








NUMERICAL MODELLING AND INVERSION OF BOREHOLE

INDUCED POLARIZATION DATA

by

Amir.H. Javaheri Koupaei

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREME TS FOR THE

DEGREE OF MASTER OF SCIENCE

EARTH SCIENCE (GEOPHYSICS)

DEPARTMENT OF EARTH SCIENCES

FACULTY OF SCIENCES

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

ST. JOH 'S, EWFOUNDLA D

© Copyright by Amir.H. Javaheri Koupaei



Abstract

The classical borehole Induced Polarization (IP) for mineral exploration is using a

lateral probe where the two potential electrodes and one current electrode are de

ployed in one probe and used to measure the voltage in the drill-hole while the other

current electrode is placed on the ground at infinity. Classical borehole IP has sev

erallimitations including an investigation radius that is restricted by borehole depth,

depth of measurements limited by borehole depth, sensitivity to in-hole mineraliza

tion, and data are not suited to 3D inversion. In the first part of this thesis, numerical

modelling and inversion methods for the measurements of a novel IP borehole survey

design have been investigated. The new survey design called, hole-to-hole lP, has

been introduced by Abitibi Geophysics and aims to compensate the limitations of

classical borehole IP especially in providing data that are suitable for 3D modelling

and inversion. The geophysical modelling package "DCIP3D" provided by Geophysi

cal Inversion Facility of the University of British Columbia has been used for forward

modelling and inversion of hole-to-hole IP data. Different combinations of receivers

and boreholes have been examined to obtain the economically optimum survey design

including the minimum number of boreholes and receiver locations for a successful

imaging of the chargeable ore body in a mineral exploration project. Also, a weight

ing function has been applied to improve the imaging of the mineral deposit located



between boreholes. In the second part of the thesis, a 3D numerical modelling tech

niques based on integral equation methods for modelling of DC resistivity and IP

data has been developed. The pivotal novelties in the code are, first, the application

of unstructured meshes which is more flexible to complicated geometry with respect

to the structured mesh. Second, the 3D code has been developed to allow both con

stant and linearly variable charge inside each cell and this enables us to simulate

the charge accumulation over the boundary surface more precisely. Therefore, the

developed code will enable numerical modelling to be done for more complicated ore

bodies than was previously the case.
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Chapter 1

Introduction

Although scientific curiosity to obtain a better understanding of the Earth's nature

is the major motive in exploring the Earth's surface and its interior, a key motive is

the exploration for mineral resources. In the past few decades, improving standards

of living have caused more demand for water, fuel and other minerals. Over the past

3 centuries, geophysical techniques have been used in mineral exploration. The first

application of geophysics in mineral prospecting was the use of a magnetic compass

in searching for iron ore in Sweden, 1640. The Schlumberger brothers successfully

applied self potential (SP) and direct current (DC) resistivity methods in the early

1900's. In 1912, Conrad Schlumberger introduced a new technique for mineral ex

ploration called the "Induced Polarization" method and employed the technique for

investigation of economic sulphide deposits (Zonge, 1993). Since electrical methods,

including the induced polarization (IP) technique, have been shown to be effective

in mineral exploration (Fink et al., 1990), there has been much improvement and

development both in practical issues such as equipment and theoretical issues such

as processing and modelling methods. Downhole techniques were firstly developed

for in-hole assaying. Afterwards, to evaluate mineralization and alteration features



between drill-holes, cross-hole tomography was developed (Zonge, 1993). Since then,

several configurations for surface DC resistivity and IP have been deployed in bore

holes to improve resolution of these methods with depth. Each configuration has

its own advantages and limitations. The most common method in borehole IP for

mineral exploration is using a lateral probe where the two potential electrodes and

one current electrode are deployed in one probe and used to measure the voltage in

the drill-hole (Kaufman and Anderson, 2010). The other current electrode is placed

on the ground at infinity. I refer to this method as "classical borehole IP". Classical

borehole IP has several limitations including an investigation radius that is restricted

by borehole depth, a depth of measurement also limited by borehole depth, and sen

sitivity to in-hole mineralization. The data are not suited to 3D inversion.

In the first part of this thesis, I investigate via numerical modelling and inversion

a novel IP borehole survey design. The new survey design is called hole-to-hole IP

in which the current electrodes are placed on the Earth's surface with a separation

at least two times the target depth and the potential electrodes are deployed in two

separate boreholes. It was introduced by Abitibi Geophysics and aims to overcome

the limitations of classical borehole IP especially by providing data that are suitable

for 3D modelling and inversion. After introducing the theoretical concepts of DC

resistivity and IP methods for surface and borehole studies in Chapter 2, a short

description of the theory of the forward modelling and inversion of DC resistivity

and IP data will be given in Chapter 3, in which I have used the modelling package



"DCIP3D" provided by the Geophysical Inversion Facility of the University of British

Columbia. In Chapter 4, examples of the 3D inversion of hole-to-hole IP data using

DCIP3D will be illustrated where the aim is to determine in particular how few (or

how many) electrode locations are required to obtain good inversion results, and in

general how the inversion of hole-to-hole data depends on the number and configura

tion of electrode locations!. Finally, the inversion results of hole-to-hole field data will

be presented. In the second part of the thesis, a new 3D forward modelling method

based on a surface integral equation will be developed for DC resistivity and IP data.

The pivotal novelties in the method are, first, the application of unstructured meshes

which are more flexible than structured meshes and can thus better represent com

plicated geometries. Second, the 3D method has been developed for both constant

and linearly variable charge inside each cell and this enables the charge accumulation

over the boundary surface to be simulated more precisely. Therefore, the developed

method will enable numerical modelling to be done for more complicated ore bodies

than was previously the case. The complete description of the theoretical and pro

gramming aspects of the code will be covered in Chapter 5. The final chapter will

present the conclusions. Also, extra detailed information on the code will be found

in the Appendix A and Appendix B.



Chapter 2

Electrical Methods

2.1 The DC Resistivity Method

2.1.1 Introduction

In the direct current (DC) resistivity method, the spatial distribution of the resistivity

of the subsurface is investigated. Typically, a four-electrode configuration is used in

which the electrical circuit is created by deploying two electrodes and the potential

difference is measured between two other electrodes. In electrical studies, electrodes

may be placed on the ground and/or in boreholes (Rubin and Hubbard, 2005). The

electrical resistivity of a rock sample depends on its mineral content, the amount and

structure of its porosity, and the amount and resistivity of the contained fluid in that

sample (Parasnis, 1997). Resistivities vary widely from one material to another. For

instance, a good conductor such as copper has a resistivity of 10-8 Om, topsoil as an

intermediate conductor has a resistivity of 10 Om , and a bad conductor such as a dry

sandstone can have a resistivity of 108 Om. Based on this variety in the resistivity

of Earth materials, measuring subsurface resistivity has the potential of being very

useful in extracting information about subsurface structure (Herman, 2001). There



Resistance - R Area - A

RA
Resistivity p.. L

Fig. 2.1: Resistivity vs. resistance (Boyed, 2003).

is a broad range of applications for electrical methods such as prospecting for water-

bearing formations, inferring stratigraphic correlations in oil fields, prospecting for

conductive ore bodies, detecting fractures and cavities in the subsurface, delineating

archaeological features, and environmental applications such as monitoring pollution

in the ground (Parasnis, 1997).

2.1.2 Resistivity basics

From the physical point of view, the resistivity of a material is defined using an ideal

cylinder of length L and cross-sectional area A of uniform composition. To express the

total resistance (R) of the cylinder in terms of its geometrical parameters, resistivity

p appears as the mathematically specific constant of proportionality (Fig. 2.1) :

R=P~ .

Also, Ohm's law can be used to obtain the total resistance experimentally:

(2.1)

(2.2)



where V is the potential difference between two ends of the cylindrical tube and I is

the total current flowing through it (Fig. 2.2). By combining these two equations,

Ammeter

~ttery

~

Fig. 2.2: Current flow and Ohm's Law (Boyed, 2003).

the resistivity of the material as its intrinsic property can be expressed as a function

of experimentally measured extrinsic resistance:

(2.3)

where Rapp is the apparent resistance and K is a "geometric factor" which in this

specific example represents the geometry of the cylinder (Herman, 2001).

2.1.3 Potential in homogeneous media

Assume an isotropic homogeneous medium in which a continuous current is flowing.

The current passing through 8A is equal to J . 8A where 8A is a surface element of

the medium and J is the current density. Ohm's law relates the current density J to



the electric field E via the equation :

J=O"E (2.4)

where 0" is the conductivity of the medium in S/m. The conductivity is the reciprocal

of resistivity. Also, in the steady state situation, the electric field can be defined as

the gradient of a scalar potential:

E=-V'V (2.5)

where V is the potential in Volts. Therefore the current density can be described as

J= -O"V'V. (2.6)

Conservation of charge inside a volume R surrounded by a closed surface A that

contains no source or sink of current can be expressed by

(2.7)

Using Gauss' theorem,

(2.8)

Equation (2.8) is true for any volume R in the source free area, therefore the integrand

can be equated to zero :

V'·J=-V'·(O"V'V)=O. (2.9)

Taking 0" as a constant value, the above equation results in Laplace's equation (Telford

et al., 1976):

(2.10)



Between two uniform media of different conductivities, the following two boundary

conditions must be satisfied. Firstly, the potential must be continuous across the

boundary from one medium to the next. Secondly, the normal component of J must

be continuous. The properties of the two media are denoted by subscripts 1 and 2.

Hence,

(2.11)

The preceding boundary conditions can be expressed in terms of electric fields:

(2.12)

where "t" and "n" mean tangential and normal components respectively (Telford et

al.,1976).

2.1.4 Single current electrode at depth

Consider a point current electrode buried in a homogeneous isotropic medium. Sup-

pose the other current electrode is at infinity (see Fig. 2.3). Based on the spherical

symmetry of the system, the potential is a function only of the distance, r, from the

buried electrode. Laplace's equation in spherical coordinates containing only the r

dependence is:

(2.13)



Fig. 2.3: Buried point source of current in homogeneous medium (Telford et al., 1976).

for everywhere except right at the source. Integrating the product of the above

equation with r 2 gives (Telford et al., 1976):

dV A
d; = ii (2.14)

where A is a constant of integration. Integrating again results in the following ex-

pression for the potential:

V=-~+B (2.15)

where B is a second constant of integration. The usual convention is to take V to be

zero at r -+ 00. Hence, the constant B must be equal to zero. Since the potential

V depends only on r, current is purely radial. Therefore, the total current passing

through a complete sphere of radius r centered on the point electrode is given by:

(2.16)



10

So, the constant A is

A=-!£
47l" '

and finally the potential is given by :

(2.17)

(2.18)

As is shown in Fig. 2.3, the equipotentials are spheres centered on the point electrode

and hence given by r = constant.

2.1.5 Single current electrode at the Earth's surface

Assume that the point electrode which introduces the current I is placed on the surface

of a homogeneous isotropic medium (see Fig. 2.4). Again, the other current electrode

is assumed to be at infinity. Also, the air is considered to have a zero conductivity.

As before, B = 0 as V = 0 when r --+ 00. However, in this case all the current flows

Fig. 2.4: Point source of current at the surface of homogeneous medium (Telford et
aI., 1976).
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through a hemisphere surface (see Fig. 2.4) which means:

A= _!£
27r

and the potential is:

2.1.6 Two current electrodes at the surface

(2.19)

(2.20)

Fig. 2.5: Two current and two potential electrodes on the surface of a homogeneous
isotropic ground of resistivity p (Telford et al., 1976).

When both current electrodes are considered on the surface (see Fig. 2.5), the

potential anywhere in the subsurface will be affected by both. As before, the potential

at PI from Cl is:

where

and the potential at PI from C2 is :

where

(2.21)

(2.22)

Al and A 2 have a different sign because the current at the two electrodes is equal but

in opposite directions. The total potential at PI is:

(2.23)
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The difference in potential between the two potential electrodes P1 and P2 is :

(2.24)

The current distribution and equipotentials are shown in Fig. 2.6. This four electrode

Fig. 2.6: Plan view of equipotentials and current flow-lines for two point sources of
current on a homogeneous half-space (Dobrin, 1960).

arrangement represents many layouts usually employed in resistivity work. Some of

the most common DC resistivity arrays are shown in Fig. 2.7. Rearranging equation

(2.24) gives:

(2.25)

So the resistivity p of the homogeneous half-space can be computed using the above

equation knowing the location of the electrodes, the amount of input current, and the

measured voltage. Since the Earth is not a homogeneous medium with a constant

resistivity, the computed resistivity will not correspond to the true resistivity of the

Earth but will be an average, representative value called the apparent resistivity.
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Fig. 2.7: Common arrays used in surface resistivity surveys and their geometric factors
(Loke,1999).

2.1.7 Borehole DC resistivity methods

DC resistivity surveys can be employed in a borehole using several array layouts.

Borehole DC improves the resolution of the resistivity method at depth.

2.1.7.1 Single borehole survey

The Mise-a-la-masse method is a borehole-based configuration which is common in

mineral exploration. In this method, one of the current electrodes is often placed

in a borehole at depth right inside the mineralized zone while the other is placed a

substantial distance away on the ground surface (see Fig. 2.8). Readings are made



14

at several sites on the surface using one potential electrode while the other is a re

mote electrode. For instance, the Geological Survey of Canada conducted several

Mise-a-la-masse surveys for ore body delineation including the Victoria graphite de

posit in Ontario to correlate high-grade graphite zones between holes, the Hoyle pond

gold deposit in Ontario for mapping the orientation of conductive gold bearing al

teration zones, and the Stratmat deposit in New Brunswick to resolve the structural

relationship between two massive sulphide zones (Mwenifumbo, 1997).

Fig. 2.8: Mise-a-la-masse array (Rubin and Hubbard, 2005).

2.1.7.2 Cross-borehole surveys

The goal in cross-borehole surveys is to produce an image of the resistivity between

the boreholes in which the electrodes are installed. Comparing cross-borehole imaging

to surface imaging, the main advantages are improved resolution at depth and no need

for surface access. Some disadvantages of cross-borehole surveys are that boreholes

are of course needed, data sensitivity is constrained to the region between the bore

holes, more sophisticated instrumentation is required for data acquisition, and data
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processing is more complex. Fig. 2.9 illustrates two examples of cross-borehole config-

(a) (b)

nn
Fig. 2.9: Measurement configuration for cross-borehole resistivity imaging. Electrodes
A and B are for current injection, M and N are for voltage measurement. Scheme (a)
is AM-BN and scheme (b) is AB-MN (Rubin et al., 2005).

urations. In the AM-BN scheme, the two current electrodes are installed in different

boreholes as are the potential electrodes. Therefore, the current is injected between

two boreholes and the potential difference is also measured between two boreholes.

In the AB-MN scheme, current is injected between electrodes in one borehole and

the potential difference is measured between potential electrodes in a separate bore-

hole. Because of the dipole length, the AM-BN scheme has a better signal to noise

ratio compared to AB-MN scheme (Rubin et al., 2005). The successful imaging of a

massive sulphide ore body between boreholes in the Sudbury basin, Ontario by Qian

et al. (2007) is an example of the applicability of the cross-borehole configuration in

mineral exploration.

2.2 The Induced Polarization Method

2.2.1 Introduction

In the DC resistivity method with "normal" (Le., frequency independent) conductiv-

ity the voltage is observed as soon as the current is switched on and drops to zero
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as soon as the current is switched off (see Fig. 2.10). However, in certain situations

.]-~
o 0.5 1 1.5 2

i'J-~
Fig. 2.10: Typical current and idealized voltage wave forms for field DC resistivity
surveys. V; is the primary voltage and v.p is observed self-potential voltage (Rubin
and Hubbard, 2005).

it is observed that when cutting off the current the voltage does not drop to zero

immediately but persists for some time with a continuously decreasing magnitude

(see Fig. 2.11). Correspondingly, the voltage between the probes does not reach its

maximum value immediately after the current is switched on but instead increases

steadily towards the maximum for several seconds or minutes. In geophysical litera-

ture, this phenomenon is known as Induced Polarization or IP. This method can be

employed in the time domain or the frequency domain. Electronically speaking, the

IP effect in the time domain resembles the charging and discharging of a capacitor.

In the frequency domain, the IP effect is like the variation of the impedance of a

circuit including a resistance and a capacitance in parallel for an alternating current

(Parasnis, 1997).
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Fig. 2.11: Phenomenon of induced polarization (Parasnis, 1997).

2.2.2 Sources of Induced Polarization

In general, there are two main mechanisms that can give rise to IP phenomena:

electrode polarization and membrane polarization.

~".'.'.'.'.:..".'."~'."'J...,,:<~~~~@: ID@@ID@
v _ __~(f): (f) (f)

.: :..... - - e e e (f)

g,...,n PO/"t' ~ ..<tr04yte

(a) (b)

Figure 2.12: (a) Electrode polarization phenomenon at mineral-electrolyte interfaces.
(b) Membrane polarization phenomenon in clays (Sharma, 1997).

2.2.2.1 Electrode Polarization

In the ground, ions in the electrolytes present in the pores of rocks are predominantly

responsible for carrying the electric current. Obstruction of the passage of these ions

by certain mineral particles such as common metals that transport the current by

electrons, leads to accumulation of the ionic charges at the interface of the particle
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and electrolyte (see Fig. 2.12 a). The positive charges accumulate at the surface where

current enters the particle and negative charges accumulate where the current leaves.

The appearance of separate concentrations of positive and negative charge is called

polarization. Once the current is switched off the ions slowly diffuse back into the pore

electrolyte. This process is also observed during ordinary electrolysis, at the surface of

metal electrodes dipped in an electrolyte. Physical chemists have been familiar with

this phenomenon for a long time and have referred to it as the over-voltage effect.

Foremost among the ore minerals that have an electronic mode of conduction and

therefore can exhibit strong IP effects are pyrite, pyrrhotite, chalcopyrite, graphite,

galena, bornite, magnetite and pyrolusite (Sharma, 1997).

2.2.2.2 Membrane Polarization

Membrane polarization must be evoked for explaining the IP effects that are observed

even when no metallic type minerals are present in the ground. It mostly owes its

origin to the presence of clay particles that tend to have negative surface charges.

Existence of the clay particles with negatively charged surfaces results in attraction

of positive ions from the electrolyte in the capillaries of a clay aggregate. Therefore,

an electrical double layer is formed at the surface of the clay particles (see Fig. 2.12

b). The positive ions accumulated on the clay particles will be displaced by the

flow of a macroscopic electric current. An IP effect is the result of the process of

charge redistribution that manifests itself as a decaying voltage. Once the current

is terminated, the positive ions will diffuse back to their equilibrium arrangement
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(Sharma, 1997).

2.2.3 Measuring the IP Effect in Time Domain

As mentioned at the end of section 2.2.1, the IP effect can be measured in the time

domain and the frequency domain. The same four-electrode configurations as used

for DC resistivity are typically employed for surface IP surveys.

2.2.3.1 Polarizability

If the IP survey is conducted using DC pulses of duration T and the reading is made

by measuring the voltage LV remaining at a certain time t after current cut-off, the

observed IP magnitude is usually expressed as (see Fig. 2.11):

LV
7)=

V
(2.26)

where V is the maximum voltage that was measured while the current was on. This

quantity is known as "polarizability", and is typically quoted in units of qt:. If LV

and V have been measured in the same physical unit (Volts or milliVolts), the IP

effect can be expressed as a percentage, i.e., 100(~). In IP surveys, T is usually

chosen to be in the range of 1 - 208. The time t, which is a fraction of T, must

be chosen carefully since it must be long enough for EM induction effects to have

disappeared but short enough for L V to be in the sensitivity of the detecting device

(Parasnis, 1997).
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2.2.3.2 Chargeability

Chargeability is defined as the normalized time integral representing the area under

the voltage decay curve between two times after interrupting the current (see Fig.

2.11 b). Specifically:

(2.27)

where t j and t2 are the specific time after current cut off, V is the maximum voltage

that was measured while the current was on and 6 VIP is the potential variation

function while the current is off. The unit of chargeability is (mVsV- 1 ) in which

6 V and V are measured in milliVolts and Volts respectively and time is in second.

In some literature, "polarizability" is also called "chargeability" but because of the

difference in physical unit, it is better to use two different terms for them (Parasnis,

1997).

2.2.4 Measuring the IP Effect in Frequency Domain

2.2.4.1 Percentage frequency effect, PFE

In a frequency-domain IP survey, the apparent resistivity of the Earth is determined

by any kind of electrode configuration at two frequencies, F and f (F > f). In this

method, IP measurement is expressed as the frequency effect:

(2.28)

where Pa(j) and Pa(F) are the measured apparent resistivities in two different fre-

quencies f and F respectively. If the above quantity is expressed as a percentage
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in Pa, the IP effect is called "percentage frequency effect" or PFE (Parasnis, 1997).

The common frequency range used in this type of survey is 0.05 - 0.5 Hz for f and

1-10 Hz for F (Sumner, 1976).

2.2.4.2 Metal Factor

Metal factor is another frequency-domain measure of IP which is defined as frequency

effect divided by the apparent resistivity at high frequency (F):

(MFF,f) = p~~~)~(jf) .

By a simple rearrangement of equation (2.29), metal factor can be written as:

(2.29)

(2.30)

where <7a(F) and <7a(J) are the apparent conductivities at the two frequencies in S/m

(Parasnis, 1997).

2.2.4.3 Phase Shift

Phase shift, rP, is another IP effect measured in the frequency domain and is defined

as the phase difference between the voltage measured by potential electrodes MN and

the current introduced into the ground (Parasnis, 1997). rP is usually expressed in

milliradians, because it has very small values. For instance, its maximum value at

a frequency of 1 Hz is usually a few hundredths to one tenth of a radian. In this

type of survey, the voltage difference in MN is also measured to provide the apparent

resistivity.
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2.2.5 Borehole IP Methods

Surface IP measurements have some deficiencies such as a lack of depth penetra

tion when conductive overburden is present and decreasing resolution with depth.

Borehole IP has been introduced to compensate for these limitations of conventional

surface IP surveys. Going from surface to borehole measurements introduces differ

ences both in theory and practice. For instance, in computing the resistivity from

subsurface measurements the geometric factor is two times that used for surface mea

surements, since the equipotentials in the subsurface are spheres rather than the

hemispheres for the surface investigations (see Sections 2.1.4 and 2.1.5) (Sumner,

1976).

2.2.5.1 Classical Borehole IP

The traditional borehole method where one of the current electrodes is in one borehole,

uses the fact that as the separation between current electrodes is increased,measurements

are sensitive to regions further from the borehole axis. The lateral distribution of elec

trical properties of the geological formation such as chargeability and resistivity can

be studied by measuring the voltages as a function of electrode separation. Two types

of devices are employed in this kind of survey, normal probe and lateral probe (see

Fig. 2.13). As illustrated in Fig. 2.13(a), a normal probe comprises one current

electrode and one voltage electrode separated by a distance L which is called probe

length. Both the return current electrode, B, and the voltage reference electrode,

N, are grounded far from the probe on the Earth's surface. The separation between
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Fig. 2.13: (a) Normal and (b) lateral probes used in classical borehole IP (Kaufman
and Anderson, 2010).

electrodes Band N is much greater than the probe length. The lateral probe (see Fig.

2.13 b) includes two potential electrodes, M and N, and one current electrode, A. The

separation between the two potential electrodes is much smaller than the distance to

the electrode A (i.e.,MN« AM). In the case of the lateral probe, the probe length

is equal to the distance from A to the midpoint of MN. Like the normal probe, the

return current electrode (B) is installed far away from the borehole. Similar to the

surface survey, both DC resistivity and IP measurements can be made using these two

probe configurations. The lateral probe is the most common array used for borehole

IP surveys (Kaufman and Anderson, 2010).

2.2.5.2 Hole-to-hole JP survey

Just like borehole DC resistivity, classical borehole IP using the normal or lateral

probe configuration has several limitations such as investigation range restricted by
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borehole depth, limited depth of measurement, and sensitivity to in-hole mineral

ization, 3D inversion is not always effective. In this thesis, I investigate a novel IP

borehole survey design through numerical modeling and inversion. The new survey

design, which was introduced by Abitibi Geophysics, is called hole-to-hole IP. In this

configuration, the current electrodes are placed on the Earth's surface with a separa

tion at least two times the target depth and the potential electrodes are deployed in

two separate boreholes (see Fig. 2.14) (Berube, 2010). Measurements are typically

made every 5 to 25 meters down the boreholes. Based on the surveys that have been

Fig. 2.14: Hole-to-hole IP array, (Berube, 2010).

done to date by Abitibi Geophysics using this method, the hole-to-hole arrangement

has the following advantages compared to the classical borehole IP: measured data

are suitable for robust 3D inversion, depth of investigation can be greater than 460

m, geological noise is less, the cost is the same as classical lP, and neither special

cables nor costly probes are needed (Berube, 2010).



Chapter 3

3D Forward Modelling and Inversion of IP - Theory

3.1 3D Forward modelling of IP data

In a typical DC/IP survey, current I is injected into the ground and the resulting

potential is measured at various locations away from the source which could be either

on the surface or down a borehole. In the time domain, the current alternates in

direction and the IP voltages are measured in the off-times between the current pulses

(see Fig. 2.10). A typical IP time domain effect is illustrated in Fig 3.1. Regarding

Fig 3.1, <P" is the potential which would be measured in the absence of a chargeability

effect. The relationship between <p" and the electrical conductivity 17 is:

(3.1)

where Fdc denotes the solution of the DC equation (see equation 2.9):

'V. (17'V<p,,) = -IO(r - rs ) (3.2)

where 17 is the electrical conductivity, I is the input current, rs is the location of the

current source and 0 is the delta Dirac function. Appropriate boundary conditions

must be applied to eq. (3.2) (see equations 2.11 and 2.12). The potential <p" calculated

in eq. (3.2) is the potential due to a single current. For electrode configurations that

25
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Fig. 3.1: IP effect in Time domain (DCIP3D Manual, UBC-GIF).

include more than one current electrode, the potential can be computed from eq.

(3.2) using the principle of superposition.

When the Earth materials are chargeable, the measured voltage will change with time

as is shown in Figure 3.1 and reach a maximum value of ifJ'1' Chargeability, TJ, is a

dimensionless, positive parameter whose value is limited in the interval [0,1). Siegel

(1959) stated that the DC resistivity forward modeling function Fdc can be used to

calculate ifJ'1 by replacing the conductivity 17 with 17(1 - TJ). So,

(3.3)

(3.4)

Another potential which can be measured as the IP datum is the secondary potential

which is :

(3.5)



27

The apparent chargeability in the context of forward modelling is defined as:

4Js Fdc [O"(1-1])]-Fdc [O"]
1]a = ~ = F

dc
[O"(l -1])] . (3.6)

In the UBC package for DC/IP 3D modelling and inversion (DCIP3D), which is

the software that is used here, the forward solutions for the DC and IP data are

computed by solving eqs. (3.2) and (3.4) for 4J." and 4J" using a finite volume method.

The finite volume method uses a rectilinear mesh to specify conductivity, 0", and

chargeability, 1], for each cell that can be different from one cell to the next. Also,

homogeneous boundary conditions are applied on the potential, 4J, to approximate

boundary conditions at infinity (Dey and Morrison, 1979).

3.2 3D Inversion of IP data

The DCIP3D program performs two inversion problems. Firstly, the DC potential, 4J",

is inverted to recover the electrical conductivity O"(x, y, z). This is a nonlinear inverse

problem. Secondly, the IP data are inverted to recover the chargeability 1](x, y, z). For

small values of "1]" the IP inversion problem can be turned into a linear problem with

some approximations. To describe the inverse problem, it is convenient to introduce

notation for the "data" and the "model". Having N as the number of data points the

vector d = (d1 , d2 , ... , dN ) denotes the data vector where di could be the ith potential

in a DC resistivity data-set or the ith secondary potential or apparent chargeability

in an IP data-set. The symbol m is used to describe the physical property that

we are interested in. So, mi could be the conductivity or chargeability for the ith
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cell. In DCIP3D, mi has been chosen to be mi = In(17i), because of the positivity

issue and natural range of 17, while inverting for conductivities and mi = TJi for

recovering the chargeability distribution. Appropriate reproduction of the observed

data d obs = (dfs ,d'2bs , ... ,d'j!JS) is the main purpose of inversion which is achieved by

recovering a suitable model vector m = (ml,m2, ... ,mM) where M is the number of

cells. Noise in the observed data can lead to artifacts in the model. So, the objective

in the inversion is neither to underfit nor overfit the data. To reach this goal a data

misfit criterion is introduced:

(3.7)

where W d is a datum weighting matrix and d is the data computed by the forward

modelling. By considering the noise in the lh observation to be uncorrelated Gaussian

random noise having zero mean and standard deviation of Ej, the appropriate form

for W d is the N x N diagonal matrix as:

W d = diag {~, ..,~} .
El EN

(3.8)

Choosing W d as above, 'l/Jd is a random variable with a chi-squared distribution and

N degrees of freedom. So, the expected value for 'l/Jd will be approximately equal to

N. This means 'I/J'd, the target misfit for an inversion, should be close to this value.

The inverse problem is mathematically non-unique because the number of cells, M,

is greater than the number data, N, in order to allow the maximum flexibility to

produce a model with arbitrary variation. Also the inverse problem is fundamentally

non-unique because of noise in the observations and poor resolution of the physics
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of the DC and IP methods. This non-uniqueness is the main problem when trying

to obtain unambiguous information about Earth structure from the observations. In

other words, there are infinitely many models that can adequately reproduce the

observations. The job of a geophysicist is to introduce an appropriate approach to

make the inversion algorithm produce a geologically reasonable model. This goal is

achieved by incorporating a model objective function in a way that, when minimized,

a model with desirable characteristics is produced. In DCIP3D, the model objective

function is designed to find a model which has a minimum amount of structure in the

vertical and horizontal directions and at the same time is close to a reference model

moo To implement this, a discretized form of the following equation is minimized:

where the spatially dependent weights w., wx , wy and W z are specified by the user. The

constant as controls the importance of the closeness of the constructed model to the

reference model moo The roughness of the model in three dimensions is controlled by

a x, ay and a z· As an alternative, length scales Lx = ~, Lx = /fi; and Lx =~

are sometimes used. The greater the length scale in each direction, the smoother the

constructed model in that direction. To have a reasonably smooth model, the length

scale should be greater or equal to two cell widths and smaller than the respective

dimension of the model region (DCIP3D manual, UBC-GIF). The discrete form of
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the eq. (3.9) is:

where the matrices W., W x , W y and W z are produced by finite difference approx

imation of the spatial derivatives in equation (3.9). Finally, the inverse problem

becomes the following optimization problem :

minimize

subject to (3.11)

where J.L is the trade-off parameter that is automatically adjusted such that 'l/Jd ~ 'l/Jd'

3.2.1 Inversion of DC resistivity data: Gauss-Newton Method

DC inversion is a nonlinear problem as the data do not depend linearly on the con-

ductivity model. DCINV3D, part of the DCIP3D package, solves this problem by

using the Gauss-Newton approach in which the objective function is linearized about

a current model m(n), and a model perturbation is solved for and used to update

the current model. Substituting m(n+l) = m(n) + Om into the objective function in

equation (3.11):

where HOT represents the Higher Ordet Terms and J is the sensitivity matrix whose

element Jij quantifies the influence of the model change in the lh cell on the ith
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datum:

(3.13)

Setting the higher order terms to zero in equation (3.12) the derivative with respect

to Om yields:

In the above equation, the matrix W d has been absorbed into the sensitivity matrix.

This is the main equation to be solved to obtain the model perturbation. The new

model is generated by:

m(n+l) = m(n) + aom (3.15)

where a is a constant in the interval (0,1] which limits the stepsize and is chosen to

ensure that the total objective function is reduced (Li and Oldenburg, 2000).

3.2.2 IP Inversion

The first step to invert IP data is to linearize equation (3.3). Considering'T/i and O'i as

the chargeability and electrical conductivity of the ith cell, 4Y'T/ can be linearized about

the conductivity model as follows (DCIP3D manual, UBC-GIF):

Substituting the linearized form of 4Y'T/ into equation (3.3) yields:

(3.17)
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which can be approximately written as:

(3.18)

If one is working with apparent chargeability as the IP data, substituting the above

equation into equation (3.6) yields:

(3.19)

In both cases, either the secondary potential or the apparent chargeability as the ith

datum is expressed as:

M

di=LJij'r/j
j=l

where the sensitivity matrix, J, for the secondary potential data (d = qys) is :

8qy;[0"]
-Oln(O"j)

and for the apparent chargeability data (d = T/a) J is:

So, in the case of lP, the inversion problem is formulated as :

(3.20)

(3.21)

(3.22)

minimize

subject to

'l/Jm = IIWm(T/ - T/o)11 2

IIWd (JT/-d)11 2 ='I/J'd

T/~O

where 'I/J'd is a target misfit. To solve the linear inverse problem with positivity con-

straints, the efficient way is to use a logarithmic barrier method, in which the mini-

mization is performed by a sequence of minimizations that include a logarithmic term
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to ensure that each iteration generates a positive model. Therefore, the new objective

function is given by:

where>. is the barrier parameter and u is an upper bound on chargeability model

which could be the theoretical bound of 1.0 or the maximum value of chargeability

to be expected from the given data set (Li and Oldenburg, 2000).



Chapter 4

Survey design for hole-to-hole IP data - modelling and

inversion study

In this chapter, the 3D inversion of hole-to-hole IP data is illustrated for different

synthetic Earth models using DCIP3D. The aim is to determine how few (or how

many) electrode locations are required to obtain good inversion results, in particular,

and how the inversion of hole-to-hole data depends on the number and configuration

of electrode locations in general. Therefore, different aspects of both inversion and

data set have been investigated to obtain the economically optimum survey design

including the minimum number of boreholes and receiver locations for a successful

imaging of a chargeable ore body in a mineral exploration project. Finally, the inver

sion results of hole-to-hole IP field data are presented.

4.1 3D mesh design

The first step in any kind of geophysical forward modelling and inversion is descretiz

ing the Earth model through designing a suitable mesh. There are different kinds of

meshes employed for geophysical data modelling. One of the most popular is the rect

angular finite difference mesh in which the cells are rectangular prisms with different

34
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aspect ratios. The physical property is assumed to be constant within a cell, and can

vary from one cell to the next. MeshTools3D is the software provided by UBC-GIF

to design and view 3D models which are represented by rectangular meshes. Here, I

am using MeshTools3D to design a 3D mesh for numerical modelling of DC resistiv

ity and IP data as well as illustrating 3D models of the Earth's physical properties

that are generated by the program DCIP3D. DCIP3D is a package provided by the

UBC-GIF for three dimensional forward modelling and inversion of DC resistivity

and IP data. The mesh is divided into two main regions, the core portion which rep

resents the region of interest and the padding zones which ensure that the boundary

conditions in the finite difference modelling are handled correctly. Two important

factors, namely, the grid on the surface of observation locations and the locations of

boreholes, control the horizontal mesh when designing the core portion. To define the

maximum depth of the mesh the following two parameters must be considered: depth

of investigation and the depth of the deepest borehole electrode. After designing the

core region, the mesh should be extended in all directions by a set of padding cells.

The boundary conditions are sufficiently handled by using five or more cells whose

widths continuously increase outward by a factor of between 1.3 to 2.

4.2 Example 1: Single Chargeable body

The first example model that I consider here is a (150m x 200m x 300mx) cuboidal

body that extends from 1175 to 1325 m in the x-direction, from 250 to 450 m in the

y-direction and from -400 to -700 m in the z-direction (see Figs. 4.1 and 4.2). This
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chargeable body, with chargeability of 100 mVIV, is embedded in a half-space of zero

chargeability. The resistivity of the body is 1000 Ohm-m. There is no resistivity

contrast between the body and the background. The current electrodes are 3200 m

away from each other at the locations (-300,225,0) and (2900,225,0). The body of

interest is almost located in the middle with drill holes all around. Figure 4.2 is a

plan view which demonstrates the locations of the drill holes related to the body.

Although a made-up chargeable zone is being considered, the borehole locations are

taken from a real survey.

Fig. 4.1: Oblique 3D view of all drill holes, current electrodes and the chargeable
body for the first example model.

4.2.1 Mesh design and forward modelling accuracy test

The mesh should be designed in a way that is sufficiently fine in the core region and has

boundaries sufficiently far away that the numerical modelling is sufficiently accurate,

but the number of cells is small enough that the programs can fit into available
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Fig. 4.2: Plan view of the 7 drillholes and chargeable body.

computer memory. I designed several meshes, and applied a basic test by comparing

DC resistivity and potentials computed using each mesh with the theoretical values.

The boundary conditions must be satisfied for the designed mesh, in particular, the

padding zone must extend far enough so that the potential tends to zero at the edge

of the mesh. Another thing which should be considered is the depth of the deepest

drill hole, in this case hole F4 with a depth of 1055.57 m. The model is a half-

space with the chargeable body in the middle. This simple geometry allows for an

independent analytical solution check on the accuracy of the potentials computed

using the mesh. The potential on the surface of this half-space can be calculated

using the 4 electrode configuration formula (eq. 2.24). In this example, the locations

of the current electrodes are always fixed and the first two locations for the potential

electrodes in FI and F2 have been selected. The coordinates of the four electrodes are,

Cl = (-300,225,0), C2 = (2900,225,0), PI = (1053,285,0) and P2 = (1512,263,0).

Using equation (2.24) with I = lA, the potential difference over the half-space is
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equal to 0.058V. This value can be used as a reference for evaluating the quality

of the designed mesh. Several meshes were designed and examined by applying the

forward modeler over the Earth model in Figures 4.1 and 4.2. Figures 4.3 and 4.4 show

the calculated DC potential and chargeability over the Earth model for all designed

meshes. Also the running time for the forward modelling program as a function of

number of cells in each mesh is illustrated in Figure 4.5. Figure 4.3 shows that the

0.10

0.09

15913172125293337414549535761656973178185899397

Nlllllberolloc.tlOlllDclt::lortltecolMlludloDoCtlletlnt 10 ob.en'lldoapolatltabordto1e.Fl

Fig. 4.3: DC potential measurements over the Earth model, Mesh A (blue circles) and
Mesh B (red triangles). Other lines correspond to the designed meshes with different
dimension and cell size.

last final two meshes which I call Mesh A and Mesh B produced the correct potential

(0.058V) over the Earth model. Based on the IP graph (see Fig. 4.4), it can be seen

that the finer the mesh the more accurate the result will be. Mesh A has a size of

164 x 164 x 56 cells with a cell size of 25 x 25 x 25 m in the core portion. Its total

number of cells is 1506176 which extends from -6949 to 9449 m in the x-direction,
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Fig. 4.4: Calculated IP values (dimensionless chargeability) for the Earth model using
Mesh A (blue circles) and Mesh B (red triangles).

from -7850 to 8548 m in the y-direction and from 0 to -7549 m in the z-direction (see

Figs. 4.6 to 4.9). Mesh B has a size of 92 x 92 x 32 cells with a cell size of 50 x 50 x 50

m in the core portion which extends from -9050 to 11550 m in the x-direction, from

-9950 to 10650 m in the y-direction and from 0 to -9600 m in the z-direction (see

Figs. 4.10 to 4.13). Its total number of cells is 270848. Both meshes have almost the

same dimension but Mesh B has the bigger cell size to decrease the running time of

the forward program.
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Fig. 4.5: Running time of the forward modelling program DCIPF3D as a function of
the number of cells in the mesh.

Fig. 4.6: Calculated potential in Volts in Mesh A, 3D view.
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Fig. 4.7: Calculated potential in Volts in Mesh A, plan view

4.8: Location of the two current electrodes, Mesh A, showing t.he cell" in t.!J('



Fig. 4.9: Mesh A, 3D view.

Fig. 4.10: Calculated potential in Volts in Mesh B, 3D view.

42



43

Fig. 4.11: Calculated Potential in Mesh B, plan view.

Fig. 4.12: Location of the two current electrodes, Mesh B, showing the cells in the
model.



Fig. 4.13: Mesh B, 3D view.
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4.2.2 Inversion of data from different boreholes combinations

Inversions were done for potentials computed for several combinations of the boreholes

and the model illustrated in Fig. 4.2. Gaussian noise with a standard deviation equal

to 5% of the average of the calculated DC potential data and calculated IP data was

added to the data to produce the synthetic data-sets that were inverted. The results

of the inversions for the different combinations of boreholes using both Meshes A and

B are represented here. The resistivity model required by the IP inversion is specified

as the correct homogeneous half-space.

4.2.2.1 Inversion of data from boreholes Fl and F2

The IP sensitivity matrix J (eq. 3.13) for boreholes Fl and F2 is illustrated in Fig.

4.14. The locations of the boreholes and the chargeable body are clearly recognizable.

The result for Mesh A has better resolution as it has finer cells, but no important

difference can be found using the coarse mesh, Mesh B. The constructed chargeability

models are illustrated in Figs. 4.15 and 4.16. Boreholes Fl and F2 have depths of

835.85 m and 637.02 m respectively. The data set was made up of every 10 m

observation points down the two boreholes, giving a total number of 252 data points,

as dimensionless chargeabilities. As shown in Figs. 4.15 and 4.16, the inversion results

have a better resolution with finer mesh. The chargeability in the constructed models

is always close to the boreholes. Fig. 4.17 shows that for both meshes, synthetic data

and predicted data are suitably matched with the final values of misfit of 255.91 and

248.15 for Mesh A and B respectively which are closely enough to the number of data
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points (252). Since the results for meshes A and B are so similar, mesh B will be

used for the forward modelling to save computational tima and memory usage.

(a) Mesh A

(b) MeshB

Figure 4.14: IP sensititivity matrix,J, for boreholes Fl and F2 where the true model is
shown via transparency. The color scale represents the cumulative value of sensitivity
in each cell.
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Figure 4.15: Chargeability model constructed of data from boreholes Fl and F2 using
mesh A, finer mesh, where the true model is shown via transparency. The color scale
represent the values of dimensionless chargeability.
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Figure 4.16: Chargeability model constructed from data from boreholes F1 and F2
using mesh B, coarser mesh, where the true model is shown via transparency. The
color scale represent the values of dimensionless chargeability.
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Figure 4.17: Synthetic observed data (blue dots) and predicted data (red line) for the
chargeability model derived from FI-F2 data.
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4.2.2.2 Inversion of data from boreholes Fl, F2 and F3

The IP sensitivity matrix, J for boreholes F1, F2 and F3 is illustrated in Fig. 4.18.

The locations of all three boreholes and the chargeable body are clearly recognizable.

The constructed chargeability model is illustrated in Figs. 4.19 where mesh B has

been used to reduce the computation time. Boreholes F1, F2 and F3 have depths

of 835.85 m, 637.02 m and 1052.10 m respectively. The data set was produced by

observation point every 20 m combining F1 - F2, F1 - F3 and F2 - F3 borehole pairs,

with the total number of data of 147, as dimensionless chargeabilities. Fig. 4.20

shows that synthetic data and predicted data are suitably matched. The final value

of misfit was 150.15.

Fig. 4.18: IP sensititivity matrix for boreholes F1, F2 and F3 where the true model is
shown via transparency. The color scale represents the cumulative value of sensitivity
in each cell.



51

Nortbtng=250

:~

+
(hll_'I'I.ltI

l"orlbiug=350

'))
._+

(blf_'IIoII"d

.'\'ol'tblng=450

Cbal'geabm~'

(m)

Figure 4.19: Chargeability model constructed from data from boreholes F1, F2 and
F3 using mesh B where the true model is shown via transparency. The color scale
represent the values of dimensionless chargeability.
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Fig. 4.20: Synthetic observed data (blue) and predicted data (red) for the chargeabil
ity model derived from Fl, F2 and F3 data.
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4.2.2.3 Inversion of data from boreholes Fl, F2 and F4

The IP sensitivity matrix for boreholes Fl, F2 and F4 is illustrated in Fig. 4.21. The

locations of all three boreholes and the chargeable body are clearly recognizable. The

constructed chargeability model using Mesh B is illustrated in Fig. 4.22. Boreholes

Fl, F2 and F4 have depths of 835.85 m, 637.02 m and 1055.57 m respectively. The

data set was produced for observation points every 20 m combining Fl - F2, Fl -

F4 and F2 - F4 borehole pairs. The total number of data is 147, as dimensionless

chargeabilities. Fig. 4.23 shows that the synthetic data and predicted data are

suitably matched. The final value of misfit was 150.29.

Fig. 4.21: IP sensititivity matrix for boreholes Fl, F2 and F4 where the true model is
shown via transparency. The color scale represents the cumulative value of sensitivity
in each cell.
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Figure 4.22: Chargeability model constructed for data from boreholes Fl, F2 and
F4 using mesh B where the true model is shown via transparency. The calor scale
represent the values of dimensionless chargeability.
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Fig. 4.23: Synthetic observed data (blue) and predicted data (red) for the chargeabil
ity model derived from Fl, F2 and F4 data.
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4.2.2.4 Inversion of data from boreholes Fl, F2 and F5

The IP sensitivity matrix for boreholes F1, F2 and F5 is illustrated in Fig. 4.24. The

locations of all three boreholes and the chargeable body are dearly recognizable. The

chargeability model constructed using Mesh B is illustrated in Fig. 4.25.Boreholes

F1, F2 and F5 have depths of 835.85 m, 637.02 m and 673.77 m respectively. The

data set was produced for every 20 m observation point combining F1 - F2, F1 - F5

and F2 - F5 borehole pairs, with the total number of data of 126, as dimensionless

chargeabilities. Fig. 4.26 shows that for both meshes, synthetic data and predicted

data are suitably matched. The final value of misfit was 139.64. The results from 3

hole combinations are summerized in Fig. 27.

N0l1bing=400

IPSensltMt)'

Fig. 4.24: IP sensititivity matrix for boreholes F1, F2 and F5 where the true model is
shown via transparency. The color scale represents the cumulative value of sensitivity
in each cell.
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Figure 4.25: Chargeability model constructed from data from boreholes Fl, F2 and
F5 using mesh B where the true model is shown via transparency. The color scale
represent the values of dimensionless chargeability.



58

30 40 50 60 70 80 90

NumberoflocalionindexlObservationpoinls

Fig. 4.26: Synthetic observed data (blue) and predicted data (red) for the chargeabil
ity model derived from Fl, F2 and F5 data.
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Fig. 4.27: Comparing the results of three hole combination.
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4.2.2.5 Inversion of data from boreholes Fl, F2, F3, F4 and F5

The JP sensitivity matrix for boreholes FI, F2, F3, F4 and F5 is illustrated in Fig.

4.28. The locations of all boreholes and the chargeable body are clearly recognizable.

The constructed chargeability model is illustrated in Figs. 4.29 using mesh B. Bore-

holes FI, F2, F3, F4 and F5 have depths of 835.85 rn, 637.02 rn, 1052.10 rn, 1055.57

rn, and 673.77 rn respectively. The data set was produced for every 20 m observation

point combining FI - F2, FI - F3, FI - F4, FI - F5, F2 - F3, F2 - F4, F2 - F5, F3

- F4, F3 - F5, and F4 - F5 borehole pairs, with the total number of data of 486, as

dimensionless chargeabilities. Fig. 4.30 shows that for both meshes, synthetic data

and predicted data are suitably matched. The final value of misfit was 502.45.

Fig. 4.28: JP sensititivity matrix for boreholes FI, F2, F3, F4 and F5 where the true
model is shown via transparency. The color scale represents the cumulative value of
sensitivity in each cell.
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Figure 4.29: Chargeability model constructed of data from boreholes Fl, F2, F3, F4
and F5 using mesh B where the true model is shown via transparency. The color
scale represent the values of dimensionless chargeability.
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Fig. 4.30: Synthetic observed data (blue) and predicted data (red) for the chargeabil
ity model derived from Fl, F2, F3, F4 and F5 data
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4.2.2.6 Inversion of data from all boreholes

The IP sensitivity matrix for all boreholes is illustrated in Fig. 4.31. The locations

of all boreholes and the chargeable body are clearly recognizable. The constructed

chargeability model is illustrated in Fig. 4.32. Boreholes F1, F2, F3, F4, F5, F6, and

F7 have depths of 835.85 rn, 637.02 rn, 1052.10 rn, 1055.57 rn, 673.77 rn, 949.44 rn,

and 960.59 rn respectively. The data set was produced for every 20 m observation

point combining F1 - F2, F1 - F3, F1 - F4, F1 - F5, F1 - F6, F2 - F3, F2 - F4, F2

- F5, F2 - F7, F3 - F4, F3 - F5, F3 - F5, F3 - F6, F4 - F5, F4 - F6, F4 - F7, F5 -

F6, F5 - F7, and F6 - F7 borehole pairs, with the total number of data of 1135, as

dimensionless chargeabilities. Fig. 4.33 shows that the synthetic data and predicted

data are suitably matched. The final value of misfit was 1141.17.

Cbal1:eabilit~

(\·,Y)

Fig. 4.31: IP sensititivity matrix for all boreholes where the true model is shown via
transparency. The color scale represents the cumulative value of sensitivity in each
cell.
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Figure 4.32: Chargeability model constructed of data from all boreholes using mesh B
where the true model is shown via transparency. The color scale represent the values
of dimensionless chargeability.
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Fig. 4.33: Predicted data (red) and synthetic observed data (blue) for the chargeabil
ity model derived for data from all bore holes data.
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4.2.2.7 Borehole pairs without anomaly

Inversion were done for the borehole pairs F2 - F6 and F7 - Fl. Although the

polarisable cube is located outside of these pairs, its effect appears to the correct

side of the boreholes.Boreholes Fl, F2, F6 and F7 have depths of 835.85 rn, 637.02

rn, 949.44 rn, and 960.59 rn respectively. The data set was produced for every 20

m observation point combining Fl - F7 and F2 - F6 borehole pairs, with the total

numbers of data of 99 and 77. Since chargeability is the positive quantity and the

potentials produced by the chargeable body outside of the boreholes are negative,

secondary potentials were used as the IP data for inversion. The final value of misfit

was 115.12 and 77.77 for data from boreholes Fl - F7 and F2 - F6 respectively.

Fig. 4.34: IP sensititivity matrix for boreholes F7 and Fl where the true model is
shown via transparency. The color scale represents the cumulative value of sensitivity
in each cell.
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Figure 4.35: Chargeability model constructed from data from boreholes F7 and Fl
using mesh B where the true model is shown via transparency. The color scale
represent the values of dimensionless chargeability.
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Fig. 4.36: Synthetic observed data (blue) and Predicted data (red) for the charge
ability model derived from F7 and Fl data.

Fig. 4.37: IP sensititivity matrix for boreholes F2 and F6 where the true model is
shown via transparency. The color scale represents the cumulative value of sensitivity
in each cell.
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Figure 4.38: Chargeability model constructed of data from boreholes F2 and F6 using
mesh B where the true model is shown via transparency. The color scale represent
the values of dimensionless chargeability. Final value of misfit was 77.766.
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Fig. 4.39: Synthetic observed data (blue) and predicted data (red) for the chargeabil
ity model derived from F2 and F6 data.



70

4.2.2.8 Vertical Borehole pair not straddling the anomaly

To further investigate the behavior of inversion when the chargeable body is not

between the measurement boreholes, a synthetic-data set was produced for two par

allel vertical boreholes with the causative body placed to the left and right sides of

the borehole pair.A target with chargeability of 100 mV/V is embedded in a non

polarisable half-space of conductivity of 0.001 S/m and no resistivity contrast exists.

The IP sensitivity matrix for two vertical boreholes for both models are illustrated in

Figs. 4.40 and 4.42. The locations of the two vertical boreholes and the chargeable

body are clearly recognizable. The constructed chargeability models using Mesh B

are illustrated in Figs. 4.41 and 4.43. Results show that the chargeable body in the

constructed models appears on the correct side of the boreholes; however, the charge

ability in the constructed models remains close to the boreholes than the target. The

final values of misfit were 68.136 and 65.282 for the target placed on the right and

left sides of the boreholes respectively.
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Fig. 4.40: IP sensititivity matrix. Target body is on the right side of the boreholes
can be seen because of transparent overlay of true model. The calor scale represents
the cumulative value of sensitivity in each cell.
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Figure 4.41: Chargeability model constructed from data from vertical boreholes using
mesh B. The color scale represent the values of dimensionless chargeability. Target
body is on the right side.
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Fig. 4.42: IP sensititivity matrix. Target body is on the left side of the boreholes can
be seen because of transparent overlay of true model. The color scale represents the
cumulative value of sensitivity in each cell.
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Figure 4.43: Chargeability model constructed from data from vertical boreholes using
mesh B. The color scale represents the values of dimensionless chargeability. Final
value of misfit was 65.282. Target body is on the left side.
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4.2.3 Distance weighting function

One characteristic is common to all the inversion results which have been illustrated

in the previous sections. The chargeability in the constructed models is concentrated

close to the observation locations. This is reminiscent of inversions of gravity and

magnetic data. In order to counteract this effect, inversions were tried using a distance

weighting. Li and Oldenburg (2000) introduced an effective 3D weighting function

for magnetic data-sets that contain borehole measurements in which the sensitivities

do not have a predominate decay direction. This weighting function, which is called

a distance weighting function, is defined as

(4.1)

where 6,Yj is the volume of jth cell, R;j is the distance between the centre of the

jth cell and the ith observation point, and Ro is a small constant used to ensure

that the integral is well-defined. Usually, Ro is chosen to be a quarter of the smallest

cell dimension. The parameter (3 for the magnetic and gravity inversions is between

0.5 ::; (3 ::; 1.5. The best value for the parameter (3 can be found experimentally.

Inversions were performed for boreholes F1 and F2 with different values for (3. The

best value for (3 for the inversion of hole-to-hole IP data was found to be 0.25 as

it pushes the chargeability away from the boreholes in a non-specific, but not in a

localized, focused way: see Figs. 4.44 to 4.46.
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Fig. 4.44: Inversion results using the distance weighting function (Mesh B), Fl and
F2, Northing = 250.

C ....raubll~·
<,"\1

Clla'"lrllhlll~

(\'1\1

CbararablU~·

<,"\1

Fig. 4.45: Inversion results using the distance weighting function (Mesh B), Fl and
F2, Northing = 350.
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Fig. 4.46: Inversion results using the distance weighting function (Mesh B), Fl and
F2, Northing = 450.



78

4.3 Example 2: Aurbel project

4.3.1 Forward modelling

The Earth's synthetic model that I consider for the Aurbel region contains three

vertical cuboidal bodies which is described in Fig. 4.47. The chargeable targets are

embedded in a half-space of chargeability of 10 mVIV and conductivity of 10000 Om.

The current electrodes are at the locations (5332503, 214908, 3300) m and (5332259,

216703, 3300) m. Figure 4.48 is a plan view which clearly demonstrates the locations

of the drill holes. Although made-up chargeable zones are being considered, the

borehole locations are taken from a real survey. The constructed chargeability model

using Mesh B is illustrated in Fig. 4.49. The data set was produced from twelve pair

of boreholes with a total of 1170 data points, as secondary potentials. Fig. 4.50 shows

that the synthetic data and predicted data are suitably matched with the final value

of misfit of 1165. Although no sign of chargeable bodies A and B can be seen in the

constructed models (see Fig. 4.49), their effects are recognizable in both synthetic

secondary potentials and predicted data when the inversion was done for the Earth

model containing only those chargeable bodies without body C (see Fig. 4.50).
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Depth Chargeability Conductivity

Body A 5332190 to 5332210 ID 216150 to 216650 ID 3200 to 2600 ID

Body B 5332190 to 5332210 m 215050 to 215550 m 3200 to 2600 ID

Body C 5332490 to 5332510 m 215600 to 216100 m 2600 to 2200 ID

Fig. 4.47: Earth systhetic model information for Aurbel property located east of
Val-dOr, Quebec, Canada.

Fig. 4.48: Plan view of the boreholes in Aurbel area.
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Fig. 4.49: Chargeability model constructed of data from all twelve pair of boreholes
using mesh B where the true model is shown via transparency. The color scale
represent the values of dimensionless chargeability.
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Number of location index/Observation points

(a) Earth model containing all three chargeable bodies A, Band C

Number of location index/Observation points

(b) Earth model containing chargeable bodies A and B

Figure 4.50: Synthetic observed data (yellow) and predicted data (red) for the charge
ability model derived from data from all boreholes.
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4.3.2 Inversion of the field data

Here I present a case history provided by Abitibi Geophysics. The Ambel property

is located east of Val-dOr covering more that 200 square km of land (see Fig. 4.51).

The area of interest (solid red oval, Fig. 4.51) is to the southwest of the Dumont

Mine. The general geology of the area is illustrated in Fig. 4.52. Data from all 8

Fig. 4.51: Location of the Ambel project (Berube, 2010).

boreholes in the area (see Fig. 4.48) were considered for inversion of DC resistivity

and IP data. Based on the inversion results from single pair of boreholes, borehole

data containing large amount of noise and variation were eliminated in constructing

the final data set (see Fig. 4.53). Inversion of DC resistivity data showed that a half

space of the conductivity of 0.0001 Slm can be considered as the conductivity model

for IP inversion. Fig. 4.54 shows that for resistivity inversion, synthetic and predicted
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Fig. 4.52: General geology of the area (Berube, 2010).

data are suitably matched. Inversion results for hole-to-hole IP data from six pairs

of boreholes, 2102-29 and 2102-30, 2102-29 and 106, 2102-29 and 125, 2102-32 and

106, 2102-33 and 125, 2102-33 and 126,(see Fig. 4.48) using Mesh B are illustrated

in the Figures 4.55 after applying distance weighting. The inversion results shows

three main chargeable bodies in the area. The large chargeable body located in the

west is the results of previous mining activities in the area. The smaller chargeable

body in the east is unknown. The small deep chargeable body in the middle was the

main interest in the project (see Fig. 4.56). The inversion results were completely

confirmed by Abitibi Geophysics with subsequent boreholes that were drilled in the
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Fig. 4.53: An example of noisy data with large variation from boreholes 26-32.
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Fig. 4.54: Synthetic observed data (blue) and Predicted data (red) for the conduc
tivity model derived from all boreholes.
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Fig. 4.55: Chargeability model constructed from the Aurbel data using distance
weighting. The color scale represent the values of dimensionless chargeability.
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Fig. 4.56: 3D view of the chargeable targets in Aurbel property located east of Val
dOr, Quebec, Canada.
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Figure 4.57: Observed data (blue) and predicted data (red) for the Aurbel data-set.



Chapter 5

3D DC Resistivity and IP Forward Modelling based on a

Surface Integral Equation

5.1 Introduction

Fast and accurate 3D numerical modelling techniques are needed to fully interpret

IP survey data. The late 1960s was the starting point for the development of the

different numerical techniques for calculating DC resistivity and IP data such as inte

gral equation (Dieter et al., 1969), finite element (Coggon, 1971), and finite difference

methods (Mufti, 1976). The difference techniques, i.e" finite element and finite differ

ence, are suited to modelling general Earth structures where the physical properties

(e.g., electrical resistivity and chargeability) have been arbitrarily assigned different

values at each mesh element in the whole grid (Snyder, 1976). Integral equation

methods are most suitable for simple model geometries such as one, or at the most

two, inhomogeneities of uniform conductivities imbedded in uniform half-space with

a different conductivity (Snyder, 1976; Zhou and Greenhalgh, 2001; Boulanger and

Chouteau, 2005). The principal benefit of the integral equation formulation compared

to the difference methods is that the potential can be calculated at any point in the

88
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3D space without any need of interpolation. Although integral equation methods

are not as flexible as the difference methods in handling both complex geometry and

arbitrary variations in physical properties, they are fast and accurate when a simple

model is appropriate. Many researchers have been involved in the development of

integral equation methods for DC and lP, and for EM data in general. For instance,

Alfano (1959, 1960, 1961), Bhattacharya and Patra (1968), Pratt (1972), Raiche

(1974), Hohmann (1975), Snyder (1976), Spiegel et al., (1980), Ting and Hohmann

(1981), Wannamaker et al. (1984), Schulz (1985), Beasley and Ward (1986), Poirmeur

and Vasseur (1988), Li and Oldenburg (1991), Xiong (1989, 1992a,b), Hvozdara and

Kaikkonen (1998). One of the most recent advancements in integral equation methods

is the work of Boulanger and Chouteau (2005) in which they developed a 3D electrical

resistivity modelling code for a 3D heterogeneous medium with arbitrary conductiv

ity. They introduced a method of calculating the charge densities for an arbitrary 3D

heterogeneous medium in which the volume was discretized with structured rectan

gular prisms of different sizes in a Cartesian system. Also, a technique was proposed

to calculate the sensitivity (Jacobian) and Hessian matrices in 3D by Boulanger and

Chouteau (2005). In this chapter, I present a 3D numerical modelling technique for

DC resistivity and IP data that is based on a surface integral equation approach.

The pivotal novelties are twofold. First, the use of unstructured meshes to describe

the anomalous region. This is a more flexible approach that allows more complicated

geometries to be modeled compared to a structured mesh. The non-commercial mesh
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generator TetGen (Si 2003) has been employed to generate unstructured triangular

meshes. Second, the 3D code has been developed for both constant and linearly vary

ing charge density on the triangular facets of the surface of the body. The accuracy

and efficiency of these two approximations will be assessed.

5.2 JP numerical modelling

Two general ways are widely used in IP forward modelling. The first, which is based

on Seigel's theory (SeigeI19S9), considers that the effect of chargeability is to change

the conductivity when a current is applied. Therefore, apparent chargeability is

computed by two forward DC resistivity modellings using the original and perturbed

conductivity (Farias et al., 2010). The second procedure is based on the quantities

originally measured in the frequency domain, including the amplitude of the apparent

resistivity and the phase shift between the injected current signal and the measured

voltage. In this case, a complex apparent resistivity as a complete description of

these two quantities is directly modelled (Weller et al., 1996). In my code, after

calculation of the accumulated charge using the integral equation formulation, the

electrical potential is computed and the IP response is simulated based on the Seigel's

theory which enable us to compare the results with DCIP3D code with the same

approach. A brief review of Siegel's theory is covered in the next section.
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5.2.1 Siegel's Theory

According to Siegel, the effect of applying a primary electric field in a chargeable

medium is to create a volume distribution of current dipoles anti-parallel to the field

at each point in the medium (Seigel, 1959). The volume current-moment strength is

expressed as,

M=-m J (5.1)

where J is the primary current density and m is the constant called chargeability (see

section 2.2.3.2). As illustrated in Figure 5.1, the potential from the volume dipole

element of current strength Mdv in a medium of conductivity (J at a point P which

is a distance r away from the dipole is

dcP = ~M . \7 (~) dv .
471'(J r

Thus, the total potential at the field point P is

(5.2)

(5.3)

where V is the volume of the chargeable region. Using Gauss's theorem and the

following identity

the total potential can be written as

cP = ~ Jrr~ds - ~Jlr r~ \7 . (~) dv ,
471' is (Jr 471' iv r (J

(5.4)

(5.5)
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G

Fig. 5.1: Volume dipolar element (Seigel, 1959).

where S is the surface enclosing the volume V. Equation (5.5) shows that the effect

of the volume distribution of current dipoles is equal to the sum of the effects of a

volume distribution of current sources of density equal to - V .M in regions where the

conductivity of the medium is considered to be constant, and a surface distribution,

M n , which is equal to the normal component of M out of the surface S. The law of

conservation of charge states that

V . J = I8(r - r s ) (5.6)

where J is the current density vector at any point in the medium and I is the volume

density of free current sources due to primary current electrodes. The effective source

density -V· M must be added to these free sources I:

V·J=I-V·M V·(J+M)=I. (5.7)

Considering the above equation and the boundary conditions, the vector J + M, or

J(l-m) from eq. (5.1), is solenoidal everywhere except in the presence of free sources
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or sinks and its normal component is continuous across discontinuities in a and m.

From Ohm's law, the original applied current density vector is

J=aE (5.8)

where E is the applied electric field caused by the external supplied sources (i.e.,

current electrodes). In the presence of the polarisable medium of chargeability m,

the vector J(1 - m) plays the role of J which means that the total current density is

a(l- m)E. Thus, the net effect is to reduce a by the factor of (1- m). As mentioned

at the beginning of this section, the IP response can be modelled by two forward DC

resistivity modellings using the original (a) and perturbed (a(l- m)) conductivities.

5.3 Formulating the Surface Integral equation

The potential differences measured at the Earth's surface or down boreholes contain

all the information which can be derived about the subsurface electrical structure.

Having a comprehensive understanding of the whole process when the current is

injected into the Earth is crucial in interpreting the results and presenting a reliable

Earth's model. The two general sources of the measured potential are: (1) the

potential due to the current source embedded in a homogeneous half-space; (2) the

potential due to the volumetric and surface charges accumulated wherever there is

a non-zero component of the electric field parallel to the gradient of conductivity.

Integral equation forward modelling approaches divide the computation process into

two parts. As the first step, the charge density is computed on the boundaries of
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cells across which there is a conductivity contrast. Then, Coloumb's law is used to

compute the potential at the observation point due to the charge accumulation (Li

and Oldenburg, 1991).

5.3.1 Charge accumulation and Poisson's equation for the potential

DC resistivity is a steady-state problem for which

\l x E = 0, and

\l·D=PI,

(5.9)

(5.10)

where E is the electric field, D is the electric displacement, and PI is the volumetric

free charge density (Li and Oldenburg, 1991). In steady-state conditions, the diver

gence of the current density is equal to zero at any point except at the locations of

electric current sources and sinks. So

\l . J = 1O(r - r s ) , (5.11)

where I is the current injected, and TB is the location of the source or sink. Also,

electric displacement and current density in a linear and isotropic medium can be

written in terms of electric field as

D = sE, and

J=aE,

(5.12)

(5.13)
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where (j and c; are the electrical conductivity and the permittivity of the medium re-

spectively. The boundary conditions when current flows from one medium to another

with a different conductivity are

(5.14)

(5.15)

where Elt and E2t are the tangential components of the electric field, and J1n and J2n

are the normal components of the current density on either side of the interface (see

eqs. 2.11 and 2.12). In other words, the tangential component of electric field and

the normal component of the current density are continuous. However, the normal

components of D and E are not continuous because of the existence of a surface

charge distribution on the boundary (Li and Oldenburg, 1991):

(5.16)

(5.17)

where the surface densities of free and total charge are represented by Tf and Tt.

From eq. (5.9), the electric field in the steady-state problem can be expressed as the

gradient of the scalar potential cP:

E=-'VcP· (5.18)

The electric field is bounded away from sources. Consequently, the potential is con-

tinuous which means the potentials in the two media at the boundary are equal,
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<Pi = <P2 (Li and Oldenburg, 1991). Using equations (5.13) and (5.18) and substitut-

ing in (5.11) we have

'V. (a'V<p) = -I8(r - r s )

which can be expanded and rearranged to

(5.19)

(5.20)

Equation (5.20) is Poisson's equation. Both terms on the right-hand side of the equa-

tion can be considered as charge densities since they have the units of plco (Li and

Oldenburg, 1991). The first term corresponds to the charge build up that results

whenever there is a component of the electrical field parallel to the conductivity gra-

dient. The volumetric density of the charge accumulation under these circumstances

'Va·'V<p
Pt=co-

a
-· (5.21)

At the interface between two media where there is a discontinuity in conductivity,

the volumetric charge density transforms into a surface charge density confined to the

boundary surface. Therefore, normal components of D and E are discontinuous in

this situation. Using Ohm's law (eq. 5.8) with the combination of equations (5.15)

and (5.17), the total surface charge density can be written as

(5.22)

The sign of the accumulated charge can be predicted using the above equation. For

instance, negative charges build up when the current flows from a resistive into a
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conductive region. Based on equation (5.20), the governing parameter in charge

accumulation is conductivity while permittivity does not play any role. When an

electric field is applied to a polarisable medium, an electric polarization is generated

which is given by

P=Xc:oE. (5.23)

P is the polarization vector and X = (c:/c:o) - 1 is the electric susceptibility. Under

these condition, the polarization charge at the boundary of the medium is

Tb = P . n , (5.24)

where n is the outward unit normal vector. The net polarization charge at the

interface of two regions with different permittivities is

(5.25)

The total accumulated charge is the polarization charge plus the free charge. Substi

tuting (5.12) into (5.16) and (5.23) into (5.25) and doing summation yields

(5.26)

which is exactly the same as eq. (5.17). Consequently, in the case of a polarisable

medium, both free and polarization charges contribute to the total accumulation

charge. Although the total accumulated charge is controlled only by electrical con

ductivity, the permittivity determines how much free charge has to be accumulated

to satisfy the boundary conditions (Li and Oldenburg, 1991).
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5.3.2 A Surface Integral Equation for the charge density

For any continuous functions cP and G with derivatives up to second order, Green's

second identity states that (Li and Oldenburg, 1991)

In our case, cP is chosen to be a potential function which satisfies eq. (5.20) and G to

be the Green's function for a homogeneous half-space:

G(r - r') = Ir ~ r'l + Ir ~ rill ' (5.28)

where r" is the reflection of the point r' across the half-space boundary (Snyder,

1976). Within the bounds of the volume of the anomalous region, V, both cP and G

are functions of inverse distance from the source and their normal derivatives on the

boundary of V (i.e., ~ and ~) are functions of inverse distance squared. Therefore,

as 5, which is the closed surface that surrounds volume V, approaches infinity, the

right-hand side of the equation (5.27) vanishes. Substituting eq. (5.20) into (5.27)

gives

cP(r) = -41 G(r,rs ) +Jrrr V'a(r')· V'cP(r')G(r,r')dv, (5.29)
7ras JJv a

where as is the conductivity of the half-space. The first term on the right-hand

side of eq. (5.29) is the potential due to the point source in a uniform half-space of

conductivity as. The potential due to the accumulated charge distribution is given by

the second term. To make a numerical solution possible, the conductivity structure

is considered to be piecewise constant. Thus, except at boundaries between regions



99

with different conductivities, \la is zero. As a result, the volume integral in eq. (5.29)

transforms to a set of surface integrals containing the surface charge densities (Li and

Oldenburg, 1991):

I 1 N J~ T;(r')1>(r)=4G(r,rs)+42: -G(r,r')ds,
'lras 'Ir ;=1 f, co

(5.30)

where T; is the charge density on the ith boundary of the closed surface f; and N is

the number of regions on the anomalous body surface with different charge densities.

The normal component of the electric field in the background is :

En =-Dj·\l1>, (5.31)

where Dj is the unit outward normal of the jth boundary. Combining the above

equation with eq. (5.22), charge density on the jth boundary can be written as

(5.32)

Since equation (5.32) is valid everywhere, the integral equation for the charge accumu-

lation can be simply obtained by substituting eq. (5.30) into eq. (5.32) to eliminate

the potential:

as ~aj . Tjc~) = 4:a
s

Dj \lG(r,rs) + -};t Ii. T;;:') Dj . \lG(r,r')ds, (5.33)

where r E f j , Dj = Dj(r) and j = 1,2,3, ... , N. Notice that the gradient operates on

the field point r while the integrals operate on the secondary source points r' (Li and

Oldenburg, 1991).
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5.3.3 Singularity removal

The surface integral in eq. (5.33) is improper because the integrand is infinite when

r -+ r'. The singularity occurs only for i = j, i.e., f i = f j . This singularity is

straightforward to remove. By expanding the improper integral into its components,

we have (Snyder, 1976)

which shows that only the first integral is singular. One approach to remove the

singularity is to divide the surface of the first integral into fj which excludes the

singularity (r = r ' ) plus an arbitrary small disk fa of radius 8 centered about (r = r' ):

(5.35)

1 J' f Tj(r' ) . V 1 d
4; Jr.~nJ' ~ s
+~ Jr f Tj(r' ) n . V_1 _ ds

411' Jrj fa J Ir-r'l .

Since the singular point has been excluded from the integration domain, the second

integral on the right-hand side of eq. (5.35) is proper. The electric charge over the area

in the first integral can be essentially regarded as a constant value h(r = r' ) ~ Tj)

since the area of fa can be considered sufficiently small. Thus,

~J'f Tj(rl)n.v_1_ds~...!LJ'f n Vlr_1rlldS. (5.36)
411' Jr. fa J Ir - r'l - 411'fo Jr. J
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Performing the integral is more convenient in a cylindrical coordinate system whose

origin is located at the centre of the disk r 6 and whose z axis coincides with the unit

normal nj' Also, it is beneficial to allow the point r to be located on the z axis a small

distance (z) above the disk which is allowed to approach zero after performing the

integral (Snyder 1976). By interchanging the order of integration and differentiation,

the integral can be written as

Tj(r) J; J0
2
" nj' 'Vlr~r'l ds = Tj(r) 211" ~16

[r2+rz2]1/2 dr (5.37)

= Tj(r) 211" ~~ ~{[82 + Z2]1/2 - z}

= Tj(r) 211" ~~{ [82 +zz2j1/2 - I} = -211" Tj(r) .

After applying the singularity removal, equation (5.33) can be written as

where kj = (O"s - O"j)/(O"s + O"j) and rj is the jth boundary with a small area around

point r excluded. All integrals in eq. (5.38) are now proper (Li and Oldenburg, 1991).

5.4 3D Surface integral equation forward modelling code

The geometry of the problem is illustrated in Fig. 5.2. The Earth model is the

homogeneous half-space of conductivity 0"1 and chargeability ml in which a 3D body

of conductivity 0"2 and chargeability m2 is embedded. The approach is to triangularize

the surface of the body using the unstructured mesh generator TetGen (Si, 2003),
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Fig. 5.2: Geometry of the Earth model for the surface integral forward modelling
where C and P are the current and potential electrodes respectively and S is the
surface of the anomaly (Dieter et al., 1969).

calculate the accumulated electrical charge density (eq. 5.38) over each triangular

element numerically, and calculate the electrical potential at any point either at the

Earth's surface or in the halfspace by substituting the charge density into eq. (5.30).

Having the electrical potential, both DC resistivity data and IP responses can be

modelled. As illustrated in Fig. 5.2, the pole-pole configuration is used to calculate

the synthetic data in the subsequent examples.

5.4.1 Numerical calculation of a surface integral over an arbitrary 3D

triangle

Computing the surface integral in eq. (5.38) over a trianglular facet with an arbitrary

orientation in 3D space is a cumbersome procedure. Since the electrical potential is

not affected by parallel translation or rotation of the coordinate system (Okabe, 1979),

one way to overcome this difficulty is to transform the arbitrarily oriented 3D triangle

to the 2D standard triangle in the X - Y plane with normal in Z direction i.e., with

vertices of (0,0), (1,0), and (0,1). As the first action, the surface Cartesian system
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(X, Y, Z) must be defined where the Z-direction is coincident with the direction of

the outward unit normal vector of the triangular element f i . This is a two step

procedure (see Fig. 5.3). First, the x- and y- axes must be rotated through the

/

\
Fig. 5.3: The surface rotation of the Cartesian system (Okabe 1979)

angle earound the z-axis until the rotated x-axis points in the same direction as the

projected direction of the outward normal on to the x - yplane. Obviously, eis equal

to zero if the z-axis is already perpendicular to the facet. Second, the z- and x-axes

must be rotated through the angle 1; around the Y-axis until the rotated z-direction

is coincident with the direction of the outward normal. Notice that all rotations are

counterclockwise. At this point, the desired system (X, Y, Z) is obtained (Okabe,
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1979). The coordinate transformation can be written as

X cos</> 0 -sin</> cose sine 0

Y -sine cose 0 (5.39)

Z sin</> 0 cos</>

where 0 ::; e ::; 2lT and 0 ::; </> ::; IT. Z is constant over the transformed surface which

allows us to consider it as a 2D triangle in the (X, Y) coordinate system. Using the

projection of a triangular surface illustrated in Fig. 5.4, angles eand </> can be defined

as (Okabe, 1979)

and

cose = -Syz/(S;z + S;x)1/2

sine = -Szx/(S;z + S;x)1/2

cos</> = -SXy/(S;z + S;x + S;Y/2

sin</> = [(S;z + S;x)/(S;z + S;x + S;yW/2

(5.40)

(5.41)

where Syz, Szx, and Sxy are twice the projected areas of the triangular surface onto

the yz, ZX, and xy planes respectively (see Fig. 5.4). For instance

It should be noted that both primary and transformed triangles must be right

handed. Hence, twice the area defined by
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Fig. 5.4: The projection of a triangular surface (Okabe 1979)

must be negative. While applying the coordinate transformation in the integration

process, the absolute value of the Jacobian should be multiplied to the integrand.

The Jacobian can be formulated as

{
8(x,y,z) }

J=det 8(X,Y,Z) , (5.44)

which is equal to 1 for the first coordinate transformation given by eq. (5.39). The

next transformation which must be carried out to obtain the standard triangle is

X' = ~(al + b1X + c1Y) ,

y' = ~(a2 + b2X + C2Y) ,

(5.45)
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where

£:, is the area of the triangle element, which is defined by

1 Xl Yl

£:, = ~ 1 X 2 Y2 = ~(blC2 - b2Cl) ,

and f3 is

Cl=X3 -X2 (5.46)

(5.47)

(5.48)

Based on eq. (5.44), the Jacobian for this transformation is given by

(5.49)

A Gauss-Legendre quadrature method is used for numerical evaluation of the resulting

integral (Rathod et al., 2007). The integral over the standard triangle, i.e.,

1= J[ f(x', y') dx'dy' = 11

dx'll

-

x

' f(x', y') dy' (5.50)

is transformed into an integral over the standard I-square by the change of variables

(see Fig. 5.5):

x' = uv y' = u(1 - v) . (5.51)
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The differential area and Jacobian determinant for the new integral are

8(x',y')
J=~=-u,

dx' dy' = -u du dv ,

(5.52)

This integral can be further transformed into an integral over the standard 2-square

(see Fig. 5.5) by the change of variables:

u= Q...±Q
2

for which the Jacobian and differential area are

v=~
2

(5.53)

J = ~~~:~~ = 1/4,

du dv = 1/4 d( dTf .

Thus, the integral over the standard triangle (see eq. 5.50) can be written as:

(5.54)

For the integral over the 2-square, efficient Gauss-Legendre quadrature methods are

available for any desired accuracy (see Appendix A). The integral I can be numerically

computed as

where (i, Tfj are Gaussian points and Wi and Wj are the corresponding weight coeffi-

dents. Equation (5.56) can be rewritten as

N

I = {; = S X SCk!(Xk, Yk) (5.57)
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Fig, 5,5: Transformation of standard triangle T into equivalent unit square in (u, v)
space and 2-square in ((, T/) space (Rathod et al" 2007),

where Ck,Xk, and Yk can be obtained from the relations

(1 + (i)(1 +T/j)
xk=--4--

where k = 1,2,3" .. , Nand i,j = 1,2,3 .. , n (Rathod et al., 2007).

(5,58)

(5,59)

5.4.2 3D forward modelling code for piecewise constant electric charge

In order to develop a numerical solution for charge density and hence potential, the

charge density must be discretized. One choice is to assume that the charge density is

constant over each triangular facet. Substitution of this representation for the charge

density into the integral equation eq. (5.38) yields a system of linear equations to be



109

solved for the charge densities on the facets (Li and Oldenburg, 1991). Considering

M as the number of elements and a constant charge Ti assigned to the ith element,

eq. (5.38) yields

'.!i = ~ aG(rj, rs) +~t .2 Jer aG(rj, r') ds + kjTj Jer aG(rj, r') ds(5.60)
co 27ff7s anj 27f i'fj co Jr, anj 27fco Jrj anj

j=I,2,3, ... ,M,

where rj denotes the centre of gravity of the jth element, Tj = T(rj) is the charge

density at rj, and Dj is the outward unit normal vector of this element. Equation

(5.60) can be written in matrix form as

AT=B,

where A is an M x M coefficient matrix with components

and

(5.61)

(5.62)

(5.63)

T is the M x 1 vector of unknown charge densities, and B is the M x 1 vector with

components

(5.64)

After calculations of the components of matrices A and B, the matrix equation (5.61)

is solved using the freely available direct solver (dgesv.f) from the online mathematical

library LAPACK (Dongarra et. al., 2002) (see Appendix B).
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5.4.3 3D forward modelling code for linearly varying electric charge

Another approach to approximate the unknown charge density is to assume that

the electric charge is linearly varying within each triangular facet. For 3D linear

triangular elements, the unknown function T within each element is approximated as

(Jin,2002):

3

Te(x, y, z) = :L NJ(x, y, Z) TJ
j=l

j=I,2,3 (5.65)

where e is the facet number and j is the vertex number for triangular facet. NJ(x, y, z)

are the interpolation functions given by

NJ(x, y, z) = 2~e (a~ + N~xj + N~yj + N:zj) (5.66)

where xj, yj and zj denote the coordinates of the jth vertex of the eth facet and 6 e

is its area. Also,

N~ = bj cos Bcos cjJ - Cj sin B

N~ = bj sinBcoscjJ + Cj cosB

(5.67)

where bj , Cj, B, and cjJ were previously introduced in Section 5.4.1. The interpolation

functions have the property

i=j
(5.68)
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Consequently, Te in eq. (5.65) reduces to its nodal value Tt at node i. Moreover,

NJ(x, y, z) vanishes for a point located on the facet edge opposite the jth node.

Therefore, the value of T on each facet edge is determined by its value at the two

endpoints and is not related to its value at the opposite node. This important feature

guaranties continuity of the charge density across the facet edges (Jin, 2002). To

obtain the proper system of linear equations, a global numbering approach must be

considered for the facets and their vertices, i.e., nodes. Thus, the value of Tj is assigned

to each node; however, each node shares different interpolation functions from each

neighboring facet that shares that node. The value of the surface integral in eq. (5.38)

for each node is the summation of the integral over all the facets sharing that node.

By these definitions, and substituting the linear representation of the charge density

into eq. (5.38), the final system of equations is obtained as

N E

~ = 2~~s llj . 'VG(rj, rs) + ~:~ ~~ fir. Nie(r/)llj 'VG(rj, r
/
)ds (5.69)

E

+ kjTj LJrr NJ(r/)llj' 'VG(rj,r/)ds,
21rco e=l ir]

j=I,2,3, ... ,N,

where rj denotes the location of the jth node, and NJ(r/) is the interpolation function

associated with node j in the facet e. The number of nodes is N, and E is the number

of neighboring facets for a node, which obviously has different values for different

nodes. Rearranging eq. (5.69) yields the matrix equation

AT=B (5.70)
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where A is an N x N coefficient matrix with components

E

A jj = ~ - 2k
j L jr( Nj(r/)nj. 'V'G(rj, r/) ds (5.71)

co '7rco e=1 if';

and

E

A j ; = 2~~ L J1N;e(r')nj· 'V'G(rj, r ') ds ,
o e=1 fi

(5.72)

T is the N x 1 vector of unknown values of the charge densities at the nodes, and B

is the N x 1 vector with components

(5.73)

It should be noted that in this node based approach, nj denotes the outward unit

normal vector at the jth node. Two different techniques are implemented to derive

the nodal outward normal vector. The first averages outward unit normal vectors

of all neighboring facets. The other approach is to fit a sphere to that node and its

neighboring nodes to derive the nodal outward normal vector using the direction of

the radius of the sphere at the location of the node. Each technique has its own

advantages based on the shape of the 3D anomaly as will be shown bellow. Again,

the matrix equation is solved using the freely available direct solver (dgesv.f) from

the online mathematical library LAPACK (Dongarra et. al., 2002) (see Appendix B).
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5.5 Example 1: Potential due to a buried conductive sphere

5.5.1 Analytical formula for the potential due to a sphere in a uniform

field

One of the few three-dimensional bodies for which the exact solution has been devel-

oped in electrical resistivity theory is the sphere. The problem is finding the potential

distribution on the surface of a uniform half-space in which a conductive sphere is

embedded (see Fig. 5.6). It is easier to work in spherical coordinates with the sphere

Fig. 5.6: Buried conducting sphere in uniform field. a is the radius of the sphere, P2
is the resistivity of the sphere and PI is the resistivity of the halfspace (Telford et al.,
1990).

centre as origin and the polar axis parallel to the x-axis. In order to derive an ana-

lytic solution, the sphere is assumed to be in a uniform electric field Eo parallel to

the x-axis which is equivalent to having the current electrodes far to the left or right

of the sphere in Fig. 5.6. By solving Laplace's equation in spherical coordinates and

applying the boundary conditions, the potential at the surface is obtained (Telford
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et al., 1990). For r > a

(5.74)

The second term in eq. (5.74) will be doubled if the potential is measured at the

ground surface because of the sphere image reflected by the half-space boundary.

Considering the field generated by a current source Cl at a distance R from the

centre of the sphere, eq. (5.74) can be rewritten as

(5.75)

which denotes the total potential measured at the surface. Notice that the disturbing

potential due to the conductive sphere is shown by the second term (Telford et al.

1990). Two important conditions must be considered while comparing the results

from the analytic expression above and the 3D forward modelling code developed in

the preceding sections. Firstly, the external or background field is considered to be

uniform, which can be approximated by increasing the distance between the sphere

and the current source. Secondly, no interaction between the sphere and its image

has been taken into account. For this to be valid, the distance between the sphere's

centre and the surface should not be less than 1.3 times its radius.
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5.5.2 3D Numerical solution for the potential due to a sphere in a uniform

field

The discretized sphere for which the problem has been solved is illustrated in Fig.

5.7. The geometry of the problem is the same as illustrated in Fig. 5.2. The pole-

Fig. 5.7: Discretized sphere for the example presented in Section 5.5 with 1520 trian
gular facets and 762 nodes.

pole configuration is used, and the current electrode injects a current of lA into the

ground. The conductivity of the half-space is 10-4 S/m and the conductivity of the

sphere is 1 S/m. Neither the half-space nor the sphere are polarisable (Le., ml and

m2 = 0). The coordinate values of the centre of the sphere are (1225,350, -550) m
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and the radius of the sphere is 195 m. The measuring profile is parallel to the x-axis

directly over the center of the sphere, that is the y- and z- coordinates of the potential

electrodes are 350 m and 0.0 m respectively. The distance between two successive

potential electrodes is 10 m and the potential was calculated at 251 locations. The

starting location of the profile is (0,350,0) m and the ending point is (-2500,350,0)

5.5.2.1 Charge Accumulation over the 3D spherical anomaly

Based on eq. (5.22), negative charges build up when the current flows from a resistive

into conductive region. As the buried sphere is more conductive than the surrounding

medium, the negative charge must be accumulated as the current flows from the half

space through the sphere and the positive charge must be accumulated as the current

is passing from the sphere to the half-space. The exact behavior can be produced by

the developed 3D code which is illustrated in Fig. 5.8 for both constant and linearly

varying distribution of electric charge where conductivity of the half-space is 10-4

S/m and the conductivity of the sphere is 1 S/m. For this example the sphere is

descretized into 4106 facets and 2055 nodes.
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(a) Constant Charge

(b) Linearly varying charge

Figure 5.8: Charge accumulation, in coulomb (C), over a conductive sphere in a
resistive background.
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5.5.2.2 Different location of current source

The calculated potential due to the conductive buried sphere is presented for different

locations of the current source. By increasing the distance between the centre of the

sphere and the current electrode, the condition of having uniform electric field at

the location of the sphere is better approximated. In this example, the number

of the facets is 1520 and the number of nodes is 762. Results were calculated for

both constant and linearly varying charge distributions for four different locations

of the current sources: (-50,350,0) m, (-1000,350,0) m , (-5000,350,0) m, and

(-10000,350,0) m. The observation locations are along the x-axis on the surface of

the halfspace (see Figs. 5.9 to 5.12).

O~~~~~~~~~~~~~~~~ O~~~~~~~~~~~~~~~~

x(m)

(a) Constant Charge (b) Linearly varying charge

Figure 5.9: DC resistivity potential due to conductive buried sphere using pole-pole
configuration for a source location of (-50,350,0) m: analytic response (blue), 3D
forward modelling code (orange).
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(a) Constant Charge (b) Linearly varying charge

Figure 5.10: DC resistivity potential due to conductive buried sphere using pole-pole
configuration for a source location of (-1000,350,0) m: analytic response (blue), 3D
forward modelling code (orange).

(a) Constant Charge (b) Linearly varying charge

Figure 5.11: DC resistivity potential due to conductive buried sphere using pole-pole
configuration for a source location of (-5000,350,0) m: analytic response (blue), 3D
forward modelling code (orange).



(a) Constant Charge (b) Linearly varying charge
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Figure 5.12: DC resistivity potential due to conductive buried sphere using pole-pole
configuration for a source location of (-10000,350,0) m: analytic response (blue),
3D forward modelling code (orange).
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5.5.2.3 Discretization effect on calculated potential

Here, results are presented for a calculated DC resistivity potential over a buried

conductive sphere starting from a very coarse mesh which is gradually transformed to

a very fine mesh. The current source is located at (-10000,350,0) m for all examples.

As can be seen in Figs. 5.13 to 5.16, the larger the number of nodes and facets, the

better the numerical solutions are. However, linearly varying charge approach was

expected to produce a better response compared to the constant charge approach for

a coarse discretization as the number of unknown variables is smaller.

(a) Constant Charge (b) Linearly varying charge

Figure 5.13: DC resistivity potential for the conductive buried sphere using a pole
pole configuration and using 94 facets and 49 nodes, analytic response (blue), 3D
forward· modelling code (orange).



(a) Constant Charge
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(b) Linearly varying charge

Figure 5.14: DC resistivity potential for the conductive buried sphere using a pole
pole configuration and using 304 facets and 154 nodes, analytic response (blue), 3D
forward modelling code (orange).
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(a) Constant Charge
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(b) Linearly varying charge

Figure 5.15: DC resistivity potential for the conductive buried sphere using a pole
pole configuration and using 1254 facets and 629 nodes, analytic response (blue), 3D
forward modelling code (orange).



(a) Constant Charge (b) Linearly varying charge
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Figure 5.16: DC resistivity potential for the conductive buried sphere using a pole
pole configuration and using 1520 facets and 762 nodes, analytic response (blue), 3D
forward modelling code (orange).
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5.5.2.4 Different orders of integration

The Gauss-Legendre quadrature method that is used to calculate the surface integral

over an arbitrary oriented triangular facet (see eq. 5.56) can be implemented in differ

ent orders. An example is carried out to illustrate the effect of using different orders

of integration on the final result. The current source is located at (-10000,350,0) m

and two examples were used to compare the effect of integration order on both fine

and coarse discretisations (see Figs. 5.17 and 5.18). The results shows that the order

of integration has really no effect on how accurate the solution is when the fine dis

cretisation is used. Since the computation time escalates as the order of integration

increases, it makes sense to use lower order of integration.
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Olntegrationorder=2

*lnlegratlonorder=3

alnlegratlonorder=4

Inlegratlon order = 5

-lnlegrationorder=6

o Analytical response

(a) Constant Charge

olntegrattonorder=2

*lntegratlonorder=3

o Inlegratloo order = 4

Integratlooorder=S

-Inlegratlon order = 6

o Analytical response

,... X(m)"" '''' ,...

(b) Linearly varying charge

Figure 5.17: Different orders of integration for an sphere discretized into 94 facets
and 49 nodes.
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o Integratlon order = 2

* Integration order = 3

DlntegraUonorder=4

IntegraUon order = 5

-lntegratlonorder=6

o Analytical response

(a) Constant Charge

olntegrationorder=2

*Integratlonorder=3

alntegrationorder=4

Integratlonorder=S

-Integratlonorder=6

°Analytical response

(b) Linearly varying charge

Figure 5.18: Different orders of integration for an sphere discretized into 1520 facets
and 762 nodes.
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5.6 Example 2: Potential due to a buried conductive prism

The other reference used to test the developed 3D surface integral code was the

DCIP3D software package. DCIP3D forward modelling is based on the finite differ

ence method and has been developed for structured regular rectangular cells. Two

different 3D meshes were designed for 3D DC resistivity forward modelling using

DCIP3D (see Chapter 4). One coarse mesh called mesh B with cells of dimensions

50 x 50 x 50 m and a finer mesh called mesh A with cells of dimensions 25 x 25 x 25

m (see section 4.2.1). The Earth model is a homogeneous half-space of conductivity

10-4 Slm and chargeability of O. A conductive prism of conductivity 1 Slm and

chargeability of 0 is embedded. The extent of the prism was from x = 1150 to 1300

m, y = 250 to 450 m, and z = -400 to -700 m. For simplicity, the pole-pole

configuration was again used. The current electrode was placed at (-300,225,0) m.

Synthetic data were produced for a single profile from (0,225,0) m to (2500,225,0)

m with the stations every 10 m. Using TetGen (Si, 2003), unstructured triangular

meshes were produced with different numbers of nodes and facets defining the surface

of the prism and these were used as input to the developed 3D forward modelling

code (see Fig. 5.19). Figs. 5.20 to 5.25 show that the larger the numbers of nodes

and facets, the better the numerical solutions. The computation time for a coarse

mesh is in the order of several seconds and for a fine mesh is in the range of a couple

of minutes. The linearly varying charge approach was expected to work better for the

coarse meshes with small number of nodes and cells; however, the constant charge
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approach gives better results for coarse meshes. In the case of fine mesh, the linearly

varying charge approach produces better results.

Fig. 5.19: Discretized prism using unstructured linear triangular facets with the ex
tension of x = 1150 to 1300 m, y = 250 to 450 m, and z = -400 to -700 m and
descritized into 4106 facets and 2055 nodes.
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(a) Discretizedprism

(b) Constant Charge (c) Linearly varying charge

Figure 5.20: DC resistivity potential due to a conductive prism using the pole-pole
configuration and observation locations along the x-axis, and 28 facets and 16 nodes:
DCIP3D Mesh A (blue), Mesh B (black), 3D Forward modelling code (orange).
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(a) Discretizedprism

(b) Constant Charge (c) Linearly varying charge

Figure 5.21: DC resistivity potential due to a conductive prism using the pole-pole
configuration and observation locations along the x-axis, and 296 facets and 150
nodes: DCIP3D Mesh A (blue), Mesh B (black), 3D Forward modelling code (orange).
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(a) Discretizedprism

(b) Constant Charge (c) Linearly varying charge

Figure 5.22: DC resistivity potential due to a conductive prism using the pole-pole
configuration and observation locations along the x-axis, and 2646 facets and 1325
nodes: DCIP3D Mesh A (blue), Mesh B (black), 3D Forward modelling code (orange).
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(a) Discretizedprism

(b) Constant Charge (c) Linearly varying charge

Figure 5.23: DC resistivity potential due to a conductive prism using the pole-pole
configuration and observation locations along the x-axis, and 3068 facets and 1536
nodes: DCIP3D Mesh A (blue), Mesh B (black), 3D Forward modelling code (orange).
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(a) Discretizedprism

(b) Constant Charge (c) Linearly varying charge

Figure 5.24: DC resistivity potential due to a conductive prism using the pole-pole
configuration and observation locations along the x-axis, and 4106 facets and 2055
nodes: DCIP3D Mesh A (blue), Mesh B (black), 3D Forward modelling code (orange).
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(a) Discretizedprism

(b) Constant Charge (c) Linearly varying charge

Figure 5.25: DC resistivity potential due to a conductive prism using the pole-pole
configuration and observation locations along the x-axis, and 5744 facets and 2876
nodes: DCIP3D Mesh A (blue), Mesh B (black), 3D Forward modelling code (orange).
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5.7 IP response due to a buried polarisable prism

The IP response as a secondary potential can be derived by performing two 3D DC

forward modellings for a primary and disturbed conductivity based on the Siegel's

theory. Assume that the polarisable cube now has a chargeability of 0.1 and is

embedded in a non-polarisable half-space. There is no conductivity contrast between

the cube and the surrounding region. The conductivity of the half-space is assumed to

be 1O-3S/m. All the settings and dimensions are as the same in the previous section.

The IP results from the code are compared to the IP data produced by the 3D IP

forward modelling of DCIP3D for both mesh A and B (see Figs. 5.26 and 5.27).
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1050~(d:) 1

(a) Constant Charge

\

\ ....

(b) Linearly varying charge

Figure 5.26: IP response as secondary potential due to polarisable buried cube using
pole-pole configuration, DCIP3D Mesh A (blue), 3D forward modelling code (orange),
4106 facets and 2055 nodes
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1050 ~(d;) 1

(a) Constant Charge

\

1050 ~(d;) 1

(b) Linearly varying charge

Figure 5.27: IP response as secondary potential due to polarisable buried cube us
ing pole-pole configuration, DCIP3D Mesh B (black), 3D forward modelling code
(orange), 4106 facets and 2055 nodes



Chapter 6

Conclusion

The classical borehole IP method for mineral exploration uses a lateral probe where

the two potential electrodes and one current electrode are deployed in one probe and

used to measure the voltage in the drill-hole. The other current electrode is placed

on the ground at infinity. Classical borehole IP has several limitations including an

investigation radius that is restricted by borehole depth, depth of measurements lim

ited by borehole depth, sensitivity to in-hole mineralization and data that are not

suited to 3D inversion. In this thesis, numerical modelling and inversion methods for

the measurements of a novel IP borehole survey design have been investigated. The

new survey design is called hole-to-hole IP. It was introduced by Abitibi Geophysics

and aims to compensate for the limitations of classical borehole IP especially in pro

viding data that are suitable for 3D modelling and inversion. Different combinations

of receivers and boreholes have been examined to obtain the economically optimum

survey design including the minimum number of boreholes and receiver locations for

a successful imaging of the chargeable ore body in a mineral exploration project.

The examples presented in the first part of this thesis show that the hole-to-hole IP

configuration is a powerful technique providing a useful set of data for 3D modelling

138
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of ore bodies in mineral exploration industry in which the combination of two pairs

of boreholes perpendicular to each other where the target is located in the middle

of them can be employed as an optimum and economical design for the hole-to-hole

method with measurements made every 20 meters down the boreholes. Also, distance

weighting applied during inversions improved the imaging of the mineral deposit lo

cated between boreholes. The best value for fJ (see eq. 4.1) was found to be 0.25 for

inversion of hole-to-hole IP data. In the second part of the thesis, a 3D numerical

technique based on the surface integral equation approach for modelling of DC re

sistivity and IP data was developed. The pivotal novelties in the code are, first, the

application of unstructured meshes which are more flexible for representing realistic

subsurface structures than structured meshes. Second, the 3D code has been devel

oped for both situations of constant and linearly variable charge on each facet which

enables the charge accumulation to be simulated over the boundary surface more

precisely. Therefore, the developed code will enable numerical modelling to be done

for more complicated ore bodies than was previously the case. All tests showed that

the developed code produced accurate results (see Figs. 5.26 and 5.27). However,

the linearly varying charge approach did not produce more accurate results for coarse

meshes than the constant charge approach which was contrary to expectations.
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Appendix A : Gaussian Abscissas and Weights

Table 1: Gaussian Abscissas and Weights

n k xk wk

2 1 0.5773502629 1.0000000000
2 -0.5773502629 1.0000000000

3 1 0.7745966692 0.5555555555
2 0.0000000000 0.8888888888
3 -0.7745966692 0.5555555555

4 1 0.8611363116 0.3478548451
2 0.3399810436 0.6521451549
3 -0.3399810436 0.6521451549
4 -0.8611363116 0.3478548451

5 1 0.9061798459 0.2369268850
2 0.5384693101 0.4786286205
3 0.0000000000 0.5688888889
4 -0.5384693101 0.4786286205
5 -0.9061798459 0.2369268850

6 1 0.9324695142 0.1713244924
2 0.6612093865 0.3607615730
3 0.2386191861 0.4679139346
4 -0.2386191861 0.4679139346
5 -0.6612093865 0.3607615730
6 -0.9324695142 0.1713244924
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Appendix B : 3D Forward Modelling Code for DC
resistivity and IP data

Detailes on the developed 3D forward modelling code for DC resistivity and IP
data in Chapter 5 can be found in the CD attached to the thesis.
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