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Abstract 

Our work begins with rcLI141 in which Lewandowski and Pawlowski obtained the unique 

solutions (p, U. B. tPll \0 the field C(IUalions restricting axisymmetric and clcctrovacilum 

extremal isolated horizons (l1·{s). After reviewing the bounu;lry conditions and generic ge­

ometry of IHs. we construCI the on-horizon dma {K,$II, Rc('fI2),;rIOI.wa, etc} using the 

local uniqueness solut ions lP, U, fl, fl}. Subsequently. we extend the adapted tetrad on an 

IH to cover the external regions and develop the method to reconstruct the ncar-horizon ge­

ometry of cxlrcmal l~l s embedded in clcclrovacuurn. Thi s quasi local mclhocl is applied \0 

rebuild the near-horizon mClrics of extremal Reissner-Nordstrom and Kerr horizons. which 

prove \0 be equi valent with those deri ved from the near-horizon limit of the correspondi ng 

global metrics. These resu lts confirm that the loe:!1 soluti ons (I'. U, B. <P I I describe the in ­

trinsic structure of extrenml Kerr-Newman-family horizons. The solutions (P. U, B. ¢ lliead 

to the first uniqueness theorem from quasiloeal definitions of blaek holes. and this theorem 

implies that the intrins ic structure of extremal Kerr-Newman horizons cannot be distorted 

by external energy-matter distribution. This conjecture is examined and verified in con for-

mastatieally distorted extremal Reissner-Nordst rom spacetime. 

K.:\" \VORDS Isolated Horizons. Adapted Tetrad. Ncar- liorizon Metric. Conformastatie 

Distortion. Newnmn-Penrose Formalism 
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List of Symbols 

== denotes c<]ualiIY on an NEHfW IH/IH: 

:= denoles equality in Ihc ncar-horizon limit; 

.J denotes the hook operator. I"F"" = / .JF ; 

* denotes the intrinsic Hodge dual operator with respect 10 Ihe induced metric ilclb : 

w" denotes the rotation I-form potential of an NE I-If\V IH/ IH : 

VdcllOlcS Ihe induced connection on an NEH/W IH/ II-I; 

(6, [II) denotes an WIH/ IH with the equivalence class Ill: 

Q hat over quantities denotes intrinsic quantities on a foliation leaf of an NEHfW 11-lfIH ; 

OCr") denoles rank-m higher-order infinitcsimals for Taylor expansion in ncar-horizon limil: 

Q,Q denotes pania] derivative with respect 10 Ihe vari:lblc x" , Q, a := a" Q: 

Q,,, denotes covariant derivative w.r.t. Ihc vector field ),.IlJ". Q,,, := .l' V" Q: 

'I', (i E (0, 1,2,3,41) dcnotcs Wcyl sC<llars in NP form<ltism; 

(II,} (i E 10. 1.21) dcnotcs Ricci sC<llars in NP fonnal ism; 

!Pi (i € 10. t. 2)) denotes Maxwell scalars in NP form<l tism: 

R denotes thc set of rC<l1 numbers. 



Chapter 1 

Introductory Remarks 

In the realm of classical b lal:k hole physics, one of the mOSl important rcsull~ developed in 

Ihe last four decades is a group of glubal uniqueness theorems. These theorems tell us Iha1. 

the only statiollary, a.f),mplOlicafly jim, efec/romel/lflll and IWlIllegellerate black-hole solu­

tions to the Einstein-Maxwell cqu;lIions aTC the Kerr-Newman family (for a comprehensive 

review, c.f. refs.11 Jl21 ,md the rcfcn::nccs therein as well as rcf.13]). Here Ihe assumptions 

(asymptotic nat ness. ctc) needed for the proofs are imposed on the entire spacetime. which 

1cOJds to Ihe scenario of isolated bbck holes embedded in c1cctrovacuum that extends to 

null infinity. The scI of global uniqueness theorems was Teeelll!y enriched wilh the proof 

regarding lhe uniqueness of degeneraw (r.t"lr;'IlI(I/) Kerr-Newman SolUlions in ref.141 

While black holes have been extensively studied via the global approach. investigations 

from the quasi local perspective have also achieved great progress in the lasllwo dec'ldes. 

Some typical quasi local definitions incl ude Ira,'pil1g /wri zol1.,·151. (generic) isola/ed hori­

zons161171. dYl1amicallwrizollj"181191 . slowly evolving /ioriwnsl lOIlIII etc .. and they play 

important roles in numerical relativity. quantum gravity and other fields. One can refer to 

rcr.1121 for a detailed review of quasilocal characterization of black holes. 



Can we build uniqueness theorems from quasilocaJ approaches? This is quite a challenging 

problem and let's take isolated hori zons (IHs) as an example to show where the difficulties 

usually arise. As will be shown short ly afterwards in Chapter 2, an [H is respectively said 

10 be a vacuum or eb;trovacuum 11-1 if it satisfiesl?!! [311 [41 

That is to say, we only require thaI the vacuum or e!cctrovacuum Einstein(-Maxwell) equa­

tions hold OIl fhe horizon. regardless of the behaviors at external regions. Restrictions on 

IH s and other quasilocal definitions of black-hole horizons cannot be extended 10 the exte­

riors, and in general. it is impossible to fix the structure of the black-holc horizon without 

referring to cxtcrnal energy-matter distribution. 

However. based on the geometry of generic IH s developed in reC1131. equations restricting 

axisymmetric and deClml'(u;uu/II eXfre/llal l Hs were solved by Lewandowski and Pawlowski 

in ref. I 14 1, and the solutions interpreted (though witholli further calculations) to represent 

the uniqueness of extremal Kerr-Newman horizons. As will be proved in Chapter 3 and 

Chapter 5. implications of these local solutions do agree with the intrinsic and near-horizon 

strUl:tures of the event horizon of extremal Kerr-Newman blal:k holes. 

The local uniqueness theorem in reCI 14J is really an amazing result. It is the first successful 

allempl to build black-hole uniqueness structures from quasi local definitions. Moreover, it 

imrlies Ihat. Ihe intri nsic structure of extremal Kerr-Newman horizons is independent of 

maHer and fields outside the horizon. Based on the local uniqueness as well as some other 

results] 15]. my supervisor. Dr Ivan Booth, PUI forward the conjecture Ihal 



n/{: inlrillsic Jlmclllre of all e.drema! Kerr-Newmal/ (i.e. axi~Jml/lelric am! declrol'(lCII!llI1) 

liorizoll call1lOf be distorted by eXlemu! cner!:Y-III(1l1erdi.j'lriIJllliOIl . 

Thi s conjecture is partly exami ned in Chapter 6 of this thesis 

Hence, the two topics of thi s thesis have been introduced. Firstly. we wi ll verify that the lo­

cal uniquencss solutions correspond to extrcmal Kerr-Newman horizons. Secondly. we will 

study lhe intrinsic slructure of extremal Kerr-Newman-family horizons in external distor­

tion1iclds. To achieve these goals. the thesis is arranged as follows. In Chapter 2. we review 

the defini tion of IHs. redcrive the boundary condit ions and restriction eq uat ions on II-Is and 

introduce the local uniqueness solutions (p2. V. B. !/Id. In Chapter 3. we explicitly calcu­

late the on-horizon data I K, 1'11. Re('+'2), " (0). (u" . etc I using the local uniqueness solutions 

U>". U, B, !/Ill, and interpret the meanings of three parameters (a,A , /lol, In Chapler 4, we 

extend the adapted tetrad on IHs to cover the exteriors, and develop the method to construct 

the ncar-horizon geometry of an IH embedded in elcctrovacuum using on-horizon data. In 

Chapler 5. we explicitly compute the ncar-horizon metrics of extremal Reissner-Nordstrom 

and Kerr horizons using the local method in Chapter 4, and prove their equivalcnce with 

those derived from near-horizon limit of the corresponding global metrics. In Chapter 6, we 

take the extremal Reissncr-Nordstrom black hole as an example, treat it as a conforrnastatie 

metric, and investigate its superposition wi th external conformastat ic fields 

Since we take an isolated-horizon approach 10 study black hole horizons (cX reLI16) or 

reLII?] for a completc review of tUs), the best mathematical language should be the null 

tetrad formalism developed by Newman and Penrose! 181. Unlike the traditional signature 

1(+, -. - . - ), l"lla = Lm"n1a = - I I used in Newman-Penrose (N P) formalism I 1811 19(. we 



will switch to 1(- . +. +. +), lalla = - 1.1110"'0 = 11 throughout this thesis in accordance with 

the signature used for trapping surfaces. Thc consequences of this change and the principal 

NP equations are discussed in Appendix 13 . Also, we will cmploy the tel/sorial rather than 

Ipillorial version of NP formalis m: for a uni fied formulatio n of these two versions. one ean 

refer to Chapters 2 and 3 of ref.1201. 



Chapter 2 

Isolated Horizons: Boundary Conditions 

and Extremal Structures 

The geometry and mechanics of generic (rotating and distor1cd) isolated horizons ( IH s) 

were developed in rcfs.16)[7)[ [31 . and based on these we will rcderive the boundary condi­

tions of I!-I s and analyze the intrinsic structures of cxlrcmill lUs in this chapler. In f;lel. Ills 

date b,H:k to rcfs.[211-124[. bUllhcsc earliest works were imperfect as they only dc.ill with 

nonrolating and undisloned IHs. 

Following the standard SCI up in rcfs.[611711 13), we will introduce nonexpanding horizons 

(NEI']s), weakly isolated horizons (W 1Hs) and IUs in sequence. NEI']s arc geometric pro­

totypes of WIH s and lHs, on which we can establish all boundary conditions, and W1Hs 

;lnd IHs would naturally inherit a!1thcsc conditions. Strengthening the wncept of NEI'ls 

to WIHs, we will be able to define a valid surface gravity and generalize the b lack hole 

mechanicsl71. WIHs arc suflicient in studying the physics on the horilOll. but for geomet­

ric purposes. stronger restrictions can be imposed to WIHs so as to introduce IHs, where 

the equivalence c lass of null normals II] fully preserves the induced connection 1) Oil the 



horizon! 131. 

2.1 Boundary Conditions of Einstein-Maxwell IHs 

2.1.1 Generic NEHs: Definition and Implications 

Isolated horizons provide a local description for black holes in equi librium with their exte-

riors. An IH is an NEH whose extrinsic structure is preserved. while an NEI-! is an enclosed 

null surface whose intrinsic structure is preserved. NEHs are geometric prototypes of IHs. 

so we will begin with NEHs to investigate the geometric charactcristics. 

A three-dimensional submanifold /::,. is defincd as a gcneric NEH if it respects the following 

conditionsI 7J1IJ), 

(i) 6 is null and topologically S2 x R : 

(ii ) Along lIny null nonnal field I tangent to 6 . the outgoing expansion mle O(n := itbVah 

vanishes: 

(iii) All field equations hold on 6, and the stress-energy tensor '/ ~b on /::,. is such thaI v a := 

_T: /b is a future-directed causal vector for any future-di rccted null normal!", Vava :s: O. 

Condition (i) is fairl y trivial andjusl states the general fact that from a J + I perspcctivel26) 

an NEH I 6 is foliated by spacelike 2-sphcres'& = S 2, where S 2 emphasizes that '& is IOpo-

logically compact with genus zero (.g = 0). The signature of 6 is (0. +, +) with a degenerate 

tcmporal coordinate. and the intrinsic geometry of a foliation leaf '& = S2 is noncvolutional. 

Thc property 0 (1) = 0 in condition (ii) plays a pivotal role in defining NEHs and the rich im-

pliciltions encoded therein will be e:uensively discussed below. Condition (iii) makcs one 

(Following the conventions in refs.1611711131, the symbol t:. is adopted 10 denOle an NEH : in the 
following context. t:. also refcrs to the standard symbol for the din::t:tional deri vativc t:. := /laVa in 
NP fonmllism. We believe this won', ca lise an ambiguity 



feel free to <lpply the NP formali sm of Einstein-Maxwell field equations to the ho rizon 

and its ncar-horizon vicinity; furthermore, the very energy inequality is motivated from the 

dominant energy conditio nl 27 11281 and is a sufficient condition for deriving many bound-

ary conditions of NEI-Is. 

Now let's work out the implications of the definition ofNEHs. Be ing a null normal to t., r 

is automatically geodesic, I( := - molbVblo = 0, and twist free , Im(p) = Im( - m"fl,bVbla) = 0. 

For an NEH , the oUlgoing expansion rate B(f) along I" is vanishing, Bo) = 0, and consc­

quently Re(p)= Re( - m"fi,bVbla) = - !Bo) = O. Moreover, according to the Raychaudhuri -NP 

expansioll -twist equation (a180 for the shem' equation Eq(2.5) below, c.r. page 56, Scction 

9(a)ofrcf.1 191)". 

(2. 1) 

it follows that ont. 

(2.2) 

where (1" := _ mblllaV"h is the NP-shear (;Qcfficient. Due 10 the assumed energy condition 

(iii), we have R,u,rlh = Rablalh - ! RSah lQlb = S11Tabl"lb (c = G = I), and therefore R"bl"ll) 

i8 nonnegativc on 6. TIle product (1"a' is of course nonnegative, too. COnSe{IUenlly, (1"{t and 

R"bl"lh must be simultaneously zero on 6, i.c. (1" =' Oand RaJ/'lh=.O. A8 a summary, 

Thus, the isolated horizon 6 is nonevolutional and all foliation Ic<lves A = 51 look identical 

with one anot her. The relation Rablalb = 811 Tablalb = 811' T~/b ·Ia =' 0 implies thatlhc 

causal vcctor _ T; /b in condition (i ii ) is proportional to /" and Rablb is proportional to la on 

!Following the conventions in refs.16117J[ 131. Ihc symbol =. ll1 ean~ equality on NEHs and their 
sp~ee lik e cross-sections, while hat ovcr quant i tie ~ CA, f/... etc) would denote intrinsic quantities on 
a folialion leaf 



the horizon I"l: that is. - T: t = cf' and Rab1h == d a, c E R Applying this result to the related 

Ricci-NP scalars, we get $ 00 := ~Ral>f't == ~ Ibt == O. $ 01 = ~:= ~Ral>rmb = ~hmb = 0. 

thus 

(2.4) 

The vanishing of Riee i-NP quantities ($ 00 , $01 ,([) IO J signifies that. there is no energy-

momentum flux of any kind of charge across the horizon, such as electromagnetic waves, 

Yang-Mills flux or dilaton flux. Also, there should be no gravi tational waves crossing 

the horizon; however, gravi tational waves are propagation of perturbations of the sp;lce-

time continuum rather than flows of charges, and therefore depicted by fou r Weyl quan-

tilies 'I' i (i = 0, 1,3,4) (excluding '1'2) rather than Ricc i quantities ([)'!" According to the 

Rayehaudhuri-NP shear equation 

Dcr -= cr(p+ p) + '1'0 = - 2crO(1) + '1'0, (2.5) 

or the NP field equation on the horizon 

Dcr - 15K = (p + p)cr + (3£ - i;)cr - (r - it + Ii- + 3[3)K + '+'u == 0, (2.6) 

it follows that '1'0 := Cabrd f'mbr md == 0. Moreover, the NP equation 

Jp - jjcr = p(iH [3) - r.r(3a - lJ) + (p - p)r + (p. - P)K - '+'1 + <1>01 = 0 (2.7) 

im plies that '+'1 := C"lx dl"nbrm" = O. To sum up, we have 

(2.~) 

which means that (c.f. Sections 2.1. 1 and 2.1.2 in ref.[29(), geometrically, a principal null 



direction of Weyl's tensor is repeated twice and I" is aligned with the principal di rection: 

physically. no gravitational waves (transverse component 'flo and longitudinal component 

'fI 1) enter the black hole[29[[30J. This result is consistent with the physical scenario dcfin­

ingNEHs. 

REMAIIKS The tensor fonn of R;)ych;)udhuri's equation for a null congruence reads (e,f. 

ref.[3 1Iforarelativelycomprehensivereview) 

where K(lJ is defined such that Kill := rV~/h . The quantities in Rayehaudhuri's equation 

arc rdated with NP spin coeflicients via (c.f. Chapter 2 of rcf.129J. Chapler 9 of rcL1301. 

Section 2.3 of ref.[321, and Chapters 2 and 3 of reL1281. where null congruences and the 

meanings of spin coefficients employed in this section arc extensively discussed) 

(J(I) =-(p+p)=-2Re(p) . 0(") = !J+{l = 2Re(p) , (2. 10) 

where Eq(2. 10) follows directly from hob = hl>r> = mbiila + iilhllt and 

0(") = h l>r> vallb = iilbm"Val1b + mbiil"Val1b 

= iilbJ/Ib + IIl811b = 11 + j1 

(2.13) 

(2. 14) 

Moreover, a nu ll congruence is hyper.wrftlCe orl/)ol:OIwl if Im(p) = 0 (e.f. Section 2. 1.3 of 
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ref.12'l1). 

2. 1.2 Constraints from Electromagnelic Fields 

Vacuum NEI·!s on which lq)'I=O. A=OI arc the simplest types of NEHs, but in gcncrallhcrc 

can be various physically meaningful fields surrounding an NEH. among which we arc 

mostly interested in clcctrov3cuum fields with A=O. This is the simplest elltension of vac­

uum NEI'ls, being a special kind of Einstein-Maxwell NEI·ls with no electromagnetic media 

ovcrsprcmling the external regions. The nonvanishing energy-stress tensor for e1ectrom;]g-

netic fields readsl27] 

(2. 15) 

where Fab refers \0 the anlisymmctric (F"h = -Fl><> . F~ = 0) electromagnetic fi eld stTCngth. 

and T"b is trace-free (1'% = 0) by definition and respects Ihe dominant energy condilion . 

(One should be careful with the antisyrnrnetry of F ab in defining Maxwell-NP scalars t/J,) 

The boundary conditions derived in the previous section arc applicable to generic NEHs 

In the electromagnetic case. Vii c;m be specified in a more particular way. By the NP 

forma l i .~m of Einstein-Maxwell equations. one has (cT Section 2.2. 1 of ref.I29)) 

(b,} = 2r/1;'i;. i.j E IO.1.21 . (2.16) 

where 4li denote the three Maxwell -NP scalars. As an alternative to Eq(2.4). we can see that 

the condit ion (1100 = 0 <llso results from Ihe NP equmion 

Dp - 61( = (p2 + cro-) + (t: + i;)p - KT - (3a +fj - Tr)1( + <1100 =0 (2.17) 



II 

(2. 18) 

[\ follows straight forwardl y thaI 

These results demonstrate that, there arc no electromagnetic waves across (tj)oo. <POI) or 

along ($02) the NEH except the null geodesics generating the horizon. It is :llso worthwhile 

\0 point oul 1hal. the supplementary equation <D i) = 2¢,J;j in Eq(2.16) is only valid for 

c!ectromagnetic fie lds: for example, in the elise of Yang-M ills fields there will be ([1'1 = 

Tr(F;f: j ) whcrcF j (i E (0. 1. 2)) arc Yang-Mills-N P scalars (c.f. page 27, Appendix A.2 of 

rcL134l) 

2.1.3 Adapted Frames and Newman·Unti-type Tetrad 

Null Tetrad Adapted to NEHs 

Usually. null tetrads adapted 10 spacetime propcnies are employed \0 achieve the most suc-

cinci NP descriptions. For example. a null lelrad can be adapted \0 principal null directions 

once the Petrov type is known[29J1301; also, at some typical boundary region .~ such as null 

infinity, timcIike infinity. spacelike infinity. black hole horilOns and cosmologicil l horizons. 

tet rads can be adaptcd to boundary structures. Similarly. a pre/errec/ tetrad adapted 10 on-

horizon geometric behaviors is employed in the liter;lIure 10 fun her investigate NEUs (c.f 

refs.17111311231124112511361. ctc.). 

As indicated from the 3 + I peT$pective from condition (i) in the definition. an NEH 11 is 
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fo lia ted by spacelikc hypcrsurfaccs A, = s~ transverse to its null normal alo ng an ingoi ng 

null coordinate v, where we follow the standard n01ation of ingoing Eddington-Finkelstein 

null coordinates and usc I' 10 label the 2-dimcnsional leaves S ~ at \' = constant: that is, 

t. = .& x 11'0 . I'l l = 5 2 X [vo. VI]' v is sct to be fu ture-directed and choose the fiTst tetrad 

covcclOr II" as II" = - dv (i.n" = - I )1711 13 j, and then there will be a unique vector field I" 

as null normals [0 S ; satisfying the cross-normalization {ilila = -I and <tfline paramclriz:t-

lion Dv = I: such choice of (/", nal would actually yields a preferred foliation of to. Whi le 

[1",11"[ arc related to the extrinsic properties and nu ll generators (i.e. l1 u ll flows/geodesic 

congruence on L\). the remaining tWO complex null vectors lmn,IJ,QI are to span the in(rinsil: 

geometry of a foliation leave S ;, tangent tof.. and transverse 10 If' ,IIQI: that is, {,III = {,iil=O 

Now let's check the eonscquenees of this kind of adapted tetrad. Since 

£(111 =0;:= 1/. ", 1 =0:> bD - DS;:=({H/l - Jr)D+Kt1 - (P+t:-i:)S-crJ=O, (2.20) 

with K =p =cr = O. we have 

(2.21) 

Also. in such an adapted frame . (he derivative L;;,'" on A,. ;:= S ; should be purely illlrinsic: 

thus inlhe l:ommutator 

£;;, 111 ;:= 11il. 1II );:= 66 - 6J;:= (p - 11)D + (jJ - p)tJ. - (jJ - ty)c'j - (tr - /l» . (2.22) 

(he cocflicients for (he directional derivatives f) and t1 must he zero. that is 

(2.23) 
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2Rc(P) equals the ingoi ng expansion rate 11("). 

The concrete form of such an adapted tetrad will be constructed in Section 4. 1. whil:h 

works for both the horizon and its external vicinity. The construction is inspired by the 

classic Ncwman~Unli tCIradl331 used 10 study asymptotic behaviors at IIfII/ infinilY. 

Newma n-Unli Tetrad for Nullinfinily 

In Ihis subsection, we will briefly review how NCWl113!l-Unti (NU) tetrad works. which also 

prepares us for the discussion in Section 4.1. The NU tetrad reads (c.f. (33) and Section IV 

of ref.118): or page 29. Appendix B of rcf.134D 

(2.24) 

For the NU tetrad, the foliation leaves arc parameterized by the outgoing (advanced) null co-

ordinate II wilh fa "" du. and r is the nonnalizcd affine coordinate along /" (Dr 0:= f"a"r = I): 

the ingoi ng null vector II" acts as the null generator at null infinity with 611 = I1diJa li = I 

The coordinates (11, r,S', ~I comprise two real affine coordinates (II, rJ and twO complex 

stcrcographic coordinates (( := e'~ cot I';;: = e-'" cot I I, where (8, ¢) arc the usual ~pher­

ica! coordinates on the cross-section Au = S ; (as shown in Appendix 13 of (341, colllplex 

siereogmphic rather than ,-eul i.l'Olhemwi coordin;Jtes are used just for the convenience of 

complctcly solving NP cquations). For thc NU tctrad, the null frame {la . 11 0 , 1110 ' 1110) is 



parallel!y transported 1l1ong the langent vector fi eld I(lao' thus 

whidl implies Ihal 

/( 0;;; If '" C =- O. 
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(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

Furthermore. apply ing the cornmu(;1!ors 10 1/ and taking Eq(2.24) and the relatiuns 1011 =-

0 . .6.11 = I . all = 0,611 = 01 into account. one obtains 

(6D - Dt1) 1/ = (y + y)(OIl) - 1'("11) - T(611) = O. (2.30) 

(JO - OJ) 1/ = (lH {1)(01l) - p(till) - cr(JII) = O. (2.3 1) 

(06 - .0.0) 1/ = - v(Ou) + (T - ii - fJ)(l'lu) + (p - Y + 1')(011) + ,1(61/) = o. (2.32) 

(6J - oJ) 1/ = (Ji. - J.I)(DII) + (jJ - p)(t..u) + (a - jj)(JII) - (ii' - /1)(811) = O. (2.33) 

While the first lWO comrnut<l\or equations are trivial. Ihe lasllwo commutators yield lha! 

fJ = p, T = ii+j3. (2,34) 

Eq(2.29) and Eq(2 .34) constilute the basic gauge conditions for the NU tetrad. This IClr; ld 

naturally annihilates several spin cocflicicnts and exerts rest rictions between other spin co-

efficients. Th is is j ust what we are looking for to express the aforementioned boundary 

condition for NEHs. However, the NU tetrad is designed for null or spalial infinity and is 

inappropriate for ncar-horizon regions: for e~<lmplc. (; in Eq(2 .29) is related 10 the surface 
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gravity (i.e. acceleration along null geodesics) and should be nonzero dose 10 NEI·ls e)\Cepl 

in extremal situations. In a word, the NU telrad cannol serve as the adapted tetrad for IHs 

after transition to the horizons. 

However. inspired by the method of NU tetrad Eq(2.24). one can construct a similar tetrad 

for the horizon and its vicinity which fully respects the properties discussed in the previous 

sectiun by switching the roles of I" amln". resclling the outgoing null vector lield /" as 

generators, and taking the ingoing (retarded) nu ll coordinate!' as Ihe fo li<ltion parameter, as 

will be discussed in Section 4.1 (eX Section I of rcf.[35] for Ihe differences of asymptotic 

bch;lviors between null infinity and near-horizon vicinity) [n advance. we introduce the 

new gauge conditions in modified NU tetrad for a preview, 

(2.35) 

which agree with the boundary conditions of NHls. 

2.2 Geometry and Connections of NEHs 

Conneclions and Roll.lion I· Form Poll'nlial 

While the connections on the full spacetime outside an NEH are depicted by Levi ·Civila 

connections whose components in 11 local coordinate systcm manifcsllhcmselves as Christof-

rei symbols. thcconncctions on an NEH arc given by (c.f. Appendix B.2 ofrcLI131) 
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With lh(; properties Eq(2.2 1). Eq(2.23) <lnu Eq(2.35) in the ildaplcd wlrad. thc comm utator 

Inl =0 [l<.. DI yields 

(2.39) 

Contracting Eq2.36 with /lb. one obtains the rotation I-form potential W a. 

(2.40) 

- (c + e)na + «(1 +jj)ma + (rY + /3 ) 1110 , 

So far. the main boundary cond it ions and connections on NEHs have been derived. An 

NEH is a geometric obj ect, or a proto-IH ; to study the mechanics, we need 10 strengthen 

the concept of NEHs and introduce weekly isolated horizons (W IHs) which have a wcll­

defi ned vlliid surfilcc gravity. 

Wills, Surfa(',e Gmvity and IH s 

A W1H (A II]) is an NEH (6) equipped with an equivalence c lass II I of null normals 

sillisfying[7 111 31 

£/lu"= Oor[1',.1J,, jf' : O. V/€j/!. 11I = 11'l l' = cl , cE RI (2.41) 

Being a subset of NEBs. WII-Is naturally inherit all the boundary conditions and geometry 

of NEHs_ Similar to other Killing horiwns, the surface gravity /((1) for wnls can be defined 
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as the accclcr:ttion a long null geodesics, 

(2.42) 

Compare this definition with the transportation equation 

(2.43) 

and with the aid ofEq(2.2 1) it natural ly follows that 

(2 .44) 

After defining the surface gravity, the mtation I-form potential Wa and the geometric con­

nections on a WIH (6. = A x R, 1/1) hccomc 

where the commutatorcoetficicnt; is defined via { := a - p. In these connection equations. 

Ihe terms involving fla arise from the futilttion process, so Ihe rOiatioll I-form potential wa 

and the intrinsic connections on a foliation leaf A,. = S ~ arc given by 

(2.48) 

(2.49) 

(2.50) 
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By the way, it fo llows from Et](2.48) thilt 

(2.51) 

where the index of {;j' is raised from tVa by the intrinsic inverse metric hab = /ltt/lh + ii1am b, 

As proved in ref.1 13], an NEH cun a/ways be strengthened to prooucc a corresponding W IH , 

and within Ihe fram ework of WII'ls, we arc able to carry oul a ll necessary calcul:.ltio n .~ for 

the geometry and mechanics of Ihe horizon . However. we will still take this opportunity 

10 int roduce the definition of li-I s17J1131 for wmpktcncss: that is. (Ill IN is {/ IVllIlI'ilh 

Weyl-NP Scalar '1'2 

Besides the wnncction coefficients discussed above, another important quanti ty reflecting 

bolh geometrical and mechanical characters of WII-Is is Ihe Weyl-NP scalar 'i'! (the other 

fouf Weyl scalars being related to gravitational waves). The NP equation 

/ia - J{3 = (pp - tlrT) + m} + PP - 2ap + y(p - jJ) + e(p - j1) - '1'2 + <tl ll + A (2.52) 

yiclds (hat (as <Il" are rcal hy definition and A = 0) 

addition and subtraction of which give risc to thc rC<l1 <lnd imaginary pans of ' I' , that 

- 2Rc('+'2) = /i{+J{ - 2({ - 2(jl ll = K - 2(jlll. (2.54) 

- 2Im('+'2) = /i{ - J{+2a{3 - 21}p. (2.55) 



19 

where 

(256) 

refers (0 Gaussian curvature of the c ross-section l:. . = S;. Thus for c lcctrovacuum 

'f2 = i( -K + 21111 + ;(8; - 15( + 2{i:/J - lit/I)) . (2.57) 

which reduces to 

'+'2 = ~( - K + i(6( -J{ + 2i'tfj - 2a!3)). (2.58) 

for vacuum W[Hs wilh !lJ11 = O. Moreover. &1(2.2 1) and Eq(2.48) yield Ihat[ 7 Jl I3J 

where ",2) is the area 2-form of the cross-section 6. = 52, Thus. Ihe intrinsic Gmu,lit/II 

t 'IIIWlfllre and rolalional property of a WIB arc encoded into the rcal and imagillary part 

of 'P"! respectively. Furthermore. since the horizon cannot be nat (K *- 0). '1'2 is always 

nonzero ('1'2 *- 0): now recalling the boundary conditions Eq(2 .8) that 'l'o == '1'1 == O. thus 

geometrically a large cbss of W1Hs will be of PClrvl'- I),pe D129 11 301, including WJH s 

induced from the renowned Kerr-Newman-fami ly bl3ck-holc horizons. 

2.3 Extremal Electrovacuum WIHs with Axisymmetry 

2.3. 1 Field Equations for Vacuum and Electrovacuum WIHs 

Thc intrinsic field equations on 3 foli3tion lea f 6. = S 2 shou ld be rclatcd to the pullbacks 

~, ~ 3nd ~ (c.f. ref.[ 13)3nd its Appendix. 8). Employing the bound-
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ary conditions in Eqs(2.3), (2.21), (2.23) and (2.48) and projec ting the NP field equation 

JT - l1ff = (j1(T + ,Ip) + (T + fJ - ti)T - (3 y - f)O" - I(V + (tl02 (2.60) 

onto A = 52, one obtai ns 

~~ : (1)02 =0 ; (2.6 1) 

wh ile projection of 

VA - 6n = (p:/ + iT}i) +,r + (lY - jJ)n - VK - (3£ - i: )'/ + <1>10 , (2.62) 

onto a foliation leaf yields 

Now recall that for dec/IVI'(.KIIIIIII, 

thus 

<1> 11 :0:: ~Rdb(rl! b + mn;il) = ~Rnbr/lb = ~Rahlltli"ld (2.65) 

Add IOgclhcf the fo llowing equations 

DJI - In = {pp + (TA ) + "if - (c + £)/1 - Ur - {3)n - VI( + ' 1'1 + 2A . (2.66) 

(la - 3p = (pp - tier) + (t{l + f3P - 2a/3 + y(p - [J) + cr.Jl. - P) - 'Y2 + (tl l l + A, (2.67) 
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and one obtains 

~~: ID11 = K(flIl - Orr - lI'it+ { ff +b"(r - 6{J - mt - {Jp+la{J 

= K(f)}1 - ~(dlVW + 2nJr - K) . 

(2.68) 

where dlvw refers \0 the divergence oflhe intrinsic rotat ion I-form potent ial w, 

dlvw : {JTr + Jir - (Jr - (If . (2.69) 

and K is the Gaussian curvature of to = 5 2 as defined prev iousl y by Eq(2 .56). Eq(2.61) 

ap)X:ars trivial due to Eq(2.19) while Eq(2.63) and Eq(2.68) lurn out \0 be the valid field 

equations projected onto fo liation leaves. 

Iknee, for a WI H embedded in 1'(1(;11/11/1 ($ '1 = A = 0), Einstein 's equation yields from 

Eq(2.63) and Eq(2.68) thaI 

(2.70) 

(2.7 1) 

with the abbreviations therein defi ned as « m", :0:: R"biil~ I'ilb = R::, := Rabmnmh, R"'iiI := 

POT a fo liation leaf o f an eieClro),(1C1l1l1It W 1H (1)'1 = 24J,;pj. A = 0 ) which reduces 10 a 

vacuum \V IH with <l>i j = 0, EinsICin-Ma1>wcli equations imply from Eq(2.63) and Eq(2.68) 
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that 

Rmm = 2Ku)l1 - 2.5iT - 2(iT - 2,r = O. (2.72) 

where !PI respects the reduced Maxwcll-N P equations that (c.f. Appendix B) 

Jrh =0, 

Ml =J!P2 - 2J.1!Pl +2jJ!P2. 

2.3.2 Extremal Vacuum WIHs 

(2.74) 

(2.75) 

(2.76) 

(2.77) 

For extremal W[ Hs. we have K({) = 0 (c.f. [37] for (/llasilumi characterizations of extremal-

ity). ;md the vacuum equations Eq(2.70) and Eq(2.71) become 

6iT + {iT + iT2 =0, 

divw+21tit - K =0 

(2.78) 

(2.79) 

To solve these equations, Lewandowski and Pawlowski ] 14 ] decomposed the rotation [­

form potential w on Ii = .'1 2 into an exact part ;dU and a cocxact part d In 8 (this decorll-

position and its existence firstly appeared in Section llLC of ref.]!3]). 

w =*dU + d!n8 (2.80) 

Here U represents the I1JwliO/w/.I'calll r po/ell/illl which accounts for the gravitational eOIl-
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tribution 10 the angular momentum ora WIH and is defined byl131 

(2.8 1) 

where V;. is the 2·dimcnsional intrinsic Laplaci;m. while B in Eq(2.80) just stands for gauge 

freedom! 131. As a consequence, the coctficicl111rof wa in Eq(2.48) C<l1l be rewritten imol141 

Jf =-iJU+61IlB. (2.82) 

Since wa in Eq(2.48) reflects the rol<llional propcnics, a \V IIi is non-rotating (w" = 0) if 

and only if If = 0, which implies by Eq(2.80) Ihal U = 0 and B = I. Substitute If = iT(u' il) 

;lnd its comple;>; conjugate ft = i6U + 61n B into Ihe extremal va(;uurn equation &,(2.78) 

and it follows that 

~(liJB +;1in - 2iJU . J/J) = (liu)' + iJJU + i?JU . (2.83) 

The divergence dTv w introduced in Eq(2.69) becomes 

dlvw = -~r5BJB + ~ Vz B+ i(6i'iU - JJ'U) + i({ JU - { 6U) (2.84) 

Rccalllhc NP commutator 

J6 - 605 = VI - 11)D + (jJ - p)1!. + (rt ~ {J)O ~ (ir ~ PM = {Ii - ; 3 . (2.85) 

hence 

(2.86) 
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~H1d Eq(2.79) becomes 

~ l V~8+ 2ibUSB - 2i6U68 ) = - 2IiUJU + K . (2.87) 

For vacuum W1Hs, according 10 Eqs{2.58)(2.59)(2.8 1). the Wey l scalar 'f'l which combines 

the Gaussian curv:Jlurc K and rotat ional scal llf potential U is given by 

2.3.3 Extremal Electrovacuum WIHs 

In the ex tremal clccirovaclium case, Eq(2.72) and Eq(2.73) become 

JIr+(1f+Tr2 = 0. 

divw+2.rrir - K =-4¢1¢1. 

(288) 

(2.89) 

(2.90) 

Substitute the decompositions Eq(2.80) and Eq(2.82) into Eq(2 .89) and Eq(2.90) and one 

obtains lhe restriction cquationsl1 4) , 

~ I JJB + (JIJ - 2i8U . J8) = (Juf + i1i(5U + i{JU . (2.9 1) 

~IViB - 2iJUt5B ) == -16UJ'U+K - 4¢1¢i1; (2.92) 

also. for eleclrovacuum WI/h. according \0 Eqs(2.57)(2.59)(2.8 1). we have 

(2.93) 
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It is not:lblc that rpl can be rcexpressed using the two auxiliary function I U, 8) as weIll 14( 

(2.94) 

where Eo is aconstan1. 

2.3.4 Solutions to Extremal Axisymmetric Elcctrovacuum 

Assuming axisymmelry to the IC<lf j., = S 2, labeling j., = S2 wilh real isothennal coordinates 

(x. '1') and introducing the following complex tetrad with tetrad function P(x) . 

I 
ma = P(xjdx + ip(x) d<p. (2.95) 

it is found in ref.1 14] that. mla/ing e lectrovacuum solutions to Eq(2.91) and Eq(2.92) arc 

(2.96) 

(297) 

(2.98) 

(fEIO,I), A E (O,oo), OoE[O.2Jr). (2.99) 

while nonroUlting solutions arc given by 

(2. 100) 

Henceforth we will call Eqs(2.97-2.99) and Eq(2. 100) the loea/llniqueness sO/lllians 
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2.4 Summary 

In this chapter, we rcderived Ihe boundary conditions of NEHsfW IH s[IHs. studied the 

adapted tetrad and extensivel y analyzed Ihe restriction eq uations for a foliation Icaf. With 

these groundworks. we were finally able \0 introduce lhe local uniqueness solutions ob­

tained in rcf.JI4J. Ahhough the three concepts NEHs. W II-Is and [Hs arc introduced in 

apparent hierarchy for a clear picture. there is no need \0 distinguish them in the remaining 

part of Ihe thesis and we will simply re fer to them as [Hs henceforth . 

It is argued in rcf.11411hal. these solutions rcprcscnllhc uni ([uencss of inlrinsil: stnlClun::s 

of extremal Kerr-Newman I!-Is. Is this argument correcl? Before answering Ihis question. 

we wil l first investigate the implications of these solutions. 



Chapter 3 

On-Horizon Data from Local 

Uniqueness Solutions 

In this chaptcr. we will show how to properly read the local uniqueness solutions through 

COIlSlru(;lion of on-horizon dnla. The fannulac employed in (he subsequent calculations arc 

provided in either Chapler 2 or ref.[ 14J. For reference convenience. we wri te the solutions 

again. 

a E 10.1 1. A E (0.00), (}o E 10. 2n-) . (3.4) 

where Eqs(2.97-2.99) and Eq(2. IOO) aTC unified by setting (y E 10, [I. 

27 
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3.1 Implications of Local Uniqueness Solutions 

Intrinsic Metric 

The complex tetrad Im", ill"! spanning the lcaf '&(.\'. <,0) = S2(x, ¥,) is sct as l 141 

and the dual bases sati sfying the nonnalizalion II/"Iil" = 111"111" = I arc given by 

Thus. the intrinsic metric and its inverse :Ire respectively 

hab dJ:"0d.1' = maii1b + if1a lllb= 2(p2dxl + ~d'i). (3 .7) 

hGb OX' ®IJK' == mail,b + il,amb == ~ (-ka; + p2iJ;). (3.8) 

According to the local uniqueness solutions, we have 

SlI"IA1( J +(12)+64.rr!r(I _ (~1)1 , A(A2 - 64JT2.~ ) 1 2 (3.9) 

l1ab = A(A 2 _ 64iT2X2) dr + 2JrIA2( 1 + a l ) + 64;r2x2( 1 _ ( 2)(OP . 

11"/' = A(A 2 _ 64!T1.t 2 ) 2 211' IA2(J +(r2)+6411'2r (l - a!) i. , (3. 10) 

8JTIA2(] +l(2)+64;r!.r2(1 _(2)(' + A (A 2 64"2X2) (Y" . 
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Intrinsic Connl'ction Coefficients 

Givcn Ihe metric iI"b, il follows immediately wilh the intrinsic Levi-Civila wnncclions 

rx _ I 2811.2A2x 

xx - (A2 _ 64rr2x2)IA2 (1 + a 2) + 64 Jf! x 2 ( 1 _ (}2) I' 
, 8A~ .\(A 2 - 64JT2x2 ) 

rH = !A2 ( 1 + 0'2) + 64 !T2.i' ( I _ ( 2) r' (3.1 1) 

12811'2A2.{ 

~ .. = r:x = (A " _ 64!T2X2)IA 2 (I + (12) + 64 rr"x2 (1 - a2) I" 

I)irccliona l Dcrivath'C & Commutator Cocfli cicnt 

The di rect iona l derivatives 18, J) and Ihe commutator coefficients {become! 14 ) 

Thus 

_ 32x1TmA~/2 

; = ; = (Al _ 64JT2X2)I /l [N( 1 + (12) + 64JT2 x2( I _ ( 2)], !2 . (3. 14) 

Gaussian Curvatu re 

Gaus~ i a n curvature o f the horizon is g iven by 

K = - ,!;;(ax~", - iJl'~_' + r~i;, - r:,~", + I~,l:, - (;oJ:,.,). (3.15) 

or by Eq(2.56) 

(3.16) 



which yield the same result that 

Spin Cocffirit!nt ,to) 

K = 16A1lfJA 2(1 +(r2) - 192..rr(1 - (l2)] 

IA l (] + (12) + 64lf2 x1( 1 - «2)J3 
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(3. 17) 

The spin coeflic;cn! d O) which reflects rotational character of the horizon, and can be rcex-

presseJ by the rotational scalar polcntial U via Eq(2.82) 

lI(O)=- i1iU+6In8 (3. 18) 

Hence, 

(3. 19) 

Rotation I-Form Potential 

The rotation I-form p01ential in Eqs(2 ,48)(2 .5 1) 

(3.20) 

can be rewritten using (U. HI into exact and cocxact components as in Eq(2.80), 

wa = *dU+dlniJ. (3.2 t) 
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where * is the Hodge dual operator with respect 10 h"b I1 4] Thus. 

• 2A 2(A2 _ 64n2x2} ../( 1 ql)(J +0'2 ) 64n2x(l _ a2) 

w" = (±) [Al(1 + ( 2)+64J1"!X2( I - a 1)t dcp + NO +(1)+64Jr1x2(1 (2)dx 

(3.22) 

Electroyacuum Field (Ricci.NI' Scalar <}I I I ) 

The electromagnetic field on the horiwn can be described by the Ricci -NP scalar (IJI I . 

which is related with ¢I via (1111 = 2¢,ifi, , thus 

<111 1 (A l Cl + (12) + 64lT2 )."2 ( I - ( 2)t 
{A2( 1 +(1 ) _ 64.rr2x2( 1 _ (rl ) _ 16iJrxA J(1 - (f2)(1 + (r 1)} (3.23) 

Interestingly, the flexib le parameter 00 E 10. 2n) from,p l is removed in $ 11 

With the elementary values above, more quantities can be computed via relevant equations 

in Chapler 2, such as '+'2 via Eq(2.93). Since the generic forms of those quantities are 

very complicated, Ihey won'! be listed here. Almost all quantities rC<luired in subsequcnt 

chapters have been calculated in this section. 

3.2 Meanings of Flexible Parameters: cr, A and 110 

Thcre arc three nexib1c parameters in the local uniqueness solutions: rr E 10. I I. A E (0. "") 

and 00 E 10, 2IT); every set of exact values liI, A, 00 1 specifies an e;o;act intrinsic horilOn "al, 

and generates a panicular group of on-horizon data (k.11' $ 11, RC('I'2). iYO), ';)". etc I. 
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Pa ramctcr a 

The two local uniqueness solu tions Eqs(2 .97-2,99) and Eq(2. 100) were derived ind ividual ly 

in rc(114). bUI it is easy to see thaI the nonrotating solution Eq(2. IOO) is just the rOlaling 

solution Eqs(2.97-2.99) with (}' fi xed by (t = I . Thus, It signifies the contribution of an­

gUi<IT effecls (actually ciectric effects) in balancing the extremal horizon; a = I represents 

absence of rotation so that cxtrcmal ity attributes ent irely to elect ric repulsion, whi le (t = 0 

means rotation alone produci ng cxtrcrnality with no help from electricity. For the interval 

o < (f < I, cxtrc rnalily results from joint function of rotation <l nd elect ric ity. Obviously. 

a = I corresponds 10 extremal Rcissncr-Nordslrom II-Is . (Y = 0 \0 Kerr. while 0 < (f < I to 

generic Kerr-New man, 

We can also ex press the funetio n ofa as 

(r1)rotation ) +a2 )electrici ty) = I, (3.24) 

where we utilize a ! ra ther than a because it is always the forme r th;lI works in the local 

un iqueness solutions and the impl ied on-horizon data . T h is relation is in c lear analogy wi th 

the res triction equat ion M2 = Q! + (I I (e.f. )38) and references therein for extension of 

M2 2": Q2 + (/2 under distort ion) for extremal Kerr-Newman-fam il y blaek holes. 

~+* = I , ::::) ii2 +Q2 = I (whercii:= "M' Q:=ft). (3.25) 

comparison of which with the practical effects of (t leads to 

a' = (~)' = 1- (;i'tJ' (3.26) 
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Pa ramctcr A 

According 10 rcf. 114 j. thc second parameter A refers 10 thc horizon area. However. docs 

thc horizon aTca A, which sounds globaL act like a good local parameter? Moreover. given 

an arbitrary value A (and an a), there will be a particular intrinsic metric hub: in theory. h"b 

shou ld officiolly yield another hori wn area A(A, (f). Which one stands for the true horizon 

area? Aflcrconcrclcca1culation using Eq(3.9), it turns oul that 

(3.27) 

A A 
where x E [-g; ' g;:;:l . ip E [0, 2Jl} Thus. Ihc coordinates (x. opl and thc (wad mal/.f' ::: 

Ptix + i~d'P arc sct up such that Ihc parameter A is more than some arbi trary rCil1 value: in 

facl. A as an in{J1It would fix the Imc arClI of the horizon. 

The argument A E (0.00) indicates that. A is the absolllle huriwn arca. and therefore 

A A 
the variable x is absolute as well by .( E I-g;' g; 1. However. the other input parameter 

(f E 10, I I takes relative values as I - (12 = (;&l Wirhollt loss of gellerality. we will rei· 

m;v;z/! Ille horizon area A lJy setTing M = I, as suggested by &1(3.25). The convention 

M = I will bring us great convenience in subsequent calculat ions. Yet, what is the rela-

tivized domain for A? 

The horizon area A is an invariant in the sense that it is independent of the coordinate 

systems <:hosen on the horizon. Hence, instead of relying solely on the arbitrary input A. 

we can determine the surface areas of extremal Kerr-Newman horizon8 using the induced 

metrics ill the usual 10, ¢>] coordi nates. As wi!! be shown in Chapter 5. with the convention 

M = I. we have A = 4" for ex.t remal Reissncr-Nordstrom horizons. A = SIT for Kerr and 

A = 4IT(2 - (1'2 ) for generic Kerr-Newman. Thus, the argument for the relativized horizon 
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area A (and the unified a) arc 

4,,~A ::::8lT , and O:-;(t$!. (3.28) 

Henceforth in this thesis. the local uniqueness solution will be IIpdated with these new 

arguments, and for lPl, U, fl, r/Jd in the solutions Eq(3. I). A and x should take rcialivizcd 

values 

Par:Jmctcr 00 

The third one Ou denotes the relative weight of electric and magnetic charges in the electro­

magnetic contribution 10 cXlrcmalily[1 4 1. 00 is introduced simpl y to enrich (or complicate) 

the local uniqueness solution and doesn't interfere our cakulations. 80 only lakes clfect in 

(h. and is covered up in the practically effeclive quantity $ 11: or malhcmalic<l lly cquiv<I-

1cntly, we can jusl sct 00 = 0 which means ahsence of magnetic charge. 

3.3 Summary 

In Ihis chapler. the local uniqueness solutions were fully investigated. We worked out im­

plications of the four functions (/i2. U. H. ¢Il by construction of on ·horizon data (K. (111 1. 

Re('l'2), rrlO), Wa , etc}. We also figured out how to understand the three parameters (1" A, On) 

and rclativil.ed the solutions. With these preparations. we will compare the local unique-

ness solutions with the Kerr-Newman horizons via their ncar-horizon structures in next two 

chaplers 



Chapter 4 

Near-Horizon Geometry of Extremal 

IHs Embedded in Electrovacuum 

In this chapter. the ncar-horizon geometry (N HG) of isolated horizons which arc embedded 

in elcc:/romcllIIlII will be investigated. By clcclrovacuum we mean Ihm. 11 is clcctrovacuum 

al leasl in Ihe ncar-horizon limit. while regions more distant from the horizon arc unrc-

sirictcd by this assumption and can be clcclrovacuurn or not. We emphasize clCClrovacuum 

for the following two reasons: 

( I) A generic isokttcd horizon is a system in equilibrium wilh the external environment. and 

there c:.m be energy flows arbitrarily close to Ihe horizon. It is impossible to reconstruc t 

the ncar-horizon metric of such a generic IH using structural data on that horizon. because 

this task requires such information (like ' IA30), ,¥~OJ , A) which cannot be obtained from the 

local uniqueness solution , Thus, based on the local uniqueness solution we are only able 

to investigate II-Is embedded in electrovacuum where all required information to determine 

35 
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(II ) The usual method to derive the cxtrCIl1:1] Kerr-Newman NHG is employing the global 

metrics. which requires Ihe entire sp<lcclimc to be slatiol1:1ry c1cctrovacuum which is both 

axisymmetric and asymptotically flat. In the aitemative 10 such derivation from a local 

approach, it would be natural and reasonable \0 inherit the assumption of clcctrovacuulll 

(and axi sy mmclry) al least in the ncar-horizon limit. 

4.1 Newman-Unti-type Tetrad and Tetrad Equations 

To proceed, we need 10 extend the adapted tetrad If,lt,ma, iila ) 011 an II-! (c .f. Scclion(2. 1.3» 

and ScI up the Gaussian null coordinates 11'. r,Y. z: ) \0 cover all c1cctrovacuum exteriors. in ­

cluding the ncar-horizon regions and possibly orr-horizon regions (Note: by 1U~(lr-horizoll 

we always mean in Ihe ncar-horizon limit. whi le ojfllOriZOI1 refers to regions beyond the 

ncar-horizon limit). Description of this kind of tetrad can be traced back to ref.)361. the 

Bondi -type coordinates in which is essentially the same as the Gaussian null coordinates in 

use in thisch,\pler. Moreover. in refs. )39 )-)42). the authors employed similar (but not identi ­

cal ) tetrads 10 generalize various ncar-horizon physical effects from quasi local perspectives. 

Here we want to emphasize two references. Firstly. ref.142) in which the authors inves­

ti gated the extremal Kerr IHs and CFT' correspondence. has been most helpful for us to 

overcome many mathematical difticulties in this chapter. Secondly, after Ihe majorily of 

Chapter 2 and this chapter we re fini shed. rcf.)43) which has ,\ 101 in common with our 

Chapte rs 2 and has an identical tetrad with our chapter 4 came into being. Although our 

work was done separately, ref.143 ) did help us confirm and p,u1ly improve our results. The 

ncar-horizon structure of IHs is also studied very reccntly in more abstract mathematical 

language in ref.)44) 
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Tetrad and Coordinates Setup 

Choose the first rcalnull covector lIa as Ihe gradient of foliation leaves (e.f. [331 and Section 

IV of 118] for :lIlalogous setup oflhc Newman-Unti tetrad) . 

It a = - ll v. (4.1) 

whe re \' is lhe illgoing (retarded) Eddington-Finkelstein -type null coordinate. which labels 

lhe foliation cross-sections lind aels as an afline parameter wilh regard 10 the outgoing null 

vector field rUn. 

DI'= I, 6v =0\'=61' = 0. (4.2) 

Introduce the second coordinate r as an afline parameter along Ihe ingoing null vector field 

/10 , which obeys lhe normalization 

(4.3) 

Unlike Schwarlschild-typc coordinates. here r = 0 represents the horizon, while r > 0 

(r < 0) corresponds [0 Ihe exterior (interior) of an [H . Ucrcaftcr, we will often Taylor 

expand a scalar Q wilh rcspectto the horizon r == O. 

(4.4) 

where erol refers to its on-horizon value. To avoid ambiguity. on-horizon (IUanlities will be 

emphasized by a superscript (0) like (to) henceforth. 

Now. the first real null tetrad vector 1,° is fixed. To determine the remaining tetrad vectors 

(1"./11°. ilia I and their covcctors, besides the basic cross-normalization conditions. it is also 
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required thaI: (i) Ihe outgoi ng null norma! field f" acts as the null generators; (ii) Ihe null 

frallle (covcctors) lIa.IZQ,lIIa, illo) arc parallclly propag:llcd along /lolJa: (iii) (mO,III") spans 

the (I =conSlanl. r ::oconstant) cross-scctions which are labeled by real isolhcmlal coordi-

nates (y,.::). 

Tetrads satisfying the above restrictions can be expressed in the general form Ihal 

(4.5) 

where it would be suflicicnllo define the four NP derivatives (D.t..J.J) \0 be panial op-

cralors as Ihey will only act on scalar fields (lclrad component functions. spin cocflicicnts. 

Wcyl -NP scalars, Ricci-NP scalars. CIC) in the fo llowing contexts. 

g ab ;:: 
2(U + On) x3 + n(.1 + 05,1 Xl +!J.f + Of' 

(4.6) 

0 xJ +n(l +041 2 e~J flr+~(J 

0 x~+nr+flC ~Jc +~(J 2('1' 

When one goes smoothly 10 the IH (r = 0), gab naturally reduces to the degenerate inverse 

metric flab . This implies that the telmd funClions IV ,X3 ,X4 ,01 arc 311 O(r) functions in 
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thc nc~r-horizon limit and 

(4.7) 

lienee. on the horizon, thc four intrinsic derivatives become 

Direct Consequences ofTelrad Setup 

Now let's check direct consequences of the tetrad scwp. Because of paral lcltransponation 

along /laua. Ihe coveclOr fields (la. II" . III" . IlIa J respect Ihe transportation equatio ns lhat 

which irnmcdi<ltcly yield 

fila ::O (y+y)la - rill" - Till" = 0, 

.6.11" = VIII" + VII'" - (y+ 5')/10 = 0, 

V = T = Y = O. 

(4.9) 

(4. 10) 

(4.1 1) 

(4.12) 

(4. 13) 

Moreover, apply the commutators which ilfe rcdUCL-d by Eq(4. 13) 10 the ingoing null coor­

dinate I' , and it follows from Eq(4.2) that 

(61) - 1JtJ.) I' = (I: + l)( l! I') - 11(0 \1) - n(JI') = O. (4. 14 ) 

(M - .6.0) v = - (0- + ,B)(lw) + il(JV) + A(J \I) = 0, (4. 15) 

(o f) - DO) v = (f"i' + fJ - " )(01') + 1( £111) - (ji + c - i:)(Jv) - u(61') ::0 O. (4. 16) 
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(Je'j - oJ) I' = (P - /l)(Dv) + (ft - p)(lw) + (a - ,8)(01') - «(} - ,6)(Sv) = O. (4. 17) 

and the last two relations imply 

lr = a +,8. JI = ji. (4. 18) 

Eq(4.13) and F..q(4.18) comprise the basic gauge conditions for the Newman-Unti -typc 

tetrad Eq(4.5), 

(4. 19) 

which holds for both on-horizon and ncar-hori zon structures. Thus, the commutators for 

the tetrad Eq(4.5) with the gauge conditions Eq(4.19) arc finally 

1'10 - 01'1 = (t:+ t)l'1 - lr/j - frS, 

o/J - OJ = 1(1'1 - (p + c - i)J - (TJ . 

06 - M =-frl'1 + /lo +,IJ, 

So - /jJ = (a - ,8)/j - «(} - fJ)l;· 

Tetrad Functions rrom Commu tators 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

The gauge conditions derived above would in tum set restrictions to the six tetrad functions 

in Eq(4.5). Compared with the pamlleltransportation of null frame in Eqs(4.IO-4. 12), it 

is more convenient to utilize the reduced commutators. where it is the te trad vectors rather 

than null hasis coveetors that arc involved and from whieh it fo llows that 

I'1f - Dna = (c + 1:)110 - lTIlla - Jrii,a , (4.24) 

/jf - Om" = KII" - (p + [; - 1;)m" - ifill". (4.25) 



Now ex pand 61" - Dlla in Eq(4 .24) using Eq(4.S). and one obtains 

f), U = (0': + t:)+ II-r"! + .iTn. 

arx) = n( J + .iT(3 . 

ar~ = n(' +.iTr . 

Expand Oil" - 6 /11" in Eq(4 .2S).thus 

ar fl = .iT +}1fl +,ln. 

a,{J = }1( l + ,1( 3 . 

M ' ="(' + J('· 
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(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4 .3 1) 

With these r-derivatives. we hope to fix the si .\ tetrad functions It is notable that. a tetrad 

fun ction Q CM be dependent on all four eoordinates !II. r. y. zl. but only the r-dependence is 

separated here while dependence on other coordinates aTe still encoded in drQ. 

R EMARK S: The remaining two commutators 

(4 .32) 

(4.33) 

contain another two set of supplementary equations. which. however. are unpractical in 

solv ing the tetrad fun ctions. Expand 01" - Dm". 

naru - (aun + ua,n) = -K - (p + E - e) f.! - O"n. (4 .34 ) 

na,xl - (tJ.e + UtJ,{J + Xl f))( l + XJf),-e) = - tp + 0': - Of~ - 0"(3 . (4 .35) 
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which yields the boundary conditions 0"0=0, Jue =0, Due = 0 on the horizon . Expand 

na,fl - na,fl = (u -fJ)f! - (it -/J)f!, (4.37) 

n(J.4J +J{J - (QUit) +J() = «(r _fJ){l - «(l-{3){J, (4.38) 

'l<1", +6!", - ((!<),r +6(') = (a-p)!"' -(,,-p)r. (439) 

which become Ihe intrinsic relation J{i_.5(=« r(lJl_ifol),f'(O) _(i;(OI _PO){,(O) on Ihe horizon. 

4.2 Exact Solutions of Tetrad Functions 

In fact, the tetrad Eq(4.5) and the r-dcrivativc l"<]Ualions of [elrad functions in &IS(4.26· 

4.3 1) appl y 10 both near-horizon and off-horizon regions and can be pulled back \0 the 11-1 

through smooth (r"nsition. OUT goal is 10 solve the tetrad functions in the ncar·horizon lirnil 

by recasting them using on-horizon data so as 10 rebuild the NHG. 

In the ncar-horizon limit (r -> 0). E<]s(4.26A.3 1) acl as 

a,v = (I: + t) + nO + ffn. "" 2£.(0) + OCr) , (4.40) 

a,n =;r +Jln+:in. "" ;r(O)+ O(r) . (4.4 1) 

a,x l = lfe + ;r~l "" If(O)e'0) + ;r<Q)~:l\Q) + OCr). (4.42) 

i),X~ = lf~ +it~ "" If(OJ~O) +it«())~(O)+ O(r). (4.43) 

(J,{l = p~l + ,1~J "" p(Q)~l(()) + 1IOJ~l(OJ + O(r). (4.44) 
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where the symbol '" is employed to denote equality in the ncar-horizon limit (rccall that == 

denotes equality on an IH). Since ~O) (or more ex tensively, 11) rcncclS the rotational prop­

erty of an lH. information regarding rotation of the horizon (and the spacetime dragging) is 

contained in the functions IU,n.X] ,X~1 

There arc two ways 10 handle these equations: direcl iJllcgrmion or further differentiation. 

In Eqs{4AO-4.2), only (11'(0) , j./ (O) , ,t{O)} can be determined by on-horizon data. so only n in 

Eq(4.42) can be obtained via straightforward quadrature. 

(4.46) 

On the other hand, with the tetrad Eq(4.5) and the gauge conditions Eq(4. 19). there will be 

iJr l1 = p l +,1,l + $ 22 , 

a,A. = 2p:/. + '+'4. 

(4.47) 

(4.48) 

(4.49) 

(4.50) 

so it is only practical 10 furthe r dilTcrcnti<ltc a.u. while liJ" Kl. a"x~. a.~j . a.~! requires 

input of {'+'.l, '1'4, q)!I. <lJn ! which arc not provided by local uniqueness solution and need to 

be solved separately. Another important reason that prevents us from solving r -derivatives 

of IX' , X~.e.r! is that the 3nalytic<l1 forms of {f l.(! rely on the choice of isothermal 

coordinates (y . : ) which <Ire unchoscn so far. 

Now. let's calculate the second-order r -derivatives of U. It follows from Eq(4,47) and 



Eq(4AO) th<lt 

thus 

iJ"U = 21rk + 2Re('1-'2) + 2(1) 11 - 2/\ + "Ben - narn + "iJrll + DiVr 

"" 2,f°)jj-(O) + 2Rc('I' ;OJ) + 2(fl~~) + ;r(O)rJrn + fr(O)f), n 

::: 2 (2JT(O) ir(O) + Rc(tVzO) + <D~~) . 
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(4.5 1) 

(4 .52) 

where ($ .;. AI arc real by definition and A '" 0 for clcctrovacuum in the near-horizon limit 

Integration of iJ" U yields 

Eq(4.46) and Eq(4.S4) constitute the exact ncar-horizon solutions for the letrad functions n 

and U for extremal IHs 

RHIAKK S To derive aT,v, we can' t just luke second r-dcrivativc of the ncar-horizon limit 01 
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Comp<lre Eq(4.S7) wilh Eq(4.S4) and it is easy 10 sec lhill, although for lIonrowtillg lHs 

(If = 0) these two approx.imations arc equal, Eq(4.57) cannol fully rencel the angular ef­

feels of generic (rotating) IHs 

So far. two tetrad func tions I U, U I have been exactly solved. As wi th the remaining four 

functions (X\ X4,{J.r). we will just integrate Eqs(4.43-4.2) and obtainfomllllly that 

X l "" (1I"1O){ 3(0) + ft(OJ{_l(O) r + OCr) == 0 , (4.58) 

X4 '" (rrIOJq.J(O) + ft(O\f110J) r + OC r ) == 0 , (4.59) 

t J :::: eO) + (j/O)eU) + ,i Wl{ 3(O) r + OCr) == (.\10) • (4.60) 

f' '" ,fi0J + (p101('(01 + AIOI(J(UJ)r +O(r)= (iIUJ (4.6 1) 

These arc 1101 exact solutions bccause (}(O) and (,(0) arc undete rmined yet. (Note for a quan ­

ti ty Q 1h3\ eO) = Q(r = 0) and there isn't implicit dependence on r any more for QIO'.) 

The tetrad Eq(4.5) cannot be complctcly determined unless all six tetrad functions get re­

solved. Fortu nately. as shown in the next section, the roles of (XJ.X~.(\ .f) can be re­

placed by another on-horizon data, the rotation I-form potential. Thus, wc wi ll conti nue 

usi ng the IXl , X' • .f3,~) obtained above in subsequent calculat ions until they are replaced 

hy equi valent quantities 

4.3 Reconstruction of Near-Horizon Structure 

For an extrema/ IH embeddcd in clectrovacuum. with the tetrad functions given by &1(4.46). 

Eq(4.54) and Eqs(4.58-4.6 1). the tet rad Eq(4.S) becomes 
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" tE)a '" rr(O) ,.(), + [fl(O) + (P(O'f l(O) + :t(O)f J(O) r]i)}, + 1('(0) + (jtiO)( O) + :1 (0)(,(0) rio" 

ii l"f)a '" !f(Oid), + 1( _>(0) + (P(O)( 3I.O) + ,J(OiS-J(O) r]ill' + If lOJ + (;iO)(',O) + t! (O )~(O) rliJ: . 

(4.62) 

Thus. by Eq(4 .6) we have the fo llow ing componen ts of the inverse metric. 

g" "" 2(U+nn) '" 2(3Jr(O)n-(O) +Rc('fIiO) +$i~) ,2+0(rJ) = p,.2+0(r1) . (4.63) 

g')' '" X -I + n.{) + i.¥l "" 2(n(O,{l(O) + jj"(OJtJ(O) r + OCr) = c-l r + O(r), (4.64) 

g" '" Xl + aft + {}(' '" 2(n(U)(i0J + rr(O I(,IO) r + 0( ,.1 ) = G~ r + 0(,.1), (4.65) 

where F, C ,I tlnd G~ arc two auxiliary functions defined as 

F:= 2(3!f{Q)fr(O) +Rc("I1°)+ (tJll~))' 
(4.66) 

OJ := 2 (JT(OJ{J(Ol + rr(Q)t}(Ol) , G~:= 2(n(OJ(,(UJ+ft(OIC{O)). 

II is obvious thai, f is purely comprised of on-horizon data as 

with K being Gaussian curv1l1urC of the honlOn. Now. the inverse metric Eq(4.6) Ciln be 

rewriuen in the ncar-horizon limit into 

8~h '" 
I Fr2+0(rl) e J r + 0(,-1) e~r + O(?) 

(4.68) 

0 e Jr+O(r) 2 (J(Ol,fJiOl eiOl,f'(Ol + (,(()l,f.lIO) 

0 G~r+0(r2) f1i.O),f'{ol + ('iOl,f,1i.O) 2 ,f"()l~(Ol 
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and therefore the near-horizon metric is gab '" 

~rGj - ({l(' +({l)G' 2f;-'pG" - ({l(' + ('i;J}G J 

({Jf'_f'{l)l r «(l(,, _ f'iJ)l r 

_2('('GJ + « J(' + (,iJ)G' 
({J~_f'{J)2 r 

_UJ{ld + ({lr + ({))Ol 
({It' of'{l)l 

( -'.69) 

where le,?J, r , f ) in .':db should be read as l{.l!O). t·~O) , (10). fWl). and for a metric compo-

nenl Kab 0:: gobl"'. the asymptotic te rms O(r"" I) arc omitted temporarily for editing conve-

nienee and witl be resumed hcnccfonh. It is useful 10 introduce the induced intrinsic melric 

;11111 for the 111 . 

iiMI = eO)('<O) + ,f(Olt3(O) _2[.lI01tJ(O) (4.70) 

«(3(O)~~(O) _ (./lO){~(O)2 ({.l!OI(.J{O) _ (./lOI(.I(o)2 

whose inverse is 

(4.7 1) 

and the metric tensor Eq(4.69) could be rewritten into a most compact form 

[ 

(-F+h,\//GAGH)r+O( ,-I) 1 

gab'" I 

- i'A/IG" r + Orr) 

, , 0 ' 1 - hA/lC r + (r) 

o . 

il'l/I 

(4.72) 
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or by line clement \ha1l42 1 

(4.73) 

where Ihe indices lA, 8 1 run over 13 . 41. and {yl = y.l = z ). Specifically for sIalic isolated 

horizons, n-I0) = O. G3 = GJ = 0, F = 2 (Re('PiO) + $;~) ), and 

(4.74) 

Eq(4.73) and Eq(4.74) tells us tha t. once (1< Gl .G4 ) arc determined . Ihe ncar-horizon metric 

of un [H would be absolutely fixed. For nonrotating case Eq(4.74), the lasl lcnn hABdy"'dyl' 

is just the intrinsic metric of the horizon in chosen isothermal coordi nates, bUI for generic 

rotating case Eq(4.73). IC 3.G" I arc still unknown quantities and the NI-IG cannol he calcu-

lated directly 

II is nuw timely 10 sct up Ihe intrins ic coordinates. and we will identify b"' . )'11) \0 be lx, 101 

in accordance with the local un iqueness solutions. Immedia tely, Eq(4.74) becomes 

(4.75) 

For generic IH s, aft er diagona lization of h,\/j due to the choice of lx, 'fl, IG·\,G~ 1 which 

encodes info rmation about rotation could be replaced by the rotation I-form pOlcntial[42 1, 

(4 .76) 
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and therefore in Eq(4.73) become the calcul:lblc metric 

where W, and w" are the x and ip components of the intrinsic rotation I-form potential w". 

4.4 Addendum: More Insights into On-Horizon 

Properties 

[n Chapter 2, we have introduced the first SCI of boundary conditions Oil an extrernal lit 

Also. not on ly the NP quantities. but the null tetrad is coordinates-dependent. and for r = 0, 

the tetrad Eq(4.S) reduces to 

In this sec\ion, we will investigate how spin coefficients. 'P, and (fl" which arc defined for 

ncar-horizon tlnd orr-horizon regions behave on the horizon. This serves as a supplement 

\0 thc on-horizon data by the local uniqueness solution and could yield the second set 01 

boundary conditions. 

Substitute the gauge conditions Eq(4.19), the on-horizon properties Eq(4.78) and the re-

dured tetrad &1(4.79) into Einstcin-Ma;o.:wcll-NPcquations and Bianchi-NPequations. Note 

that we arc dealing with boundary values of the directional derivatives of NP quantities, c.g 

(JQ)i""o =(JQ)\O)=6Q, rather than the derivatives of boundary values. c.g. 6(0<°) 
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Boundary Eq uations 

Firstly, we have thc r-dcrivativcs of spin coeflicicnts and Wcyl scalars. 

arK == O. (4.80) 

J,.u = O. (4.8 1) 

D,p = 'I'~OI , (4.82) 

a,'! =- 2p (0) ,tiO) + ,¥~OJ , (4.83) 

Drll =- (jIW)2 + :l IOI,i (O) + (!)i~) . (4.84) 

D,n =- ,1(lI){f0) + }J(O)a IO) + \I'~OJ • (4.85) 

arlf -= 1f(0),..,(0 ) + .n.(O)'{(O) + 'I'~O) + $~~) , (4.87) 

v .c=ftlO)aWI + 1fIOJpO) + ':I'iO) + (I)~~). (4.88) 

Jr'l'o+b"'f',- a,,$ oz +6<I'o1 = O. (4.89) 

a/PI + 6'P2 - ii/flo I - 6$02 -= 0, (4.90) 

Dr '1'2 +,5qJ) - (1. 11) 2! +J<I>21 == 3j1Wlo.pIt) - 2{fQh.y~()) +2J1(U\I)i~) _21rIOl 1>i~' - 2(ftll)) +P<()'<l)~:), (4 .91 ) 

ur'I'J + 6<1'.1 - iJ,<I>ZI - 6$ 22 == 4J11 0h+,~1)) - 4;f°' '1,1~O) - 2,/«)1 ([);~) - 2p(O) (jJ ~':) + 21r(O) (jJ ~'~) , (4.92) 

where, however, (iJr'¥J)I,~o is still undetermined. 

Secondl y, there will be the (partial) evolution equations containing I,-derivatives of spin 
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coefficients and Wcy l scalars, 

/) ,p == 61( . (4.93) 

a,if:6K, (4.94) 

a"a == 61:;, (4.95) 

a,./3=Jc. (4.96) 

U,./1 == 2{f0)Jr(O) + '°2°) + 6lf, (4.98) 

a:+'J - 6'+'0 - /),¢lOl + ,5$00 =0. (4.99) 

a:f2 - b'fI-[)rlllOO -J<l>ul =O . (4. 100) 

D.'P) - btl'2 - a,,$ 21 + 611)20= 3.,tO) 'l'~(}) - 2JfM(f:l\~) , (4.101) 

Dv'l'4 - b"'t' .\ - /J,$:,o - 6$21 :: _3A.(Ohl'~0) + 2(a10I + 2~O) 't'\O) _ 2l0)(f:l\~) + 2a(O)$~~1 . 

(4. 102) 

Since I ' is the ingoing null coordinate (a mixture of spatial and temporal scales) falher than 

a pure Icmpor:.ll coordinate, these Ii·derivatives arc only partial evolution equations. 

The lasl group containing intrinsic rest rictions (6 dcriv;tlivcs), and the remaining Bianchi 

cqu;)tions describing the Ricci sC<llars, 

Ja - 6/3 = a (OJ i}(OJ + {f°)ffO) - 2a(OJp.oJ - 'I'~O) + <I);~I . (4. 103) 

6,1 - 611 == n iOJI1(O) + (r';(O) - 3.6' 0) ,/(0) - "I'~O) + (Di~) . (4. 104) 
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0,,$1 2 - 0,.<1)01 -3$ 11 - 8$ 02 == 2Jt(O)$i~), (4. 106) 

a,.d)22 - 0,11»)1 - J et)l l - 8$ 12 =4fl (O) (I)i~) + 2(11"10) +pm)(j)i~) + 2(nIO) + .d°J)(D~~) . (4.107) 

Spin Coefficients in Near·llorizon Limit 

In the ncar-horizon limit, we Cilll usc the ICilding terms 10 approximate the spin cocflicicnts 

The two sets of boundary conditions Eq(4.78) and Eqs(4.80-4.89) give rise to 

K '" Orr ) '" 1I1),2+ 0 (r ) , (4 . 108 ) 

IT '" Orr) '" a.(1),2+0(r ) , (4 . 109) 

p '" 0(0) '" 't'~Ol r+O(r), (4.110) 

,I ", 0 (0 ) '" (2Jl(O),1(O)+ 'f'~(}»)r + O(r) . (4.111 ) 

11 '" 0(0) '" ((p( ')) )2 +A(O):i(0)+("i~)r+O(r). (4.1[2) 

Ir '" 0 (0) '" (,1 (O).d0)+ .u(O)a(O)+ 't'~O»),-+O(r), (4.1 13) 

f3 '" 0(0) '" (Jl10)P.Q) +a(O),jWI + (l>m r + O(r) , (4. 114) 

Jr '" 0(0) '" (lr(O)Jl(O)+jj-(O),IIU) +'t'~O) +$~:))r+O(r) . (4. 11 5) 

E '" 0(0) '" (ft(O)(f(O) +7r(O){iO) +IfJ~O) +1>m r+O(r) (4 . 116) 

First of all . as expected from the gauge condit io ns. it is obvious that p = p. Moreover. here 

wc want to stress the behavior of p. Recall that 

(4.117) 
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so for;] generic rotaling II-! , p '" ,p~U) r is imaginary. lm(p) :;t O: only for Ilonrot:ttillg II-I s. 

U = 0 :::) [ m("IJ~O) = 0 :::) ]m(p)=O. Consequently. the comrnlllator 

£", 111 = Im,III 1 == 3D - 06 = (jj - p)/::' - (jJ - (t)J - ({r - filS (4.1 [8) 

becomes purely intrinsic (the cocfficicnts for the directiona l derivatives /::. bei ng zero) and 

the null congruence becomes hypcrsurfacc orthogonal only for nonrotaling [I-Is. This c;m 

also be understood this way. Ihal ncar-horizon null geodesics would be twisted by rotation 

of the JH 

How Docs Extremalily Work ? 

Now it is clear that the cxt rcmality condition K(I) = 2,,10) = 0 serves as a boundary condi tion 

in integrating the field equations in Ihe ncar-horizon limit. Taking spin codJicicnls as an 

example and rcderiving the foregoing three groups of equations with t-~O) *- O. one could find 

that the c:memality condition has nothing to do with the ,--derivatives. but would intluence 

the evolutions; that is to say. Eqs(4,SO-4,S9) remai n the same no mailer t;(OJ = 0 or t-JO ) '* 0, 

but two of the evolution equations Eq(4.9S) and Eq(4.99) wou ld become 

(4.1 19) 

(4 , 120) 

Moreover, as expected, an extra tenn containing t:(O) would appear in every Bianchi bound-

ary equat ions above as there is v-dcrivativc in cach of thcse C(luations. 



Chapter 5 

NHMs of Extremal Kerr-Newman IHs 

With the groundworks in Chapters 2 and 3 as well as the local method developed in Chapter 

4, we will (re)construcl the near-horizon melfics (NHMs) of extremal Reissner-Nordstrom 

and Kerr isolated horizons embedded in clectrovacuum via Eq(4.75) and Eq(4.77) respec­

tively in this chapter. 

Contrary to such local constructions, existing methods would follow global approaches by 

taking the ncar-horizon limit ofglobaJ Kerr-Newman melrics (e.g.{4l). If the NHMs derived 

locally prove to be equivalent with those derived globally after coordinate transformations, 

they will correspond to identical near-horizon (and also intrinsic) structures. 

The parameters arc set up as follows: for extremal Reissncr-Nordstrom horizons, a = 1 

and A = 411"; for extremal Kerr horizons, a = 0 and A = 811'; for extremal Kerr-Newman 

horizons, a flexible and A = 4rr(2 - ( 2 ). The choices of a was explained in Chapter 3, and 

the choices of A will be interpreted later in the addendum to this chapter. 
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5.1 Reconstruction of Extremal Reissner-Nordstrom NHM 

Extremal Reissner-Nordstriim NHM from G loba l Metric 

The metric of extremal Rcissncr-Nordstrom blac k hole is 

Tak ing the transformation 

i 
/H E' f ---> D, 

and then omitting the ti ldes. one obtains the near-horizon metric 

~~ til" + ~ dr + M! (dr!- + sin" 0([4/) 

_r(fl2 +~d?+(dff+sin2 ed4/). (M2= I ), 

_p2(lt2 + ~(IP2 + (riff + sin2 Odq}) , (r ...... pl. 

(5.2) 

(5.3) 

This metric results from a global approach using the metric describing the cmire ex tremal 

RN spacetime. 

Extremal Rcissncr-Nordstriim NH M via Oil-Horizon Bata 

Now we will take 11 local approach \0 rcconslrucllhc NHM of c)((rcmal RN isolated horizons 

embedded in clcctrovacuum. Setting the surface arca 10 be A = 4JT (and cr = I). we 

immediately have the local uniqueness solution' 

,/, ((l) = ~ 
'1'1 2 ' u = 0, 8 = 0: (5.4) 
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intrinsicmctric: 

(55) 

clc(;lromagnclicficid' 

(56) 

nonzero connection cocflicients: 

Gaussian curvature of the horizon: 

or by com mutator coefficient 

(59) 

Thus the metric function F is 

(5. 10) 

which leads \0 the ncar-horizon metric 
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Equivalence of1\\"O NHM s 

With the coordinate transformation 

I cosO 
)'=1 - -,;' r=p, x= T ' (5.12) 

the NHM Eq(5. 11) becomes 

(5 .13) 

which is ident ical wilh the NHM Eq(S.3) obtained from the global melric. 

5.2 Reconstruction of Extremal Kerr NHM 

Extremal Kerr NHM rrom Global Metric 

The metric of extremal Kerr black hole (M = a =; JI M ) in Boyer- Lindquist coordi nates can 

be wrillcn in the following two enlightening funns[2711451. 

d.l'2 = _P;_~·'dI2+f!l(J?+p;,drl-+rhi~12f}(dr/! _ w~ dl)2 . (5. 14) 
L!J.K p~ 

= -~ (dl- M sin20d¢l + ti dr2 +p;,(Iri- + Sin~ 8(Mdl _ (? + M2)dtPt, (5. 15) 
p~ 6.K p~ 

where 

Taking the transformation 

. I . 
¢>->¢+2M€" € -> O. (5. 17) 
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and omitting the tildes, one obtains the near-horizon metric (this is also called cxtrCIl1;Jl 

Kerr throat. c.f.[461 ) 

ds2 '" I + ~OS2 (J ( _ 2~f2 tlI2 + 2~2 d,.2 + 2M2 dIP) + ~:!;~~l:; (d¢ + ;,~S 

:::: (I + cos1 0)( - ~d12 + ~dr + d(f-) + 1 :S::2S~fJ (d¢ + ~dT/. (M ! := I) 
::::( 1 +cos2 0)( _ r!...dI2+~d/+dff)+ 4sin2 ~ (t/4J+€.dl/ . (r 1-+ p) (5. 18) 

4 p- I + cos 0 2 

Extremal Kerr NHM via on-Horizon Data 

Now, from the local perspective, SCI A = Sir and a = 0 \0 Eq(2.97). and we have the local 

uniqueness solution 

1)1=2(\ ~-~2 ) ' U=±arclanx, R =~. r;T'=O: (5.19) 

intrinsicrnctric' 

(5.20) 

spin cocflicicn\ ;to) for rOlation: 

I _Xl X 'I' i 

2( I +X2)~: (5.21) 

rotation I-form potential: 

(5.22) 

nonzero connection cocflicicnts: 

t':., = I ~~t-l' (5.23) 
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Gaussian curvature of Inc horizon: 

K~ 2o; -2( = (~:~~3 (5.25) 

As with the metric func tions Eq4.66 for Kerr black holes, we have ([) II~) = 0, as well as 

K = - 2Rc(o/20l), thus Ihc metric function is 

(5.26) 

then one obtains the ncar-horizon metric 

(5.27) 

Eq( S.27) is cquivalenllo Eq(S.IS) via the coordinate transformation (c.f. 1421 for a similar 

resul t), which also shows how '±' forlhe rotational scalar potential U works. 

U = + arctan(x): VHI - ~. rH~(I+cos2 (J) , XHCOSO . ..pH¢+ ~ln p: (5.28) 

U= - arctan(x) I'H I - ~. rH~(I+cos2 8) . . { >-->cos 8. r.pH¢> - ~lnp (5.29) 

cosO 
Thus. we have Ihe transformation x = 2 for extremal Rcissncr-Nordstrom horizons 

and x = cosO for extremal Kerr horizons, which arc consistent wilh Ihc argument o f x, 

A A 
x € 1-S;'S;1 
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5.3 Summary 

In Ihis chapter. we verified thai the ncar-horizon metries of extremal Rcissncr-Nords\rom 

and Kerr horizons derived from the quasi local approach do agree with lhose obtained from 

global metrics. Thus, the first goal of the thesis is now accomplished. and in the next 

chapler. we will study distortion of extremal Kerr-Newman horizons. 

5.4 Addendum: Horizon Areas of Kerr·Newman·Family 

Black Holes 

The intrinsic metric oflhe outer horizon of a generic Kcrr-Ncwnwn black hole is l2711451 

JIM! d/ =P;'hdd'- + s in22 (;11(~ + a2f _ /)..,_,.(12 sin20)d¢2. (5.30) 
P .. 

where 

SO ils horizon area is 

It is interesting that only {/ (rotation) appears explicitly in the surfa(;c area fonnu la while Q 

(clectricchargc) is concealed 

Now, lei's compute the surface aTca of every Kerr-Newman fami ly member. 
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(i) For extremal Kerr-Newman black holes, '+ = M = ~. 

(ii) For Kerr black holes. Q = 0,,+ = M + VM2 _ (/2 , 

(5.34) 

in the extremal case. r. = (I = M, 

(5.35) 

(iii) For Rcissncr-Nordstrorn black holes, II = 0 (1 = 0), r. = M + .JAIl _ Q2, 

in Ihe extremal case, '+ = Q = !It . 

(5.37) 

(iv) For SchwarLschild black holes. (/ = o. Q = 0, r , = 2M, 

(5.38) 

The local uniqueness solutions is ;)clually consislCni with the convention of M = I. Thus. 

for extremal Kerr-Newman, A = 4n(2 - 0'2) with Q = (rM. and (f E 10. I ) being Ihe very 

input parameter in Ihe local uniqueness solutions: for extremal Kerr. A = !:In: for extremal 

Rcissncr-Nordstrorn, A = 41T. This explains our choices of horizon areas at Ihe beginning 
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ofthischaplcr 

Also, we utilized the faCl that, the horizon area A is an ilwarim!/ in the sense that it is 

independent of the coordinate system chosen on the horizon (Ix. I{.! J or 10. I/! I). 



Chapter 6 

Conformastatic Distortion of Extremal 

Reissner-Nordstrom Horizons 

As discussed in previous chapters, the /o(;a/ uniqueness theorem establ ished in rcf.114J 

implies Booth's u)I!jeclllre that Ihe intrinsic structure of cxlrcIl1<11 Ke rr-Newman horizons 

cannot be disto rted by external energy-maHer dis tribution. In this chapter, as Ihe second 

goal in this thes is. we will partl y ex amine this conjecture using dislOrlcd extremal Rcissncr­

Nordst rom (ERN) spacetime 

Above all. we need \0 know the ClIact ex pression of Ihe metric for an ERN black hole in 

appropriate distortion fields. Bolh noncxlrcmal and cxln::rn;d RN solutions belong to Wey l's 

family, and Sialic. axisymmetric distortion of Iloncxtrcmal RN black holes can be well de­

sc ribed within the framework of Wcy l SolUlions[471148[. For the ER N metric, however. 

the easiest way to realize the distortion is by linear sUPC'1'Osition or ,haracteristic {'OI//or­

Ilws{(Jlic potentials (as will be shown in Section 6 .2), 

This chapter proceeds as follows. In Section 6 . 1 and 6.2. Weyl mctrics and eOllfornmstatie 
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metTies are compared. and the distorted ERN metric is derived from the conformaslalic 

perspective. In Section 6.3, the outgoing and Il1going expansion rales of null radial con­

gruences ure calculated. and it is easy 10 sec Ihal for distortion sources satisfying u,U < 0 

(such as c ircular disks), there exists one and only one Oilier margilwlly Irupped slIifacc (i.e. 

0(1) = 0, fJ(n) < 0, c.f.1 121) at r = M which cnn be identified as Ihe black-hole horizon. r or 

more generic distortion where the signature of {),U is unspecified, the surface r = M is 

slill a marginally trapped surf3ce (Le. Off) = 0) and serves as a candidare for the black-hole 

horizon. The induced metric for the cross-section I" = constant. r = Atl is unaffected by 

distortion sources, and furthe rmore, we compute all NP quantities in the distorted space­

time and compare their boundary values on the hypersurface r ;:= M with the isolated ERN 

hurizon. Full comparison shows that. distorted and isolated ERN black hob have identical 

intrinsic (l"-rc1cvant) behaviors at r ;:= M, and only nO-relevant quantities 111. '+'.1, (I' ll. (il I2, 

(1)22) depicting extrinsic behavio~ arc influenced by the distortion potential. These results 

indicate that, even under generic conformastatie distortion, r ;:= M still refers to the ERN 

black-hole horilOn and the intrinsic structures of the horizon arc undistorted. 

6.1 ERN Solution: From Weyl to Conformastatic Metrics 

ERN Solution as a Wcyl Metric 

All sTaric axisymmeTric solutions of Einstein- Maxwell eqmltions can be written in the form 

of Weyl's metrie)29))47), 

where !/I(p,z) and y(p, z) are two metric potentials dependent on Weyl's canonical coordi­

nates Ip. z). The coordinate system IT,p , z. ¢) serves best for symmetries of \Veyl's spaee-
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lime (c.f. Seclion 10. 1 of ref.129]) and usually aCls like cylindrical coordinates, but is 

incvm{Jlete when describing a black hole as Ip .<:1 only cover the horizon and ils exteriors. 

Three members in the Kerr-Newman family can be identified as Wey l-Iype mclricsl291147 1: 

(i) SCIi WARZSCIIILI) M ETK IC 

(6.2) 

where 

L = ~(/. + 1_) . I . = ..jpl + (z + /11)1 , 1_ = ..jpl + (z - M )2. (6 .3) 

thus Eq(6. 1) becomes 

and Ihc lransformation 

L + M = r. 1.+L = 2M cosO . z= (r - M)cos fJ. 
(6.5) 

yields the common form of Schwar'~~child metric in II. r, O,1j/l1 coordinates. 

(ii) N ONEXTREMAL REI SSN EK - N o RDSTRC)M M IITK IC 
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where 

thus 

and the transformation 

L + M = r, 1,+ L= 2.jM2_ QZ cosO , z= (r - M)cosO, 
(6 10) 

p = ../ il- - 2M/"+ Q 2 sinO. 1.'- = (r - M)2 - (M! _ Q 2)COS2 0. 

yields the noncxtrcrnal Rcissncr-Nordstrom metric in Schwarlschild-lypc coordinates, 

(iii ) EXTRHI AL R EISSNE R- NORDSTR()M METRIC 

"', .. ~ = In L ~- At' Ya,,· = 0, (6.12) 

where 

L = JP2+;!, (6.13) 

thus 
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and the transformation 

L +M = r, z = LcosB, p = L sin O, (6. 15) 

y ields the ERN metric in Schwarlschi ld-type coord inates, 

Among these solutions, the SchwaF£schi ld and noncxlrcmal RN metries can be statically 

and axisymmctrically distorted (or superposed) by external sources with in the framework 

of \Vey l's solulions!47 1l49 j. However. the complete procedure of distorting a noncxtremal 

RN metric is highly nonlinear and is invalid for ERN metrics. As will be shown in Section 

6.5, distonion '+' D is imposed on the linearized (uncharged) RN potential '+' '''' and the true 

RN potcntial l/llt" +!/I/J c an he derived via 

wil h C = M/IQI. When applying this transformation to ERN solutions (C = I), bolh 

mathematical and physical problems arise, which encourages us \0 search for alternative 

methods of ERN distortion. 

ERN Solutioll as a COllfornmstatic Metric 

Weyl's metrics Eq(6. 1) with the vanishing potent ial y(p. z) (l ike the ERN metric) consti tute 

a special subclass which have only one potential ljl(p. z) to be identi fied. Extendi ng this sub­

class by canceling the restriction of ax isymmetry, one obtains the family of cOIJ!ormaslatic 
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solutions (yel still in Weyl's coordinates) 

where we usc A as the single metric fum;li on in pl ace of 1/1 in Eq(6. 1) \0 emphasize that 

Ihey arc different by axial symmetry (¢I-dependence) Substitute the rnelric Eq(6. 1 S) into 

EinSlcin-Maxweliequations. 

Rab = 8nTab ' 

Tab = ~ (FaJbc - ~gabF'-dF'd ) . 

and we obtain Ihal..l.(p, z,l/J) is solution 10 the n:{luced field equ:tlionslSOr 

V~A = e-2.!V<D V<D, 

VZ<l) = 2VAVIl) , 

(6. 19) 

(6.20) 

(6.2 1) 

(6.22) 

(6.23) 

(6.24) 

(625) 

where Vz "= DfIf> + ~ap + D", + ~aH ami V arc respectively the Laplacian and gradient 

opcralOrs. while ID refers \0 the electromagnetic scalar potential Aa = ($, O. O. 0). We will 

intnx\ucc a special c lass of solutions to this fami ly of cqu:tlions given by reL1501. Assume 

the functional rdation (i) = (1'(..1.). and then Eq(6.25) yields 

(6.26) 
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where /.:, is an integration constant. With th is result. Eq(6.23) and Eq(6.24) wou ld combine 

inlO a single equation 

(627) 

Suppose that ,I is dependent on an auxiliary function U which is a solution to the Laplace 

C(luation ('VZU = 0), I = J(U), and thus Eq(6.27) yields 

(6.28) 

where lk2• kJ) are arbit ra ry inlcgwtion constants. too 

With the general solution given by Eq(6.26) and Eq(6.2K). we will now apply physically 

meaningful boundary conditions \0 fix the integration constants lk ,. kJ • k,IISO). Forsourccs 

of finite extension, asymptotic flatness should be resumed al null or spatial infinity; thus. 

there should be eA ~ I and $ ~ 0 at infinity, which in turn requires Ihal U --+ 0 at inlinity 

and k2 = kJ • k, = Of I. Hcm.:c, Eq(6.26) and Eq(6.28) become 

(6.29) 

Actually, U(p, z, 1/1) represents the gravitat ional potential ofa compact Newtonian source: U 

is negative definite and goes to lCro U -; 0- at null/spatial infin ity. Astrophysically mcan­

ingful solutions also requires k < 0. For example, the energy density of a confonnastatic 

disk isl50Jl5 11 

(6.30) 

where L > 0 is the Newtonian mass density. To guarantee ~ > 0, we must have k < O. 
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In the sense o f Eq(6. 18) :lnd Eq(6.29 ). thc ERN metric is identified by 

Mk 
U UN = ..[P2+l!' (6.3 1) 

which shows again that. as expected. when reaching in fi nity ..[P2+l! -> 00 , one has 

U -> 0-; when approaching Ihc horizon ~ ..... 0·. one encounters an in fi nitely 

deep potential welt U -+ - 00 , 

Now it is possible 10 d iston an ERN black hole based on Eq(6.29) and Eq(6.3 1) from the 

confo rmastal ic perspec tive . 

6.2 Conformastatic Distortion and Tetrad Setup 

As we know. Lapl ace 's equation is linear and allows superposit ion of solutions (for <I dc-

tailed di scussion, c. f.1 52 1). Hence , we can add another harmonic fun ction U(p. l. . .p) 10 U'_~"" 

.mct accordi ng 10 Eq(6.29), thc rcsuit<llli potential U"M + U(p, z, ¢) yields 

Substitute Eq(6.32) into Eq(6. 18) and we obtain Ihc di sto rted ERN metric 

Transform Eq(6.33) from Weyl coordinates to Sc hwilTzsdli ld-typc coordinates via Eq(6.13) 

and (6. 15), 

~+M = r , z=(r - M)eosO , p = (r - M) sin O, (6.34) 
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and iI follows that 

and 

where 

F := (r: M + U(r~(}.¢)( (6.37) 

(/r 
Introduce the ingoing Eddington-Finkelstein coordinate II in place of I Ilia til' = til + y' 
and Eq(6.36) becomes 

so the Lagrangian for null radial geodesics (2' = 0, iJ = 0 and;P = 0) reads 

(6.39) 

with an ingoing solution 

i'= 0, (6.40) 

<lnd an OIIi.,:villg solution 

(6.4 1) 

Thus, for an ingoing observer (r = -I for ,,"ua). the real tetrad can be SCI as 

fD, = ( I ,~,O,O), ,,'D, = (0,-1,0.0), 

loU = (-~, I ,0,0), ",J,' = ( - 1,0,0,0), 

(6.42) 
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where we also utilized the cross-normaliz~lIion condition rna = nOla = - I . ria = /lalla = 

o as well as the requirement that glib + lanb + lI"h span the induced metric hAil for cross-

sections of {v =constant, r =constant J. Thus, h Ajj and its inverse arc given by 

.mct the remaining two complex tetTad (co)vcctors can be constructed viil Ihe nonholonomic 

method (d. Chapler 9 of rcL1301). 

where 

8 ,, := (r - M)U+kr. (6.46) 

and 6 " is negative defi nite ifr ;:: MduclO IU < Q,k < 0). 

6.3 Properties of Distorted ERN Spacetime 

6.3.1 Outer Marginally Trapped Surfaces for O,U > 0 

In the tetrad Eqs(6.42)(6.45), the omgoing and ingoing cllpansion rates arc respectively 

(6.47) 

(6.48) 
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Recall that for r ~ M. 1 U < O. k < 0 , /!,.I) < 0). Thus. for di slOnion sources satisfying 

iJ,U < 0, such as disks of tinite extension surrounding the ERN black hole. we always have 

0(1) > 0 and O(n) < 0 (untrapped surfaces) for r > M, while Off) = 0 and O(n) < 0 (outer 

marginally trapped surface) for r = M 

Thus. for the superposed metric Eq(6.38) with iJ,.U < 0 and in the domain r ~ M. there 

ex ists o ne and only one outer marginally trapped surface which is the hypcrsurfacc r = M. 

We also know thaI r = M corresponds to the horizon of undistortcd ERN black holes. With 

r = M. Eq(6.43) and Eq(6.44) exactly reduce to the induced metric of Ihe ERN horizon. 

6.3.2 NP Quantities under Generic Distortion 

For generic conform<lslalic distort io n where the sigml! urc of DrU is unspecified. we can only 

com:lude from (0(1) . O(n) I thaI. there exists a marginally trapped surf'lce (0(/)=0) at r = M. 

although Eq(6.43) and Eq(6.44) would still reduce to Eq(6.49), To examine whether r = M 

still corresponds to the b lack hole horilOn or nOL we will compare all NP quantities of the 

distorted and isolated eases for their behaviors at r = M. 

Spin Coefficients ror InAoinA Observers 

In thc tctrad Eqs(6.42)(6.4S). the spin coefficients for an ingoing observer arc given by 

(6.50) 

(6.51) 
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(T = O. T = 0 : (6.52) 

v = O, A=O , Jr=O : (654) 

(y =- V2: I ( r - M)(iJljU - iCSCOiJ~U)+/':,." COIO I, (6.55) 
46;-, 

y = 0 , n = ()'+p. (6.57) 

k2 ~ 
~ = - 26~ (r - M )[(r - M )-a,V - Mk l · (6.58) 

Wcyl-NI' Sca lars 

The Wcyl·N P scalars arc given by 

\l'~ = 0 , 

'+'0 = k'(r - : 1)3 I cotOuoU - (1ooU + cscOoN U + 2i cscO(coIOa~u - a~U»)+ 
26" 

5~(r -6M )' 1 (/)~ul - csc20(a~U)2 + 2i cscOi)oU a~u ). 
21:1" 

"1'1 = Yikl(r~- M)I _ l1(r _ Ml(arU)(8IJ+icsC(Ja<i)U 
8". 

+ 3[rl _ Ml + 3rM 2 U - 3? M U + rk(f - M )21(01] + i cscoa. )(iJ,U) 

+ ( 15rM k + 8rMU - J IM!k - 4?k - 4?U - 4M2U)WII + i cscO{).)U). 

k' (,- M), I "" I ' I '1'1 =~ 1.. r - M (Joo +CSCOiJH - 2(r - M )t::." iJ" U 

(659) 

(6.60) 

(6.61) 

+ 2(r - A-1)[3(r- M )iJ,U + v la,v - ICiJI]U)2 + CSC 20W. U )21 (6 .62) 

8" J 2k(,-J + 13M!, - S? M - 6M J)iJ,U 6M k(k + U») 
+ r _ M C010 ( OU+ (r M )l ~ , 



Y2k (,-M)( Mk. . . ) '1',=--,- l(r - M)U()rU ---t::.l!fJrj(JfI - ICscOiJ~)U . 
4ll." r - M 

Kirci·NP Scallirs 

The Ril:ci·NP scalars arc given by 

$ 22 =-±lcr - M )arr u+2tJ,u l, 

$ 00 = e(1" -6 M)31_ I(r] _ M J)u + ,-3k larr u 

'" 
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(6.63) 

(6.64) 

(6.65) 

- 2t::./l ICOOO +CSC20UN) + (r - M)iJ, + CO[08ej U (6.66) 

+(r - M)IrM(k + 3U)tJrr U + 6([),JU)! + 6csc10(a .. U)211. 

$ 01 = Y2k3(r ~ M)2( _ Sl(r - M )!{),U _ M klWo _ i cscOiJ .. )U 
St::./J 

+(r - M )t::.,,(ae - i cscOD .. )(8,U) ). (6.67) 

k! (r - M )! J t./J , 
(Ill I = ~1-r_ M(ae+alJl) +csc-oa¢¢)U-(r-M)6"a"u 

+2(r- M )(a,U) j(r- M)d,U - vi + (DOU)l + csc!o(a .. u)l) (6 .68) 

-~IUl(r - M)~ + 4? M]D" U + 21;(r3 + 2M3 - 3M2r)O,U - 2M 1e), 
4'" 

$1 1 = - Y2k(r]- M ) I (r- M)[J,U- A,A -~ [(aeu + i cscO a,. u). (6.69) 
4t::." r-M 

A = - 1;2(,,_ 4M ) I /::."I(r - M)2a" + 800 + csr; 20a<f,¢ + 2(r - M)a, +COloa~lu 
I_ t::." 

-(r - M)( iJou)2 + csc20(a .. U)2 1j . (6.70) 
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6.3.3 NP Quantities for Undistorted ERN Spacetime 

The metric for an undislorlcd ERN black hole is 

d, 
Replace I with the ingoing null coordinate v such that (/1 = dl' + C' and we have 

(6.72) 

Following the same procedure as Section 6.2 for distorted ERN spacetime. the null tetrad 

adapted (0 ingoing null radial geodes ics is 

rd, = (I.~.O.O). n'D. = (0. - 1.0.0). 

I,d," = ( - ~. I .O.O). " .dX' = (- 1.0.0.0). 

IINJ~ = ~(O,o,~, rs~no)' lIIad)..<I = ~(O,o,r . iSin8). 

[n thisletrad. the NP quantities arc given by 

K=T=cr=O, n-=v =,I = O, y = O: 

(r _ M )2 
I) = -~ ' 

I 
~ = - -;.' 

V2COI 8 
a= - -4-,- ' 

YlcotO 
P= - 4-,- ' 

(6 73) 

(6.74) 

(6.75) 

(6.76) 

(6.77) 

(6.78) 



'1-'0 = 'PI = '1' .1 = "I', = O. 

(r - M l M 
'f'2 =-~r-; 
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(6.79) 

(6.80) 

(6.S l ) 

(6.82) 

(683) 

[\ is obvious that the distorted NP quantities in Section 6.3.2 would reduce 10 the corre-

sponding undistortcd quantit ies in Ihe absence of distortion polcntial(U = 0) 

6.3.4 Distorted and Isolated ERN: Full Comparison 

Compare the NP qu~mtities in Seclion 6.3.3 and Seclion 6.3.4 011 the hypcrsurfacc r = 

At, and we find that Ihey match each other for the follow ing ([uamilics (where =. (lel/oles 

I!lJ l/ality all the surface r = M). 

(r= T = O. v = ,! = ll" = O. y=O : 'P" = O. 1[)21) = 0, IT = (1 +jj , (6.84) 

K=O. p=O , c=O. (6.85) 

,rz colB V'i CO\6 
(f =-~' f3 = ---;fM ' (6.86) 

while the o nly differences occur in I,a- relevant quantities (11 , '1' .1, (tl 11 , ([1 12 , <1Jn I : 
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Quantity Definition Distoned ERN Undistoned ERN 

11:= II,aOna ---.!!... 
M kM M 

'I', \PJ := Calx:Jrnbii(nd UP - ~(J" - iJN )U 

([III $IJ = ~Rabrnb 2M2 - ~(arr - (1~)U 1 
2M2 

([I ll $12 := ~Rablna ll "2(iJ1!+ i cscOD¢)U 
4kM3 

$ 21 $ 22 := '2Rabll"nb -~ 
kM 

r = AI), d. Eq(2.64). 

6.4 Summary 

[n this chapler. we proved thai, for an ERN black hole under generic conformaslalic dis-

Ion ion, the hypcrsurface ,. = M is a marginally trapped surface (O({)=O). whose in/rim'it: 

structures, including the induced malric hAJj, spacetime connections ({-re levant spin coctll-

cicnls), e1ectromagncticficld(f -relevant(llij)alldcurvalurcscalars (f- rc1cvant 'I',). coi llcide 

with those of the horizon of is 01 <lIed ERN black holes. This is sufticicnllo wndudc thai. the 

intrinsic structures of ERN horiwns cannot be distorted by confonnastatic energy~mal1er 

distribution outside the horizon. Yet, as illustrated by the presence of U in lJl, 't' l . (Ill h 

(]J1 2 , (ll22 I at r = M, the distortion fields do influem:e the exrrillsic structures of the horizon. 

These conclusions agree with thc results expected from the local uniqucness theorem. 
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6.S Addendum: Distortion of Nonextremal RN Spacetime 

Weyl-Distorted Nonextremal RN Metric 

The field cqu'l!ions governing the Weyl potentials (¢t(P. z). y(p. z)1 in Eq(6.1) arel2911 471 

¢t.w + ~!/t .1' + !/t ." = _e-U (¢l ~p + !l)~). 

(p e-2"' ¢l.I' ). p +(pe-2"' ¢l.J ,= O. 

Y.I' = P (¢t ~p - v(, + 2e- 2", ( ¢l~JI - (I)~)) . 

Y., = 2p(¢t./I!/t ., -e-200¢l./I!l).,). 

Y.w + Y." = Vz¢t - (v(/I + ¢t ~). 

For vacuum spacctimes. (I) = 0 :md Eqs(6.88)-(6.92) arc reduced into 

1/1.1'1' + ~!/t .1' + !/t .o:. = O. 

>,,= P(.',- I",). 

Y., = 2p!/t.I'!/t ., . 

Y.w + Y.o:. = V~!/t - (!/t ~1' + !/t~, ). 

(6.88) 

(6.89) 

(6.90) 

(6.9 1) 

(6.92) 

(6.93) 

(6.94) 

(6.95) 

(6.96) 

The Weyl potentials (I/I(p. z). y(p . z)1 for the RN mctric arc solutions to Eqs(6.88)-(6.92) 

rather than Eqs(6.93)-(6.96). Since Eq(6.88) is the nonlinear Poisson equation with nonva-

nishing ckctromagnetic field sources. superposition of given solutions no longer yiclds new 

solutions. Th us. in order to distort the RN metric. we need to lillt'arize Poisson 's e(lu:llion 

Eq(6.88) by transforming it imo Laplace's equation. 
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Suppose there exists a functional relationship e~ = 1« 1) and il follows from Eq(6.89) that 

Differe ntiate e2'; :::; [« I» twice wilh regard 10 p and z respectively and add the m IOgclhcr. 

onc oblai ns 

Insert Eq(6.88) and Eq(6.97) inlO Eq(6.98) and it implies that 

~ = 2 . (6.99) 

Direci integration of this equation yields that e~ = (1) 2 + G<I> + B. To resume asymptotic 

nalness at spatial infinity, we need Ihal ~~~ eU = - ~~'!! g" ::: !~nl (ttl! + C(II + /J ) ::: t. and 

thus there should be !~'!! $ = 0 and 8 = 1. Also, replace the integral constant C by - 2C for 

mathcm:lIical convenience in subsequent calculations (as in rcf.[47 J). thus. 

(6.100) 

Now, introduce the linearized (uncharged) metric polcmial1 47 ) 



and Eqs(6.88)-(6.92) an: reduced 10 

I 
'I' .w+ p"l'.p+'I' ,:.1. =O, 
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(6.102) 

(6.103) 

(6. 104) 

(6 105) 

One could seek for \f'(p. z) instead of !/I(P. z) by solving Lap[;l(;c's equation Eq(6.102). and 

integrate for y(P, z) via F..q(6. IOJ), The potentials 1/I(P. z) can be retrieved from '+'(p. z) 

byl471 

For Ihe noncx.\rcmal RN melric. we have 

(6. 107) 

Using Ihe method of superposition by adding ,mother solution 't'/J \0 Eq(6.102) whi(;h is 

reglilarar the oilier RN radius , then the potential 'P.,,+'I'I) will yield a di~to rtcd RN solution 

I/I~H + !{in. where !/II) is related 10 'l'J) via 
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Thus. one formally obtains [he distorted metric (omill ing the subscript D) 

lis" = _e2~ L2 ~L(:I~~P2)dI2 + e2~ -2~ (L ~1~1)2 (lip :' + dzl ) + e- 201 U ~L(~:~2Q:.t2d¢2 . 
(6. 11 0) 

which can be transformed into the usuallt,r, 0, ¢J coordinates via Eq(6.10). 

d.l) = _e2w(1 _ ~ + ~)dI2 +e21 -ZoI !( 1 _ ~ + ~(dr2 + rdlf) + e-201 rsi n20drp2. 

(6. 111 ) 

As we can sec, the whole distortion process is actually highly nonlinear. and Eq(6. 106) or 

Eq(6. J09) is not applicable 10 the ERN solution (Ie! = 1). 

Spin Coeffi c ients for Weyl-Distorted NOllcxtrcma l RN 

The Lagrangian for Weyl-distorted nonCXlremal RN spacetime is 

where N (r): = 1 - ~ + Sf;. There arc two constants ormotion. 

and the tangent vector field for null radial geodesics (2" = 0, iJ = 0 and ¢ = 0) is given 

by (the method is simiklf to the calculations of Kerr-Newman-family black holes using NP 

formalism in ref.[19j) 

i = ff:2~ ' r = ±e-~ , tJ = 0, rP = O. (6. 11 4) 



Set up the tetrad for null an ingoing observer. 

(6. 115) 

fila = ~(O,o.r- le""-Y 'i(r Sinorle" )' ina = ~(O,o.r- l e .. - r .-i(rS in&r le" )' 

fa = ~( _ lle2,," . er.o.o). II" = ~( _ I. _H- le-2 .. ~r.o. o) 

ilia = ~(O.o.re-.. ~ r 'ir Si n&e-" )' ;;Ia = -7z(o,o,re-.. ~r. - i"S in &e-" ) 

and the spin coefficients are given by 

(6.116) 

K =- 2~,.- I He"' - r (2iJ~l/t - iJf!Y) (6.117) 

p = - 2 ~He2 .. - r (2r- 1 - 2Orl/t + D,y) (6. 118) 

rT =-2~lle2 .. -rD,y (6. 11 9) 

T = - 2 ~,.-le .. -raeY (6. 120) 

v = 2~r-I H-le-.. - r(2af!l/t -aeY) (6. 121) 

11 = - 2 ~e-r(2 r- 1 - 2tJ,I/I + ary) (6. 122) 

A = - 2 ~e-r{),y (6 .123) 

1r = 2 ~r-leli'- YaeY (6. 124) 

([ = 2~r-le"-ra~1/t (6 .1 25) 

f3 = 2~r- l e,,"-Y l)1i1/t (6. 126) 

1 M Q2 
Y = 4'1.{-r((-;Y _ -;:J)w' + {),1/t1 (6. 127) 

E = ~He2 .. -rI2(~ - ft) Jr I +2{)r¢t - D,yj (6. 12S) 
2 V2 r - ,..1 



Chapter 7 

Conclusions and Prospective Study 

In this thesis, two principal goals have been achieved based on the local uniqueness solu­

lions II', U, B, rpll in rcC1141 : 

(I) A loml method is developed 10 rcconslrucilhe near-horizon metric of an axisymmetric 

CXlremallH embedded in elcclrovacuum, and we verified that I/~ U, tl, rpl) do represent the 

structures of extremal Kerr-Newman horizons: 

(II) Booth 's conjeclllrf! which is implied from the local uniqueness theo rem is partly ex­

amim:d. and we found Ihal the intrinsic structure of the horizon of an extremal Rcissncr­

Nordstrom black hole cannot be disto rted by con/ofmastalil: energy-mailer distribution in 

the exterior. 

In prospective investigations following this thesis. we wililry 10 fi gure out the anSWCN of 

Ihe followin g three problems: 



85 

I. Equi valence or Generic Exirellllli Kerr-Newman NHMs 

In Chapler 5, we explicitly calculated the NHMs of two spcciallYpcs of axisymmetric ex-

trcmallHs embedded in clectrovacuum: 0) sIalic and electrically charged with {(t = I, 

M = 4lT): (ii) TOtaling and cleclric<llly neutral with {(t = 0, At = 8"). We proved Ihal, 

the former matches the NHM of extremal RN horizons, while the later is cquivaienllo Ihe 

NI·IM of extremal Kerr horizons. Toconfirm that the local uniqueness soIUlion .~ do describe 

extremal Kerr-Newman horizons, we still need to verify the generic case with {O < (Y l < I, 

M = 4lf(2 - iT)}. 

From the globaL extremal Kcrr-Ncwm:m black holes (r. = M 2 + Q2) afC described by[271 

where 

Taking the ncar-horizon transformation 

(7.3) 

and omitting the tildes. one obtains the NHM (we follow the denotations used in rcf.[41) 
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From the local perspective, however, the NHM 

for the generic case 10 < (r2 < I, At ;:; 4"(2 - (Y2») will explicitly manifest itself in an 

extremely complicated and unreadable form, which makes it difficult 10 lind oUllhc cquiv-

31cnCClransfomlation 

Our proposal is, we should at least verify the equ ivalence between Eq(7.4) and Eq(7.5) for 

some particular yel random values ill of 0 < (t l < 1. For example. with (f2 ;:; ~. we have 

the local constructions for Eq(7.5) lhal 

" (O);;wi = ~:~9+-1~~~;' K = 2:~~~ ~6~~;~)' (D 11 = (27 ~~:.l! )2 ' 0.7) 

, [6x 36 V3(9 - 16r) 
w ,\ = 27 + 16x2(/x ± (27 + 16x2)3 (lop. (7.8) 

(/J2:= 72(27 - 16x2)(3 + 1 6.~) r2{/I,2 + 2dl.dr 
(27 + 16x2) 3 

2(27 + 16r) 1 48x(9 - 1 6.~) 11 6(9 - 16.r) 1 12 V3 I' 
+ 3(9 - t6x! ) ,Ix - (27 + 16x2)2 fill' + 27 + 16.r1 (lop - (27 + 16.l1f . 

0.9) 

while Eq(7.4) bccomes(with M = I) 

and the two NHMs &1(7.9) and Eq(7.1O) should be equivalent via appropriate coordinate 

lransfor!lliltions. 
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Besides ncar-horizon metrics. we arc also interested in a quasi local characterization of 

generic ncar-horiwn geometry and (opology of extrema) IHs. We believe thatl he advanced 

di scussion in rcfs.1541-156) from global perspectives would shed light on Ih is gO<l1. 

II. Unified Distortiun of Exlrcmlll and Nonnlrcmal RN Iloriwns 

For a Weyl-distorted noncxtrcmal RN black hole, the spacetime metric is (c.f. Section 6.5) 

where H(r) := 1 - 7 + ~. and therefore Ihe induced metric for the Qu\er horizon 

r = r+ := r+ .,JM2_ Q2 is 

where y(r,. 0)=21/1(r •. 0) - 2u on the horizon I48 ). !tAR yields the Gaussi:m curv:.llurc that 

(7 .1 3) 

as opposed to K = * for isolated RN. Hence. contrary 10 ERN horizons, intrinsic st ructure 

of Ihe nonextrcrn3] OUler horizon is distorted by Weyl-typc external sources. This result is 

expected because the Sehwar~_~eh i ld horizon c;m also be wnsiderably distorted by Wey l 

sources. as shown in ref.[57[. 

Thus, distort ion happens on nonextremal RN horizons and ceases for extremal RN horizons. 

There might exist a smooth transition connecting these two situations. and we will look for 

a unified treatment distortion of the ex tremal and nonextremal RN solutions. Considering 
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that Eq(6, 106) has an effective ncar-extremal (C --+ I) limit, 

we suspccl lhat a unified description mighl still be realized within Ihe framework of Weyl 

distortion. 

III . Further Im"estigllt ion of ()istortion of ExlremallHs 

The (/is/ortibilit)' of extremal Kerr-Newman horizons is quill' an imponam problem for our 

understanding of the geometry and mechanics of extremal black holcs, so we will explicitly 

calculate morc examples of Kerr-Newman horizons exposed in difl"crcnt kinds of distor­

tion fields. Hopefully, we could finally find a rigorous mathematical proof from either the 

quasiloc<ll or global approach for the dislonibility problem. 

Moreover. the local uniqueness theorem requires the horizon \0 be axisymmetric. Thus, we 

also hope 10 find out whether the intrinsic structure of a generic (not necessarily axisym­

metric) extremal horizon can be distorted or not 
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Appendix A. 

Sign Convention 

There arc two kinds of sign conventions for spacetime mClrics in general relativity. j,e, 

(-,+. +,+) and (+,-.-, -). When one switches from one signature 10 the other. the signs 

of some typical quantities have the behaviors listed below. 
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Metric tcnsor and its inverse Changing sign 

Christoffel sy mbol s of first kind Ch.mgingsign 

Christoffel symbols of second kind No change 

Ricmannlcnsor No change 

Ricci tensor No change 

Scalarcurvalurc Changing sign 

Einstein tensor No change 

Encrgy~momCl1tum tensor No change 

Cosmological constant Changing sign 

Throughoullhis thesis. the convention (- . +, +. +) has been employed. 



Appendix B. 

Newman-Penrose Formalism 

B .. l Null Tetrad, NP Quantities and Tetrad Equations 

The light cone is one of the most fundamental local structures at a spacetime point: In 

Ihis spirit. a special kind of tetrad (moving frame) called complex nul/letrad can be con ­

structed. Such a letrad contains lwo real null (co)vcetors 11, n) and two complex nul! 

(co)verlors 1 m. fill. Being null (co)veclors, Ihe sclf-norrn3lizations arc vanishing. 'of' = 

flail" = mama = inaif1" = 0, so the following two pairs of cross-normalizations are adopted 

(B .. I) 

while contractions between the IwO pairs also vanish, lam" = lan/" = lIall1" = lIaiit" = O. 

Here the indices can be raised and lowered by the global metric gab which in tum can be 

obtained via 

99 



l()() 

There are four directional covarianl derivatives along with each null tetrad vector. 

D := V I = rVa. 6.:= Vn :::nl1Va . Ii:::: Vm = //IaV a , 6:= Vm = lllav a , (B .. 3) 

fun ctions. Instead of using index notations as in onhogonal tetrads, each Ricci rotation 

cocflicicnl in the nul1lclrad is assigned a lower-case Greek le1ler, which constitute the 12 

complex spincocflicicnls. 

(BAa) 

(B..4b) 

- E:= ~(IIRDla - II,RDllla ) = i(II l1/'Vblil - li{' /'Vbllla) , 

- ")':= ~(l!a,MQ _ iitllma) = i(l1a/lbVbla - iitnh<;hll1a). (B . .4c) 

- {1:= i(nl1 o/a - II/ROil/a) = ~(lIalllVb l" - iilal//'Vbllla) . 

Applying the directional derivative operators to tetrad vectors yields the If<l llsponalion 

cqU:lllons 

Dr = (c+ i;)f' - lalla - Kif{', tJ.r = (y + 'P(' - fill" - TIl /a . 
( B .. 5<1) 

!Sf' ::: (ii' +{3)f - {.IlIIa _ eTlI/f) . lif' = (0 +/J)" - UII{' - pill": 
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(B .. 5b) 

Dma = (e _ t)ma + frf' _ mQ, tJ.mQ = (y - f)mQ + yf' - Tit, 
(lLSc) 

,sma = (j3 _ a)mQ + ,If _ (TIIQ, lima = (a-p)mQ + fit' - plI"; 

(B .. Sd) 

The metric-compatibility ortwist-frceness of the covariant derivative is recast into the com­

mutators of the directional derivatives, 

60 - OtJ. = (y + f)O + (t; + t)tJ. - (f + ")6 - (T + fr)J , 

00 - 06 = (it +fJ - fr)D+ K6 - (jJ + t; - t)J - (TJ , 

M - 66 = -yD + (T - fr -fJ)tJ. + (p. - y + y)6 + ,16, 

60 - 6J- = (fl - p.)D + (jJ - p)6 + (it - P)O - (ii - fJ)J-. 

(8 .. 6) 

The 10 independent components of Weyl's tensor can be encoded into 5 complex Weyl-NP 

scalars, 

(B .. 7) 

The 10 independent components of the Ricci tensor are encoded into 4 reol scalars ({boo , 

$ 11. $ 22. AJ and 3 complex scalars 1$10, $ 20. $ 21 ) (with their complex conjugates). 
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$ 01 := ~Rabrll!b, (ll lO := ~Rabrljl = Iii;. 

$ 02 := ~Rabl/Jamb, $10:= ~RQbi"a'll = ~. (8 .. 8b) 

$ 12 := ~RQbil!Qnb , $21 := ~RQbll1a ll b = ~: 

I 
in these definitions, Rab could be replaced by its Irace-free part Qab = Rab - 4gabR (as in 

Appendix E of rcf.[27]) or by the Einstein tensor Gab = Rab - ~gabR because of the normal­

iz:ttion relations around Eq(ll .. I). Also. $11 is reduced to $ 11 = tRabf'llb = !Rablll""'" for 

c1cclrov;t(;uum (A = 0) (c.f. Eq(2.64) in Chapter 2). 

The first systematic fonnulation of the complex null tetrad method attributes to Newman 

and Penrose (NP)118). Compared wilh ref.1181. in this appendix we adopt the signature 

(-, +, +, +) rather than (+, - , - . - ). :lIId follow &j(B .. I) rather than (t'lla = I ,mni;'a = - I), 

as used in Chapler 2 of rcf.[29 I and Appendix E of rcf.l27 I. beeausc this is the usual ehoice 

nowadays in studying trapping null surfaces Thc standard NP forma li sm in the original 

sign convcntion can be found in refs. 11 811 19J . 

B .. 2 Einstein-Maxwell-NP Equations 

In an orthonormal tctrad, Ei nstein-Maxwell equ:llions are locally rccxpressed by Cartan ·s 

first <lnd second structure cqu<ltions. while in a complex null tetrad, the dynamical equations 
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are the Newman-Penrose equat ions. 

Dp - 6K 0:; (p2 + (Ttr) + (£ + i:)p - Kr - K(3a + [3 - Jr) + $ 00 , (B .. 9) 

Du - OK 0:; (p + {J)u + (3e - i:)u - (r - ft + a + 3fJ)K + 'P(), (B .. 10) 

Dr - /j.K 0:; (r + ft)p + (f + Jr)a" + (e- i:)r - (3y + Y)K + 'PI + <flUI' (11..1 1) 

Da - 8£ 0:; (p + i: - 2£)0- + fJtr - fje - d - ky + (£ + p)Jr + <fl 1O • (B .. 12) 

Df3 - &- 0:; «(f + Jr)O" + (jJ - i":)fJ - (p + r)K - «(l- ft)£ + '1'1 . (B .. 13) 

Dr - /j.£ 0:; (r + ft)a + (1' + Jr)fJ - (c + i":)r - (y + y)t: + TJr - VK + '1'2 + (1111 - /\ . (B .. 14) 

D,\ - 6!T 0:; (p'\ + trJl) +,f2 + (a - [3)Jr - vi( - (3£ - i":)..{ + <fl"(), (B .. 15) 

DJl - b'Jr 0:; (j}Jl + (T,\) + Jrft - (£ + e)/-I - (a - fJ)Jr - YK + 'I'" + 2/\, (B .. 16) 

Dv - /j.lf 0:; (ll' + f)Jl + (ft + rH + (y - Y)lf - (3e + e)v + '1'3 + <flll . (B .. 17) 

6 ,j- 6v = - (p + {I),j - (3r - Y)A + (3(1" + [3 + Jr - fly - 'P4 • (B .. 18) 

lip - (,u = pea +{3) - u(3a - [3) + (p - p)r + (p - P)K - '1'1 + <flU) . (B .. 19) 

oa - 8{3 0:; (pp - '\(T) +aa +{3[3 - 2afJ + y(p - p) + F:(p - p) - '1'2 + (1111 + /\, (B .. 20) 

0'\ - 6p = (P-p)v + (p - p)!T + (a + fj)/-I+ (a - 3fJ) - '1'.1 + !lIn , (B .. 2 1) 

OV - 61-1 = (p2 + A,1) + (r + Y)Jl - V!T + (r - 3{3 - (l)v + <fll2 . (8 .. 22) 

or - t:.{3 = (r - (l - P)r + J.1r - uv - ev - (r - Y - J.l){J + aA + <I112. (B .. 23) 

or - /::..u 0:: (pu+ Ap) + (T+fJ - (l)r - (3y - y)u - KV+ <fl1)2 . (B .. 24) 

6p - lir = - (PP + UA) + {/3 - a - f)r + (r + y)p + VK - '1'2 - 2/\ . (B .. 25) 

..... a - {,r = (P + ely - (r + {3H + (Y - p)a + (/3 - flY - '1'3. (B .. 26) 

Also. the Wey l-N P scalars 'I' , and the Ricci-N P scalars $ 'j defined in Eq(B .. 7) and Eq( B .. 8) 

respcl:tivc1y can be calculated indirectly from the above NP equations after obtaining the 

spin coefficients rather than d irectly us ing the ir defin itions 
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The Sill independent components of Ihc Faraday-Maxwell 2-forl11 (i.e. Ihc electromagnetic 

field strength tensor) F ob C<lll tx:: encoded into Ihree complex Maxwell scalars 

and therefore thc eight real Maxwell equations ti l" = 0 and d' F = 0 (as 1< = llA ) can be 

transformed into fou r complex equations. 

DtPl - Jr/Jo = (n - 2a)IPo+2ptPl - Klh . 

DtP2 - JrPl = - ;/,¢o + 2rr,p1 + (p - 2C)IP2, 

11th - Ol/ll = (ly - 11)¢o - 2r<p1 + 17th. 

111/11 - 61h = v¢>o - 211¢1 + (2fJ - T)lh , 

wilh the Ricci -NP scalars (fljj related \0 Maxwell scalars by 

(8 .. 28) 

(13..29) 

(B .. 30) 

(8 .. 31) 

(13 .. 32) 

To sum up, Eqs(B .. 9)-(B .. 26), f:.qs(8..28)-(8 . .3 I ) and Eq(B .. 32) constitute the Einstein-

Maxwell cquillions in Newm.tn-Penrose formalism. 

When switching from 1(+, - , - , -) .rlla = I .m"iil,,::: -11101 (-. +.+. + ) .l"lla = - I .m"lll" = 

I I. definitions of the spin cocflicients, Weyl-NP scalars 'I'; and Ricci -NP scabrs <I)' j need to 

ch:mge their signs: this way. the Einstein-Maxwell equations can be left ufll:hanged 
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