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Abstract

is concentrates

Graph searching is a well-studied subject in graph theory. This th
on the magnitude of two different scarch numbers. First, a new upper hound on the

fast search number of a general graph is given. The new result improves the existing

bound on the fast search number which is given by the brush number. Based on the

improved result, an upper bound for almost all graphs is obtained. Next, using an

existing lower bound on the fast search number, a lower bound on the fast scarch

number of almost all graphs is derived. Finally, the only existing upper bound on the

node search mumber of a general graph is improved
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Chapter 1

Introduction

ible interconnections. Also assume there

several tunnels with pos

Tmagine there are

are some intruders hiding in the tunnels. We want to assign a number of searchers

i.e. to search for intruders and capture them. Our final goal

to clean the tunnels
is to make sure that all the tunnels are clean. How can we do that? The answer is

to complete the

ume, there would be different ways

that depending on what we as

job. For example, the searchers could locate the intruders by just looking in a tunnel

from one end to the other. Or searchers might have limited eyesight or the tunne

could not see throughout the tunnel. Then perhaps they

might be so long that they
need to traverse each tunnel to capture the intruders. We also may require that once
a tunnel is cleaned, it should not be allowed to be “recontaminated™ again by the

umptions are, since cost is

presence of the intruders. Independent of what our ass
always a concern to us, one can ask what is the minimum number of searchers needed

to search a system of tunnels? Can we compute this number efficiently?

A system of tunnels or similar systems can be well-formulated by mathematical ob-

called graphs, and the theory of graphs is completely capable of modeling this

jec



searching. Depending on what we require, different models can be introduced. The

original model oceurs in [27], though an earlier motivation was given by [8). We can

archers needed to

define the search number of a graph as the minimum number of s
clean a graph in each model. Applying the underlying graph theoretical concepts, one

can solve and address different problems in graph searching. Being defined as abstract

mathematical systems, these models are indeed of theoretical importance. We will see

This fact

connections between searching models and other problems in graph theory

makes searching even more interesting from a theoretical point of view. Nevertheless

many searching models have direct applications in computer science, stretching from

jon [11].

networking [13] to VLSI d

This study concentrates on bounding different search numbers in terms of more

ard graph parameters. Also we will investigate the interrelations between

straightfory

search numbers and other, less intuitive, graph parameters. We mainly consider two

scarch models in this th

Returning to our searching assumptions, suppose that searchers must traverse the
edges to clean them. This searching model, first defined in [25], is known as edge
searching. If we require that in cach step an edge must be searched, then the out-

arching. This model was first introduced in [10]. The fast

lined model is called fast

search number of a graph is the minimum number of searchers needed to fast search
the graph. From [10] we know that the fast search number of a graph is greater than
or equal to half of the number of vertices of odd degree. The fast search number is
exactly half of the number of vertices with odd degree if the graph is a tree. The same
paper investigates the fast search number of bipartite graphs in different cases. The

fast search number of cubic and Halin graphs have been expressed in terms of the



number of odd vertices and the number of leaf blocks respectively [31). On the com-
putational front, [32] proves the problem of deciding whether the fast search number
of a graph is less than or equal to an integer is NP-complete and remains NP-complete

even for Eulerian graphs.

In the fast s model, one can require that all the edges incident to a vertex must

rc

be searched simultaneou This restricted fast searching is called bru

hing. The
concept of brushing and the brush number of a graph have been recently introduced

in [26]. An upper bound is known for the brush number of a general graph [3). In-

st searching are deeply interwoven. In fact, brushing is

terestingly brushing and fs

a
restriction of fast searching. This implies that a lower bound on the brush number is
also a bound on the fast search number. In this thesis, after reviewing a few mathe-

matical concepts in Chapter 2, in Chapter 3 we will give a bound on the fast search

number that is better than the only known bound for the brush number. Based on
the improved result, an upper bound on the fast search number for almost all graphs

will be obtained. We will then obtain an asymptotic lower bound for almost all graphs

The next model we study in this thesis is node searching, first introduced in [22]

Here two searchers are required to be placed at the ends of an edge to scarch the

edge, and recontamination is possible. The node scarch mumber of a graph is the

minimum number of s

rchers needed to node search the graph. Our aim again is to
bound the node search mumber in terms of other graph parameters. In fact we know
that the node search number, the vertex separation number, and the pathwidth of a
given graph are different manifestations of a single idea [21, 22]. The morc-studicd

parameter of these three is pathwidth, So in order to study the node search number,

we need to investigate the existing results for pathwidth. Now considering the inter-




relation between pathwidth and node search number we can state the following results.

The node search number of a planar graph is asymptotically bounded above by the
square root of its number of vertices [5]. Also the node search number of a cubic or
sub-cubic graph is asymptotically at most one sixth of the number of its vertices [12]
There are also other more specific graphs with known upper bounds for node search
number including outerplanar, Halin, permutation, compatibility and cocomparabil-
ity graphs, and cographs [6, 7, 14, 18, 24]. But the only known general upper bound

is due to [23], which is in terms of the number of vertices and the number of edges

of a graph. This gencral bound works for a general graph as long as it is sparse. n
Chapter 4 of this thesis, we will obtain upper bounds on the node search number of

general graphs, including dense graphs.

Finally in the last chapter, we consider open problems within the scope of the study.



Chapter 2

Basic Definitions and Theorems

2.1 Probability Theory

Probability theory is a major tool in the present research. The materials in this section
are primarily from [14], unless otherwise stated. The three most important concepts
in probability theory are experiment, cvent and probability.

In the mathematical theory of probability, an experiment is defined with a set € (also

ent all outcomes (of the experi-

called the sample space), whose clements must repr

ment). It would be convenient if all subsets of € could be considered events. But for

technical reasons, events are defined as a limited collection A of subsets of €.

For a given experiment w, events A are subsets of , which form a o-field. That is,
the collection A of events is defined to have the following properties. If A € A, then
A C Q. Furthermore, (i) Q € A; (i) if A, j € N, all belong to A, then their union is
in A; and (iii) if A belongs to A, then so does the complement of A. This definition

says that events form an abstract collection which is closed under the operations of



union, intersection, and for ble sequences. We define 7

and probability space.

Definition 2.1. Given a sample set € and a o-field A of subsets of €2, for any A € A,

a probability Pr is a real-valued function on A satisfying

L0<PrlA] <1,

2 Pr[e] =1,

If 7' is either a finite or denumerably infinite set of positive integers and if the
events Ay, t € T, are mutually exclusive (disjoint), that is A;NA; = @ fori # j,

then

Pr [U AlJ = ZPr [A)], for A € A.
T 7

The triple (2, A, Pr) is called a probability space. Also the elements of  and A are

called simple events and events respectively.

Now having defined probability space, we state the following.

Theorem 2.2. Let {A,} be a sequence of events in an arbitrary probability space.

Then we have lim Pro [4,] = Pro [ lim 4]
.} it

are all discrete and hence € is finite. Therefore

The models considered in this thesi
here we deal with a somewhat simpler space in which A = 2%, We construct this

space as follows.

Without loss of generality, let @ = {1,2,....n} and let A be the set of all subsets

tisfy (i) Pr[{k}] > 0 for all k and (ii)

of Q. Let the numbers Pr(k], 1 < k < n,



i1 Pr{k}]

that Pris a probability on A. In particular if we take Pr[{k}] = 1/n, the underlying

1. Define Pr(A] = 55, ¢, Prla] for all A € A. It is casy to show

probability space is called uniform. When we say an object is chosen randomly from n

objects, we imply that the underlying probability space of this selection is a discrete

uniform distribution constructed similarly as above with € consisting of the n objects.
A permutation on a set is defined to be an ordering of the elements of the set. Let
A be a set, and ¢ be a permutation on A. Then for a € A, we denote the natural

position of a in @ by 04 (a) € N. Accordingly, a random permutation o on a set of n

objects is a random sele

ion of a permutation from the set of all permutations of n

objocts.

On a given probability space, a finite collection Cy, Cy, ..., Cyr of events is called n

partition (of ) if

NC; =@ fori# jand Pr(Ul_,C;] = 1. A function X defined

on Qis a simple random variable, if there is a partition Cy, C'y,

Cy of 2 such that

X is (a finite) constant on each C'j. In this thesis we use simple random variables

which we will call random variables.

Let X be a random variable with values

.y and with partition C; = {w €

Q| X(w) = a;}, 1 < j < T. The sequence p, = Pr(Cy] = Pr([X

el 1<i<T.

with p; > 0 is called a distribution of X. The value

E[X] = @iy +aapa + -+ + 2y,

is called the expected value, or expectation of X. In the present study, we apply the

probabilistic method. In this way the following lemmas [4] will be needed.

Lemma 2.3. (The Expectation Principle) Let X be a random

ariable. Then



in the underlying probability space, there exists w € © such that X (w) > E[X] and

there exists o' € 2 such that X(«') < E[X].

Lemma 2.4. (The Linearity of Expectation) Let X1, Xa...., X, and e1.co.. ...,

be random variables and real constants respectively. Introduce a new random variable
X with X =¢; Xy + 2 X+ -+ ¢, Xp. Then E[X] = o, E[X)] + 2 E[Xo] + - +

c B[X,)

If A and B be two events in the probability space (2,4, Pr) with Pr[B] > 0, then

conditional probability Pr [A| B] of A, given B, is defined by the formula

Pr(A]B] = L”]”'

Pr(B

The above definition can be used repeatedly to obtain the following theorems.

Theorem 2.5. (The Intersection Rule) Let A; with 1 <7 < n be events on the

probability space (€2, 4, Pr). Then

Pr [ﬂ‘} = Pr[A)] Pr(Ay | A Pr(Ag | A N Ag] - Pr(A, | Ay NN A,

Theorem 2.6. (The Total Probability Rule) If the events B;, j > 1. are such
that Pr[B;] > 0, BN B; = @ if i # j, and Pr[UJ, B;] = 1, then for an arbitrary cvent
A

Pr(A] =" Pr(B)|Pr[A|B].



probability, or (ii) if and only if Pr[B] > 0, then Pr[A| B] = Pr[A]. Equivalently,
and B are independent if Pr [A 1 B] = Pr[A] Pr [B]. Now suppose that n independent

" with probability p and in a “failure” with

s, each of which results in a

tria
probability 1—p, are to be performed. If the random variable X represents the muber

id to have a binomial distribution

s that occur in the n trials, then X i

of suce

with parameters n and p [29]. Then it can be shown that

= (';) p=-p"

We will need the following technical lemma.

Pr(X =

Lemma 2.7. (A useful version of Chernoff Bound for the Binomial Distri-
bution) Let random variable X have binomial distribution with parameters n and p.

Then we have

. pn—k
(X < K <e (pn = k)7
Pr(X _L],(Xp( = )

Proof. By [30], for every 0 < & < 1, the Chernoff bound will give us

Pr(X < (1-¢)pn] < exp (—€*pn/2).

Now take
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then we will have

K\ pn
r <k] < ex - e et
PrX <K < (‘q)( (1 Im) 2)

( (,".4-)-’)
= exp (-2
2

2.2 Graph Theory

2.2.1 Basics

A graph G is composed of two sets, a finite set of elements V (G) = V called vertices,

and a finite set € (G) = € of unordered pairs of elements of V' (G) called edges. We

denote G by G = (V,€) and refer to |V] and €] as the order and size of G respec-
tively. In the present thesis an edge {u, v} is simplified as uv, also w and v arc called
adjacent vertices. Any vertex which is adjacent to u is called a neighbor of u. Let

U C V, define N (U) as the set of vertices outside of U with at least one neighbor in .

Now let G = (V,€) be a graph. The number of edges incident to a vertex v of a graph
G is the degree of v, denoted by deg (v). We also define the minimum and maxinum
degree of G by 6(G) = min{deg (v) [v € V} and A(G) = max{deg (v)|v € V} re-

spectively. A set T C Vs called an independent set if and only if uv ¢ & for every

of the largest ind lent set of G is the indep number

u,v € I. The si

of G, denoted o (G). Furthermore a mazimal independent set is an independent set
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which is not a subset of any other independent set. The following theorem provides

a lower bound on the independence number of a general graph [4].

1
Theorem 2.8. a(G) > Y ————.
corem a(@) = 2‘1%(“)“

The sequence p = v+ -1y with v; € V, 1 < i < Lis a path from vy to v provided
bivigr € € and v;s are distinet. Define V (p) = {v1, va,++ - , v} and N (p) = N (V ().
If v, = vy and no other vertices are repeated, then the sequence is called a cycle. The
length of the sequence p is denoted by [p|. The path pis a shortest path from vy to v
if and only if |p| < || for every path p/ = vy -+, Let p = vyvy-+ -0y be a shortest
path from vy to vy, then the distance from vy to vy is dist (vg,0) = [p| — 1. If there is
10 path from vy to v, then the shortest path from v; to vy is not defined. The diameter
of G is d (G) = max{dist (1, v;) | v, v; € V}. Two vertices v;,v; € V are connected if

s at least one path from v, to v;. A graph G is a connected graph

and only if there exis
if and only if every pair of vertices is connected. The girth of a graph is the length of
the shortest cycle contained in the graph. Girth is not defined for the graphs with no

cycles.

In the current study we will use a rough notion of density of a graph. A graph G of

order n and size m is called a dense graph if m is large relative to n, else it is called

a spars

graph.

Definition 2.9. Let V' € V. Then the induced subgraph of G on V', denoted by

GV is G' = (V') where wo € €' if and only if uv € £ and w,0 € V'



2.2.2 Some Families of Graphs

We define a few graphs which will be useful later.

Definition 2.10. A graph of order n in which every pair of vertices is adjacent is

called a complete graph of order n and denoted by K,..

Definition 2.11. A Kneser graph K (n, k) is the graph whose vertices correspond
to the k-element subsets of a n-element set, where two vertices are adjacent if and

only if the two corresponding subsets are disj

nt. As an example we build K (5,2).

Take a five clement set, say {1,2

5} and let wy = {3,5), wp = {2,3}, wy = (2,4},
wy = {14}, ws = {1,5}, we = {1,2}, wy = {4,5}, ws = {1,3}, wy = {2,5}, and

wip = {3,4}. Then K (5,2) can be easily constructed as in Figure 2.1.

Figure 2.1: The Kneser graph K (5,2) (Petersen graph)

Definition 2.12. A well-covered graph is a graph in which every maximal indepen-

dent set has the same cardinality. Figure 2.2 gives an example of a well covered graph



in which every maximal independent set is of cardinality two.

Figure 2.2: A well-covered graph

Definition 2.13. A K,~frce graph is a graph in which no r-subset of vertices induces

a K. Inparticular a triangle-free graph is a Ky-free graph. In general, K,-free graphs

are also referred to as clique-free graphs.

2.2.3 Random Graphs

The theory of random graphs enables us to verify if all graphs but a small family (a
family with measure zero in the underlying probability space) share a certain charac-

teristic. This notion will be a key tool in our investigation of fast search number.

Given a real number p, 0 < p < 1, the binomial random graph, denoted by G(n, p), is

defined by taking 2 as the set of all graphs on n vertices and setting

Pr(G e G(n.p)] =p* (1 —p) )
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for G = (V,€). It can be viewed as a result of (%) independent coin flippings, one for
cach pair of vertices, with the probability of succcs

» 19].

(i.c., drawing an edge) equal to

Let an isomorphism from a graph G to a graph H be a bijection f from V(G) to
V(H) such that any two vertices u and v of G are adjacent in G if and only if f(u)
and f(v) are adjacent in H. A graph property is a class of graphs that is closed under
graph isomorphism. If p = p(n) is a fixed function (possibly constant), and P is a
graph property, we may ask how the probability Pr G € P] behaves for G € G (. p)
as m = 0o, If this probability tends to 1, then we say that almost all graphs satisfy

P [9].

2.2.4 Searching Models

Many different searching models exist. In this paper we will work with two of them,
namely the node search model and the fast search model which are introduced in

[22] and [10] respectively. Let G = (V,€) be a graph. Initially all the edges of G

are inated. We scarch (d inate) the edges of G by means of scarchers
A vertex with a scarcher is called a guarded vertez. A search strategy is a sequence

of movements of searchers on the vertices of a graph which searches all the edges

of the graph. The characteri; of the movements are identified separately in cach

rehing model

2.2.4.1 Node Search

A move that searches G belongs to one of the following types

1. Placing a searcher on a vertex as a guard;
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2. Removing a searcher from a vertex u that contains a search

searched if both of its vertices are

An edge is imultancously guarded. A path that

does not. contain any searcher is called an unguarded path. A searched edge remains

searched as long as it is not incident to a vertex that is connected by an unguarded

path to a contaminated edge. If such a path ever occurs, the edge is said to be recon-

taminated. The graph is (node) sarched when there are no contaminated edges.

ch number number of G denoted

Definition 2.14. Let G be a graph. The node

by $uode (G) is the minimum number of searchers which are needed to node search G

In the context of node searching, two other related notions are also needed to be de-

fined for the purposes of the current study. These are pathwidth and vert

cparation

number. The following definitions are from [3] and [21].

A path decomposition of a graph G = (V,€) is a sequence of subsets of vertices

(X1, Xa,. .., X,), such that

1 UIS'>' X;=V.

2. For all edges uv € &, there exi

s an i, with u,v € 3

3. For every three indices i, j,k, if i < j < k, then X; N Xj C 3

The width of a path decomposition (X

X,) is max<i<, | X;| — 1. The path-
width of a graph G, denoted by pw (G), is the minimum width over all possible path

decompositions of G.

A (linear) lagout of G is a bijection L: V = {1,2,...,[V|}. Thus L is a permutation

of the vertices of G. For any layout L, define Vi, (i) = {u € V| L (u) < i and there is
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some v € V such that uv € € and L (v) > i}. Then V. (i) is the number of vertices

of G mapped to integers less than or equal to i that are adjacent to vertices mapped

to integers greater that i. The vertex separation number of G' with respect to L is
defined as vs;, (G) = max,<;<y{|Ve(i)|}. Then the vertex separation number of G
would be defined with vs(G) = min{vs;, (G) | L is a linear layout of G}.

The following theorems are from [22] and [21].

Theorem 2.15. [22] If G is a graph, then s e (G) = vs (G) + 1.

Theorem 2.16. [21] If G is a graph. then pw (G) = vs (G)

The above theorems imply the following,

Corollary 2.17. If G is a graph, then s 000 (G) = pw (G) + 1.

2.2.4.2 Fast Search
In the fast searching model, a searching action can be one of the following types:
1. Placing a scarcher on a vertex as a guard

2. Sliding a searcher from one vertex to another along an edge

An edge is searched when a searcher is slid along it. Sliding the only searcher guarding
a vertex is not allowed when there are more than one contaminated edges incident

to that vertex. Each edge can be traversed once and thus searched only once, so

recontamination is not allowed to occur in the fast search model



17

Now assume t

we are to s

4 ch an edge u by sliding a scarcher from u to v. Then
two cases might happen. If there are contaminated edges incident to u other than uv,
then we need a searcher as a guard on u, and another searcher to slide along uv. This
case has been demonstrated in Figure 2.3 () in which dotted lines stand for searched
edges and stars represent the searchers. The other case that might happen is when
all the edges incident to u are searched except for uv. Then one scarcher can slide

along uv as demonstrated in 2.3 (ii).

Figure 2.3: Fast searching actions

The graph is (fast) searched when it contains no contaminated edges.

Definition 2.18. Let G be a graph. The fast search number number of G, denoted

st search G

by S (G), is the minimum number of searchers needed to f

2.2.5 Brushing Model

The brushing model is a recently-introduced model on graphs with close relations to

the fast search model. We will specifically compare these models. Initially, every edge

and vertex of a graph is dirty and a fixed number of brushes start on a set of vertices
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At ca

incident edges which are dirty may be cleanced if

h step, a vertex v and all it

there are at least as many brushes on v as there are incident dirty edges. When a
vertex is cleaned, every incident dirty edge is traversed (i.e. cleaned) by one and only

one brush, and brushes cannot traverse a clean edge. Let £ be a sequence of vertices.

Call the time in which a vertex of € is cleaned, a time step. We need [V(G)] time
steps to clean a graph G (a time step can be composed of no movements). A graph

is cleaned when every vertex has been cleaned [3].

Definition 2.19. Let G be a graph. The brush mumber of G denoted by b(G), is

the minimum number of brushes needed to clean G.

If we take a brush strategy and interchange the roles of brushes, dirty edges, and
cleaned edges with searchers, contaminated edges, and searched edges respectively,
then we would have a fast search strategy (however not every fast scarch strategy can

be translated to a brush strategy). This implies the following lemma.

Lemma 2.20. If G is a graph, then sp (G) < b(G)

2.2.6 Examples and comparisons
In this section we will see a few examples of searching and brushing. Our aim is to
demonstrate typical strategies and differences between the fast search number, the

node search number, and the brush number.

We define graphs G and Gy as illustrated in Figure 2.4. First we prove that s . (G1) =

2 by sho

ing that we can (node) search G; with two searchers and then we will prove
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Figure 2.4: Examples for scarching and brushing

mot be node-searched with only one searcher.

that G,

Place one searcher on w; and place a second searcher on uy. This action searches

carcher from uy. Note that ujuy is not recontaminated as it is not

ity Remove the s
incident to a vertex that is connected by an unguarded path to a contaminated edge.
<2

The removed scarcher can search the remaining edges similarly, 0 000 (G1) < 2

archers are needed

But 8040 (Gh) > 1, as according to the definition, at least two

wode (G1)

to search ¢

ingle edge. Henceforth it follows that

brush on uy; since there

Next we caleulate the brush number of Gy, Place the firs
is only one dirty edge incident to uy, we can clean uy. Clean ug and wy in the same

shion by means of two extra brushes. Now the three brushes are at w; and there

are three dirty edges incident with u;. These dirty edges can be traversed and hence
cleaned by means of the three brushes. We conclude that b(Gy) < 3. We proceed
by showing that b (G) > 2. Assume we first place two brushes at uy, the number of

dirty cedges incident to w; is more than the number of brushes present. So the first
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brush must be placed on some other vertex, say uz. Now wuz can be cleaned with

that brush. Now there is one brush present at u; but even if we add a sccond brush to

uy, again the number of dirty edges incident to u; would be greater than the number

of the brushes present. So we must clean another vertex, say uy, in the same fashion.

Now there are two brushes present at u; and four dirty edges incident to uy, at which

point no further vertices can be cleaned. So we conclude that b (G'y)

It is easy to see that sgy (Gh) < 3. Just take the brush strategy above as a fast

search strategy. Thus Gy can be searched by means of three searchers. Now we show

that sy (G1) > 2. Assume we place the first searcher on uy. Then whatever vertex
we place the second searcher on, we will only be able to search a single edge. So

assume we place the first searcher on say uy. To search ujug slide the searcher to u;.

Now archers

ume that we place the second searcher on uy. Now there are two

at u; and one extra edge can be searched with one of these searchers. So assume we

place the second searcher on say uy and slide it to search uyuy. Again there will be

two scarchers present at u;, and at most one extra edge can be searched with three

contaminated edge. Tt follows that squ (G1) = 3.

Next we show that

sde (G2) = 3. Place three scarchers, one on vy, one on vy, and the

st one on vy. Consequently vyvz, vyvg, and vv; would be searched. Now remove the

searchers from vy and vy Note that the searched edges would not be contaminated
as they are connected to the contaminated edges by means of vy, which is guarded
Now place the first removed searcher on vy and then the second one on v, Conse-
quently vyoy, vyvs, and vy would be searched. Next remove the searchers from v

and v5 and place them on vg and vz, Evidently all the edges are now scarched and

we will have s g (G2) < 3. But we also have s o4 (G2) > 2. To show this, assume



Take a null sequence and

there is a strategy to search Gy with only two searche

at cach step of the strategy add an edge to the sequence if it is searched. Note that

st element of the sequence would be the last dirty edge being searched, and also

the
an edge might show up several times in the sequence as it might allow recontamina-
tion. Consider the last occurrence of vyvy in the sequence. Then as two searchers
are needed to search an edge, the two searchers would be at vy and vy right after

scarched. But vyuy is cither the last edge of the sequence or not. If it is not,

vy

then by the construction, there should be at least one contaminated edge after vovy

rchers at vy or vy must be removed to

is searched. Therefore at least one of the

rchers

search the remaining contaminated edge(s). But no matter which one of the se
are removed, vyvy become recontaminated, sinee there is an unguarded path. But this
camnot be the case since we considered the last occurrence of vyvy in the sequence. So

it must the case that vyvy is the last element of the sequence. But by symmetry, the

a contradiction as the sequence

And this

same argument applies to vyvs and v

can only have one last element. It follows that $ 04 (G2) =

We now show that b (G) < 4. Place two brushes on v and clean it. Now there is a
brush at v3 and one dirty edge incident to it, so we can clean vy. Note that v; cannot

be cleaned at this time since there are two brushes at this vertex but the number of

incident dirty edges is four. Nevertheless we can clean vy and v5 in the same fashion

by placing two brushes at v;. Now there are four brushes at v; and two dirty edges.
Therefore v, can be cleaned and without adding a new brush we can clean vg and then

hes. Having

7. We proceed by showing that Gy cannot be cleaned with three brus

three brushes, we cannot begin with vy, as the number of dirty edges incident with it

is greater than three. Without loss of generality start off with v,. Two brushes are

needed to clean vy, Next without adding a new brush vy can be cleaned so that we



end up with a configuration in which there are two brushes are present at v, with v;,
01, vs, v, and v to be cleaned. Even if we add an extra brush to v, we cannot clean
it as the number of incident dirty edges is four. Furthermore with only one brush
none of the other dirty vertices can be cleaned. We conclude that b (G3) > 3 and

since b (Gy) < 4, it follows that b (G3) = 4.

mot be searched with one searcher

Finally we prove s (G2) = 2. Note that Gy c

the minimum degree of the graph is two and hence at least two searchers are needed to
search the very first edge. Thus it suffices to show that it is possible to search Gy with
two searchers. Place two searchers on v,. We can search v,v, with one searcher while

the other one is guarding v, After sliding a searcher, there would be a scarcher at

va. Using this searcher we can search vyv, as this edge is the only contaminated edge

incident to vy. Next, vjvy can be searched accordingly. Now there are two searchers

located at vy again. Obviously applying the dure we can also search the

me pro

remaining contaminated edges.

We see S e (G1) < D(G1) = St (G1) bt S (G2) < Snote (G2) < b(Ga), exempli-

fying the lifferences between these |

2.3 Asymptotics

The present rescarch mostly applies asymptotics to analyze the order of growth. Let

g(x) and f(x) be functions. We write f(x) = O (g(x)) if and only if there exists a
I@F 6 e write f(x) = Q (g(x)) if and only
f(

constant €' > 0 such that limsup

if g(x) = O ((f(x)), or equivalently lim inf > 0. Also f(x) = O(g(x)) if and

9(x)
only if f(x) = O(g(x)) and f(x) = Q(g(x)). Finally we write f(x) = o (g(x)) if and



only if lim L 0. In this context Theorem 2.21 will be useful [17].

oo g

Theorem 2.21. Let g(x) and f(z) be functions. If In f(x) = o(Ing(x)), then




Chapter 3

Bounds for the Fast Search

Number

Not very much is known about the order of magnitude of the fast search mumber

of general graphs. This chapter aims to bound the fast search number. First we

concentrate on an upper bound. We point ot the existing bounds and then improve

them. The nature of the improved upper bound will let us derive a result for almost

igate the existing lower bounds and based

all graphs. In the Section 3.1 we inves

on an established result, an

ymptotic lower bound will be developed for almost all

al an interesting

graphs. This result combined with a certain upper bound will re
fact about the fast search number of almost all graphs which is presented in the final

section.

3.1 Fast Searching vs Brushing

The brush number and fast search number of a graph have interconnections as formu-

lated in Lemma 2.20. Obviously according to the lemma, any upper bound for brush
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number would also serve as an upper bound for fas

scarch number. But a general
upper bound for brush number has already been established in [3). Here we give a

detailed proof of the bound

Theorem 3.1. Let G = (V,€) be a graph. We have the following.

el vl 1 1
vy <M 1 1
@O T+T 7 ; dog () +1
-

To prove this, we first need some preliminaries. For a graph G, let he (G) be the

minimum number of brushes needed to clean G 2

ording to €, a sequence of vertices

of G. Clearly b(G) < be(G), for a sequence & of vertices. Now for every v €

V(G) let w, (v) denote the (minimum) number of brushes at vertex v, and D (v)
denotes the number of dirty edges incident to v, at time step . Note that w (€441)

is the number of brushes initially needed for the vertex €41, Thus the value of

deg (€41) = D (€441) simply refers to the mumber of cleaned edges incident to €, at
time step £. So one might suspect that the number of brushes initially needed would
be Dy (€r11) — (deg (€r41) — Dy (€41)). But one must also note that this value might
be negative at times when the number of present brushes at a vertex is greater than
the number of dirty edges in a given time step, at which point obviously no further

brushes would be needed. Tt follows that

wo (€)= max{Dy(€r1) = (deg (§r41) = Di (€241)),0}

= max{2D; (€1s1) - dog(€111) .0} -

Now we can prove Theorem 3.1.
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Proof. Let @ be a random permutation of the vertices of G taken with uniform dis-
tribution. We clean G according to this permutation to get the value of b (G). Note
that b, (G) is now a random variable. For a vertex v € V, we already saw that the
number of brushes which should be assigned to v initially is determined by the random

variable X (v) = max{0,2N* (v) — deg (1)}, where (random variable) N*(v) is the

number of neighbors of v that follow it in the permutation. Thus N+ (v) is the number
of dirty neighbors of v at the time when v is cleaned. Note that N (v) belongs to the
space of random permutations over the set {v} UN (v) and the random permutation
7 induces a uniform, random permutation on {v} UN (v). Now we calculate the prob-
ability that N'*(v) attains each of the values of 0,1,...,deg(v). There are deg (v)!
permutations on the set {v} UN (v), with v at a certain position; as we can permute
N (1) in deg (v)! different ways and add v in just one way. Next we juxtapose the rest
of the vertices of V\ ({v} UN (1)) in (deg (1) +2) (deg (v) + 3) -+ V| different ways
Now since the space is uniform, for i = 0,1,...deg (v) we calculate the probability.
deg (0)!(deg (v) + 2) (deg (v) +3) -+ V)|
IS i
1

Pr[N*(v)

Also note that when deg(v) is even, we will have the following.

] 0 if N*(v) < deg (v)/2,
X(v)=
2N*(v) —deg(v)  if N*(v) > deg(v)/2.



We conclude that

BX(m)] =

dog(0)
0+ > (2i—deg(v)) Pr[Nt(v) =]
i=dog (v)/2+1

(T) ( [ (452 1) o] + -

2+ ...+ (deg (v) — 2) + deg (v)
deg (v) +1

1 (deg (1))2 — 1
dog () 1 ( 1 )

deg(v)+1 1
1 Mdeg () + 1)

Following the same argument, when deg (v) is odd we have

E[X (v)] =

L+ (deg (1) = 2) +deg () _ deg () + 1

deg (v) + 1 4



Now since b (G) = ¥, X (v), by the Linearity of Expectation

E[b.(G)] = E[Z,\'(u)]

vev

S EIX )

vev

e v
deg(2) I oven
1~ deg(v) 1 1
B iz 2 t 24 1
vev e

_ M

21

1
deg(v) +1°

.

dog () is oven

deg (v) + 1 1
by 4 - Z A(deg (v) + 1)

>

dog (1) s cven

Then by the expectation principle, there is a permutation 7 such that b(G) <

b,(G) < E[b, (@) and the assertion holds.

As a result, along with Lemma 2.20, we will have the following.

Corollary 3.2. Let G = (V,€) be a graph. Then

N €L, VL 1
s (G) S 5+ — 7 Z;

deg(v) is even

dog () +1°

In the other hand, from [26] we know the brush number of a complete graph on n

vertices for even n s n2/4 and for odd n is (n? — 1)/4, while by [10], the fast search

number of a complete graph on n vertices is n for n > 4. Hence for big enough n the



fast search number of a complete graph on n vertices is arbitrarily less than its brush

number. Other familics of graphs with fast scarch nmumber less than brush number

could be easily constructed. This fact suggests that Corollary 3.2 might be tightened.

3.2 A General Upper Bound for Fast Search Num-

ber

Let G = (V,€) be a graph. Fix arbitrary permutations o¢ and oy on € and V
respectively. We introduce the searching strategy S(op,ay). Let uv = ¢ € €. Search
the edges of G according to the order induced by g, When we go to search ¢ in o,
we start from that vertex of ¢ which comes first in gy, Without loss of generality

assume u comes before v in ay; that is oy (1) < oy (v). Then there are four distinct

that e could be searched.

way

earcher at u

(i) - 1f there is no searcher at u and deg (u) = 1, then we place once
and slide it to v. Else if there os no searcher at u and deg (u) > 1, then we

place two searchers at u and slide one of them from u to v and keep it at v.

(ii) - If there is exactly one searcher guarding u and not all the edges incident to
u are searched other than e, then we keep that searcher at u. Place a new

searcher at u, then slide the new scarcher from u to v.

adjacent to u are

(i) - If there is exactly one searcher gnarding u and all the ed;

searched except for e, slide that searcher from u to v.

s at u. Pick one of them and slide it

(iv) - Otherwise, there are at least two searcher:

from u to v
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The four possibilities for searching an edge will be referred to as (i), (ii), (iii), and
(iv) henceforth whenever needed. Now follow the above procedure for all the edges

inly this gives a fast search strategy on

according to the order defined by gg. Cer

G, as the only actions taken are placing searchers and sliding them. Furthermore
the first and the second parts of the above procedure guarantees that a searcher does
not slide when it is solely guarding a vertex with more than one contaminated edge

incident to it, forbidding recontamination. Also since o¢ is a permutation on €, we

istent with the fast search model), and

have that each edge is traversed (which is con:
more importantly, each edge is traversed exactly once resulting in G being searched

according to the definition

We make a quick example to demonstrate the above strategy. Consider the graph H
}

ry permutations say

v, 0

as shown in the left up left corner of Figure 3.1, We have V (H) = {vy, va,

and & (H) = {0102, vy, 0101, vavs, 0205, vavs, vy ). Take arbitra

{02, 03, 01, v 01} and 0 1y = {01, 0301, 13, V05, V305, V10, 0112}, Now

OV (H)
we search H according to these permutations. In cach step one edge will be searched
as demonstrated in Figure 3.1 from left to right and top down. In the figure, solid lines
and dotted lines refer to contaminated and searched edges respectively. Also searchers
have been distinguished with asterisks. The first edge to be searched according to
ey would be vy, But vy comes before vy in oy g7y and (i) applies, so we place two
searchers on vy and slide one of them to vy. Next we have vyvy with v, coming before

50 we place two searchers on vz and one of them would be slid

o5 Again (i) applic
t0 1. Then vyvg, and we see vy comes before vy, The only searcher on vy will be slid
to vy based on (iii). Next we need to search vyv5 with vy coming before 15, We place
a searcher on vy and slide it to vy as (iii) applies in this case. The next edge to be

searched s 0305, Note that vy comes before v, so (iv) applies and we slide one of the
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searchers located at vy to vs. Then turn comes to vyvy with v4 coming before v We
slide the only searcher located at vy to vy as (iii) applies in this case. The last edge to
be searched is vyvy and vy comes before vy. Again (iii) applies and we slide the only
searcher at vy to vy. At this point all the edges of H are scarched and by definition

H is searched by means of five searchers. Note, however that sgu (H) = 3.

Figure 3.1: Fast scarching H ac

srding to specified permutations
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Based on this idea, the following theorem can be proved giving a better bound than

that of Corollary 3.2 for big enough 6 (G).

Theorem 3.3. Let G = (V,€) be a graph with mininum degree 6 (G) = 8. Then

St (G) < (1/3+3/8) [€].

Proof. Let g and oy be independent random permutations on € and V respectively.
Construct the probability space (€,2%, Pr), where the sample set  consists of all
strategics S(pe,ay) induced by og and ay. Having picked o and oy mniformly at

random, the probability space is uniform as simple events are equiprobable. Let

w € Q be a strategy, define the random variable X ( X € NU {0} on Q which
indicates the number of searchers needed to search G applying w. Furthermore for
¢ € &, define the random variable X, (w) = X, € {0,1,2} indicating the mumber

of searchers we need to assign to ¢ to search it when it is being considered. Then

X =3, ce Xo and hence by the Linearity of Expectation

E[X] = E [Zx,}

cef

= Y E[X). (3.1)

cee

Next we determine E [X,]. Let ¢ = uv, define another random variable Y*(w) = Y €
)} |, the

number of edges incident to u which are searched before e. Assume that we assumed

{0,1,... deg (u) — 1} where Y = |{¢' € £|¢’ = uw,w € V,0¢ (¢') < 0¢

v (1) < oy (v). Then by the Total Probability Rule we have

deg (w)—1
Pr(X,=2 = Y Pry=dPr[

=0

2y =i (3.2)
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Now if there is no edge incident to u searched before e, there will be no guard at

when ¢ is being considered and hence exactly two searchers must be assigned according
to (i). That is

Pr(X.=2|Y¥=0]=

3)

We next consider the case where at least one edge incident to u has been searched

before e. Let ¢/ = uw be the first searched edge in the set of all edges incident to «
searched before e. Then ag (¢') < o¢ (¢). Then by (i), independent of oy (1) < oy (1)

or oy (u) > oy (w), after ¢ is searched, exactly one searcher would be guarding u.

and (iii), no matter how many adjacent edges are searched, at the

time that we consider e, at least one searcher is guaranteed to guard u. Hence as
¢’ was arbitrary, when there is at least one searched incident edge at the time ¢ is

considered, we will either need an extra searcher or no extra searchers. That is,

Pr(X,=2|Y'=i]=0 for i>1 (3.4)

which along with (3.2) and (3.3) give

(X, = 2] = Pr[y* (3.5)
Similarly, by the total probability rule we have
deg (u)-1
] = ) Prlyf=iPr[X.=1|¥*=i. (3.6)

=0

Now if all the deg(u) — 1 edges incident to  are searched before ¢, as discussed carlier,

at least one searcher is guarding u once ¢ is considered; then this would be case (iii)



and no extra searcher would be assigned. That is

Pr[X, = 1Y = deg(u) — 1] = 0. (3.7)
On the other hand (3.3) implies
PrX, = 1]¥"=0]=0,
which along with (3.6) and (3.7) gives
dog ()2

PriX.=1 = Y Pr[r=iPr(X,=1]Y}=

(38)

Now combining (3.8) with (3.5), by the definition of the expectation we get

E[X] = 2Pr[X.=2+Pr[X. = 1]+0

dog (u) -2

= 2Pr[Yr=0] + Y Pr(vt=iPr[X,

Y =i. (39
Similar to the proof of Theorem 3.1, for i = 0, 1,.....,deg(u) — 1 we have the following.

Pr(v =i = (3.10)

1
deg ()

Returning to (3.9), we will estimate Pr[X, = 1Y, = i] for i = 1,2,...,deg(u) — 2. It

is easy to see that Pr[X, = 1Y, =

= 1. So assume i > 2, that is at least two edges

are searched before e. Suppose ex has been searched before ey for k = 1,2,...,i— 1.



Observe that by the Total Probability Rule,
1
Pr(X, =0[¥! =i = FPr[X.=0[¥ =i and oy (u) <oy ()] 4

i and oy () > oy (). (3.11)

This is because in exactly half of the permutations on V, oy (w;) < oy (u) and in
Jui}

induced by ay. Assume o}, (u;) < % (u). When e, is to be searched, since i > 2,there

the other half V, oy (1) > ay (u). Consider the permutation o on {u, uy, u,

is at least one scarcher guarding u. Note that another searcher will be slid from w;

to u and thus once ¢ is considered, at least two searchers will be available at w. It

follows that Pr[X, = 0]¥;* =i and o (u;) < o ()] = 1. But since o is induced by

y we conclude

Pr()

=0[Y =i and oy (u) < oy (u)] = 1 (3.12)
Assume o}, (u;) > o}, (u) and let w, satisfy o}, (ue) < % (u). Then once turn comes to
¢k, if there is more than one scarcher guarding u, one of them will be taken to search

ek Else there would be exactly one searcher in which case, the searcher would not be

taken. We conclude that for every vertex coming after « in o', at most one scarcher

will be removed from w. This fact implies that if in ¢’ the number of vertices coming
before u is at least one more than the number of vertices coming after u, then at
least two searchers will be available once e is considered. We count the number of the

permutations on {u, uy, ug, ... u;} with u; coming after u in cach of which the number

of vertices coming before u is strictly greater that the number of vertices comin
u. We know that in all of these induced permutations, once e is considered, there

would be at least two scarchers available at u.
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Take a permutation on {uy,uz, ... uiy} in (i — 1) ways. We can place u in the
permutation in | (i — 1)/2] ways such that there are at least three (or two when i — 1
is even) more vertices coming before u than after. If we place u at the end of the

permutation, then we can place u; after u in just one way. If we place u just before

st element of the permutation, then u; can be placed after u in ex:

ly two
immediately after « or after the last element of the permutation. Similarly if
we place u in the jth position before the last element of the permutation, then there
are j options for the position of ;. Hence by the uniformity of th probability space
we can write

L=1)/2)
-0y

=0|Y" =i and o' () > o' (u)] > (3.13)

(i-3)i-1)
Hi(i+1)

The last expression is greater than 1/10 for all i > (1/3)(11 + 2y/19) ~ 6.57. Also

one can dircctly verify that the right hand side of (3.13) is

ero for i = 2 and greater

than 1/10 for all 3 < i < 6. But o’ is induced by ay, hence we conclude

Pr(X, = 0¥ =i and oy () > oy (u)] > 1/10 for all i > 3, (3.14)



and

Pr(

= 0]V =2 and oy (u2) > oy (u)] = 0 (3.15)

From (3.4) we have Pr[X, = 1|Y,* = i] + Pr[X, = 0|¥;* = i] = L. Hence by (3.11),
(3.12), (3.14), and (3.15)

:
PrlX, = 1Y =2/ < & and PrfX, = 1[Y =i] < % forall i > 3.
Now from (3.9) and (3.10)

degs (u) -2

E[X] = IR > oPrXo=1yr

deg (u) " deg (u)

9 1 deg (u)-2
= + (Pr[X,:lU;":l] + ) PriXe=1]Y'=

i=2

2 1 1 9
= b Tiam (1 g+ g(des () '4))

2 8 .8
deg (u)  20deg (u) ' 20

2.9

<
-4 b 20
It follows from (3.1) that E[X] < (9/20 +2/8) |€] which implies sq (G) < (9/20 +

2/6) [€] by the Expectation Principle. "

We claimed that the above theorem establishes a better bound than the brushing

bound for graphs with large enough minimum degree. Consider the following. 1
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G = (V,€) is a graph with § (G) = 6 > 40, then 2|€]/8 < [£]/20 implying 9[&|/20 +
21€1/6 < |E]/2+ VI (1 - 1/8)/4. But

131 L R 3 S 4 O 5
2 1 2 4 4 +1
=
<M1 .
2T I & de() 11

e, w1 1
S THTT1 X meaT

vev
desg (1) is even

Therefore for all graphs with mininum degree greater than forty, Theorem 3.3 gives
a tighter bound than Corollary 3.2.
3.3 An Upper Bound for Fast Search Number of

Almost All Graphs

Based on Theorem 3.3, we may derive a result for fast search number of almost all

graphs.

Definition 3.4. Let G be a graph of size m. For a fixed € > 0, we say that (7 satisfies

property B, if and only if s (G) < (9/20 + ) m.

We will show that almost every graph satisfies B,. To do so we also introduce the

following graph property.

De!

nition 3.5. For a fixed d > 1, we say that a graph G satisfics property D, if and

only if §(G) > d.
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Lemma 3.6. For a fixed d > 1, almost every graph (in G(n, p)) satisfies D.

Proof. Fix p with 0 < p < 1. We will show that Pr[G € D,] — 1 as n — oo, where
G € G(n,p). Without loss of generality, let {1, v, ..., v,} be the set of vertices of G.
Note that random variable deg (v;) has binomial distribution with parameters n — 1

and p. Denote the event deg (1) < d by V;, then by Theorem 2.7 for 1 < i < n we get
Pr[V] <

But we have

< nexp (- 6(n)),

tending to zero as n — co. This implies the probability of the complement event,

that is Pr[G € D) tends to one as n — oo. [ ]
We now state the following.

Corollary 3.7. For a fixed & > 0, almost every graph satisfies B,

Proof. Fix p > 0. Let G € G(n,p) be a graph of size m and minimum degree 8. Then

. Therefore if we let § be a value greater than

St (G) < (9/204+2/8) m by Theorem 3.

d with d > £/2, then spy (G) < (9/20+€) m. Now by the definition, G € Dy implies
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G € B. and consequently Dy € B... It follows that Pr[G € B.] > Pr[G € D). But

by Lemma 3.6, lim Pr(G € Dy = 1 so we conclude that lim Pr(G € B,]=1. ®

3.4 A Lower Bound for the Fast Search Number
of Almost All Graphs

Definition 3.8. For a graph G denote the set of all vertices with odd degree by

V, (G), and the set all vertices with even degree by V, (G).
From [10] we know the following bound on the fast search number.

Theorem 3.9. [10] Let G = (V,€) be a graph. Then s (G) > |V, (G)] /2

Based on Theorem 3.9 we can establish the following.

Theorem 3.10. Fix ¢ € R with 0 < ¢ < 1. Then for almost all graphs G € G (n, p),

St (G) = Q(n).
In order to show this, we will need a lemma.

Lemma 3.11. Let random variable X, have binomial distribution with parameters

nand p € (0,1). Then Pr[X, is odd] = § £ o(1) and Pr[X, is even] = & %+ o(1).



Proof. Let

P(n)=Pr[X, iseven] = Y (';)m*'(l—u)ﬂ

and

From the binomial theorem we know

Pw-eul = | 3 (ora=nr = 5 (ra-nr

1<i<n
= ‘(—1)”(”)7"(1*11)”+v--+(*1)”<”>11”(| 71')”‘
0 n
= e

But 0 < p < 1 implies |2p — 1] < 1 and thus

[P(n) — Q)| = [2p— 1" = 0(1). (3.16)

But P(n)+Q(n) = 1. Thus by (3.16) we see P(n) = 1/2%0(1) and Q(n) = 1/2+0(1),

as required. []
Now we prove Theorem 3.10.
Proof. Fix 0 < p < 1L and let G = (V,€) € G(n,p). Since by Theorem 3.9,

St (G) > [V, (G)]/2, it suffices to show that for almost all graphs G € G (n,p),

we have [V, (G)] = Q (n°).



Consider the event |V, (G)| > k where k € N. Then the probability of this event is at
most the probability that there exists a set K € V with deg; (v) even, for all v € K.

Pr|V.(G) > k] < Pr[Ag]

< pr| U A
Kev
K=k

< 3 Pr(Ad
Kcv

l
IKl=k

= (;’) Pr(Ag]. (3.17)

Now let K = {ur, uz, .., ux} and B, be the event in which deg(v) is even. Then

Pr[Ax] = Pr[B, N B,,N---NB,] (3.18)

ua

But by the intersection rule we know the following.

Pr {h Bl ] = Pr[Bu,] Pr[Bu,|Bu,| Pr[Bu| By, N By,) -+ - Pr [B..AB... n---NB,, ‘]

o (3.19)
Denote the complement of B, by B, (the event in which deg g(v) is odd). Then by the
total probability rule we have Pr [B,,] = Pr [B,,| By, ]+ Pr [B,,| B, ], and consequently

Pr(B,,|B.,] < Pr(B,,). The same argument applies to show Pr [B,,[B,, N---N B,, ] <



Pr(B,,). Thercfore by (3.18) and (3.19)
Pr[Ax] < Pr([B,)Pr(By,)---Pr(B,]. (3.20)

Note that deg (v) (which is a random variable) has binomial distribution with pa-
rameters n — 1 and p, as we have n — 1 independent trials of being an edge between
v and other n — 1 vertices, cach with the probability p for success. Now we apply

Lemma 3.1 to get Pr[B,,] = 1/2% o(1). Then by (3.17) and (3.20),

rrlv.@rzk] < (7) (5 + o)

For some 19 and 1 > ng we would have (1/2+ o(1)) < e, where 0 < ¢ < 1. We also

)

know from [4] Theorem 1.2.1, that (3) < ()", Since (]

L = (") it is also true that
(S

- A
)" Therefore the following is concluded.

RN
Pe[ |V (G) 2 k] < (%) e* < (en) ke,

Now set k = k(n) = n — n®, where ¢ is the constant of the hypothesis. Then we have

Pr[ V. (G) > n—n] < (%)5

This will imply

- o A
T Pr[ V(G 20— }5,.15'0'\»(5) en=0.

Note that the limit equals zero as n°In () = o (nIn 1), and hence by Theorem 2.21

we have (2)" = 0((1)"). Now applying the Squeeze Theorem we get lim Pr [ |V,

(@)] = n=n] = 0. But |V, (G)|+]V. ()| = |V (G)], 50 we conclude lim Pr [ |V, (G)]
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< ) = 0, or equivalently lim Pr [ |V, (G)|
S

>n'] = 1. Thercfore lim Pr[|V, (G)]/n" > 0] = 1. By Theorem 2.2 it follows that

Pr[ lim [V, (G)|/n° > 0] =1 and consequently Pr [ liminf |V, (G)] /n° > 0] = 1.

Thus with [V, (G)|/n® being non-negative, according to definition Pr [V, (G)] =
L}

Q(n%)] =1 as n — co. This completes the proof.



Chapter 4

Upper Bounds for the Node Search

Number

In this chapter we will find a general upper bound for node search mumber. Firstly

we will review the current literature through the next section.

4.1 Existing Bounds for Node Search Number

To the knowledge of the author, no exclusive upper bound has been developed for

node search number. But there are quite a few for pathwidth. Considering the tight
connection between node search number and pathwidth, we must consider these re-

sults.

Theorem 4.1. [5] If G is a planar graph of order n, then pw (G) = O (n).

Theorem 4.2. [12] If G is a cubic or sub-cubic graph (a graph with maximum

degree three) of order n, then for every e > 0, there exists some n. such that

pw(G) < (1/6+)n for n > n..
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But the only known general upper bound on pathwidth is due to [23]

Theorem 4.3. (23] If G is a graph of order n and size m, then pw (G) < m/5.769 +

O (logn).

By Corollary 2.17, pathwidth and node search muber are asymptotically the same.

Thus we will have the following immediate corollary.

Corollary 4.4. Let G be a graph of order n and size m. Then s, (G) < m/5.769+

O (logn)
Next we will improve the above bound.

4.2 Bounding the Node Search Number

In this section, we develop two upper bounds. The first one is in terms of the inde-
pendence number of the graph, and the second one is in terms of the maximum degree

of the graph.
Theorem 4.5. 1f G = (V,€) is a graph, then s you. (G) < n—a (G) + 1.

Proof. Let T be a maximal independent set of G, One can search G through the

following procedure. Place exactly one searcher on every vertex of V\ Z. Place one

extra searcher on the first vertex of an arbitrary ordering of Z, say u,. Now all the

neighbors of uy are guarded, as 7 is an independent set and hence there is no edge
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between uy and Z \ {u;}. Thus all the edges incident with u; become scarched. But

carcher from u; none of these edges get recontaminated as they are

if we remove the
not incident to a vertex that is connected by an unguarded path to a contaminated
edge. Now we may remove the searcher from u; and place it on the next vertex of the
ordering of T and follow the same procedure until all the edges in G [Z] is completely
searched. Note that all the edges in G [V \ Z] are also searched, as all the vertices

carched without any

in V\ Z have been guarded beforchand. It follows that G is

Snode (G) S IV\I|+1=n—-a(G)+1 [ ]

further movements of searchers. Thus
Now bounding the independence number we will have the following,

Corollary 4.6. If G is a d-regular graph of order n, then

oo (G) < (%) n+l.

Proof. By Theorem 2.8 we have a (G) > n/(d +1). Now the result follows from

Theorem 4.5. L]

For graphs close to regular, we can do asymptotically (in terms of the order of the

ph) better than Corollary 4.6. But first we need prove some useful lemmas.

Lemma 4.7. 1f G = (V,€) is a graph of order n with U C V such that G (U] is a

collection of vertex vertex disjoint paths, then s uoqc (G) < n — [U |+ 2

Proof. Let P = (py,pay .., px) be an arbitrary ordering of paths in G (). In Figure

1.1 a conceptual illustration of G has been presented, where the dotted lines between
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G [V\U) and G [V (py)] stand for possible edges between these two components. Note

that paths p; can be as short as one vertex. Search G through the following procedure.

Place exactly one searcher on each vertex of V '\ U. Without loss of generality let

Pr =tttz -y, with 1 > 1. We place two extra searchers, one searcher on 1y and one
on uz. But based on the assumption, u; has no neighbor in U except for uz which has a
searcher on it. So all other possible edges of uy are in U \ V, being guarded. Tt follows
that all the edges incident to uy in G are scarched. But if we remove the searcher from
uy none of these edges become recontaminated, as they are not incident to a vertex
that is connected by an unguarded path to a contaminated edge. Place the removed
searcher on us. Applying the same argument, all the neighbors of w; excluding 1 now
are guarded. But wyus is already searched so all the edges incident to uz are scarched

now. Besides, we can remove the searcher from uy without any recontamination as

none of tl connected by an unguarded

- searched edges are incident to a vertex that
path to a contaminated edge. Remove the searcher from uy and place it on u; and

1 also use

follow similar steps until the edges of p; are completely searched. We
the two searchers assigned for py to search py through px in the same fashion. Note
that all the edges in G[V \ U] are also searched, as all the vertices in V' \ U have

been simultaneously guarded firstly. It follows that G is searched without any further

movements of searchers. Thus s e (G) < [V\U|+2=n— U] +2. []

Lemma 4.8. If G is a graph and p = uyuy - - - uy is a shortest path from u; to uy in

G with U = {uy, uz, ..., us}, then G [U] is exactly p.

Proof. The graph G [U] consis

of p and other possible edges. There exist other

edges if and only if G[U] has a cycle, contradicting the fact that p is a shortest
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Gl

GV ()] ‘ GV () ‘ ‘ GV (m) ‘

Figure 4.1: A picturc of G/

path L

Lemma 4.9. If G = (V,€) is a graph with d (G) = k, then for every k' < k, there

exist ', v’ € V such that dist (u/,v) = &

Proof. Since d (G) = k there exists a shortest path of length & in G say p = ww, -+ wy_yv.
Take p' = uw, + - wy, then p' is a shortest path from from u to wys, as if not, there

would be some p with length less than p/ by replacing which we can construct a

path from u to v with length less than &, a contradiction. Thus dist (u, wy)

required. [



Lemma 4.10. If G = (V,€) is a connected graph of order n > 2 and maximum

degree A = A(G) > 2, then d (G) > (logan) — 1.

Proof. Let v € V. Then at most A vertices are distance 1 from v, and at most

A(A — 1) vertices are distance 7 from v for i > 2. It follows that

n < 1+A+AQA -1+ + AL -1)NO!

A(A —1)1@
A-2

< AU@H

Hence d (G) > (logan) — 1. [

Lemma 4.11. If G = (V,€) is a connected graph of order n with fixed maximum
degree A = A (G) > 2, then for every fixed € > 0, there exists a set 4. €V such that

G[U.] is a collection of vertex disjoint paths and

|Ue| >

Proof. Having fixed ¢, define the following algorithm on G:



Algorithm.

SetU =0, W:=V

Fix o= [ (5 - 28) /(A - D] +1

While [W] > Act!
1. Pick a shortest path p in G [W] with [p| = ¢
2 U=UU V()
3. Wi=W\ (V(p)UN ()

4. Maintaining the maximum degree A, keep G [W] connected by adding as

many edges as needed.

End

Note that by Lemma 4.10, [W| > A7+ implies d (G [W]) > c. Also line four of the
loop keep the graph connected (we will verify the condition later). Then by Lemma

4.9, in each iteration of the loop we are guaranteed to have a shortest path p in G[W)]

with [p| = c. In each iteration we simply remove a shortest path of a fixed length
and its neighbors from the graph. After the termination of the algorithm, U is the

set of all removed shortest paths. Having removed all the neighbors of paths, G [U/]

is a collection of vertex disjoint paths by Lemma 4.8.

Before determining the size of 4], note that after the exceution of line three of the

loop, the graph may get disconnected say into components Cy,Cs, ..., Cr. We know
there exists a vertex u; in C; with deg, (u;) < A—1since the component had been con-

nected to the ret of the components before the execution of line three. Thus C; is not



a complete graph and there should be another vertex v, in C; with dege, (1) < A—1.
With this fact being said, it is casy to scc that the condition of line four of the loop

can be satisfied; it suffices to add {uvs, vy, ..., wy—1vp} to G W),

Now we determine | | when the algorithm terminates. At each iteration, |U | grows
by ¢+ 1. On the other hand, consider Figure 4.2 Take the path p = wyws - wey
and cluster the vertices as shown in the figure. There are at most A vertices in the
first bag, and at most A vertices in the last bag. Also each of the ¢ — 1 middle bags
contains at most A — 1 vertices. So [V (p)UN (p)| < (A—1)(c—1)+2A. This implies

at, each iteration | W | is reduced by at most (A —1) (¢—1)+2A. Thus it follows that

n—At 41

lel = [WJ"'“)

c+1
((A~l)(r—l)+2A)”70“)‘ (44

Note that the bracket term is a lower bound for the number of iterations of the loop

and the asymptotic term O (1) replaces a function of fixed A and c.

c+1 - c-1
A-D(-1D)+2A = (A-1)(c-1)+2A

I
B-D(@-Dc-1+2a)




Figure 4.2: Removing a path

24
= [(27—2A>/(A—1)} +1
Hence we conclude by (4.1) that

e (ﬁﬁ) n—-0(1).

ccall that to keep the graph connected we added some edges. Thus U is a collection

of vertex-disjoint paths in G, composed of the same vertex and edge sets as G, plus

from U, it would

possibly some extra edges. If we remove the set of the extra edge
be still a collection of vertex disjoint paths. So we can sot U, with U excluding the

extra edges

Now we can state the following theoren.

Theorem 4.12. Let G be a graph of order n with fixed maximum degree A =
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A(G) > 2. Then for every

Proof. From Lemma 4.11 we know that there exists a set &, € V such that G [U,] is

ch that

a collection of vertex disjoint paths s

Ul > (ﬁ 75) n-0().

3ut by a 4.7,
8 G) < n-|{x+—=-¢)n-0(1)+2
Snode (G) AT (

A=2
< (ﬁ)u+su+0(l)

It remains to show that we have made an improvement. Let G be a graph of order
n and size m and fixed maximum degree A. First take n big enough such that the
asymptotic term in Theorem 4.12 is less than the asymptotic term of Theorem 4.3.

Now let & > 11. Then for every A > 11 with & small enough, we have

A-2 on
5769 ( T— +¢ S <m.
)7())<A_I+c)u< 5 <m



So the bound given in Theorem 4.12 is tighter than that of Theorem 4.3 for all graphs

with § > 11.

For a d-regular graph G of order n with d > 2 Theorem 4.12 tells us s 040 (G) <
(42 +)n + O(1) which asymptotically is a tighter bound compared to that of
Corollary 4.6. Nonetheless, for the cases in which the graph is far from regular or

we have a good knowledge of the independence number of the graph we can apply

Theorem 4.5. Our first example is the family of Kneser graphs. Kneser graphs are

not necess

rily sparse, cubic or planar. So existing results do not tell us much about

their pathwidth. In contrast we know the following,.

Lemma 4.13. [1] For the Kneser graph K (n, k), we have a (K (n, k) = (3-!).
This piece of information leads us to the following result.

Corollary 4.14. For the Kneser graph K (n, k), we have

Suode (K (1,8)) < 2 V(K (n, 1)+ 1.

n

Proof. Since |V(K(n, k))

= (1), and by Lemma 4.13, a (K (n,k)) = (1), the result
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would be a straightforward consequence of theorem 4.5 and Pascal’s identity as follows
Suode (K (1K) < [V(K (n, k)| = (K (n, k) + 1
(MY 4y
-k k-1
n—1
= 1
()
n—k(n
C 1
P (A>+

n- .
= S IVE@K)[+1

We proceed with a few other examples.

Corollary 4.15. If G is a well-covered graph of order n, then s,,q0 (G) < n/2+ 1.

Proof. From (28] we know a (G) > n/2. The result follows from Theorem 4.5 L]

Corollary 4.16. 1f G i a graph of order n with odd girth 2k+1, and § (G) > n/(k+1)
where k > 4, then 8 g (G) < (k+ D)n/(2k + 1).

Proof. From [2] we know a(G) > kn/(2k + 1). The result follows from Theorem

1.5. n



Corollary 4.16 indicates that node scarch number of a dense graph need not be very

discussed

large. (A construction of dense graphs with large independence mumbers

in[20].) Further examples of such dense graphs can be found among clique-free graphs.

Corollary 4.17. Let Gy, Gy and Gy be graphs of order n, where Gy is a triangle-free
graph with §(G1) > 2n/5, Gy is a Ky-free graph with 8 (G2) > 3n/5 and Gy is a
K,-free graph, with §(Gs) > (2r — 5)n/(2r — 3), r > 5, then suoue (G1) < n/2+ 1,

Snode (G2) < 20/3+ 1 and 8000 (Ga) < (r = 2)n/(r — 1) + 1.

Proof. By [16] we know G, G, and Gy exist and we have a (Gy) > n/2, a (Gy) > n/3

and a (Gy) > n/(r —1). Now the result would follow from Theorem 4.5. [



Chapter 5

Conclusion and Further Works

arching models, node searching and fast scarching.

In this thesis, we studied two edge se:

search

We concentrated on the magnitude of the node search number and the fas
number of general graphs in the context of classical graph theory and also using the
theory of random graphs. Consider a graph G = (V, €) of order n, size m, maximum
degree A, and minimum degree 6. We first showed that the upper bound on the brush
number introduced in [3] is in fact also an upper bound for the fast search number.
Thus,

1
deg (v) + 1

deg(v) is even
But applying the probabilistic method we improved the result to s (G) < (9/20 +
2/8) m for § > 18. Next we saw that for almost all graphs the fast search number is less
than one third of the size of graph. To shed more light on the order of magnitude of
the fast search number, fast scarching was asymptotically investigated. We discovered
that for every rational ¢ < 1, the fast scarch number of almost all graphs is € ().
This is actually an asymptotic lower bound for almost all graphs. Next we studied the

node search number which is essentially almost pathwidth. Here we worked on the



problem of improving the only existing upper bound on the node search number of a

general graph which has been discovered in the context of pathwidth. This bound on

pathwidth manifests itself in node searching as s wode (G) < m/5.769 + O (log n). For

fixed A, we proved that

and showed that this later bound is tighter than the former when § > 11.

All of the results in the node search section can be easily used to get new results for
pathwidth, using Corollary 2.17. But there is also one more algorithmic consideration,

Clearly Theorems 4.5 and 4,12 are constructive proofs as we have deterministically

constructed a rch strategy to prove each theorem. A basic question here would be;

is it possible to derive path decompositions from these search strategies for a graph?
The answer is yes. Fortunately, the approaches taken in [22] and [21] are both con-
structive. So for any connected graph, it would be natural to take the node search
strategies in Theorems 4.5 and 4.12, transform them to vertex separations applying
, and then transform the verte

the algorithm introduced in separations to path

decompositions using the algorithm introduced in [21]. It must be noted though, the
hidden constant in Theorem 4.12 is very large which from an algorithmic point of

view makes the whole procedure quite inapplicable for graphs of small order.

In studying the fast search number of graphs we concentrated on the size m of the

graph. But there are different search numbers which are bounded by means of the

order of graph. Certain observations reveal the fast search number can e properly

bounded in terms of size. In the other hand we saw that the fast search number of
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at least sub-linearly with the order. The author strongly

almost all graphs grow

suspects the growth is most probably lincar.

The only lower bound on the fast search number given in this thesis is an asymp-

. Other lower bounds are available, but most

totic lower bound for almost all graphs
of them bound the fast search number of certain classes of graphs. While separate
investigation of different classes of graphs is valuable on its own merit, the question

still remains whether we are able to give a lower bound on the fast search number of

a general graph in terms of clementary graph paramete

. But the author

o analy

For the node search number, we applied a maximum degre
believes that a tighter bound can and should be in terms of the average degree of

graph. Nonetheless, a better bound in terms of maximum degree is also reasonable;

Theorem 4.12 implies the asymptotic pathwidth of a cubic or sub-cubic graph of order

n is less than almost n/2 while from Theorem 4.2 we know it is less than almost n/6.
The trade-off made to obtain a general bound in the current study, could be shrunk for

acla

of graphs with fixed maximum degree. The first step could be the investigation

of quartic and sub-quartic graphs. No general upper bound has been found for this

class of graphs yet.
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