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Abstract

Graph searching is a well-studied subject in graph theory. This thesis concentrates

on the magnitude of two different search numbers. First, a new upper bonnd on the

fast search number of a general graph is given. The new result improves the existing

bound on the fast search number which is given by the brush number. Based 011 the

improved result, an upper bound for almost all graphs is obtained. Next, nsing an

exbting lower bound on the fast search number, a lower bound on the fnst search

number of almost all graphs is derived. Finally, the only existing upper bound on the

node search number of a general graph is improved.
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Chapter 1

Introduction

lllJaginc thcrc arc scvcral tunncl::> with possiblc interconncctiolls. Also aSSUlllC t.here

are some intruders hiding in the tunnels. 'Ne want to assign a uumbcr of searchers

to clean the tunllel::>, i.e. to search for intruders and capture them. Our final goal

is t.o makc surc that all the tnnncls are clean. How can we do that? The allswcr is

that. dcpcnding OIl what wc assmnc, there would bc diffcrcnt ways to conlplctc thc

job. For example, t.he searchers could locate the intruders by just looking in a tnnnE'1

from oue end to the other. Or searchers might have limited eyesight or thc tunnels

might. be so long that t.hcy could not sec throughout thc tunncl. Then pcrhaps thcy

nccd to traversc cach tunncl to capturc the intrndcrs. Wc also may rcqnirc that onc('

a tunncl is clcancd, it should not be allowed to bc "recontaminatcd" again by th('

presence of the intruders. Independent of what our assumptions are, since cost is

always a conccrn to us, onc can ask what is the minimum number of searchers needed

to scarch a systcm of tunncls? Can we compute this nurnbcr cfficiently?

A systcm of tnnnels or similar systems can be well-formulated by mathematical ob­

jects called graphs, and thE' theory of graphs is completely capable of modeling this



>;earching. Depending on what wc require, different models can be introduced. The

original model occurs in [27], though an earlier motivation was given by [8]. We can

define the search number of a gTaph as the minimum number of searchers needed to

clean a graph in each model. Applying the underlying graph theoretical concepts, onc

can solve and address different problems in graph searching. Being defined as abstract

mathematical systems, these models are indeed of theoretical importance. Wc will >;ee

connections between searching models and other problems in graph theory. This fact

makes searching even more interesting from a theoretical point of view. Neverthele>;s

many searching models have direct applications in computer science, stretching fronl

networking [13] to VLSI design [11].

This study concentrates on bouuding different search numbers in terms of Inore

straightforward graph parameters. Also we will investigate the interrelations between

search nUlllbers and other, less intuitive, graph parameters. We mainly consider two

search models in this thesis.

Retul'lling to our searching assumptions, suppose that searchers must traverse thc

edges to clean them. This searching model, first defined in [25], is known as edge

>;earching. If we require that in each step an edge must be searched, then the out­

lined model is called fast searching. This model was first introduced in [10]. The fast

search number of a graph is the minimum number of searchers needed to fast search

the graph. From [10] we know that the fast search number of a graph is greater than

or eqnal to half of the nunlber of vertices of odd degree. The fast search nnnlher i>;

exactly half of the Innnber of vertices with odd degree if the graph is a tree. The >;H.IIIe

paper investigates the fast sean;h number of bipartite graphs in different cases. The

fast search number of cubic and Halin graphs have been expressed in terms of the



number of odd vertices and the number of leaf blocks respectively [31]. On the COln­

putational front, [32] proves the problem of deciding whether the fast search Illnnber

of a graph is less than or equal to an integer is NP-complete and remains NP-complete

even for Eulerian graphs.

In the fast search model, one can require that all the edges incident to a vertex llIust

be searched simultaueously. This restricted fast searching is called brushiug. The

concept of brushing and the brush number of a graph have been receutly introduced

in [26]. An upper bound is known for the brush number of a general graph [3]. In-

terestingly brushing and fast searching are deeply interwoven. In fact, brushing is a

restriction of fast searching. This implies that a lower bound on the brush number is

also a bouud on the fast search number. In this thesis, after reviewiug a few Illathe-

matical concepts in Chapter 2, in Chapter 3 we will give a bound on the fast search

number that is better than the only kuown bound for the brush uUlllber. Based 01\

the improved result, an upper bound on the fast search number for almost all graphs

will be obtained. We will then obtain au asymptotic lower bound for ahllost all graphs

The next model we study in this thesis is node searching, first introduced iu [22]

Here two searchers are required to be placed at the euds of an edge to search the

edge, and recontamination is possible. The node search number of a graph is the

minimum number of searchers needed to node search the graph. Our aim agaiu is to

bound the node search number in terms of other graph parameters. In fact we know

that the node search number, the vertex separation number, and the pathwidth of a

given graph are dif!"crent manifestations of a single idea [21, 22]. The 1l1Ore-studied

parameter of these three is pathwidth. So in order to study the node search number,

we ueed to investigate the existing results for pathwidth. Now consideriug the inter-



relation between pathwidth and node search nnmber we can state the following resnlts.

The uode search number of a planar graph is asymptotically bounded above by the

square root of its nUlnber of vertices [5]. Also the node search number of a cubic or

sub-cubic graph is asymptotically at most one sixth of the number of its vertices [12].

There are also other more specific graphs wit.h known upper bounds for node search

number includiug out.erplauar, Halin, permut.at.ion, compatibility and cocomparahil-

ity graphs, and cographs [6, 7, 14, 18, 241. But. the only known general upper bound

is due t.o [23], which is in t.erms of the number of vertices and t.he number of edges

of a graph. This general bonnd works for a general graph as long as it. is sparse. 1n

Chapt.er 4 of t.his thesis, we will obt.ain upper bounds on the node search nmnber of

gencral graphs, including dense graphs.

Finally in thc last. chapt.er, wc consider open problems wit.hin t.he scope of the study.



Chapter 2

Basic Definitions and Theorems

2.1 Probability Theory

Probability theory is a major tool in the present research. The materials in this section

arc primarily from [14], unless otherwise stated. The three most important cOIll:epts

in probability theory are e.r_periment, event and p70bability.

In the Inathematical theory of probability, an experiment is defined with it set 0 (also

called the sample space), whose elements lllnst represent all outcomes (of the cxperi­

Incnt). It would be convenient if all subsets of 0 could be considered events. Bnt for

technical reasons, events arc defined as a limited collection A of snbsets of 0.

For a given experiment w, events A are subsets of 0, which form it a-field. That is.

the collection A of events is defined to have the following properties. If A E A, then

A ~ 0. Furtherlnore, (i) 0 E A; (ii) if Aj , .i E 1'1, all belong to A, then their llnioll is

ill A; and (iii) if A belongs to A, then so does the complement of A. This definition

says that events form an abstract collection which is closed Wider the operatiolls of



uuiou, intcrsection, and complemcnt for countable sequences. We define p1'Obnlrilitfj

and pmbab1:lity S]lace.

Definition 2.1. Given a sample set 0 and a o--field A of subsets of 0, for any A E A,

a probabilit.y Pr is a real-valued function on A satisfying

1. 0:::; Pr[A]:::; 1,

2. Pr [0] = 1,

3 If T is either a finit.e or delllllnerably infinite set of posit.ive int.egers and if t.hl'

events At, t E T, are mutually exclusive (disjoint), that. is AjnAj = 0 for 'i =1=.1,

then

The t.riple (0, A, Pr) is called a probabilit.y space. Also the elements of 0 and A are

callcd simple events and events respectively.

Now having defined probability space, we state the following.

Theorem 2.2. Let. {An} be a sequcllce of events in an arbitrary probability space.

Thf'n we have ,,1~n Pro [A,,] = Pro [,,'~~ An].

The models considered ill this thesis are all discrete and hence 0 is finit.e. Therefore

here we deal wit.h a somewhat. simpler space in which A = 20. V'le const.ruct. this

space as follows.

Wit.hont.loss of generality, let. 0 = {l,2, . . on} and let A be the set of all suhsets

of O. Let the numbers Pr[k], 1 :::; k :::; n, satisfy (i) Pr [{k}] ~ 0 for aliI.: and (ii)



LZ=I Pr [{k}] = 1. Define Pr [A] = LUiEA Pr raj] for all A E A. Tt is easy to show

that Pr is a probability on A. hi particular if wc take Pr [{k}] = 1/11., the underlying

probability space is called uniform. vVhen we say an object is chosen mndomly from /I

objects, we imply that the underlying probability space of this selection is a discrete

nniform distribution constmcted sirnilarly as above with 11 consisting of the 11 objects.

A penrmtat'ion 011 a set is defined to be an ordering of the elements of the set. Let

A be a set, and (7 be a permutation on A. Then for a E A, wc denote the natural

position of a in (7 by (7A (a) E N. Accordingly, a mndom pennutation (7 on a set of n

objects is a random selection of a permutation from the set of all permutations of '/1

objects.

On a given probability space, a finite collection Cl, C2 ,. ., Cr of events is called a

partition (of 11) if C i n Cj = 0 for i 1= j and Pr [U}~lCj] = 1. A function X defined

on 11 is a simple mndom variable, if there is a partition Cl, C2 , ... ,CT of 11 snch that

X is (a finite) constant on each Cj' Tn this thesis wc use simple random variables

whidl wc will call random variables.

Let X be a random variable with valnes XI,.l.:2, .. ,:l:T and with partition Cj = {w E

I1IX(w) = :rj}, 1 ~ j ~ T. The sequence Pj = Pr [Cj ] = Pr[X = :l:j], 1 ~ j ~ T.

with Vi> 0 is called a distribution of X. The value

is ca.lIed the e.1:pected valne, or e:rpeetat£on of X. In the present study, wc apply the

pmbl/.bil-islic method. In this way the following lennnas [4] will be needed.

Lemma 2.3. (The Expectation Principle) Let X be a random variable. Then



in the nnckrlying probability space, there exists wEn snch that X(w) ~ E[X] and

there exists w' E n such that X(w') S; E[X].

Lemma 2.4. (The Linearity of Expectation) Let XI, X 2 , .. , X" and Cl, C2, ... , e"

be random variables and real constants respectively. Introducc a ncw random variablc

X with X = Cl XI + C2 X 2 + .. + c" X". Thcn E [Xl = Cl E [XJl + C2 E [X2 ] + .. +

c"E[X,,]

If A and B be two evcnts in the probability space (n, A, Pr) witb Pr [B] > 0, then

conditional probability Pr [A IBl of A, given B, is defined by the formula

PrIAIB] = Pr[AnB].
Pr[B]

The above definition can be used repeatedly to obtain the following theorems.

Theorem 2.5. (The Intet"section Rule) Let Ai with 1 S; i S; n be events on the

proba.bility space (n, A, Pr). Then

Theorem 2.6. (The Total Probability Rule) If the events IJj , .1 ~ 1, a.rC'snch

tbat Pr [Bj ] > 0, Bi n B j = 0 if 'i i- .1, and Pr[ Uj B j ] = 1, then for an arbitrary evcnt

A,



Wc say that cvcnts A and B are independent if cithcr (i) onc of thcm is of ?,Cro

probability, or (ii) if and only if Pr [E] > 0, thcn Pr [A lE] = Pr [A]. Equivalcntly, A

and E are independent if Pr [A n E] = Pr [A] Pr [E]. 011' suppose that n independent

trials. cach of which results in a "success" with probability p and in a "failure" with

probability 1-p, arc to bc performed. If the random variable X rcprcscnts thc Innnlle-r

of snccesscs that occur in thc n trials, thcn X is said to havc a binomial distribution

with paramctcrs nand p [29]. Thcn it can bc shown that

(n)Pr [X = 'il = i pi (1 _ p)"-i

We will need the following technical lemma.

Lemma 2.7. (A useful version of Chernoff Bound for the Binomial Distri-

bution) Lct random variablc X have binornial distribution with pamlnctcrs 11. and p.

Thcn wc havc

(
(p11 - k)2)

Pr[X::::;k]::::;cxp --'-' .
2pn

Pmof. By [30]. for every 0 < £ < 1, the Chernoff bound will give us

Pr [X ::::; (1 - £)pn] ::::; exp (-£2 pn /2) .

Now takc
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then we will have

Pr[X :SI.:]

2.2 Graph Theory

2.2.1 Basics

exp ( - ( 1 - ~rEf)

exp (_ (pn - /,;)2) .
2pn

•

A g'mph C is composed of two sets, a finite set of elements V (C) = V called vertices,

and a finite set £ (C) = £ of unordered pairs of elements of V (C) called edgcs. 'We

denote C by C = (V, £) and refer to IVI and 1£1 as the oldeT' and size of C respec-

tivcly. In the present thesis an edge {It, v} is simplificd as ltV, also lt and 11 are callcd

adjacent vcrticcs. Auy vcrtcx which is adjaccnt to u is callcd a ncighbor of u. Lct

U ~ V, definc N (U) as thc sct of vcrticcs outside of U with at least oue neighbor in U.

Now let C = (V, £) be a. graph. The number of edges incident to a vertex v of a. graph

C is the degrec of v, dcnotcd by dcg (v). We also dcfine thc miuirnllm aud maxinnm\

dcgrcc of C by O(C) = min{dcg(v) Iv E V} and .6(C) = max{dcg(v) Iv E V} rc-

spectively. A set I ~ V is called an independent set if and only if 'ItV ~ £ for every

'It, V E I. Thc size of the largest independent set of C is the independence nu'mve'"

of C, denot.cd n (C). Fmthermore a rna.Tima[ independent set is an indepcndent set
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which is not a subset of any other independent set. The following theorem provides

a lower bound on the independence Illuuber of a general graph [4].

Theorem 2.8. arC) ~ '"' _(_1)_..
~deg v + 1

The sequence p = 'IIIV2'" VI with 'IIi E V, 1 :::: 'i :::: l is a path from VI to VI provided

Vj'lli.+1 E [ and ViS are distinct. Define V (p) = {VI, V2, ", vd and N (p) = N (V (p)).

If VI = V/ and no other vertices are repeated, then the sequence is called a cycle. The

length of the sequence p is denoted by Ipl. The path p is a shor-test path from VI to VI

if and only if Ipl :::: Ip/l for every path pi = VI ... VI. Let p = VIV2'" VI be a shortest

pa.th from VI t.o VI, t.hen t.he d-istance from VI to VI is dist (VI, VI) = Ipl - 1. H there is

no path from 'Ill to VI then the shortest path from VI to VI is not defined. The d-ia1lJ.elf~1·

ofC is d(C) = max{dist(v;,vj) IVi,Vj E V}. Two vertices Vi,lIj E V are connected if

and only if there exists at least one path from Vi to Vj' A graph C is a connected gHLph

if and only if every pair of vertices is connected. The g'ir·th. of a graph is the length of

the shortest. cycle cont.ained in t.he graph. Girt.h is not. defined for the graphs with no

cycles

In the current. study we will use a rough notion of density of a graph. A graph C of

order 11. and si;-:e '171, is called a dense graph if m is large relative to 11., else it is called

a spar-se Ijruph.

Definition 2.9. Let V' <;;; V. Then the 'inrlnced snbgmph of C on V', denoted by

C [V'], is C' = (V', [') where 'LW E [' if and only if '/I.V E [ and 'IL, V E V l
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2.2.2 Some Families of Graphs

We define a few graphs which will be useful later.

Definition 2.10. A graph of order n in which every pair of vertices is adjacent is

called a complete gnzph of order n and denoted by K".

Definition 2.11. A Kneser' graph K ('17" k) is the graph whose vertices correspond

to the k-element subsets of a n-element set, where two vertices are adjacent if and

only if the two corresponding snbsets are disjoint. As an example we bnild 1< (5,2).

Take a five elenlent set, say {l,2,4,5} and let '/1}1 = {3,5}, 'llJ2 = {2,3}, 'LiJ:J = {2,LI},

'IIJ~ = {1,4}, Wo = {1,5}, 'Wo = {l,2}, 'lIh = {4,5}, 'IUs = {l,3}, 'W!) = {2,5}, and

WIO = {3,4}. Then K (5,2) can be easily constructed as in Figure 2.1.

Figure 2.1: The Kneser graph K (5,2) (Petersen graph)

Definition 2.12. A well-covered graph is a graph in which every maximal indepen-

dent set has the same cardinality. Figure 2.2 gives a.n example of a well covered gra.ph
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in which evcry maximal indcpcndcnt set is of cardinality two.

Figurc 2.2: A well-covered graph

Definition 2.13. A KT-free graph is a graph in which no 1'-subset of vertices induces

a K,.. In particular a t1'iangle-fTee gmph is a K~-free graph. In general, K,.-free graphs

are also referred to as cliq'//,e-fn;e gTuphs.

2.2.3 Random Graphs

The t.heory of randonl graphs enables us to verify if all graphs bnt. a small falnily (a

family wit.h mcasure "cro in t.he nnderlying probabilit.y space) share a cert.ain c1mrac-

t.erist.ic. This not.ion will be a key t.ool in 0111' invcst.igat.ion of fast. scarch Illlmbcr.

Given a real number p, O:s P:S 1, t.he binom1:al mndom gmph, denot.ed by 9('II.,p), is

defined by t.aking D as t.he set. of all graphs on n vert.ices and setting

Pr [e E 9(n,p)] = 1)£1 (1 - p) W-I£I



for C = (V. E). It ("an be viewed as a result of G) independent coin f1ippings, onc for

each pair of vertices, with the probability of success (i.e., drawing an edge) equal to

p[19]

Let an isomorphism from a. graph C to a graph H be a bijection I from V(C) to

V(H) such that any two vertices 1/. and v of C are adjacent in C if and only if I(n)

and I(v) arc adjacent in H. A gm]Jh ]J1"O]Je1"ty is a class of graphs that is closed under

gntph isomorphism. If p = p(n) is a fixed function (possibly constant), and P is a

graph property, we may ask how the probability Pr [G E P] behaves for G E (} (1/., p)

Tf this probability tends to 1, then we say that alrnost all gmphs satisfy

P [9].

2.2.4 Searching Models

Many different searching models exist. In this paper we will work with two of then!.

namely the node search model and the fast sem'ch model which are introduced in

[22] and [10] respectively. Let G = (V, E) be a graph. Initially all the edges of G

arc contaminated. We sern'ch (decontaminate) the edges of G by means of sem"C!uol·s.

A vertex with a searcher is called a guarded veT·te.T. A search stTutegy is a sequence

of movements of searchers on the vertices of a graph which searches all the edges

of t!w graph. The characteristics of the movements are identified separately in each

searching model.

2.2.4.1 Node Search

A nlOve that searches G belongs to one of the following types:

1. Placing a searcher on a vertex fl.S a guard;
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2. Removing a searcher from a vertex 'I/. that, contains a searcher.

An edge is searched if both of its vertices are simultaneously guarded. A path that

does not contain any searcher is called an unguarded path. A searched edge remains

searched as long as it is not incideIlt to a vertex that is connected by an nnguarded

path to a contaminated edge. If such a path ever occur:, the edge is said to be 'reeo'//.­

taminated. The graph is (node) searched when there are no contaminated edges.

Definition 2.14. Let C be a graph. The '//.ode search number' number of C denoted

by Slllld,' (C) is the ruiIlilllum number of searchers which are needed to node search C.

In the context of node searching, two other related notions arc also needed to be de­

filled for the purposes of the current study. These are path:widl,h alld vertex scpam./.io'//.

nwn.ber'. The following definitions are from [5] and [21].

A path deeomposit'ion of a graph C = (V, E) is a sequeIlce of subsets of vertices

(X1,X2 , .. ,Xr),suchthat

2. For all edges 'tLV E E, there exists an i, with 'tt, 'U E Xi .

3. For every three indices i,.1, ho, if i ::;.1 ::; k, then Xi n X k ~ Xj.

The width of a path decomposition (Xl, X2 ,.·· ,X,.) is ll1aXI~i~r IXd - 1. The path­

width of a graph C, denoted by pw (C), is the minimulll width over all possible path

decolllpositiolls ofC.

A (linear) layout of C is a bijection L . V -+ {1, 2, ... , IVI}. Thus L is it permutation

of the vertices of C. For any layout L, define VI- (i) = {'I/. E V I L ('I/.) ::; i and there is
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~Olne v E V such that 1W E [ and L (v) > i}. Then Vd-i) is the J1Il1nber of vertices

of C mapped to illtegers less than or equal to i that are adjacellt to vertices mapped

to integers greater that i. The vertex separation number of C with respect to L is

defined as vs/- (C) = max'~i~lvl{IVd'i)I}. Then the vertex separation number of C

wonld be defined with vs (C) = min{v8L (C) IL is a linear layout of C}.

The following theorems are from [22] and [21].

Theorem 2.15. [22] If C is a graph, then SIlOc!" (C) = vs (C) + 1.

Theorem 2.16. [21] If C is a graph, then pw (C) = vs (C).

The above theorems imply the following.

Corollary 2.17. If C is a graph, then Sllodc (C) = pw (C) + 1.

2.2.4.2 Fast Search

In the fast searching model, a searching action can be one of the following types:

1. Placing a searcher on a vertex as a guard

2. Sliding a searcher from one vertex to another along an edge

An edge is searched when a searcher is slid along it. Sliding the ouly searcher guarding

a vertex is not allowed when there are more than one contaminated edges incident

to that vertex. Each edge can be traversed once and thns searched only once, so

recontamination is not allowed to occur in the fast search model.
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Now assulIle that we me to search an cdge llV by slidiug a searcher frolIl I/, to v. Then

two cases might happen. If there are contaminated edges incident to '1/. other than ·/lV,

then we need a searcher as a guard on 'IL, and another searcher to slide along Itv. This

case has been demonstrated in Figure 2.3 (i) in which dotted lines stand for searched

edges <'Ind stars represent the searchers. The other case that might happen is when

all the edges incident to '11. are searched except for 1LV. Then one searcher can slide

along lW as demonstrated in 2.3 (i'i).

~, *--F
(i)

~

• \, *---7
---~t--

.'
(ii)

Figure 2.3: Fast searching actions

The graph is (fast) searched when it contains no contaminated edges.

Definition 2.18. Let C be a graph. The fast seal-ch number uumbel· of C, denoted

by Sfast (C), is the minimum nUlnber of searchers needed to f<'lst seareh C.

2.2.5 Brushing Model

The brushing model is a recently-introduced model on graphs with close relations to

the fast search model. We will specifically compare these models. Initially, every edge

aud vertex of a graph is dil·ty and a fixed number of brushes start on a set of vertices.
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At each step, a vertex v and all its incident edges which are dirty may be cleaned if

there are at least as lllany brushes on v as there are incident dirty edges. When a

vertex is cleaned, every incident dirty edge is traversed (i.e. cleaned) by one and only

oue brush, and brushes cannot traverse a clean edge. Let ( be a sequence of vertices.

Call the time in which a vertex of ( is cleaned, a time step. We need IV(C)I time

steps to clean a. graph C (a time step can be composed of no movements) A graph

is cbllled when every vertex has been cleaned [3].

Definition 2.19. Let C be a graph. The brush number of C denoted by b (C), is

the minimum number of brushes needed to clean C.

If we take a brush strategy and interchange the roles of brushes, dirty edges, and

cleaned edges with searchers, contaminated edges, and searched edges respectively,

then we would have a fast search strategy (however not every fast search strategy can

be translated to a brush strategy). This implies the following lemma.

Lemma 2.20. If C is a graph, then Sr,.,!. (C) ::; b (C).

2.2.6 Examples and comparisons

In this section we will see a few examples of searching and brushing. Our aim is to

dernonstrate typical strategies and differences between the fast search number, the

node sea.rch number, and the brush number.

We define graphs Cl a.nd C2 as illustrated in Figure 2.4. First we prove that s node (C I) =

2 by showing that we can (node) search Cl with two searchers and then we will prove
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Figure 2.4: Examples for searching and brushing

that G I cannot be node-searched with only one searcher.

Place onc searcher on 1/,J and place a sccond searcher on 1/,2. This action searches

'U.1'II'2' Remove the searcher from 'U.2. Note that 1.L11l2 is not recontaminated ai; it is not

incident to a vertex that is connected by an unguarded path to a contaminated edge.

The removed searcher can search the remaining edges similarly, so Sllode (G I ) :S 2.

But Sllude (G]) > 1, as according to the definition, at least two searchers arc needed

to search a single edge. Henceforth it follows that Sllode (G]) = 2

Next we calcnlate the brush nnmber of G l . Place the first brush on 1/,2; since there

is only onc dirty edge incident to 'lJ.2, wc can clean 1/,2. Clean 'U.:l and 'It,] in the same

fashion by means of two extra bmshes. Now the three brushes arc at 'It] and there

are three dirty edges incident with 1/,]. These dirty edges can be traversed and hence

cleaned by means of the three brushes. We conclude that b (G]) :S 3. We proceed

by showing that b (G l ) > 2. Assnme we first place two brushes at 1/,1, the nnmber of

dirty edges incident to 'IJ.] is more than the nnmber of brushes present. So the first
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bmsh must be placed on some other vertex, say '/1,2' Now '/./.1'/./.2 can be cleaned with

that bmsh. Now there is onc brush present at 'UI but even if we add a second brush to

'Ill, again the number of dirty edges incident to HI would be greater thau the uumber

of the brushes present. So we must cleau another vertex, say 'Il3, in the same fashion.

Now there are two brushes present at '/I,J and four dirty edges iucident to 'ILl, at which

point no further vertices cau be cleaned. So we conclude that b(G I ) = 3

It is easy to see that s fas' (G I) ::::: 3. Just take the brush strategy above as a fast

search strategy. Thus G I can be searched by means of three searchers. Now we show

that Sras' (G I ) > 2. Assume we place the first searcher on HI' Then whatever vertex

we place the second searcher on, we will only be able to search a single edge. So

assume we place the first searcher on say '1L2' To search '/./.I 'U.2 slide the searcher to '11.[.

Now assume that we place the second searcher on '/1.1' Now there are two searchers

at 'Ill aud oue extra edge can be searched with oue of these searchers. So assume we

place the second searcher on say '11'3 and slide it to search '/'/'1'11.3' Again there will be

two searchers present at 11.1, and at most onc extra edge can be searched with three

coutaminated edge. It follows that Sr,,,,!. (G I ) = 3.

Next we show that Snode (G2 ) = 3. Place three searchers, oue on VI, one on V2, and the

last one on V:l. Consequently '11IV2, V2V:1, and VIV3 would be searched. Now remove the

searchers from V2 and V3. Note that the searched edges would not be contamiuated

as they are connected to the contaminated edges by means of VI, which is guarded.

Now place the first removed searcher on V~ and then the second one on Vs. Conse­

quently VIV~, V~Vs, and VIVS would be searched. Next remove the searchers from V"I

and Vs and place them on VG and V7' Evidently all the edges are now searched aud

we will have Snode (G2 ) ::::: 3. But we also have Snode (G2 ) > 2. To show this, assume
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t.here is H. st.rat.egy to search G2 with only two searchers. Take a null sequence and

at each st.ep of t.he st.rat.egy add an edge to the sequence if it. is searched. ote t.hat.

the last element of the sequence would be t.he last. dirty edge being searched, and also

an edge might show up several t.imes in t.he sequence as it might allow recontamina­

tion. Consider the last. occurrence of V2Va in t.he sequence. Then as t.wo searchers

are needed t.o search an edge, t.he two searchers would be at. 1J2 and Va right. after

1J2V;l is searched. Bnt. V2Va is either the last edge of t.he sequence or not. If it is not,

then by the construction, t.here should be at. least one cont.aminated edge after V2Va

is searched. Therefore at least. one of t.he searchers at V2 or Va must be removed t.o

search t.he remaining cont.aminat.ed edge(s). But. no matter which one of the searchers

are removed, V2Va become recontaminated, since there is an unguarded path. Bnt. this

cannot be the case since we considered the last occurrence of V2Va in the sequence. So

it must the case that 1I2V;l is the last element of the sequence. But by symmetry, the

sanle argument applies to V,IV5 and VGV7. And this is a contradiction as the sequcnce

cau only have onc last clement.. It follows that Snodc (G2 ) = 3.

V'/e now show that b (G2 ) S 4. Place two brushes on V2 and clean it. ow there is a

brush at Va and one dirty edge incident to it, so we can clean Va. ote that VI cannot

be cleaned at this tilne since there are two brushes at this vertex but the nunlber of

incident dirty edges is four. Nevertheless we can clean V,I and V5 in the same fashiou

by placing two brushes at V'I. ow there are four brushes at VI and two dirty edges.

Therefore VI can be cleaned and without adding a new brush we can clean 11(; alld then

117· Wc proceed by showing that G2 cannot be cleaned with three brushes. Having

three brushes, wc cannot begin with VI, as the number of dirty edges incident with it

is great.er than three. Without loss of generality start off with V2. Two bruslws arc

needed to clean V2. Next without adding a new brush Va can be cleaned so that wc
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end tip with a configuration in which there are two brushes are present at VI with VI,

1J4, V5, VG, and '117 to be cleaned. Even if wc add an extra brush to VI wc cannot clean

it as the number of incident dirty edges is four. Furthermore with only one brush

none of the other dirty vertices can be cleaned. We conclude that b (G2 ) > 3 and

since b (G2 ) :::; 4, it follows that b (G2 ) = 4.

Finally wc prove Sf<." (G2 ) = 2. Note that G2 cannot be searched with onc searcher a,'

the minimum degree of the graph is two and hence at least two searchers are needed to

search the very first edge. Thus it suffices to show that it is possible to search G2 with

two searchers. Place two searchers on VI' 'vVe can search VI'/}2 with one searcher while

the other onc is guardiug '11\. After sliding a searcher, there would be a searcher at

'lJ2. Usiug this searcher we cau search V2V3, as this edge is the only contaminated edge

incident to V2. Next, VIV:\ can he searched accordingly. Now there are two searchers

located at VI again. Obviously applying the sarne procedure wc can also search the

remaining contaminated edges.

fying the fundamental differences between these parameters.

2.3 Asymptotics

The present research Inostly applies asymptotics to analYhe the order of growth. Let

.17(:1:) and f(x) he functions. We write f(x) = 0 (,I}(1:)) if and only if there exists a

coustant C > 0 such that, lin.1su P I f((1:)) I < C. We write f(:I:) = 11 (g(x)) if aud only
<-;00 ,I}.1:

if !J(1:) = 0 (U(:/:)) , or equivalently liminf II((X)) I > D. Also I(:/:) = 8(.17(:/:)) if alJ(l
'1:-;00 ,I} X

only if f(x) = O(,I}(x)) and I(:r;) = 11(,I}(x)). Finally wc write I(x) = 0 (.17(1:)) if and
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only if = O. In this contcxt Thcorcm 2.21 will bc useful [17].

Theorem 2.21. Let 09(:1:) and f(.?;) be fUllctions. If Inf(.?;) = 0 (Ino9(:r)), then

f(·?;) = o (o9(.?;)).



Chapter 3

Bounds for the Fast Search

Number

Not very much is knowu about the order of magnitude of the fast search llUluber

of general graphs. This chapter aims to bound the fast search Humber. First wc

couceutrate ou au upper bouud. 1Nl' point out the existing bounds aud then improve

them. The nature of the improved upper bound will let us derive a result for almost

all graphs. III the Section 3.1 we investigate the existing lower bounds alld based

on au established result, au asymptotic lower bound will be developed for almost all

graphs. This result cOll1biued with a certaiu upper bound will reveal au interestiug

fact about the fast search number of almost all graphs which is preseuted iu the final

section.

3.1 Fast Searching vs Brushing

The brush 1l\.1ITlber and fast search Humber of a graph have iutercouuectious a..,; fOrtllll­

lated iu Lemma 2.20. Obviollsly according to the lemma, allY upper bouud for brush

24
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number would also serve as an upper bonnd for fast search number. But a general

upper bound for bl'llsh number has already been established in [3]. Here we give n

detailed proof of the bound.

Theorem 3.1. Let C = (V,£) be a graph. We have the following.

b (C) ~ 1%1 + if - ~ .~
dcg(v)isCVCII

To prove this, we first need some preliminaries. For a graph C, let b" (C) be the

mininu\lll \lumber of brushes needed to clean C according to~, a sequence of vertices

of C. Clearly b (C) ~ b" (C), for a sequence ~ of vertices. Now for every v E

V(C) let Wt. (u) denote the (minimum) number of bl'llshes at vertex u, alld D, (u)

denotes the number of dirty edges incident to 'IJ, at time step t. Note that Wo (~t+d

is the number of brushes initially needed for the vertex ~t.+I' Thus the value of

c1eg (~t+l) - D, (~t+l) simply refers to the number of cleaned edges incident to ~t+1 at

time step t. So one might suspect that the number of brushes initially needed would

be D, (~'+I) - (deg(~'+I) - D 1 (~t+I))' But one must also note that this value might

be negative at times when the nnmber of present brnshes at a vertex is greater than

the number of dirty edges in a given time step, at which point obviously no furthel

brushes would be needed. It follows that

Now we can prove Theorem 3.1.
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Proof Let 1r be a random permntation of the vertices of C taken with uniform dis-

tribution. We cleau C accordiug to this permutation to get the value of b" (C). Note

that b,,(C) is now a random variable. For a vertex v E V, we already saw that the

number of brushes which should be assigned to v initially is determined by the random

variable X(v) = max{O, 2N+(v) - deg ('Ill), where (random variable) N+(v) is the

number of neighbors of v that follow it in the permutation. Thus N+('II) is the lIlullbel

of dirty neighbors of vat the tirne when v is cleaned. Note that N+(v) belongs to the

space of random permutations over the set {v} UN (v) and the random permutation

1r induces a uniform, random permutation on {v} UN (v). Now we calculate the prob-

ability that N+(v) attains each of the values of 0,1, ... ,deg(v). There are deg (v)!

permutations on the set {v} uN (v), with v at a certain position; as we can permute

N (v) in deg (v)! different ways and add v in just one way. Next we juxtapose the rest

of the vertices of V\ ({v} UN (v)) in (deg (v) + 2)(deg (v) + 3). ·IVI different ways.

Now since the space is uniform, for i = 0, 1, ... deg (v) we calculate the probability

deg (v)! (deg (v) + 2) (deg (v) + 3) . ·IVI
IVI!

1

deg(v) + 1

Also note that when deg(v) is even, we will have the following.

{

0
X(v)=

2N+(v) -deg(v)

if N+(v):::: deg(v)/2,

if N+(v) > deg (v)/2.



Wc conclnde that

E[X(v)]
dcg(v)

o + L (2'i - deg (v)) Pr [N+(v) = 'i]
'i=dcg(v)/2+1

[ (
deg (v) dcg (v) ) d ()]

+ 2 -2-+-2--1 - eg v

2+ .. +(deg(v)-2)+deg(v)

deg(v) + 1

((deg (vl)2 - 1)

dcg(v) + 1 1
--4-- 4(deg(v) + 1)

27

Following the same argument, when deg (v) is odd we have

E[X(v)] 1+ "+(~::i~~~~)+deg(v) deg(v) + 1
--4-'
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Now since b 7r (C) = L"X (v), by the Linearity of Expectation

LE[X(v)]
vEV

~ 4(degtv) + 1)
deg(v) is even

~ '"' deg (v) + V'"'EV -4
1

1
2~ 2 ~ - 4

1

deg(v) + 1·

1

deg(v) + 1

Then by the expectation principle, there is a permutation 1To snch that b (C) ~

h"o(C) ~ E [b 7r (C)] and the assertion holds.

As a result, along with Lemma 2.20, we will have the following.

Corollary 3.2. Let C = (V, E) be a graph. Then

S f",1. (C) ~ if + if -~ ~ deg (~) + 1·

dcg(v) is even

•

In the other hand, from [26] we know the brush number of a complete graph 011 n

vertices for even n is n 2/4 and for odd n is (n2 - 1)/4, while by [10], the fast search

1llU11ber of a complete graph on n vertices is n for n ~ 4. Hence for hig enongh n the
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fast search Ilumbcr of a complete graph on n vertices is ar'bihnr'r:ly less than its bl'llsh

Illllllber. Other families of graphs with fast search uumber less th,w brush lluJllbel

could be easily constructed. This fact suggests that Corollary 3.2 might be tightened.

3.2 A General Upper Bound for Fast Search Num-

ber

Let G = (V, E) be a graph. Fix arbitrary permutations (TE and (Tv ou E and V

respectively. 'vVe introduce the searchillg strategy S(<7£,<7v)' Let '11.'U = e E E. Search

the edges of G according to the order induced by (TE. 'vVhen we go to search e iu (TE,

wc start from that vertex of c which cornes first in (TV. Without loss of gellerality

assume '11. comes before v in (Tv; that is (Tv ('1/..) < (Tv (v). Then there are four distiuct

ways that e could be searched.

(i) - If there is no searcher at 1l and deg (u) = 1, then we place once searcher at 'I/,

and slide it to v. Else if there os no searcher at 'U and deg ('11) > 1, then wc

place two searchers at 'lL and slide one of them from 'l/, to v and keep it at v.

(ii) - If there is exactly one searcher guarding 'IL and not all the edges illcident to

1l are searched other than e, then we keep that searcher at '//.. Place a new

searcher at '11., then slide the Ilew searcher from 'lL to v.

(iii) - If there is exactly olle searcher guarding 'U and all the edges adjacent to 'I/, are

searched except for e, slide that searcher from 'U to v.

(iv) - Otherwise, there are at least two searchers at '11.. Pick one of them alld slide it

from1J, to v
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The four possibilities for searching an edge will be referred to as (i), (ii), (iii), and

(iv) henceforth whenever needed. Now follow the above procedure for all the edges

according to the order defined by a[. Certainly this gives a fast search strategy on

C, as the only actions taken are placing searchers and sliding them. Furthermore

the first and the second parts of the above procedure guarantees that a searcher does

not slide when it is solely guarding a vertex with more than one contaminated edge

incident to it, forbidding recontaruination. Also sinee a[ is a penlllrtation on E, we

have that each edge is traversed (which is consistent with the fast search model), and

more importantly, each edge is traversed exactly once resulting in C beillg searched

according to the definition.

\Ve make a quick example to demonstrate the above strategy. Consider the graph H

as shown in the left up left corner of Figure 3.1. We have V(H) = {Vr,'lh,V:I,'lh,'/)5}

we search H according to these permutations. In each step one edge will be searched

as demonstrated in Figure 3.1 frol1lleft to right and top dOWll. In the figure, solid lines

and dotted lines refer to contaminated and searched edges respectively. Also searchers

have been distinguished with asterisks. The first edge to be searched according to

a[(II) would be '/)3'/)4. But 'U3 comes before v" in aV(l1) and (i) applies, so we place two

searchers on V3 and slide one of them to V4. Next we have 'U2'U4 with 'U2 coming before

'U4' Again (i) applies, so we place two searchers on 'U2 and one of them would be slid

to V4. Then V,V3, and we see '/):1 comes before ·IJj. The only searcher on V:\ will be slid

to v, based on (iii). Next we need to search 'U2'IJ5 with V2 coming before V5. We place

a searcher on V2 and slide it to Va as (iii) applies in this case. The next edge to be

searched is V4V5' Note that V4 comes before V5, so (iv) applies and we slide one of the
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searchers located at v~ to Vs. Then turn comes to VIV~ with V~ coming before VI' We

slide the only searcher located at V~ to VI as (iii) applies in this case. The last edge to

be searched is VI V2 and V2 comes before VI. Again (iii) applies a.nd we slide the ollly

searcher at V2 to VI' At this point all the edges of H are searched and by definitioll

H is searched by means of five searchers. Note, however that SI,",.. (H) = 3.

H·

* *

* **

*

**
** *

(v'i) e------e
* *

***
(V-ii)@······e

**

e······e .... ·0v
**

e......e .... ·0v
**

Figure 3.1: Fast searching H according to specified permutations
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Based 011 this idea, the following theorem can be proved giving a better hound thau

that of Corollary 3.2 for big enough <5 (C).

Theorem 3.3. Let C = (V, E) be a graph with minimum degree r5 (C) = 8. Thell

Sfllsl.(C):::: (1/3+3/8)IEI·

P1'Ool Let O"f: alld O"v be independellt random permutations on E and V respectively.

Construct the probability space (0, 2r1 , Pr), where the sample set 0 consists of all

strategies S(U[,uv) induced by O"f: and O"v. Having picked O"f: and O"v uniformly at

random, the probability space is uniform as simple events are equiprobable. Let

wEn he a strategy, define the random variable X (w) = X E NU {D} on n which

indicates the number of searchers needed to search C applying w. Furthermore fOl

e E E, define the random variable Xc (w) = Xc E {D, 1, 2} indicating the number

of searchers wc lIeed to assign to e to search it when it is beillg considered. Then

X = L,. E f: Xc and hence by the Linearity of Expectation

E[X] = E [~Xc]

LE[Xc].
cE[

(3.1)

Next we determine E [Xc]. Let e = ltV, define another random variable Yc"(w) = Yc" E

{D, 1, ... , c1eg (11.) - I} where Y,," = 1{e' EEl e' =UW,1IJ E V,O"de') < O"d p )} I, the

number of edges illcident to It which are searched before e. Assume that we a.-;sUlned

O"v (-11.) < O"v (v). Then by the Total Probability Rule we have

Pr [Xc = 2] = dC~-1 Pr [Ye" = oi] Pr [Xc = 21 Y,:" = oi]. (3.2)
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Now if there is no edge illcident to 1t searched before e, there will be no guard at 1t

when e is being considered and hellce exactly two searchers must be assigned according

to (i). That is

Pr [Xc = 21 Ye" = 0] = 1. (33)

We next consider the case where at least one edge incident to '/I, has been searched

before e. Let e' = '[LW be the first searched edge in the set of all edges incident to 'll.

searched before e. Then a£ (e') < a£ (e). Then by (i), independent of av (1/.) < av (/11)

or av ('1/.) > av ('111), after e' is searched, exactly one searcher would be guarding n.

Afterwards by (ii) and (iii), no matter how many adjacent edges are searched, at the

time that we consider e, at least one searcher is guaranteed to guard It. Hcncc as

e' was arbitrary, when there is at least one searched incident edge at the time e is

considered, we will either need an extra searcher or no extra searchers. That is,

Pr [Xc = 21 Y;;" = oi] = 0 for 'i ~ 1

which along with (3.2) and (3.3) give

Pr [Xc = 2] = Pr [Ye" = 0] .

Similarly, by the total probability rule we have

(3.4)

(3.5)

dcg(u)-I

Pr [Xc = 1] = ~ Pr [Ye" = 'i] Pr [Xc = 11 Ye" = 'i] . (3.6)

Now if all the deg(u,) -1 edges incident to 'it are searched before e, as discnssed earlier,

at least one searcher is guarding 'I/. once e is considered; then this would be case (iii)
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and no extra searcher would be assigned. That is

Pr[Xc = 11 Y,." = deg (n) - 1] = O.

On the other hand (3.3) implies

which along with (3.6) and (3.7) gives

(3.7)

dcg(,,)-2

Pr [Xc = 1] L Pr [1~:' = i] Pr [Xc = 11 Ye" = i]. (3.8)
'i=1

Now combining (3.8) with (3.5), by the definition of the expectation we get

E[X,,] 2Pr[X" = 2] + Pr [Xc = 1] +0

deg(,,)-2

2Pr[Yc" = 0] + L Pr [Y,," = i] Pr [Xc = 11Y,," = i]. (3.9)

Similar to the proof of Theorem 3.1, for i = 0, 1, ... , deg('U.) -1 we have the following.

Pr [Y~" = i] = deg\1I.) (3.10)

R.eturning to (3.9), we will estimate Pr [Xc = 11 Ye" = i] for i = 1,2, .. , deg(n) - 2. It

is easy to see that Pr [Xc = 11 Yc" = i] = 1. So assume i :::: 2, that is at least two edges

are searched before e. Suppose ek has been searched before eH 1 for /,; = 1,2, ... , 'i - 1.
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Observe that by the Total Probability Rule,

Pr [Xc = 0 IY,:" = i] = ~ Pr [Xc = 0 IY;' = i and o-v ('I/,i) < o-v ('1/,)] +

~ Pr [X" = () IYe" = i and o-v (1/,i) > o-v ('1/,)] (3,11)

This is because ill exactly half of the permutations Oil V, o-v (1/,;) < o-v (n) aud ill

the other half V, o-v (u;) > o-v (n), Cousider the permutation 0-' on {11"'1/,1, '11'2, ", ,'I/,;}

induced by o-v, Assume o-~ ('I/,i) < o-~ ('11), When ei is to be searched, since i 2: 2,there

is at least onc searcher guardillg '1/" Note that another searcher will be slid frolll Ui

to 1/, and thus once e is considered, at least two searchers will be available at '1/" It

follows that Pr [Xc = 0 IYe" =,i and 0-' ('1/,,;,) < 0-' ('11,)] = L But since 0-' is induced by

o-v wc conclude

Pr [Xc = Oly':/I =,i and o-V(Ui) < o-v(u)] = 1 (3,12)

Assume o-~ CUi) > o-~ ('11,) and let 1/,h: satisfy o-~ (u.,) < o-~ ('1/,), Theu once tUl'll comes to

eh:, if there is more than onc searcher guardiug '1/" oue of them will be taken to search

eh:, Else there would be exactly onc searcher in which case, the searcher wonld not be

taken, 'liVe cOllclude that for every vertex coming after 1/, ill 0-', at IllOSt onc searchel

will be removed from 1t. This fact implies that if in 0-' the number of vertices coming

before u is at least one lllore than the number of vertices coming after 1/" then at

least two searchers will be available once e is considered, 'vVe count the nnmber of the

perJ1l1ltations on {1/" '1/,1, '1/,2, ' , ,nd with '1/,;, coming after 'It in each of which the nnnlber

of vertices coming before u is strictly greater that the number of vertices coming aHel

'1/" We kllOW that in all of these induced permutations, once e is considered, there

would be at least two searchers available at 'If"
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Take a pel'lnntation on {'I/,I,'IL2, ... ,'lI.i-l} in (i -I)! ways. 'Wc can place '/I in the

permutation in l(i - 1)/2J ways such that there are at least three (or two when i-I

is even) more vertices coming before 'U than after. If we place 'I/, at the end of the

perlllntation, then we can place 1L; after '11. in just one way. If wc place 1L jnst before

the last clement of the permutation, then 11.; can be placed after 1L in exactly two

ways; immediately after 'U or after the last clement of the permutation. Similarly if

wc place 1L in the jth position before the last element of the permutation, then there

are .7 options for the position of'lLi' Hence by the uniformity of th probability space

wc can write

Pr [Xc = 0 IYe" = i and (J' ('1Li) > (J' ('lL)]

l(i-I)/2J

(i-I)! L j
j=1

W+ 1)'

l~J(l~J +1)

'i(i+l)

(~-1)(~+1-1)
*+1)

('i-3)(i-l)

~

(3.13)

The last expression is greater than 1/10 for all 'i 2: (1/3)(11 + 2J!9) ~ 6.57. Also

onc can directly verify that the right hand side of (3.13) is zero for i = 2 and greater

than 1/10 for all 3 :::; i :::; 6. Bnt (J' is induced by av, hence we conclude

PI' IX, = 0 I Ye" = i and (Jv ('lLi) > (Jv Cu)] 2: 1/10 for all 'i 2: 3, (3.14)
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ami

Pr [Xc = 0 I1';," = 2 and 17v (7/,2) > 17v (11,)] = 0 (3.15)

From (3.4) we have Pr [Xc = 111';," = '1] + Pr [Xc = 0 I 1';," = '1] = 1. Hence by (3,11),

(3,12), (3,14), and (3,15)

Pr [Xc = 11 1';.u = 2] ~ ~ and Pr [Xc = 11 Ycu = 'il ~ ~ for all .; ~ 3,

Now from (3.9) and (3.10)

d<:g(,,)-2

E[Xc] = deg
2

(7/,) + deg\il) 8 Pr [Xc = llY,," = '1]

2 1 ( dog(u)-2 )

-I-(-) + -(-) Pr [Xc = 111';." = 1] + L Pr [Xc = 11 Ye" = i]
ceg u deg 11, i=2

_2_ + _1_(1 + ~ + ~(deg(7/,) -4))
deg('I/,) deg(u) 2 20

2 6 9

deg ('11,) - 20deg ('1/,) + 20

It follows frolll (3.1) that E [X] ~ (9/20 + 2/0) IEI which implies Sr,,", (C) ~ (9/20 +

2/1i) IEI by the Expectation Principle. •
We claimed that the above theorem establishes a better bound than the brushing

bound for graphs with large enough minimum degree. Consider the following. If
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C = (V, £) is a graph with fJ (C) = fJ > 40, then 21£I/fJ < 1£1/20 irnplying 91£1/20 +

21£1/0 < 1£1/2 + IVI (1 - 1/5)/4. But

1£1 IVI 1 1
'2+ 4 - 4~deg(V)+1

1%1 + if -~ .~ deg (-~) + 1 '
dcg(v)iscvcll

Therefore for all gra.phs with minimurn degree greater than forty, Theorem 3.3 gives

a tighter bound than Corollary 3.2.

3.3 An Upper Bound for Fast Search Number of

Almost All Graphs

Based on Theorem 3.3, we lllay derive a result for fast search nUlllber of almost all

graphs.

Definition 3.4. Let C be a gra.ph of size 111. For a fixed E > 0, we say that C sati 'fies

property 'Be if and only if SriL_' (C) ::; (9/20 + E) Tn.

We will show that almost every graph satisfies 'Be. To do so we also introduce the

followillg graph property.

Definition 3.5. For a fixed d > 1, we say that a graph C satbfies property f)d if ami

only iU(C) 2: rl.
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Lemma 3.6. For a fixed d> 1, almost every graph (in 9(n,p)) ::;ati::;fies TI d .

Proof. Fix p with 0 < p < 1. We will show that Pr [G E TI,d --+ 1 asn --+ 00, where

C E 9('11" p). Without loss of generality, let {VI, V2, . .. , vn } be the set of vertices of G.

Note that random variable deg (Vi) has binomial distribution with parameters '11. - 1

and p. Denote the event deg(vi) < d by Vi, then by Theorem 2.7 for 1::;"i::; '11, we get

Bnt wC' have

Pr [Vi] exp (_ [('11, - l)p - (d - 1)J2)
2pn

exp ( - 8('11,))

tPr[Vi]
i=1

nexp ( - 8('11,)),

tending to zero as '11, --+ 00. This implies the probability of the complement event,

that is Pr [C E TI d ] tends to one as 11. --+ 00.

We now state the following.

Corollary 3.7. For a fixed E > 0, almost every graph satisfies lB E •

•

PmoI Fix p > O. Let G E 9('11" p) be a graph of size rn and minil11nlll degree S. Then

Sf"" (C) ::; (9/20+2/5) m. by Theorem 3.3. Therefore if we let 5 be a value greater than

d with d::: E/2, then Sf"s' (C) ::; (9/20 + E) m.. Now by the definition, C E TI" implies
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C E 'Be and conscqucntly :Dd <;:: 'Be. It follows that Pr [C E 'Be] 2: Pr [C E :D,d. But

by Lcnnna 3.6, .!~~ Pr [C E :Dd] = 1 so wc concludc that .!~n Pr [C E 'Be] = 1. •

3.4 A Lower Bound for the Fast Search Number

of Almost All Graphs

Definition 3.8. For a graph C denote the set of all vertices with odd degree by

Vu (C), and thc sct all vcrticcs with cvcn dcgrcc by Ve (C).

From [10] we know the following bound on the fast search number.

Theorem 3.9. [10] Let C = (V, E) be a graph. Then Srast (C) 2: IVu (C)I /2.

Bascd on Thcorcm 3.9 we can cstablish thc following.

Theorem 3.10. Fix c E JR with 0 < c < 1. Then for almost all graphs C E 9(n,p),

Srasl (C) =S1(n").

In order to show this, we will need a lemma.

Lemma 3.11. Let random variable X" have binomial distribution with parallletcrs

nand pE (0,1). Thcn Pr [X" is odd] = 4 ± 0 (1) and Pr [X" is cvcn] = 4 ± () (1).



41

Proof. Lct

P (n) = Pr [X" is cvcn] =

and

""' (n)Q (n) = Pr [Xn is odd] = l~" i pn-i(l - p)i.

Fro11 I thc binomial thcorcm wc know

IP (n) - Q (n)1

I
L C)P"-i(l - PY - L C)pn-i(l - prl

1<i<71 l<i.<n
·i i;C~Cll i ~~Id

12p-11"·

But 0 < P < 1 implies 12p - 11 < 1 and thus

IP(n) - Q(n)1 = 12p -11" = 0(1). (3.16)

But P(n)+Q(n) = 1. Thus by (3.16) we see P(n) = 1/2±0(1) and Q(n) = 1/2±0(1),

as required.

Now wc provc Thcorcm 3.10.

•

Proof. Fix 0 < P < 1 and let C = (V,[) E 9(n,p). Since by Theorem 3.9,

Sr".,t (C) 2: IV" (C)I/2, it suffices to show that for almost all graphs C E 9 ('11, p),

wc havc IVo(C)1 = O(nC
).
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COllsider the evellt lVe (C)I :::: k where kEN. Thell the probability of this evellt, is at

Illost the probability that there exists a set K. E V with degc (v) even, for all v E K..

Pr [IV" (C)I:::: k] :S Pr [Ad

LPr[AK:J
lCev
IICI="

(3.17)

ow let K. = {HI, '11.2, .. , 1Ld and Bu be the event in which degc(v) is even. Thell

Pr [A IC ] = Pr [B'Li n B"2 n .. n B/I']'

But by the intersection rule we know the following.

(3.18)

Pr [0 B", ] = Pr [B",I Pr [B"2IB", 1Pr [B"JB", n B"J .. Pr [BukIB", n··· n B"k_']

(3.19)

Dellote the complement of B u by B;, (the event in which degc(v) is odd). Thell by the

total probability rule we have Pr [B"J = Pr [B"2IB", ]+Pr [Bu, IB:,J, and consequcntly

Pr [Bu,IB/I'] :S Pr [B",]. The sal1le argument applies to show Pr [B/liIB/l1 n .. n B/li_l] :S
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Pr [B u ,]. Therefore by (3.18) ami (3.19)

Pr [Aid :s Pr [E",] Pr [E"2] .. Pr [EUk ]' (3.20)

Note that degc (v) (which is a random variable) has binomial distribution with pa-

rameters n - 1 and p, as we have n - 1 independent trials of being an edge between

v and other 'I/. - 1 vertices, each with the probability p for success. ow wc apply

Lelllma 3.11 to get Pr [E u ,] = 1/2 ± 0(1). Then by (3.17) and (3.20),

Pr[ IV,. (G)I 2: k] :s G) G± 0(1))'

For sonic no and '11, > '1/.0 wc would have (1/2 ± 0(1)) :s c, where 0 < c < 1. Wc also

know from [4] Theorem 1.2.1, that G~) :s (7:'( Since G) = c,:.,), it is also true that

G) :s (;2d(n-kJ• Therefore the following is concluded.

ow set J.: = k(n) = n - ne, where c is the constant of the hypothesis. Then we have

This will imply

Note that the limit equals zero as "rI,Cln (7) = 0 (nln ~), and hence by Theorem 2.21

we have (7)'" = o(U)")· Now applying the Squeeze Theorem we get ,!~~Pr [IV"

(G)I 2: n-ncJ = O. l3nt IVo(G)I+IV" (G)I = IV (G)I, so weeonclude "l~~ Pr [IVo(Gll
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nC] 0, equivalently ,!~~ Pr [IVo (C)I

>nc
] =1. ThcreforclIl~~Pr[IVn(C)I/T{>O]=1. l3yThcorclll 2.2 it follows that

Pr [ I!~~ IVo (C) I / n
C

> 0] = 1 and consequently Pr [ li2~.inf IVo (C) 1/ '/7," > 0] = 1.

Thus with IVo(C)I/nc being non-negative, according to definition Pr [IVo(C)1 =

!1 ('11,")] = 1 as '11, -t 00. This complctcs the prool'. •



Chapter 4

Upper Bounds for the Node Search

Number

In thi~ chapter we will find a general upper bound for node ~earch number Fir~tly

we will review the current literature through the next section.

4.1 Existing Bounds for Node Search Number

To the knowledge of the author, no exclusive upper bound ha~ been developed for

node search nnmber. I3ut there are quite a few for pathwidth. Considering the tight

connection between node search number and pathwidth, we mu~t con~ider these re-

~ults.

Theorem 4.1. [5] If G is a planar graph of order n, then pw (G) = 0 (n)

Theorem 4.2. [12] If G is a cubic or sub-cubic graph (a graph with llIaxinl\m\

degree three) of order n" then for every c > 0, there exi~t~ ~ome nE ~uch that

pw(G):S (l/G +c)n for n > nE'

45
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But the only known general upper bound on pathwidth i~ due to [23].

Theorem 4.3. [23] If G is a graph of order n and si~e rn., then pw (G) :s; 7n/5.769 +

o (log·n.).

By Corollary 2.17, pathwidth and node ~earch number are a~ymptotically the same.

Thus wc will have the following immediate corollary.

Corollary 4.4. Let G be a graph of order n and ~ize m. Then ~Ilode (G) :s; '171./5.769+

o (logn).

Next wc will improve the above bound.

4.2 Bounding the Node Search Number

In thi~ ~ection, we develop two upper bound~. The fir~t one is in term~ of the inde-

pendence number of the graph, and the second onc is in terms of the maxinlum degree

of the graph.

Theorem 4.5. If G = (V,E) is a graph, then s Ilode (G) :s; n - Cl' (G) + 1.

Pl'Oof. Let I be a maximal independent set of G. One can search G through the

following procedure. Place exactly one searcher Oll every vertex of V \ I. Place one

extra searcher on the first vertex of an arbitrary ordering of I, ~ay ·Ut. Now all the

neighbors of 71, are guarded, as I is an independent set and hence there is no edge
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between 7/,1 and 'L \ {7/,I}. Thns all the edges incident with "lll become searched. But

if we relllove the searcher frolll "Ill none of these edges get recontaminated as they are

not incident to a vertex that is connected by an unguarded path to a contaminated

edge. ow we may remove the searcher from "Ill and place it 011 the next vertex of the

ordering of 'L and follow the same procedure until all the edges in G ['L] is completely

searched. ote that all the edges in G [V \ 'L] are also searched, as all the vertices

ill V \ 'L ha.ve been guarded beforehand. It follows that G is searched without allY

further movements of searchers. Thus Sllode (G) :s: IV \ 'LI + 1 = n. - (1' (G) + 1. •

Now bOllnding the illdependellce number wc will have the followillg.

Corollary 4.6. If G is a d-rcgular graph of order n, thcn

( d)
S Ilode (G):S: d + 1 n + 1.

Pmof. By Theorem 2.8 we have Cl' (G) :::: n/(d + 1). ow the result follows from

Theore1ll4.5 •

For graphs close to regular, we can do asymptotically (in terms of the order of the

graph) bctter than Corollary 4.6. But first wc nced prove ·ome useful lemmas.

Lemma 4.7. If G = (V, £) is a graph of order n with U S;; V such that G [U] is H

collection of vertex vertex disjoiut paths, then Sllorle (G) :s: n - IU 1+ 2.

P'I'Ooj. Let P = (PI, P2,··· ,Pk) be an arbitrary ordering of paths in G tU]. In Figme

4.1 a conceptual illustration of G has becn prcsentcd, whcrc the c10ttcdlincs bctwccn
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C [V\U] and C [V (Pi)] stand for possible edges between these two conlponents. Note

that paths Pi can be as short as one vertex. Search C through the following procedure.

Place exactly one searcher on each vertex of V \ U. 'Without loss of generality let

PI = 'lLlt/2'" '(£1, with 1 ;::: 1. We place two extra searchers, one searcher on '11.1 and one

on 1.t2. But based on the assumption, '//.I has no neighbor in U except for '(£2 which has a

searcher on it. So all other possible edges of '11.1 are in U \ V, being gnarded. Tt follows

that all the edges incident to '11'1 in C are searched. But if we remove the searcher fronl

'ILl none of these edges become recontaminated, as they are not incident to a vertex

that is connected by an unguarded path to a contaminated edge. Place the removed

searcher on '11.:1. Applying the same argument, all the neighbors of '11.2 excluding '11.1 now

are guarded. But 'lt1'1L2 is already searched so all the edges incident to 112 are searched

now. Besides, we can remove the searcher from t/2 without any recontamination as

none of the searched edges are incident to a vertex that is connected by an unguarded

path to a contaminated edge. Remove the searcher from '([.2 and place it on 'lL4 and

follow similar steps nntil the edges of PI are completely searched. We can also nse

the two searchers assigned for PI to search P2 throngh p" in the same fashion. Note

that all the edges in C [V \ U] are also searched, as all the vertices in V \ U have

been simultaneously guarded firstly. It follows that C is searched without any further

nlovements of searchers. Thus S lIode (C) :::; IV \ U I+ 2 = n - IU I+ 2. •

Lemma 4.8. If C is a graph and P = 7.L]1.t2··· 'It" is a shortest path from 'It I to '11." in

C with U = {'II.I,'U'2, ... ,v.d, then C [U] is exactly P

Proof. The graph C [U] consists of P and other possible edges. There exist other

edges if and only if C [U] has a cycle, contradicting the fact that P is a shortest



49

G[U]

Figure 4.1: A picture of G

path. •

Lemma 4.9. If G = (V, £) is a graph with d (G) = /,;, then for every 1,;' < k, there

exist 11.', v' E V such that dist (v.', v') = kl

Pmof. Since d (G) = k therc cxists a shortest path of lcngth I,; in G say p = 'U.WJ

Take p' = 'U.'WJ ... Vh:', then p' is a shortest path from from 'u, to Wk', as if not, there

wonld bc somc p" with length less than p' by replacing which we can constl'11ct a

path from 'U. to v with length less than k, a contradiction. Tlnls dist ('//" Wk') = 1,;', as

required. •
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Lemma 4.10. If C = (V,E) is a connected graph of order 11 > 2 and maximum

degree t> = t> (C) > 2, then d (C) 2 (logLl 11) - 1.

Pmoj: Let 'U E V. Then at most t> vertices arc distance 1 from v, and at IIIOSt

t>(t> _1)i-1 vertices are distance i from 'U for i 2 2. It follows that

11 ::; l+t>+t>(t>-l)+ .. +t>(t>_l)d(G)-1

t>(t>-l)d(G) -2

t>-2

Hcnce d (C) 2 (logLl 11) - 1. •

Lemma 4.11. If C = (V,E) is a connected graph of order 11 with fixed lIIaxinlulll

degree t> = t> (C) > 2, then for every fixed E > 0, there exists a set U, <;;; V sllch that

C [U,] is a collectioll of vertex disjoint paths and

Pmof. Having fixcd E, definc the following algorithm on C:
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Algorithm.

Set U := 0, W := V

Fix c:= r(,(~'::I) - 26.) /(6. -1)1 + 1

While IWI:O:: N+ I

1. Pick a shortest path p in C [W 1wit.h Ipl = c

2. U :=U U V(p)

3. W:=W\(V(p)uN(p))

4. Maintaining the maximum degree 6., keep C [W] connected by adding as

many edges as needed.

End

ote that by Lemma 4.10, IW I :0:: 6.c+ 1 implies d (C [W]) :0:: c. Also line four of the

loop keep the graph connected (we will verify the condition la.ter). Then by Lelllma

4.9, in each iteration of the loop we are guaranteed to have a shortest path p in C[W]

with Ip I = c. In each iteration we simply remove a shortest path of a fixed length

and its neighbors from the graph. After the termination of the algorithm, U is the

set of all removed shortest paths. Having removed all the neighbors of paths, C [U]

is a collection of vertex disjoint paths by Lemma 4.8.

Before determining the size of IUI, note that after the execution of line three of the

loop, the graph Illay get disconnected say into components Cl, C2 , ... , Ck . We know

there exists a vertex 't/..; in C; with degc; (Ui) ::: 6.-1 since the component had been con­

nected to the ret of the components before the execution of line three. Thns Ci is not.
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a complete graph and there ;;honld be another vertex Vi in Ci with degc
i
(v;) ::::: ~ - 1

With thi;; fact being said, it is easy to see that the condition of line four of the loop

Now we determine IU I when the algorithm terminates. At each iteration, IU I grows

by c + 1. On the other hand, consider Figme 4.2. Take the path ]J = 71)1'lU2'" 71)c+1

and c1nster the vertices as ;;hown in the figure. There are at most ~ vertices in the

first bag, and at most ~ vertices in the last bag. Also each of the c - 1 middle bags

contaius at 11l0;;t ~-1 vertices. So IV(p)uN(p)l::::: (~-1)(c-1)+2~. Thi;; implies

at each iteration IW I is reduced by at most (~-1) (c-1) +2~. Thns it follows that

(
c+1 )

(~_ l)(c _ 1) + 2~ n - 0 (1). (4.1)

Note that the bracket term is a lower bound for the number of iterations of the loop

and the asymptotic term 0 (1) replaces a function of fixed ~ and c.

c+1
(~ - 1) (c - 1) + 2~

c-1

(~-1)(c-1)+2~

1 2~

~ - (~-1)((~-1)(('-1)+2~)

1
~-E,
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Figure 4.2: Removing a path

Hence we conclnde by (4.1) that

IUI:2: C~~1-E)n-O(1).

rtecall that to keep the graph connected we added some edges. Thus U is a collection

of vertex-disjoint paths in C, composed of the same vertex and edge sets as C, pins

possibly sonle extra edges. If wc remove the set of the extra edges from U, it wonld

be still a collection of vertex disjoint paths. So we call set U, with U excluding the

extra edges.

Now we can state the following theorelll.

•

Theorem 4.12. Let C be a graph of order n with fixed lllaxinlllll1 degree to. =
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6. (C) > 2. Thell for every c > 0

(
6. - 2 )Sllodc(C)::; ~+c n+O(I).

p.roof. From Lemma 4.11 we know that there exists a set Ue ~ V such that C rUe] is

a collection of vertex disjoint paths such that

Gut by Lemma 4.7,

Sllodc(C)

(
6. - 2)- n+m+O(I)
6.-1

(
6. -2 )
~+c n+O(I).

•
It remains to show that we have made an improvement. Let C be a graph of ordel

'1/ and size m and fixed maximllm degree 6.. First take n big enollgh snch that the

asymptotic term in Theorem 4.12 is less than the asymptotic term of Theorem 4.3.

Now Jet 15 > 11. Then for every 6. > 11 with c snmll enough, we have

(
6. - 2 ) bn

5.769 ~+c n<2::;m.
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So thc bound givcn in Thcorcm 4.12 is tightcr than that of Thcorcm 4.3 for all graphs

with 0 > 11.

For a d-regular graph C of order '11, with d > 2 Theorem 4.12 tells us Sllodc (C) :<::;

(~+ c) '11, + 0 (1) which asympt.ot.ically is a tight.cr bound compared to that of

Corollary 4.6. Nonetheless, for thc cascs in which the graph is far from rcgular or

wc havc a good knowlcdgc of thc indcpcndcnce nurnbcr of thc graph wc can apply

Theorem 4.5. Our first example is the family of Kneser graphs. Kneser graphs arc

not necessarily sparse, cubic or planar. So existiug results do not tell us much abollt

thcir pathwidth. III contrast we know the following.

Lemma 4.13. [1] For the Kneser graph K ('11" k), we have a(K ('11" 1.:)) = G:::).

This piccc of information leads us to thc following rcsult.

Corollary 4.14. For the Kncscr graph K ('11" k), wc havc

sllodc(K ('11" k)) :<::; '11, ~ k IV(K ('11" k)) 1+ 1.

P100f. Since IV(l«n,k))1 = (Z), and by Lcmma4.13, a(K(n,k)) = (~:::), thc rcslllt
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would be a straightforward consequence of theorem 4.5 and Pascal's identity as follows.

S"uJe(K(n,k)) IV(K (n, k)) 1- a(K (n, k)) + 1

(n) _(n -1) +1
k k-1

n- k (n)- +1
n k

n~kIV(K(n,k))I+l.

•
We pl'Oceed with a few other examples.

Corollary 4.15. If C is a well-covered graph of order n, then S"ude (C) :S n,j2 + 1.

PmoI From [28] wc know Ct (C) 2: n.j2. Thc rcsult follows frolll Theorenl 4.5. •

Corollary 4.16. If C is a graph of order n with odd girth 2k+1, and S (C) > nj(k+1)

where k 2: 4, thcn Sllude (C) :S (k + 1)nj(2k + 1).

Pmof. From [2] we know a(C) 2: knj(2k + 1). The result follows from Theorelll

4.5 •
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Corollary 4.16 indicates that node search number of a dense graph need not be VC"7J

large. (A construction of dense graphs with large independence numbers is discussed

in [20].) Further examples of such dense graphs can be found among clique-free graphs.

Corollary 4.17. Let Cl, C2 and C:1 be graphs of order n, where Cl is a triangle-free

graph with fJ(C I ) > 2.,.,./5, C2 is a K4-free graph with fJ(C2 ) > 3n/5 and C:1 is a

K,.-free graph, with 8(C:1) > (21' - 5)n/(21' - 3), l' 2 5, then S"odc (Cl) ~ 1/./2 + 1,

5"0<1" (C 2 ) ~ 2n/3 + 1 ands"o<lc (C:1) ~ (1' - 2)n/('r - 1) + 1.

P1Oo1 By [16] we know Cl, C2 , and Co exist and we have Cl' (Cl) 211,/2, Cl' (C2 ) 211,/3

and Cl' (CJ ) 2 n/(7' - 1). Now the result would follow from Theorem 4.5. •



Chapter 5

Conclusion and Further Works

In this thesis, we studied two edge searching models, node searching aud fast searching.

Vve concentrated on the magnitude of the node :;earch number and the fa:;t :;earch

uUlnber of general graphs in the context of classical graph theory and also u:;ing the

theory of random graphs. Con:;ider a graph C = (V, E) of order n, size 1"1/., lnaxinunn

degree ,0,., aud minimum degree 0. We first :;howed that the upper bound ou the bru:;h

number introduced in [3] i:; in fact abo an upper bound for the fa:;t :;earch numbel

Thus,

Sf"s!. (C) S ~ + ~ - ~ ~ deg (~) + 1·

dcg(v)isCVCII

But applying the probabilistic method we improved the result to Sfas!. (C) S (9/20 +

2/0) 1"17. for°> 18. Next we :;aw that for almost all graph:; the fast :;earch llUIllber is less

than one third of the size of graph. To shed more light OIl the order of magnitude of

the fast search number, fa:;t searching was asymptotically investigated. \Ve discovered

that for every rational c < 1, the fast search number of almost all graph:; is 0 (n')

This is actually an asymptotic lower bound for almost all graph:;. Next we :;tudied the

node :;earch number which is e:;:;entially almo:;t pathwidth. Here we worked on the

58



problem of improving the only existing upper bound on the node search nlnnber of a

general graph which has been discovered ill the context of pathwidth. This bound on

pathwidth manifests itself in node searching as Sllode (C) ::::; rn/5.769 + 0 (log·n). FOt

fixed ~, we proved that

( ~-2 )
Sllode(C)::::; ~+c n+O(l),

and showed that this later bound is tighter than the former when I) > 11.

All of the results in the node search section can be easily used to get new results for

pathwidth, using Corollary 2.17. Bnt there is also onc more algorithmic consideration

Clearly Theorerns 4.5 and 4.12 arc const',"u,clive proofs as wc have detel'lninistically

constructed a search strategy to prove each theorem. A basic question here wonld be;

is it possible to derive path decompositions from these search strategies for a graph?

The answer is yes. Fortunately, the approaches taken in [22] and [21] are both con-

stmctive. So for any connected graph, it wonld be natural to take the node search

strategies in Theorems 4.5 and 4.12, transform. them to vertex separations applying

the algorithm introduced in [22], and then transform the vertex separations to path

decompositiolls using the algorithm introduced in [21]. It must be noted though, the

hidden constant in Theorern 4.12 is very large which from an algorithmic point of

view makes the whole procedlll'e quite inapplicable for graphs of small order.

In studying the fast search number of graphs we concentrated on the size 'm of the

graph. But there arc different search numbers which arc bounded by means of the

order of graph. Certain observations reveal the fast search nlllnber can be properly

bounded in terms of size. In the other hand we saw that the fast search nlltnber of
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almost all graphs grows at least sub-linearly with the order. The author strongly

suspects the growth is most probably linear.

The only lower bound on the fast search llumber given in this thesis is un asymp­

totic lower bound for almost all graphs. Other lower bounds are available, but nlost

of them bound the fast search number of certain classes of graphs. VVhile separate

investigation of diA'erent classes of graphs is valuable on its own merit, the question

still remains whether we are able to give a lower bound 011 the fast search number of

et gencral graph in terms of elementary graph paramcters.

For the node search uumber, we applied a maximum degree analysis. But the authol

believes that et tighter bOlllId can and should be in terms of the average degree of

graph. Nonetheless, a better bound in terms of maximum degree is also reasonablc;

Theorem 4.12 implies the asymptotic pathwidth of a cubic or sub-cubic graph of ordel

n is less than almost n/2 while from Theorem 4.2 we know it is less than almost 11./6.

The trade-oft· made to obtain a general bound in the current study, could be shrunk for

a class of graphs with fixed maximum degree. The first step could be the investigation

of quartic and sub-quartic graphs. No general upper bound has been found for this

class of graphs yet.
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