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Abstract

Our work begins with ref.[14] in which Lewandowski and Pawlowski obtained the unique
solutions {P, U, B, ¢} to the field equations restricting axisymmetric and electrovacuum
extremal isolated horizons (IHs). After reviewing the boundary conditions and generic ge-
ometry of IHs, we construct the on-horizon data {K,®;, Re(‘V), 7', w,, etc} using the
local uniqueness solutions {P, U, B, ¢;}. Subsequently, we extend the adapted tetrad on an

TH to cover the external regions and develop the method to reconstruct the near-horizon ge-

ometry of extremal IHs in . This i method is applied to
rebuild the near-horizon metrics of extremal Reissner-Nordstrém and Kerr horizons, which
prove to be equivalent with those derived from the near-horizon limit of the corresponding
global metrics. These results confirm that the local solutions {P, U, B, ¢} describe the in-
trinsic structure of extremal Kerr-Newman-family horizons. The solutions (P, U, B, ¢} lead

to the first uni theorem from i itions of black holes, and this theorem

implies that the intrinsic structure of extremal Kerr-Newman horizons cannot be distorted
by external energy-matter distribution. This conjecture is examined and verified in confor-

mastatically distorted extremal Reissner-Nordstrom spacetime.

Key Worps Isolated Horizons, Adapted Tetrad, Near-Horizon Metric, Conformastatic

Distortion, Newman-Penrose Formalism
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List of Symbols

= denotes equality on an NEH/WIH/IH;

= denotes equality in the near-horizon limit;

s denotes the hook operator, IF,, = LF;

* denotes the intrinsic Hodge dual operator with respect to the induced metric s
w, denotes the rotation 1-form potential of an NEH/WIH/IH;

D denotes the induced connection on an NEH/WIH/IH;

(A, [1]) denotes an WIH/IH with the equivalence class [/];

Q hat over quantities denotes intrinsic quantities on a foliation leaf of an NEH/WIH/IH;

O(r™) denotes rank-m high der infinitesi for Taylor ion in near-horizon limit;
Q.q denotes partial derivative with respect to the variable X%, Q , = d, Q:

Q.4 denotes covariant derivative w.r.t. the vector field x¥*dy, Q.. = X"V, Q;

W, (i €{0,1,2,3,4}) denotes Weyl scalars in NP formalism;

@;; (i € {0, 1,2}) denotes Ricci scalars in NP formalism;

¢; (i € {0, 1,2}) denotes Maxwell scalars in NP formalism;

R denotes the set of real numbers.



Chapter 1

Introductory Remarks

In the realm of classical black hole physics, one of the most important results developed in

the last four decades is a group of global uniqueness theorems. These theorems tell us that,

the only stationary, asymptotically flat, electrovacuum and nondegenerate black-hole solu-

tions to the Einstein-Maxwell equations are the Kerr-Ni an family (for a

review, c.f. refs.[1][2] and the references therein as well as ref.[3]). Here the

umptions
(asymptotic flatness, etc) needed for the proofs are imposed on the entire spacetime, which

leads to the ario of isolated black holes embedded in electrovacuum that extends to

null infinity. The set of global uniqueness theorems was recently enriched with the proof

regarding the uni of deg (extremal) Kerr-Newman solutions in ref.[4].

While black holes have been extensively studied via the global approach, investigations
from the quasilocal perspective have also achieved great progress in the last two decades.
Some typical quasilocal definitions include trapping horizons|5), (generic) isolated hori-
zonsl61(7), dynamical horizons|8](9], slowly evolving horizons{10][11] etc., and they play
important roles in numerical relativity, quantum gravity and other fields. One can refer to

ref.[12] for a detailed review of quasilocal characterization of black holes.



Can we build uni theorems from p 2 This is quite a
problem and let’s take isolated horizons (IHs) as an example to show where the difficulties
usually arise. As will be shown shortly afterwards in Chapter 2, an IH is respectively said

10 be a vacuum or electrovacuum TH if it satisfies|7][13]14]

(.1

Rug=Rp20, or Rup—81T,5" = Ry — 873"
Ray a
cal

ALl
That is to say, we only require that the vacuum or electrovacuum Einstein(-Maxwell) equa-
tions hold on the horizon, regardless of the behaviors at external regions. Restrictions on
IHs and other quasilocal definitions of black-hole horizons cannot be extended to the exte-
riors, and in general, it is impossible to fix the structure of the black-hole horizon without

referring to external energy-matter distribution.

However, based on the geometry of generic IHs developed in ref.[13], equations restricting
axisymmetric and electrovacuum extremal Hs were solved by Lewandowski and Pawlowski
in ref.[14], and the solutions interpreted (though without further calculations) to represent
the uniqueness of extremal Kerr-Newman horizons. As will be proved in Chapter 3 and
Chapter 5, implications of these local solutions do agree with the intrinsic and near-horizon

structures of the event horizon of extremal Kerr-Newman black holes

The local uniqueness theorem in ref.[14] is really an amazing result. It is the first successful

Moreover, it

attempt to build black-hole uni tructures from g
implies that, the intrinsic structure of extremal Kerr-Newman horizons is independent of
matter and fields outside the horizon. Based on the local uniqueness as well as some other

results[15], my supervisor, Dr Ivan Booth, put forward the conjecture that



The intrinsic structure of an extremal Kerr-Newman (i.e. axisymmetric and electrovacuum)

horizon cannot be distorted by external energy-matter distribution.

This conjecture is partly examined in Chapter 6 of this thes

Hence, the two topics of this thesis have been introduced. Firstly, we will verify that the lo-

cal uni solutions to extremal Kerr-Newman horizons. Secondly, we will

study the intrinsic structure of extremal Kerr-Newman-family horizons in external distor-
tion fields. To achieve these goals, the thesis is arranged as follows. In Chapter 2, we review

the definition of IHs, rederive the boundary conditions and restriction equations on IHs and

introduce the local uniqueness solutions (P, U, B, ¢). In Chapter 3, we explicitly calcu-
late the on-horizon data {K, ®y;, Re(‘¥2), 7', w,, etc} using the local uniqueness solutions
{P%, U, B, ¢}, and interpret the meanings of three parameters {a, A, 6y). In Chapter 4, we
extend the adapted tetrad on IHs to cover the exteriors, and develop the method to construct
the near-horizon geometry of an IH embedded in electrovacuum using on-horizon data. In
Chapter 5, we explicitly compute the near-horizon metrics of extremal Reissner-Nordstrom
and Kerr horizons using the local method in Chapter 4, and prove their equivalence with
those derived from near-horizon limit of the corresponding global metrics. In Chapter 6, we

take the extremal Reissner-Nordstrém black hole as an example, treat it as a conformastatic

metric, and investigate its superposition with external conformastatic fields.

Since we take an isolated-horizon approach to study black hole horizons (c.f. ref.[16] or
ref.[17] for a complete review of IHs), the best mathematical language should be the null
tetrad formalism developed by Newman and Penrose[18]. Unlike the traditional signature

{(+,=,=,=), I'n = 1,m%m, = 1) used in Newman-Penrose (NP) formalism[18][19], we



will switch to {(=, +, +,+), ["n, = —1,m%h, = 1) throughout this thesis in accordance with
the signature used for trapping surfaces. The consequences of this change and the principal
NP cquations are discussed in Appendix B. Also, we will employ the tensorial rather than
spinorial version of NP formalism; for a unified formulation of these two versions, one can

refer to Chapters 2 and 3 of ref.[20].



Chapter 2

Isolated Horizons: Boundary Conditions

and Extremal Structures

The geometry and mechanics of generic (rotating and distorted) isolated horizons (IHs)
were developed in refs.[6][7][13], and based on these we will rederive the boundary condi-
tions of IHs and analyze the intrinsic structures of extremal IHs in this chapter. In fact, IHs
date back to refs.[21]-[24], but these earliest works were imperfect as they only dealt with

nonrotating and undistorted IHs.

Following the standard set up in refs.[6][7][13], we will introduce nonexpanding horizons
(NEHs), weakly isolated horizons (WIHs) and IHs in sequence. NEHs are geometric pro-
totypes of WIHs and IHs, on which we can establish all boundary conditions, and WIHs
and IHs would naturally inherit all these conditions. Strengthening the concept of NEHs
to WIHs, we will be able to define a valid surface gravity and generalize the black hole
mechanics|7]. WIHs are sufficient in studying the physics on the horizon, but for geomet-
ric purposes, stronger restrictions can be imposed to WIHs so as to introduce IHs, where

the equivalence class of null normals [/] fully preserves the induced connection D on the



horizon[13].

2.1 Boundary Conditions of Einstein-Maxwell IHs

2.1.1 Generic NEHs: Definition and Implications

Isolated horizons provide a local description for black holes in equilibrium with their exte-
riors. An IH is an NEH whose extrinsic structure is preserved, while an NEH is an enclosed
null surface whose intrinsic structure is preserved. NEHs are geometric prototypes of IHs,

so we will begin with NEHs to i igate the ic characteristics.

A three-dimensional submanifold A is defined as a generic NEH if it respects the following
conditions|7][13],

(i) A is null and topologically S2 x R ;

(ii) Along any null normal field / tangent to A, the outgoing expansion rate 6, = A
vanishes ;
(iii) All field equations hold on A, and the stress-energy tensor 7, on A is such that V¢ :=

~T¢I" is a future-directed causal vector for any future-directed null normal 1, vV, < 0.

Condition (i) is fairly trivial and just states the general fact that from a 3 + | perspective[26]

2, where 2 emphasizes that A is topo-

an NEH' A is foliated by spacelike 2-spheres A =
logically compact with genus zero (g = 0). The signature of A is (0, +, +) with a degenerate
temporal coordinate, and the intrinsic geometry of a foliation leaf A = S is nonevolutional.
The property 6, = 0 in condition (ii) plays a pivotal role in defining NEHs and the rich im-

below. Condition (iii) makes one

plications encoded therein will be extensively dis

sin the
1V, in

"Following the conventions in refs.[6](7][13], the symbol A is adopted to denote an NE|
following context, A also refers to the standard symbol for the directional derivative A :=
NP formalism. We believe this won't cause an ambiguity.




feel free to apply the NP formalism of Einstein-Maxwell field equations to the horizon
and its near-horizon vicinity; furthermore, the very energy inequality is motivated from the
dominant energy condition[27][28] and is a sufficient condition for deriving many bound-

ary conditions of NEHs.

Now let’s work out the implications of the definition of NEHs. Being a null normal to A, [

is automatically geodesic, k := —m®I’V,l, =0, and twist free, Im(p) = Im( = m*m"V,1,) = 0.

For an NEH , the outgoing expansion rate 6, along [ is vanishing, 6, =0, and conse-
quently Re(p)=Re(~mi"V,1,) = —16 = 0. Moreover, according to the Raychaudhuri-NP
expansion-twist equation (also for the shear equation Eq(2.5) below, c.f. page 56, Section
9(a) of ref.[19])%,

2 1
Dp=p* nrr'r+§R,,,,l"I"£0. @
it follows that on A

oo+ %R,.l.l’lb 20, 22)

where o = —m’mV,1, is the NP-shear coefficient. Due to the assumed energy condition
(iii), we have Rypll" = Rapl'l" = 3Rgapl’l" = 8nTll" (¢ = G = 1), and therefore Rql"l"

is nonnegative on A. The product od- is of course nonnegative, too. Consequently, o and

Rg1°l” must be simultaneously zero on A, i.e. o =0 and R, °I" 0. As a summary,

k20, Im(p)20, Re()20, 020, R,II=20. 2.3)

Thus, the isolated horizon A is nonevolutional and all foliation leaves A = §2 look identical

with one another. The relation Rg,l*l" = 81 - Tol°l" = 81 - T¢I - 1,20 implies that the

causal vector ~T¢1” in condition (iii) is proportional to / and R,!” is proportional to /, on

" Following the conventions in refs.[6][7][13], the symbol = means equality on NEHs and their
spacelike cross-sections, while hat over quantities (A, 1, etc) would denote intrinsic quantities on
a foliation leaf.



the horizon A; that is, —T;’l” 2 cl” and Ryl” = cl,, ¢ € R. Applying this result to the related

Ricci-NP scalars, we get ®go = =Rapl'l? 2 (E LIP20, ®g = Brg = ~Rapl'mb 2 (i Im* 20,

thus

Ral’2cly, ®p20, @)= 24

The vanishing of Ricci-NP quantities {®g, gy , Pyo} signifies that, there is no energy-
momentum flux of any kind of charge across the horizon, such as electromagnetic waves,

Yang-Mills flux or dilaton flux. Also, there should be no gravitational waves crossing

the horizon; however, gravitati waves are ion of ions of the space-
time continuum rather than flows of charges, and therefore depicted by four Weyl quan-
tities W; (i = 0,1,3,4) (excluding ‘) rather than Ricci quantities ®;;. According to the

Raychaudhuri-NP shear equation

Do = o(p+p)+ Yo = ~206 + Yo, (2.5)

or the NP field equation on the horizon

Do =6k = (p+P)o+ (36 - &) — (T — 7 + ¥ + 3+ ¥ 20, (2.6)

it follows that Wy := Cpeal’m?Im? = 0. Moreover, the NP equation

8p—d0 =p@+p)—aBa—p)+(p—p)r+u—-px—"¥) + 0y =0 (o))

implies that ¥ = CyeulnF'm? = 0. To sum up, we have

Y20, ¥,=0, 238)

which means that (c.f. Sections 2.1.1 and 2.1.2 in ref.[29]), geometrically, a principal null



direction of Weyl's tensor is repeated twice and [ is aligned with the principal direction;

physically, no gravitational waves ¥, and longitudi P

) enter the black hole[29][30]. This result is consistent with the physical scenario defin-

ing NEHs.

Remarks The tensor form of Raychaudhuri’s equation for a null congruence reads (c.f.

ref.[31] for a relatively comprehensive review)

£400) = =50 + kb — T + D@ = Rl , (2.9)

3%

“V,I*. The quan

where &, is defined such that &” = ies in Raychaudhuri’s equation
are related with NP spin coefficients via (c.f. Chapter 2 of ref.[29], Chapter 9 of ref.[30],
Section 2.3 of ref.[32], and Chapters 2 and 3 of ref.[28], where null congruences and the

meanings of spin coefficients employed in this section are extensively discussed)

O =~(p+p) = -2Re(p), O =p+jt=2Re), (2.10)
Tap = =gl = Tmamy, | Q@.11)
ap = % (= p) (matit, = ritgmy) = 1m(p) - (mariy = s (2.12)

it

where Eq(2.10) follows directly from i = i = m®m® + in’m® and

Oy = WVl = mP iVl + itm®V 1,
(2.13)
= m"8l, + m"Sly = —(p + p).

Oy = W9Vny, = imV oy, + mP iV,
(2.14)
— it bs o
=m'ony +m’on, = p+ 1.

anull is e orth Lif Im(p) = 0 (c.f. Section 2.1.3 of



ref.[29]).

2.1.2  Constraints from Electromagnetic Fields

Vacuum NEHs on which {®;;20, A=0} are the simplest types of NEHs, but in general there

can be various physically meaningful fields ing an NEH, among which we are

mostly interested in electrovacuum fields with A=0. This is the simplest extension of vac-

uum NEHs, being a special kind of Einstein-Maxwell NEHs with ic media

overspreading the external regions. The ishi gy-stress tensor for
netic fields reads[27]

L1 e N
T = G(Fm.l-,, - gsarFul o8 (2.15)

where F, refers to the antisymmetric (F, = —Fj,, F& = 0) electromagnetic field strength,
and T is trace-free (7§ = 0) by definition and respects the dominant energy condition.

(One should be careful with the antisymmetry of Fy; in defining Maxwell-NP scalars ¢;).

The boundary conditions derived in the previous section are applicable to generic NEHs.
In the electromagnetic case, ®;; can be specified in a more particular way. By the NP

formalism of Einstein-Maxwell equations, one has (c.f. Section 2.2.1 of ref.[29])
@y =249, i.j€l0.1.2), (2.16)

where ¢; denote the three Maxwell-NP scalars. As an alternative to Eq(2.4), we can see that

the condition @y = 0 also results from the NP equation

Dp -5k =(p* +00) + (e + B — kT~ Ba + B -~ M)k + Dy 20 @.17)



askZp2o=0,s0

D20 & 2009020 = go =20 (2.18)

It follows straightforwardly that

gy = Dig = 240 b1 By = 200y (2.19)

These results demonstrate that, there are no electromagnetic waves across (®gy, @) or
along (®pp) the NEH except the null geodesics generating the horizon. It is also worthwhile
to point out that, the supplementary equation ®;; = 2¢; ¢; in Eq(2.16) is only valid for
clectromagnetic fields; for example, in the case of Yang-Mills fields there will be ®;; =
Tr(F;F;) where F; (i € {0, 1,2}) are Yang-Mills-NP scalars (c.f. page 27, Appendix A.2 of
ref.[34]).

2.1.3 Adapted Frames and Newman-Unti-type Tetrad
Null Tetrad Adapted to NEHs

Usually, null tetrads adapted to spacetime properties are employed to achieve the most suc-
cinct NP descriptions. For example, a null tetrad can be adapted to principal null directions
once the Petrov type is known[29][30]; also, at some typical boundary regions such as null
infinity, timelike infinity, spacelike infinity, black hole horizons and cosmological horizons,
tetrads can be adapted to boundary structures. Similarly, a preferred tetrad adapted to on-
horizon geometric behaviors is employed in the literature to further investigate NEHs (c.f.

refs.[7113]123112411251(36], etc.).

As indicated from the 3 + | perspective from condition (i) in the definition, an NEH A is



12

foliated by spacelike hypersurfaces A, = S transverse to its null normal along an ingoing
null coordinate v, where we follow the standard notation of ingoing Eddington-Finkelstein

null coordinates and use v to label the 2-dimensional leaves S at v = constant; that is,

A= Ax[v,vi] = S [vo,vi]. v is set to be future-directed and choose the first tetrad
covector n, as ny = —dv (£,n° = —1)[7][13], and then there will be a unique vector field /
as null normals to S satisfying the cross-normalization /%, = —1 and affine parametriza-

tion Dv = 1; such choice of {I*, n“} would actually yields a preferred foliation of A. While
{1, 1) are related to the extrinsic properties and null generators (i.c. null flows/geodesic

congruence on A), the remaining two complex null vectors {m®, "} are to span the intrinsic

geometry of a foliation leave §2, tangent to A and transverse to {1, n°); that is, £,m = £si

Now let’s check the consequences of this kind of adapted tetrad. Since

Lmz0=(lm) = 6D-D5=(@+B-D+KA—(p+e—-8)5-cd20, (2.20)

with & 2p 2 20, we have

ria+f, £2&. @21

Also, in such an adapted frame, the derivative £,m on A, = §2 should be purely intrinsic;

thus in the commutator
Lm = [m,m] = 56— 65 = (i — )D + (p — P)A — (B — )5 — (@ — B)3, (2.22)
the coefficients for the directional derivatives D and A must be zero, that is
A2, £am=(@ - P - (@-p)i, 223

5o the ingoing null normal field n is twist-free by Im(u)=Im(m*m*V,n,)=0, and 2u =



2Re(u) equals the ingoing expansion rate 6,).

The concrete form of such an adapted tetrad will be constructed in Section 4.1, which

works for both the horizon and its external vicinity. The construction is inspired by the

classic Newman-Unti tetrad[33] used to study asymptotic behaviors at null infinity.

Newman-Unti Tetrad for Null Infinity

In this subsection, we will briefly review how Newman-Unti (NU) tetrad works, which also
prepares us for the discussion in Section 4.1. The NU tetrad reads (c.f. [33] and Section IV

of ref.[18]; or page 29, Appendix B of ref.[34])

10, = 0,,
9, = 3, + Ud, + X, + X0,
224
md, = wd, + £, +E'9;,

0, = 00, + E0; + E'd;..

For the NU tetrad, the foliation leaves are parameterized by the outgoing (advanced) null co-
ordinate u with I, = du, and r is the normalized affine coordinate along I (Dr = I'd,r = 1);
the ingoing null vector n” acts as the null generator at null infinity with Au = n®d,u = 1.
The coordinates {u, r,¢,§} comprise two real affine coordinates (i, 7} and two complex

stereographic coordinates (g i= ¢ cot£,¢ = ¢ cot £}, where {6, ¢) are the usual spher-

cction A, = 2 (as shown in Appendix B of [34], complex

ical coordinates on the cros
stereographic rather than real isothermal coordinates are used just for the convenience of

completely solving NP equations). For the NU tetrad, the null frame {ly, n, ma, i) is



parallelly transported along the tangent vector field 1d,, thus

Dl = (& + &)ly — km, — kiy = 0, (2.25)
Dn, = —(& 4 &)ng + am, + 7im, =0, (2.26)
Dmgy = 7l — kng + (e = &), = 0, (2.27)
Ding = ntly = kng + (& — £)m, = 0, (2.28)
which implies that
(2.29)

Furthermore, applying the commutators to « and taking Eq(2.24) and the relations {Du =

0,Au=1,6u=0,5u = 0} into account, one obtains

(AD = DAYu = (y +)(Du) - (6u) - 7(5u) = 0, (2.30)
(6D = D) u = (@ + B)(Du) - p(6u) - (du) = 0, (231)
(A = AS)u = —7(Du) + (r — @& = B)(Au) + (u — y +7)(6u) + Adu) = 0, (232)

(56— 68) u = (it — p)(Du) + (B — p)(Au) + (e = B)(Su) — (@ — B)(Su) = 0. (2.33)

While the first two commutator equations are trivial, the last two commutators yield that

p=p, T=a+p. (2.34)

Eq(2.29) and Eq(2.34) constitute the basic gauge conditions for the NU tetrad. This tetrad

natrally annihilates several spin coefficients and exerts restrictions between other spin co-
efficients. This is just what we are looking for to express the aforementioned boundary
condition for NEHs. However, the NU tetrad is designed for null or spatial infinity and is

inappropriate for near-horizon regions; for example, & in Eq(2.29) is related to the surface
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gravity (i.e. ion along null geodesics) and should be nonzero close to NEHs except

in extremal situations. In a word, the NU tetrad cannot serve as the adapted tetrad for IHs

after transition to the horizons.

However, inspired by the method of NU tetrad Eq(2.24), one can construct a similar tetrad
for the horizon and its vicinity which fully respects the properties discussed in the previous

section by switching the roles of /* and n®, resetting the outgoing null vector field [ as

generators, and taking the ingoing (retarded) null coordinate v as the foliation parameter, as

will be discussed in Section 4.1 (c.f. Section I of ref.[35] for the differences of asymptotic

behaviors between null infinity and near-horizon vicinity). In advance, we introduce the

new gauge conditions in modified NU tetrad for a preview,
v=r=y=0, p=a, n=a+p, (2.35)

which agree with the boundary conditions of NEHs.

2.2 Geometry and Connections of NEHs

Connections and Rotation 1-Form Potential

While the connections on the full spacetime outside an NEH are depicted by Levi-Civita

whose inalocal inate system manifest themselves as Christof-

fel symbols, the connections on an NEH are given by (c.f. Appendix B.2 of ref.[13])

Db’ =Vl 2wl (2.36)
&
MPVan, 2 = g + A + ping (2.37)

MV iy 2 = i Dymy = (& = E)n, — (@ = Bymy + (@ — B, - (2.38)
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With the properties Eq(2.21), Eq(2.23) and Eq(2.35) in the adapted tetrad, the commutator

£,0 = [A, D] yields

Aly=Dng = (Y + P+ (6 + 8y — (T +mmg — (T + W)ing
= (e+8mn, —nm, — T, (2.39)

= (e+&n, — (@ +Pm,— (@+pHm,.

Contracting Eq2.36 with n,, one obtains the rotation I-form potential wq,

W = —mDI'E - £,]
2 e+ B+ amg + g (2.40)

2 —(e+E)n,+(@+B)mg+ (@+p)m,.
So far, the main boundary conditions and connections on NEHs have been derived. An
NEH is a geometric object, or a proto-IH; to study the mechanics, we need to strengthen
the concept of NEHs and introduce weekly isolated horizons (WIHs) which have a well-
defined valid surface gravity.
‘WIHs, Surface Gravity and IHs
A WIH (A, [1]) is an NEH (A) equipped with an equivalence class [/] of null normals
satisfying[7][13]

£wa20 or [£, D120, Viell]l, = {1l =cl, ceR}]. (241

Being a subset of NEHs, WIHs naturally inherit all the boundary conditions and geometry

of NEHs. Similar to other Killing horizons, the surface gravity x(, for WIHs can be defined



as the acceleration along null geodesics,

DP =PV, = k. (2.42)

Compare this definition with the transportation equation

DI* = (& + &)I° — km" — k" = (e + &), (2.43)

and with the aid of Eq(2.21) it naturally follows that

kpZe+EL2e. (2.44)

After defining the surface gravity, the rotation 1-form potential w, and the geometric con-

nections on a WIH (A = A x R, [/]) become

Dol 2 ol 2 (= Kyna + 7y + 7ing) IV, (2.45)
AV 2 = g + Ay + pinty (2.46)
P Demy = Img = Ty, (2.47)

where the commutator coefficient £ is defined via { := @ —f. In these connection equations,
the terms involving n, arise from the foliation process, so the rotation 1-form potential @&,

and the intrinsic connections on a foliation leaf A, = §2 are given by

Qo 2 7Mg + Ry, (2.48)
WV, 2 Amg + i, (2.49)

mP Dy = = gy + T, . (2.50)



By the way, it follows from Eq(2.48) that
@ =am® + 7m’, O, =27, @.51)
b & b

where the index of & is raised from @, by the intrinsic inverse metric 4% = m%n’ + in“m".

As proved in ref.[13], an NEH can always be to produce a ing WIH,

and within the framework of WIHs, we are able to carry out all necessary calculations for
the geometry and mechanics of the horizon. However, we will still take this opportunity
1o introduce the definition of IHs[7][13] for completeness; that is, an IH is a WIH with

[£1,Da]=0.

‘Weyl-NP Scalar ¥,

Besides the connection coefficients discussed above, another important quantity reflecting
both geometrical and mechanical characters of WIHs is the Weyl-NP scalar ¥, (the other

four Weyl scalars being related to gravitational waves). The NP equation
S == (up-Aor)+aa+pB-2eB+yp-p)+e—-p) -+ 0y +A  (2.52)
yields that (as ®;; are real by definition and A = 0)
Sa—5B2aa+BB—-2aB Yo+ Dy, 8a-0BZad+pB-2ap-Fa+ Dy, (2.53)

addition and subtraction of which give rise (o the real and imaginary parts of ¥, that

- 2Re(¥2) 260+ - 2L - 20y = K =20, (2.54)

— 2Im(¥a) 2 6 - 6 + 2aB - 243, (2.55)



where

K = 060+60-2C (2.56)

refers to Gaussian curvature of the cross-section A, = $2. Thus for electrovacuum

wazé(ffuzcb,.+,(azfo:+za[x—zlw)), 2.57)

which reduces to

— K +i(07 - 8¢ +2ap - 20p)), (2.58)

for vacuum WIHs with ®;; = 0. Morcover, Eq(2.21) and Eq(2.48) yield that[7]{13]

A, = (6 - 6¢ + 2B - 2aB) €® = 2Im(¥,) €, (2.59)

where € is the area 2-form of the cross-section A = 2. Thus, the intrinsic Gaussian
curvature and rotational property of a WIH are encoded into the real and imaginary part
of W, respectively. Furthermore, since the horizon cannot be flat (K # 0), ¥, is always
nonzero (¥, # 0); now recalling the boundary conditions Eq(2.8) that Wy =¥, 20, thus
geometrically a large class of WIHs will be of Petrov-type D[29](30], including WIHs

induced from the Kerr-No family black-hole horizons.

2.3 Extremal Electrovacuum WIHs with Axisymmetry

2.3.1 Field Equations for Vacuum and Electrovacuum WIHs

The intrinsic field equations on a foliation leaf A = §2 should be related to the pullbacks

Rapm®m®, Ryyim®m® and Rgym®i® (c.f. ref.[13] and its Appendix B). Employing the bound-
Lk iR £
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ary conditions in Eqs(2.3), (2.21), (2.23) and (2.48) and projecting the NP field equation

61— Ac = (uo + Ap) + (T + B - &) — By = 7)o — kv + Oy

onto A = §2, one obtains

while projection of

DA =381 = (pA+ o) + 1 + (@ - Byx — vk — (3¢

onto a foliation leaf yields
Lo cazbh - Fr_n?
Ry’ Oy Zkpd—dm—m—{n = 0.
g

Now recall that for electrovacuum,

24A = 0= Rug™ = Ra = 26" +2m*in") = Ryl'n” = Rym‘in”,

thus

1
)= %R,.»( 4wy = SRyln® = 3R

Add together the following equations

Du—én=pu+cd)+nn—(e+&u—(@—-pPr—vk+'¥r+2A,

Sa =8B = (up — A7) + @@ + B - 2aB + y(p — p) + e — i) = Vo + Oy + A,

(2.60)

2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)



and one obtains

1 . _ _
> i’ 1 Dy 2 K — 61 — 1+ In + Sa - 88 — ad@ — BB + 20
e e

1 (2.68)
2k = 5(divé + 277 - K).
where div & refers to the divergence of the intrinsic rotation 1-form potential &,
divo2om + 61— (- In, (2.69)

and K is the Gaussian curvature of A = §2 as defined previously by Eq(2.56). Eq(2.61)

appears al due to Eq(2.19) while Eq(2.63) and Eq(2.68) turn out to be the valid field

equations projected onto foliation leaves.

Hence, for a WIH embedded in vacuum (®;; = A = 0), Einstein’s equation yields from

Eq(2.63) and Eq(2.68) that

R 2 2KAd = 281 = 24m =21 =0, (2.70)

R 2 2Kt — div = 21 + K =0, @.71)

with the abbreviations therein defined as Ry = Rapm®i® = Ry = Rapm®m®, Ry

Rapm®i®.

For a foliation leaf of an electrovacuum WIH (®;; = 2¢,6;, A = 0) which reduces to a

vacuum WIH with ®;; = 0, Einstein-Maxwell equations imply from Eq(2.63) and Eq(2.68)
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that

Rim 2 2)A = 28w = 24w = 27 = 0, @n)

Ry 22001 2 201 = div g = 207 + K = 4y, 273)

where ¢, respects the reduced Maxwell-NP equations that (c.f. Appendix B)

Dg; 20, .74
5120, (2.75)
Ay 26¢, — 2upy + 286, (2.76)
8¢y = Dy = 2my + Ky b2 - 2.77)

2.3.2  Extremal Vacuum WIHs

For extremal WIHs, we have (, = 0 (c.f. [37] for quasilocal characterizations of extremal-

ity), and the vacuum equations Eq(2.70) and Eq(2.71) become

Sn+im+nt =0, (2.78)

divio+277-K =0. (2.79)
To solve these equations, Lewandowski and Pawlowski[14] decomposed the rotation 1-
form potential @ on A = §2 into an exact part *dU and a coexact part d In B (this decom-
position and its existence firstly appeared in Section I11.C of ref.[13]),

@=%dU+d InB. (2.80)

Here U represents the rotational scalar potential which accounts for the gravitational con-



tribution to the angular momentum of a WIH and is defined by[13]

Vivz2im(Y,), Vi = 65+86-06-175,

23

@281)

where 92 is the 2-dimensional intrinsic Laplacian, while Bin Eq(2.80) just stands for gauge

freedom|13]. As aconsequence, the coefficient 7 of &, in Eq(2.48) can be rewritten into[ 14]

n=-idU+5 InB.

(2.82)

Since @, in Eq(2.48) reflects the rotational properties, a WIH is non-rotating (@, = 0) if

and only if 7 = 0, which implies by Eq(2.80) that U = 0 and B = 1. Substitute 7 = n(U, B)

and its complex conjugate 7 = iU + &1n B into the extremal vacuum equation Eq(2.78)

and it follows that
1iss = P S iz ~
(838 + 268~ 2i5U -5B) = (GUY’ +iB5U +i3U .

The divergence div @ introduced in Eq(2.69) becomes

" 2 5. leap o -
divs = — 556858 + 5 Vi B +i(86U - 65U) +i&8U ~ {6U).

Recall the NP commutator

86 -06=([E—mD+@E—-pA+@-p)s—(@-p)d26-25,

hence

(2.83)

(2.84)

(2.85)

(2.86)



and Eq(2.79) becomes

gl ViB+2i6U3B~2i3UsB) = ~26USU + K. (2.87)

For vacuum WIHs, according to Eqs(2.58)(2.59)(2.81), the Weyl scalar ¥, which combines

the Gaussian curvature K and rotational scalar potential U is given by

(2.88)
2.3.3 Extremal Electrovacuum WIHs
In the extremal electrovacuum case, Eq(2.72) and Eq(2.73) become
m+in+m =0, (2.89)
divas+ 217~ K = 44,4 . (2.90)

Substitute the decompositions Eq(2.80) and Eq(2.82) into Eq(2.89) and Eq(2.90) and one

obtains the restriction equations(14] ,

%{ 858 + (6B - 2idU - 5B) = (BUY + 35U + iU, 291

vi

B-2i5USB) = ~20UU + K - 4,13 (2.92)

also, for electrovacuum WIHs, according to Eqs(2.57)(2.59)(2.81), we have

S(-K+4¢:81+iViU). (2.93)
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It is notable that ¢, can be reexpressed using the two auxiliary function (U, B} as well[14]

(2.94)

where Ej is a constant.

2.3.4 Solutions to Extremal Axisymmetric Electrovacuum

Assuming axisymmetry to the leaf A = $2, labeling A = §2 with real isothermal coordinates

(x, ) and introducing the following complex tetrad with tetrad function P(x),

1,1 1
(= = P(x)dx +i— dp, 295
m (P(x)a.HP(x).a,), e = PR dx + i dy (2.95)

2

it is found in ref.[14] that, rotating electrovacuum solutions to Eq(2.91) and Eq(2.92) are

P (2.96)

1—a®8nx 1-
= tarct ,/ = 2.9

U = warctan (\ 55 ). B (|+I+ .97
3 (A% - B 8mx)? tZi‘,' 3

o = o 22VTAL ( ), I 298)
1+d (A2 + 4222 8m?)

ael0.1), Aec(0.), 6el02n), (2.99)

while nonrotating solutions are given by
2(x) = —STA _ (T 5
PW= o #="G)" (2.100)

Henceforth we will call Eqs(2.97-2.99) and Eq(2.100) the local uniqueness solutions.
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2.4 Summary

In this chapter, we rederived the boundary conditions of NEHs/WIHs/IHs, studied the
adapted tetrad and extensively analyzed the restriction equations for a foliation leaf. With
these groundworks, we were finally able to introduce the local uniqueness solutions ob-
tained in ref.[14]. Although the three concepts NEHs, WIHs and IHs are introduced in
apparent hicrarchy for a clear picture, there is no need to distinguish them in the remaining

part of the thesis and we will simply refer to them as IHs henceforth.

It is argued in ref.[14] that, these solutions represent the uniqueness of intrinsic structures
of extremal Kerr-Newman IHs. Is this argument correct? Before answering this question,

we will first investigate the implications of these solutions.



Chapter 3

On-Horizon Data from Local

Uniqueness Solutions

In this chapter, we will show how to properly read the local uniqueness solutions through

construction of on-horizon data. The formulae employed in the sub are

provided in either Chapter 2 or ref.[14]. For reference convenience, we write the solutions
again,

> an(l +a*
Py = T 6.
T-a8nx 1 - 8map\}
= warctan(+] CB=(1+ . 32
U = sacan({5570) B () £2
1-a?
2 L (8rxA)
b= e ! (3.3)
= X A)
a€l0,1], A€ (0,00), 6€l0,2n), (3.4)

where Eqs(2.97-2.99) and Eq(2.100) are unified by setting @ € [0, 1].



3.1 Implications of Local Uniqueness Solutions

Intrinsic Metric

The complex tetrad (m®, i} spanning the leaf A(x, p) = S2(x, ¢) is set as[14]

ipn. +iPd,) = %(o, 0,5.iP), "= 1(];0, - iPd,) = %(o,o

o 5 -iP), (3.5)

and the dual bases satisfying the normalization m®m, = m°m, = 1 are given by

1
o = Pdx +igdp = (0.0, (36)
Thus, the intrinsic metric and its inverse are respectively
oy dX* ® dxXP = miny + iigmy, 22 (Pldrf + % ) 37
b 2 - - 1 2 2 52
10 @ 0 2 mitid + mi 2 2 (550, + P°3). (3.8)
According to the local uniqueness solutions, we have
8a[A2(1 + @®) + 647°3(1 - @) 2 _ a2 .
e = L i |,);+ AA® - 647°x°) 17, (39)
AA? - 647°x%) 21[A2(1 + a2) + 647222(1 - a?)
2 _ean? 21| A%(1 + @?) + 64 (1 - a?)|
et A2 - 64 7+ [ e ]l (3.10)
A(A - 64772) *

" 8n]A2(1 + a?) + 64722%(1 - a?)




Intrinsic Connection Coefficients

Given the metric A, it follows immediately with the intrinsic Levi-Civita connections

— 1287°A%x
U@ -4 (14 ed) + 64 (1 - )|
8A*X(A? — 647%2)
[0 +a) +64m2 (1 -at) [
ST 128°A%x _
(A2 = 64m2)| A2 (1 + 0) + 647207 (1 - ?) |
Derivative & C Coefficient

The directional derivatives {6, 5} and the commutator coefficients { become[14]

S=d=m

Thus

ol
¢ = == ism, - Siweom,

Gaussian Curvature

3272452

172, RN
(A’ = GAHZE) |Al(1 +a2) + 64m22(1 - @?)

Gaussian curvature of the horizon is given by

or by Eq(2.56)

K = 60 +087-2082260 -2,

@3.11)

(3.13)

(3.14)

(3.15)

(3.16)
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which yield the same result that

164 [A%(1 + @) = 192 22%(1 - &)

- 3.17)
[421 + a2) + 4r22(1 - a?)]

Spin Coeficient 7

The spin coefficient 7 which reflects rotational character of the horizon, and can be reex-

pressed by the rotational scalar potential U via Eq(2.82)

A2 -iU+5mB. (3.18)

Hence,
167V x(1 - a?) % 2iA VT (T=a?) (I +a?)
alls (3.19)
A2(1+0?) + 64 (1 ) R
— VA2 +0?) + 64n2x3(l - a?
Ao (1 + @) + 64mx3( a’)
Rotation 1-Form Potential
The rotation 1-form potential in Eqs(2.48)(2.51)
OpZmg + i,
(3.20)

Oy + |l 0 = 2

can be rewritten using {U, B} into exact and coexact components as in Eq(2.80),

Og=%dU +d InB, 3.2



where * is the Hodge dual operator with respect to A, 14]. Thus,

g = (*

242 (A - 647°22) (T= ) (1 + @) 64rx(1 - o)
0] lp + F] G £} Iy
0+ reami(—ayf A0 F@) 6 (-a)
(322)

Electrovacuum Field (Ricci-NP Scalar @)

The electromagnetic field on the horizon can be described by the Ricci-NP scalar @,

which is related with ¢, via @y = 2¢,6, , thus

8ra’A®
Oy =
A0+ ) + 64 (1 - 0)
{42(1+ad) - (1= o) - 16imaa (1 - ) 1+ 02)} (323)

{A1(1 +a?) - 6472 (1 - a) + 16imxA (1 ) (1 +u1)} .

Interestingly, the flexible parameter 6, € [0, 27) from ¢, is removed in ®,,.

With the elementary values above, more quantities can be computed via relevant equations
in Chapter 2, such as ¥, via Eq(2.93). Since the generic forms of those quantities are
very complicated, they won't be listed here. Almost all quantities required in subsequent

chapters have been calculated in this section.

3.2 Meani of Flexible Par ters: a, A and 6,

&

There are three flexible parameters in the local uniqueness solutions: @ € [0, 1], A € (0, c0)
and 6 € [0, 27); every set of exact values |, A, &) specifies an exact intrinsic horizon iy,

and generates a particular group of on-horizon data { K, ¢, @11, Re(¥), #%, @,, etc}.
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Parameter o

The two local uniqueness solutions Eqs(2.97-2.99) and Eq(2.100) were derived individually

in ref.[14], but it is easy to see that the nonrotating solution Eq(2.100) is just the rotating
solution Eqs(2.97-2.99) with @ fixed by @ = 1. Thus, « signifies the contribution of an-
gular effects (actually electric effects) in balancing the extremal horizon; a = | represents
absence of rotation so that extremality attributes entirely o electric repulsion, while @ = 0
means rotation alone producing extremality with no help from electricity. For the interval

0 < < 1, extremality results from joint function of rotation and electricity. Obviously,

a=1 1o extremal Reis: s IHs, @ = 0 to Kerr, while 0 < a < 1 t0

generic Kerr-Newman.

We can also express the function of @ as

o [rotation] + @ [electricity] = 1, (3.24)

where we utilize @ rather than a because it is always the former that works in the local

uniqueness solutions and the implied on-horizon data. This relation is in clear analogy with

the restriction equation M> = Q% + a* (c.f. [38] and references therein for ex