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ABSTRACT

Process assets are subjected to deterioration during operation. Inspection is

carried out at pre-defined intervals and at prescribed locations. This monitoring

strategy is needed to ensure that all assets perform their intended functions and

that plant integrity is not threatened. Based on the outcomes of the inspection, a

maintenance decision such as repair or replacement is made.

This thesis developed a framework for optimal risk-based inspection and

maintenance planning for process assets subjected to fatigue and corrosion. This

framework includes two main parts:

• Inspection sampling: This part aims at estimating the required size of

the inspection sample for assets/systems subjected to general corrosion

and localized corrosion such as stress corrosion cracking, hydrogen

induced cracking and pitting corrosion.

• Optimization of the risk-based inspection and maintenance (RBlM)

plan: This part aims at determining the optimal inspection interval,

inspection technigue and maintenance activity (repair, replacement

and/or alteration).



In the first part of the framework, the required sample size is estimated to

assss general and localized corrosion of process assets/systems. In the case of

general corrosion, a Bayesian approach-based method is proposed for calculating

the required sample size. The proposed method ensures that the error in the

posterior estimate of the mean metal loss due to general corrosion does not exceed

a pre-defined acceptable margin of error at a specified confidence level. An

analytical formula to estimate the sample size is introduced. The sample size

obtained using the proposed method is smaller than a sample size obtained using

the classical method with the same confidence level. This reduces sampling

inspection cost without affecting the precision of the estimate.

In the case of localized corrosion, a different methodology is proposed to

estimate the required sample size. The proposed methodology uses the extreme

value and bootstrap methods. This methodology ensures that the predicted

maximum localized corrosion using the extreme value method is within an

acceptable margin of error at a specified confidence level. Two closed-form

formulas are proposed for calculating the sample size in case of localized

corrosion. The two formulas address the both situations when prior information is

available or unavailable. A Bayesian updating approach is used to update prior

information obtained from previously performed inspections and engineering

judgement.
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In the second part of the framework, a methodology for the optimal selection

of an RBIM plan is proposed. This methodology is comprised of the following

main steps: classification of asset's components/areas according to criticality of

deterioration, asset deterioration modeling, risk assessment, cost estimation

(inspection and maintenance) and finally the selection of optimal inspection

intervals and a maintenance strategy. To solve the optimization problem, an

objective function is formulated as a function of the present value of inspection

cost, repair/replacement cost, risk of failure and the remaining value of the asset

after a specified period of time. The selection of the optimum inspection interval,

inspection technique and maintenance activity is based on minimizing the

objective function subject to a safety constraint that the risk of failure over the

lifetime of the asset does not exceed an acceptable level. The proposed

methodology allows for a minimization of the inspection and maintenance cost

over the lifetime of a deteriorated asset/system without compromising the safety.

The developed RBIM framework will help operators to make well infonned

decisions, which will result in cost effective asset integrity management and a

higher level of safety.
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CHAPTERl

Introduction

1.1. Deterioration mechanisms

Processing plants' assets such as pipelines, vessels, tanks, towers, boilers,

heat exchangers and heaters are subjected to several structural deterioration

mechanisms during their operation. Structural deteriorations may result in damage,

deformation, defects or performance degradation. The most common deterioration

mechanisms are:

a) Corrosion

Corrosion results in metal loss, pitting, cracks or/and degradation of material

properties due to changes in the material microstructure. Corrosion could be

general or localized. General corrosion is a metal loss widely distributed over the

surface area of an asset. Localized corrosion results in a localized metal loss or

cracks at different small areas over the material surface such as pitting corrosion,

galvanic corrosion, crevice corrosion, stress corrosion cracking and Hydrogen

induced cracking.



b) Fatigue

Fatigue occurs due to fluctuating stress (mechanical fatigue) or fluctuating

temperature (thermal fatigue). Fatigue causes initiation and growth of cracks

especially at locations of material discontinuities until the crack size reaches a

critical limit such that the asset is no longer able to resist the applied load.

c) Creep

Creep is continuous plastic deformation that happens when an asset is

continuously subjected to a load for a long time. Creep deformation is accelerated

at high temperatures. Creep is accompanied by microscopic voids that eventually

lead to macroscopic cracks and crack growth.

d) Corrosion-fatigue-creep interaction

An asset could be subjected to combined degradation mechanisms such as

corrosion, fatigue and creep. The degradation is accelerated due to the presence of

several mechanisms at the same time.

1.2. Maintenance strategies

Maintenance activities such as repair, replacement and alteration may be

required as a follow up to inspection. Repair refers to work that is necessary to



restore an asset to a state at which it is able to perfonn its intended function

according to the design conditions. Alteration involves a physical change which

improves the ability of an asset to perfonn its intended function. A change in

operating conditions such as temperature or pressure is not an alteration and is

referred to as re-rating.

Maintenance can be classified as:

a) Preventive maintenance

Preventive maintenance consists of maintenance tasks which attempt to pre­

empt failure of an asset.

Preventive maintenance can be sub-divided into:

- Scheduled maintenance

Scheduled maintenance is carried out at prescribed intervals of time to ensure

that an asset is operating correctly and to avoid any unscheduled downtime.

- Predictive (condition-based maintenance).

Predictive maintenance is based on the use of a physical parameter or

characteristic of an asset such as vibration, temperature, pressure, voltage, current,

sound, colour or resistance to detect major changes in the perfonnance of the



asset. Measurements of the parameter are made either continuously or at regular

intervals and the results are compared with initial measurements made when the

asset was new. A certain limit, for the amount of acceptable deviation from as new

condition, is decided at the beginning of the maintenance cycle. A repair or

replacement action is then performed prior to the anticipated time of failure.

b) Reactive maintenance (corrective maintenance)

Reactive maintenance is carried out after the occurrence of failure in order

for an asset to return to its operating condition. This type of maintenance is useful

when the cost of the failure consequences is lower than the preventive

maintenance cost.

1.3. Inspection and maintenance planning approaches

In-service inspection and maintenance could be planned based on one of the

following approaches:

i) Remaining life-based approach: The remaining life approach is based on

calculating the remaining life of an asset according to its tolerance to

deterioration, defects or damage and the rate of deterioration. The tolerance

to deterioration is determined by assessing fitness-for-service at future

times according to the deterioration predicted. The interval between two



consecutive inspections equals a fraction of the remaining life. The

remaining life is assessed based on analytical fracture mechanics models

such as Paris's equation for fatigue crack growth rate or based on statistical

methods to estimate the corrosion rate using the history obtained from

previous inspections.

ii) Reliability-based approach: The inspection and maintenance are planned

such that the reliability of the asset remains greater than previously

determined target reliability. Reliability centered maintenance (ReM) is a

typical example of this approach.

iii) Risk-based approach: The inspection and maintenance activities are

planned based on maintaining the risk of failure below an acceptable level.

RBIM is a typical example of this approach.

1.4. Research objective

To develop a framework for optimal risk-based inspection and maintenance

of process assets subjected to fatigue and corrosion. This framework includes two

main parts:

• Inspection sampling: This part aims to estimate the required sample

size for inspection of process systems subjected to general corrosion



and localized corrosion such as stress corrosion cracking, hydrogen

induced cracking and pitting corrosion.

• Optimization of the risk-based inspection and maintenance (RBlM)

plan: This part aims to select the optimal inspection interval and

maintenance strategy.

1.5. Risk-based inspection and maintenance (RBIM) approach

Risk-based inspection and maintenance (RBIM) is a strategy which aims at

maintaining the integrity of a plant or an asset that is subjected to deterioration.

Maintaining the asset integrity guarantees maintaining the risk of failure below an

acceptable level.

Although RBIM reduces risk of failure of a plant subjected to deterioration

during its operation, failure may still occur as a result of incorrect design,

manufacturing defects, or extreme environmental random events.

Thus, to ensure the integrity of a plant, all the following requirements should

be satisfied:

a) Proper design procedures should be followed to ensure that all assets are

able to withstand the applied loads. Appropriate design approach should

be followed and relevant codes and regulations should be consulted.



b) A system for quality assurance should be in place to eliminate

manufacturing defects.

c) An inspection and maintenance plan to ensure the integrity of all assets

during operation should be implemented.

RBIM is a team activity. Technical knowledge and experience should include

the following:

a) Risk assessment

b) Plant potential hazards, damage mechanisms and failure consequences

c) Plant safety

d) Material and corrosion engineering

e) Plant operation and maintenance

t) Inspection techniques and inspection history.

1.5.1. Steps ofRBIM planning

Figure I-I summarises the steps of RBIM plan. The details of each step are

explained in sub-sections 1.5.1.1 through 1.5.1.5.



Figure 1-1: RBIM planning.



1.5.1.1. Inspection sampling

In-service inspection is employed to evaluate the condition of process assets.

Often, it is impractical to inspect the large number of components that constitute a

complete asset. Therefore, inspection sampling is carried out where preselected

components or areas are inspected. In this case, it is required that the results

obtained from the sample best represent the condition of the asset (population).

In case of general corrosion, determination of the mean metal loss is required

to evaluate the condition of the population. While in case of localized corrosion,

the maximum corrosion flaw size over the entire population is to be determined

because the failure will occur when the maximum localized corrosion reaches a

critical size at any location. In other words, the objective of inspection sampling is

to evaluate the mean of the metal loss in case of general corrosion and to evaluate

the maximum corrosion flaw in case of localized corrosion.

Chapters 2, 3 and 4 illustrate how inspection sampling is applied for assets

which suffer from either a general metal loss (i.e, general corrosion) or a localized

corrosion. The analysis can also be extended to other forms of deterioration.



1.5.1.2. Selection ofinspection technique and schedule

An inspection plan involves selection of an inspection technique and

inspection schedule.

Different non-destructive inspection techniques are used for in-service

inspection such as ultrasonic, radiographic, eddy current and magnetic techniques.

Selection of the best technique to be used depends on the ability of the technique

to detect the damage, cost of performing the inspection using this technique, and

the risk of failure. This selection could be based on expert subjective judgement or

on quantitative basis.

Inspections are usually scheduled at specified times. Inspection times are

chosen based on two factors. The first factor is reducing the risk of failure to an

acceptable level. The second factor is the cost of the inspection.

1.5.1.3. Selection of a maintenance activity (repair, replacement and/or

alteration)

The condition of the inspected asset will dictate the maintenance action that

will be taken. The asset may be repaired, replaced, or left as is depending on its

condition. The action taken is based on the acceptable risk of failure of the asset to

perform its intended function until the next inspection. The maintenance cost is

10



also a factor when deciding the action to be taken. A balance between the cost of

inspection and maintenance can be achieved in the last step (optimization of the

RBIM plan).

1.5.1.4. Risk assessment

Risk is expressed as the product of the consequences of failure or an

undesired event and the probability of its occurrence.

Risk can be assessed using qualitative, quantitative or semi-quantitative

approaches.

a) Qualitative approach

Qualitative risk assessment relies on subjective judgement. The probability

and consequences of failure are expressed in descriptive and relative terms. For

example terms like, very unlikely, possible, reasonably probable and probable can

be used to describe the likelihood of failure. The consequence of failure may be

described as high, moderate, low. The qualitative approach provides an easy and

quick method for the assessment of risk. Its disadvantage is that the evaluated risk

is subjective and therefore the links to mitigation activities are also subjective.

II



b) Quantitative approach

Quantitative assessment relies on the availability of data. It requires the

determination of a specific value for the probability of failure based on

probabilistic analysis (not based on subjective judgment) and the determination of

a quantitative estimate for the consequences of failure.

An advantage of this approach is that it allows the benefits of the risk

mitigation activities to be quantified. This approach requires long time for data

recording and analysis. It also requires failure modeling and failure concequences

assessment. Failure modeling deals with formulating failure models to predict

failure occurrences and to evaluate probability of failure. Two approaches may be

used to model the failure:

i. Statistical failure modeling approach

This approach is based on the use of statistical failure data to determine the

instantaneous failure rate (hazard function) as a function of time. The probability

distribution of time to failure is obtained and the probability offailure is estimated.

In this approach, the failure is considered as function of time only without looking

at the physical factors or reasons which affect failure. For details of this approach

see Ebeling (1997).

12



ii. Physics-of-failure modeling approach

In many applications, the failure of an asset may depend on some variables

such as materials properties, damage size, loading, and operating and environment

conditions. A more accurate failure model may be one in which these variables are

considered. This approach is based on the availability of accurate analytical

models to describe the failure of an asset subjected to different degradation

mechanisms. This approach requires less data in comparison to the statistical

approach. These analytical models are expressed in terms of the variables that

affect failure. These variables are in general random. Therefore, this approach can

be combined with statistical methods to model the failure. Models obtained using

probabilistic fracture mechanics are typical examples of this approach. For

example, Paris's equation (1963) for modeling the fatigue crack growth rate can

be used with a distribution of crack size to estimate the probability of failure of an

asset subjected to fatigue.

In physics-of-failure modeling approach, the probability of failure of a

deteriorated asset can be expressed as the probability that the limit state function,

G, is less than zero. The limit state function, G, is defined as the resistance or

strength minus the load or stress. Resistance of an asset subjected to deterioration

13



depends on the material properties in a specified environment, asset dimensions

and damage size. Load depends on the operation and environment conditions.

The consequence of an asset failure could include physical injury to

personnel in the vicinity and cause structural damage to surrounding assets. It also

could cause production loss due to shut down. The contaminats of the asset may

be released due to failure. The release could have the potential for one or a

combination of the following events:

Flammable releases

When flammable releases meet with a source of ignition, a fire will result at a

close range but an explosion may reach over a large range from the centre of the

release.

ii) Steam and hot gas releases

Steam and hot gas releases can result in very severe injury or bums to people

within range.

iii) Toxic releases

The dispersion of toxic releases may extend over large distances from the

site. Employees, the general public and the environment may be affected.

14



iv) High pressure gas release

High pressure gas release has the potential to cause physical injury to

personnel in the vicinity and cause structural damage to surrounding assets.

Finnaly, the quantative risk is assessed as multiplication of probability of

failure and concequences of failure.

c) Semi-quantitative approach

In the semi-quantitative risk assessment, numerical values for the probability

of failure and the consequences are assumed on the basis of expert judgment using

available estimates for similar assets. Then, the tools which are used in the

quantitative assessment approach such as the fault tree and event tree can be used

to evaluate the system probability of failure using a subjective probability of

failure of each asset. Thus, it can be said that the semi-quantitative risk assessment

is a combination of the qualitative and quantitative assessments. It does not require

as much data as needed for the quantitative approach. In the semi-quantitative risk

assessment approach, factors which may affect the probability of failure and the

consequences are weighted or given scoring points (for example from 0-100)

based on expert judgement. The sum of the weights or the scoring points gives an

indication of the level of the probability of failure and the consequences of failure.

The level of the probability of failure and its consequences can be classified into
15



categories (from the lowest to the highest) and is usually represented in the form

of a semi-quantitative risk matrix. The risk level is evaluated as the product of sum

of weighting factors (or scoring points) of each the probability of failure and

consequences. An example ofa semi-quantitative risk matrix is shown in Figure 1-

2.

I

III••
<l)tf-----+---
]

~1------+---4---t---­
Lo risk

~ 1------+---4---t----+---l
d::

Consequences of failure categories

Figure 1-2: An example of semi-quantitative risk matrix.

The inspection plan for each item is then prioritized based on the risk level in

the risk matrix.
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1.5.1.5. Optimization ofthe RBIMplan

Different inspection and maintenance plans are suggested. The basis of

selecting the optimal RBIM plan is determined, for example, minimizing the risk

of failure, maximimizing the risk reduction as a result of carrying out the

inspection and maintenance activities or minimizing inspection and maintenance

cost while maintaining risk of failure below an acceptable level. An objective

function is formulated and the optimization problem is solved on the determined

basis.

1.6. Literature survey

Leterature survey has been carried out to cover the two main parts of the

framework. Many studies which address risk-based inspection and maintenance

planning are available in the open literature. Meanwhile, few literature address

inspection sampling of deteriorated assets due to corrosion.

1.6.1. Inspection sampling of deteriorated assets due to corrosion

When a part of a deteriorated asset is subjected to the same operating and

corrosion conditions, a representative sample is inspected from this part. For

example, a segrnnent of a pipeline could be subjected to the same operating and
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corrosion conditions. A sample (number of components or areas) of this pipeline

segment is inspected.

API 570 (piping inspection code) provides excellent recommendations for

conducting good piping inspections; however, it does not provide specific

guidelines to determine the inspection sample size. In API 570, inspection sample

size is left for the inspection practitioner's judgment (Hobbs and Ku 2002).

API 580/581 (risk-based inspection) considers risk as a basis for inspection

planning. Although API 580/581 provides guidance for determining frequency of

inspections, it does not provide specific guidance for determining minimum

number of locations to be inspected to represent the condition of the complete

system.

The corrosion rate and mean of the metal loss are enough to assess general

corrosion. As the size of the metal loss due to general corrosion can be modeld by

normal distribution and the required parameter to be evaluated is the mean metal

loss; the classical method (Eqs 2-3 and 2-4) for estimating sample size from a

normally distributed population can be used.

In case of localized corrosion, the maximum corrosion size is to be evaluated

because the failure may occur at any location at which the corrosion size is greater

than a critical size (Kowaka et a\., 1984). Thus, the strategy of sampling should
18



be different when sampling from components/areas subjected to localized

corrosion than general corrosion. For localized corrosion, there is a lack of studies

aim to address sample size and no clear consensus on this problem but it is widely

believed that the larger the sample size is the smaller the error of the sample

estimate (Kowaka et aI., 1984 and Alfonso et aI., 2008). This problem was studied

previously by Shibata (1991), Schneider et al. (200 I), Wang (2006) and Alfonso et

al. (2008). Shibata (1991) showed from historical data that localized corrosion

maybe modeled with Gumbel extreme value distribution with location parameter

(A.) and scale parameter (s) change with time while the ratio (s/A.) remains

approximately constant irrespective of the time for a certain material in same

environment. Shibata (1991) plotted sample size (n) versus return period (T) for

different ratios (s/A.) estimated using the minimum variance linear unbiased

estimator method. From this plot, the optimum sample size is obtained for a given

return period. Schneider et al. (200 I) estimated the required inspection area by

investigating the dependence between the data points at different distances from

each other. Wang (2006) estimated the required number of tubes in heat

exchangers for the assessment of the minimum remaining thickness of tubes in

industrial heat exchangers subjected to corrosion. Alfonso et al. (2008) aimed to

estimate the optimum sample size and unit inspection area in a long pipeline based

on the required accuracy of the estimate of maximum pit depth in un-pigable,
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buried pipelines using the extreme value method. Alfonso et al. (2008) performed

extensive Monte Carlo simulations to estimate the mean square error of the

estimate of the maximum localized corrosion as an indicator to the estimate

accuracy for different sample sizes.

When an asset is subjected to fatigue, critical fatigue locations can be

determined based on stress analysis (Zhou et aI., 2007). A sample of

locations/components is inspected from each group of similar criticality to fatigue.

1.6.2. Risk-based inspection and maintenance

Vaurio (1995) presented a procedure for optimizing test and maintenance

intervals of safety related systems and components. The method is based on

minimizing the total plant-level cost under the constraint that the total accident

frequency remains below a set criterion.

Nessim and Stephens (1995) presented a risk based methodology that

estimates the optimal maintenance interval for an aging hydrocarbon pipeline

network. The presented risk based maintenance methodology consists of two main

steps: to rank different segments of the pipeline according to priority for

maintenance, and to select an optimal set of maintenance actions for the chosen

segments.
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Balkey et al. (1998) developed a methodology, which includes risk based

ranking methods, beginning with the use of plant probabilistic risk assessment

(PRA), for the determination of risk-significant and less risk-significant

components for inspection and the determination of similar populations for pumps

and valves for in-service testing. This methodology integrates non-destructive

examination data, structural reliability/risk assessment results, PRA results, failure

data and expert opinions.

Apeland and Aven (2000) developed a risk based maintenance optimization

approach. The optimal strategies are determined by evaluating the relationship

between the benefits associated with each maintenance alternative and its cost.

Wintle et al. (200 I) provided guidelines including the best practice for risk

based inspection as a part of plant integrity management.

Faber (2002) explained a framework for risk-based inspection including

probability and consequence of failure assessment, modelling of uncertainties,

modelling of deterioration processes and acceptance criteria for RBI.

Kallen (2002) developed a probabilistic risk-based inspection methodology.

This methodology used a stochastic process to model the corrosion damage

mechanism and to develop optimal inspection plans. Cost functions associated

with a Gamma process for modeling deterioration are developed.
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Misewicz et al. (2002) developed a risk based integrity project ranking

approach for natural gas and CO2 pipelines. The approach is based on a benefit

cost ratio, defined as the expected risk reduction in dollars per mile over the

project useful life, divided by the total project cost. Risk reduction is estimated

using a quantitative risk analysis approach. The benefit cost ratio results can be

used as a tool to justify the maintenance budget.

Khan and Haddara (2003) presented a risk-based maintenance methodology

for designing an optimum inspection and maintenance programs. The

methodology consists of three modules: risk estimation, risk evaluation and

maintenance planning. Each module consists of many steps; for example, risk

estimation module involves: (i) failure scenario development, (ii) consequence

assessment, (iii) probabilistic failure analysis, and (iv) risk estimation.

Kallen and Noortwijk (2004) presented a risk-based inspection (RBI)

technique that develops cost and safety optimal inspection plans. Bayesian

decision model is used to determine these optimal inspection plans under uncertain

deterioration. The presented risk-based inspection technique uses the Gamma

stochastic process to model the corrosion damage mechanism and Bayes' theorem

to update prior knowledge over the corrosion rate with imperfect wall thickness

measurements. A periodic inspection and replacement policy which minimizes the
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expected average costs per year is found. An example using actual plant data of a

pressurized steel vessel is presented.

Krishnasamy et al. (2005) developed a risk-based inspection and

maintenance methodology for a power generating plant. Applying this

methodology reduces risk, increases the reliability of assets, and reduces the cost

of maintenance.

Khan et al. (2006) proposed a RBIM methodology uses a gamma distribution

to model the material degradation and a Bayesian updating method to improve the

distribution based on actual inspection results. The methodology optimizes

maintenance intervals based on a level of risk that satisfies the acceptable risk

criteria.

Santosh et al. (2006) proposed a mathematical model to estimate the

reliability of pipelines containing corrosion defects due to H2S for the purpose of

risk-based inspection.

Khan and Howard (2007) presented a simplified practical approach for the

use of statistical tools for inspection planning and integrity assessment. The study

is focused on corrosion related material degradation of piping on an offshore

production facility.
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Khalifa et al. (2009) proposed a methodology for the optimal selection of a

non-destructive inspection (NDI) technique and its associated in-service inspection

interval for welded components subjected to cyclic loading fatigue. An objective

function is formulated in this methodology as sum of the inspection cost, the repair

cost and the risk of failure. The optimum inspection interval and non-destructive

inspection technique are selected by minimizing the objective function taking into

account a safety constraint that the probability of failure does not exceed an

acceptable level.

Zhao (2009) applied the risk matrix of API 581 (2000) for risk-based

inspection of High-Pressure Hydrogenation Cracking Unit. The risk level (low,

medium, medium-high, and high) of 553 equipment and/or piping items of the

systems that compose the unit was obtained.

Ahmadi and Kumar (2011) proposed a cost rate function (CRF) to identify

inspection and restoration intervals of hidden failures (while the system is in a

non-operating state) for repairable components. The proposed method considers

the costs associated with inspection, repair/restoration and failure. The optimum

inspection interval is obtained at the minimum value of the CRF.
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1.7. Thesis overview

The organizational structure of the entire thesis is given in Figure 1-3 and the

overview of each chapter is discussed below:

Figure 1-3: Thesis organization.

Chapter I provides an overview of inspection and maintenance planning

approaches. This chapter also discusses risk-based inspection and maintenance

approach focusing on process assets.

Chapter 2 introduces a Bayesian approach to estimate sample size for

inspection of general corrosion of process components.
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Chapter 3 introduces a methodology to calculate sample size in order to

assess localized corrosion of process components. This chapter highlights the steps

of the methodology and its use of the extreme value and bootstrap methods.

Chapter 4 discusses an algorithm that integrates the extreme value method

and Bayesian updating approach to estimate sample size. The objective of this

algorithm is to assess localized corrosion in process components.

Chapter 5 introduces a methodology for optimal risk-based inspection and

maintenance planning for process systems. This chapter highlights optimal

selection of inspection interval, inspection technique and maintenance activity

based on minimizing the inspection and maintenance cost without compromiozing

the safety.

Chapter 5 highlights the conclusion and future work. Also, this chapter

discusses the significance and originality of the thesis.
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CHAPTER 2

Inspection Sampling of General Corrosion- A Bayesian Approach I

Abstract

A Bayesian approach-based method is proposed for calculating the minimum

size of a sample to assess, with a specified precision, the integrity of process assets

suffering from general corrosion. The proposed method ensures that the error in

the posterior estimate of the mean does not exceed a pre-defined acceptable

margin of error at a specified confidence level. The sample size obtained using the

proposed method is smaller than a sample size obtained using the classical method

with same confidence level. This reduces sampling inspection cost without

affecting the precision of the estimate.

I Part of this chapter has been published in a peer-reviewed journal "Khalifa, M., Khan, F. and
Haddara, M. (2012). Bayesian sample size determination for inspection of general corrosion of
process components. Journal of Loss Prevention in the Process lndustries, 25, 218-223". To
minimize repetition, the related references are listed in the thesis reference list.
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2.1. Introduction

In engineering applications, decisions are often made based on whatever

limited available information. The information that is available before performing

a new inspection is referred to as prior (past) information. This information can be

based on historical data, theoretical models or subjective judgement. One can use

newly obtained inspection data to update prior information using Bayesian

updating theory. The updated information is referred to as posterior information.

For example, prior information of metal loss of equipment can be updated once a

new set of inspection data is obtained. Although the choice of a prior is often

subjective, a rational agreement can be achieved by analyzing historical data

obtained from the same or similar piece of equipment. Details of statistical

methods used to estimate priors are presented by Thodi, et al. (2009).

The difference between a Bayesian approach-based method and the classical

method for sample size determination is that a Bayesian approach-based method

combines prior (past) information with the observed data. In the classical method,

sample size is estimated based on newly observed data or prior information. There

is no formal basis to combine past and newly observed data for estimating sample

size in the classical method (Ang and Tang, 2007).
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The objective of this chapter is to develop a Bayesian approach-based

method for the determination of the minimum sample size needed to assess the

mean metal loss of process components due to general corrosion.

2.2. The classical method for sample size calculation

According to the central limit theorem, the probability distribution of the

mean of all possible samples of size n, taken from a population having a mean of,

~, and a standard deviation, cr, is approximately normal. The resulting normal

distribution is called the sampling distribution of the sample mean. This

distribution has a mean and standard deviation equal to ~ and

q/..[ii., respectively, provided that the sample size, n, is sufficiently large. This

approximation improves as the value of n increases. There is no exact rule to

determine the appropriate value of n which satisfies the condition "sufficiently

large" given in the central limit theorem. The sample size n that is required for

applying the central limit theorem varies as a function of the shape of the

population distribution. The closer the population's distribution to the normal, the

smaller the sample size needed. It has been stated that a sample of size, n = 20, is

appropriate for populations having normal distributions, while a size of n = 30, is

appropriate for populations skewed from the normal distribution (Bernstein and

Bernstein, 1999).
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The margin of error of the mean, MOEmean, is the deviation between the

population mean, Il, and the sample mean, Ils, it is given by:

MOEmean = I Il - Ils I (2.1)

The margin of error is a measure of the adequacy of the sample to be used to

describe the population. An adequate sample size ensures that the margin of error

does not exceed a predefined acceptable value, with a specified confidence level

of (I-a). The confidence level of a margin of error indicates the likelihood that the

difference between the population value and the sample estimate is less than or

equal to this margin of error.

MOEmean is expressed as half the width of the confidence interval (I-a) for

the sampling distribution of the mean (i.e, the distribution of the sample mean) as

follows:

MOEmean = <D-'(I- al2).:j;; (2.2)

where (J is the standard deviation of the population, <D- I is the inverse standard

normal probability, and a is significance level. (alJ115 is the standard deviation of

the sampling distribution of the mean (i.e., standard deviation of the sample mean,
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The required sample size, n, to evaluate the mean of infinite population is

obtained from Eq. 2.2 as follows:

(2.3)

One can use a t-distribution when the population's standard deviation, cr, is

unknown and has to be estimated from the data. [n this case, <[>-'(1- a/2) and cr

used in Eq. 2.3 are replaced with t'-al2.n-' and the sample standard deviation, crs,

respectively as follows:

(2.4)

where tl-al2.n-1 is the upper critical value at the probability of (I-a/2) of the t­

distribution with (n-I) degree offreedom.

Eqs. 2.3 and 2.4 are used when the population size (N) is infinite or

practically large in comparison to the sample size, n. [fthe population is finite, the

standard deviation is multiplied by a finite population correction factor (FPCF)

given by (Bernstein and Bernstein, 1999):

FPCF = J(N - n)/(N - 1)
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Since the population size, N is usually much larger than I, the FPCF can be

approximated as:

FPCF ~ J1 - n/N (2.6)

When the ratio n/N is less than 0.05, the correction factor has small effect

and the population may be considered practically infinite.

Using Eq. 2.6 and Eq. 2.3, a classical formula to calculate the required

sample size n to evaluate the mean of a population of size N with pre-defined

acceptable margin of error (MOE.ccept) is given by, see ASTM E122 (2009):

1~-1{1-n(~)]

H[+-1(1-~){~)r

2.3. A proposed Bayesian approach-based method of sample

calculation

2.3.1. Posterior estimate of sample mean and standard deviation

(2.7)

size

Let x denotes observed independent sample data. Assume the distribution of

the random variable, x, has a parameter e. Assume further, that the parameter e is
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a random variable having a known prior probability distribution f(8). The prior

distribution of the parameter 8 can be updated using Bayes' theorem as follows:

1" (8) = J-=,,:p(~~~)f~~~)de (2.8)

where f'(8) is the posterior (updated) probability distribution of 8 and P(xI8)

is the conditional probability of observing the inspection outcome x for a given 8

and commonly referred to as the likelihood function of8.

The posterior estimate, 8", for the mean of the parameter 8 is given by:

e" = L: e pI (e)de (2.9)

Let the parameter 8 denotes the mean of the corrosion depth and assume that

it is normally distributed. Further assume that the prior distribution of the mean is

normal. [n this case, the posterior distribution of the sample mean is also normal.

The posterior estimate for the mean and the standard deviation of the sample mean

are obtained from Bayes' theorem as follows (Ang and Tang, 2007):

(2.10)
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(2.11)

where cr'fiS is the prior estimate of the standard deviation of the sample mean

and crs is the standard deviation of the sample of size n. ~' is the prior mean.

If all possible random samples, each of size n, are drawn from a prior

distribution with standard deviation of cr' and the mean of each sample is

estimated, the prior standard deviation of the sample mean, cr'fiS> is given by:

(2.12)

Substituting for cr\'s in Eq. 2.10 and Eq. 2.11, one gets:

(2.13)

(2.14)

(2.15)
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(2.16)

Eqs. 2.13 and 2.16 give expressions for the posterior estimates of the sample

mean and standard deviation in tenns of the new and prior infonnation.

When prior information and new sample inspection data are available, the

population's properties can be estimated on the basis of the posterior estimates for

the parameters. For uninfonnative prior infonnation (i.e., (J' approaches infinity),

from Eqs. 2-13 and 2-14, the limit of ~~s approaches the sample mean, J..ls and the

limit of(J~s approaches crs/~ as in the classical method.

2.3.2. Calculation of the sample size

For a finite population, (J~s is obtained using Eq. 2.6 and Eq. 2.16 as follows:

" o· ~
(Jl!s=~'..Jl-~
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(2.18)

The margin of error of the posterior sample mean can be defined by replacing

the standard deviation of the sample mean (u/J7i'j in the classical method (Eq.

2.1) with the posterior standard deviation of the sample mean (cr"I1s).

(2.19)

Using Eqs 2.18 and 2.19, a formula to estimate the required sample size n to

evaluate the posterior mean of a population of size N with pre-defined acceptable

margin of error (MOE.ccept) can be obtained as

(2.20)

Eq. 2.20 can be solved using an iterative scheme. First a sample size is

assumed and inspection data is obtained for this sample. The standard deviation,

crs, is estimated from the sample data. If the sample size, n, and the estimated
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sample standard deviation, crs, satisfy Eq. 2.20, then the iterations process is

stopped.

The proposed formula (Eq. 2.20) is similar to the classical formula (Eq. 2.7)

except that the population standard deviation, cr, is replaced with cr". It may be

noticed that the estimated sample size from the proposed formula is always less

than the estimated sample size using the classical formula. This fact can be proved

mathematically as follows:

The expression of cr" in Eq. 2.20 can be re-written as:

This expression shows that cr" is equal to cr' or crs multiplied by a coefficient

of a magnitude < I. It is clear that cr" is less than both the prior standard deviation

cr' and the sample standard deviation crs• The population standard deviation, cr, in

the classical formula is assumed to be equal to cr' or crs. Therefore, the estimated

sample using the proposed formula is always less than the estimated sample size

using the classical formula. This allows the use of a sample having a smaller size

to get results having the same level of precision (i.e., MOE.ccept) with the same

confidence level (I-a).
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2.4. Case study

Assume that a population of size N = 100 components is subjected to general

corrosion. Further, assume that the prior distribution of the corrosion depth is

normal with mean, ll', and standard deviation, cr', of 5 mm and 0.7 mm,

respectively. It is required to estimate sample size to assess the mean corrosion

depth of this population with MOEaccept of 0.1 mm at confidence level (I-a) of

95%.

Classical method (Eq. 2.7):

The standard deviation in Eq. 2.7 is assumed known and equal to the prior

standard deviation, cr' = 0.7 mm.

n - [1.96*CitJ r
- 1+[1.96:~~)12

n= 66

Proposed method (Eq. 2.20):
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Using iterative process in the above equation, a sample size of 50 was

estimated. Table 2-1 shows the sample data (corrosion depth of 50 components)

withlls=5.l3 mm and O"s=0.7lmm.

Table 2-1: Sample data (n =50) in mm for population size N=IOO.

3.3 4.5 4.7 4.4 5.1
4.6 5.2 5.1 4.5 6.5
4.7 4.9 5.6 5.2 5.2
5.9 5.8 5.7 6.5 6.4
5.1 5.8 5.3 4.1 4.6
4.8 6.1 4.8 4.3 5.1
6.2 4.5 4.7 5.1 4.6
4.9 5.8 6.0 5.1 5.1
4.8 4.2 5.9 4.3 6.4
5.3 5.5 5.4 3.9 4.9

The data shown in Table 2-1 was randomly selected from a population

generated with Monte Carlo simulation while in real applications it should be

obtained from inspection of randomly selected components/areas. The generated

population represents the actual population. The sample size (50) obtained in this
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example using the proposed method is 25% less than the sample size (66) obtained

using the classical method with the same precision and same confidence level.

Figure 2-1 shows normal probability plot of sample data in Table 2-1

indicating a good fit to normal distribution.

0951-------:-----------------;---------------;----------------;------------------:------------------:----2---_~"'"/-cl

1-------;-----------------;------------------;------------------;------------------:--'-A~
~ 051-------,-----------------,------------------,-----------------,--J-L~:--g---_0 : : :--1

a. 0.251-------,----------------+---------------+--,~y""----------:------------------:------------------:--------- +1

011- __ ; ,-~-----~~(--,:--,V-tr------------------,--------------:-----------------'------------------:--1

Figure 2-1: Normal probability plot of sample data shown in Table 2-1.

The posterior sample mean is estimated from Eq. 2.13 as follows:

5.13" 0.72 + 5,. 0.712

~~s 0.72 + 0.712
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~~s = 5.1 mm

The margin of error in this estimate is 0.1 mm at the specified confidence

level (95%).

Effect of prior information on sample size:

rt is given in this case study that the prior mean, 11', and standard deviation,

cr', are 5 mm and 0.7 mm, respectively.

Assuming same prior mean, l-l' = 5 mm, sample mean Ils = 5.13 mm, sample

standard deviation, crs = 0.71 mm and population size, N = 100 but different values

of the prior standard deviation, cr'. Sample size is estimated using Eg. 2.20 and

posterior sample mean is estimated using Eg. 2.13 as shown in Table 2-2.
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Table 2-2: Sample size and posterior sample mean for different prior standard

deviations.

Posterior
prior sample

standard Sample mean,
deviation, size, n J1;:.,mm

(J',mm

0.3 23 5.02

0.7 50 5.06

1 57 5.09

10 65 5.13

Infinity 66 5

From Table 2-2, it is observed that sample size increases with the increase in

prior standard deviation and finally approaches the sample size estimated using the

classical method when prior standard deviation approaches infinity (uninformative

prior). The posterior sample mean falls between the sample mean (fls = 5 mm) and

the prior mean (fl' = 5.13 mm) weighted by the variance as shown in Eg. 2.13.

When prior standard deviation approaches infinity (uninformative prior), the

posterior sample mean approaches sample mean, fls. In this case of uninformative

prior, the proposed method yields to the classical method.

Assuming same prior standard deviation, 0"' = 0.7 mm, sample mean, fls =

5.13 mm, sample standard deviation, o"s = 0.71 mm and population size, N = 100

but different values of the prior mean, fl'. Sample size and posterior mean are

shown in Table 2-3.
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Table 2-3: Sample size and posterior mean for different values of prior mean.

prior
Posterior
sample

mean, Sample mean,
11', size, n

Il~s,mm
mm

3 50 4

5 50 5.\

7 50 6.\

\0 50 7.6

20 50 12.7

From Table 2-3, the prior mean does not affect the sample size however

affects the posterior sample mean which is considered to evaluate the population

mean. The classical method does not account for the prior mean in evaluating the

population mean.

Effect of the population size on sample size

Various population sizes are considered to estimate sample size using the

proposed and classical method. Table 2-4 shows the results of sample size and the

saving in sample size compared to the classical method.
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Table 2-4: Sample size for different population size, N.

Prior Sample
Table of

Sample size, n
Population standard standard

sample Classical Proposed Saving
size,N deviation, deviation,

data formula formula %

a',(mm) a,,(mm) (Ea. 2.7) (Ea. 2.20)
50 0.7 0.77 2-5 40 33 18
100 0.7 0.71 2-1 65 49 25
200 0.7 0.78 2-6 97 65 33
1000 0.7 0.68 2-7 158 88 44

Tables 2-5, 2-6 and 2-7 show sample data for population size N= 50, 200 and

1000 respectively.

Table 2-5: Sample data (33 data points in mm) for population size N=50.

4.8 5.3 5.2 4.5 4.7
5.3 4.6 5.1 5.5 3.8

5.1 5.3 5.0 6.7 4.3
4.9 6.3 4.4 5.3 5.0

4.0 4.0 5.2 4.8 5.2
4.5 6.3 3.6 4.0 4.4
6.6 3.5 4.5
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Table 2-6: Sample data (n =65) in mm for population size N=200.

6.1 5.2 5.2 4.8 5.2
4.5 5.5 4.8 5.6 5.2
5.2 4.3 6.4 3.7 4.8
5.3 4.6 4.6 5.1 5.3
5.3 4.3 4.5 5.0 5.5
5.0 5.5 4.6 6.0 7.1
4.9 4.6 4.8 4.3 5.0
5.3 4.9 5.8 4.4 5.3
4.8 5.0 6.9 6.4 6.0
4.4 4.8 5.1 2.6 4.6
4.1 4.5 5.4 6.4 4.7
4.9 4.8 3.6 5.5 4.6
4.9 5.5 5.2 4.7 4.1

Table 2-7: Sample data (88 data points in mm) for population size N= I000.

5.3 5.2 5.0 5.5 4.8
4.8 5.0 4.6 5.9 4.5
4.7 5.1 4.7 4.1 4.3
4.8 4.9 5.4 4.2 5.9
5.6 5.7 4.6 4.9 5.6
4.8 3.7 6.1 4.6 4.6
5.1 4.4 3.9 4.4 6.6
4.9 4.4 5.4 5.2 4.3
6.4 5.4 5.5 4.8 5.2
5.4 4.6 4.2 5.0 4.8
4.2 3.8 4.4 4.5 6.1
5.2 6.5 5.4 5.8 5.3
3.8 4.6 5.1 5.8 5.3
5.3 4.3 5.1 4.5 6.1
5.4 4.1 4.0 4.0 3.5
4.6 5.4 5.5 4.1 3.8
4.4 4.2 4.4 5.4 4.6
3.9 5.6 4.5
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Figure 2-2 shows sample size, n, for different population size, N. The sample

size estimated using the proposed method is less than the classical method. This

allows using a smaller sample size with the same precision.

I----------~----------:---------,----------;------~,-c:--------------~--------------------;------I~~
------------------ ~~~--

i
100

/ -'--
~ 81---------~-/---/----:._____----------:-----------;-----------:_---------~------=~~=-----:---------~

t/

Figure 2-2: Sample size, n, for different population size, N.

Figure 2-3 shows the percentage of saving in sample size when using the

proposed method compared to the classical method for different population size,

N. The larger the population size, the more saving in inspection sample and

therefore saving in sampling inspection cost.
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Figure 2-3: Percentage of saving when using the proposed formula in comparison

to the classical formula for different population size, N,

2.5. Conclusion

A Bayesian approach-based method is proposed to determine the minimum

size of inspection samples required to assess the condition of process components

subjected to general corrosion. The population mean metal loss due to general

corrosion is evaluated based on the posterior sample mean. The sample size is

estimated to guarantee an acceptable margin of error in the estimate of the

posterior sample mean at a given confidence level. The proposed method uses

current inspection data to update prior information using a Bayesian updating

process.
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A closed form formula is proposed to estimate sample size for evaluation of

the mean metal loss for a finite population subjected to general corrosion. The

proposed formula is a function of the sample standard deviation, prior standard

deviation of the metal loss, population size, the acceptable margin of error and the

specified confidence level. The estimated sample size ensures that the error in the

posterior estimate of the mean metal loss due to general corrosion does not exceed

a pre-defined acceptable margin of error at a specified confidence level.

The suggested method was tested on a case study which showed that the

sample size obtained using the proposed method is smaller than the sample size

obtained using the classical method for the same confidence level. For example,

the percentage of reduction in sample size is 25% for a population size of 100 and

44% for a population size of 1000 for the same confidence level of95%.

48



CHAPTER 3

Inspection Sampling of Localized Corrosion- A Statistical Approach2

Abstract

A methodology to estimate the required sample size to assess, with a

specified precision, the localized corrosion of process assets has been proposed.

The proposed methodology uses the extreme value and bootstrap statistical

methods. The estimated sample size ensures that the predicted maximum localized

corrosion, with the extreme value method, is within an acceptable margin of error

at a specified confidence level. Using the results of the proposed methodology, an

equation is introduced to calculate sample size as a function of the acceptable

margin of error, the population size, the standard deviation of corrosion data and

the required confidence level. The methodology is explained through a case study

of localized corrosion in process piping.

2 Part of this chapter has been published in a peer-reviewed journal "Khalifa, M., Khan, F. and
Haddara, M. (2012). A Methodology For Calculating Sample Size To Assess Localized
Corrosion of Process Components. Journal of Loss Prevention in the Process Industries, 25, 70­
80", To minimize repetition, the related references are listed in the thesis reference list.
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3.1. Introduction

This chapter proposes a methodology to estimate the required sample size to

assess, with a specified precision, the localized corrosion of process assets.

The extreme value method is widely used to predict the maximum localized

corrosion over the entire population using sample data. The sample data represent

the maximum corrosion size in each inspected component/area. A major limitation

of the application of the extreme value method to the assessment of the localized

corrosion is that the sample size affects the accuracy of the extreme value

prediction (Jarrah et al., 2011). The proposed methodology calculates the sample

size to assess, with a specified precision, the maximum localized corrosion of

process components. The precision is quantified by a margin of error (MOE) of

the predicted maximum corrosion over the entire asset/system. This MOE is

estimated using the finite population bootstrap method. The estimated MOE is

compared to the acceptable margin of error to determine the minimum required

sample size.

3.2. Proposed methodology to estimate sample size for the inspection of

localized corrosion

The proposed methodology compromises the following main parts as shown

on the methodology flowchart (Figure 3-1):
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Figure 3-1: Proposed methodology flowchart.
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3.2.1. Part 1- Layering separation

Through layering separation the equipment of an installation subjected to

corrosion are classified into groups or areas. The groups obtained by this

classification process are usually referred to as corrosion circuits or loops. A

corrosion circuit (loop) is a group of similar assets in the plant which have the

same material and exposed to the same corrosion conditions. Each group is

considered as a population from which sampling is required. The objective of

layering separation is to reduce the source of variability in the inspection data

within each group. This would help to reduce the required sample size when

sampling randomly within a group because sample size is strongly dependent on

the standard deviation, cr, of the population.

3.2.2. Part 2- Physical sampling within each group

A randomly selected number of components/areas within a group is

inspected. Only the maximum localized corrosion of each component/area is

recorded and fitted to a Gumbel extreme value distribution.
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3.2.3. Part 3- Bootstrap sampling and extreme value analysis

3.2.3.1. Use of bootstrap sampling methods to estimate standard error and

confidence interval

The standard error of an estimator is a measure of the accuracy of an

estimator obtained based on sample data. There is no accurate fonnula for

estimating the standard error of a statistic other than the mean.

The standard error of the mean, SEmean is given by:

SEmean =7ri

where 0" is the standard deviation of the population and n is the sample size.

(3.1)

The confidence interval, CI, is estimated as a multiple of the standard error,

SE, as follows:

(3.2)

where <1>-1 is the inverse of the standard normal distribution and (I-a) is the

confidence level.
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The margin of error of an estimator obtained using sample data is the

maximum acceptable deviation of this estimator from the actual value. It expresses

the required estimate precision. For example, if the desired precision is set at ±O.I

mm, then the margin of error is 0.1 mm.

The margin of error is expressed as half the width of the confidence interval.

From Eqs. 3.1 and 3.2, the margin of error of the mean, MOE rnean, is given by:

MOEmean = <1>-1(1_ crf 2).7ri (3.3)

In case of localized corrosion, as there is no closed-form analytical

expression to estimate the confidence interval and therefore the margin of error of

the maximum localized corrosion, bootstrap sampling is used in the proposed

methodology for this purpose. Bootstrap sampling is a simulation of physical

sampling process. It is a convenient tool that requires less assumptions and

computations.

In bootstrapping, a resample called bootstrap sample can be drawn randomly

with one of three main procedures:

i. From the sample data itself (with replacement). This procedure is

refered to as non-parametric bootstrap and was first proposed by
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Efron (1979) to estimate the standard error and confidence interval

when the standard methods cannot be used.

ii. From a created virtual population (either with or without

replacement). This population is called bootstrap population. An

example of this procedure is the finite population bootstrap (FPB)

which was first introduced by Gross (1980). The simplest case when

the population size, N, is a multiple of the sample size, n (i.e.,

N=C.n). In this case the bootstrap population is created by repeating

the sample C times (Cohen, 1997). In real sampling applications, the

sample is taken from a finite population without replacement. Thus,

in the proposed methodology, the FPB method without replacement is

used. The bootstrap population is generated using Monte Carlo

simulation following Gumbel extreme value distribution of the

sample data.

iii. From a distribution fits the sample data assuming that the sample

distribution is an approximation to the population distribution. This

maybe called a Monte Carlo procedure (Brooker, D.C. and Geoffery

K.C., 2004) and also referred to parametric bootstrap. This procedure

is useful where a parametric model fits the population distribution is
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known. It is more accurate than non-parametric bootstrap (Efron and

Tibshirani, 1993).

The steps of bootstrapping to estimate standard error and confidence intervals

are surrunarized as follows:

I. Bootstrap sample:

Draw a bootstrap sample.

Bootstrap statistic:

A statistic such as mean, median or maximum is evaluated for large

number of bootstrap samples.

Bootstrap distribution:

Bootstrap distribution of bootstrap statistic is obtained.

Bootstrap standard error and confidence interval:

The standard error and confidence interval of the statistic are

estimated as the standard deviation and confidence interval for the

mean of the bootstrap distribution, respectively.

Figure 3-2 shows a flowchart of bootstrapping to estimate standard error and

confidence intervals.
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Bootstrap
replications

Bootstrap standard error and confidence interval

Figure 3-2: Bootstrapping to estimate standard error and confidence intervals.

In the proposed methodology, a large number of bootstrap samples of

different sizes nb:SN are drawn without replacement from generated bootstrap

populations of the same size of the original population, N. The maximum localized

corrosion is predicted with the extreme value method for each bootstrap sample.

The bootstrap standard error of the maximum corrosion, SEmax , predicted with the

extreme value method is estimated.

3.2.3.2. Use of the extreme value statistical method to predict the maximum

localized corrosion

The extreme value distribution is classified into three types (Type I, Type II

and Type III) for two cases (maximum values and minimum values). Type I (in

case of maximum values) is known as Gumbel distribution. As the objective of

inspection in case of localized corrosion is to evaluate the maximum localized
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corrosion size, it is a common practice to use the extreme value distribution (type

I) to represent the probability distribution of maximum localized corrosion; see

Kowako et al. (1984).

The inspection data modeled by extreme value distribution (case of

maximum values) may be extrapolated for the whole population to predict the

maximum corrosion size in uninspected areas (Kowaka et aI., 1984); The Health

and Safety Executive, 2002; and ASTM G46-94, 2005).

The cumulative probability of Gumbel distribution of the maximum

corrosion size in each component/area, x, is given by:

(3.4)

where A. and eare location and scale parameters, respectively.

The mean, fl and standard deviation, cr are estimated in terms of A. and e as

follows:

fl=A.+ye

where y = 0.57722 is Euler constant.
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(3.6)

To demonstrate how the maximum corrosion is predicted over the whole

population with the extreme value method, let us consider a system having a total

of N components/areas (population of size N) and a sample of size n

components/areas is inspected. The sample data points (measured maximum

corrosion for each component/area) are arranged in order of increasing rank. The

cumulative probability, F, can be calculated as i/(n+ I), when using the average

rank method, where i is the order of rank and n is the sample size (number of

recorded maxima). The highest value of the sample cumulative probability can be

estimated as F=n/(n+1). This maximum value corresponds to the maximum

corrosion over the sample. Similarly, the highest value of the cumulative

probability for the whole population of size N can be estimated as Fmax=N/(N+ I).

The Gumbel probability plot is obtained by plotting -In(-ln(F(x)) versus x. The

maximum corrosion size, xma" over a population of size N using sample data of

size n is obtained by extrapolation of the fitted straight line in Gumbel probability

plot from point A to point B as shown in Figure 3-3.
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Maximum corrosion size, x, in each component/area

Figure 3-3: Extrapolation of Gumbel probability plot to predict the maximum

localized corrosion over the entire population.

Point A corresponds to the maximum corrosion size over the sample of size

n. Point B corresponds to the maximum corrosion size over the entire population

of size N assuming the sample represents the population. The plotting position of

point A on the vertical axis is the maximum cumulative probability of the

maximum corrosion size in each component/area of the sample. The plotting

position of point B on the vertical axis is -In(-lnFmax).

The predicted maximum value using the extrapolation shown in Figure 3-3

is affected by sample size. Thus, determining sample size is important to ensure

the precision of the extreme value prediction of the maximum corrosion.
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3.2.4. Part 4- Calculation of the required sample size to predict the maximum

localized corrosion within each group

It is required to estimate the appropriate sample size within each group which

provides an accurate description of the state of the whole group.

When the sampling objective is to evaluate the population mean, the sample

size is estimated as follows:

a) When the standard deviation of the population, (J, is known, Eq. 3.3 leads

to a sample size n, corresponding to a pre-defined acceptable margin of

error, MOEaccept> given by:

[ ( )]

2

n= ,,-1 1-~ _eJ_
( 2)' MOBaccept

(3.11)

b) When the standard deviation of the population, (J, is unknown and has to

be estimated from the data, one can use t-distribution. In this case,

<t> -1 ( 1 - i) and (J used in Eg. 3-11 are replaced with tl-aJ2,n-1 and (Js,

respectively as follows:

[ ( )]

2

n = tl-~n-l' _"_a-
2' MOE.ccept

(3.12)

where t l -aJ2,n-1 is the critical value at the probability of (I-a/2) of the t-

distribution with (n-l) degree of freedom and (Js is the sample standard
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deviation. For large sample size n (for example n>50), the t-distribution

approaches the standard normal distribution. In this case, the above two

equations give approximately equal sample sizes. The solution for n in

Eq. 3.12 should be obtained by trial and error because t l-al2,n-1 is a function

ofn.

c) If the population is finite, the standard deviation in Eqs. 3.11 and 3.12 is

multiplied by a finite population correction factor (FPCF) is given by Eqs.

2.5 and 2.6. Instead of multiplying the standard deviation by FPCF, the

sample size obtained from Eq. 3.11 is divided by (I+n/N) as suggested by

ASTM E122 (2009). This yields to the following classical equation for

calculating the sample size needed for the evaluation of the mean of a

finite population:

[O-'(l-~}(~)r

ll}-'{t-~~)["
(3.13)

In case of localized corrosion, evaluation of the mean is not sufficient

because the failure is expected when the maximum corrosion at any location in the

population exceeds the critical limit. Thus, the sampling objective is to predict the

maximum corrosion, not the mean, over the whole population (inspected and

uninspected components/areas). In order to achieve that, the following steps are

undertaken in the proposed methodology:
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I. Standard error of the population maximum (SEmax) is estimated as the

standard deviation of the population maximum which is predicted using the

extreme value method for large number of bootstrap samples of sizes nb~:::N

(see Figures 3.2 and 3.3).

II. The ratio of standard error of the population maximum (SEmax) to standard

deviation of sample data (O"s) is evaluated for each bootstrap sample. In this

work, we will refer to this ratio as the coefficient of error of the population

maximum (COEmax) and define it as follows:

(3.14)

The coefficient of error is dimentionless. Therfore, using any consistent

units for the factors which significantly affect this coefficient will not

change the proposed equation to estimate sample size (Eq. 3.21).

III. The margin of error of population maximum, MOEma" is expressed as half

of the confidence interval of the maximum and is given by:

MOEn",x = ,,-1 (1 - ~J. SEmax (3.15)

IV. From Eq. 3.14 and Eq. 3.15, the coefficient of error of the maximum,

COEmax, is given by:
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(3.16)

V. The acceptable coefficient of error COEaccept is estimated from Eq. 3.16

corresponding to a pre-defined acceptable margin of error, MOEaccept. as

follows:

(3.17)

VI. The bootstrap sample size, nb, is plotted versus COEmax estimated from Eq.

3.16. Then from this plot, the required sample size is obtained

corresponding to the acceptable COEaccept.

3.3. Analysis of variance (ANOVA)

Analysis of variance was performed to check the significance of the factors

that could affect the COEmax' These factors are sample size (n), population size

(N), sample mean (Ils) and standard deviation (O's). The levels of these factors used

for ANOVA are shown in Table 3-1. The units of the mean and standard deviation

are consistent.
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Factor

Table 3-1: Factors levels.

Levels

Samplesize,n

population size, N

Sample mean, !is

Sample standard deviation, (Js

20, 40, 60, 80, 100

10,10 ,10,10,10,10

0.1,100

0.1,100

The ANOVA shows that the factors and factors interactions having a P-value

less than a specified significance level a (for example 0.01 or 0.05) are significant

factors at confidence level (I-a). The analysis of variance results showed that

sample size and population size have significant effect (P-value = 0.000) while

mean and standard deviation have insignificant effect (P-value > 0.05) on COE ll1ax '

When the effect of a factor depends on the level of another factor, it is said that the

two factors interact. All factors interactions found with insignificant effect (P­

value> 0.05) except the interaction of sample size and population size (P-value =

0.000). This conclusion about the significance of the effect of the factors and

factors interactions on COEmax was used to confirm the proposed equation to

estimate sample size.
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3.4. Proposed equation to estimate sample size

Eq. 3.13 is used to estimate the required sample size for estimating the mean

of a population of size N at a specified level of error. In the proposed

methodology, our aim is to obtain an equation similar to Eq. 3.13 to estimate the

required sample size to evaluate the population maximum instead of the

population mean.

First we estimate the required sample size to evaluate the population mean

using the proposed methodology in order to compare the results of the proposed

methodology with the classical equation (Eq. 3.13). In this case step (viii) shown

in Figure 3.1 was replaced with an estimate of the mean. Also, the maximum is

replaced with the mean in steps (ix), (x), and (xi). An equation is fitted to the

results obtained with the proposed methodology as follows:

a) The sample mean and standard deviation are set at two levels (low and

high) of 0.1 and 100 units. The scale and location parameters of Gumbel

distribution are estimated for each sample.

b) Bootstrap populations were generated following the sample Gumbel

distribution with size, N, at levels of 102
, 103,104

, 105
, 106 and 107

.
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c) The COEmean is estimated for all possible combinations with different

levels of sample mean (Ils), standard deviation «Js), population size (N), and

bootstrap sample size nb:SN.

d) The estimated COEmean is plotted versus bootstrap sample size nb for

different levels of population size N. For example, Figure 3-4 shows COEmean

versus bootstrap sample size, nb, for population size, N = 100 with two levels

of fls and (Js are 0.1 and 100 units.

e) The results ofCOEmean are fitted to the following equation:

~
CDEmean = --.J~ - N

where COEmeanis defined similar to Eq. 3.14 as follows:

(3.18)

(3.19)

Also margin of error of the mean is expressed similar to Eq. 3.15 as follows:

(3.20)
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~o 100
Bootstrap sample size, nb

Figure 3-4: COEmean versus bootstrap sample size, nb, for population size, N =

100.

From Eqs. 3.18, 3.19 and 3.20, the proposed methodology yields the classical

equation (Eq. 3.13). Thus, the sample size obtained using the proposed

methodology is the same as the sample size obtained with the classical method

when the sampling objective is to estimate the population mean.

The methodology is then extended to estimate the required sample size to

evaluate the population maximum as shown in Figure 3.1. Then, an equation is

fitted to the results. As it was done in case of the mean, the sample mean and

standard deviation are set at two levels (low and high) of 0.1 and 100 units and the

bootstrap populations were generated with size, N, at levels of 102
, 103

, 104
, 105

,
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106 and 107
. The eOEmax is plotted versus bootstrap sample size nb for all possible

combinations of sample mean (/J.s), sample standard deviation (Js) and population

size (N) at different levels. For example, Figure 3-5 shows eOEmax versus

bootstrap sample size, nb, for population size, N = 102 and N = 107 respectively

with two levels of /J.s and (Js are 0.1 and 100 units.
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A: Population size, N= 10'

B:Populationsize,N= 107

Figure 3-5: Bootstrap sample size, nb, versus COEmax '

The results in Figure 3-5 show that the COEmax is a function of the sample

size and population size but not function of mean and standard deviation as it was

evident by ANOVA. That means the COEmax is not function of the inspection data.

This fact is the significance of proposing the COEmax in this work. Thus, Eq. 3.21
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is general for any given localized corrosion data. The results of COEmax are fitted

to the following proposed equation (Eq. 3.21):

COE =f(N).J(':-~) N::;107
max n N '

{

1.3No.2 ,N :S: 200

where feN) = 2.1 0.13 ,200 < N :S: 104

3.2 0093 ,104 < N:S: 107

(3.21)

It can be noted that Eq. 3.21 is similar to Eq. 3.18 except the function feN).

The predicted COEmax using Eq. 3.21 is plotted in the horizontal axis versus the

actual COEmax obtained using the proposed methodology in the vertical axis for

different possible combinations of the levels of bootstrap mean, standard deviation

and population size. For example, Figure 3-6 shows this plot for population size, N
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Figure 3-6: Predicted versus actual COEmax '

Figure 3-6 shows approximately a straight line with slop 45°. This means that

the predicted and actual COEmax are consistent.
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From Eq. 3.21:

1

n= (COf~~a",);; +~
(3.22)

From Eq. 3.17 and Eq. 3.22, the sample size required to predict the

population maximum with pre-defined MOEaccept can be calculated using the

following equation:

n [ MOlEaccep. j;; 1

f(N}.",-l(l-~).cr. + N

(3.23)

The estimated sample size using the proposed equation (Eq. 3.23) ensures

that the predicted maximum localized corrosion using the extreme value method is

within pre-defined ±MOEaccept at a confidence level (I-a).

Table 3-2 shows a comparison of the proposed equation and classical

equation to estimate sample size:
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Table 3-2: Comparison of the proposed equation and classical equation.

Proposed equation (Eq. 3.23) Classical equation (Eq. 3.13)

Sampling To estimate the population maximum To estimate the population mean
ob'ective
Method of The population maximum is estimated The population mean is estimated
estimation with the extreme value method using a as the average of a sample of size

sample of size n n
Precision The estimate error does not exceed a pre-defined MOEacccpt at a specified

confidence level (I-a)
Sample Larger Smaller
size with
same
precision

3.5. Case study

Table 3-3 shows sample data of pitting corrosion in an offshore process

piping. The data represent the maximum pit depth, x, measured using an ultrasonic

inspection technique in 30 straight piping segments. These segments are selected

randomly over the piping.
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Table 3-3: Recorded maximum pit depth (in mm) in 30 inspected piping

segments.

2
2.5
5

2
3

2.5

3.5
5
3

2
3.5
3.5

3.5
3.5
4.5

3.5
2
3

2
3

3.5

3.5 1 2
I 3.5

3.5 2

The proposed methodology was applied to estimate the sample size required

to predict the maximum pit depth over the entire pipeline using the extreme value

method within ±0.5mm (i.e., MOEaccept= O.5mm) at 0.95 confidence level (i.e

u=0.05) as follows:

Layering separation:

The total number of piping segments (population size, N) is 100. These

segments represent one group as they are similar and subjected to the same

corrosion conditions.

Physical sampling:

The inspected segments are selected randomly over the piping.

Bootstrap sampling and extreme value analysis:

The data in Table 3-3 fits a straight line in the Gumbel probability plot as

shown in Figure 3-7, thus this data fits Gumbel distribution. The Gumbel

probability plot is obtained by plotting x versus [-In(-ln(F(x))]. The slope of the
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straight line gives lie and the intersection with the X-axis gives A. The standard

deviation of the sample data, crs, is estimated as 0.99 mm.

-In(-ln(Fl
1

: ................. .......
....... ~

.........

/
~V

/.
/

/

Figure 3-7: Gumbel probability plot of the inspection data.

Bootstrap samples with different sizes nbSN are drawn from bootstrap

populations randomly generated following the fitted Gumbel distribution. The

maximum localized corrosion is predicted with extreme value method and the

corresponding COEmax is estimated for each bootstrap sample.

The results of COEma, for different bootstrap sample sizes are shown in

Figure 3-8.
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Figure 3-8: eOEmax versus bootstrap sample size for population size of 100.

Sample size calculation:

From Eq. 3.18:

eOEaccept = 0.5/( 1.96*0.99)

eOEaccept = 0.26

From Figure 3-8, the bootstrap sample size at eOEaccept= 0.26 is 58.

The proposed equation (Eq. 3.24) can be used to calculate the sample size

alternatively to the whole methodology as follows:
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n = [ MOE~ccept ]1 1

feN) .<1>-1 (1- i).a. + N

feN) = 1.3No.2 = 1.3'" 100°·2 = 3.265

n= , ~

[3.265 * ~·.;6' 0.99r + 1~0

The obtained sample size using the methodology is close to the one obtained

using the proposed equation.

The required sample size, n, to be inspected is assumed equal to the obtained

bootstrap sample, nb. The inspection is carried out for additional 28 segments (i.e.,

total n=58 inspected segments). Table 3-4 shows the recorded maximum pit depth

including all the 58 inspected pipeline segments.
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Table 3-4: Maximum localized corrosion in 58 inspected piping segments in mm.

2 2 3.5 2 3.5 3.5 2 3.5 2
2.5 3 5 3.5 3.5 2 3 1 3.5
5 2.5 3 3.5 4.5 3 3.5 3.5 2

2.5 2 3.5 3.5 2.5 2 2.5 2 2
2 2.5 2.5 3 1.5 3.5 1 2.5 5
2 2.5 2 2.5 2 2 2.5 2

The data shown in Table 3-4 fits Gumbel distribution with scale parameter

0.71mm and location parameter 2.3Imm. The standard deviation of all inspection

data shown in Table 3-4 is 0.91 mm.

From Eq. 3.17, the COEaccept is re-estimated based on the new data (Table 3-

4) as 0.28 which corresponds to nb= 56 in Figure 3-8.

The required sample size n can also be obtained using the proposed equation

(Eq. 3.21) which yields to:

58

The number of inspected segments is 58 is not less than the estimated sample

size, thus it is not required to inspect more piping segments.

Prediction of the maximum pit depth over the entire population (100 piping

segments):
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The maximum pit depth over the inspected sample is 5mm as shown in Table

3-4. The maximum pit depth over the entire population was predicted as 5.54mm

by extrapolation of the Gumbel extreme value distribution of the inspection data in

Table 3-4. The margin of error in this prediction is 0.5mm at 0.95 confidence

level.

Sample size to estimate the mean:

If it is required to estimate the mean of the corrosion instead of the maximum

based on the sample data shown in Table 3-3 with the same margin of error =

0.5mm and confidence level 0.95. Assuming that standard deviation of the sample

(0.99 mm) is an approximation to standard deviation of the population (N= I00),

the classical equation (Eq. 3.13) yields to sample size, n = 15. It can be noted that

the sample size (n=15) required to estimate the mean of population is much less

than the sample size (n=58) required to estimate the maximum of the same

population with the same precision (i.e margin of error). Thus, the sampling

strategy depends on what actually is investigated, for example, the mean or the

maximum.

80



Effect of the population size:

In order to show the effect of the population size on the estimated sample

size, it was assumed that the total number of segments of the pipeline (population

size) is 1000 and the proposed methodology is reapplied for this population size.

Figure 3-9 shows eOEmax versus sample size for population size of 1000.

::H1----------~-- --- _.---- -~--- ----_.-.:-------- ----~------ -----.,-----------: ------------~- -- -----_. ,. -_. _. ---_. -:----_. ---1

12\

400 500 600
Bootstrapsamplesize,n

b

Figure 3-9: eOEmax versus sample size for population size of 1000.

From Figure 3-9, the sample size at eOEaccept = 0.26 is 278.

Using the proposed equation (Eq. 3.21):

feN) = 2.1No.13 = 2.1- 1000°·13 = 5.155
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n = 0.5 z 1 = 286

[5.155 .. 1.96" 0.99] + 1000

The sample size is 58 when the population size is I00 (i.e., 58%) while it is

278 when the population size is 1000 (i.e., 27.8%) with the same acceptable

margin of error (0.5mm) and at the same confidence level (0.95). Thus the larger

the population size, the smaller the required sample size to population size ratio

(n/N). The larger population size can be obtained by reducing the unit inspection

area (AI) to the limit that practically does not affect the detectability of the

localized corrosion by the used inspection technique such as radiographic,

ultrasonic or eddy current. The recommended practical inspection unit area can be

obtained from the applicable codes such as API 570, API 579 and ASME, Section

XI and ASTM G46-94.

3.6. Conclusion

A methodology for calculating the sample size required to predict, with a

specified precision, the maximum localized corrosion of process assets is

proposed.
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The proposed methodology is divided into main parts: i) layering separation,

ii) physical sampling, ii) bootstrap sampling and extreme value analysis, and iv)

calculation of sample size.

The results of the proposed methodology are used to fit an equation for

calculation of sample size as a function of: the acceptable margin of error, the

population size, the standard deviation of corrosion data and the required

confidence level.

The estimated sample size ensures that the predicted maximum localized

corrosion, detennined using the extreme value method, is within an acceptable

margin of error at a specified confidence level.
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CHAPTER 4

Inspection Sampling of Localized Corrosion- A Bayesian Approach3

Abstract

The Bayesian updating approach and the extreme value method are integrated

in a single algorithm to estimate the sample size required to assess, with a

specified precision, localized cOlTosion of process assests.

Two closed-form formulas for calculating the sample size are obtained based

on the proposed algorithm. One formula is to be used when prior information is

available and the other when prior information is unavailable .

.1 Part of this chapter has been submitted for publication in a peer-reviewed journal "Khalifa. M..
Khan, F. and Haddam, M. (2012). Inspection Sampling of Pitting Corrosion. Insight: Non­

Destructive Testing and Condition Monitoring". To minimize repetition. the related
references are listed in the thesis reference lisl.
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4.1 Introduction

The objective of this chapter is to integrate the extreme value method and the

Bayesian updating approach in a single algorithm to estimate the sample size

required to assess localized corrosion of process assets.

The maximum localized corrosion over the entire asset and the corrosion rate

are predicted at the inspection time using the extreme value method. The change

over time in the maximum localized corrosion is evaluated based on the predicted

corrosion rate.

The Bayesian updating approach is used to update prior information obtained

from a previous inspection and engineering judgement once new inspection

information is available. This allows the use of a smaller sample size than that

obtained using the proposed methodology in Chapter 3 while guaranteeing the

same precision.

A formula is introduced for estimating the standard error of the maximum

localized corrosion predicted using the extreme value method. The margin of error

is estimated as a multiple of the the standard error based on the required

confidence level. The estimated sample size ensures that the posterior estimate of

the maximum localized corrosion, predicted using the extreme value method, is

within the acceptable margin of error.
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4.2 The proposed algorithm

The extreme value method is applied to predict the maximum localized

corrosion size over the entire population, X max (Figure 3-3) assuming maximum

corrosion size in each component/area fit a Gumbel extreme value distribution.

The predicted, Xrnax , is expressed as a function of scale parameter, location

parameter and population size.

Bayesian updating approach is used to obtain the posterior estimate of the

mean and standard deviation of the maximum localized corrosion, X rnax, predicted

with the extreme value method. The margin of error of the posterior mean of the

predicted maximum corrosion over the entire population is estimated as a function

of sample size, confidence level and posterior standard deviation of xmax• The

estimated margin of error should not be larger than the acceptable margin of error

which leads to the required minimum sample size. The flowchart of the proposed

algorithm is shown in Figure 4-1 and the details of the algorithm are explained

herafter.
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Figure 4-1: The flowchart of the proposed algorithm.
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4.2.1 Standard error of the standard deviation

The standard error of the sample mean, SEmean for finite population is given

by:

(4.1)

where () is the standard deviation of the population and n is the sample size. FPCF

is the finite population correction factor given by Eq. 2.6.

Eq. 4.1 is valid regardless of the type of the distribution provided that the

sample size, n, is sufficiently large (Bernstein & Bernstein, 1999).

From Eqs. 4.1 and 2.6, the standard error of the mean is given by:

~SEmean = a. ..j;; - N (4.2)

There is no precise analytical formula available for estimating the standard

error of a statistic other than the sample mean (Eq. 4.2). Figure 4-2 shows step-by-

step procedure to obtain an approximate formula to estimate standard error of

standard deviation for Gumbel and Normal distributions. This procedure can be

extended to other distributions as well.
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I Select a value forthe population mean.l..l f+--------
J

Select a value for the population standard deviation. cr I+-----
J

I Sc1ectsamplesize.n

1

~
SingMOnleCariOSimulation,genemtearandomsamPleofSizenWilh I

slandarddeviationcrandmeanllfollowingnormal/Gumbeldislribulion

sim~~:t\on l
EstImate the standard deviatIOn of the genemted sample I

t
I

Obtain the sampling distribut.ionof.standard deviation obtained I
bysllnulatlon

Fit a fonnula fOfcstimating standard error of standard deviation asa
function ofn. J.l and crfofthespecificddistribution

Figure 4-2: A procedure to obtain an approximate formula to estimate standard

error of standard deviation,

Following the procedure shown in Figure 4-2, the standard error of standard

deviation, SEstD, is obtained for Normal and Gumbel distributions as follows:

For an infinite population following a Normal distribution:

SEStD,Norm~l = 0.72i
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Using the FPCF = ~ 1 - n!N , the SEstD is obtained for a finite following a

Nomlal distribution as follows:

a ~
SEStD.Norm~1 = O. 12 ~. FPCF = O.n(J. --J;; - N

Similarly, for a finite population following a Gumbel distribution:

cr ~
SEStD.Gumbel =:,rn' FPCF = (J'--J;;-"N

(4.4)

(4.5)

It may be noted from Eqs. 4.4 and 4.5 that the standard error is independent

of the population mean, J.l..

The bootstrap simulation is used to validate Eqs. 4.4 and 4.5, as shown in

Figure 4-3. The results of SEStD, Gumbel obtained using bootstrap simulation are

consistent with these obtained using the approximate fonnula (Eq. 4.5). For

example, Figure 4-4 shows a comparison of the SEStD,Gumbel for population size

N= I03 and N= I0 11, sample size n = 20 to 200 and population standard deviation, (J

=1 to 100 unit.
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1-1 Genemte mndom p~~~~~ii~; ~~~~:I~G:'~~I~~~t~~u~~~~ation (J and mean ~l I

1
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Figure 4-3: Using bootstrap sampling to validate the obtained approximate

formula to estimate standard error of standard deviation.
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Figure 4-4: SEStD. Gumbel obtained with the proposed formula (Eq. 4.5) versus SEStD.Gumbel

obtained with bootstrap simulation.

4.2.2 Standard error of the maximum corrosion predicted using the extreme value

method

The predicted maximum corrosion, Xmax. over the entire population

corresponding to point B (Figure 3-3) can be estimated as follows:

X max = A. +BIn (-In~) (4.6)

Using Eqs. 3.5 and 3.6; and substituting A. and e in terms of the sample

estimate of ~ and 0- in Eq. 4.6, one gets:

x = 11- ~(y + In (-In-!!'-)).CTmax >r N+l
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The additive law of the variance of random variables X and Y is expressed as

follows:

Var(aX + bY) = a2 .Var(X) + b2 .Var(Y) + 2a.b.Cav(X,Y) (4.8)

where a and b are constants and Cov(X,Y) is the covariance of X and Y.

As Jl and (J of normally distributed data are uncorrelated random variables,

that is, their covariance is zero; the variance ofxmax is estimated using Eqs. 4.7 and

4.8 as follows:

Var(XmaJ = aLax = Var(~) + [~(r +in (-in~))f .Var(a) (4.9)

Substituting Eqs. 4.2 and 4.5 in Eq. 4.9 where Var(~) = (SEm6Gl1i and

Var(a) = (SEStD /' the variance of the predicted maximum corrosion size, xma"

(for Gumble distribution) is given by:

From Eq. 4.10, the standard error of the predicted xmax, is given by:

(4.11)
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where MVCF is referred in this work as the maximum value correction factor for

Gumbel distribution and given by:

MVCF = 1 +~(y+1n(_ln~))2
11· N+l

(4.12)

It may be noted that the standard deviation in Eq. 4.11 is corrected by the

MVCF when estimating the standard error of the maximum value instead of the

mean (Eq. 4.2) for a finite population following a Gumbel distribution.

4.2.3 Calculation of sample size

4.2.3.1. Without having prior information

The margin of error of the predicted maximum corrosion size, MOEl1lax, is

given by Eq. 3.15.

Let MOEl1lax in Eq. 3.15 equals the acceptable margin of error, MOEaccept. and

substitute for SEl1lax from Eq. 4.10 as follows:

This leads to a sample size n given by the following formula:
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(4.14)

4.2.3.2. Having prior information

Eg. 4.14 estimates the sample size based on the available information

obtained in the current inspection without using any prior information that may be

available from previous inspections and/or engineering judgment. It is useful to

use prior information obtained from previous inspections along with new

information obtained from the current inspection. This allows using a sample of

smaller size in the current inspection to provide an estimate of the maximum

localized corrosion with the same precision (i.e., margin of error) at the same

confidence level. The prior information is updated once newly obtained

information is available using Bayesian theory.

It should be noted that the maximum corrosion size in each inspected

component/area, x, is assumed to follow a Gumbel distribution while the

maximum corrosion size over the entire population, XmaX> (predicted with the

extreme value method) is assumed to follow a normal distribution. The rational of

this assumption is that considering the extreme value method as a tool to measure

xmax; in this case, it is reasonable to assume that the measured Xmax is nonnally

distributed. The posterior estimate for the mean and the standard deviation of a
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normally distributed random variable are obtained from Bayes' theorem as follows

(Bernstein & Bernstein, 1999):

X max
xma%,(u~ma..f +x;"ax'(UXm a..,)

2

(U~m<l.l.')2 +(uxma:i
(4.15)

(4.16)

where X max is the maximum corrosion size over the entire population predicted

with the extreme value method and o'max is the standard deviation of X lllax ' x'max

and o~ml!.%are the prior mean and standard deviation of Xmax, respectively. Xmax is

estimated with the extreme value method as shown in Figure 3-3 using the current

inspection sample. o'max is estimated as given by Eq. 4.10. x:nax is estimated

based on the last updated Xmax (the posterior estimate of the maximum corrosion

size in the previous inspection, x:::a;.J considering the corrosion rate, CR, as

follows:

(4.17)

where tint is the interval between the current inspection and the previous

inspection.
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(J~!T.ax is obtained using Eq. 4.17 and the additive law of variance (Eq. 4.8)

assuming x~a." and CR are uncorrelated random variables as follows:

(4.18)

From Eq. 4.16, the posterior standard deviation of maximum local ized

corrosion over the entire population in the previous inspection, a:~BX' is given by:

(4.19)

From Eq. 4.19, a:g,,,,, is equal to (J"~",,multiplied by a factor less than I; thus

a:::,,,,,, < {JX~llX' Since sample size increases as the standard deviation increases,

conservatively substitute a~max = (J"~axin Eq. 4.18 yields:

(4.20)

From Eq. 4.12:

(4.20)
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where Go and no are standard deviation of the maximum corrosion recorded for

each component/area and sample size (number of recorded maxima) in the

previous inspection, respectively.

Kowaka et al. (1984) suggested that the corrosion rate is to be estimated

based on the maximum localized corrosion over the entire population predicted

with the extreme value method in the last two consecutive inspections and the

inspection interval. Therefore, the corrosion rate is given by, see Figure 4-5:

CR = xmax-x::'ax

tint
(4.21)

Maximum corrosion size, x, in each componcnt/area

Figure 4-5: The corrosion rate estimation with the extreme value method as

suggested by Kowaka et al. (1984).
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Substituting CR from Eq. 4.22 in Eq. 4.17:

(4.23)

The variance of the corrosion rate, a~R' can be obtained from Eq. 4.22 and

the additive law of variance, assuming Xmax and x~ax are uncorrelated random

variables, as follows:

(4.24)

Substituting axmox and ax::'ax from Eqs. 4.10 and 4.21 in Eq. 4.24:

(4.25)

Substituting CTCR from Eq. 4.25 and o~~ox = ax::'oxfrom Eq. 4.21 in Eq. 4.18:

(4.26)

Substituting a~rr.•x' (}x::'ax and x:Uax from Eqs. 4.26, 4.11 and 4.17 in Eqs. 4.15

and 4.16:

a7.(~_.!.)1a7.(~~)+2~.( ~_.!.)}

a7 .(~~~)+ la2.(~~~)+2a~.(~~) I
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(4.28)

The sample size should satisfy the condition that the margin of error of the

posterior estimate of the mean of the maximum corrosion, X~a'D does not exceed

the acceptable margin of error MOEaccept as foIlows:

MOE = 0-1. (1-~) .o:.max = MOEa,ccept (4.29)

From Eqs. 4.2 and 4.29, sample size for the extreme value analysis of

localized corrosion (in case prior information is available) is given by the

foIlowing formula:

(4.30)

Table 4-1 summarizes the proposed formulas to calculate sample size for the

extreme value analysis of localized corrosion.
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Table 4-1: Sample size calculation for the extreme value analysis oflocalized

corrosion.

I-Without
having prior
information

2-Having
prior
information

Formula for sample size calculation

[.-t(1_7)(~)1'

lJ~-'(t~){~)r

Posterior mean and standard deviation of the
maximum localized corrosion X max

x~x x_T'I~·(~~}-~L:t;j:~~~~;r~..)c'·r~~)

(1x~~ = MVCF. J::itfl~i~;~~)+:;}~!]

It may be noted that when no prior infonnation is available, this is equivalent

to (fo approaches infinity; Eq. 4.30 yields to Eq. 4.13. Therefore, the fonnula for

the sample size in case 2 yields to the fonnula of sample size in case I. Also, the

estimated sample size using Eq. 4.14 (Case I) is consistent with the estimated

sample size using Eq. 3.23.

4.3 Prediction of the maximum localized corrosion in future time

The maximum corrosion size is extrapolated over the total area of population to

predict the maximum corrosion size over the entire population, X max as shown in
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Figure 4-1. It is also useful to extrapolate Xmax in time to predict any future change

in the condition of the asset. The linear extrapolation of Xmax in time is used in this

work.

As the corrosion flaw size grows with time, the parameters of the normal

distribution (mean and standard deviation) of the predicted X maxo change. The

change in the mean and standard deviation of Xmax after a period of time L'lt from

the current inspection is estimated as follows:

Xmax,dt = Xmax + CR. I1t

Substituting O"CR from Eq. 4.25:

(4.31)

(4.32)

Substituting ~;m"x from Eq. 4.11:
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Eqs. 4.31 and 4.34 can be used to predict the maximum corrosion after a

period of time ~t from the current inspection. From Eqs. 4.32 and 4.33, the mean

and standard deviation of the predicted maximum corrosion size over the

population are increasing with increasing ~t. The distribution of the predicted

maximum corrosion, X maX' after a period of time ~t is Normal with mean Xmax.6t

and standard deviation O'XmaxAe'

4.4 Case study

A pipeline subjected to localized corrosion is considered in this case study.

The pipeline is divided into 100 similar segments (population size, N = 100).

Assume the standard deviation of the maximum corrosion size in each pipeline

segment, x, is (J = 2 mm and (Jo = I mm in the current and the previous inspection,

respectively. Assume further that the random variable x follows Gumbel extreme

value distribution. The acceptable margin of error, MOEaccePb is taken in this

example as 0.5 mm at a confidence level (I-a) = 0.95.

It is required to estimate the sample size to assess the localized corrosion of

this pipeline in the current inspection and previous inspection. Also, it is required

to estimate the posterior mean of the maximum corrosion size over the entire

pipeline assuming:
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• The maximum corrosion size predicted with the extreme value method in the

previous inspection is x~'t = 4.5 mm and in the current inspection is Xma.'t = 5

• The posterior mean of the maximum corrosion size estimated in the previous

inspection, x~ax, is 4.8 mm.

• The inspection interval, tint. between the current inspection and previous

inspection is one year.

For the previous inspection (no prior information):

Using the proposed formula (Case I, Table 4-1):

[1.96.1.3.30/ 0.5]2
n [1.96.1.3.30/0.5]2

1+ lOa

Assuming the pipeline was divided into more segments, Table 4-2 shows

sample size for different values of population size N (total number of segments).
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Table 4-2: Sample size in the previous inspection for different values of

population size N.

Population size,
Sample size,

N
n(Case 1, % (n/N)
Table 4-1)

10 63 63%
10 281 28%

104
665 7%

From Table 4-2, the sample size increases as the population size increases.

The percentage of sample size to population size decreases as the population size

increases. Therefore, it recommended dividing the pipeline into the maximum

possible number of segments. The minimum area of the segment is dependent on

the inspection tool and the required area to cover the maximum corrosion size in

each segment.

For the current inspection:

The prior information of sample size, flo, and standard deviation of the

maximum corrosion in each segment (0-0 = I mrn) are known from the previous

inspection. To determine the sample size, the proposed formulas (Table 4-1) are

applied as follows:
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Case I (no prior information is available):

[1.96 .. 1 * MVCF /o.5f

1
[1.96 * 1 • MVCF{O.5]2

+ N

Case 2 (prior information is available from previous inspection):

The required sample size, n, is estimated using the above two equations for

different values of population size and given in Table 4-3.

Table 4-3: Sample size and the posterior estimate of the mean of the maximum

corrosion size.

= Posterior estimate of the
Z

ih
mean of the maximum

.~
Sample size, n (current inspection) corrosion, x;:"" (current

= inspection) in mm

'C

!.~ ~
Without

With prior
Without

With prior

!
prior

information
prior

information
information % Saving information

V1~ (Case I,
(Case 2, (Case I,

(Case 2,

Table 4-1)
Table 4-1) Table 4-1)

Table 4-1)

10 63 88 83 6% 5 5.09
10 281 610 525 14% 5 5.09

104 665 2218 1677 24% 5 5.09

From Table 4-3, the sample size with prior information is less than the

sample size with no prior information with the same margin of error at the same
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confidence level. This shows the advantage of updating the prior information once

new information is available. The percentage saving in sample size in case I (with

prior information) in comparison to case 2 (without prior information) increases as

population size increases.

The posterior estimate of the maximum corrosion size:

The posterior mean of the maximum corrosion size, x~'" is estimated as

follows:

For the previous inspection:

x:,ax equals the predicted maximum corrosion size, X max = 5 mm (Table 4-1,

Case I).

For the current inspection:

The posterior mean of the maximum corrosion size,~ is estimated using

the formula shown in Table 4-1 (Case 2) as follows:

Xmn.r[(12.(~-M+ 2(1;.(~- ~)] + (x:;'''=+xm=-x~=).(12.(~_~)

2(12.(~_~)+ 2(1;.C~-~)
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x;:'ax 5.[22 (*-~)+2 012
• (k-~)] + (4.8+ 5-4.5) _22

• G-~)

2<22 .(£-k) +2.12 '(k-~)

The results of x~"" are obtained using the above equation for different values

ofN and the corresponding 110 and n as shown in Table 4-4.

The margin of error, MOE, and the upper limit of the posterior estimate of

the maximum corrosion, x~"", at a specified confidence level of 95% for different

sample sizes (assuming population size, N = 1000) are shown in Figure 4-7. The

margin of error, MOE, is estimated using Eq. 4.29 and the upper limit is estimated

as (x:""+MOE).

300
Samplesize,n

Figure 4-6: The margin of error, MOE, and the upper limit of the posterior

estimate of the maximum corrosion at a confidence level of 95%.
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From Figure 4-7, the upper limit and MOE of the posterior estimate of the

maximum corrosion decrease as sample size increases. Sample size is affected by

the acceptable margin of error, MOE.ccept. For example, if MOE.ccept = 0.5 mm, a

sample size of 525 is appropriate while if MOE.ccept = I mm, a sample size of 180

is appropriate as shown in Figure 4-7. Engineering judgment should be made to

decide the acceptable margin of error in the light of the tolerance between the

upper limit and the critical corrosion size to failure.

The corrosion rate, CR, is estimated using Eq. 4.22 as follows:

CR = x max - x::Zax = 5 - 4.5 = 0.5 mmjyear
tint 1

The mean and standard deviation of the maximum corrosion size over the

population after a period of time t.t from the current inspection are estimated using

Eqs. 4.31 and 4.34 and shown in Table 4-4.
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Table 4-4: Mean and standard deviation of the maximum corrosion size over the

population (Xmax.llt and cr
XmBx

.,) for different periods of time after the current

inspection (t.t).

O"Xmnr,Jlt

t.t xma.:t:,ut (mm)
(Year) (mm) N=1O N=IO N=IO

n=83 n=42 n=525 n=263 n=1677 n=839
0 5 0.30 0.78 0.30 0.53 0.30 0.45
I 5.5 0.56 1.16 0.56 0.84 0.56 0.73
2 6 0.98 1.88 0.99 1.39 0.99 1.24
3 6.5 1.44 2.68 1.45 2.00 1.45 1.79
4 7 1.90 3.51 1.91 2.63 1.91 2.35

5 7.5 2.36 4.35 2.38 3.26 2.38 2.92

4.5 Conclusion

An algorithm that integrates the extreme value method and Bayesian

updating method has been proposed to estimate the sample size required to assess,

with a specified precision, localized corrosion of process assests.

The extreme value method is used to predict maximum corrosion over the

entire asset. The Bayesian updating method is used to update prior infonnation

obtained from previous inspections and engineering judgement once newly

obtained infonnation is available. This allows the use of a smaller sample size

with the same precision. The precision is quantified in tenns of a margin of error
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of the extreme value prediction of the maximum corrosion size over the entire

asset.

Two closed-form formulas for calculating the sample size are obtained. The

two formulas address the two situations when prior information is available or is

not available.

The application of this algorithm is explained through a case study of

localized corrosion in a pipeline, in which the estimated sample size is up to 24%

less when using available prior information than when prior infonnation is

unavailable.
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CHAPTERS

Optimization of the Risk-Based Inspection and Maintenance (RBIM)

Plan4

Abstract

A quantitative risk-based inspection and maintenance methodology (RBIM)

is proposed for optimal inspection and maintenance planning. To solve the

optimization problem, an objective function is formulated as a function of the

present value of inspection cost, repair/replacement cost, risk of failure and the

remaining value of the asset after a specified period of time. The selection of the

optimum inspection interval and maintenance activity is based on minimizing the

objective function subject to a constraint that the risk of failure over the asset's

lifetime does not exceed an acceptable level. The proposed methodology allows

minimizing the cost of inspection and maintenance over the lifetime of a

deteriorated asset/system without compromising the safety.

4 Part of this chapter has been submitted and under review in a peer-reviewed journal "Khalifa,
M., Khan, F. and Haddara, M. (2011). Optimal risk-based inspection and maintenance planning
for process assets. The journal of quality in maintenance Engineering". To minimize repetition,
the related references are listed in the thesis reference list.
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5.1 Introduction

Inspection is carried out at pre-defined intervals and prescribed locations.

This monitoring strategy is needed to ensure that all assets perform their intended

functions and that plant integrity is not threatened. Based on the outcomes of the

inspection, a maintenance decision such as repair or replacement is made. An

inspection and maintenance plan involves the selection of inspection intervals and

a required maintenance strategy, such as repair or replacement. Inspection and

maintenance are planned using one or more of the approaches: remaining life­

based approach, reliability-based approach and risk-based approach.

The objective of this chapter is to develop a quantitative RBIM methodology

for optimal inspection and maintenance planning for process assets subjected to

fatigue and corrosion. The proposed methodology would contribute to well

informed inspection and maintenance decisions to enhance safety and integrity of

process assets, with optimal utilization of physical and financial resources.

5.2 The Proposed RBIM Methodology

Figure 5-1 shows the proposed methodology flowchart.
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Figure 5-1: The proposed methodology flowchart.
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The main steps of the proposed methodology are as follows:

5.2.1 Classification of asset's components/areas according to criticality of

deterioration

Each group of components/areas obtained through layering separation

(Section 3.2.1) is classified into categories according to the consequences of

failure. An inspection and maintenance plan is considered for each category.

5.2.2 Asset degradation modeling

The aim of this step is to evaluate the flaw size and its growth rate due to

fatigue and corrosion at any time, 1.

Fatigue crack growth is modeled using the well known Paris Law (1963)

which relates crack growth to the number of stress cycles as follows:

(5.1)

where a is the crack size, Nc is the number of stress cycles, C and mare

material parameters for fatigue crack growth rate in a specified environment and

f1k is the stress intensity range factor which, in general, can be calculated as

follows:
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!J.k = Y(a).!J.u.f;;

where ~(J is the applied stress range and Y(a) is the geometry function.

An integral form of Paris Law is given by:

N _aN da

c -1 C[~cr.Y(a).&]'"

(5.2)

(5.3)

where ao is the initial crack size; aN is crack size after Nc stress cycles. The

geometry function, Y(a), for specific cracked component and loading conditions

may be obtained from the available stress intensity manuals or derived using

fracture mechanics principles.

The geometry function depends on the geometry of the cracked body (e.g.,

plate, pipe), crack size, crack location (e.g., edge, center, distributed) and loading

(e.g., normal load, bending).

To account for the variable amplitude stress ranges that result from random

stress range, ~(J can be replaced by an effective constant stress range, ~(Jeff, which

represents a weighted effect of stress ranges of all amplitudes and produces the

same crack growth rate. The effective stress range, ~(Jeff, can be expressed in terms

of gamma function, f( ), (Chung et aI., 2006) as follows:
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(5.4)

For Weibull distribution, E[~crm] can be calculated as follows (Cramer et aI.,

1992):

(5.5)

where eand ~ are scale and shape parameter of Weibull distribution, respectively.

Analytical integration of Paris Law is not possible in most applications since

the geometry functions are not mathematically simple. In this case the integration

cycle by cycle method may be applied, see ¥ee (1997). For simplicity consider the

case of a loaded component where ¥(a) does not change much within the range of

ao to the critical size, acr. an average geometry function, Yay = [¥(ao) + ¥(acr)]/2

may be used; hence integration of Paris Law yields (Ragab and Bayoumi, 1999):

For m = 2:

(5.6)

Formi-2:
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(5.7)

where Ncr is the critical number of stress cycles and acr is the critical crack size.

Substituting Ncr = f. tcr where f is frequency of loading (e.g. 500,000

cycle/year) and tcr is the critical time to failure. This leads to the critical time to

failure as follows:

For m = 2:

(5.8)

For mi- 2:

(5.9)

f.Q YaJ"';r2.E[Lla-m].[l- m/2]

The crack size can be obtained as a function of time as follows:

Form=2:

(5.10)
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For mt 2:

(

m J'/ll-ml2)
aCt) = tf.C.(r;,,)"'.Jr 2.E[~(jm].(1 - ml2) + ao(l-ml2) (5.11)

Corrosion produces material flaws such as metal loss, pitting, cracks orland

degradation of material properties due to changes in the material microstructure. If

a flaw is not acceptable according to specified criteria, it is referred to as a defect.

We here use the term flaw as we are interested in estimating the flaw size even

before it becomes a defect.

The flaw is propagated by corrosive effects until the critical size, such that

failure occurs. The historical data of the corrosion inspections can be used to

determine the corrosion rate and the corrosion flaw size at a specific time. For

example, the growth of the pit depth, ap, can be modeled using a power law as

follows:

(5.12)

where c and b are constants. Values of b for pitting corrosion ranges from 0.33 to

0.6 (Laycock et aI., 1999). The pitting rate at any time t is determined as the slope

of the tangent of the curve of ap as a function of t. The value of b is sometimes
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conservatively assumed I since values of b less than I result in decreasing pitting

rates with time.

For the types of corrosion which produce cracking such as stress corrosion

cracking (SCC) or hydrogen induced cracking (HIC), experimental data relating

the crack growth rate (daJdt) to the stress intensity factor, K, can be obtained. The

best fit to crack growth data generated under operating conditions and

environments is obtained and usually is described using a power law of the form:

~=1J.(K-K,J

where

(5.13)

T] and yare empirical constants dependent on the material condition, temperature

and environment.

K is the crack tip stress intensity factor.

Kth is the crack tip stress intensity factor threshold for the specified corrosion

cracking mechanism such as stress corrosion cracking, SCc.

The proposed methodology focused on two specific degradation mechanisms:

fatigue and corrosion. The methodology can be extended to other types of

degradation mechanisms including the interaction of two or more degradation
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mechanisms at same time such as corrosion-fatigue-creep interaction. In order to

extend this methodology to other degradation mechanisms, an accurate fracture

mechanics model is to be used to estimate the flaw size (damage size due to these

degradation mechanisms) at any time, t.

5.2.3 Inspection and maintenance planning

Inspections are usually scheduled at specified intervals. The inspection

intervals may be fixed, variable over the life time, or a fraction of the remaining

life. For example, according to the recommendations of API 570 (1998) the

inspection of pipelines is carried out at intervals selected on the basis of a

qualitative judgement by the expert but not allowed to exceed half of the

remaining life.

In the proposed work, the inspection interval is selected as a fraction, R, of

the remaining life. R is a controllable (decision) variable in the optimization

problem and is determined on the basis of the optimization of the RBIM plan.

Figure 5-2 shows the inspection intervals between the initial time, to, and the

critical time to failure, tcr as a fraction of the remaining life. It should be noted that

the inspection intervals decrease with the decrease in the remaining life (the period

from the inspection time t j to the critical time, tcr). This inspection strategy allows

more inspections of the asset as it approaches the critical time to failure.
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Figure 5-2: Inspection intervals as a fraction of the remaining life.

The condition of the inspected asset dictates the maintenance action that

needs to be taken. The asset may be repaired, replaced, or left as is depending on

its condition. The action taken is based on the maintenance cost and the acceptable

risk of failure of the asset to perform its intended function until the next

inspection. A balance between the cost of inspection and maintenance and risk of

failure is achieved to optimize the RBIM plan.

5.2.4 Risk assessment

Risk is expressed as the product of two factors: probability of failure and the

consequences of failure.

5.2.4. I. Probability offailure

The probability of failure, Pr, is defined as probability of non-detecting a

growing flaw before reaching the critical time to failure, ter. It is estimated as

follows (Chung et aI., 2006):
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(5.14)

where S is number of simulations. Nj is number of inspections before reaching the

critical time to failure, tcr in the jth simulation. POD(aj) is probability of detection

of a flaw with size aj in the ith inspection.

5.2.4.2. Consequences o.ffailure

The failure could lead to physical injury to personnel in the vicinity and

cause structural damage to surrounding equipment. In addition it could lead to

release of the contaminants. The release could be flammable, toxic, high pressure

or hot fluid releases. The subsequent consequences resulting from the release

depend on the type of fluid and the energy contained in the system. These

consequences could make business interruption, damage to equipments, people,

and/or environment. Modeling of the releases and dispersion in process units can

be found in Crowl and Lowar (2002).

The cost of failure consequences is multiplied by the probability of failure to

estimate the risk as follows:

(5.15)
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where kF is cost of failure consequences.

From Eqs. 5.14 and 5.15, the risk of failure is given by:

(5.16)

5.2.5 The expected cost of inspections over the lifetime

The number of inspections between 1:0 and ter is estimated based on the

strategy shown in Figure 5-2. Since ter is a function of the material parameters,

operating and environmental conditions, and the initial flaw size (ao). In general

these are random variables. Monte Carlo simulation is used to account for all

possible combinations of these random variables. The expected number of

inspections, Nins, is estimated as the average of number of inspections estimated in

each simulation as follows:

(5.17)

Figure 5.3 shows two different simulations of the flaw size growth with time.
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Figure 5-3: Simulation of the flaw size growth with time (after Chung et al.,

2006).

The expected cost of inspections, CI, over the lifetime is estimated as

follows:

(5.18)

where n is sample size and kl is the cost of one inspection. When inspection

and maintenance are planned for only one component; then, sample size, n = I.

However for a complete system or asset, it is often required to inspect a sample

representative to the entire system/asset.

From Eqs. 5.17 and 5.18, the expected cost of inspections over the lifetime is

given by:
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(5.19)

5.2.6 The expected cost of repairs over the lifetime

A repair will be undertaken if the detected crack is larger than the maximum

acceptable crack size, a,. Let A(aj) = probability of acceptance of crack with size aj

at the ith inspection = P(aj<a,). The probability of repair at the ith inspection is

estimated as follows:

P,.{aJ = POD(aJ.(l-A(aJJ

where A(a;) = I if ajSa, and A(a;) = 0 if aj>ar-

(5.20)

The cost of repair, Cn for each simulation of the flaw growth is estimated as

follows:

(5.21)

where kR is cost of one repair.

The expected cost of repairs, CR, over the lifetime is estimated as the average

repair cost from all simulations as follows:
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5.2.7 Optimization of the inspection intervals

(5.22)

The objective function, OF, is defined as the summation of the inspection

cost, repair cost and risk of failure as follows:

(5.23)

where CRepl is the replacement cost. Rv is the remaining value of the asset or the

system after a defined period T (study period).

Since the remaining life is different when using different maintenance

options (repair or replacement), the remaining value after period of time, T, is

considered as a benefit for a maintenance option leading to a remaining life greater

than T. This is similar to what is carried out in cost/benefits analysis.

All costs in the objective function at different points of time are to be

discounted to a present value when comparing different inspection and

maintenance plans. The net present values, NPV of the cost of inspection, cost of

repair and risk of failure are given as follows:
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NPV(C,) = j=1 ;=1 ~+r)

S N[ k ]~~ POD(a,).(l-A(a,)).~
NPV(CR ) S

S [Nj nk ]
~ D(I-POD(aJ).H

S

where r is the discount rate and t j is time of the ith inspection.

The net present values ofCRepl and Ry are obtained as follows:

c
NPV(CRCP/) =(~, (1 +;Y~cPI

(5.24)

(5.25)

(5.26)

(5.27)

where tRepl is time of replacement. It should be noticed that a maintenance option

could include replacement many times during the lifetime.

(5.28)

The net present value of the objective function, NPV(OF), can be estimated
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NPV (OF) = NPV (C,)+ NPV (CRcp,)+NPV (C R ) + NPV (R F )- NPV (R,) (5.29)

The future annual costs of labour and materials tend to increase in future. An

escalation rate may be used to predict inspection cost (kl), repair cost (KR) and

failure cost (KF) at different points of time.

The inspection intervals are selected as a fraction, R, of the remaining life

(Figure 5-2). Figure 5-4 shows the cost (inspection and maintenance), risk of

failure and the objective function for different values of the ratio, R. The costs of

inspection and repair decrease as R increases because the smaller R the greater the

expected number of inspections and repairs during the lifetime will be. As R

increases, the risk of failure increases. The objective function is then estimated for

different values of R as the sum of inspection cost (decreasing curve), repair cost

(decreasing curve), replacement cost (constant), risk of failure (increasing curve)

and remaining value (constant). The resultant objective function has a concave

form (Figure 5-4). The optimum inspection interval is obtained using an R value

determined by the minimum value of the objective function provided that the risk

of failure does not exceed the pre-defined level.
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Figure 5-4: Cost (inspection and repair), risk of failure and objective function

versus different values of R for a suggested inspection and maintenance plan.

The solution of the optimization problem is repeated for different suggested

inspection and maintenance plans and the minimum values of the objective

function are compared to select the optimum inspection and maintenance plan.

5.3 Case study No.1

A welding joint located in a 50 m free span of 20" subsea pipeline subjected

to fatigue due to vortex induced vibrations (VIV) is considered in this case study.

As the RBlM plan is carried out for only one component, the sample size, n=l.
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The distribution of the stress range (L1cr) is modeled by Weibull distribution

(Tronsker et a\., 2002) with a cumulative probability density function given by:

(S.30)

where e(scale parameter) = 13.4 Mpa and ~ (shape parameter) = I.S.

The average number of stress cycles per year (frequency) is 2.4x I06

cycle/year. The critical crack size (depth of the crack at which leakage will occur),

acr is considered as S mm for this case study.

The fatigue crack growth parameter, C, is modeled as a lognormally

distributed random variable with a mean value of 6.06x I0- 13 assuming units of

millimeters for crack size and MPa.mm l
/
2 for stress intensity factor, K, and a

standard deviation of I.S8xlO- 13 mm. The fatigue crack growth exponent, m, is

modeled as a normally distributed random variable with a mean value of 3 and a

standard deviation of 0.14 mm (Chung et a\., 2006).

The costs of inspection (K1), repair (KR) and failure consequences (KF) are

taken as $102
, $103 and $105

• respectively.

The optimization problem is subject to two constraints that the maximum

acceptable risk offailure is $SOOO and the minimum inspection interval is I year.
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Ultrasonic inspection (UI) technique is considered. The POD functions for

the Ultrasonic inspection technique based on data obtained from test results of a

flat plate collected by Berens and Hovey (1981) are modeled as follows:

POD(a) exp(A+B.lna)
l+exp(A+B.lna) (5.31)

where A and B are parameters obtained experimentally as -0.119 and 2.986,

respectively.

The repair policy dedicates the repair for any detected crack size larger than

50% of the critical size (i.e. ar = 0.5acr). The minimum inspection interval is I

year. The geometry function, Y, is taken as a constant and equal to unity for

simplicity in this case study.

The following two inspection and maintenance plans are compared:

Plan A: Inspection using ultrasonic inspection (UI) technique. The initial

crack size, ao, is modeled as a lognormally distributed random variable with a

mean value of2 mm and a standard deviation of I mm. The remaining value of the

welding joint after a study period of20 years is assumed $0.

Plan B: Replacement of the welding joint and schedule a follow up

inspection using ultrasonic inspection (UI) technique. The cost of replacement is
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$10000. The initial crack size, ao, is modeled for the new joint as a lognorrnally

distributed random variable with a mean value of I mm and a standard deviation

of 0.5 mm. The remaining value of the welding joint after a study period of 20

years is assumed $1000.

All costs of inspection, repair and failure consequences are reduced to a

present value with a reduction ratio, r, of 10%.

Since the stress range, Lia, is modelled by Weibull distribution, the E[Liam] is

estimated using Eq. 5.5. The crack size as a function of time is obtained from Eq.

5.5 and Eq. 5.11 as follows:

( J
I/(I-mI2)

a(t) = t..f.c.(~,.,)m.ll"f.em.r(l+~).(I-mI2)+ao(l-ml2) (5.32)

Monte Carlo is used to generate large random sets of the random variables

(ao, C and m). Each set of random (ao, C and m) is used in Eq. 5.9 to estimate a

value of the critical time to failure, tm (corresponding to acr)' The expected (mean)

critical time to failure is obtained as the average of the critical time to failure from

all simulations.

Plan A: The critical time to failure is estimated as 21 years. The net present

values of inspection cost, repair cost and risk of failure are estimated using Eqs.
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5.24,5.25 and 5.26 for different values of the ratio R as shown in Figures 5-5 and

5-6.

0.5 0.6 0.7 0.8
R

8.1
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Figure 5-5: The net present values of the cost (inspections cost and repairs cost)

for different values of R (plan A).
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Figure 5-6: The net present values of risk of failure for different values of R (plan

A).
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The net present value of the objective function, NPV(OF), is obtained using

Eq. 5.29 as shown in Figure 5-7.

0.5
R

0

/
0

o~ ~
/

8.1

Figure 5-7: The net present value of the objective function for different values of

R(plan A).

The minimum NPV of the objective function is $4515 corresponds to R = 0.3

(Figure 5-7). At R = 0.3, the expected NPV of the inspection cost over the

expected lifetime (21 years) is $241.43 (Figure 5-5), the expected NPV of the

repair cost over the expected lifetime is $794.1 (Figure 5-5) and the expected NPV

of the risk of failure is $3450 (Figure 5-6). The risk constraint is fulfilled as the

expected NPV of the risk of failure at R = 0.3 is less than the maximum acceptable

risk of failure ($5000). Hence, the optimum ratio R for plan A is 0.3 of the
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remaining life corresponding to the following optimum inspection schedule (Table

5-1):

Table 5-1: The optimum inspection schedule for plan A (case study No. I).

Inspection no. Time, year

6.30
10.71
13.80
15.96
17.47
18.53

Inspection interval, Remaining life,
vear vear

21
6.30 14.70
4.41 10.29
3.09 7.20
2.16 5.04
1.51 3.53
1.06 2.47

Plan B: The critical time to failure is obtained as 41 years. The net present

values of inspection cost, repair cost and risk of failure for different values of R

are shown in Figures 5-8 and 5-9.
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Figure 5-8: The net present value (NPV) of the cost (inspections cost and repairs

cost) for different values of the ratio R (plan B).
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Figure 5-9: The net present value (NPV) of the risk of failure for different values

of the ratio R (plan B).

The net present remaining value after a period, T = 20 years is estimated

using Eq. 5.28 as $148.64. The net present value of the replacement cost equals
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the replacement cost ($10000) as it is paid one time at time l{,= O. The net present

value of the objective function, NPV(OF), is estimated for different values of R as

shown in Figure 5-10.

1.12L.... ~ , , ~ , ; ~ /-·I
~1.1'···K!
~ 1.081-···············,· \."' ~ , .

1.06 "\ ----"""0-- ;7
:>----<

0.4
R

Figure 5-10: The net present value (NPV) of the objective function for different

values of the ratio R (plan B).

The minimum NPV of the objective function is $10150 corresponds to R =

0.5 (Figure 5-10). At this ratio, the expected NPV of the inspection cost over the

expected lifetime (41 years) is $71.36 (Figure 5-8), the expected NPV of the repair

cost over the expected lifetime is $81.24 (Figure 5-8) and the expected NPV of the

risk offailure is $146.04 (Figure 5-9).

The risk constraint is fulfilled as the expected NPV of the risk of failure at R

= 0.5 is less than the maximum acceptable risk of failure ($5000). Hence, the
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optimum ratio R for plan B is 0.5 of the remaining life corresponding to the

following optimum inspection schedule (Table 5-2):

Table 5-2: The optimum inspection schedule for plan B (case study No.1).

Inspection no. Time, year

20.5
30.75
35.88
38.44
39.72

Inspection interval, Remaining life,
vear vear

41
20.5 20.5
10.25 10.25
5.13 5.13
2.56 2.56
1.28 1.28

Plan A requires to schedule 6 follow up inspections of the existing welding

joint (Table 5-1) while plan B requires to replace the welding joint and schedule 5

follow up inspections for the new joint (Table 5-2). Since the optimum NPV(OF)

for plan A ($4515 at R = 0.3) is less than the optimum NPV(OF) for plan B

($9967 at R = 0.5), plan A is the optimum inspection and maintenance plan.

The cost of failure consequences, KF is increased to 107 instead of 105 while

keeping all other parameters without change to check the effect of any change in

failure cost on deciding the optimum plan. In this case, the optimum RBIM plan is

plan B with optimum inspection interval equals to a ratio R = 0.2 of the remaining

life (Figure 5-11). The selection of the optimum plan is changed and the inspection

interval is decreased as a result of increasing the failure cost.
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Figure 5-11: The effect offailure cost (KF=107
) on the optimal selection of RBIM

plan.

5.4 Case study No.2

Consider a process pipeline subjected to pitting corrosion. The pit growth

rate is modeled by Eg. 5-12 with c = 0.237 mm and b = 0.35. The initial pit depth,

ao, is modeled as a random variable following Gumbel distribution with location

parameter 0.91 mm and scale parameter 0.156 mm. The critical pit size (depth of

the pit at which leakage will occur), acr is considered as 0.75 of the nominal

thickness (9.5 mm). For assessing pipelines containing corrosion, see DNV-RP-

FIOI (2004).
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The expected remaining life is obtained using the simulation of ao in Eq. 5-12

as 16.62 years. The study period, T, is taken equal to the expected remaining life.

The costs of inspection (K,), repair (KR) and failure consequences (KF) are

taken as $102
, $103 and $106

, respectively. Assume the pipeline is divided into 100

segments (sample size is n= 100).

The optimization problem is subject to two constraints that the maximum

acceptable risk of failure is $5000 and the minimum inspection interval is 1 year.

Ultrasonic inspection (UI) technique is considered. The POD function of UI

technique for pitting corrosion is assumed the same as obtained from test results of

a flat plate collected by Berens and Hovey (1981), Eq. 5.31 for illustration in this

case study. It should be noted that, in practical applications, POD function should

be obtained for a specific application as POD is sensitive to type of the flaw,

material and geometry of the flawed body (Chung et aI., 2006).

The repair policy dedicates the repair for any detected crack size larger than

50% of the critical size (i.e. ar = 0.5ac,). The minimum inspection interval is I

year.

All costs (inspection, repair and failure consequences) are reduced to a

present value with a reduction ratio, r, of 10%.
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The net present values of inspection cost, repair cost and risk of failure are

estimated using Eqs. 5.24, 5.25 and 5.26 for different values of R as shown in

Figures 5-12 and 5-13.

1-B-lnSpe,ctionsCost
• Repairs Cost

81 0.4 05
Ratio, R

Figure 5-12: The net present values of the cost (inspections cost and repairs cost)

for different values of R.
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Figure 5-13: The net present values of risk of failure for different values of R.

The net present value of the objective function, NPV(OF), is obtained using

Eq. 5.29 as shown in Figure 5-14.
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Figure 5-14: The net present value (NPV) of the objective function for different

values of the ratio R.

The minimum value of the objective function is $4.03x 104 corresponding to

R = 0.7. The risk of failure at R = 0.7 is greater than the acceptable risk ($5000),

see Figure 5-13; thus, the optimum R is reduced to 0.5 to satisfy this risk

constraint. The optimum inspection schedule is shown in Table 5-3.

Table 5-3: The optimum inspection schedule (case study No.2).

Inspection no. Time, year
Inspection interval, Remaining life,

vear year
16.62

8.31 8.31 8.31
12.46 4.16 4.16
14.54 2.08 2.08
15.58 1.04 1.04
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5.5 Conclusion

A quantitative risk-based inspection and maintenance (RBIM) methodology

is proposed for inspection and maintenance planning, in a cost effective way that

helps in maintaining the integrity of process assets.

The proposed methodology is comprised of the following main steps:

classification of the asset's components/areas according to criticality of

deterioration, asset deterioration modeling, risk assessment, cost estimation

(inspection and maintenance costs over the expected lifetime), and the optimal

selection of inspection schedule and maintenance action.

The proposed methodology allows the minimization of the cost of inspection

and maintenance over the lifetime of a deteriorated asset/system without

compromising the safety.

The details of the proposed methodology are illustrated through two case

studies of a welding joint subjected to fatigue and a pipeline subjected to pitting

corrosion.
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CHAPTER 6

Conclusion and Future Work

6.1. Conclusion

In this thesis, a framework is developed for optimal risk RBIM planning for

process components subjected to fatigue and corrosion. This framework includes

two main parts:

• Inspection sampling: This part estimates the required inspection

sample size for process assets subjected to general corrosion and

localized corrosion such as stress corrosion cracking, hydrogen

induced cracking and pitting corrosion.

• Optimization of the risk-based inspection and maintenance (RBIM)

plan: This determines the optimal inspection intervals and

maintenance activities required to maintain asset integrity in a cost

effective way.

In the case of general corrosion, the aim of the inspection is to investigate the

mean metal loss. A closed-form formula has been introduced to estimate the

sample size required to assess the mean metal loss of process components due to
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general corrosion. The closed-form formula uses Bayesian theory to update prior

information based on newly obtained information. The sample size is estimated to

guarantee an acceptable margin of error in the estimate of the mean metal loss at a

given confidence level. The effect of population size and prior knowledge on the

determination of sample size is discussed. The proposed approach to determine

sample size minimizes the required sample size that needed to assess general

corrosion based on the past history and new inspection data.

Failure due to localized corrosion could occur at the location of the

maximum corrosion size. Thus, the aim of the inspection of localized corrosion is

to investigate the maximum corrosion size. A methodology has been proposed for

calculating the sample size required for the inspection of localized corrosion. The

proposed methodology consists of: i) layering separation, ii) physical sampling, ii)

bootstrap sampling and extreme value analysis, and iv) estimation of sample size.

The estimated sample size ensures an acceptable precision in the prediction of the

maximum localized corrosion over the entire population. The precision is assessed

based on the predicted maximum localized corrosion, using the extreme value

method, is within a pre-defined margin of error at a specified confidence level. A

formula is developed to estimate sample size based on the proposed methodology.
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The extreme value method and the Bayesian updating approach are integrated

in a single proposed algorithm to estimate the sample size required to assess

localized corrosion of process components. Using this algorithm, two closed-form

formulas for calculating sample size for the inspection of localized corrosion have

been proposed. The first formula addresses the situation when prior information is

available from past inspections. In this situation, the calculated sample size is

based on combining newly obtained information and prior information using

Bayesian probability theory. The second formula addresses the situation when

prior information is not available.

The optimization problem of risk-based inspection and maintenance (RBIM)

planning is based on minimizing an objective function. The objective function is

formulated as the sum of the costs of inspection and maintenance

(repair/replacement) over the asset's lifetime, risk of failure and the remaining

value of the asset after a specified period of time. The controllable factors in the

optimization problem are the inspection interval, inspection technique and the

maintenance action (repair/replacement). The selection of these factors is based on

minimizing the objective function and therefore prouduces an optimized RBIM

plan.
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The expected cost of inspection is estimated as multiplication of the expected

number of inspections over the lifetime, the sample size and the cost of one

inspection.

Repair is undertaken if the detected flaw is larger than the acceptable value of

the flaw size. The probability of repair at the ith inspection is estimated as the

probability of detection of a flaw of unacceptable size. The cost of repair is

evaluated as the sum- over all inspections during the asset's lifetime- of the

product of the probability of repair at time of the ith inspection, the sample size

and the cost of each repair. The probability of failure, Pc, is defined as the

probability of non-detecting a growing flaw before reaching the critical time to

failure. The risk of failure is estimated as the product of the probability of failure

and the failure consequences.

The inspection interval is selected as a fraction, R, of the remaining life. This

inspection strategy allows more inspections of the asset as it approaches the

critical time to failure. An inspection plan involves the selection of an inspection

technique and schedule. A maintenance plan involves making decisions regarding

the maintenance activity (repair/replacement) to be performed. To solve the

optimization problem, an appropriate inspection interval (as a fraction, R, of the

remaining life), inspection technique and maintenance activity
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(repair/replacement) are suggested. The net present value of the objective function

is estimated for different values of R. The cost of inspections and repairs over the

assets's lifetime give a decreasing function of R, while the risk of failure gives an

increasing function of R. The resulting objective function has a concave fonn. The

optimum interval schedule for suggested inspection technique and maintenance

action is obtained by determining the value of R, which minimizes the objective

function subject to two main constraints: i) the risk of failure does not exceed an

acceptable limit ii) the inspection interval is larger than a pre-defined threshold.

The second constraint is used to ensure that the inspection strategy will not cause

unnecessary interruptions during operations. Other constraints such as the size of

the maintenance budget may also be applied. The optimization problem is solved

for different suggested inspection techniques and maintenance actions, and the

minimum values of the objective are compared to obtain the optimum RBIM plan.

6.2. Significance and originality of the thesis

This thesis presents a breakthrough in solving the problem of inspection

sampling and RBrM for process components. Important tools and methods have

been used such as the bootstrap sampling, Monte-Carlo simulation, extreme value

method and Bayesian updating method. The results obtained using the
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methodology for inspection sampling of localized corrosion provide new closed­

form formulas to calculate sample size.

Integrating the Bayesian updating method with the extreme value method in

one algorithm to estimate sample size of localized corrosion is a unique effort.

This algorithm is an original contribution which will help to minimize the required

sample size to assess localized corrosion.

The developed model for RBIM planning helps to decide the optimum

inspection technique and inspection interval as a fraction of the remaining life of

the asset. This model also assists in making optimum decisions regarding the

optimum maintenance activity such as repair or replacement based on minimizing

the objective function while keeping the risk livel within the acceptable limit.

This work has combined a varity of methods into a single quantitative

framework to help operators in making well informed decisions to plan inspection

and maintenance activities in a cost effective way without compromising the

required level of safety.

6.3. Future work

a) A methodology for risk-based inspection sampling (RBIS) will be

introduced. This methodology will aim to estimate the required sample size
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to assess deteriorated assets due to different damage mechanisms based on

a non-classical concept. Within this concept, the estimated sample size

should ensure that the risk of failure of both inspected and non inspected

components/areas does not exceed a pre-defined limit.

b) Physical failure modeling was used in the introduced methodology for

optimal RBIM planning. This methodology is useful for fixed equipment

such as pipelines, vessels, heaters towers and heat exchangers subjected to

damage mechanisms, such as fatigue and corrosion. A different

methodology is required for rotary equipment such as pumps, compressors

and turbines in which failure occurs randomly due to a varity of reasons

such as mechanical seal failure, bearing failure, shaft misalignment and

incorrect installation. Statistical failure modeling is a better approach for

this type of failure. This methodology will be used for making inspection

and maintenance decisions for rotary equipments.

c) A software program will be developed based on the overall framework

provided in this thesis to estimate sample size and optimize the inspection

and maintenance plan.
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