relative degree
of undesirability of estimation errors of different magnitudes. The most common loss
function is quadratic, resulting in the mean squared error (MSE) criterion of optimal-
ity. Hence, we consider an estimator to be efficient compared to some other estimator
if its MSE is smaller for at least some values of the parameter. For example, for a
sample of size m from the normal distribution with mean y and standard deviation
1, the sample mean and sample median are unbiased estimators of g and their MSEs

ively. The mean is more efficient than the median since its

are 1/m and /2m respe

MSE is smaller.
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Computational efficiency : Tt should be possible to caleulate the estimator in a
reasonable amount of time. However, it is better to use an efficient method that
takes a reasonable time but finds all the outliers than one that takes a lesser time

and misses many of them.

The sample mean and the covariance matrix of the location and scatter param-

sample breakdown point can be as low as L,

cters are affine cquivariant but their 1

where m is the sample size. Several multivariate robust estimators of z and 3 have

been proposed. These include the M-estimators (Maronna, 1976), the Stahel Donoho
estimators (Stahel, 1981; Donoho, 1982), the S-estimators (Roussceuw and Yohai,
1984; Davies, 1987; Lopuhaii, 1989), and the MVE and MCD estimators (Rousseenw,
1985). The M-cstimators are computationally cheaper, but their breakdown point,
under some general conditions, cannot exceed —L; (Maronna, 1976; Huber, 1981),

and the breakdown point reduces as the dimension increases. The Stahel-Donoho

estimators are reasonably efficient and have the sample breakdown point ¢*52+2)

(Donoho, 1982), but they are computationally expensive. The S-estimators can at-

(»

tain the sample breakdown point “251 but are also computationally expensive. The

MCD and MVE estimators have the highest possible finite-sample breakdown point

@2t The rate of convergence is m~" for MCD and m~'/* for MVE. However,

these estimators have low asymptotic efficiency under normality. RMCD and RMVE
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have better efficiency without compromising on the breakdown point and the rate of
convergence. In the next two subsections, we discuss the MCD and MVE estimators

and their re-weighted versions and the associated computational procedures.

2.2 MVE and RMVE Estimators

The MVE estimators of location and scatter of a distribution are determined by the
ellipsoid of minimum volume that covers the subset of data points of size i = m*y

where (0.5 < 5 < 1) . Here ¢ = 1 — y represents the breakdown point of the MVE

estimators. The MV

location estimate is the geometrical center of the ellipsoid,
and the MVE scatter estimate is the matrix that defines the ellipsoid, multiplied by
an appropriate constant to ensure consistency (Rousseenw and Van Zomeren, 1990;

Woodruff and Rocke, 1994). Thus, the MVE est;

mator does not correspond to the
sample mean and the sample covariance matrix of the data points that constitute
the ellipsoid of minimum volume. The MVE estimator has its highest possible finite-

sample breakdown point when h = @2+ (Davies, 19

Loupuhaii and Roussceuw,
1991). It has an m~"/3 rate of convergence and a non-normal asymptotic distribution.
Calculating the exact MVE for a data set X" would require examining all ()

ellipsoids containing h observations of X™ to find the ellipsoid with the smallest
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volume. While the MVE is interesting, finding the MVE estimator can be difficult

. The first step is to find the best half-

in practice; it is essentially a two-step proces

set. consisting of /& points. The second step involves finding the ellipsoid of minimum
volume that covers the selected half-set. A given half-set is covered by many ellipsoids.
Titterington (1975) found that the second step is equivalent to finding a D-optimal
design for a design region where the points in the half-set are the design points.
Thus, iterative algorithms that find D-optimal designs could be used to find the best
covering ellipsoid. The first step is referred to as the subset problem, and the second
step is referred to as the covering problem.

As the sample size m and the data dimension p increase, the computational effort
vequired to find the half-sets increases exponentially. For example, if m = 25 and p =

2,50 that h = (254+2+1)/2 = 14, then there are a total of (28)/(14!14!) = 40, 116,600

half-sets. When the best half-set has been found, additional caleulations are needed
to find the best covering ellipsoid.

Computing the MVE estimators is expensive or impossible for large sample sizes in

Ligh dimensions (Woodruff and Rocke, 1994). Rousseeuw and Leroy (1987) proposed

an approximate sub-sampling algorithm to find these estimators. This algorithm

considers a fixed number of random subsets, known as elemental subsets, each con-

For each elemental subset, the sample mean vector and sample

taining p + 1 points.
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variance-covariance matrix are calculated, determining the shape of an ellipsoid. The

of this ellipsoid is then increased by multiplying by a constant until it covers at

least h data points. The ellipsoid with the smallest volume is then used to obtain

the MVE estimates. It has been shown that this sub-sampling algorithm retains the

o) subsets of

affine-cquivariance property of the MVE estimator. Moreover, if all (|
size p+ 1 are considered, then the solution of the algorithm has the same breakdown
value as the exact MVE (Rousseeuw, 1985).

Croux and Haesbroeck (1997) modified the standard sub-sampling algorithm by
taking the average of the solutions corresponding to several near-optimal subsets
instead of considering only the optimal solution. They showed that their average so-
lution maintains the breakdown value and has better finite-sample efficiency (Croux

and Haesbroeck, 2002). Davies (1987) updated the center and scatter estimates corre-

sponding to the best subset, using h observations in the MVE. Davies (1992) showed

that the MVE estimators of location and scatter converge at rate m~"% to a non-

wissian distribution. This low rate of convergence implics that the asymptotic

efficiency of the MVE estimators is 0%.

ical inference

If robust multivariate estimators are to be of practical use in statis

they should offer reasonable efficiency under the normal model and a manageable
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asymptotic distribution. A two-stage or re-weighted procedure provides both robust-
ness and efficiency. A highly robust but perhaps inefficient estimator is first computed.
This is used as a starting point to find a local solution for detecting outliers and com-

t; see Rousseenw and

puting the sample mean and covariance of the cleaned data
Van Zomeren (1990). This involves discarding those observations whose Mahalanobis
distances exceed a fixed threshold.

The RMVE estimators are the weighted mean vector,

e

Knave .x,) / (Z w.) : (23)
=
and the weighted covariance matrix,
Sharvis = o+ A % 3 wi(%i = Xy ) (% — Xarvi (2.4)
=

where ¢, and d2% are the multiplication factor for consistency (Croux and Haes-

brocck, 1999) and the finite-sample correction factor (Pison, Van Alest, and Willems,

The weights are based on the robust distance :

(% = Xarve) Sy (X = Xnve). (2.5)

RD(x;) =
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The RD(x;) is compared with /gy, where g, is the (1-a)100% quantile of the chi-
square distribution with p degrees of freedom, and weights are assigned to the corre-
sponding observation as :
1L if RD(x:) < /i
w = (2.6)

0 otherw

It has been shown that the RMVE estimates do not improve on the convergence rate

(and thus the 0% asymptotic efficiency) of the initial MVE estimator (Lopuhaii and

Rousseeuw, 1991; Pison et al., 2002). As an alternative, a one-step M-estimator can

be calculated with the MVE estimates as the initial solution (Croux and Haesbroeck,

1997; Woodruff and Rocke, 1990). This results in an estimator with the standard
m~ /% convergence rate to a normal asymptotic distribution. This sub-sampling al-

gorithm has been implemented in SPLUS, R, SAS, and MATLAB.

2.3 MCD and RMCD Estimators

An alternative high-breakdown estimator is based on the MCD; it was first proposed
by Rousseeuw (1984). It is obtained by finding the half-set that gives the minimum
value of the determinant of the variance-covariance matrix. The resulting estimator
of the location is the sample mean vector of the points that are in the half-set. The

estimator of the dispersion is the sample variance-covariance matrix of the points
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multiplied by an appropriate constant to ensure consistency, as was done for the
MVE. In contrast to the MVE, the MCD estimators correspond to the mean and
covariance of a specific half-set. The MCD estimators are simple to calculate once
the best half-set has been found; they do not require a solution to the covering

problem.

The MCD estimators of the location and scatter of the distribution are determined

by the subset of observations of size h = m*y, where (0.5 < 5 < 1) whose covariance
matrix has the smallest possible determinant. Here ¢ = 1— represents the breakdown
point of the MCD estimators. The MCD location estimate Xycp is the average of

this subset of i points. The MCD scatter estimate is given by Sycp = ay, * by, *

the

‘Mep. where Cyep is the covariance matrix of the subset, the constant a,,
multiplication factor for consistency (Croux and Haesbroeck, 1999), and b}, is the

finite-sample correction factor (Pison et al., 2002).

The MCD estimator has its highest possible finite-sample breakdown point when

P

It has an m~/? rate of convergence but low asymptotic efficiency under
normality. Computing the exact MCD estimators (Xacp, Syep) is expensive or

impossible for large sample sizes in high dimensions (Woodruff and Rocke, 1994) and

s0, as for the MVE, various imate algorithms have been 1A fast

algorithm was proposed independently by Hawkins and Olive (1999) and Roussecuw
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and Van Driessen (1999). The algorithm of Rousseeuw and Van Driessen, known as
FAST-MCD, typically finds the exact MCD for small data sets and an approximate
MCD for larger data sets. The FAST-MCD is implemented in SPLUS, R, SAS, and
MATLAB.

As is the case for MVE estimators, MCD estimators are not efficient. Hence, a

re-weighted version similar to that for MVE has been proposed by Rousseeuw and van
Driessen (1999). This two-step procedure improves the efficiency while retaining the
other properties of the MCD estimator. The asymptotic convergence rate of the MCD

al estimator

estimator is m~'/2, and hence it is considered the best choice for the i

of a two-step procedure. Based on the two-step approach, the RMCD estimators are

Xpaien = ( 3 m,x,) / (Z m,) (27)
i =

Siatn = Cag* Al % Y wi(xi = Knnen)(Xi = Xnnien) | Y wi (2:8)

where ¢, and d2 are the multiplication factor for consistency and the finite-sample

correction factor. The weights w;= 0 or 1 are based on the robust distance as for
RMVE:

RD(xi) = \/ (xi = Xaren) Syjen(Xi = Xaien).- (2.9)

This re-weighting technique improves the efficiency of the initial MCD/MVE esti-

mators while retaining (most of) its robustness. Hence, the RMCD/RMVE estimators
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inherit the affine equivariance, robustness, and asymptotic normality properties of the
MCD/MVE estimators with improved efficiency.

In this thesis, we propose using RMCD/RMVE estimators to construct robust

control charts. In Chapter 3, we discuss the 7% control chart for Phase-I with
RMCD/RMVE estimators and in Chapter 4 we propose robust versions of the charts
of Huwang et al. (2007) and Memar and Niaki (2009) for monitoring process variabil-

ity.




Chapter 3

Robust Control Charts for

Monitoring Process Mean

3.1 Robust Control Charts

As discussed in Chapter 1, outliers in the Phase-I sample may unduly influence the

performance of the Hotelling’s chart. The use of RMCD/RMVE estimators will

make the standard 7% chart robust. We propose using 72 charts with robust estima-
tors of the location and dispersion parameters to monitor changes in the mean vector
when individual multivariate observations are considered. The RMCD/RMVE esti-

mators inherit the properties of MCD/MVE estimators such as affine equivariance,
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robustness, and asymptotic normality while achieving higher efficiency. We now de-

fine robust 7% statistic using RMCD/RMVE estimators for the i-th multivariate

obser

x;) as

Tiuen(X) = (% = Xraren) Sgaen(Xi = Knaien)

2
Tinv (i)

(% = Xnarvee) Sy

i — XpMvE) (3.1)

where Xparep and Xpapyp are the location estimators and Sgaep and Sgapyp are

the scatter estimators under the RMCD/RMVE methods based on m multive

iate
observations. The exact distribution of 7? is not available, so the control limits for
Phase-1 data are obtained by inverting the empirical distribution of the 72 values.

In the next section we use Monte Carlo simulation to estimate the quantiles of the

distributions of T3y and T3y for several sample sizes and dimensions. As will
be seen shortly, the choice of T3yep or T2y depends on the situation. For each

dimension, we fit a smooth nonlinear model to find the control limits for a given

sample i

3.2 Computation of Control Limits

We performed a large number of Monte Carlo simulations to obtain the control limits.

The limits are found by inverting the empirical distribution of 7

and T2
e and Tiypy g
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We generated n = 200,000 samples of size m from a standard multivariate normal
distribution MVN(0, 7,) with dimension p. Because of the invariance of the Thycp

and Ty g statistics, these limits are applicable for any values of i and 3.

Using the re-weighted MCD/MVE estimators Xpyen. Siaron, Nuanvr, and
Spave with breakdown value v=0.50, we caleulated T2 statistics for each obser-
vation in the data set using Eq. (3.1) and recorded the maximum value attained for
cach data set. We inverted the empirical distribution of the maximum of T3y,¢, and

anvss 1o find the (1 - a)100% quantiles. We used the R function CovMed() in the

rreov package to find the RMCD/RMVE estimates.

, 100, 110,..., 150, 175,

We found the quantiles of 72 for m=(30, :

200) and p=(2, 3....10) and derived the quantiles for a = (0.05, 0.01, 0.001). Scatter

plots of the quantiles and the sample sizes for different dimensions suggest a family
of nonlinear models of the form :

ap1
M

Tiot-a) = Gipa-o) + (3:2)
where ay(,1-q). A2(,1-a) and az(,1-a) are the model parameters which depends on the

values of p and . The parameters can be estimated for various values of p and a

using the method of least squares.

The scatter plots of the actual and fitted values of the quantiles of T3y, and

Thyvge for p= 2, 6, and 10 and a =0.05 and 0.01 are given in Figs. 3.1, 3.2, and 3
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Figure 3.3: Scatter plot of TAycp/Thy i control limits and fitted curve for p = 10

The figures show that the non-linear fit is good, which helps us to find the T3ycp
and Ty control limits for any given sample size and given values of p and o using
Bq. (3.1) if the model parameters are available. The least-square estimates of the
parameters ai(,1-a). az(p1-a) a0d as(,1-a) for dimensions p=(2, 3....,10) and for a =
(0.05, 0.01, 0.001) corresponding to Thyep and Ty charts respectively are given

in Tables 3.1 and 3.2.
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Table 3.1: Estimates of model parameters ;1 ). ayp1-) for dimensions p =
(2,.-,10) and confidence levels a = (0.05, 001, u.um) for 7,,,\,( . control charts

=005 a=o01 a = 000
b | g0 dapom dspom | dupem  dpem  dspem | dpem  dzpom  dsgeom
2| s w26 | 2013 s 0s w09 2508
3 w200 | 20 i 23 T 27
i 2508 | waw i 2 sosos2s 2078

2521 | 2843 s 2632

G 1762051 2716 | 20651 S06126 2710 | 31662 HHLs
7| 2amez  wosmizs 2aos | 22 asE 2416 | 10058 Mes 244
S| s aossn 2607 | 2205 aw2Te 260 | 282 2710
o | wom oo 25m T2 L 2070

10 | 31891 2914 56573 IT2076786 3301

Table 3.2: Estimates of model PAFIELTS 1o -0 110 for dimensions p =
2,...,10) and confidence levels 1-a = (95%, 99%, 99.9%) for T3y j control charts
v

=005 =001 a = 0001
v | o o g0 aspom | Gipemm  dzpeom

2 | a2 171 2211 | 21501 LTI

3| w26 mmr 2060 096 2180 | Bl a6

| s 10 21060 2372 | 85000 1256020

5| 2076 23006 A BONOT 2367 | 2008 10G3TSS

G| wmass 00090 2600 | 3126 sssss 2600 | 3Tas6 a7

7| 2w 18762 0357 12199410

8| mor umsen  sar TG 30 | 0TS SI0SI28T0 5001
9 01 00T 3 60N B6T0 | TATG8 1960066019 4039

10 | 50733 950607720 4099 | 68154 4696152032 4379 | 110587 SGIOSIGISIT 4881
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3.3 Performance Analysis

We assess the performance of the proposed charts when outliers are present in the

mean. Jensen et al. (2007) concluded that

data due to the shift in the proc
MVE/MCD-based T? control charts perform well in terms of detecting outliers due

to shift in process mean. Thercfore, we compared the performance of our methods

with MCD/MVE-based T charts and standard 7 charts. For each combination of
P, m, and 7, we generated a number of data sets. Of the m observations, m x 7 are
random data points generated from the out-of-control distribution, and the remain-

ibution so that the sample

ing m x (1 — «) are generated from the in-control dist

of m data points may contain some outliers. We set 7 to 0.20 to ensure that the

sample contains a few outliers. Without loss of generality, we consider the in-control
distribution to be N(0,7,). The out-of-control distribution is a multivariate normal
with a small shift in the mean vector and with covariance matrix ,. The mean shift

is defined by a non-centrality parameter (8), which is given by
5= (= p)S7 gu — ) (33)

where (p1q — p1) is the shift in the mean vector. We caleulated the proportion of data

greater than the control limit;

sets with at least one T3y (or Ty p) stati

this is the estimated probability of signal for detecting outliers. We compared the




3.3 PERFORMANCE ANALYSIS 35

performance of these charts with 7% charts with MCD and MVE estimators and the
standard 7% chart. We considered the probability of signal for different values of

5= (0,5,10,---,30), m = (30, 50, 100, 150, p

(2,6, 10), and 7 = (10%,20%).
We generated 50,000 data scts of size m for cach combination of m, p, 7, and & and
the probability of signal was estimated for a = 0.05,0.01, and 0.001. Figures 3.4 to

3.15 show the probability of signal for v =0.05 and 0.01 and different values of p and

Figures 3.4 to 3.15 show that when the value of the non-centrality parameter
is zero or close to zero, the probability of a signal is close to a, as expected for
an in-control process. As the value of the non-centrality parameter increases the
probability of a signal also increases. Using this, we select the best method for

identifying outlie

. If the probability of a signal does not increase for an increase in
the non-centrality parameter, then the estimator has broken down and is not capable

of detecting outliers

A careful examination of Figs. 3.4 to 3.15 shows that, for small values of p and

m, Tayy g performs well. As m and p increase, the T3ycp chart is superior. For

example, from Figs. 3.4, 3.5, 3.6, and 3.7 we sce that T3yy; h

e All the plots show that the T3ycp/ Ty charts perform better than

the T2/ T2y charts. When p is large, T3y has a clear advantage over Thyy i
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Figure 3.4: Probability of signal for RMCD/RMVE control limits for p= 2, m= 30
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Figure 3.5: Probability of signal for RMCD/RMVE control limits for p= 2, m= 50
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Figure 3.6: Probability of signal for RMCD/RMVE control limits for p= 2, m= 100
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Figure 3.7: Probability of signal for RMCD/RMVE control limits for p= 2, m= 150
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Figure 3.11: Probability of signal for RMCD/RMVE control limits for p= 6, m= 150
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see Figs. 3.14 and 3.15. It is clear that the standard T2 control chart has a limited

and T3¢y and Ty do not perform compared to the charts

ability to detect outliers
based on the re-weighted estimators.

As p increases for a fixed value of m, the breakdown points of RMCD and RMVE

(m

estimators decrease since the breakdown value is given by This sugge:
that the larger the value of p, the larger m will need to be to maintain the breakdown
point; this is demonstrated in Figs. 3.14 and 3.15. For dimensions 6 and 10, m = 30 or
50 is too small to detect outliers; see Figs. 3.8, 3.9, 3.12, and 3.13. In general, cither

RMCD or RMVE was superior for all the values of the non-centrality parameter,

estimators broke down.

provided the proportion of outliers was not so high that the

This greatly simplifies the conclusions about when RMCD or RMVE estimators are
preferred to MCD or MVE estimators
When m < 100, T3apys; is the best choice for small dimensions. When m > 100,

Thacp is preferred. As p increases, the percentage of outliers that can be detected by

Zynv e decreases. For both charts, the higher the value of p, the lower the number of

outliers that can be detected for s. For Phase-I applications where

the number of outliers is unknown, T3y: should be used only for smaller sample

sample

, and it is also computationally feasible. T3y, should be used for large

sizes or when it is believed that the number of outliers is large. When the dimension
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is large, larger sample sizes are needed to ensure that the estimator does not break

down. Hence, for larger dimensions, T3y,¢ is preferred with large sample sizes,




Chapter 4

Robust Control Charts for

Monitoring Process Variability

We have seen that the robust versions of Hotelling’s 7% charts are good for moni-

riate observations with subgroup data and

toring the process mean for both multiv
individual observations. To monitor multivariate process variability, control charts
based on either the generalized variance (the determinant of the sample covariance
matrix) or the likelihood ratio test for testing the equality of covariance matrices are
generally used (Alt and Smith, 1988; Levinson et al., 2002). For these charts, the
subgroup size should be larger than the number of quality characteristics of interest

to ensure that the sample covariance matrix has full rank.
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For individual observations, none of these procedures are applicable because the
sample covariance matrix is not defined. The monitoring of multivariate process

variability for individual observations has received little attention in the literature,

although it is often more critical for improving the quality of manufacturing proce
by reducing the variability rather than the detection of process mean shifts. However,

based on the regression-adjusted variables, Hawkins (1981, 1991) developed control

charts for univariate observations to monitor the process mean and extended them to

monitor the process variability. Woodal and Neube (1985) extended this to individual

multivariate observations via multiple CUSUM and EWMA charts that combined p
univariate charts. However, multiple charts are not effective if the quality character-
istics are correlated. MacGregor and Harris (1993) developed exponentially weighted
mean square error (EWMS) and exponentially weighted moving variance (EWMV)
charts for individual univariate observations to detect changes in the process variabil-
ity. This concept was extended by Huwang et al. (2007) to individual multivariate

A Dbrief

observations. They developed the MEWMS and MEWMYV control cha

review of these charts is given below.
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4.1 MEWMS Control Charts

Let the random vector g = (g1, .-+ ,g,) represent the process data with p quality

multivariate normal dis

characteristics, which follow ribution with mean sz, and

covariance matrix ¥,. It is assumed that the estimators of the parameters are either

known or estimated from the Phase-I anal

is of the in-control process with 1, = 1o
and ¥, = ¥,. Consider the transformation of the process variable g to x, so that x

follows a multivariate normal distribution with mean i and covariance matrix ¥ as

defined belo

x =559 - o) (1)
=25ty = o)

T = x5

g2

Obviously, for an in-control process the distribution of x is N(0, 1,), where 1, is
pxp identity matrix.

is not avail-

For individual observations, although the sample covariance matrix

able, the matrix xx" of each observation provides an unbiased estimator of £ when

the process mean does not shift (i.c., o = 0). However, xx' is not a positive definite

matrix. Hence, for the f-th individual observation X, = (71, 12, ..,) s Huwang et
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al. (2007) defined the multivariate exponentially weighted moving average as

S = wxXy + (1 - w)Si- 1,2,3. (4.2)

where w is a smoothing constant, 0<w<1, and Sy = xx,.

This can be simplified to

6=1,X

where ¢; = (1-w)
and C = diag(cr, ez, ,¢0).

Huwang et al. (2007) showed that if the mean vector does not shift, S, is positive
definite for ¢ > p with probability 1 and E(S;) = £. One way to measure the
overall variability in a covariance matrix is to reduce the matrix to a single summary
statistic. Two commonly used statistics are the determinant and the trace, Since the
trace represents the total variation of the p quality characteristics of the covariance

matrix.

Huwang et al. (2007) proposed using the trace of S, to monitor the changes

in ¥. They showed that the trace of S; can be written
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for the MEWMS control chart are

Etr(S)) £ LVVarltr(S)] = p£ Ly |20

where the value of L can be found by Monte Carlo simulation based on the in-control

average run length (ARLy). Huwang et al. (2007) found the value of L by simulation

0.

for p =23, w=0.1,0.2,..,0.9, and ARLy

4.2 MEWMYV Control Charts

The MEWMS chart is designed to monitor the covariance matrix under the assump-
tion that the process mean does not shift. However, the mean and the variability
can vary simultancously during the monitoring period. Therefore, it is desirable to

construct a chart that can detect both changes in the process variability and shifts

in the process mean.
Huwang et al. (2007) proposed the MEWMYV chart based on the statistic V;. The

construction of V is similar to that of S; except that the deviation of X, is taken from

. a predicted value of the mean shift at sampling point £. They defined V; to be

=1,2,3 (4.6)

Vi = wxi = y)(xe = yo) + (1= w)Vie

where w is a smoothing constant, 0<w<1, and Vy = (x; —y,)(x; — y,)
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The y, values, the predicted mean shifts at sampling point t, are obtained by the mul-
tivariate exponentially weighted moving average of x; proposed by Lowry ct al. (1992)

Huwang et al. (2007) defined y, to be
Vo= Ax+ (1= Ay, t=1,2,3,.. (“.7)

where y,=0, and X is a smoothing constant (0<A<1).
They showed that when ¢ > p, V; is a positive definite matrix with probability 1

and E(

5352 Vi can be used to estimate £, Finding

0-N2e
— B as t - 0080 5
the mean and variance of V is not as easy as it was for S, and hence V; is expressed

in matrix form:

Vi=(X-Y)C(X-Y)

=X'(I,- M)C(I, - M)X

=X'Qx (4.8)

where I, is a ¢ x t identity matrix and X, Y, M, C, and Q are given by

Xy i A 0 o 0

X2 AMI=X) A 0
- L M=

x v A=A e A=) A

x1 x
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Crxt = diag(er, 2, , ), and Qi = |gi] = (I = M) C(I, — M).
Therefore, the trace of V; can be simplified to
.
tr(V,) = tr(X'QX) = tr(QX X') qu,,z ke (4.9)
The mean and variance of tr(V;) are px tr(Q) and 2px Yi_, 371, g7 respectively.
Thus, the control limits for the MEWMYV chart are

Eltr(Vo) £ Ly/Varlir (V] = p x tr(Q) + L

(4.10)

where the value of L can be found using Monte Carlo simulation based on ARLy,

Huwang et al. (2007) found the values of L for p=2,3, w = 0.1,0.2,..,0.9, and A =

0.1,0.2,..,0.9, and ARLy = 370.

They compared the performance of MEWMS and MEWMV charts with that of
multiple CUSUM and EWMA charts (Hawkins, 1981, 1991). They used the regression
adjusted variables method based on the out-of-control average run length (ARL);
ARLy was set to be the same in every case. A bivariate normal process was considered
with mean g and covariance matrix ¥:

m of  poro:
n= , ==
1 ponor o}

The following shift scenarios were considered for an out-of-control situation:

o o7 =1.00 and 03 set to 100, 1.25, 1.50, 1.75, 2.00, 2.50, and 3.00.
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o Correlation coefficient p set to 0, 0.25, 0.50, and 0.75.
o Shift in mean (1 or 1) set to 0, 0.25, 0.50, 1,00, 2.00, and 3.00.

They found that the MEWMS chart ontperforms the multiple CUSUM, multiple
EWMA, and MEWMYV charts when there s no location shift and when w < 0.4 in
the cases where o2, a3, and p change. The MEWMV chart outperforms the multiple
CUSUM and EWMA charts for w < 0.2 and A < 0.4 and for smaller shifts in o2. If p
changes while o and oF are constant, the MEWMS and MEWMV charts outperform
the multiple CUSUM and EWMA charts. However, if there is a location shift, only
MEWMV charts can be used (w, A < 0.4) since the MEWMS, multiple CUSUM, and

EWMA charts are sensitive to location shifts.

4.3 Control Charts Based on L.-norm Function

The trace of the estimator of the covariance matrix was used to derive the MEWMS
and MEWMYV charts. However, in many out-of-control instances some of the diagonal
clements of the covariance matrix increase while others decrease. In these instances,
will not have any considerable deviation

the trace of the shifted covariance mat

from that of the in-control covariance matrix. The MEWMS and MEWMV methods

can not detect such situations.
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To overcome this problem, instead of trace, Memar and Niaki (2009) suggested
using the sum of the absolute values or the sum of the squares of the deviation of
each diagonal element from its target value. For ¢ > 1, they defined the L.-norm
function for a vector z = (21,2, - ,2,) of length p as || z [|l.= (X0, | z )"/, Using
this L,-norm function, Memar and Niaki (2009) modified the charts of Huwang et
al. (2007) to overcome the problem of the in-control and out-of-control covariance
matrices having the same trace. They proposed control charts named M EWMSL,,
MEWMSLy, MEWMV Ly, and MEW MYV Ly, based on the Li-norm and Ly-norm,
to improve the performance of the MEWMS and MEWMYV charts.

They defined variables similar to those of Huwang et al. (2007) by transforming
the process variable g to x so that x ~ N(, £) if the process is out of control and
x ~ N(0,4,) if the process is in control. Let Sy denote the ith diagonal element of
the covariance matrix £ of dimension p x p. Then the vector of diagonal elements of

s (Bn, p

--%,,) and the diagonal elements of I, are (1,1,-- 4 The

Ly-norm and Ly-norm distances between the vector of diagonal elements of ¥ and its

expected value 1, are labeled Dy () and D(X) respectively and are given by

Dy(E) =l (E11, By Z) =l = DI Za-1] (4.11)
Do(E) = (Za1, By, Z) — L P = D (Zu— 1) (4.12)

=1
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Dy(E) and D,(X) are equal to zero when the process is in-control, and they have
positive values when the process is out-of-control. This allows us to monitor the
variability of individual observations. Since E(S;) = £, Memar and Niaki (2009)
introduced the MEWMSL; and MEW MSL; charts based on Dy(S;) and Dy(S;)

with the MEWMS scheme:

5

Di(S) =l (Sany Sz Sum) = LIl = 301 S =11 (4.13)
;

Dy(S) =l (S Sz Sem) = L IF = D (S = V% (4.14)

As for MEWMS charts, the control limits can be found using Monte Carlo simu-
lation based on ARLy. Since D;(S;) and Dy(8;) are always non-negative, only upper
control limits are considered. Similarly, E(V;) = 2335 for large values of t and

hence the MMEWMV Ly and MEW MV Ly charts based on Dy(V;) and D,(V;) with
the MEWMYV scheme are
Dy(Vi) =l (Vi Vi Vi) = 21 = NP/ = M1, ||
.
=D Vi =20 =N/ = N | (4.15)
Da(V) =l (Vi Viezy++ > Vigm) = 2(1 = M2 = M1, I

o
=Y Wi =20 - /@ =NF. (416)
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Vi can be transformed to V' = 22451, and the process variability can be moni-
tored with respect to V;* as given below:
»
DyV) =l Vit Vit =+ Vi) =1l = D2 [ Vi =11 (4.17)
=

,,
(V) =l (Viguay, V Vi) = 1 I Zt,z.,,fn-’ (4.18)

Here too, upper control limits are found by Monte Carlo simulation based on p,
w, A, and ARLy. Memar and Niaki (2009) tabulated the UCLs for all four charts for
=(0.1,0.2,...,0.9), A = (0.1,0.2,...,0.9), and p=2 and 3
Memar and Niaki (2009) compared the performance of the AEWMSLy, MEWMSL,,
MEWMV Ly, and MEW MV Ly charts with the MEWMS and MEWMV charts in

terms of the ARL criterion. All scenarios are considered in the bivariate case with

ARLy = 370 and different values for the process mean vector ;o and the covari

matrix :

n at powoy
= D
2 poroz o}

The following scenarios were considered for an out-of-control situation:
=1.00 and o3 set to 1.00, 1.50, and 2.00.
e Correlation coefficient p set to 0, 0.10, and 0.90.

o Shift in mean (j1; or iz) set to 0, 0.5, 1, and 1.50.
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Memar and Ni;

i(2009) set w=(0.1,0.2, 0.3, 0.4) for the MEWMS, MEWMSL,,
and MEWMSLy charts and w=(0.1, 0.2, 0.3, 0.4) and A=(0.1, 0.2, 0.3, 0.4) for the

MEWMV, MEWMV Ly, and MEW MYV Ly charts. When the process standard de-

viation shifts, whether or not the correlation cocfficient changes, the M EWMSL; and
MEWMSLy charts perform better than the MEWMS chart, and the MEWMV L,
and MEWMV Ly charts perform better than the MEWMV chart. When there are
shifts in the covariance matrix, MEW MSL generally outperforms MEW MS Ly and
MEW MV L, generally outperforms MEW MV Ly, However, if only the correlation
coefficient changes, the MEWMS and MEWMYV charts outperform the M EWMSLy,

MEWMSLy, MEWMYV Ly, and ME|

"MV Ly charts.

4.4 Robust Control Charts for Monitoring Vari-
ability

Huwang et al. (2007) and Memar and Niaki (2009) assumed that the in-control pa-
rameters jig and Xy are known when the control charts are constructed, and they
used the in-control limits constructed under the assumption to monitor the Phase-IT
data. In practice, these parameters are not known and we have to estimate them from

historical data or Phase-I data. The sample mean and sample covariance matrix are
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unbiased and efficient estimators, but they are highly sensitive to the presence of out-
liers. It is therefore important to identify and eliminate outliers prior to calculating
the control limits.

Since the RMCD/RMVE estimators are not unduly affected by outliers, we pro-

pose using the MEWMS, MEWMSLy, MEW MSLy, MEWMV, M EW MYV L, and

MEW MV Ly charts with the RMCD/RMVE estimators. The proc

able g

(9192

vy,.)' is considered to be from a multivariate normal distribution with mean
1y and covariance matrix £,. If the Phase-I data contain outliers, we have to detect

and remove them before proceeding further. We use the robust estimators of the

location and dispersion parameters based on RMCD/RMVE to construct charts for

monitoring individual multivariate observations. These estimators inherit the prop-
erties of affine equivariance, robustness, and asymptotic normality while achieving

higher efficiency in the transformed variable x.

The new transformed variables are found by replacing the estimators in Eq. (4.1):

X' = Surten(9 = Xnvicn) (4.19)

9= Xrnve)

where Xparep and Xpavp are the mean vectors and Spaep and Sgpavp are the

dispersion matrices under the RMCD/RMVE methods.
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The new robust control charts are based on the transformed variables x* and

x** with the MEWMS, MEWMSL,, MEWMSL,, MEWMV, MEWMVL,, and

MEWMYV Ly iability, with the mean vector

schemes for monitoring the process v:
constant or changing, as defined in Eqs. 4.4, 4.13, 4.14, 4.9, 4.17, and 4.18 respectively.
Since the statistics considered in these equations are positive, we found upper control
limits only. We performed 100,000 Monte Carlo simulations for various values of p,
w, and A and confidence levels v =0.05, 0.01, and 0.0027. The control limits found

for robust control charts under MEWMS scheme are given in Tables 4.1 for w =

(0.1,0.2,--+,0.9). The control limits found for robust control charts under MEW

scheme are given in Tables 4.2 to 4.5 for w = (0.1,0. ++,0.9), A =(0.1,0.2,0.3,0.4).

4.4.1 Performance Comparison for Phase-I Monitoring

We are analysing the performance of the proposed charts when outliers are present

due to a change in the process variance without a shift in process mean and a change

in the process variance along with a shift in the process mean. The performance of
the charts was assessed based on the probability of outlier detection. When the data
come from an in-control process this probability should be close to a specified nominal

value. When the data come from an out-of-control process, this probability should
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Table 4.1: Control limits for robust control charts with MEWMS scheme; p=2 and m=>50

MEWSL, MEWMSL, MEWNS
Confidence Level | w | RMCD __ RMVE | RMCD  RMVE | RMCD  RMVE
5% 00| san 20603 20580 | 6628 697
020 | sem 6213 | omm wou | T2 Tex

00 7166 B2 R | S 876

0.0 sase | s0aTE 86596 | 9628 10002

050 omos | oo 7rass | 1m0l 1510

600 A0 | eROGT 100456 | 12401 18026

070 oos | 122057 s | 1mos 11603

0.0 we2r | 1saesr 7Ll | 1saes et

090 1| ouem 2w | zon mss

0% 0.10 WA | T6A00 06 | 1L8IT L6
020 0436 | T8I0 S6780 | 1LA2 11966

030 a0 | osors ormr | o12ion 1263

0.10 2409 | 100735 128058 | 18 140

050 | ImaSS 14200 | MAT63 160265 [ 14901 1530

60| a0 w6008 | Tame 2mam | 16928 1n70

070 | AN ISMG | 201363 264818 | 19007 10862

oso | wess 206 | suoso s | 21900 2200

090 | 2on 2mi00 | aoossy 423006 | 23503 20671

0.13% 010 | 1806 s | MO0 160682 | 15373 15088
020 | masiewsn | oisseer  am2me | 1sais 1628

030 | M2m 1506 | 166305 ISLIL | 1581 1676

040 | 1seer  16ss0 | ozess 222000 | 1Taor 18T

050 | amam o assez | 2eem 2mewr | wmen w20

G0 | wels  em | oweaes 31206 | 2039 22200

070 | w2e6  mas | oweam i | 2ssm 21970

080 | wmT oms | sizam se0as7 | 2mass 280w

090 | awssi 20230 | 63o0r  eonsst | 022 086
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able 4.2: Control limits for robust control charts with MEWMYV scheme for various values
of w, A =0.10, p=2 and m=50
A=0.10 MEWMVL MEWAIV Ly NEWNY
Coidence Level | w | _RMCD___ RMVE | RMCD __ RMVE | RMCD  RMVE
5% 010 | w108 1550 20970 | 6310 Gsss
020 | soso A Gores TG
om0 | eswor  esmst soHT saG
0w | e s SLsin | ez0n a6
050 | sos1 0ame Tt | l0soTs 1o
600 | 10s6m2 wasts | 1 125000
om0 | sz 2o | s 110
080 51 10039 150408 | 147755
o0 | waels  isaeer | s 1o0sost | 1608
ot 010 | vess oo | owten rnamm | e
02 | wast oo | Tosiss s | 109m6
om | 06 toezmo | sesies  semon | lem2 1207
00| nasr iiems | 10n06st oM | 12066 185056
0s0 | e wwsee | 10420 LGS0 | 143606 15,1600
Goo | s saon | 16266 1908075 | 166T 1m0
070 | resier zassz | 206t 2025050 | 18210 10037
om0 | e o | 2siam 3104705 | 20208 201805
00 | o7 oioow | misasm ssiaww | 2280 o
010 | e v | osm2 1596306 | 154835
020 | w6 1L06s | 1BSIG 165156 | 1510061 166325
030 | waoms  L016 | I 165061 | 153165 157050
00 | 150206 se2r | 1mass0 195300 | 16580 172080
050 | tessesina 06 parz | smm 100
600 | IsAsH 107000 | 2TASIT 001900 | 201031 21286
070 | 2na06  monT | ac2000 o0t | 226789 28502
os0 | 2o gr2a20 96070 | 25163 265001
090 | 26am2  omemT | sreools 60065 | 2780 202701
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Table
of w, A =0.20, p=2

and m=>50

.3: Control limits for robust control charts with MEWMYV scheme for va

us values

A=020 MEWMVL, MEWMVLy MEWMV
Confidence Level | w RMCD RMVE RMCD RMVE | RMCD  RMVE
0.10 1.7691 5017 16.2961 18605 | 59608 62811

0.20 3100 5.6951 21.2799 207081 | 67586 A28

030 6.6976 310610 8100 | TROIG 82093

0.40 7.5465 7.0912 416018 500130 | 90121 95664

0.50 88206 93180 615216 689525 | 104496 10,9704

600 | 102122 107855 | 828166 919506 | 117826 124060

070 | 106226 121223 | 1078605 1ISTSIL 137478

080 | 130801 137081 [ 1359658 150.2081 | 146 15,3051

000 | 145519 152160 | 1700465 1863915 | 161452 168124

9% 010 86815 9.0176 58,6200 639531 | 10087 104833
020 9.4095 631119 707680 | 102091 10.9604

030 | 97701 102821 [ 743518 87940 | 113061 117709

040 | 109581 115895 | 971520 1067094 | 125011 131602
050 | 126621 133720 | 1289515 142666 119189

600 | 144285 152301 | 1687381 1851511 | 159831

070 | 159815 167043 | 2063258 175320 184221
080 | 1sazr 192128 | 2727901 200221 205674
000 | 200120 210021 | 3250538 25110 25706
010 | 13090 138621 HANT 152578
020 | 128206 136818 1528525 | 12711 15,0862
030 520 101219 | ISL3NIS 1669695 | 1AST6 155150
040 | 102962 149005 | 1656392 1507477 | 158500 165292
050 | 163207 272012 2302 170022 18,9468
600 | 18374 19508 | 2734326 3150891 | 201038 212763
070 | 20423 202477 | 3342219 77190 | 220160 229323
080 | 230837 20108 | 4512562 ASG0798 | 219055 25,7932
000 | 252600 266150 56 STT.8A95 | 270781 283210
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eme for various

Table 4.4:  Control limits for robust control charts with MEWMV s
values of w, A =0.30, p=2 and m=50

MEWMY MEWMVLy MEWMVL
o | RMCD RMVE | RMCD  RMVE | RMCD  RMVE
95% 010 | asw2 402 | MSTIE Tz | 7% 61267
020 SAO0 | 200030 2ssiz | Gs91 69w
030 Govi2 | 2s0ms mT0 | T sasT
0.0 7ooi2 | aicoss SO0 | 02 056G
050 o208 | G029 67T 108455
600 67T | s2515 onion 122677
070 121475 | 1061085 137076
0.0 ST IS06TSS | 144727 152587
090 I6T30T  IsBas62 | 159619 167115
9% 010 sass0 | 511975 108G | 9606
020 oomo | seemo GLoms | om0z
030 | ossr 100w [ 708870 0 | 008
040 | 109581 wisss | oTasze 1067098 | 125010

050 | 123556 131490 | 1229870 1395131
600 | 141516 140783 | 1611691 1802123
070 | 161015 168706 | 2002045 2280611

050 | 180493 190145 | 26LI538 2007803 | 19.707
090 | 200195 210385 sram | nes

90.73% 010 | 1S9 1zisT | 1000773 1208208 | 18348 13710
020 | Dot i2aen | noTer  izases | isass 14028
030 | 12702 13516 | 1RIGH 1513605 | L3I 19T
040 | 102062 149015 | 1656302 1807477 | 15s09 1632
050 | 157491 16630 | 2019270 7| s w6
600 | 18151 19065 | 27AAGAS 2000106 | 197461 206208
070 | 201266 200915 | SILATO8 366013 | 27606 228557
080 | 0I5 2014 | 4RBOL ASLIOT | 207108 26825

090 | 254961 261619 | 5253101 53327 | 200467 280336
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Table 4.5: Control limits for robust control charts with MEWMV s

cheme for various values

of w, A =0.10, p=2 and m=50
A =0.10 MEWMV Ly MEWMV Ly MEWMV
Confidence Level | @ | _RMCD __ RMVE | RMCD __ RMVE | RMCD  RMVE
95% 0.10 1.2391 128501 14.8887 54383 5.7676.
020 | ses:  saes | o2 20002 | GaTes
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cified nominal value.

be large compared to the sp
Following Huwang et al. (2007) and Memar and Niaki (2009), we consider a bi-
variate process with mean g and covariance matrix ¥ where
m o oo

M2 po1oy 03

For an in-control process, the parameters are set to i = i = 0, 0} =

and p = 0. If any one of these parameters is shifted, the process is out of control.

We generated a number of data s

ets with m = 50 and p = 2. Of the m observations,
m x 7 are random data points generated from the out-of-control distribution, and the
remaining m x (1 — ) are generated from the in-control distribution. We set 7 to
0.20 to ensure that the sample contains a few outliers. The following shift scenarios

were considered for an out-of-control situation:

=1.00 and 03 set to 1.00, 1.25, 1.50, 1.75, 2.00, 2.50, and 3.00.

‘orrelation coefficient p set to 0, 0.25, 0.50, and 0.75.

o Shift in mean (jy or ) set to 0, 0.5, 1, and 2

Following Huwang et al. (2007) and Memar and Niaki (2009), we considered
smoothing parameters w = (0.2,0.3,0.4,0.5) and A = (0.1,0.2,0.3,0.4). For cach chart,

we consider the standard as well as robust versions based on MCD, RMCD, MVE,
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and RMVE. The probability of a signal is

stimated as the proportion of data sets
with at least one data point greater than the control limit. We consider o = (0.05,

0.01, 0.0027). Figures 4.1 to 4.16 show the probability of a signal for a = 0.01 and

different values of p and m. The plots for a = 0.05 and 0.0027 are omitted to save
space. We show the probability of a signal for the standard chart, robust charts based

on the MCD/MVE estimators and the proposed charts in cach of the six methods.

We can see that the proposed charts perform better than these MCD/MVE charts
and standard chart in most of the scenarios considered. Each figure displays plots
for four different values of p, showing the effect of changes in p. The performance of
the proposed robust control charts are consistently better for all six charts. We have
presented only a selected set of plots to save space.

From the plots, we see that the probability of a signal increases as the value of
a3 increases for the proposed charts. In contrast, the charts based on the classical

estimators break down and perform poorly compared to the proposed charts and the

charts based on MCD/MVE. From Figs. 4.1 to 4.3 we sce that the probability of a

signal increases as p increases. This clearly indicates that as p increases, the pro-
posed charts perform better and the performance of the charts based on the classical

estimators deteriorates.

Figures 4.4, 4.5, and 4.6 show that under the MEWMYV scheme, the chart detects
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Figure 4.1: Probability of signal for robust A/ EWMS.
50, w =030, 1y = pz = 0
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Figure 4.2: Probability of signal for robust MEW MSL, control chart for p= 2, m=
50, w =0.40, py = p2 = 0
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Figure 4.3: Probability of signal for robust A/ EW M control chart for p= 2, m= 50,

W =050, 11 = 12 = 0
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Figure 4.4: Probability of signal for robust MEW MV control chart for p= 2, m=

50, w =0.30, A =0.10, 11 = piz = 0.50
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Figure 4.5: Probability of signal for robust MEW MV control chart for p= 2, m=

50, w =030, A =0.10, 1y = iz = 1.00
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Figure 4.6: Probability of signal for robust MEW MV control chart for p= 2, m=

50, w =0.30, A =0.10, st = pz = 2.00
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Figure 4.7: Probability of signal for robust M EW MV Ly control chart for p= 2, m=
50, w =0.30, A =0.10, 1y = i = 0

Figure 4.8: Probability of signal for robust M EW MV Ly control chart for p= 2, m=
50, w =0.30, A =0.20, 1y = 1 = 0
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Figure 4.9: Probability of signal for robust
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Figure 4.10: Probability of signal for robust M EW MV L, control chart for p= 2, m=

50, w =0.30, A =0.40, py = pp = 0
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Figure 4.11: Probability of signal for robust M EW MV L; control chart for p= 2, m=

50, w =0.40, A =0.10, iy = 12 = 0
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Figure 4.12: Probability of signal for robust MEW MV L, control chart for p= 2, m=

50, w =040, A =0.20, 1y = 1z = 0
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Figure 4.13; Probability of signal for robust MEW MV Ly control chart for p= 2, m=

50, w =040, A

30, = jp = 0

A=04.p=o0z5

H

u
B
3
g

m

Ll nE:n
s ]
- .__._-—.4

Figure 4.14: Probability of signal for robust M EW MV Ly control chart for p= 2, m=

50, w =040, A =0.40, 1y = iz = 0
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the shift in location as well as the shift in variability. The probability of a si

increases as the shift in mean increases from 0.50 to 1.00 and incre; further when

it increases to 2.00. The MEWMS scheme fails to detect the shift in the mean

especially when the magnitude of the shift is large.

Figures 4.7 to 4.10 and 4.11 to 4.14 show the effect of the changes in variability
for various values of A when w= 0.3 and 0.4. Clearly, as 03 increases, the probability
of a signal also increases. The changes in the value of o along with the changes in
the value of p are also well detected by the proposed charts; see Figs. 4.7 to 4.14
All these plots clearly indicate that our robust charts with RMCD/RMVE estimates

perform well compared to the other charts.




Chapter 5

Robust Regression

includes many techniques for modeling and analyzing several

ables, when the focus is on establishing the relationship between a dependent vari-

able (the response variable) and one or more independent variables (the covariates

s variable

Specifically, regression analysis helps to explain how the value of the respons

o is a common regression tech-

fates. Linear regre

changes with changes in the cova

nique with some basic assumptions of normality and independence for the response

ion model is

ariable. The general form of a linear regre
yi=xA+e i=12--,n (5.1)

where y; s the value of the ith response variable, X; = (i1, a2, -+~ ,44)’ is a vector

of values of covariates corresponding to the ith response, 4 = (1,32, . 3,) is the
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effects of the covariates x; on y;, and ¢; is the random error in the observed responses.

The random errors are assumed to be independently and identically distributed as

normal with zero mean and constant variance a2, We wish to estimate the regression

parameter 3 from the observed responses and covariates.

The generalized linear model (GLM) is a flexible generalization of linear regression

that allows response variables with non-normal distributions. The GLM allows the

linear model to be related to the response variable via a link function and allows the
variance of each measurement to be a function of its predicted value. Hence, GLM

encompasses not only linear regression for normally distributed responses, but the

logistic model for binary data, the log linear model for count data, and many other
useful statistical models via its general formulation.

All these regression models work well when there are no outliers in the response

and in the covariate data. Outliers, especially in the covariates, may unduly influence

the estimation of the i This causes bias and hence inconsistency

in the estimator: , we can obtain a consistent

Specifically, if there arc no outliers

estimate of the regression parameters. It is therefore important to identify outliers in

the covariate data.

In the following section, we review the GLM, especially the Poisson and logistic
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regression models. Then we introduce robust regression by identifying and down-
weighting the outliers in the covariate data using the squared robust Mahalanobis

distance and perform simulations to assess the performance of the proposed method.

5.1 Generalized Linear Model

The random component of a general

ed linear model consists of a response variable
Y with independent observations (yi,y2. -+ ,y,) from a distribution in the natural
exponential family. This family has a probability density function or mass function

of the form

Fwin3) = a(B)b(y:) explyiQ(Bi]-

The term Q(1%) is called the natural parameter, The systematic component of a GLM

relates a vector (13,7, -+ ,7,) to the explanatory variable through a linear model

Let X = (1,22, -+ , ) be the values of the p-covariates for the ith case. Then
n o= X (5.3)

where 3 is a (p x 1) vector of unknown parameters. The link connects the random

and systematic components of the model.

Let i = E(n,), i = 1,2,--- ,n. The model links jz; to 1; = g(s1;). Thus, g links
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E(1;) to the explanatory variables through the formula

no= glm) =xp

The link function that transforms the mean to the natural parameter is called the

canonical link. For this link, () = Q(4) where

QB) = X ¢ i=1

5.1.1 Poisson Log Linear Model

ribution, and let 1 = E(Y). The

Let Y denote a count which follows a Poisson di;

Poisson probability mass function for Y is

fly:n) —) exp(y. log j1). (5.6)

1
s

al link function is the log link,

The natural parameter is log i, so the canoni

1= log . The model using this link is

(5.7)

where x| = (z1, x; rip) is the vector of covariates for the i-th response and

fon parameter.

A= (A, Ba--+ . 3,) is the regre
Consider a data set containing count responses y; for i = 1,2, ,nand a (px 1)

)" of covariates associated with the response. Let j =

vector X; = (wiy
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(Bhs s+ 13, be a (p x 1) vector of unknown regression parameters. Suppose the

response y; has the Poisson distribution with mean m; = X%, then the probability

mass

function of y; is given by

Ty = )
Ui

The log-likelihood function is

logl = (5.9)

where ¢ is a constant. The estimating equation of the parameter vector can be
obtained by taking the partial derivative of the log-likelihood with respect to [3;
which is given by

Q8L _ ) = 3y — P = 3 Ry ) = 0. (5.10)

i=1 i=1

Since there is no closed-form solution to Eq. (5.10), we use the Newton Raphson

iterative method to estimate the regression parameter 3:
. o P
aro= p- [n (,i')] R(3Y) (5.11)

where ¢ is the estimate of /3 in the fth iteration, R(8) = Y1, Ri(yixi,f) =

S (i — )x;, and R'(B) is the first derivative of R(S) with respect to .




5.1 GENERALIZED LINEAR MODEL 78

5.1.2 Binary Logistic Regression Model

Let Y be 1 or 0, representing the success or failure of a Bernoulli trial with specific
probabilities P(Y=1)= 7 and P(Y=0)= 1-7, and E(Y)= 7. This is a special case of

the binomial distribution with n = 1, and the probability mass function for Y is

.

0 the canonical link function is the log link.

fly:m) =

The natural parameter is

‘We may write the link as

m(x:)

This is called the binary logistic model, where X, = (21, i) contains the

values of the p-covariates for the ith response and the (p x 1) parameter vector

B=(Bi, b 1B

Suppose the response g, i = 1,2, ,n, has a binary distribution with 7 (x,) =

exp(x,3)

——————, then the estimates of 3 can be obtained by solving the likelihood
T+ cap(x,3)

estimating equation using the Newton Raphson method, as for the Poisson log-linear

regression.
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5.2 Robust Generalized Linear Regression

As discussed earlier, the regression models work well when there are no outliers in the

response or in the covariate data. Outliers, especially in the covariates, may unduly

influence the estimation of the regression parameters. There are many methods in
the literature to down-weight these observations so that bias correction can be carried

ing and down-weighting outliers in the covariate data so that

out. We propose identi

m models. We use the squared robust

outlier-free data can be used to fit the regres
distance based on the RMCD/RMVE estimators of the mean and covariance of the

covariate data to identify outliers.

rete data (binary data or count

ized linear model for dise

‘'onsider the gener:

data), where y;, i=1,2..., is the discrete response collected from the ith individual.

Let x; = <) be the corresponding p-dimensional obscrved covariate

1y Lizy
vector corresponding to the response y; and let 3= (8, B, -+, 4,)' be the effects of

ituation where the data contain

the covariates x; on the response y;. We consider the
a covariate outlier corresponding to the jth observation yj, i.e., X, is contaminated. It

- .f,) based on the uncontaminated

st to estimate 3 = (5, 2,

is of primary inter

covariates X;. However, the observed X;’s include the contaminated x;. This causes

s and hence inconsistency in the estimators. If there were no outliers, we could
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obtain a consistent estimate of 3 by solving the estimating equations. Our approach is

to identi

and down-weight the outliers in order to get a consistent estimate of 3. In

this thesis, we consider the situation where the covariate data has few contaminated

data and the response data are free of outliers. We also assume that the covariates
follow a normal distribution.

The Mahalanobis d

istance (Mahalanobis, 1936) and leverage are often used to

detect ontliers, especially in lincar regression models. A data point that has a larger

(squared) Mahalanobis distance than the rest of the sample is

said to have higher
leverage since it has a greater influcnce on the slope or cocfficients of the regression

equation. Note that the squared Mahalanobis distance for any sample dat

a point x; =

(i, 2, i) is similar to the Hotelling 7 statistic for individual observations

as given in Eq. (1.4) and reproduced below:

T2(i) = (x; — X)'S™" (xi — %),

5.14)

where the sample mean x and sample covariance matrix S are based on n sample

points. The sample mean and sample covariance are highly sensitive to outliers, and
hence robust estimation methods are preferred. The proposed RMCD/RMVE-based

squared robust distance is used to identify and eliminate outliers in the covariate data.
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The robust Hotelling 7?2 statistic (Eq. 3.1) discussed in Chapter 3 is reproduced below:

" = ‘g1 % 515
inen(d) = (xi = Xpnep) Spyep(Xi = Xraen) (5.15)
2 . - o .
Tieav (i) = (%i = Xparve) Spave(Xi = Xpave)
where Xgyep and Xpapve are the location estimators and Sgaep and Spapyv g are

the scatter estimators under the RMCD/RMVE methods based on n covariate data,

These values can be compared with the quantiles found via Eq. (3.2) and Tables 3.1

and 3.2 d ling on the di ion and the confidence level. Observations with

TEnien/ TRy values greater than the quantiles are considered outliers and need
to be down-weighted. A step-by-step approach for estimating the robust regression

parameters is as follows:

i) Compute the robust estimates of the mean and covariance of the covariate data.

i) Compute the robust T? statistic for the covariate data for cach response using

Eq. (5.17).

iii) Find the critical values for the 77 statistics for a given confidence level and

dimension using Eq. (3.2).

iv) Identify the responses for which 72(x;) > the critical value; these are outlies
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v) Assign weight w; = 0 to the response and to the covariates identified as outliers;

otherwise assign weight w;

m parameters by solving the weighted score equation

vi) Estimate the regre
S wiRi(yi, xi, )= 0.
We conduct a simulation study for the Poisson log-linear model and the binary logistic

regression model to study the effectiveness of our method.

5.3 Simulation Studies

the performance

We have conducted a large number of simulation studies to as

y logistic regression

m model and the bina

of our method for the Poisson regre

on parameters under

model. We examined the performance by estimating the regre
models with one or two outliers.  We repeated each simulation 10,000 times and

SSE), and the relative

computed the simulation means (SM), the standard errors

gsion parameter is

bias (RB) of these estimators. The relative bias for each regre

1% 100. We used the R function gl () in the stats library to estimate

RB(f) = -l

meters.

the regression pa
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5.3.1 Poisson Regression Model

We considered 3 =(3, 3.5, 0, 0, 2) with n=(150, 200, 250) for the Poisson model and

1=(200, 250, 300) for the binary model. We generated the covariates X, for the ith

response by assuming that it follows a multivariate normal distribution with mean

and covariance as given below and p = 0.50.

Lo o 0
o1 ot 0
= = ! (5.16)
ot gr? 1 0
e 1

Data with a single outlier. To generate n count obscrvations with one outlier, we

first assume that outlier-free data yy, y, -+, ya are generated following the Poisson

density P(Y; = y) = “24°, with i = ¢80 where % = (di1, &, , ) are the un-

contaminated covariates. Now consider y; as an outlying value among the n responses
corresponding to the contaminated covariate x;. To get this x;, we shift the values

of %, by adding & > 0 to all p components of X; and set x; = X, for all i # j. We take

5 =5.0 and thus yy, g, -,y are a sample of n count observations with covariates

ssion estimates based

corr

sponding to y; as the single outlier. We estimated the regy
on:

a) The contaminated data of s
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b) The data excluding the contaminated covariate and the

¢) The proposed method.

Table 5.1: Simulated means (SM), standard erroj
mates of regre:
of single outlier

(SSE), and rel
fon parameters under Poisson model with = (3.0,3.5,0,0,2.0) in preseiice

corresponding response.

# of Outliers: 1 50 00
Sample size | Parameter | SM_ SSE_ RB SSE_ RB | SM RB
With Outlicr b L8 2750 42 268 1 2500 1

s 3674 302 6 2881 10 2715 12

e BRI RN STV 3000 9 2

e L2300 BIsL 89 302 a9 ”

B 0372 275 59 | 0402 2663 60 2606 60

Without Outlier ] 3000 0002 1 [ 3000 0001 1 o001 1
s 3500 0002 2 | 3500 0001 2 | 350 0001 1

3 0000 0002 0 [ 0000 0002 2 | 0000 o001 2

B 0000 0002 1 [ 0000 0002 1 | 0000 0001 1

3 2000 0002 1 [ 200 0001 0 | 2000 0001 0

Outlicrs A 2001 0199 3 | 2001 0195 3 | 209 o1 3

down-weighted h 3503 0199 2 | 3505 3500 0am 4

by RMCD e 0008 0216 3 0006 0180 0005 0168 3
B 0001 0220 2 [ 0006 0206 0006 0174 3
s 1991 0200 5 | 1996 0483 2 | 1907 0.1 2
Outlicrs & 2997 0176 2 | 2995 0180 2007 06 2
down-weighted h 3500 019 0 | 3503 0180 asol 0a2 1
by RMVE s 0003 0191 2 0006 0221 3 |-0003 0157
& 0006 0230 3 [-0005 026 2 |-0001 0162
3 1992 0226 4 [ Low  0ars 4 | 1995 o2 3
Table 5.1 summarizes the results for the Poisson model with one outlier. We

see that the regression estimates are biased by the outlier.

estimates based on the outlier-free data and the estimates

. However, the regre

based on our method are
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close to the true regression parameters. The relative bias corresponding to these
estimators is also very small. 1t is worth noting that for m = 150, 200, and 250

the RMCD method identifies the outliers in 99.36%, 99.45%, and 98.57% of the

and 99.59%

simulations, and the RMVE method identifies them in 99.42%, 99.44'

of the simulations. The method identified some ontliers other than those generated,
but this is negligible.

Data with two outlie

For the Poisson model with two outlying observations, the
count responses are generated in a manner similar to that for a single ontlier. After
generating n count observations from a Poisson model with the covariate values, we

create two covariate outliers, namely x; and Xy, j # k. The contaminated covariates

x; and x. are obtained by adding & > 0 to all p components of X; and subtracting §

»n. We consider

from all p components of Xy, with x; = X, for all i # j,k, i = 1,2

§ = 5.0 for convenience and Table 5.2 summarizes the results.

We see that the regression estimates are more biased when there are two outliers.
The estimates based on the outlier-free data and those based on our method are close
to the true regression parameters, and the relative biases are also small. For m =

150, 200, and 250 the RMCD method identifies the outliers in 95.11%, 97.59%, and

1%,

98.30% of the simulations, and the RMVE method identifies them in 93.26%, 96

and 97.64% of the simulations. The method again identified some outliers other than
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Table 5.2: Simulated means (SM), standard errors (SSE), and relative biases (RB) of esti-
n model with f = (3.0,3.5,0,0,2.0) in presence

mates of regression parameters under Poi
of two outliers

# of Outlers: 2 =150 m=250
Sample si Parameter | _SM "B | S\ [ [
With Outler ) L0l | s 1 w2 1
& 3688 6 | 8766 9 2756 1
By | s 37 | 1203 3 2001 a2
a |1 38 | 12 T R
o 0306 62 | oast 6 | o4 257 60
Without Outlier | 3000 N U [ a0 ooor 1
B 3500 1| as00 1| as0 o001
s 0.000 1| o000 o [oo0 oo 2
o 0.000 o | o000 o | o0 oo 1
s 2000 1| 2000 o [20m  oom 0
Outlier ) 2010 o | 2003 7 0 6
down-wcighted s 3517 o 3507 2 | 3507 0388
by RMCD B | 00ss 7 | o0 7 o0 ons
s |0 o 9 |00 7|00 oas 7
5 1806 073 1| 1915 050 10 | 1976 03% 6
Outlier m 2005 06 11 | 2050 0802 8 (X
downeweighted # 35 08 3 a5 050 4 0164
by RMCD b |00 os6 0 |06 oer 10 o1
g |08 oo 12 |00 oot 8 | -0 om0 7
I3 LS8 0810 1| 03 0607 1| Lo 06 9

those generated, but these proportions are negligible.

5.3.2 Binary Logistic Model

Data with a single outlicr. For the contaminated binary model with a single outlier,

we first generate n bina Y1, Y2, L Yy assuming that they do not contain

response




5.3 SIMULATION STUDI

any outliers. We generated n responses following the binary logistic model P(Y; =

1) = 22 with n covariates so that X; = (¥, Fiz, - @) and = (B, By -+ o).
145

ates are chosen as for the Pol

The values of the cov on model from MVN(y, )

To create an outlier covariate for the jth observation, we change the

with p =5.

cor adding § > 0 to all p

ponding covariate values X; as for the Poisson model |
components to get x;. We again set § = 5. We retain x; = X, for all i # j as for the

‘able 5.3 summarizes the results.

Poisson model.

Table 5.3: Simulated means (SM), standard errors (SSE), and the relative biases (RB) of
estimates of the regression parameters under the binary model with 4 = (3.0.3.5,0.0.2.0) in
the presence of single outlier

Pr_of sclcction =06 200
Sample i Parameter | SM___SSE___RB | SM__ SSE_RB RB
With Outlicr B 2485 103 50 | 2531 0880 53 8

2061 L1666 | 3001 0991 50 5

0012 0365 11 | -0030 12 12

008 038 13 [ -0037 07T 12 n

L6 0755 49 | 1670 0640 52 57

Without Outlier 0780 42 | 825 0660 0 36
3888 00928 42 | 3798 0762 39 a7

0005 0. 10002 03w 0 0

0006 0437 1 | 0000 0370 0 1

222 0600 37 | 2177 0505 35 3

Outlier 3281 0819 31 | 3226 0678 33 3
down weighted 3835 0955 [ 33
by RMCD. 0003 0.438 | 0
0008 0433 2 [0002 0377 0 0

2191 0620 31| 2157 0515 31 o

Outlier 3288 0se2 81 | 4231 0671 31 E
A80 0080 35 | AT 073 3 3

by RAMVE 0001 043 1 | 0001 030 0 1
0001 0438 08t 1 | o002 0

2088 0611 2158 0518 31 18 2
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We see that the estimators of the regressi rameters are biased by the outliers.

ree data and those based on our method are close

The estimates based on the ontlic
to the true parameters, and the relative bias corresponding to these estimators is

also small. For m = 200, 250, and 300 the RMCD method identifies the outliers in

97.00%, 97.90%, and 98.24% of the simulations, and the RMVE method identifies
them in 96.62%, 97.74%, and 98.10% of the simulations. The method again identified
some outliers other than those generated, but these proportions are negligible

Data with two outlicrs. For the contaminated binary model with two outliers,

in a manner similar to that for a single outlier

we first generate n binary response

when the covariates are chosen from the MVN(y, £) with dimension p. Suppose

sult of a shift in the covariate

that two outlying covariates x; and Xy arise as a r

values as for the Poisson model by adding § > 0 to all p components of X; and

subtract § from all p components of Xy, keeping the remaining values of the covariates

s the results. We see

unchanged.  We again set § to 5 and Table 5.4 summari:
that the regression estimates are more biased by two outliers than by one outlier

lata and those based

(Table 5.3). The regression estimates based on the outlier-free

on our method are close to the true regression parameters, and the relative bias

corresponding to these estimators is small. For m = 200, 250, and 300 the RMCD

method identifies the outliers in 98.44%, 98.78%, and 99.05% of the simulations, and
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Table 5.4: Simulated means (SM), standard crrors (SSE), and the relative biases (RB) of
estimates of the regression parameters under the binary model with = (3.0,3.5,0,0,2.0) in
the presence of two outliers

# of Outlier 1 =200
Sample size SM_ sSE RB [ sm RB | sm RB
With Outlier ) 1901 n3 | Los 120 [ 201 om0 19
B 2327 100 | 2401 ns | 2408 0se2 116
s 0.080 27 | 0071 2 | 0057 028 2
e 0081 27 | 0072 27 | 0061 0250 21
s 1215 nz |1 no | 1312 0568 116
Withont Outlier " 13 43| 3200 w0 | 3216
e 3902 1| aso a | a3
B 0.007 2 [ 0001 0 | oo
m 0,005 1| 0008 1| 0000
B 38 | 2472 0499 m | 207

Outlier J. 3282 0688 3194
down weighted * 0. 36 | 3772 0781 35 | w720
by RMCD. 3 0431 1 0002 o037 1 | 0003
B 0430 2 | 0005 1| 000

s 0611 2049 0514 2131

Outlier M 080 a3 0.681 3187
down weighted s asis L0 B 07t 3 | 872
by RMVE h 0005 0437 1 0378 1| 0000
" 0005 046 1 03t 1| 0005

B 2199 0639 30 0523 28 | 207

the RMVE method identifies them in 98.20%, 98.66%, and 99.02% of the simulations.

The method again identified some outliers other than those generated, but these

proportions are negligible. This shows the effectiveness of our method for estimating

on parameters with a minimal effect from contaminated data.

regre:
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5.4 Comparison Study

We compared the results of our method with the fully standardized Mallow’s type
quasi-likelihood (FSMQL) estimation approach of Bari and Sutradhar (2010) in Pois-
son and binary regression models. The FSMQL approach is a robust version of the
quasi-likelihood estimation approach; brief details are given below. Quasi-likelihood

estimation produces inconsistent estimates for the regression effects of 3 when out-

liers are present in the covariate data for GLMs for binary and count da The
quasi-likelihood estimating equation for estimating 7 in the GLM is
> [%"H(/Z)UA ~i)| =0 (5.17)

=
where i; = E[Y]] = exp(x;/) and V(ji;) = var[V;] = ji; for Poisson count data, and
Jis = E[Y)] = ;-",—[4’7) and V(ji;) = var[¥;] = jii(1 — fi;) for binary data.

Cantoni and Ronchetti (2001) introduced a working Mallow’s type quasi-likelihood

(WMQL) approach. They suggested reducing the effect of outliers by introducing

i

Huber’s robust function for r; =

if | l<e
velr) = (5.18)
¢ sign(r;) otherwise
where ¢ is a tuning constant. The WMQL estimating equation is
n [y i
2 [t G5 V() — a®)| =0 (5.19)

i=1
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where a(d) = £ S0 w(xi) 2V (i) E [t (), with i = E[Yi], V(i) = var[Yi], and
w(x;) = \/(T—T) for both Poisson and binary data, where Iy is the ith diagonal
element of the hat matrix H = X(X'X)™' X" with X = (x,Xa,-+ ,X,) being the
n X p covariate matrix.

Bari and Sutradhar (2010) introduced FSMQL estimation approaches by modify-

ing the robust weights and gradient functions to var(ts,(r;)) and 2% respectively.

They demonstrated that the FSMQL approach produces almost unbiased and henee

consist

ent estimates for the regression effect when outliers are present in the covariate

data. The FSMQL cstimating equation is

> [“'(")o% {ar.(r-.) P (n))} frar(v ()
x {u,,(;,) - %ZE(Q‘:‘ (,-,))}] =0.

They named this FSMQLy. In FSMQL they used the deviance (1) — E(.(r))

instead of (1) — £ Y7 E( (1)) and the corresponding estimating equation is

[ )55 (vtr) - E(uu(r.)))(rur(uu(r.m"x(c».(r.)—Em-(r.)))]:)

We examined the performance of our method by estimating the regression pa-
rameters /3 under both Poisson and binary models with one or two outliers. The

simulation designs considered are similar to those of Bari and Sutradhar (2010) for
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meaningful comparisons: n= 60 and p=2 with 4 = (3, ) =(1.0,0.5). We caleulated

the SM, SSE, and RB of these estimators based on 1000 simulations.

5.4.1 Poisson Case

Data with a single outlier : To generate n count observations with one outlier, first

assume that in the absence of outlie

Y1 Y2, Yu are generated following the Pois-

son density P(Y; = i) = 45, with j; = X where %; =

i1, Fi2). The values of
these two covariates are chosen from

iid iid

&~ N(0.5,0.25) and & ~ N(0.5,0.

for i = 1,2,--- ,n. To make y; the ontlying response, shift the values of & and

as follows:

and set § =2.0. Retain x;;

i for all i # j. Thus, y1, 4, -+, ya are
a sample of n count observations with y; as the single outlier.

Data with two outliers. For the Po

on model with two outlying observations, the
count responses are generated in a manner similar to that for a single outlier. The

two covi

rintes &y and F are chosen as

iid iid

&~ N(1.25,0.25) and & ~ N(2.25,0.5).
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servations from a Poisson model with these covariate

After generating n count obs

values, we create two outliers by shifting the covariate values &y, &5 and #x, i

follow:

| =&+ 0 and T, +6,8>0

g =

=0 and Tpo = G2 — 0,0 > 0

and iy = a0 and Fy = wip for all i # j,k, i = 1,2, ,n. We again set § = 2.0,

for

lts for the Poisson model, here we reproduce results

es the res

Table 5.5 summa

FSMQL methods from Bari and Sutradhar (2010).

(SSE). and relative biases (RB) of

Table 5.5: Simulated means (SM), standard error
60 under Poisson model with 3

on parameters for s

estimates of regre
(1.0,0.5) in presence of one or two outliers

Outlier-free data

FSMQL,

# of Outliers | Statistic | 1 3 & h B 8 " B
1 sM | 0850 | 0506 | 0819 | 0496 | 1050 | 0510 | 1050 | 0510
sse | oas | 0220 [os22 | 0225 [0 | osm | osn | osn
RB 1© % a7 2 9 5 9 8
2 sM |08 [ 0491 [ 0991 | 0401 | 0991 | 0503 | 0990 [ 0504
0.168 | 0089 | 0161 | 0087 | 0110 | 0060 [ o012 | 0061
RB 6 s 4 10 5 5 8 6
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From Table 5.5, we sce that the regression parameter estimates using our method

ing methods. They are close to the

are close to the estimated values of the exi

ilso close to that

estimated values from the outlier-free data, and the relative bias is
of the outlier-free data. Note that the method has identified 100% of the outliers in

the one-outlier case and 99.35% in the two-outlier

5.4.2 Binary Case

Data with a single outlier. For the contaminated binary model with a single outlier,

, Yo assuming that they do not contain

we first generate n binary responses, yy, 2, -
any outliers. We generated these n good responses following the binary logistic model

v ) and = (51,3).

= < with two covariates so that %; =
14X

Suppose that the values of these two covariates are chosen from

iid iid

Fa % N(=1.0,0.25) and F % N(=1.0,0.5)

for i = 1,2,--+,n. To create an outlier covariate x;, we change the corresponding

covariate values ;) and p:

Tin+ 0, 01,0, >0

1 = &1 + 0 and

with = & and iy = i for all i # j. We set 6 =3.0 and §, =4.0. The remaining

covariates are unchanged, i.e., #;; = xy and &y = i for i # jok, i = 1,2,--+ .
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The jth response ; is replaced with a binary value corresponding to P(y; =1)= 7 =
0.60 and 0.90.
Data with two outliers. For the contaminated binary model with two outliers, we

first generate n binary responses in a manner similar to that for a single outlier with

ribution as &, % N(0,0.25)

two covariates &;; and &, chosen from the normal di
and &2 % N(0,05) fori=1,2,--- ,n.

Suppose that two covariate outliers x; and xy arise as a result of a shift in the

covariate values for &1, &2, dx1, and

Tp=Eu b, Tp=Eptdy (5.21)

Ty =T =0, Tka=Tpe —

where 1,8, > 0.

We retain &;; = x;; and & = ayy for all i # j, k. Consequently, for the large values
of 8 =3.0 and &, =4.0, the covariates corresponding to y; and g become outliers.
The j-th response y; is replaced with a binary value corresponding to probability
7 = 0.60 and the kth response y is replaced with a binary value corresponding to

probability 7 = 0.40. Table 5.6 summarizes the results for the binary model, here too

we reproduce results for FSMQL methods from Bari and Sutradhar (2010).
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Table 5.6: Simulated means (SM), standard crrors (SSE), and relative biases (RB) of
60 under binary model with J =

estimates of regression parameters for sample of s
(1.0,0.5) in presence of one or two outlicrs

SMQL, FSMQLy Outlier-free data
# of Outlicrs B b A B B 2 A B
1 SM [ 1om | o510 [ row | 0s12 | Lo27 | oseo | 1027 [ 060

0802 | 0796 | 0792 | 0785 | 0742 | 0601 | 0742 | 0691

1 sM | 0991 | 0503 | 1003 | oase | Lo27 | 0560 | 1027 | 0560

0782 [ 0777 [ 0779 | 0761 | 0742 | 0601 | 0742 | 060

=09

1079 | 0515 | 1038

7=0.60.4 1098 | 0592 | 1062 | 0572 | 1257 | 0.619

RB




Chapter 6

Conclusions and Future Work

There is much interest in control charts that monitor the process mean and process
variance when individual multivariate observations are collected from an industrial

ing methods are influenced by outliers in the Phase-I data, which

process. The exi

affect their efficiency in the Phase-IT monitoring. Hence, it is important to develop

methods that are not unduly influenced by outliers. Tn this thesis, we have proposed
robust control charts using the high-breakdown robust estimation methods RMCD

iance for individual

and RMVE to monitor the process mean and the process va

ions. We have also discussed the use of robust estimation in

multivariate obser

generalized linear regression models.
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We have proposed robust Hotelling’s 7% charts based on the RMCD/RMVE esti-

mators for the Phase-I monitoring of the process mean, when individual multiva

observations are collected. The control limits for these charts are found empirically

and a nonlinear regression model is used to find the control limits for any sample
size. We studied the performance of our charts under various data scenarios using a
large number of Monte Carlo simulations, and they performed better than the stan-
dard Hotelling’s 72 chart. We also compared our proposed charts with robust control
charts based on MCD/MVE estimators using the concept of the probability of a sig-

nal. Our charts provided superior performance. Our simulation studies indicate that

s and smaller dimensions

RMVE-based charts perform well for smaller sample

and RMCD-based charts perform well for larger sample sizes and larger dimensions
in the case of robust 7% charts.

We have proposed robust control charts using the MEWMS/MEWMV schemes
based on RMCD/RMVE estimators for Phase-I monitoring of the process variance
when individual multivariate observations are collected.  We compared the perfor-
mance of our charts under varions data scenarios using a large number of Monte Carlo

simulations.  They perform better than existing charts, namely the MEWMS and

MEWMV charts proposed by Huwang et al. (2007) and the M EWMS Ly, MEW M

MEWMV Ly, and MEWMV L, charts proposed by Memar and Niaki (2009). The
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performance of the charts was studied for small values of the smoothing parameters
w and A, and they were found to be better than the existing methods. We would like
to extend the concept of robust control charts to the Phase-IT monitoring of the pro-

ce

variance when individual multivariate observations are collected since detecting
process variability changes is often more critical for improving quality than detecting

process mean shifts.

Outliers in regression data, especially in the covariates, may unduly influence

the estimates of the regression parameters. We have proposed a robust regression

approach that identifies and down-weights these outliers using the squared robust

Mahalanobis distance based on the RMCD/RMVE estimators of the covariate data.

We a: rlo

ed the performance of our method using a large number of Monte C

simulations. We showed that it is effective in freeing the GLM regression estimators
from the effects of outlying covariates. We would like to extend the use of robust

estimates of the multivariate mean and covariance matrix to regression models with

correlated data
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