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ABSTRACT

The primary aim of this work is to investigate heterogeneity in the mineralogical

composition of mudstones resulting from input (detrital, production and diagenetic)

variability. With this aim four formations were examined with three unique

InvestigatIOns.

Heterogeneity as a result of diagenesis in the Exshaw Formation (Devonian-

Carboniferous) was investigated with a focus on the sulfur cycles innuence on mudstone

composition. Heterogeneity related to the carbon cycles innuence on source and reservoir

characteristics of mudstones was analyzed by comparing two carbonate-rich mudstone

units (i) the Utica Shale (Ordovician) and (ii) the Winterhouse Formation (Ordovician).

The Benbulben Shale (Devonian-Carboniferous) was utilized as a natural laboratory to

investigate the scale of heterogeneity in mudstones.

Accurately evaluating fine-grained rocks requires investigating rock properties on

a sub-centimetre scale; therefore in all formations lithofacies variability was measured

with both petrographic (transmitted light, SEM) and geochemicalmelhods (XRD, XRF,

TOC and SUC) in addition to field logging.



ACKNOWLEDGMENTS

First and Foremost I would sincerely like to thank my supervisor Dr. Joe

Maequaker. Thank you for being constantly encouraging, supportive and allowing me to

pursue the aspects of geology and science that interest me. I've Iearned a great deal from

you over the past few years that will continue to be invaluable as I move on through both

my career and life.

I also extend my gratitude to my co-supervisor Dr. Graham Layne. My project

signiticantly benefited form your insight and guidance.

When I began my Masters almost all of the techniques were new to me and I

would not have been able to complete the work without the help of a number of people.

Thank you to Dario Harazim for helping me with petrography and for having discussions

about mudstones that kept me both focused and up to date. Thank you also to those in (or

formally in) the CREAIT network for their support with analytical procedures, especially

Glenn Piercey, Michael Schaffer, Dr. David Grant, Dr. James Conliffe, Dr. Wanda

Alyward, Pam King and Helen Gillespie.

I gratefully acknowledge the tinancial support I received from the Ireland Canada

University Fund (ICUF), and the Government of Newfoundland and Labrador's

Petroleum Exploration Enhancement Program (PEEP).

Thank you to all the grad students of the Earth Science department at MUN, you

made coming into the office/lab/field everyday a great experience. Whether going hiking

in Gros Morne, the East Coast Trail or George Street this past couple of years has been a

lotoffun.

ill



A spccial thank you to Scott and my parcnts, without your support I would ncvcr

havc cvcn bccn ablc to start a Mastcrs. Thank you for giving mc so many opportunitics in

lifc and always bcing so supportivc. Finally, I would likc to thank my bcst fricnd Natalic.

You havc bccn a continuous sourcc of support in cvcry possiblc way and I could ncvcr

cxprcss how much it is apprcciatcd. Right li'om thc day wc drovc to St. John's togcthcr

it's bccn a constant advcnturc, I willncvcrforgctall that wchavccxpcricnccd togcthcr



TABLE OF CONTENTS

ACKNOWLEDGM ENTS

TABLE OF CONTENTS

UST OF FIGURES .

UST OF TABLES ..

I. : INTRODUCTION & OVERVIEW 16
1.1. Introduction... . 16
1.2.

1.2.1.
1.2.2. land plants: Impact of chemical weathering in soils

1.2.3.
1.3. Objectives ..
IA.

. 27

2. : HIGI-I-RESOLUTION FACIES ANALYSIS AND MARCASITE FORMATION IN TI-IE TYPE

SECTION OF TI-IE FINE-GRAINED EXS~IAW FORVIATION 32
2.1. Introduction... . 32
2.2. Background on lron-Disulfides.. .. 33
2.3. Formation Pathway I: Oxidation of Primary Pyrite and Reprecipitation of

.... .44
... .46

...... 38

from the bacterial sulfate reduction

with sulfur derived from thermochemical

Clay-bearing sulfide-bearing arkose sandstone
Thin bedded dolomite cement-rich mudstone .

Sulfate reduction and associated sulfur isotope fractionations ...... 35



. 55
.. 58

.. ... 78
.. 84
.... 87

.. ... 87

.119
.. 121

.. 123

Ordovician mudstoncs (scqucstration vs.
.............................. 94

.. ..... 98
...100

2.7.3. Thin-bcddcd silt and pyritc-bcaringclay-rich mudstonc .46
2.7.4. Thin-bcddcd normally gradcd silt-bcaringsilica-rich mudstonc .47
2.7.5. Calcitcccmcnt-dominatcd mudstonc .48

2.8. Discussion... .. .. . . .49
2.8.1.
2.8.2. MctaILJlslliltid(~ AnalysIs 51

2.9. Conclusions ..
2.10. Tablcs ..
2.11.

3. : ANALYSIS TO DETERMINE CONTI~OLS ON CARBON

SEQUESTRATION AND MINERALIZATION IN OIWOVICIAN SHALE GAS TARGETS 70
3.1. Introduction..... . 70
3.2.
3.3.
3.4.
3.5.

3.5.1. Utica Formation .
3.5.2. WintcrhouscFormation

3.6. Discussion... .. ..
3.6.1. Scdimcnt origins, dispcrsal and bioturbation
3.6.2.
3.6.3. cycling in
mincralization) ...

3.7. Conclusions.
3.8. Tablcs
3.9.

4. : MICROLITH()FAC:IESANALYSIS TCIINV'ESTIGA1'E Tl1E S4:::ALlc OFVAR:IABILlT1( IN

FINE-GRAINED V1UDSTONES: USING THE BENBULBEN SHALE OF SLIGO CO. IRELAND

119
4.1. Introduction ...
4.2. matcrials and mcthodology ...
4.3. History
4.4.

4.4.1. Burrow mottlcd silt-bcaring, clay-rich calcarcous mudstonc with brokcn
skclctaldcbris.... .. 125
4.4.2. Homogcnizcd, burrow mottlcd silt-bcaring carbonatc-rich calcarcous
mudstonc... .. ....... 126
4.4.3. Homogcnizcd pscudo-sparry calcitc- and silt-rich calcarcous mudstonc

128
4.4.4. Homogcnizcd silt-bcaring clay-rich calcarcous mudstonc with brokcn
skclctaldcbris.... . .. 129
4.4.5. Homogcnous silt-bcaring clay-rich calcarcous mudstonc .. . ..... 130
4.4.6. Thin-bcddcd normally gradcd fossil-bcaring, silt-rich calcarcous

4.4.7. Ovcrall stackingpattcrns ........ .... 132



.................................. 132

... 137
. 139

... 140

of stacking pattcrs and implications for pctrophysical

Scalcofcompositionalvariability
4.6. conclusions... . .
4.7. Tablcs .
4.8.

5. : CONCLUSiONS \5\
BIBLIOGRAPHY \56



LIST OF FIGURES

Figure 1.1: Flow chart dcmonstrating the significant and interconnected chemical
(right) and physical (left) impacts a lack of vegetation on the Earth's
surface may have created for thc dcposition of finc grained rocks 29

Figure 2.1: Map demonstrating the extent of the Exshaw and associated Bakken
Formations. Inset is a map of the regional geology around the Field
location, which is in Jura Creek ncar the town of Exshaw in the Rocky
Mountains of Alberta, Canada. Modified from Asgar- Deen and Adams
(2010), Price (1970), and Smith and Bustin (2000)... . 60

Figure 2.2:

Figure 2.3: Petrographic observations of clay-bearing sulfide-rich arkose sandstone.
(A) Scan of thin section showing large grain sizes and sulfide minerals. (B
and C) Optical images from petrographic microscope. Erosive surface is
arrowed in C. (D to F) Backscatter electron optical micrographs. Note wide
range of diagenetic minerals in (E) and (D). A large amount of marcasite
intergrown with pyrite and sphalerite can be seen in (F) Mineralogy is
arrowed and labeled as; Q - quartz, Ca - calcite, Ap - apatite, R-rutile, PI
- plagioclase, Py - Pyrite, M -marcasite and Sp - sphalerite.... . 62

Figure 2.4: Petrographic observations of thin-bedded dolomite cement-rich mudstone.
(A) Scan of thin section showing the large extent of pyrite within this
facies. (B) Optical image from petrographic microscope, note the thin
normally grading beds. (D to F) Backscatter electron optical micrographs.
Pyrite is very extensive in a euhedral form, often forming the base of thin
beds. Mineralogy is arrowed and labeled as; Py - Pyrite, D - Dolomite 63

Figure 2.5: Petrographic observations of thin-bedded silt and pyrite-bearing clay-rich
mudstone. (A) Scan of thin section showing very clay rich fabric. (B)
Optical image from petrographic microscope demonstrating the thin
bedded nature of the facies. (C to D) Backscatter electron optical
micrographs. Pyrite occurs throughout this facies in a euhedral form.
Mineralogy is arrowed and labeled as; Q - quartz, Ca - calcite, Ap -
apatite, D - dolomite, Ru-rutile, and Py - Pyrite 64

Figure 2.6: Petrographic observations of thin-bedded normally graded silt-bearing
silica-rich mudstone (A) Scan of thin section showing very clay rich fabric.
A solid line highlights the normally grading nature of the facies with an
arrow pointing at the silt-rich base of a bed. (B-D) Optical images from
petrographic microscope. (C and D) show agglutinated benthic
foraminifera, which arc common in the facies (E and F) Backscatter
electron optical micrographs. An agglutinated benthic foraminifera can be
seen in (E) with K-feldspar making up the test and a cavity, which is either

Viii



empty or filled with organic matter. Mineralogy is arrowed and labeled as;
Q-quartzand K-feldspar... . 65

Figure 2.7: Petrographic observations of calcite-cement dominated mudstone (A)
Scan of a thin section showing homogenous fabric. (B and C) Optical
images demonstrating the clotted fabric and in (C) a large quartz-rich
nodule. (C to D) Backscatter electron optical micrographs. Calcite makcs
up most of the facies with some quartz cement throughout and some very
large quartz nodules. In (E) a quartz grain can be seen with a rim of albite
surrounding it. Mineralogy is arrowed and labelcd as; Q - quartz, Ca -
calcite, AI-albite, and Py-Pyrite.. . 66

Figure 2.8: Results of SIMS analysis with 83~S plottcd against the height above the
base of the measured section of thc Exshaw Formation. Note: although
pyrite was detected at other intervals of the stratigraphic log, individual
grain sizes were to small to accurately measure 834S with the SIMS 67

Figure 2.9: Petrographic observations of the clay-bearing sulfide-rich arkose
sandstone showing TM34S measurements of marcasitc and pyrite. (A)
Optical images from petrographic microscope in reflected light. (B to D)
Backscatter electron optical micrographs of the circular mounts, which
were analyzed for TM

34S. In (B) the boundary between a cluster of degradcd
framboidal pyrite and bladed marcasite is circled with a dash line. The
marcasite can be seen growing around the pyrite suggesting a later
precipitation of thc marcasite. Mineralogy is arrowed and labeled as; Q 
quartz, Ca - calcite, Ap - apatite, D - Dolomite Py - Pyrite, M - marcasitc,
Mil-MilleriteandSp-sphalarite... . 68

Figure 2.10: Graph comparing the amount of elemental metals in the basal arkosic
unit to all other facies in the Exshaw Formation.. . 69

Figure 3.1: of the field locations of the Utica Shale and surrounding regional
the St. Lawrence Lowlands of Quebec. (Modifled from (Belt et

Figure 3.2: Stratigraphic log ofthc two mcasured sections of the Utica Shale 104

Figure 3.3: Petrographic observations of the normally graded, very thin bedded,
pelleted, silt-bearing, clay-rich carbonate mudstone (U I). (A) Scan of thin
section showing thin bedding planes and fining upward sequences. Solid
triangles demonstrate a fining upward sequence. (B) Optical image from
petrographic microscopc. Circle with dashcd lines arc compacted pellets.
(C and D) Backscatter electron optical micrographs. Mineralogy is
arrowed and labeled as; Q - quartz, Ca - calcite, D - dolomitc, PI -
plagioclase, Py - Pyrite, and B - Barite... . 105

Figure 3.4: Petrographic observations ofthin-beddcd partly homogenized, silt- clay-
and carbonate cement-bearing mudstone (U2). (A) Scan of thin section
showing internally homogenized beds. (B) Optical image from



petrographic mieroscope. Circled with dashed lines are compacted pellcts.
(C and D) Backscatter electron optical micrographs. Mineralogy is
arrowed and labeled as; Q- quartz, Ca - calcite, D - dolomite, AI - albite,
Py-Pyrite, and Ap-Apatite... . 106

Figure 3.S: Petrographic obscrvations of normally graded, ripple laminated, very fine
sand, coarse silt and fecal-pellet bearing carbonate mudstonc (U3) (A)
Scan of thin scction showing normally grading beds, one of which is
highlighted with a solid bar. (B) Optical imagc from petrographic
microscope. Down-lapping surfaces are identificd with dashcd lines.
Circled with dashed lines arc crushcd pcllcts in the fabric of this facies.
Circled with solid lines are nodules, which have becn fillcd with cithcr
quartz or pyrite. (C to F) Backscattcr electron optical micrographs.
Mincralogy is arrowed and labeled as; Q ~ quartz, Ca - calcite, and Py-

Figure 3.6: Petrographic obscrvations of thin-bedded, normally graded, silt- and vcry
fine sand-bearing calcitc-ccmcnt-rich mudstone (U4). (A and B) Scans of
thin scctions showing cvcnt beds with sharp and uneven erosional surfaccs.
(C and D) Optical imagcs from petrographic microscope. Highlightcd in
(B) and (C) are the two sections of individual beds (i) more coarse silt to
sand base (ii) more silt rich top. (E and F) Backscatter electron optical
micrographs. Mineralogy is arrowed and labeled as; Ca - calcite, D -
Dolomite and Py-pyrite... . 108

Figure 3.7: Petrographic observations of normally graded, burrow mottled silt- and
clay-bearing calcite cement-rich mudstone (US). (A) Scan of thin section
showing the very homogeneous fabric of the facies. (B) Optical image
from petrographic microscope. (C) Backscatter electron optical
micrograph. In (C) can calcite cement is extensive throughout the fabric,
and can see a round approximately 30 mgrain of apatite near the centreof
the image... . 109

Figure 3.8: Petrographic observations of thin, relict bedded, partially homogenized
coarse silt-bearing, clay-rich calcareous mudstone (U6). (A) Scan of thin
section showing disrupted bedding planes. (B) Optical image from
petrographic microscope. (C to F) Backscatter electron optical
micrographs. Circled with dashed lines are dolomite grains with visible
porosity around them. Mineralogy is arrowed and labeled as; Q - quartz,
Ca - calcite, D - dolomite, PI - plagioclase, and Py - Pyrite... . I 10

Figure 3.9: Petrographic observations of thin-bedded and burrow mottled fine silt
bearing, calcite cement-rich mudstone (U7). (A) Scan of thin section
showing disrupted bedding planes. (B) Optical image from petrographic
microscope showing bioturbation. (C to F) Backscatter electron optical
micrographs demonstrating feldspar dissolution. Mineralogy is arrowed



lahcllcrJ as: () ~ aLwrtz_ l.'a- calcIte 0 - dolomitc, PI- plagioclasc, An

Figurc 3,10: Map of thc field location and rcgional gcology surrounding thc
Wintcrhousc Formation, which is part ofthc Long Point Group, on thc Port
Au Port Pcninsula of Newfoundland. (Modificd from (Williams, 2000)....... I 12

Figurc 3.11: Stratigraphic log of thc mcasurcd scction of thc Wintcrhousc Formation.. I 13

Figurc 3.12: Pctrographic obscrvations of homogcnizcd, calcitc-ccmcntcd finc
graincd calcarcous sandstonc (WI). (A) Scan of thin scction showing thin
bcdding planes and fining upward scqucnccs. Solid lincs dcmonstratc thc
prescrvcd laminations. (B) Optical imagc from pctrographic microscopc.
(C and 0) Backscattcr clcctron optical micrographs. Circlcd with dashcd
lincs arc concavo-convcx quartz grain contacts, which indicatc that grain
dissolution porosity, occurrcd post-compaction. Mincralogy is arrowcd and
labclcd as; Q- quartz, Ca - calcitc, F- K-Fcldspar, and Py - Pyritc 114

Figurc 3.13: Pctrographic obscrvations of homogcnizcd sand- and silt-bcaring calcitc
ccmcnt-rich mudstonc (W2) Scan of thin scction dcmonstrating
homogcnizcd and bioturbatcd naturc of individual bcds. Planolitics isp
burrows arc arrowcd. (B and C) Optical imagcs from pctrographic
microscopc. (B) has a borcd surfacc indicating that this facics solidificd
bcforc thc ncxt was colonizcd and subscqucntly ccmcnt. (0 - E)
Backscattcr clcctron micrographs. Mincralogy is arrowcd and
labelcd Ca - calcitc, K - k-fcldspar, Ap - apatitc, R -

Figurc 3.14: Pctrographic obscrvations of thin rclict bcddcd, partially homogcnizcd
clay-and dolomitc ccmcnt-bcaring, silt-rich siliclastic mudstonc(W3).(A)
Scan of thin scction with arrows pointing to thc burrows intcrprctcd to bc
of Rhizocoarallium. (B and C) Optical imagcs from pctrographic
microscope. (0 to F) Backscattcr clcctron optical micrographs. Can scc
thcrc is an abundancc of dctrital grains, which havc bccn ccmcntcd
togcthcr by calcitc and quartz. Mincralogy is arrowcd and labclcd as; Q-

Ca - 0 - dolomitc, B - baritc, K - K-Fcldspar, Ch -

Figurc 3.15: Pctrographic observations of burrow mottlcd finc-sand bcaring silt-rich
mudstonc (W4) (A and B) Optical imagcs from pctrographic microscopc.
Watcr cscapc structurcs and that bioturbation havc Icft littlc of primary
dcpositional structurcs. (0 to F) Backscattcr clcctron optical
(0) shows thc boundary bctwccn thc insidc and outsidc of a burrow,
thc burrow containing much morc finc-graincd matcrial. Thc partial
dissolution of a K-fcldspar grain to quartz can bc sccn in (E). Calcitc
ccmcnt filling in thc boundarics bctwccn individual porcs can bc sccn in
(F). Mincralogy is arrowcd and labclcd as; Q - quartz, Ca - calcitc, K - K-
Fcldspar, and Py-pyritc... .117



Figurc 3.16: Figurc dcmonstrating thc link bctwccn scdimcnt dclivcry ratcs, cxtcnt of
ccmcnt and organic carbon prcscrvcd in carbonatc-rich mudstonc units.
Thcscparamcterscxcrtkcycontrolson thc sourcc vs. rcscrvoirpotcntial of
unconvcntional hydrocarbon rcscrvoirs. (Information for figurc (Bohacs,
2005; Butlcrand Dam, 1994; Sagcman ctal., 2003) 118

Figurc 4.1: i) Map of Ircland dcmonstrating location of ficld sitc at Strccdagh Point in
Sligo Co. Ircland. ii) Gcologic map dcmonstrating rcgional gcology of
Northwcst Ircland and significant synclinc structurcs in thc rcgion, BF 
Bclhavel Fault, CF - Curlcw Fault, CVF - Cloghcr Valley Fault, GF =

Grangc Fault, OMPF = Ox Mountains - Pcttigoc Fault (Modificd from
Arctzct. al.,2010,aftcr Dixon, 1972)... . 141

Figurc 4.2: Stratigraphic log ofmcasurcd scction ofthc Bcnbulbcn Shalc at Strccdagh
Point, in Sligo County, Ircland. . . 142

Figurc 4.3: Pctrographic obscrvations of thc burrow mottlcd silt-bcaring, clay-rich
calearcousmudstone with brokcn skclctal dcbris. (A) Scan of thin scction
demonstrating significant prcscrvation of tracc fossils. (B-D) Optical
imagcs from pctrographic microscopc dcmonstrating thc varicty of tracc
fossils; N - Nereites isp., Phy - Phycosiphon isp., Plan - Planolites isp.
Circlcd in B is an Echinodcrm fragmcnt (E-F) Backscattcr clcctron optical
micrographs. Dashcd linc in E rcprcscnts thc boundary of a burrow
Mincralogy is arrowcd and labclcd as; Q - quartz, Ca - calcitc, D -
dolomitc, AI - albitc, and Py ~ Pyritc... . 143

Figurc 4.4: Pctrographic obscrvations of thc homogcnizcd, burrow mottlcd silt
bcaring carbonatc-rich calcarcous mudstonc. (A) Scan of thin scction. (B
C) Optical imagcs from pctrographic microscopc; Plan - Planolites isp..
Diagcntic quartz is visiblc in C. (D-F) Backscattcr clectron optical
micrographs. Multiplc (production and diagcnctic) forms of calcitc arc
visiblc in D-F. Pyritc (D) and Albitc (E-F) can bc sccn occurring as a
pscudomorphic rcplaccmcnt of dolomitc. Mincralogy is arrowcd and
labclcd as; Q - quartz, Ca - calcitc, D - dolomitc, AI - albitc, and Py -

Figurc 4.5: Pctrographic observations ofthc homogcnizcd, pscudo-sparry calcitc- and
silt-rich calcarcous mudstonc. (A) Scan of thin scction. (B-C) Optical
imagcs from pctrographic microscopc with visiblc pscudo-sparry calcitc.
(D-F) Backscattcr clcctron optical micrographs. Pyritc (D) and Albitc (E
F) can bc sccn possibly occurring as a pscudomorphic rcplaccmcnt of
dolomitc. Mincralogy is arrowcd and labclcd as; Q - quartz, Ca - calcitc,
AI~albitc,and Py- Pyritc... . 145

Figurc 4.6: Pctrographic obscrvations of thc homogcnizcd, silt-bcaring clay-rich
calcarcous mudstonc with brokcn skclctal dcbris. (A) Scan of thin scction.
(B-C) Optical imagcs from pctrographic microscopc (D-F) Backscattcr
clcctron optical micrographs. Visiblc fossils arc abundant in this facics



including brachiopods (A-B) and echinoderms (B, O-E). Mineralogy is
arrowed and labeled as; Q - quartz, Ca - calcite, AI - albite, CI - chlorite
and Py- Pyrite... . 146

Figure 4.7: Petrographic observations of the homogenous silt-bearing clay-rich
calcareous mudstone. (A) Scan of thin section demonstrating soft sediment
deformation, which is cross cut by an escape trace. (B) Optical image from
petrographic microscope. (C-O) Backscatter elcetron optical micrographs.
B shows escape trace and 0 demonstrates the composition of the escape
trace, with a greater amount of fine grained and organic rich material.
Mineralogy is arrowed and labeled as; Q- quartz, Ca - calcite, AI - albite,
CI - chlorite Fe-O - ferroan dolomite and Py - Pyrite. . . 147

Figure 4.8: Petrographic observations of the thin-bedded normally-graded fossil
bearing, silt-rich calcareous mudstone. (A) Scan of thin section
demonstrating an uneven erosional surface at the base of a bed. (B-O)
Optical images from petrographic microscope. C demonstrates the upward
fining nature of the beds (E-F) Backscatter electron optical micrographs.
The dissolution ofa dolomite can be observed in E. Mineralogy is arrowed
and labeled as; Ca - calcite, AI - albite, and Py - Pyrite 148

Figure 4.9: Results from ITRAX X-ray Fluorescence (XRF) data at 2 mm vertical
intervals across a selection of the samples collected.. . 149

Figure 4.10: Comparison between conventional XRF and high resolution ITRAX
XRF scan techniques... . . 150

xiii



LIST OF TABLES

Table 2.1: Fmctionation ranges of 834S during each stcp in the formation of marcas ite
through the formation and oxidation of pyrite, followed by precipitation of
marcasite. Note adenosine 5Qpbosphosulfate - APS 58

Table 2.2: fractionation ranges of 834S during eaeh stcp in the formation of marcasite
through a basinal brine meeting sulfur from a bacterial sulfate reduction of
org;mie matler sourcc... 58

Table 2.3: Fmctionation ranges of 834S during eaeh step in the formation of marcasite
through the reduction of sulfate from an evaporitie or gypSlDl source using
either bacterial sulfate reduction (scenario 1) or thermochemical reduction
(scenario 2) for the reduction of sulfate... 58

Table 2.4: Analytieal results of Exshaw formation... 59

Table 3.1: Analytical results of Utica site UC ... 100

Table 3.2: Analytical results of Utica site UCB ... 101

Table 3.3: Analytical results of Winterhouse formation . 102

Table 4.1: Analytical results of Benbulbcn Shale........ 140



LIST OF ABBREVIATIONS AND SYMBOLS

APS - Adenosine 5'-phosphosulfate
aq-Aqueous
BSE - Baekscattcr Electron
EDS - Energy dispersive X-ray
ITRAX - ITRAX Core scanner
Eh- Reduction potential measurement (also Redox potential)
IRMS- Isotope Ratio Mass Spectrometer
kJ - Kilojoule
kV - Kilovolts
L1P- Large igneous province
M-Meter
mm - millimeter
Ma - Megaanum, unit of time equal to Imillion years
MaxFS - Maximum flooding surface
mol- Mole, unit of measurement used to express amounts of a chemical substance
mM - Millimolar
mg-Milligram
Pb-Zn- Lead-Zinc
R - High molecular weight reactive organic compounds (e.g. alkanes or alkenes)
SEM - Scanning electron microscope
SIMS - Secondary Ion Mass Spectrometry
SR~-;Sulfate reducing bacteria
ton/m--Tonnespersquarelneh
TOC - Total organic carbon
UC-Utiea
WH-Winterhousc
XRD - X-ray Diffraction
XRF- X-ray fluorescence
ODC - Measure of the ratio of stable carbon isotopes l'e:

12C
0;:0 -Measure of the ratio of stable carbon .isotopes 11~~0('0
O· S - Measure of the ratIo of stable carbon Isotopes' S:-S
ilGo, - Change in Gibbs free energy
~lA - Microampere
pm-mlcromcter
°c - Degree Celsius
%-Percent
%o-Permille(partsperthousand)



1. : I TRODUCTION & OVERVIEW

1.1. II TRODUCTION

Fine-grained roeks such as shales and mudstones are the most common

sedimentary rock types on Earth. These rocks are significant because they are

hydrocarbon source, seals and reservoirs, host metal deposits and are the bounding

lithologies in natural aquifers. Despite their significance, extensive scientific analysis of

fine-grained rocks has been lacking in sedimentological studies until recently. In the past

approximately 5 years researchers have begun to turn their attention to these previously

poorly understood fine-grained rocks. The increased analysis has focused primarily on

defining very small-scale sedimentological features (Macquaker and Bohacs, 2007). The

very fine-grained fabric of these rocks means that any heterogeneity, which is obvious in

coarser grained rocks, is much more difficult to identify and requires multiple tcchniqucs

of high-resolution analysis including petrographic imaging, geochemical and a

mineralogical analysis.

Through these analyses it is possible to identify thc three components. which

comprise fine-grained rocks. These components are derived from (i) detrital inputs to the

basin, (ii) production within the basin and (iii) diagenetic alteration of these materials.

These fine-grained clements are composed of mineral mixtures of feldspars,

phyllosilicatesand clays that are derived from weathering and erosion processes on land;

the body parts of the fauna and nora living in the oceans and in the near-surface

sediments; and from diagenetic processes occurring both close to the sediment water

intcrface and at deeper burial depths. Within any sedimentary succession the relative

proportions of these three components vary and thus lithofacies variability is obscrved.

16



The aim of this research is to investigate this variability in four different mudstones

successions. Between each of the four successions a wide amount of heterogeneity is

likely to occur; and further, within each of the successions a significant amount of

heterogeneity is antieipatcd.

The recent paradigm shift in the study of fine-grained rocks has highlighted the

remarkable amount of hetcrogcneity within mudstones (Macquaker and Bohaes, 2007:

Schieber et aI., 2007). Thus it is important to examine the sedimentological and

geochemical characteristics of mudstones at a higher resolution (compared to hand

specimen scale) than was previously believed necessary, in order to determine the spatial

and temporal locations of the best reservoirs. In particular, it is necessary to determine the

sedimentological controls on mineral distributions al the sub-centimetre scale, so Ihat

geological models that arc constrained by estimates of different sediment production

mechanisms, as well as sedimcnt dispersal and subsequent changes during burial, can be

tied to estimates of which intervals arc most likely to fracture and contain the most

organic matter. Therefore, it is important to have a focus on how natural systems and

parameters such as; chemical weathering (e.g. the evolution ofterreslrial plants and soils)

the silica cycle (which can influence the mudstones potcntial to hydrofracwre), organic

content (which influences the mudstones potential as a source rock) and marine plankton

groups (which control the productivity component), havc evolved over Earth's history.

The main objective of this study is to collect and characterise mudstones li·om

four different areas and two different geologic time periods. Particular emphasis were

placed on comparing early and late Paleozoic successions to delermine ifsecular changes

can be observed that arc consistent with the input of detrital materials with different
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starting compositions, and thc cffccts of inputs from diffcrcnt microfossil groups. This

stratigraphic intcrval was choscn bccausc it is thc timc pcriod associatcd with thc

cvolution of land plants and thc dcvclopmcnt of soil profilcs on land.

From thcsc objcctivcs intcrprctations will bc madc to idcntify thc hcterogcncity

both within and bctwccn thcscdiffcrcntsucccssionsducto'

• Input changcs associatcd with thc dcvclopmcnt of soils in terrcstrial

wcathcringprofilcs

• Production changcs associatcd with thc biological cvolution of kcy

microfossil groups

• Diffcrcnces in thc diagcnctic influcnccs within and bctwccn diffcrcnt

basins.

Thc starting hypothcsis of this projcct is that the typc of wcathcring and inputs,

which havc changcd through time, will have an intrinsic cffcct on thc rcsulting mudstonc

composition.

1.2. BACKGROUND

1.2.1. Mudstones and biological evolution

Approximately 542 Ma (i.c. thc Prc-Cambrian - Cambrian boundary) thc

Cambrian cxplosion occurrcd, rcsulting in thc rclativcly suddcn appcarancc of a widc

varicty of organisms (Vcrmcij, 1989). It was during this time pcriod that both calcareous

algac and organic wallcd organisms (such as foraminifcra) bcgan to appcar in abundancc

(Scott ct aI., 2003). Prior to this thc ocean floor was covcrcd bystratificd microbial mats

with a simplc structurc (Bottjcr, 2005). Within the microbial mats cach layer containcd

microbial communitics with spccific metabolism rcflccting thc dccrcasing redox potcntial
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(Bottjer, 2005). However during the Cambrian explosion biomineralised skeletons

evolved, allowing organisms to anchor themselves to the sea floor and in some cases dig

burrows (Meysman et aI., 2006). This resulted in deposit-feeding organisms and the

colonization of deeper substrates (Bottjer et aI., 2000). As these new colonies arose, the

simple one-dimensional microbial mats were replaced with complex burrow networks

(Meysman et aI., 2006). The prevalence of bioturbation had a significant impact on the

physical and chemical structure of the ocean floor, and consequently on the mudstones

that were subsequently deposited. The burrow networks created by these organisms

function as an irrigation system drawing down oxygen from the sediment water interface

deeper into the anoxic layers, creating oxic micro-environments throughout deeper

portions of the sediment (Shull et aI., 2009). Furthermore the burrowing organisms

influence the sediment texture as they disrupt bedding, redistribute minerals, counteract

compaction processes, and sometimes glue aggregates together (Meysman et aI., 2006).

Thus bioturbation, and the burrow networks created, result in a high degree of spatial

heterogeneity and can influence the porosity and permeability of mudstones.

The process of silicification (byeukaryotes such as radiolarians, and diatoms) and

subsequent transport down through the water column after death exerts a major control

on the solid phase silica flux to the seafloor (Calvert, 1968). Prior to the rise of

radiolarians in the Cambrian period silicic acid concentrations in the oceans were at

equilibrium with respect to amorphous silica (110 mgL- 1 at less than 25°C). However,

since this time silica levels in the ocean have diminished, and diminished even further

with the rise of diatoms during the late Triassic to early Jurassic, until reaching the low

present day concentrations at values of less than 5 mgL-'(Trcguer et aI., 1995). Silica is
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one of the key elemental parameters in the composition of mudstones and therelore the

evolution of the silica cycle in the ocean (which has largely been controlled by the

evolution of silica bearing organisms) exerts a unique link to the biologically produced

component in mudstones.

1.2.2. Evolution of terrestrial land plants: Impact of chemical weathering in
soils on mudstone composition

A major turning point in Earth History was the wide spread development of

embryophytes (land plants) in the Early Palaeozoic (Devonian period) causing the

formation of distinct soil profiles (Algeo et aI., 2001; Davies and Gibling. 2010). There

arc a number of consequences observed to be a result of this event. These include; draw

down of atmospheric CO2 due to enhanced rock weathering and carbon storage. and

marine extinctions associated with increased terrestrial nutrient runoff into the oceans

(Algeo et al.. 2001; Algeo et aI., 1998; Davies and Gibling. 2010). Algeo et al. (2001)

constructed the "Devonian plant hypothesis" which identifies a link between terrestrial

and marine realms as a result of the rise of terrestrial land plants. Testing this hypothesis

is inherently difficult due to the spatial heterogeneity of most sedimentological.

palcobotanical and gcochcmical parameters. As a result of this. Algeo ct al. (2001)

argued that no single dataset is likely to rcsolve the issue. Rather, exploring thc

interrelationships between diverse phenomena may yield a bcttcr understanding. Algeo cl

al. (2001) suggcstcd that the rise of terrestrial land plants (and soils) could lead to a shill

in clay-mincral composition in marinc scdiments, from physical-weathering-dominated

mincral assemblages of feldspars. illitc and chlorite to ehcmieal weathering assemblages

dominatcd by quartz. smectite (or mixed layer illite/smectite) and kaolinite (Weavcr,

1967). Smeclitc and illite arc two clay mincrals that arc highly associatcd with soil
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Icaching as a rcsult of thc altcration of biotitc and plagioclasc fcldspar prccursor mincrals

(Wcavcr,1967).

In thc modcrn Earth, mincrals wcathcrcd from surfacc rock cxposurcs arc oftcn

carricd through soils by hydrologic proccsscs. Thc soils can act as a filtration systcm as

thcy dissolvc thc parcnt rock mincrals. Silicatcs makc up thc largcst portion of rock

fonning mincrals (approximatcly 90 % of thc Earth's crust). Fclsic silicatcs typically

undcrgo incongrucnt dissolution, during which casily cxchangcablc cations such as Ca~-.

Mg~- K- and Na+, as wcll as variablc amounts of aluminium and silica, arc Icachcd,

Icaving bchind a rcsidual clay phasc. Two possiblc rcaction pathways arc providcd in

rcactions I and2 (Van Cappcllcn,2003).

2KAISi.10x(K-fcldspar) + 21-1+ + 91-1~O -7 AI~Si~05(OI-l)4(kaolinitc) + 4Si(OH)4 + 2K' (I)

2KAISiJOx(K-fcldspar) + 21-1+ + 141-1~O -7 2AI(Ol-lh + 4Si(OI-l)4 + 2K" (2)

Thc typc of sccondary mincral which is formcd from this dissolution proccss is

controllcd by thrcc factors (Van Cappcllcn, 2003).

• Thccomposition ofthc mincral phasc(i.c. fclsic or malic).

• Thc conccntration of dissoIvcd ions at thc intcrfacc bctwccn thc Icachcd

laycrand thc mincral surfacc, as wcll as thc bulk amount that arc rcmovcd

fromthc wcathcringzonc.

• Thc kinctics of thc dissolution rcaction as affcctcd by through now and

tcmpcraturc.

In somc cnvironmcnts thc production of acids such as sulfuric and nitric acids can

causc scvcrc but localizcd pH changcs (Brady, 1989; Subramanian ct a\., 2006). Thcsc

cnvironmcntsarisc fromthc oxidation ofrcduccd sulfur and nitrogcn compounds. Whcn
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concentrations of these acids arc sufficient, they may cause congruent dissolution of the

primary mineral phases (as shown in reaction 3). The dissolution of K-feldspar converts a

strong acid (sulfuric acid) into a weak acid (silicic) which can be transported through a

soil or sediment in an undisassociated form (Welch and Ullman, 1996).

A much more effective pathway for the dissolution of feldspar is in the presence

of organic acids. Experimental studies have demonstrated that organic acids can increase

rates of dissolution by orders of magnitude relative to inorganic acids with the same

acidity (Welch and Ullman, 1996). The citric and oxalic strains of fungi have been

described in nature as being very effective at degrading feldspar minerals into secondary

minerals (Stillings et aI., 1996). During feldspar weathering in the presence of organic

acids the secondary minerals formed arc olien depleted in AI relative to those produced

through inorganic acid weathering, due to the fact that organic acids preferentially break

AI-O bonds (Blake and Walter, 1999; Stillings et aI., 1996).

Mafic minerals make up a smaller portion of the continental crust than felsic

minerals. Their weathering involves both dissolution and oxidation-reduction reactions

(Van Cappel len, 2003). The minerals olivine, pyroxene, amphibole and biotite are

enriched in magnesium and ferrous iron, and as a result they weather rapidly in oxic

environments as the Fe2- is initially released through congruent dissolution (eg. reaction

4) and then oxidized and hydrolyzed to ferric hydroxide (reactions 5) (Wogelius and

Walther, 1991).

Fe2Si04 (fayalite) +4H+ -7 2Fe2++ Si(OH)4

2Fe2++ 0.502+5H20 -7 2Fe(OH), +4H+

(4)

(5)
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Quartz is the most stable silica solid phase, and quartz dissolution is unaffected by

acidity except in extremely acidic conditions (e.g. ph < 2), where high proton

concentrations can disrupt silica bonding, or at pH above 8 where the deprotonation of

surface Si-O-H bonds can occur (Brady and Walther, 1990). Therefore quartz weathers

extremely slowly under normal conditions, allowing the Si atom to be preserved in

tetrahedral coordination in solution (Brady and Walther, 1990). However, similar 10

feldspar weathering, organic acids can playa role in increasing the dissolution of quartz.

Blake and Walker (1999) found that quartz dissolution rates were increased by up to a

factor of 2.5 when organic acid concentrations of 2-20 mM were present. Organic acids

playa significant role in mineral weathering and thus likely intluence Ihe pathways

which dissolved silica will follow (Drever and Stillings, 1997).

Prior to the evolution of terrestrial land plants in the Devonian period, soils that

existed on Earth's surface were vastly different from those present in modern

times(Algeo et aI., 200 I). Modern soils act as filtration systcms for continental

weathering processes and have a profound influence on finc-graincd sediments delivered

to the oceans. In soils, the gcochemical conditions arc quite different compared to Ihe

atmosphercand hydrosphercdue to thc microcnvironmcnts crcatcd, which can intluencc

the redox and pH within porewaters. This means that minerals that had previously been

either mctastable or stable at the surface of the Earth dissolve and new minerals,

particularly clays, precipitate (de Kamp, 2008). In addition the physical cffccts of having

plants shading and binding the sediment exert an important control on rates and stylc of

runoff(see Figure 1.1).
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By exerting a significant control over the detrital influx of not only scdimcnt but

also nutrients into the ocean, soils havc the potential to influcncc all threc sources of

sediments for mudstones (detrital, biogenic and diagenetic). Prior to soils, the detrital

portion of the mudstones would have likely contained a much more varied mineralogical

composition. This is because minerals previously would not have been subjected to the

chemical weathering system that soils can provide (i.e. altering the parent minerals such

as olivine and biotite to clay minerals). The decreased concentrations of clay would havc

the potential to decrease the quantity of organic matter being preserved, as researchers

have identified a link between large amounts of highly reactive clay sized particles and

the efficient preservation of organic matter (Kennedy et aI., 2002). Due to the lack of

dissolution of minerals from parent rocks, combined with the lack of leaf litter and

nutrients from vegetation and soils systems, a land without soils would provide

significantly less nutrient flux to ocean waters. This (combined with less planktonic

diversity) should have impacted the primary productivity in the oceans, thus causing a

control over the biogenic input of sediments, and further exerting an influence over the

redox conditions in the environment of deposition. As a result of the fact that alteration of

silicate minerals is not occurring in the same abundance as in a world with soils,

dissolved silica is not being created or supplied to the oceans to the same extent as it

would after soil development. Therefore a lack of dissolved silica should result in silica

cements being far less common in mudstones from the pre-Devonian Earth.

1.2.3. Redox and geochemical conditions during deposition

One of the aims of conducting a geochemical analysis of mudstones is to establish

redox conditions during the time of deposition. Aerobic respiration (reaction 6) is the
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most energetically favourable metabolic pathway utilized for the oxidation of organic

matter. The aerobes which carry out this reaction arc equipped with a suite of enzymes

capable of degrading complex organic molecules into simpler substrates and CO~. making

this the most efficient way to breakdown organic matter (Froelich et aI., 1979; Morse et

aI., 1987). (The Gibbs free energy "t>Go", has been included with each redox reaction to

indicate the amount of energy which is yielded and to demonstrate the decreasing

energetic hlVourabilityofeaeh subsequent reaction):

t>G U
' = -854 kJ/reaetion (6)

The mineral deposition associated with aerobic respiration is non-ferroan calcite

(CaCO,). This process can result in a significant depletion in oxygen concentrations in

the sediments and occasionally the bottom waters of the Earth's oceans (Claypool el aI.,

1980). When oxygen becomes depleted microbes will begin to utilize nitrate (the next

most efficient electron acceptor), for microbial oxidation of organic matter through a

process known as denitrification (reaction 7) (Froelich et aI., 1979; Morseetal., 1987).

t>G'" =-801 kJlreaetion (7)

Denitrification is not often associated with mineral deposition because nitrogen is

not a common mineral-forming clement. In environments where concentrations of nitrate

arc not high enough to support denitrification (e.g. below the zone of denitrification) the

reduction of MnO~ to dissolved Mn(lI) (reaction 8) becomes the most energy efticient

process for oxidizing organic matter (Christensen et aI., 1987; Froelich et aI., 1979;

Morseetal.,1987;PiperandCalvert,2009).

CH,COO"+ 4MnO~+3H~O ~ 4Mn~ +2HC01"+150H"+5H~O t>Go, = -558 kJ/reaetion (8)
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Rhodochrositc (MnCO.,) and Manganoan Calcite «CaMn)CO,» are minerals

which are often associated with reduction of MnO~ (Lovley and Phillips, 1988). After

Mn(IV) reduction the most energetically favourable reaction for the oxidation of organic

matter is Fe(llI) reduction (reaction 9). The most reactive and readily available from of

Fe(llI) is ferric hydroxide, the solid phase iron mineral (Lovley and Phillips, 1986).

CH,COO· + 8Fe(01-l), -7 8Fe2 + 21-1 CO,· +1501-1" +51-1~0 ""Go, = -337 kJ/reaction (9)

The deposition of magnetite (Fe,O-l) and siderite (FeCO.1) have both been

associated with Fe(llI) reduction (Roh et aI., 2003). In general Fe(lIl) reduction is

significantly less important as a terminal electron accepting pathway in comparison to

sulfate reduction. In the zone of peak Fe(llI) reduction, Fe~- diffuses in every direction

throughout the sediment. A portion of this diffuses upwards where it can be oxidized, and

form Fe(OI-l).1 through an abiological reaction with MnO~ or NO.1· (Myers and Nealson,

1988). Fe~- in the pore water may also be removed through a reaction with I-IS· which is

produced in the underlying sulfate reduction zone. If this occurs a metastable iron

monosulfide mineral will form, (e.g. mackinawite (FeS». This step is a precursor to the

formation of pyrite (Rickard and Luther, 2007).

Following Fe(llI) reduction the next most energetically favourable metabolic

pathway is sulfate reduction (reaction 10).

""GO' =-48 kJ/reaction (10)

I-IS· can react with Fe~- in the sediment (or water column) to form an insoluble

monosulfide (FeS) and eventually pyrite (FeS~) (Newton and Bottrell, 2007; Rickard and

Luther, 2007). Bacterial sulfate reduction is a complex process which proceeds via a

variety of individual steps, these involve the breakdown ofbiopolymeric organic matter
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to simple organic molecules by fermentative micro-organisms, sultate-reducing bacteria

(SRB) themselves, and the further oxidation of organic reaction products (Newton and

Bottrell, 2007). This process accounts for approximately 50% of the oxidation of organic

matter in coastal marine sediments (Jorgensen, 1982).

After sulfate reduction, methanogenesis (reaction II) is the next (and least) most

energetically favourable process for the oxidation of organic matter. Methanogenesis is

carried out through the energy metabolism of methanogens, which arc microorganisms of

thearchaeadomain(Whiticar,1999).

L\G"'=-31 kJ/reaetion(ll)

Sediment concentrations of magnesium and calcium arc key in determining

whether ferroan dolomite and ferroan calcite (CaCO.1) arc associated with

methanogenesis. The step wise process of terminal electron acceptors being positioned in

a stratified way is oversimplified in the context of the actual ocean floor (Aller, 1994).

Since the evolution (during the Cambrian period) of burrowing organisms redox

conditions in sediments occur in complex heterogeneous geometries due to bioturbation

drawing down oxygen and altering the redox conditions of the sediment (Aller, 1994;

Meysmanetal.,2006).

1.3. OBJECTIVES

This thesis is composed of three focused papers, each of which discusses different

forms of variability in the composition of mudstones.

The objective of Chapter 2 is to characterise the lithofacies in the Exshaw

Formation (Devonian-Carboniferous) using a multi-technique approach ancl usc the

Formation as a natural laboratory for examining the sulfur cycle within mudstones. As
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indictcd abovc, sulfur is an important biogcochcmical c1cmcnt and thc statc of its

prcscrvation in a varicty of mincrals (c.g. pyritc and marcasitc) can yicld important

information about thc gcochcmical conditions in thc watcr column at thc timc of

dcposition and thc proccsscs that occurrcd during diagcncsis (Rickard and Luthcr, 2007:

Schicbcr,2011).

Thc carbon cyclc is cxamincd in Chaptcr 3, which comparcs thc Utica Shalc and

thc Wintcrhousc Formation both of which formcd in thc Ordovician Pcriod. The

objcctivc of this papcr is to invcstigatc thc conncction bctwccn cycling of carbon betwcen

rcduccd and oxidizcd forms, and thc hctcrogcncity that is obscrvcd in linc-graincd

scdimcnts. This balancc has important implications for hydrocarbon cxploration as the

prcscrvationofrcduccdcarbonisncccssarytodcpositsourccrocks, and thcprccipitation

of inorganic carbon is kcy to crcating ccmcnts making mudstoncs susccptiblc to

hydro fracturing.

Thc Bcnbulbcn Shalc of orth-wcstcrn Ircland is utilizcd as a natural laboratory

in Chaptcr 4 with thc objcctivc of invcstigating thc scalc of hctcrogcncity in mudstoncs.

Thc unit is dcscribcd on a varicty of scalcs linking small-scalc tcxtural divcrsity with

gcochcmical atlributcs. This allows for an idcntification of thc scalc of variability in

mincralogical paramctcrs, which arc kcy for idcntifying important rock forming fcaturcs

such as ccmcnts that arc ncccssary for hydrofracturing.

Thc mcthods and tcchniqucs (c.g. high rcsolution lithofacics analysis) wcre

consistcnt in analysis of all four formations to allow for comparison and consistcncy on

thc data sct.
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1.4. FIGURES
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Figure 1.1: Flow chart demonstrating the significant and interconnected chemical (right)
and physical (left) impacts a lack of vegetation on the Earth's surface may have created
for the deposition of fine grained rocks.
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2. : HIGH-RESOLUTIO FACIES A ALYSIS AND MARCASITE
FORMATION IN THE TYPE SECTIO OF THE FI E-GRAINED

EXSHAW FORMATION

2.1. INTRODUCTION

Black shalc units arc common throughout thc Dcvonian in orth Amcrica and

havc bccn intcnscly studicd by a numbcr of rcscarchcrs (Angulo and Buatois. 2012;

Millikcn ct aI., 2007; Ross and Bustin, 2009; Sagcman ct al.. 2003; Schicbcr, 2011;

Schmoker, 1981). Thc existcnce ofthcsc finc-graincd organic carbon-rich units has becn

rcccntly linkcd to thc prcscncc ofa largc igncous provincc (LIP) that was prcscnt closc 10

thc Frasnian-Famennian boundary, which caused increased globalnutricnt runoff into thc

occans basins (Trabucho-Alcxandrc ct aI., 2010). This runofffucllcd primary production

within thc occan and is thoughl to havc causcd widesprcad bottom watcr anoxia and

organic carbon prcscrvation. Whilc thc prcscncc of an cnhanccd nutricnt supply may

havc rcsultcd in incrcascd primary production withinthcoccans (Trabucho-Alexandrccl

aI., 2010) (and thus grcatcr organic mattcr conccntrations), it docs nOlncccssarily follow

that all basins whcrc organic carbon was bcing prcscrvcd had ambicnt dcpositional

conditions that werc low and anoxic bottom watcrs wcrc dcvelopcd.

In this study the Latc Dcvonian organic carbon-rich Exshaw Formation of

Wcstcrn Albcrta is uscd as a natural laboratory to invcstigatc thc gcochcmical conditions

in thc watcr column and scdimcnt porc watcr at the timc of deposition. Deposition of the

Exshaw Formation was assoeiatcd with a pcriod when nutricnt inputs may have becn

cffectcd by thc prcscncc of a high LIP frcqucney, ercating bottom watcrs which have

commonly bcen intcrprctcd to havc bccn low cncrgy and sulfidic. In order to invcstigate
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the conditions that were associated with the emplacement of these strata, this study

investigates lithofacies variability, coupled with variations in the sulfide geochemistry.

Lithofacies variability was analyzed to gain insights into the environment of deposition

and subsequent diagenesis. Sulfur isotope variation in iron-disulfides was also

investigated, to determine the dcpositional and early diagcnetic processes that controlled

sulfur dynamics and rock character. Varying iron-disulfide mineralogy (proportion of

marcasite to pyrite) is particularly significant bccausc il providcs insight into the

geochemical conditions (oxygen concentrations, pH and rcdox) al thc timc of dcposition

(Berncr, 1984; Rickard and Luther, 2007; Schieber, 2007; Wilkin et aI., 1996) in

particular if oxygcnation events disrupted thc prevailing anoxic conditions (Schieber,

2007; Schieber, 2011).

2.2. BACKGROUND ON IRON-DISULFIDES

In the reducing environmenls common in pore waters of sediment in marine

environments, ncar the sediment water-interface, sulfate is transformed through either

biotic (bacterial sulfate reduction) or abiotic (thermochemical sulfate reduction)

processes to hydrogen sulfide or elemental sulfur (Froelich et aI., 1979; Harrison, 1958;

Machel et aI., 1995). In this reduced form sulfur commonly reacts with iron to form a

number of iron sulfide mincrals, including pyrite and marcasite (Rickard and Luthcr,

2007). Pyrite is oncofthe most common mincrals inlhe marine sedimentary record and

is frequently encountercd in mudstones (Berncr, 1984; Canfield, 2001; Rickard and

Luther, 2007). Marcasite, a dimorph of pyritc, has been much Icss commonly identilied

in marine deposits, however recent exhaustive surveys coupled with advances in

petrographic techniques suggest its prcvalence may be greatly undcrestimated,

33



particularly in finc-graincd units (Rickard and Luthcr, 2007; Schicbcr, 2011).

Precipitation of marcasite relative to pyrite is distinctive because - while both require

reducing pore water conditions with either free H2S or HS' available - marcasite

specifically requires pH < 6 to precipitate (Murowchick and Barnes, 1986; Rickard and

Luther, 2007; Schoonen and Barnes, 1991). The pore waters in normal marine sediments

arc typically buffered to approximately pH 7 - 8 by the alkalinity of seawater and

thereforc a source of acidity must be created in order for marcasitc to precipitate rather

than pyrite (Rickard and Luther, 2007; Schieber, 2011).

One possible source for this acidity is through the oxidation and dissolution of

previously formed pyrite - with the reprecipitation of marcasite occurring in the ensuing

acidic, and reducing, conditions (Schieber, 20 II). Such a mechanism would operate close

to the seafloor. Marcasite, however, is also a common component in sedimentary ore-

deposits (Kuhlemann et aI., 2001; Leach et aI., 2010; Myers and caison, 1988; Stoffell

et aI., 2008). Sediment hosted lead-zinc (Pb-Zn) deposits often contain assemblages of

metal-sulfide minerals including pyrite (FeS2), marcasite (FeS2), sphalerite «Zn,Fe)S),

galena (PbS) chalcopyrite (CuFeS2) and millerite ( is). In these Pb-Zn deposits,

marcasite is dircctly associated with the post-indurationalmigration of metal-rich brines

and - while it is often observed replacing pyrite - is epigenetic and not associated with

pyrite oxidation in soft sediments close to the seafloor (Leach et aI., 2010). In these

circumstances dissolved sulfur is not wholly derived from oxidizcd pyrite, but may

instead be derived from (cither bacterial or thermochemical) alteration of sulfur rich

organic carbon, and/or sulfatc minerals (e.g. gypsum or anhydrite) (Kuhlemann et aI.,

2001; Vandeginste et aI., 2007).
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Stable isotopes of sulfur may represent a useful tool in determining the formation

mechanism of sedimentary iron-sulfides (i.e. marcasite and pyrite) (Canfield. 2001;

Peevler et aI., 2003). To utilize 8'4S signatures of pyrite and marcasite for interpreting

formation pathways it is necessary to trace the potential fractionations that can occur

prior to and during sulfide formation. The following discussion summarizes potential

formation pathways and associated sulfur isotope dynamics, wh ieh include:

• The oxidation of pyrite and repreeipitation of pyrite; with steps of potential 8·14S

fi'aetionation including; sulfate reduction, pyrite formation, pyrite oxidation and

the precipitation of marcasite.

• Lead-Zinc type deposits, with potentially isotopically distinct sources of sulfur

including:

o Sulfides from the bacterial sulfate reduction of organic matter

o Sulfur derived from bacterial reduction of evaporites or anhydrites

o Sulfur derived from thermochemical reduction of evaporites or anhydrites

2.3. FORMATION PATHWAY I: OXIDATION OF PRIMARY PYRITE AND
REPRECIPITATION OF MARCASITE

2.3.1. Sulfate reduction and associated sulfur isotope fractionations

In this pathway for marcasite precipitation, the initial pyrite is exposed to elevated

oxygen (or another oxidant) concentrations sometime atier initial formation. This is most

likely to occur during early diagenesis in close proximity to the sediment water interface

where oxidants arc readily available. In this context the sulfate is likely derived from

seawater and reduced to sulfide by bacterial sulfate reduction.

The biochemistry of microbial sulfate-reduction involves four steps with each

having potential 8.14S fractionations (Canfield, 200 I; Harrison and Thode, 1957; Kemp
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and Thode, 1968; Rickard and Luther, 2007). However, the actual degree of

fractionation, however, occurring through bacterial sulfate reduction can vary

significantly due to a number of kinetic isotope effects. In the reducing environment the

general range of fractionation attributed to bacterial sulfate reduction (sulfate to hydrogen

sulfide) is approximately -2.0 to -42.0 %0 (Detmers et aI., 2001). Once hydrogen sulfide

forms it is commonly oxidized and has the potential to produce a number of intermediate

species of sulfur such as sulfite (4), elemental sulfur (0), or thiosulfate CI
,-5) (Canfield,

200 I). Recycling bctwccn these intcrmcdiate stages can result in significant kinetic

isotope fractionations.

2.3.2. Pyrite formation and associated sulfur isotope fractionations

The basic reaction for iron sulfide formation involves the initial precipitation ofa

thermodynamically unstable iron sulfide mineral that reacts with available sulfur (e.g.

reaction I) (Berner, 1967; Morseetai., 1987; Rickard and Luther, 2007).

FeS + S°-7 FeS~ (I)

There is little to no fractionation of 8J4S associated with the subsequent formation

of pyrite with laboratory experiments recording only +0.9 %0 fractionation (Price and

Shieh, 1979)

2.3.3. Pyrite Oxidation

Once pyrite is formed it may undergo an oxidative dissolution reaction, which

results in the sulfur from pyrite being transformed back into sulfate (Rimstidt and

Vaughan, 2003). The oxidant required for this process has traditionally bcen suggested to

bc oxygcn, however in modern systems Fe(lllLq has been identificd as the primary

oxidant (Balci ctai., 2007; Schicber, 2011)
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If O~ is thc oxidant thc gcncral ovcrall rcaction for thc oxidation is cxprcsscd by

rcaction2 (Salci ct a\., 2007).

2FcS~ + 3.50~ + H~O -7 Fc~- + 2S0/- _2W (12)

If Fc(IJI)"q is thc primary oxidant thc gcncral rcaction for thc proccss would bc

similar to rcaction 3 (Salci ct a\., 2007).

FcS~ + 14Fc>- + 8H~0 -7 15Fc~- + 2S0/-. 16W (3)

Typically, during bactcrial and abiotic oxidation of iron-sulfidcs the mincral

surface dissolves layer by layer without any significant sulfur isotopic fractionation.

Experimcntal studies have shown only a +0.7 %0 fractionation (Salci ct a\., 2007).

The requirement of low pH conditions for marcasite prccipitation is satislied by

the oxidation of pyrite, which not only releases ferrous iron and sulfate but also produces

acidity (H~S04) (Schieber, 2007). This creates a microenvironment around the pyrite,

lowering the pH of the pore waters. Acid formation can be compounded further via the

oxidation of ferrous iron to ferric iron through reaction 4.

(4)

This reaction releases added acidity further lowering the pore-water pH

conditions.

2.3.4. Precipitation of Marcasite

Through this pathway, reducing and low pH pore water conditions arc created thaI

meet the two primary requiremcnts for marcasite formation. Thc subscqucnt precipitation

of marcasite itself is not related to any substantial nct fractionation ofisotopcs (Canficld,

2001).
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2.3.5. Summary of oJ~S fractionations in Formation Pathway I

In pathway I, the most significant fractionation occurs in the initial sulfate

reduction stage. The fact that pyrite formation/oxidation and marcasite formation have

little to no associated net fractionation means that any marcasite formed through this

process should have a very similar oJ~S signature to the initial pyrite which was initially

oxidized (i.e. the source of sulfur). The whole process and associated fractionation ranges

are presented in Table 2.1. Temperature can exert small kinetic isotope effects on the

magnitude of fractionation that occurs. The described ranges generally take into

consideration this variability, however it is worth noting that these ranges are (or normal

marine conditions with normal temperatures for the upper sediment in close proximity to

the sediment water interface (-IOUC) (Canfield, 2001).

Combining the total fractionation of all steps suggests that the net fractionation

that occurs through this process should yield a range OJ~Sl11af<aSil< of -15.0 to -65.6 %0

(Canfield, 200 I; Detmers et aI., 200 I).

2.4. FORMATION PATHWAY 2: LEAD-ZI C TYPE DEPOSIT

It is well established that some Pb-Zn type deposits are derived from hot. saline

metal-bearing basinal brines driven laterally through aquifers (Kendrick et al.. 2002;

Sveljensky, 1986). Variations are possiblc in the mechanism of brine now and the

substrate(s) through which the brine passes. However, the factor thaI most innuencesthe

O.14S signature of any precipitating iron-sulfides is thc pathway by which I-I~S is generated

and mixed with the brine (Anderson and Garven, 1987; Helgeson et aI., 1984;

Sverjensky, 1986) Thrce potential sources of sulfur are discussed below.
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2.4.1. Lead-Zinc Type deposit with sulfides from the bacterial sulfate
reduction of organic matter

One potential source of sulfur is from biogenic sulfate reduction resulting from

the decomposition of organic matter in the sediment ncar the location of sulfide

precipitation. Bacterial sulfate reduction along with associated fractionations is discussed

in detail above, however the overall fractionation would leave a slightly differcnt

signature due to the fact that pyrite is not being formed and oxidized prior to marcasite

formation Table 2.2. Without the step of precipitating and oxidizing pyrite the degree of

fractionation occurring to J4 S would yield a range of -15.0 to -64.0 %0 for OJ4Smarcasilc

(Canficld,2001; Detmers etal., 2001).

2.4.2. Lead Zinc Type deposit with sulfur derived from bacterial reduction
of evaporites or anhydrites

In this environment either dissolved gypsum or anhydrite is reduced to create

hydrogen sulfide, with consequent dolomite prccipitation (e.g. reaction 5):

If a brine now carries aqueous mctal ions through thc area where H2S is

generated, or if 1-1 2S is transportcd through diffusion and subsequently encounters mctal

ions, metal sulfides will precipitate (e.g. reaction 6) (whcre M rcpresents a variety of

metals including lead, zinc, nickel and iron) (Leach et aI., 2010).

(6)

One of the products in reaction 6 is acidity (1-1+), which results in an increase in

pore water acidity, thus creating the low pl-l conditions (pH <6), required lor marcasite

formation.
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The most significant influence on the 8,14 S signature of sulfide minerals produced

through this potential pathway is the reduction of the initial sulfate, The dissolution of

gypsum or anhydrite (reaction 5) may have occurred at some depth, or it may have

happened closer to the sediment water interface. With this uncertainty neither bacterial

sulfate reduction nor thermochemical reduction can be ruled out. For bacterial sulfate

reduction the process (associated fractionations of 834S) would be the same as that

discussed in detail above and outlined in Table 2.2.

2.4.3. Lead Zinc Type deposit with sulfur derived from thermochemical
reduction of evaporites or anhydrites

Machel et al (1995) determined a reaction scheme for thermochemical sulfate

reduction (reactions 7 to 9, where R represents high molecular weight reactive organic

compounds; alkanes oralkenes).

4R-CH3- + 3S0/- + 6f-( -7 4R-COOH + 4H 20 + 3H 2S (7)

R-CH,' + 2R-CH 2=CH 2 + CH4+ 3S0/- + 5W -7 3R-COOH + 4HCO; + 3H 20 + 31-1 2S(8)

(9)

Significant isotopic fractionation occurs during the initial abiological breaking of

the s-o bond. This process is thought to be highly temperature dependant with about a -

20.0 %0 fractionation for a temperature of IOO"C, -15.0 %0 at 150"C and -10.0 %0 at 200"C

(Harrison and Thode, 1957; Maehel et aI., 1995). In natural environments similar

fractionation values have been observed, however a ncar-zero fractionation (e.g -1.0 %0 to

-7.0 %0) for 8,4S is more commonly identified (Machel, 200 I; Machel et aI., 1995). Near-

zero fractionation is believed to be a result of nearly quantitative conversion of all

sulfates which were present in an essentially closed system (i.e. Rayliegh fractionation)
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(Machcl et aI., 1995). The total fractionations associated with such a pathway arc outlined

in Table 2.3.

The amount of fractionation occurring in J4S through this process would yield a

rangc of 1.5 to -18.5 0/00 in oJ4Sm"re"silc. (Canfield, 200 I; Detmers et aI., 200 I).

2.5. MATERIALS AND METHODOLOGY

Samples were collected from the Exshaw Formations type section in Jura Creek.

ncar thc town of Exshaw in Alberta, Canada. In the field a detailed log description was

recorded and a total of24 samples werc collected across a 5.4m vertical section exposed

in a riverbank (Field Location in Figure 2.1).

To generate the descriptions of grain size, fabric, composition and facies

designations prcsent on a range of scales, polished, unusually thin (20-25 ~1I11) sections

were prepared from the collected samples. These sections were initially described using

an optical petrographic microscope (Nikon Optiphot Pol). Following this the sections

were coated with carbon and analyzed both texturally and compositionally using an FEI

Quanta 400 environmental scanning electron microscope (SEM) equipped with an

electron Backscattered (BSE) and an energy dispersive X-ray (EDS) analytical system.

The SEM was operated at 25 kV and 2.0 /-lA; with a working distance of 12 mm. This

process follows similar techniques of earlier studies (MacquakerandGawthorpe.1993).

For bulk quantitative analyses, 18 mudstone samples were comminuted using

tungsten carbide grinding bowls. Between each samplc grinding, a bowl of ultra-pure

silica was crushed to prevent contamination and all tools and surfaces were thoroughly

cleaned with ethanol. A number of analyses were conducted on powdered samples.

Mineralogical composition was analyzed using a Rigaku Ultima IV X-ray DifTactometer
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(XRD) with a coppcr cathode X-ray source and a scintillation counter detector. X-ray

nuoresccnce (XRF) spectrometry was utilized to determine the concentration of major

and trace clements. For this analysis 5 mg of mudstone powder was weighed and mixed

with a 0.7 gm of phenolic resin binder. After mixing, this powder was placed in a Herzog

Pellet Press and pressed for 10 seconds at 20 ton/in~ pressure. The pellet was then baked

at 200°C for 15 minutes. The operating conditions of the XRF followed those of

Longerich (1995). Total organic carbon analysis was conducted at the Manchester

Metropolitan University (MMU) in a Lcco Induction Furnace. In this tcchnique total

carbon contents of each sample were initially determined. The samples were then

dccalcificd using warm 2% HCI, and the dccalcified carbon contents were determined

using the same Leco furnace. The TOC contents of each sample were then determined by

difference. A sub-set of samples were selected to be analyzed for 8 1 .1 C isotopic analysis

that was conducted by the Environmental Isotope Laboratory in the Earth and

Environmental Science Department at Waterloo University.

A sub-set of samples were selected for isotopic analysis of 8.14S in iron disulfide

minerals through Secondary Ion Mass Spectrometry (SIMS) with a Cameca IMS 41' ion

microprobe equipped with a modernized ion detection system to augment performance

for stable isotope analysis. Prior to this analysis separate circular mounts (25.4 mm in

diameter) were created from individual samples and polished to a nat sample surface.

Each of the circular mounts was characterized and mapped with an optical petrographic

microscope under renected light and in some cases also using the SEM described above

for SSE imagery.
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2.6. GEOLOGICAL HISTORY

The Exshaw Formation was deposited e10se to the Devonian-Carboniferous

boundary in the Western Canada Sedimentary Basin. Due to the absence of sli/caw and

praeSIi/cala conodont zones inlhe unit the Devonian-Carbonifourous (D-C) boundary has

not been accurately constrained at Jura Creek (Macqueen. 1970). The thickness or the

formation varies throughout the Prophet Trough on the cratonic platform in western

Alberta with the thickest section occurring in southwestern Alberta (Raasch, 1956: Smith

and Bustin, 2000). Based on conodont biostratigrapy the Exshaw Formation is

stratigraphically cquivalent to the Bakken Formation, which extends in the subsurt~lce

throughout the Williston basin (Figure 2.1) (Johnston, 20 I0; Savoy et aI., 1999)

At Jura Creek the Exshaw Formation overlies the bioturbatcd Palliser Formation,

which contains Tha/assil1oides isp., replaced with chert (Johnston, 2010). The eastern

section of the formation stratigraphically overlies carbonates of the Big Valley Formation

(Smith and Bustin, 2000). The boundary between the Exshaw Formation and the

underlying carbonate units is recognized as thc Acadian Unconformity, during which a

drop in relative sea level occurred resulting in erosion and reworking of the underlying

sediments (Smith and Bustin, 2000).

The lower member (9.3 m at the Jura Creek type section) of the Exshaw

Formation (Figure 2.2) has been described as being composed of brownish-black,

fossiliferous shale at the base of which is a phosphate-rich lag deposit with sand-sized

detrital quartz, and a significant early diagenetic component (Macqueen, 1970). The

upper member of the Exshaw Formation (37.4m thick at Jura Creek) has been described

as a sparsely fossilferous, bioturbated, calcareous siltstone (Smith and Bustin, 2000). The

top of the Exshaw Formation is separated from the fine-grained mudstones of the Lower
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Banff Formation by a sharp contact (Smith and Bustin, 2000). Prcvious rcscarchcrs havc

mcasurcd total organic carbon (TOC) conccntrations in thc Exshaw formation of 21 %,

and average Hydrogen Index (HI) values of 515 mg Hg/g (Caplan and Bustin, 1999).

The Exshaw Formation has commonly been interpreted as having been deposited

in a quiescent basin with anoxic bollom waters. Research has pointed to the fine-grained

fabric and high organic mailer concentrations to support this description. The lag deposit

identified at the base of the type section has previously been interpreted to reprcsent a

transgresive surface (Smith and Bustin, 2000). The Exshaw is a particularly useful natural

laboratory for this study because it represents very typical black shale deposit which has

previously thought to be formed in a stagnant environment with anoxie bOllom waters

(Caplan and Bustin, 1996; Caplan and Bustin, 1999; Macqueen, 1970; Smith and Bustin,

2000).

2,7. RESULTS

Fivc different lithofacies wcre identified, on the basis of varying grain size,

mineralogy and textural attributes in this succession. These include both fissile

sandstones and thin-bedded mudstones. The individual units exhibit a variety of lamina

geometries and diagcnetic features. Detailcd descriptions of each lithofacics are given

bclow and their stratigraphic distributions are shown on Figure 2.2.

2.7.1. Clay-bearing sulfide-bearing arkose sandstone

At the base of the Exshaw Formation's type section in Jura Crcek Alberta is a 30

mm thick, clay-bearing, diagenetic sulfide-bearing, arkose sandstone (Figure 2.3). This

unit is a lag deposit with coarse (100 to 250 pm) grains of quartz and feldspar grains

(sanidine) with some phosphate (Figure 2.3 A). There is no visible bedding within this
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relatively thin unit (Figure 2.3 A-B). Mineralogically, this facies is composed of 30.4 %

feldspar (predominantly sanidine with minor amounts of orthoclase), 25.1 % quartz, 17.3

% pyrite, 15.2 % apatite, 10.6 % calcite (Table 2.4). Minor amounts of dolomite, rutile

and a range of sulfide minerals (marcasite, sphalerite and millerite) were detected during

EDS analyses. This facies was determined to have a TOC content of 1.56 % and a 8 13Cml

of -28.1 %0 (Table 2.4). Using bulk samples calcite was measured to have a 811e"ki!< 01'

0.4 %0 and 8IxO<"ki!<of-6.7 %0. (Table 2.4).

The feldspar grains havc irregular and well-defined grain boundaries and likely

have a detrital origin (Figure 2.3 E). Some of the feldspar grains, however, have

undergone pal1ial dissolution and been replaced by quartz (Figure 2.3 E). Quartz cement

also encloses detrital quartz grains (Figure 2.3 D-E). A distinct erosion surface is present

at the top of this unit (Figure 2.3 C). Above this surface the framework grains arc

composed of finer-grained apatite, quartz and pyrite, compared to the coarse-grained

framework material below this surface (Figure 2.3 C).

Diagenetic pyrite is present in both framboidal and euhedral forms (Figure 2.3 D-

F). In addition to pyrite, marcasite, sphalerite, and millerite, cements arc also present

(Figure 2.3 D, F, Figure 2.9). SIMS analysis of individual grains of pyrite and marcasite

identified significant variability in 8,14S, with an overall range of +14.5 %0 to -38.6%0

throughout the succession (Figure 2.8; Figure 2.9). Marcasite was the most enriched in

.14S of all samples with a range of +6.3 %0 to + 14.5 %0 (Figure 2.8; Figure 2.9). Measured

pyrite clustered in two regions; -8.1 %0 to -14.9 %0 and -30.7 %0 to -38.6 %0 (Figure 2.8;

Figure 2.9).
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2.7.2. Thin bedded dolomite cement-rich mudstone

Directly above the arkose sandstone is a thin unit (- 50 mm) of parallel-bedded

and normally graded silica and dolomite-cement-rich mudstones (Figure 2.4). Beds in

this part of the succession have wavy bases (Figure 2.4 A-C). The framework fraction is

composed of detrital quartz and feldspar minerals and ranges in size from 5 to 25 pm.

Zoned dolomite suggesting a diagenetic origin contributes up 40 % of the volume of the

unit (Figure 2.4 E-F). Both the detrital quartz grains (coarse silt-size) and dolomite

cement rhombohedra are coarser at the base of the individual beds than they are towards

the bed tops, where the grains are dominated by clay-size material (Figure 2.4 C-F). This

facies contains 36 % quartz, 12.7 % pyrite, 11.2 % clay (illite) as well as minor amounts

of apatite (Table 2.4). TOC content of this facies was measured to be 4.1 % with a

OI.'Co 101' -28.0 %0 (Table 2.4). Bulk samples of dolomite had a OI.'Clulumil< of -3.4 %0 and

olXOdulumit< of -3.6 %0 (Table 2.4). 014S of individual pyrite grains from this unit had an

overall range 01'-4.4 %0 to-7.3 %0.

Individual beds of these facies are commonly organized into stacked successions

of bed-sets that form units up to 1.5 mm thick.

2.7.3. Thin-bedded silt and pyrite-bearing clay-rich mudstone

Directly above the unit with an extensive dolomite cement is a thin-bedded silt

and pyrite-bearing clay rich mudstone (Figure 2.5). The framework minerals, which have

a grain size ranging from 10 to 25 pm, are composed of a mix of silt-sized ICidspars and

quartz (Figure 2.5 CoD). The matrix is composed of clay-sized quartz, feldspars and clay

(Figure 2.5 CoD).
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This facics is vcry similar to othcr thin-bcddcd facies with thc exception that it

contains pyrite (Figure 2.5 C-D). The other key distinction of this facies is that it does not

contain sulfur in the form of gypsum, which is eommon in the other facies. Overall the

facies is composed predominantly of quartz (62.2 %) clay (illite) (17.7 %), feldspar

(orthoelase) (17.6 %), and pyrite (2.5 %) (Table 2.4). The TOC content of this facies was

measured to be 4.7 'Yo with a ol.1COM of -28.1 %0 (Table 2.4). OJ4S of individual pyrite

grains from this unit had an overall range 01'-2.7 %0 to -7.7 %0.

2.7.4. Thin-bedded normally graded silt-bearing silica-rich mudstone

The most common facies throughout the Lower Exshaw Formation is a thin-

bedded normally graded silt-bearing silica-rich mudstone (Figure 2.6). The framework

grains in this facies range in size from 10 to 50 f.lITI and are oriented parallel to bedding.

These units contain a significant amount of quartz (59 %) (Table 2.4).. This quartz occurs

in a variety of forms including: silt sized detrital grains, radiolaria tests and as discretc

infill of Tasmaniles tests (Figure 2.6 F). Some of the quartz is also present as early

diagenetic cement infilling uncompacted pore spaces (Figure 2.6 E-F). The matrix is

predominantly quartz with some smaller grains of clays (illite) (22.2%), and feldspar

(18.1 %) (Table 2.4). Both veins and discrete grains of gypsum were found throughout

this facies. Gypsum was also noted during the visit to the outcrop to be forming a crust on

the surface of the succession (Figure 2.6 F). The average TOC content of this facies were

4.3 % with an average OIJCOM of -28.5 %0 (Table 2.4).

Lenticular shaped bodies ranging from 200 to 500 f.lm in length and 20 to 30 pm

thick were found to be quite common (Figure 2.6 C-E) in these units. SEM analysis of

these bodies reveals them to be composed of clay to silt sized feldspar grains (Figure 2.6
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E). Somc of thcsc bodics cnclosc an clongatc porc spacc, while in othcrs compaction

sccms to havc dcstroycd this porosity. Bascd on thcsc fcaturcs thcsc bodics arc

intcrprctcd to bc thc rcmains ofagglutinatcd bcnthic foraminifcra with tcsts composcd of

clay to silt sizcd dctrital fcldspar (bascd on wcll defincd and irrcgularly shapcd grain

boundarics). In somc cascs thcsc fcaturcs may bc silicificd algal cysts (Figurc 2.6 E-F)

Individual bcds of thcsc facics arc commonly organizcd stackcd succcssions of

bcd-scts that form units up to 2m thick.

2.7.5. Calcite cement-dominated mudstone

Calcitc ccmcnt-dominatcd mudstonc form discrctc units throughout thc Exshaw

Formation. This facics is primarily composcd of calcitc ccmcnt (64.5 %), which

prccipitatcd carly (Tablc 2.4). In addition thcsc units contain subordinatc amounts of

quartz (28.9 %), pyritc (4.1 %), fcldspars (1.3 %) and illitc (0.75 %) (Tablc 2.4). Thc

framcwork grains in this facics rangc in sizc from 3 to 60 pm. Quartz is prcscnt mainly

as diagcnctic ccmcnt, although minor amounts of clay sizcd dctrital grains also occur

(Figurc 2.7 O-E). Quartz ccmcnt oftcn forms a rim around thc cdgcs of dctrital grains

(c.g. quartz ccmcnt around an albitc grain in Figurc 2.7 E). This rclationship suggcsts thc

diagcnctic quartz prccipitatcd from thc silica rich porc spacc fluids crcatcd from thc

dissolution of thcsc clastic dctrital grains (Figurc 2.7 O-E). In this facics, largc > I mm

nodulcs of quartz wcrc found in somc arcas (Figurc 2.7 C-O). No visiblc bcdding plancs

wcrc idcntificd in this facics (Figurc 2.7 A-B). Organic mal1cr in this unit has a 811COM of

-28.\ %0 (Tablc 2.4). Using bulk samplcs, calcitc has a 8I.1C,akit, of -4.7 %0 and 8lXO,akite

01'-8.3 %0 (Tablc 2.4).
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The paragenetic succession of cementation in these units is complicated, as

illustrated by thc fact that early calcite cementation grain dissolution was followed by lhe

precipitation of euhedral pyrite (Figure 2.7 B-F) and ultimately quartz. SIMS analysis

showed that the 1).14S of individual pyrite grains from this unit had a range 01'+1.8 %" to-

1.2%0.

2.8. DISCUSSION

2.8.1. Lithofacies interpretation

At Jura Creek the basal unit of the Exshaw Formation is a clay-bearing iron

sulfide-rich arkosic arenite that unconformably overlies the carbonates of the Palliser

Formation. Directly above this interval, separated by a sharp contact (Figure 2.3 C), is a

thin-bedded dolomite cement-bearing mudstone. The stratigraphic context of these basal

units relative to the underlying carbonates suggests that additional accommodation

became available over this interval and that it is a transgressive surface. The presence of

abundant early diagenetic iron-sulfides and non-ferroan dolomite in these basal beds

suggests that the pore water were anoxic and sultidie (Berner, 1984). Based on enclosing

relationships of grain boundaries there were multiple events of iron-sulfide precipitation

in the basal arkosic unit. The transition between the two units reflects a shift in grain size

from sand sized detrital grains (100 to 250 pm) in the lag deposit to silt-sized (3 (025

pm) grains of the dolomite-bearing mudstone. Therefore the amount of energy being

supplied to the seafloor decreased as flooding continued and the likely effects of wave

reworking were reduced (Mckay et aI., 1995). The presence of wave ripples on the top of

bedding surfaces in the dolomite facies indicate that while the amount of energy

deCl'eased (i.e. no longer able to transport sand sized grains) the basin did not become
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complctcly stagnant. Based on i)13C of dolomite and petrographic analysis dolomite

cement precipitation at this level is likely linked to microbial sulfate reduction occurring

in the sediment pore-waters (Figurc 2.4 E-F; Tablc 2.4) (Warren, 2000; Whitakcr and

Smart, 1990). In this context sulfate reduction is important because it rcmoves otherwise

inhibiting sulfate from the pore waters which had been limiting dolomite prccipitation

when the porc-waters, were oxic (Warren, 2000; Whitaker and Smart, 1990).

Abruptly overlying the basal dolomite isastacked succession of thin relict bedded

silt and pyrite-bearing clay-rich mudstone that forms a unit approximately 0.5 m thick.

This unit is a transitional zone that was probably deposited as the basin was deepening.

Carbonate concretions arc present towards thc top of this unit. The prescncc of diagcnetic

pyrite and the undisrupted nature of the laminae suggests that in this part ofthc

succession the pore-waters and potentially the bottom waters werc reducing and sulfidic.

Thc concretionary horizon likcly represent a maximum nooding surface (MaxFS) where

a brcak in scdimentdelivcryoccurrcd and therc was sufficient time for enough solutes to

be transported to sites of precipitation and infill the large, prc-compaction volumes of

intergranular pore space (Raiswell, 1988; Raiswcll and Fishcr, 2000). Analyscs of the

cnclosing relationships betwccn thc ccmcnt phases (sec Figurc 2.7) suggcsts that

following the initial period of cemcnt precipitation there appears to have becn grain

dissolution (primarily of feldspars). Resulting porosity was subscquently filled by later

stagc silica and pyrite (euhedral) cement (Van Cappel len, 2003; Vorhics and Gaines,

2009). A similar surfacc occurs ncar the top of the measured succcssion and may

reprcsenteithera parasequence boundary or, potentially, a sequence boundary.
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The succession above the maximum nooding surface is composed mainly of clay

and silt-bearing silica cement-rich mudstones. In this part ofthe succession the strata vary

from thin relict bedded to laminated. Many of the individual beds arc normally graded

and some contain agglutinated foraminifer. The normal grading suggest that deposition

was likely from waning nows where these nows were driven by storm events (Aplin and

Macquaker, 2011). The relict bed fabrics suggest that organisms (e.g. agglutinated

foraminifer) were able to colonize the sediment in some intervals and disrupt the

depositional fabrics. The presence of lamination renects higher recurrence fi'equencies of

sedimentation episodes (e.g. storm events). Agglutinated benthic foraminifera occur

commonly and arc often detected in close proximity to TaslIlaniles (Figure 2.6)

(Schieber, 1996). The presence of abundant agglutinated foraminifera, provide evidence

for at least some oxygen being present in the water column at the time of deposition

(Millikenetal.,2007;Sehieber,2009).

2.8.2. Metal Disulfide Analysis

As previously outlined, petrographic analyses (backseattered electron imaging

and optical petrography) of the basal arkosic unit identified sultide cements of varying

forms that precipitated both early and late. In addition to pyrite and marcasite, millerite

and sphalerite were also found to be present in assemblages intergrown with marcasite

(e.g. Figure 2.3; Figure 2.9). The presence of millerite and sphalerite that post-dates

precipitation of at least some pyrite suggests that nickel and zinc, in addition to iron, must

have been available in the pore waters during the interval when later metal disliltides

were precipitating. A total of three populations of 8'-!S were identitied in the measured

pyrite and marcasite of the basal arkosic unit (Figllre 2.8).
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The first population contained only pyrite and was the most depletcd in 8'4S, with

a range of -30.7 %0 to -38.6 %0. This pyrite was preserved as either framboids, degraded

relict framboids or as larger euhcdral grains. The 8J4S of pyrite in this range is within the

common range for pyrite precipitated as a result of biogenic sulfate reduction in an open

system with free cxchange to the overlying water column (i.e. not Rayleigh or closed

system fractionation) (Canfield, 2001). In Figure 2.9 B marcasite appears to bc growing

around a cluster of dcgraded framboidal pyritc, further suggesting that this pyrite

precipitatcd prior to marcasite formation. Based on this and other textural relationships

with surrounding minerals, the pyritc in this population appears to be the earliest sullide

preserved in the rock (Figure 2.9).

The second 8J4S population, found only in pyrite, had a rangc of-8.1 %0 to -14.9

%0. The pyrite in this group was euhedral (e.g. Figure 2.9 C). This population is

isotopically heavier by +15.8 %0 to +30.5 %0 than the first group described. Thc distinct

difference of thc two 8J4S populations suggests differcnt sources of sulfur for pyrite

precipitation. Whcn combined with analysis of mineral boundaries from petrographic

data it appcars that this pyrite formed at a later stage of precipitation, after the

compaction of the sediment (epigenetic). In this case both thermochemical and biogenic

sulfate reduction were potential sources of sulfur forpyritc.

Thc 8J4S of pyrite beyond the arkosic unit, in the rest of the measured Exshaw

Formation succession, was found to be similar to the second population, with a range of

2.7 %0 to -7.7 %0 (Figure 2.8). Assuming a similar formation mechanism between

population two in the arkosic unit and thc pyritc throughout the overlying succcssion, the

small isotopic diffcrence between the two groups may bc relatcd to a rcscrvoir effect.
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Available sulfur may have become enriched from the older to younger sediments, in the

essentially closed system that existed during continued precipitation at depth.

The third, and isotopically heaviest, population of measured 8Q S - with a range of

+6.3 %0 to +14.5 %0 - was only detected in marcasite. The presence of corroded

framboidal pyrite nodules in the same unit suggests that marcasite may have formed from

the pyrite precipitation/oxidation process, with the initial pyrite not complelely being

oxidized (Schieber, 20 II). Based on 8·Q S measurements from previous studies, thc 8·1~S

of sulfate in seawater during the Upper Devonian (Famenian) was between +18.0 and

+30.0 %0 (Claypool et aI., 1980; Kaplan, 1975). With this initial range, marcasite

precipitated from these pore waters would have 8Q S values ranging from +15.0 to -47.6

%0. This is within the range of measured marcasite values, although at the heavy end of

the spectrum - implying contemporaneous seawater with a 8.1~S range of +29.5 to +21.3

%0.

However, marcasite 8·14S was significantly different from either of the two

populations of pyrite - with a minimum difference 01'+14.4 %0 and a maximum 01'+53.1

%0. The oxidation of pyrite and reprecipitation of marcasite combined for a total

fractionation ranging from +0.0 10 +0.7 %0. If this process occurred multiple times, (i.e.

repeated cycles of pyrite formation, oxidation and marcasite precipitation) a larger

fractionation is possible, however this would actually cause the 8·14S of marcasite to

become more negative. It is therefore difficult to explain through this process how the

8.1~S of marcasite is much more enriched than the pyrite from which it potentially

originated. This scenario also fails to explain the elevated concentrations of zinc and

nickel in the pore waters of this unit implied by intimate association of millerite and
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sphalerite with the mareasite (e.g. Figure 2.3; Figure 2.9). Trace metal concentrations in

the arkosic unit relative to the rest of the fonllation further suggest the source of material

cntcring the depositional area had a different and more metal-rich origin (Figure 2.10).

High sediment concentrations of trace metals (i.e. zinc, lead, copper, and nickel) are not

typical in normal marine environments and therefore require some unique source

delivering a relatively significant influx of these metals. This intlux appears to have only

occurred at one specific interval in the measured succession.

Lead-Zinc type mincralization mcchanisms represent an alternative lor the

(ormation of marcasitc, which may bcttcr explain the conditions in the arkosic unit

(Leach et aI., 2006). A (ormation mechanism similar to a Pb-Zn dcposit would have a

sulfur source either transported to the area (could be from younger or older strata due to

biogenic or thermochemical sulfate reduction) or derived in the deposit itself (e.g.

dissolution of sulfate-bearing minerals such as barite). Once basinalmctal-rich brine was

driven through the formation and encountered this pool of reduccd sulliJr, mctal-sulfides

would bc rapidly precipitated (e.g. reaction 10).

(10)

Thc low-pH conditions created by the precipitation of metal-sulfides lead to

marcasite precipitation rathcr than pyritc. These acidic conditions also resulted in the

dissolution of existing carbonate mincrals (esp. calcite) in the unit.

The exact source of sulfur in this latterseenario is interesting to consider. It is nOl

likely that sulfides were derived from bacterial sulfate reduction during the oxidation of

organic maller, because this process itselfdoes not yield or require the low pH conditions

needed to favour marcasite formation over pyrite. A more likely source could be that

54



sulfur was derived from the reduction of local evaporites. Whether this process is

occurring from the bacterial reduction of evaporite sulfates or from thermochemical

reduction cannot be definitively determined. Minor amounts of barite in the arkosic unit;

suggest that the source of dissolved sulfate minerals may have been the unit itself(Figure

2.9). The fact that the arkosic unit is sandstone further supports this theory as i) regional

nuid now occurs much more easily and potentially for much longer; and ii) the unit was

potentially aerially exposed, allowing for evaporite (gypsum or anhydrite) minerals to

form.

Large scale Pb-Zn deposits formed by regional now of basinal brines occur across

the Western Canada Sedimentary Basin e.g. the Pine Point, Robb Lake, Kicking Ilorse

and Monarch ore deposits (Leach et a\., 2001; Vandeginste et a\., 2007).

2.9. CONCLUSIONS

The results of the lithofacies investigation suggest that during the deposition of

this formation the basin was not as persistently stagnant as previous research has

suggested. While it is clear that oxygen concentrations in the sediment were quite low.

agglutinated benthic foraminifera suggest that oxygen was present in the bottom waters

of the basin. The presence of ripples and graded bedding throughout the formation also

suggests that there was at least some adveetive transport, indicating the bottom waters

were not persistently low energy. and were at least episodically impacted by storm

Marcasite has been identified ina nUlllber of Devonian Illuclstones(blaek shales)

(Schieber. 20 I I) and recent research has suggested that the most likely reason for its

formation is the oxidation of pyrite and repreeipitation of marcasite process (Schieber,
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2007; Schieber, 2011). However, this is the first known stable isotope analysis of sulfur

in these lag deposits and thus offers new insight as to the formation of these sultides.

Assuming marcasite formed as a result of pyrite oxidation and re-precipitation,

very little difference between the O.'4S of pyrite and marcasite would be expected due to

the fact that there is little to no fractionation associated with the coupled oxidation of

pyrite and consequent formation of marcasite in a relatively closed system. Furthermore.

the pyrite oxidation and re-precipitation theory tails to explain the co-occurrence of other

metal sulfides (e.g. sphalerite and millerite). This sulfur isotope analysis suggests that

there were multiple sources of sulfur in the system during the deposition of the basal

arkosic arenite. In this deposit the most plausible formation pathway for marcasite

appears to be a process similar to the one that precipitates Pb-Zn deposits. That is. a

relatively open system (esp. for metals) with the potentially long-range transport of a

migrating metal-rich brine to the depositional area. This likely happened at some depth of

burial, as it is possible that due to the large grain sizes and subsequently greater porosity.

the migratory brine was able to preferentially enter the arkosic bed after initial deposition.

Based on the isotopic signature, it would seem that thermochemical sultate reduction of

an evaporite or other sulfate mineral may be the most likely source of sulfur for marcasite

precipitation.

Similar to recent research this study demonstrates that these line-grained

sedimentary units arc also very heterogeneous. It is unrealistic to suggest that the same

process were responsible for all the variability observed. An array of hydrodynamic

processes were likely dispersing the sediment and responsible for varying rates of

sediment accumulation and resulting diagenetic processes. In much the same way, there
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arc also a grcatcr varicty of diagcnctic proccsscs, which can bc occurring in thcsc units as

indicatcd by thc multiplc pathways by which iron disulfidc mincrals formcd. In many

finc-graincd scdimcntary rocks thc idca that marcasitc is fOlllling from thc oxidation of

pyritc and rcprccipitation of marcasitc is ccrtainly accuratc. Howcvcr, this study

dcmonstratcs that marcasitc prccipitation via thc oxidation of pyritc is not thc only

mcchanism for marcasitc prccipitation in mudstoncs. Thcrcforc thc prcscncc ofmarcasitc

alonc cannot suggcst that oxygcn (or any othcr oxidant) was available in thc porc-watcrs

during thc dcposition ora mudstonc.
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2.10. TABLES

Table 2.1: Fractionation ranges of o·qs during each step in the formation of marcasite
through the formation and oxidation of pyrite. followed by precipitation of marcasite.
Note adenosine 5'-phosphosulfate = APS.

t(%o)

PyrilcFormalion 010-0.9

PyritcOxidalion 010-0.7

Table 2.2: Fractionation ranges of O'·S during each step in the formation of marcasitl:
through a basinal brine meeting sulfur from a bacterial sulfate reduction of organic matter
source.

t{%o)

I SIC) I so.'·"", -> So.'·""

Bsal~II~;li:1 I SICP 2 SO/ '" -> APS

Rcduclion I SIC JAPS-> SO,'·

I Stcp4S0,'"->H,S

Table 2.3: Fractionation ranges of o·qs during each step in the (ormation of marcasite
through the reduction of sulfate from an evaporitic or gypsum source using either
bacterial sulfate reduction (scenario I) or thermochemical reduction (scenario 2) for the
reduction of sulfate.

t(%o)

EvaporalcFormalion

Thcrmochemical Sulfalc Rcduclion(Thcorclical)
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2.11. FIGURES

Prophet
Trough

II ExshJwandBakkcnform.llions

DWillistonB<lSin _SapP ingtunMcl11bCr.ThrcctorksFOrl11.lliOIl

Figurc 2.\: Map dcmonstrating thc cxtcnt of thc Exshaw and associatcd Bakkcn
Formations. Insct is a map ofthc rcgional gcology around thc Ficldlocation. which is in
Jura Crcck ncar thc lown of Exshaw in thc Rocky Mountains of Albcrta. Canada.
Modificd from Asgar- Dccn and Adams (2010), Pricc (1970), and Smith and Bustin
(2000).
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Figure 2.2: Stratigraphic log of the measured section of the Exshaw Formation at its type
section in Jura Creek, Alberta.
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Figure 2.3: Petrographic observations of clay-bearing sulfide-rich arkose sandstone. (A)
Scan of thin section showing large grain sizes and sulfide minerals. (B and C) Optical
images from petrographic microscope. Erosive surface is arrowed in C. (D to F)
Backscatter electron optical micrographs. Note wide range of diagenetic minerals in (E)
and (D). A large amount of marcasite intergrown with pyrite and sphalerite can be seen in
(F) Mineralogy is arrowed and labeled as; Q - quartz, Ca - ealeite, Ap - apatite, R-rutile,
PI - plagioclase, Py - Pyrite, M - marcasite and Sp - sphalerite.
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Figure 2.4: Petrographic observations of thin-bedded dolomite cement-rich mudstone. (A)
Scan of thin section showing the large extent of pyrite within this taeies. (B) Optical
image from petrographic microscope, note the thin normally grading beds. (D to F)
Backscatter electron optical micrographs. Pyrite is very extensive in a euhedral form,
often forming the base of thin beds. Mineralogy is arrowed and labeled as; Py - Pyrite, D
- Dolomite.
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Figurc 2.5: Pctrographic obscrvations of thin-bcddcd silt and pyritc-bcaring clay-rich
mudstonc. (A) Scan of thin scction showing vcry clay rich fabric. (B) Optical imagc from
pctrographic microscopc dcmonstrating the thin-bcddcd nature of the facies. (C to D)
Backscatter electron optical micrographs. Pyrite occurs throughout this facies in a
euhedral form. Mincralogy is arrowcd and labeled as; Q - quartz, Ca ~ calcite, Ap 
apatite, D - dolomite, Ru-rutile, and Py - Pyritc.
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Figure 2.6: Petrographic observations of thin-bedded normally graded silt-bearing siliea
rich mudstone (A) Scan of thin section showing very clay rich fabric. A solid line
highlights the normally grading nature of the facies with an arrow pointing at the silt-rich
base of a bed. (B-D) Optical images from petrographic microscope. (C and D) show
agglutinated benthic foraminifera, which arc common in the facies (E and F) Backscatter
electron optical micrographs. An agglutinated benthic foraminifera can be seen in (E)
with K-feldspar making up the test and a cavity, which is either empty or filled with
organic matter. Mineralogy is arrowed and labeled as; Q - quartz and K-fCidspar.
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83,IS signatures of individual iron-disulfides in the
Exshaw formation

5

4.5- •

3.5

2.5

2

1.5

• Marcasite

• Pyrite
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_----,_~~___+),-f----.--------,

-40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0

Figure 2.8: Results of SIMS analysis with O'4S plotted against the height above the base
of the measured section or the Exshaw Formation. ote: although pyrite was detl:CIl:d at
other intervals of the stratigraphic log, individual grain sizes were to small to accurately
measureo'4S with the SIMS.
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Figure 2.9: Petrographic observations of the clay-bearing sulfide-rich arkose sandstone
showing TM.1~S measurements of marcasite and pyrite. (A) Optical images from
petrographic microscope in reneeted. light. (B to D) Back~~catter electron optical
micrographs of the circular mounts, which were analyzed for ™ S. In (B) thc boundary
between a cluster of degraded framboidal pyrite and bladed marcasite is circled with a
dash line. The marcasite can be seen growing around the pyrite suggesting a later
precipitation of the marcasite. Mineralogy is arrowed and labeled as; Q - quartz. Ca 
calcite, Ap - apatite, D - Dolomite Py - Pyrite, M - marcasite, Mil - Millerite and Sp 
sphalarite.
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Comparison of Metals (ppm) in the Arkosic Arenite and Average of al
other samples in the Exshaw Formation

• Arkosic Arenite (ppm)

• Average of all other
samples (ppm)

• Arkosic Arcllite (Jlpm) 12907 2607

.Average of all other salllplcs (pplll)

Metals

Figurc 2.10: Graph comparing thc amount of clcmcntal mctals in thc basal arkosic unit to
all othcrfacics in thc Exshaw Formation.
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3. : HIGH-RESOLUTIO ANALYSIS TO DETERMINE
CONTROLS 0 CARBON SEQUESTRATION AND

MI ERALIZATION I ORDOVICIA SHALE GAS TARGETS

3.1. INTRODUCTIO

Convcntional scicntific undcrstanding of organic-rich finc-graincd rocks is that

thcy arc dcpositcd from suspcnsion scttling in anoxic basins. Rcccnt rcscarch. howcvcr.

has highlightcd that in spitc of similar supcrficial appcaranccs at hand spccimcn scalcs.

finc-graincd rocks (including shalcs) arc highly variablc in: (a) grain sizcs as rctlcctcd in

diffcring silt to clay ratios, (b) compositions, (c) proportions of matcrials dcrivcd from

dctrital inputs to basins, primary production within basins and subscqucnt diagcncsis and

(d) microtcxtural attributcs, particularly lamination stylc, and bioturbation (Baas ct aI.,

2009; Bohacs ct aI., 2005; Macquakcr ct aI., 2010a; Macquakcr and Bohacs, 2007; Pipcr

and Calvcrt, 2009; Schicbcr ct aI., 2007; Van Cappcllcn, 2003). This variability indicates

that that thcy wcrc not simply dcpositcd from buoyant plumcs via suspcnsion scttling in

quicsccnt anoxic cnvironmcnts, but arc products of dcposition in much morc dynamic

scttings, which thcn suffcrcd complcx dysoxic and anoxic diagcnctic ovcrprinting (Pipcr

and Calvcrt, 2009). Stratificdrcdoxprotilcsinthclowcrwatcrcolumnandscdimcntporc

watcrs, combincd with varicd hydrodynamic/scdimcnt transport mcchanisms, causc thcsc

rocks to cxhibit significant unrccognizcd variability in a rangc of paramctcrs !i'om

porosity to clcmcntal (c.g. carbon) conccntrations. Thc carbon cyclc is of particular

importancc to this hctcrogcncity bccausc it controls thc balancc of carbon prcscrvcd in

rcduced and oxidizcd statcs, rcsulting in organic carbon scqucstration and mincralization.

Hctcrogcncity within thc carbon cyclc of thc Earth's occans is drivcn by scdimcnt
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delivery mechanisms and the availability of oxidants, which then drive the stratification

of microbially mediated early diagenetic reactions.

In the Earth's oceans, carbon is primarily present in an oxidized form, as

dissolved inorganic carbon (Falkowski et a\., 2000). Other pools of carbon in thc oceans

include reduced particulate organic carbon and carbon in the skeletal (carbonate) and soli

parts (organic carbon) of organisms (Falkowski et a\., 2000). Much or the carbon

contained in the biosphere is cycled 10 an inorganic form at the sediment water interrace,

as organic compounds arc decomposed via oxidation reactions (e.g. reaction I) (Claypool

et a\., 1980) to oxidizcd carbon species. The most energetically favourablc oxidant ror

this reaction is oxygen.

(I)

In dysoxic 10 anoxic conditions a series of other oxidants will be utilized by Ihis

process (e.g. Mn(lV), 0.1, Fe(III), solo, CH4) (Froelich et a\., 1979; Morse et a\.,

1987). These oxidants, however, arc not as energetically favourable as oxygen and the

ensuing oxidation reactions using these terminal electron acccptors arc ncither as ertlcient

or as rapid (Froelich et a\., 1979). High primary production rates can lead to a signiticant

amount of reduced carbon being transported to the sediment-water interface, thus causing

depletion of available oxidants that arc mostly delivered from the overlying water column

by diffusion. Thus, periods of high production, combined with high sediment

accumulation rates (high recurrence frequency of bed cmplaccmcnt) and low dilution

(from detrital sources) can result in preferential organic carbon prescrvation withinthc

sediment following consolidation and subsequently lithification (Bohacs et a\., 2005;

Piper and Calvert, 2009; Sageman el a\., 2003). Alternatively, if oxygen is readily
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available in the water column and in the pore waters, and sedimen taeeumulationratesare

slower, most of the organic carbon will be oxidized (e.g. reaction I).

This commonly liberates carbon dioxide that will subsequently dissociate into

bicarbonate and hydrogen ions (e.g. reaction 2).

(2)

In this form, the bicarbonate can react with Ca2+to precipitate calcium carbonate

(via reaction 3) (Morseetal.,2007).

Ca2- +2I-1CO," => CaCOJ + 2C02+21-1 20 (3)

Calcium lor the formation of calcium carbonate is derived from the weathering

and transport of Ca-rich minerals (e.g. feldspars and clays) to the oceans (Aplin and

Macquaker, 2011). While Cah is ultimately derived from run-oil it is otten cycled

through the biosphere as organisms usc calcium to construct their tests (e.g. bivalves,

brachiopods, echinoderms, coccolithopores, foramanifera etc.). This Ca may then be re-

dissolved during early burial, particularly if it is in the relatively unstable amgonite or

high Mg-caleite forms. Combined with sub-marine weathering of Ca-rich feldspars and

clays, the dissolution of such skeletal Ca-bearing organisms living in the water column

and in thesedimcntcan supply abundant Ca2-to the pore-waters (Aplin and Macquaker,

201 I; Machentetal.,2007; Morseetal.,2007). If the pore waters have reducing (anoxic)

conditions a varicty ofothcr minerals may form rathcr thcn calcium carbonate, including

rhodochrosite (MnCO,), which is associated with rcduetion of Mn02 (Lovley and

Phillips, 1988); magnetite (Fe,04) and siderite (FcCOJ ), which have both been associated

with Fe(llI) reduction (Roh et aI., 2003); pyrite (FcS2), which forms during sulfate
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reduction ( ewton and Bottrell, 2007; Rickard and Luther, 2007); and/or ferroan

dolomite or ferroan calcite (CaCO,), which are associatcd with mcthanogcncsis.

In this way, carbonate cement can prccipitate in the pore waters or pre

compaction mudstones, forming either individual concretions or continuous cemented

layers where they coalcsce (Morse et aI., 2007). Acidic pore waters can Icad to grain

dissolution, which often enhances porosity given minimal clay mincralization after

dissolution (Sicgcl and Pfannkuch, 1984).

From a source rock/rescrvoir pcrspcctive thc relativc balancc between the two

sphcres of carbon (oxidizcd and reduccd) is important because it influcnccs both; i) the

abundancc of inorganic carbonate (oxidized) and ii) the overall organic content (reduced)

(Aplin and Macquaker, 20 II; Morse et aI., 2007; Ross and Bustin, 2009) of the sedimcnt.

The inorganic carbon fraction is particularly significant, as it exists cither as preserved

skeletal fragments derived from production in thc basin, or in diagenetic cements. The

form of cement is likely to playa significant role in the source rock/reservoir quality ora

shale succession.

3.2. AIMS AND OBJECTIVES

This study aims to investigate thc rclationship between i) cycling among the

carbon spheres of reduced and oxidizcd forms and ii) thc hetcrogcncity obscrvcd in fine

grained sedimcnts and, in particular, thc spatial and tcmporal distributions or organic

carbon and different carbonate mincrals. To this end, thc controls on carbon cycling in

two Ordovician-aged carbon rich mudstone successions, thc Utica Shalc, and thc

Winterhouse Formation will be examined. These two successions are idcal natural

laboratories for this investigation because they are of the same agc (mid to late
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Ordovician), were deposited in the same tectonostratigraphic domain (the Lower-Middle

Paleozoic autochthonous St. Lawrence PlatfOIlll), and formcd in related depositional

settings (previously ncar-shore carbonate platforms moving into continental shell)

(Dietrich et a\., 2011). Even with these similarities, the expectation is that. due to the

wide range of heterogeneity recently documented in mudstones, significant differences

will exist between the two successions-causing them to exhibit diflCrent source rock and

unconventionalrescrvoirattributes

3.3. GEOLOGICAL SETTING

The break-up of Rodinia during the late Neoproterozoic to early Paleozoic created

the basin in which the St. Lawrence Platform was deposited. This platform itself formed

in the early Paleozoic (Cambrian to Devonain) depositing sediment in shallow marine

and ncar shore environments of the Laurentian continental shelf (Dietrich et a\., 1011).

On-land deposits from this platform arc found from the St. Lawrence Lowlands of

southern Quebec eastward to the Mingan Islands, Anticosti Island and western

Newfoundland. This unit is also found offshore in the St. Lawrence estuary and the

Northern GulfofSt. Lawrence.

Sediment was deposited along the eastern margin of Laurentia during the Taconic

orogeny. This sedimentation deposited shallow to deep carbonate and clastic units in

disconnected tectonically activc foreland basins along the eastern margin of Laurentia

(Dietrich et a\., 2011; Knight, 1992). In western Newfoundland this created a number of

carbonate and clastic deposits including the Table Head Group, Goose Tickle Group and

the Long Point Group (Dietrich et a\., 2011). The Winterhouse Formation. one of two

units investigated for this study, was deposited during the Middle to Upper Ordovician
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Period as part of the Long Point Group, exposed on the Long Point Peninsula of the Port

au Port Peninsula in south-western ewfoundland, Canada (Figure I) (Bergstrom et aI.,

1974; Quinn et aI., 1999). Previous studies have identified the Winterhouse as being

composed of thinly bedded, calcareous silty shales, to quartzose sandstones and

occasional limestone (Bergstrom et aI., 1974; Gillespie, 1998). The Long Point

Formation is composed of the Winterhouse Formation and the underlying middle

Ordovician Lourdes Limestone thai has a gradational boundary with the Winterhouse

(Bergstrom et aI., 1974). Overlying the Winterhouse Formation is the Silurian-Devonian

Clam Bank Formation (Williams S.I-I., 1989; Williams S.H., 1987)

In Southern Quebec the Taconic Foreland basin, which formed in the Middle

Upper Ordovician, contained both carbonates (Black River and Trenton groups) and what

have been described as deep marine clastic deposits (Utica Shale). The Utica Shale was

deposited in the Upper Ordovician in the Taconic Foreland basin (Hannigan and Basu,

1998; Mitchell et aI., 1994). The Utica conformably overlies the carbonates of the

Trenton group (Brett and Baird, 2002). The reason for the shift to more clastic dominated

material has been suggested to be an increase of sea Icvel duc to tectonic activity

associated with collisions of an island arc (Taconic Terrane) along the margins of

Laurentia.

The fact that the Utica and the Wintcrhouse arc of similar age and were deposited

in foreland basins of the SI. Lawrence Platform creates a useful comparison of the two

fine-grained units as (i) similar weathering processes theoretically influenced sediment

entering both basins and (ii) production derived components should be relatively similar.
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3.4. MATERIALS AND METHODOLOGY

Samples were collected from I) the Utica Shale in the SI. Lawrence Lowlands of

southern Quebec (Figure 3.1) and 2) the Winterhouse Formation on the Port Au Port

Peninsula of Western ewfoundland (Figure 3.10). Detailed log description was recorded

at each location. Two locations were visited at the Utica field location, with a total of 33

samples collected, 23 from a 4mmeasured section at the base of the Utica and 10 from a

3 m section ncar the middle of the (ormation (field locations shown in Figure 3.1). In the

Winterhouse Formation a total of 20 samples were collected across a 5.4 m vertical

section beginning at the base of the formation (field location in Figure 3.10).

To generatc the descriptions of grain sizc, labric, composition and facies

dcsignations prescnt on a range of scales, polishcd unusually thin (20-25 pm) sections

were prepared from the collected samples. These sections were initially described

through the usc of an optical petrographic microscope (Nikon Optiphot Pol). Following

this the sections were coated with carbon and analyzed both texturally and

compositionally using an FEI Quanta 400 environmental scanning electron microscope

(SEM) equipped with a Backscattered electron imaging (BSE) and an energy dispersive

X-ray (EDS) analytical systcm. The SEM was operated at 25 kY and 2.0 ~lA; with a

working distance of 12 mm. This process followed similar techniques of earlier studies

(MacquakerandGawthorpe,1993).

For bulk quantitative analyses, 18 mudstone samples were crushed using a

tungsten carbide grinding mill. To minimize cross-sample contamination in the mill,

ultra-pure silica was crushed between samples and all tools and surfaces were thoroughly

cleaned with ethanol. The mineralogical composition of each sample was determined
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using a Rigaku Ultima IV X-ray Diffactomctcr (XRD) with a coppcr Ka X-ray sourcc

cquippcd with a scintillation countcrdctcctor

X-ray fluorcsccncc (XRF) spcctromctry was utilizcd to dctcrminc conccntration

of major and tracc e1cmcnts. For XRF analyscs 5 mg of samplc was wcighcd and mixcd

with a 0.7 gm of phcnolic rcsin bindcr. Aftcr mixing, this powdcr was placcd in a Ilcrzog

Pcllct Prcss and prcsscd for 10 scconds at 20 ton/in 2 prcssurc. Thc pcllct was thcn bakcd

at 200"C for 15 minutcs. Thc opcrating conditions of thc XRF arc dcscribcd in Longcrich

(1995). Total organic carbon analysis was conductcd at thc Manchcstcr Mctropolitan

Univcrsity (MMU) in a Lcco Induction Furnacc. Thc samplcs wcrc thcn dccalcificd using

warm 2% HCI, and thc dccalcilicd carbon contcnts wcrc dctcrmincd using the same Leco

furnacc. Thc TOC contcnts ofcach sample were thcn dctcrmincd by diffcrcncc. A sub-sct

of samples was selcctcd for Ol.1C isotopic analysis at thc Environmcntal Isotopc

Laboratory in thc Earth and Environmcntal Scicncc Dcpartmcnt at Watcrloo Univcrsity.

3.5. RESULTS

Lithofacics prcscnt arc classificd using thc nomcnclaturc schcmc proposed by

Macquakcrand Adams (Macquakcrand Adams, 2003) formudstoncs (scdimcntary rock

composcd of> 50% grains < 0.063 mm). In this schcmc thc lithofacics namcs arc bascd

on thc pcrccntagc abundancc of matcrials of cithcr ditTcrcnt grain sizc or diffcrcnt origin

within a mudstonc. For instancc, mudstonc bcds containing >90% of a particularly grain

sizcarcdcscribcdasbcing"dominatcd"bythatcomponcnt;units that contain bctwcen 50

to 90% of a particularly grain sizc arc dcseribed as bcing "rich" in lhat componcnt;

whereas materials that comprisc 10to 50%ofa particularly grain sizearedcscribed as

"bcaring" the componcnt. With modificrs (c.g. thin bcddcd, laminated, burrowcd.
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homogenized, fossiliferous) being added to the beginning of the name to describe its

textural attributes, and its compositional attributes (e.g. siliceous, calcareous, dolomitic,

silieilastie) being added to the end of the name. Using this terminology the mudstones in

the tieaand Winterhouse Formations can be described in detail and compared.

3.5.1. Utica Formation

Two short sections within the Utica Shale were measured and logged (or this

study. The first was a 4 m thick succession along the banks of the Jacques Cartier Rivl:r

at the base of Utica Shale where it gradationally overlies the Trenton Formation (UC lield

location in Figurc 3.1). The second. which represents the middle of the Utica Shale, was a

3 m succession, located in a road cut in ncar the town of Cap-Sante, QC, (UCB field

location in Figure 3.1).

On the basis of varying grain size, mineralogy. grain origin and textural attributes

eight lithofacies (described below) were identified in the Utica Shale. The lithofacies

present include both homogenized and very thin-bedded (bed thicknesses ranging li'om I

mmto 20 mm) mudstones with varying proportions of calcite cements (from 46 to 80 %).

Internally, the individual units exhibit a variety of lamina geometries and arc variably

bioturbated. Detailed descriptions of each lithofacies arc given below and their

stratigraphic distributions arc shown in Figure 3.2.

3.5.1.1. (UI) Normally graded, very thin bedded, pelleted, silt-bearing,
clay-rich carbonate mudstone

This facies is organized into sharp based. very thin (I to 5 mm thick). normally

graded beds that arc silt-enriched at their bases (grain size approximately 25 pm) and

clay-rich towards thcir tops (grain sizc <4 pm) (sec Figure 3.3 A-C). Prominent.

compacted pellets arc visible throughout (Figure 3.3 C). The silt sized li'amelvork grains



(-20 ~m) arc composed of detrital quartz, feldspars and broken pieces of reworked

calcite skeletal debris (Figure 3.3 0). The matrix is composed of clay sized qual1z,

feldspar, and illite (Figure 3.3 C-O). While most of the quartz is found primarily in the

form of detrital grains, euhedral overgrowths arc also present (Figure 3.3 C). Similarly

calcite is primarily present as silt-sized reworked skeletal grains, but is also prcsent in

minor amounts of early diagenetic pore filling cement. Other forms of early diagenetic

cement included zoned dolomite and minor amounts of framboidal pyrite and barite

(Figure 3.3 C - 0). Overall the mineralogical abundances were determined to be calcite

(46 %), quartz (15.6 %), illite (17.7 %), dolomite (12.5 %), albite (6.1 'X,), and pyrite (2.1

%) (Table 3.1, Table 3.2). Total organic carbon abundance was measured to be 1.5 'Yo and

have a &13Curganic signature of -30.2 %0 (Table 3.\, Table 3.2).

Individual beds of these facies arc commonly organized into stacked succcssions

of bcd-sets that form units up toO.5m thick.

3.5.1.2. (U2) Thin-bedded partly homogenized, silt- c1ay- and
carbonate cement-bearing mudstone

Thin-bedded partly homogenized, silt- clay- and carbonate cement-bearing

mudstones contain discontinuous, relic bedding planes> 5 mm thick (Figure 3.4).

Internally the majority of the primary textures have been homogenized (Figure 3.4 A)

The overall grain size in this facies ranges from <3 to 40 pm. This facies is very

calcareous (51%). The calcite is present primarily as finely comminuted bioclastic debris

(preserved as elongated angular grains) in the silt-sized li'aetion, and as cement (Figure

3.4 8-0). Compressed fecal pellets composed of very fine-grained calcite arc present

(Figure 3.4 A-C), Some burrow mottles arc visible and these arc attributed tentatively to

either Thalassinoides isp, and/or Planulites isp, Quartz occurs primarily as sub-rounded
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detrital, silt-sized grains although there is also clay sized quartz in the matrix and minor

amounts of quartz cement (Figure 3.4 C and D). The most common cement in this facies

is dolomite (Figurc 3.4 D). Pyritc, which is also occurs throughout thc facics, (orms eithcr

discrete grains or circular/crushed elongated 100 pm nodules composed of framboids (or

relict framboidal). The overall mineralogical composition of this facies is calcite (51 %),

dolomite (9.5 %), illite (13 %), quartz (13 %), anorthite (4.5 %), chlorite (3.6), orthoclase

(2.9 %), and pyrite (0.7 %) (Table 3.1 ,Table 3.2). Dispersed organic mater was identilied

in thin section analysis and the total organic carbon content was measured to be 1.2 'Xl

and have a (SI.1COIll signature of -29.8 %0 (Table 3.1 ,Table 3.2).

3.5.1.3. (U3) Normally graded, ripple laminated, very tine sand, coarse
silt and fecal-pellet bearing carbonate mudstone

Thin beds of normally graded very fine sand, coarse silt and kcal-pellet-bearing

carbonate mudstones arc common in the Utica Formation. These units have grain sizes

ranging from clay to very fine sand (3 to 100 pm) (Figure 3.5). Internally the individual

beds arc organized into non-parallel lamina sets that exhibit down-lapping geometries on

to the underlying bedding planes (Figure 3.5 B). The bases of the individual beds arc

defined by thin lags composed of coarse silt (Figure 3.5 A-C). While fecal pellets arc

present throughout the facies, they arc particularly abundant at the tops of individual beds

(Figure 3.5 B-C). These fecal pellets arc composed of a mixture of very fine-grained clay,

quartz, feldspars and dolomite (Figure 3.5 D). Dolomite appears to primarily occur within

these fecal pellets, in contrast outside of the pellets the dominant carbonate cement calcite

(although carbonate cement is not very abundant in this facies) (Figure 3.5 D-F). Most or

the calcite is present in the form of broken silt-sized skeletal debris, with varying

morphologies (round to elongated) (Figure 3.5 E). Round nodules ranging rrom 0.1 to 0.5
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mm in length and approximately 0.1 mm in width are eommon; in some areas they have

been filled with either the precipitation of silica (quartz) cement or what is presently

slightly degraded framboidal pyrite (Figurc 3.5 C and F). In some areas these nodules

have been crushed during compaction resulting in an elongated pattern oriented along

bedding planes (Figure 3.5 C). Uncompacted nodules indicate cement that precipitated

prior to compaction. The overall mineralogical composition of the slide is calcite (51.4

%), illite (16.7 %), dolomite (15.5 %), quartz (14.4 %), pyrite (0.6 %), and apatite (1.4 %)

(Table 3.1 ,Table 3.2). Thc total organic carbon content of this filcies was measured to be

1.6% (Table 3.I,Tablc 3.2).

Individual beds ofthesc facies are commonly organized into stacked successions

of bed-sets that form units up to 3 mm thick.

3.5.1.4. (U4) Thin-bedded, normally graded, silt- and very finc sand-
bearingcalcite-ccmcnt-rich mudstonc

Thin-bedded, normally-graded, silt and very fine sand bearingcalcite-cement-rich

mudstones, with sharp and uneven erosional surfaces at the base of each event bcd,

contain framework grains of very fine sand sized quartz, feldspar and broken fossil debris

(in the fonn of calcite) (Figure 3.6). Individual beds are normally graded and have a

distinct coarse rich section at the base grading upward into a more fine-grained unit on

top (Figure 3.6 B-C). Therc are multiple forms of diagenetic cements including calcite,

dolomite (as evidenced by zonation), barite and dcgraded framboidal pyrite (Figure 3.6

E-F). The overall mincralogical composition of the facies is calcite (67.1 %), dolomite

(9.3 %), illite (8.6 %), anorthitc (7.5 %), quartz (3.6 %), chlorite (3.5 %), and pyritc (0.4

%) (Table 3.I,Table 3.2). The total organic content of this facies is 0.35 % (Tablc
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3.I,Table 3.2). In the bulk carbonate samples the 8uC,alei,c of was measured to be +1.2 %"

and the 81SO,aleilc -5.0 %0 (Table 3.1 ,Table 3.2).

Individual beds of these facies are commonly organized into stacked successions

of bed-sets that form units ranging from I to 50 mm thick.

3.5.1.5. (US) ormally graded, burrow mottled silt- and clay-bearing
calcite cement-rich mudstone

This normally graded, burrow mottled silt- and clay-bearing calcite-cement-rich

mudstonc is primarily composed of calcite cement however some silt and very tine sand

size (3 to 100 ~lIn) framework grains are present (Figure 3.7). The framework grains are

eomposed of quartz, broken skeletal debris (in the form of calcite), apatite and feldspars

(Figure 3.7 A-C). The matrix is composed of clay minerals and pyrite. The bed bases are

sharp based and commonly overlain by lags composed of skeletal debris (Figure 3.7 B).

Burrowing has completely homogenized some beds and partially disrupted the tops of

others (Figure 3.7 A-B). The overall mineralogical composition is calcite (77.2 %),

dolomite (8.55 %), illite (8 %), quartz (4.3 %), anorthite (0.2 %), rutile (I %), apatite (0.9

%), chlorite (0.2 %) and orthoclase (0.1 %) (Table 3.I,Table 3.2). The total organic

carbon content of this facies is 0.29 % with a 8U CoM signature of -28.6 %0 (Table

3.I,Table 3.2). In bulk carbonate samples the 8u C,alei,c of was measured to be +2.8 %"

and the 81S0caleilc -4.1 %" (Table 3.1 ,Table 3.2).

3.5.1.6. (U6) Thin, relict bedded, partially homogenized coarse silt-
bearing, clay-rich calcareous mudstone

This thin relict bedded partially homogenized coarse silt-bearing clay-rich

calcareous mudstone contains grain sizes with a rangc of <3 to 50 flm (Figure 3.l\).

Bioturbation has resulted in thc destruction of a large proportion of the original bedding
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features (Figure 3.8 A-B). In areas where bedding planes have been preserved it is

evident that normally grading is present and there arc alternating lamina dominated by

shell and clay minerals (Figure 3.8 A-B). In some of these beds ripples have been

preserved, and wavy basses occur overlying erosional surfaces (Figure 3.8 A). The matrix

material is composed ofa mix of clay-sized quartz, clays, feldspar and broken carbonate

debris (Figure 3.8 C). Calcite occurs as both cement and in the form of clay and silt sizcd

broken skeletal debris (Figure 3.8 B-C). Silt to vcry fine sand sizcd grains ofdolomitc arc

prcscnt in a diagcnctic form as cvidcncc by thc occurrcnce of zonation within the grains

(Figure 3.8 D). Surrounding the dolomite grains is porosity around thc grain boundaries

(Figure 3.8 D). Minor amounts of diagenctic euhedral pyrite occur as discrctc grains

throughout (Figurc 3.8 C-D). The ovcrall composition of this facics is calcitc (61.2 %),

i1litc (16.2 %) quartz (7 %), orthoclasc (6.8 %), dolomitc (5.4 %), and pyritc (1.5 %)

(Tablc 3.I,Tablc 3.2).

3,5,1.7, (U7) Thin-bedded and burrow mottled fine silt-bearing, calcite
cement-richmudstoe

This silt-bearing calcite ccmcnt-rich mudstonc contains discontinuous beds with

erosive bases, which fine upwards and have grain sizes ranging from clay to linc silt «3

to 25 ~lIn). This facics contains tracc fossils of unlincd passivc fillcd Thalassil10ides

and/or Planolites burrows (Figurc 3.9 A-B). The detrital fraction is composed of

rcworked skeletal dcbris (calcite) and small amounts of quartz and fcldspars. Quartz is

also present as a result of the dissolution of K-feldspar, and formed as ccment post-

dissolution of othcr primary mincrals (Figurc 3.9 E-F). This facics also contains

authigcnic fcldspars (in the form of albite) (Figurc 3.9 E-F). Authigenic feldspar was

identificd based on irregular grain boundaries and the fact that in somc areas thc albitc
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forms a rim around other detrital grains (of anorthite) (Figure 3.9 E-F). Pyrite occurs as a

diagenetic mineral in both euhedral and framboidal forms (Figure 3.9 C-F). Some

fractures in this unit have been filled in with framboidal pyrite (Figure 3.9 C-D). Minor

amounts of the zinc-sulfide sphalerite also occur in this facies (Figure 3.9 E). Overall thc

mineralogical composition is calcite (74.3 %), illite (12.2 %), dolomite (7.2 %), quartz

(5.5 %), anorthite (2.75 %), Chlorite (1.9 %), Apatite (0.9), and pyrite (0.4 %) (Table

3. I,Table 3.2). The total organic carbon content of this facies is approximately 0.35 %

(Table 3. I,Table 3.2). In bulk carbonate samples the <sueakilc of was measured to be +1.9

%" and the <sIXOcakilc -4.6 %" (Table 3.I,Table 3.2).

3.5.2. WinterhouseFormation

A 6 m section of the Winterhouse Formation on the Port-au-Port Peninsula (Field

Location in Figure 3.10) was measured and logged. Four different lithofacies were

identified in this succession. The lithofacies present include both calcareous sandstones

and calcareous mudstones. The individual units exhibit a variety of lamina geomctries

and arc variably bioturbated. Detailed descriptions of each lithofacies arc givcn below

and thcir stratigraphic distributions arc shown on Figurc 3.1 I.

3.5.2.1. (WI) Homogenized, calcite-cemented fine-grained calcareous
sandstone

The coarscst facics encountered in the Winterhouse Formation is a homogenized

calcite-cemented fine-grained calcareous sandstone (framework grains range in size from

125 to 200 pm) (Figure 3.12). This facies forms a prominent unil at the base of the

measured succession of the Winterhouse Formation. The framework grains in this unit

arc mainly composed of quartz with minor feldspar. Concavo-convex quartz grain
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contacts between the cement and the framework grains suggest the calcite cement

postdates compaction (Figure 3.12 C). Extensive burrowing has homogenizcd most of

the depositional fabrics, however, in some regions there is evidcnce of preserved

lamination (Figure 3.12 A-B). This unit contains significant grain dissolution porosity.

produced by the dissolution of unstable feldspars (note relic feldspar grains in Figure 3.12

B-C). The grain dissolution porosity has been subsequently in filled by calcite and later

stage quartz cement (Figure 3.12 B-C). Overall the facies is composed predominantly of

calcite (69.4 %) quartz (14.1 %), Dolomite (6.2 %), Albite (2.9 %), Rutile (2.8 %) apatite

(O.9%),orthoclase(0.4%),pyrite(O.2%),andchlorite(O.1 rx,) (Table 3.3).

3.5.2.2. (W2) Homogenized sand- and silt-bearing calcite cement-rich
mudstone

The framework grains in this Homogenized sand- and silt-bearing calcite cemcnt-rich

mudstones arc composed of silt to sand-sized framework grains (Figurc 3.13). These

Preserved framework grains arc mostly composed of quartz, calcareous skeletal debris

and feldspar in the silt-size fraction (Figure 3.13 B-D). Most of the bioclastic material has

an uncertain origin, however, echinoderm debris was identilied (Figure 3.13 B).

Individual burrows arc defincd by clay-rich cavities with no lining suggesting they are

Plonolities isp. and/or Tholossinodes isp. At one boundary with an overlying

homogenized sand and silt-bearing calcite cemcnt-rich mudstone facies a hard ground is

present. This hard ground contains multiple borings (Figure 3.13 A). Chlorite and apatitc

were identified through SEM analysis. Small euhedral pyrite grains are scattered

throughout this unit.

There were multiple generations of cements prior to compaction in this faeies

with calcite being the earliest and most extensive and pyrite and calcite enclosing the
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early fabrics (Figure 3.13 E-F). Post-compaction (based on the concavo-convex elongate

boundaries between the detrital grains) calcite cement infills the intergranular porosity

(Figure 3.13 C-D). Calcite cement is also present infilling grain dissolution porosity in

voids created by the dissolution of feldspars and other unstable mineral grains (Figure

3.13 D). XRD analysis indicates the overall mineralogical composition is calcite (57.1

%), quartz (16.4 'Yo), orthoclase (2.3%), illite (8.6 O;(l), dolomite (7.6 %), albite (4.1 '1.,),

pyrite (0.4 'Yo) and chlorite (2.3 'Yo) (Table 3.3). Total organic carbon was measured at

0.27 % with a 8
U COM signature of -29.1 %0. In bulk carbonate samples the 61.1Cakilc of

was measured to be -0.4 %0 and the 81XOcakilc -4.0 %0 (Table 3.3).

3.5.2.3. (W3) Thin relict bedded, partially homogenized c1ay- and
dolomite cement-bearing, silt-rich siliclastic mudstone

This thin relict bedded, partially homogenized clay, silt-rich siliciclastic mudstone

facies contains burrow mottling and framework grains ranging in size from medium to

coarse silt (10 to 50 pm). Bioturbation has resulted in the destruction of most bedding

planes; although some relict beds have been preserved (Figure 3.14). There arc preserved

trace fossils of passively filled and horizontally protrusive Rhi2ocoorailiwII isp. burrows

and Paleophysus isp. that contain thin to thick wall linings with a passive (ill similar to

the host sediment (Figure 3.14 A-C). A large amount of detrital material has been

preserved with little evidence of grain dissolution porosity (Figure 3.14 D-F). The delrital

framework is composed quartz, feldspars, and elay minerals (chlorite) (Figure 3.14 D-F).

There issomecemenl infilling pore spaces, primarily in the form of dolomite with lesser

amounts of calcite (Figure 3.14 D-F). Minor amounts of barite arc present as cement

(Figure 3.14 E). The overall mineralogical composition is composed of quartz (30.3 %),

illite (21.2 'Yo), dolomite (12.7 %), orthoclase (10.5 'Yo) chlorite (7.8 %), calcite (7.8 %),



albitc (6.8 %), pyritc (2.9 %) (Tablc 3.3). Mcasurcd total organic carbon was found to bc

0.27 % and havc a (513 COM signaturc 01'-28.9 %0 (Tablc 3.3).

3.5.2.4. (W4) Burrow mottled fine-sand bearing silt-rich mudstone

This homogcnizcd finc sand-bcaring silt-rich mudstonc contains 10 to 50 pm

framcwork grains 10 to 50 pm grains of quartz, fcldspars, and clays (chloritc). Grain

dissolution has rcsultcd in thc dcstruction of much ofthc dctrital grains, as many grains

havc bccn dissolvcd and a ccmcnt of quartz or calcitc has subscqucntly in lillcd thc

porosity (Figurc 3.15 C-F). This facics contains a burrow-mottlcd fabric; duc to thc

cxtcnsivc bioturbation no visiblc bcdding plancs havc bccn prcscrvcd (Figurc 3.15 A-B,

D). Portions of somc burrows havc bccn prcservcd as finc-graincd rich zoncs (Figurc

3.15 A-B, D). Escapc traccs havc also bccn prcscrvcd with an abundancc or clay to finc

sand sizcd mincrals (Figurc 3.15 A). It is primarily within burrows that diagcnctic calcitc

and dolomitc arc found (Figurc 3.15 D and F). Minor amounts of fi'amboidal pyritc arc

common throughout thc facics (Figurc 3.15 C-F). XRD analysis indicatcs thc ovcrall

mincralogical composition of this facics is quartz (36.3 %), chloritc (25.4 %), albitc (16.8

%), orthoclasc (9.8 %) calcitc (7.3 %), dolomitc (3.8 %), and illitc (0.7 %) (Tablc 3.3).

Thc total organic carbon conccntration of this facics was dctcctcd to bc thc highcst of any

facics in thc Wintcrhousc (although still rclativcly low comparcd to othcr mudstonc

succcssions) at 0.31 % with an avcragc (51'COM signaturc of -28.9 %0 (Tablc 3.3)

3.6. DISCUSSION

3.6.1. Sediment origins, dispersal and bioturbation

As in all finc-graincd succcssions, scdimcnt of thc Utica and Wintcrhousc

Formations arc dcrivcd from both dctrital and primary production sourccs (Aplin and

87



Macquakcr, 2011). Within the individual Formations the relative proportions of detrital

and primary production components; proportions of organic carbon and inorganic carbon

(carbonate), grain size and transport mechanisms all vary significantly. The following

sections address this variability and their link to sediment origins, mechanisms of

dispersal and subsequent colonization.

The Utica Shalc is organizcd into stacked successions of: i) thin-bcdded, normally

graded calcareous mudstones intcrcalated with ii) more argillaceous calcareous

mudstones, on a meter scale. The basal units, immediately overlying the Trenton

limestone, arc transitional and contain particularly high carbonate concentrations

compared with the overlying younger strata (sec Figure 3.11), which contain greater

proportions of clastic derived minerals. This change was caused by a profound shin in

sediment supply, with in-si/II materials derived from carbonate production being

gradually replaced by silt-size reworked carbonate debris in addition to weathering

derived clastic detritus. This change was likely caused by !looding of the St. Lawrence

Platform and subsequent infilling of the available accommodation ( ote, the silt-size

carbonate fraction in the Utica has an uncertain origin, but is likely comminuted

bioclastic debris). The fact that production derived components represent most of the

sediment present in the lower parts of the succession suggests reduced inputs of clastic

detritus, and minimal clastic dilution, were occurring at Ihis time (Aplin and Macquaker,

2011).

The Winterhouse Formation contains a stacked combination of carbonate-rich

mudstone and sandstones. Thc units with the largest grain sizes were found at the base of

the formation, suggcsting a gradational shirt to morc clastic derived material from



episodic high-energy inputs of weathered material to the basin. The gradational shift from

the underlying Lourdes Limestone to the Winterhouse Formation likely resulted from an

increase in clastic sediment supply to the basin during the overall flooding of the St.

Lawrence Platform (Bergstrom et aI., 1974). All facies of the Winterhouse Formation

contain similar detrital mineralogies dominated by quartz, feldspars and chlorite. This

would suggest that detrital inputs varied little throughout deposition of this succession,

indicating no significant shifts in provenance or climate.

In the Utica certain finely laminated, fine-grained units contain a pelted fabric and

lack bioturbation. Preserved fecal pellets in these units suggest three important features of

the water column at the time of deposition.

• The abundance and relatively large size (> 750 pm) of some of the fecal

pellets suggest that the zooplankton had relatively high production rates

and high concentrations of food (Butler and Dam, 1994; Dagg and Walser,

1986)

• The pellets likely contributed to a large part of the vertical flux of organic

carbon to the sediment during this time period, as larger fecal pellets sink

at greater velocity and can account for greater rates of fecal pellet

preservation (Turner, 2002; Urban-Rich, 2001; Yoon et aI., 1996).

• The fact that such an abundance of fecal pellets were preserved indicates

that were not disrupted by bioturbation, which implies either fast burial

ratesoranoxicbottomwaters(Macquakcretal.,2010b).

These features, coupled with the lack of traction structures suggest the sediment

in the pelleted units was likely deposited from suspension settling (e.g. Figure 3.3, Figure
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3.6). The pelleted fabric also has important implications for organic carbon preservation

and this will be discussed further in subsequent sections on carbon cycling.

Not all the sediment in the Utica and the Wintcrhousc was deposited in such a low

energy environment, as both fornlations clearly contain evidence of higher energy

conditions. The presence of sharp-based nornlally graded silt to fine-sand beds in both

facies suggests higher encrgy depositional events. Such event beds arc characteristic of

mud tempestites which contain an erosive surface below a mm-thin laminated silt to fine

sand sized section of reworked shell debris (Aigner and Reineck, 1982). The presence of

these fabrics arc indicative of storm events occurring in the basin (Aigner and Reineck,

1982). In the Winterhouse there is an overall upward coarsening succession that appears

approximately 4 m above the base of the Formation. This pattern likely records a series of

depositional events, which ineluded both a high energy component (i.e. result of storms)

in the coarse grained fraction followed by periods of waning sediment supply with lower

energy, during which the more fine-grained clay-rich sections were deposited. Upward

coarsening successions have been identified as representing shallowing deposits (Dc Raaf

et aI., 1977). Therefore, it appears the measured scction records an interval of deepening

from the base to approximately the middle (- 4 m) followed by shallowing from 4 m to

thctop.

In the younger measured section of the Utica, undetectable at hand-specimen

scale, small « 2 mm) on-lap surfaces were identified infilling scour features (e.g. Figure

3.6). In these units horizontal lamina progressively terminate against the underlying

topography. These structures indicate that at the time of deposition there was significant

erosion and sediment was being transported through an advective process. Moreover, the
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fact that they arc stacked on top of each other, with little evidcnce of colonization,

suggests that the recurrence frequency of sediment delivery events was high.

Organisms living at the sediment water interface colonized the top layers of the

sediment in both formations. Many of the individual beds in both the Utica and

Winterhouse have been homogenized by bioturbation, leaving only cryptobioturbation in

the rock record (Pemberton et a!., 2008). The Winterhouse contains a variety of

bioturbation intensities and styles including Planolities isp.. Thalassinodes i.\p..

Macaronichnus isp.. Rhizocorallium isp. and Paleophycus isp among others. In the Utica

much less variety of ichnogenera was identified, with only Thalassinoides i.lp. and

Planolites isp. being recorded in the measured intervals. The assemblages of bioturbation

ichnogenera identified commonly occur on shelves in foreland basins with oxic to

dysoxic water column conditions (Gingras et a!., 2002; Levin et a!., 2003; Macquaker et

a!., 2007; Mcilroy, 2004; Pemberton et a!., 2002). The degree of bioturbation preserved

in mudstones is controlled by sediment accumulation rates, the frequency of delivery

events (e.g. storms), substrate composition, and by geochemical (redox) conditions at the

time of deposition (Aplin and Macquaker, 20 II; Bentley et a!., 2006; Jaeger and

iltrouer,2006).

3.6.2. Diagenesis

Both successions contain abundant carbonate (with many units containing > 50%

calcite) (Table 3.1, Table 3.2, Table 3.3). Petrographic analysis reveals that this carbonate

was present in a number of components including fossil debris (e.g. echinoderms) as well

as both pre- and post-compaction cements. The early precipitation of carbonate cement is

linked to decreased recurrence frequency of sediment delivery events and breaks in
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sediment accumulation (Raiswell and Fisher, 2000). The incrcascd timc available at these

Icvels allowed for both the transport of solutes to sites of prceipitation and the timc

necessary for precipitation to occur. (Aplin and Macquaker, 20 II; Morse et aI., 2007).

The extent and texture of carbonate precipitation depended largely on the length

of these low sediment delivery intervals (Demicco and Hardie, 2002). During relatively

short intervals the restriction of sediment supply resulted in the precipitation of small (5

to 10 mm diameter) carbonate nodules (e.g. Figure 3.6, Figure 3.8). In units with a much

more pervasive carbonate cement, production from the water column exerts a significant

control over mudstone composition. In thesc intervals, only a small amount of detrital

material was brought to thc basin and held together in a card house fabric with a large

amount of porosity prior to compaction (Aplin and Macquaker, 2011). Organisms with

carbonate shells (e.g. echinoderms, bivalves, bryozoans, etc.) werc deposited on the

surface of the sediment. After accumulation, the Ca-rich shells dissolved Icaving the

relatively large pore spaces filled with Ca2
- and dissolved inorganic carbon (e.g. HCO,")

rich waters, which began to precipitatc in the form of calcium carbonate (e.g. Figurc 3.7,

Figure 3.13, Figure 3.14) (Morse et aI., 2007).

The form of carbonate cemcnt precipitating during these intervals reflects redox

conditions of the porc waters at the time of deposition. Non-ferroan calcite, which is thc

most common cement in both formations, likely, reflects oxygen-rich intervals (Aplin

and Macquaker, 2011; Machent et aI., 2007; Morse et aI., 2007). Dolomite-rich units

reflect sulfate reduction zones, particularly when also associated with pyrite (e.g. Figurc

3.4 C-D, Figure 3.6 F). The presence of reduced sulfide species limits thc poisoning

effect of sulfate that otherwise inhibits dolomite precipitation (Baker and Kastncr, 1981;
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Curtis et aI., 1986; Warren, 2000). The precipitation of pyrite is related to sulfide

produced form sulfate reduction during the breakdown of organic matter, reacting with

available iron under reducing conditions in the sediment (Berner, 1984; Canfield, 200 I;

Rickard and Luther, 2007). A variety of sizes and textures of pyrite were observed in

both formations (e.g. Figure 3.5 F, Figure 3.6 F, Figure 3.13 D, Figure 3.15 E). Pore

water concentrations of iron, and the amount of time allowed for precipitation, controlled

the size and texture (euhedral or framboidal) of pyrite being precipitated (Macquaker et

al.,1997).

Dissolution of potassium feldspar grains was observed in both the Utica and

Winterhouse Formations, but more extensively in the Winterhouse. In the areas of K-

feldspar dissolution, diagenetic quartz (e.g. Figure 3.12 D) and/or a combination of illite

and chlorite (e.g. Figure 3.13 E-F) were detected. The assemblage of illite, quartz and

chlorite may be from an illitization process during which mixed layer illite/smectite was

converted to illite (Eberl and Hower, 1976; Elliott and Matisoff, 1996; Essene and

Peaeor, 1995; Freed and Peacor, 1989; adeau et aI., 1984; Velde and Vasseur, 1992). A

generalized reaction for this process is given below in reaction 4 (Aplin and Macquaker,

2011).

Smectite + K-Feldspar = Illite + Quartz + Water (4)

This reaction typically occurs during late stage diagenesis once the sediment

reaches temperatures above approximately 70°C (Hower et aI., 1976). It is commonly

noted that dissolving K-feldspars arc the source of potassium for illite formation (Hower

et aI., 1976). Therefore, this reaction would explain both the partial or complete

potassium feldspar grain dissolution observed, and the presence of diagenetic quartz (e.g.
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Figurc 3.12 D F), illitc and chloritc (Figurc 3.13 E-F) (Bcrgcr ct aI., 1999; Howcr ct aI.,

1976). This suggcsts that latc stage diagcncsis has potentially significantly ovcrprintcd

thc prcsent day mincralogy in thc Winterhousc and to a much Icsscr cxtcnt thc Utica as

wcll. ot all quartz, chloritc and illitc appcar to bc a rcsult of this rcaction, as in somc

samplcs thc grain boundarics and surrounding carbonatc ccmcnt suggcsts thcsc mincrals

havc a detrital origin (c.g. Figurc 3.14 F).

3.6.3. Carbon cycling in Ordovician mudstones (sequestration vs.
mineralization)

Thc Utica and thc Wintcrhousc Formations arc finc-graincd units of

approximatcly similar agc (i.c. Mid- to Latc-Ordovician). Howcvcr, total organic carbon

conccntrations arc quitc diffcrcnt bctwccn thc two formations. Thc Utica containcd TOC

of up to 1.75 % whilc in thc cxtcnsivcly calcitc-ccmcntcd Wintcrhousc Formation; thc

highcst TOe conccntration was 0.31 %. Porosity within thc basins was also quitc

diffcrcnt. Throughout thc Wintcrhousc Formation, grain dissolution porosity is obscrvcd,

howcvcr thc porosity that was crcatcd has bccn in-fillcd with calcitc ccmcnt. In

comparison, grain dissolution in thc Utica Formation was much Icss extensivc. Whcrc it

has occurrcd it to has bccn in fillcd primarily with carbonatc ccmcnt. Howcvcr in this

casc somc of thc carbonatc prccipitatcd as dolomitc, which prcscrvcd small but

potcntially significant volumcs of porosity bctwccn thc host matcrial and thc ccmcnt

itsclf.

Thc multi-tcchniquc analysis uscd (XRD, TOe, optical and SEM pctrography)

rcvcalcd that both formations appear to contain similar conccntrations of carbon during

thcir initial dcposition. Thc diffcrcncc bctwccn thc two formations ariscs from thc

quantity of mincralizcd carbon vs. thc quantity scqucstcrcd as organic carbon. In thc
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Winterhouse Formation, pH and redox conditions at the time of deposition favoured

carbon being present in an oxidized form (C02, HCO]', H2CO\ In this foml, carbonate

in the pore waters reacted with available cations (Ca2
+, Mg2

-) to precipitate as authigenic

carbonate predominantly in the form of calcite (e.g. reaction 5) and rarely dolomite (e.g.

reaction 6) (Warren, 2000).

Ca2- + HCO]- -7 CaCO] + W

Ca2- + Mg2+ 2(CO/") -7 CaMg(CO])2

(5)

(6)

The net effect of this process in the Winterhouse formation was a decrease in

organic matter concentrations, and increased carbonate cement production - subscquently

decreasing the overall porosity.

Carbonate in the Utica formation is predominantly in the form of fine-grained

(clay-sized) reworked skeletal debris. While the exact hydrodynamic mechanism for

transport of this fine-grained material cannot be constrained in this study, the fact that it

was transported is significant. Due to the high surface areas of the fine-grained material

the capacity for retaining highly reactive organic carbon is increased because of the

greater number of binding sites (Kennedy et aI., 2002). There is also more evidence of

increased productivity in the Utica due to the abundance of relatively large fecal pellets,

which can help to transport and preserve organic matter (Turner, 2002). These factors

lead to an increase in the preservation of organic carbon during deposition and

subsequent burial.

Bohacs et al. (2005) argucd that modcrate sedimentation and production rates arc

ideal for the preservation of organic matter rich units because they i) provide optimal

conditions for organic matter content relative to dilution by biosilica, ii) provide optimal
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conditions for burial prcscrvation rclative to dilution by tClTigcncous dctritus, and iii)

facilitate redox conditions that arc consistently favourable for preservation. In

environmcnts where calcium-bearing organisms are more cxtensive than silicon-bcaring

organisms the optimal conditions for organic-rich rock preservation are very similar.

In carbonatc-rich mudstones dilution is a key factor when attempting to identify

organic-rich units, just as it is in silica-rich marine mudstones (Bohacs et aI., 2005). In

carbonates however, it is also of primary importance to understand the composition of the

diluting fraction, i.e. whether it is composed of detrital minerals or reworked skeletal

debris.

During periods of low sedimentation rates and low production, calcium in the

bot10m waters can remain undersaturated leading to the concentration of dctrital clay and

potcntially organic mattcr (Bohacs ct aI., 2005; Isaacs, 1985). If thc scdiment transport

follows a pathway with rc-workcd skelctal debris (c.g. a rcccntly dcpositcd carbonatc

platform or rccf up-dip) a sourcc of rc-workcd clay to silt sizcd carbonatc can bc

transported along with thc detrital fraction - leading to increascd carbonatc

conccntrations. If the carly gcochcmical conditions ofthc bottom waters arc conducivc to

carbonatc dissolution this can Icad to thc cvcntual prccipitation ofcarbonatc ccmcnt in

thc porc waters of thc scdimcnt. This can also occur if thc silt to clay sizcd carbonates

cxpcricnce dissolution and rcprecipitation as carbonatc ccmcnt during latcr stage

diagcncsis. Thc nct cffcct of this proccss would bc thc dcstruction of porosity and

dcgradation in quality of thc unit as a rescrvoir. Howevcr thc carbonatc cemcnt may

incrcasc thc ovcrall fracturability of thc rock (Rijken and Cookc, 200 I). Thc Wintcrhousc

Formation largcly rcflccts this sccnario.
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Areas with elevated sedimentation rates and biogenic production can lead to

excess calcium saturation in the bottom waters, with consequent preservation of ealeium-

rich tests (Bohacs et aI., 2005). Irclay to silt-sized carbonate material were transported to

the basin it would also be preserved, rather than experiencing dissolution. Due to the high

Ca2
- in the pore waters calcium cement would form in the pore spaces in this scenario,

once again reducing the porosity and the rock's quality as a reservoir.

Moderate sedimentation and production rates would likely provide the best

preservation potential for an organic-rich rock. Dissolved concentrations of calcium

would stay ncar but below saturation. Therefore, as clay to silt-sized carbonate material

was transported to the basin it would primarily be preserved in the sediment. This would

be aided if organic matter was transported to the sediment in a more resistant form (i.e.

marine snow or pellets) (Macquaker et aI., 2010b). The net effect of these conditions

would be a greater preservation of carbon as organic carbon and greater relative porosity,

thus creating an ideal reservoir or source rock. The Utica Formation largely reflects this

scenario.

Mudstone successions with elevated calcium concentrations may have been more

common in rocks prior to the evolution of diatoms in the Triassic period (Sims et aI.,

2006). While radiolaria can contribute significant amounts of silica to ocean bottom

waters, the evolution of diatoms, combined with their ability to thrive in a wide variety of

environmcnts, resulted in thc depletion of silica concentrations in ocean waters to the low

modern day concentrations (less than 5 mgL'I) (Trcgucr ct aI., 1995).

Elevated carbonate concentrations arc not uncommon in mudstone successions,

several of which have been identified as useful shale gas reservoirs. This investigation

97



highlights the need for petrographic techniques in combination with an array of other

analyses to accurately assess the form in which carbonate occurs. Without detailed

petrographic analysis carbonate contents in the two units would have been perceived (e.g.

through XRD alone) to be very similar.

3.7. COl CLUSIONS

In the Winterhouse, pH and redox conditions at the time of deposition favoured

microbially mediated carbonate precipitation. Mineralization decreased organic carbon

contents and porosity, reducing the amount of potential gas generation. In contrast, thc

Utica, which contains similar bulk quantities of carbonatc, rctained a greater amount of

both porosity and organic carbon due to the fact that carbonatc is dominantly in the form

of fine-grained reworked skeletal debris. The lack of an extensive carbonate cement

resulted in a greater proportion of the organic carbon fraction being preserved in the

Utica Shale.

In the middle section of the Utica Formation, the proportions of clastic derived

material arc higher. Here the individual units arc mostly composed of normally graded

pellet-bearing carbonate mudstones. Similar to the lower section, variations in facies arc a

result of either i) restrictions of clastic sediment supply or ii) increases in hydrodynamic

energy. These two factors allowed for increased colonization of the sediment.

The variation in the scdiment delivery rates appears to be the primary control on

facics shifts in both formations; from the more clay rich to the more calcite-cement

dominated units. In some intervals in thc Winterhouse Formation sediment was cemented

at the sea noor as evidenced by the presence of boring into a hard ground surface (Figure

3.13 B). In the Winterhouse the substrate composition remained very consistent through
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the measured succession, with the amount of carbonate cement being the only major shift

in the mineralogy.

This investigation highlights the need for petrographic techniques in combination

with an array of other analyses to accurately assess the form in which carbonate occurs.

Identifying not only the bulk concentration of carbonate (e.g. with X-Ray Diffraction) but

the foml present (e.g. through petrographic investigation) is key to understanding factors

that affect the reservoir characteristics.

The carbon cycle is of unique and vital importance to defining the large degree of

heterogcneity recently recognized in fine-grained successions (Macquaker and Bohacs,

2007; Schieber et a!., 2007). The balance between the inorganic and organic spheres of

carbon is particularly significant for shales as only the presence of carbonate as cement

aids fracturability of a reservoir rock. In contrast, rocks that contain fine-grained re

worked carbonate skeletal material may potentially retain a greater amount of

porosity/permeability and organic malter, thus increasing overall reservoir quality.
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Figure 3.2: Stratigraphic log of the two measured sections of the Utica Shale
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Figure 3.3: Petrographic observations of the normally graded, very thin bedded, pelleted,
silt-bearing, clay-rich carbonate mudstone (UI). (A) Scan of thin section showing thin
bedding planes and fining upward sequences. Solid triangles demonstrate a fining upward
sequence. (B) Optical image from petrographic microscope. Circle with dashed lines arc
compacted pellets. (C and D) Backscalter electron optical micrographs. Mineralogy is
arrowed and labeled as; Q - quartz, Ca - calcite, D - dolomite, PI - plagioclase, Py 
Pyrite, and B- Barite.
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Figure 3.4: Petrographic observations of thin-bedded partly homogenized, silt- clay- and
carbonate cement-bearing mudstone (U2). (A) Scan of thin section showing internally
homogenized beds. (B) Optical image from petrographic microscope. Circled with
dashed lines are compacted pellets. (C and D) Backscatter electron optical micrographs.
Mineralogy is arrowed and labeled as; Q - quartz, Ca - calcite, D - dolomite, AI - albite,
Py-Pyrite,andAp-Apatite.
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Figure 3.5: Petrographic observations of normally graded, ripple laminated, very fine
sand, coarse silt and fecal-pellet bearing carbonate mudstone (U3) (A) Scan of thin
section showing normally grading beds, one of which is highlighted with a solid bar. (B)
Optical image from petrographic microscope. Down-lapping surfaces arc identified with
dashed lines. Circled with dashed lines arc crushed pellets in the fabric of this facies.
Circled with solid lines arc nodules, which have been filled with either quartz or pyrite.
(C to F) Backscatter electron optical micrographs. Mineralogy is arrowed and labeled as;
Q - quartz, Ca - calcite, and Py - pyrite.
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Figure 3.8: Petrographic observations of thin, relict bedded, partially homogenized coarse
silt-bearing, clay-rich calcareous mudstone (U6). (A) Scan of thin section showing
disrupted bedding planes. (B) Optical image from petrographic microscope. (C to F)
Backscatter electron optical micrographs. Circled with dashed lines arc dolomite grains
with visible porosity around them. Mineralogy is arrowed and labeled as; Q - quartz, Ca
- calcite, D - dolomite, PI - plagioclase, and Py - Pyrite.
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Figure 3.9: Petrographic observations of thin-bedded and burrow mottled fine silt
bearing, calcite cement-rich mudstone (U7). (A) Scan of thin scetion showing disrupted
bedding planes. (B) Optical image from pctrographic microscope showing bioturbation.
(C to F) Backscatter electron optical micrographs demonstrating feldspar dissolution.
Mineralogy is arrowed and labeled as; Q - quartz, Ca - calcite, D - dolomitc, PI 
plagioclase, An- anorthite and Py- Pyrite
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ewfoundland. (Modified from (Williams, 2000).
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Figure 3.12: Petrographic observations of homogenized, calcite-cemented fine-grained
calcareous sandstone (WI). (A) Scan of thin section showing thin bedding planes and
fining upward sequences. Solid lines demonstrate the preserved laminations. (B) Optical
image from petrographic microscope. (C and D) Backscatter clectron optical
micrographs. Circled with dashed lines arc concavo-convcx quartz grain contacts, which
indicate that grain dissolution porosity, occurred post-compaction. Mineralogy is arrowed
and labeled as; Q - quartz, Ca - calcite, F- K-Feldspar, and Py - Pyrite.
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Figure 3.13: Petrographic observations of homogenized sand- and silt-bearing calcite
cement-rich mudstone (W2) Scan of thin scction demonstrating homogenized and
bioturbated nature of individual beds. Planolities isp. burrows arc arrowed. (B and C)
Optical images from petrographic microscopc. (B) has a bored surface indicating that this
facies solidified before the next was colonized and subsequcntly cement. (D - E)
Backscatter electron optical micrographs. Mineralogy is arrowed and labeled as; Q 
quartz and Ca - calcite, K - k-feldspar, Ap - apatite, R - rutile and Py - pyrite.
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Figurc 3.14: Pctrographic obscrvations of thin rclict bcddcd, partially homogcnizcd clay
and dolomite ccmcnt-bcaring, silt-rich siliclastic mudstonc (W3). (A) Scan of thin scction
with arrows pointing to thc burrows intcrprctcd to bc of Rhizocoarallium. (B and C)
Optical imagcs from pctrographic microscopc. (D to F) Backscattcr clcctron optical
micrographs. Can sccthcrc is an abundance of detrital grains,whichhavcbeenccmcntcd
together by calcitc and quartz. Mincralogy is arrowcd and labclcd as; Q - quartz, Ca 
calcitc, D - dolomitc, B - baritc, K - K-Fcldspar, Ch - chloritc and Py - pyritc.
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Figure 3.15: Petrographic observations of burrow mottled fine-sand bearing silt-rich
mudstone (W4) (A and B) Optical images from petrographic microscope. Water escape
structures and that bioturbation have left little of primary depositional structures. (D to F)
Backscatter electron optical micrographs. (D) shows the boundary between the inside and
outside of a burrow, with the burrow containing much more fine-grained material. The
partial dissolution of a K-feldspar grain to quartz can be seen in (E). Calcite ccmcnt
filling in the boundaries betwcen individual porcs can be secn in (F). Mincralogy is
arrowcd and labeled as; Q - quartz, Ca - calcite, K - K-Fcldspar, and Py - pyritc.
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Figure 3.16: Figure demonstrating the link between sediment delivery rates, extent of
cement and organic carbon preserved in carbonate-rich mudstone units. These parameters
exert key controls on the source vs. reservoir potential of unconventional hydrocarbon
reservoirs. (Information for figure (Bohaes et a\., 2005; Butler and Dam, 1994; Sageman
et a\., 2003).
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4. : MICROLITHOFACIES ANALYSIS TO INVESTIGATE THE
SCALE OF VARIABILITY IN FINE-GRAINED MUDSTONES:
USI G THE BENBULBEN SHALE OF SLIGO CO. IRELAND

4.1. II TRODUCTIOI

The presence of liquid and gaseous hydrocarbons preserved in fine grained

sediments has become of great interest as an energy resource over the last few years, due

to the fact that vast reserves arc likely present in fine-grained organic carbon-rich rocks

i.e. shale gas reservoirs (Mango and Jarvie, 2009). The controls on shale gas reservoir

quality arc subtle and rely on these materials being carbon rich, to generate and store the

gas, and cemented with either silica or carbonate cement so that they arc more likely to

artificial hydrofraeture and develop connected porosity/permeability (Rijken and Cooke,

200 I). In hand specimens It is widely assumed that mudstones arc largely homogenous,

however, recent research has demonstrated this assumption is incorrect (Ross and Bustin,

2009; Schieber et aI., 2007). Research has demonstrated that mudstones actually contain

significant heterogeneity in grain size, mineralogy, rock fabric, and the proportion of

materials derived from production, detrital and diagenetic inputs (Aplin and Macquaker,

20 II; Baas et aI., 2009; Maequaker et aI., 20 lOa; Macquaker and Bohacs, 2007;

Macquakcr and Gawthorpe, 1993; Schieber, 2009; Schieber et aI., 2010; Van Cappellen,

2003). This heterogeneity is significant because it results in localized "economic sweet

spots" being present within larger shale gas targets. Due to the fine-grained nature of

these rocks this variability is often only visible at sub-hand specimen scales thus

techniques capable of resolving high-resolution variability need to be utilized. Geological

models from sedimcntological and geochemical data can predict sediment origins,
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scdimcnt dispcrsal mcchanisms and post-dcpositional proccsscs can bc uscd to prcdict thc

spatialtcmporallocationsofthcbcstrcscrvoirs.

Idcntifying thc scalc of hcterogcncity in mudstoncs can bc vcry difficult duc to

thcir vcry finc-graincd naturc. Data in rcgards to mincralogical or clcmcntal composition

can be misleading whcn not couplcd with petrographic analysis that indicatc thc origin of

thc mincrals and c1cmcnts. Elcvatcd carbonatc conccntrations for cxamplc can bc a good

indicator of a unit in a formation that will bc likcly to hydrofracturc (Rijkcn and Cookc,

2001). Howcvcr, this is only ifthc carbonatc is prcscnt as a diagcnctic ccmcnt, whcrcas if

it occurs as a rcsult ofa significant production componcnt with littlc ccmcnt it may act as

a bafnc to thc units ability to hydrofracturc. Thcrcforc it is ncccssary to utilizc a widc

varicty oftcchniqucs to idcntify thc spatial and tcmporallocation ofthc bcst rcscrvoir and

sourccrocks ina formation.

Thc aim of this study is to invcstigatc thc scalc of thc spatial hctcrogcncity in

finc-graincd mudstoncs, spccifically to idcntify and charactcrizc thc inputs to mudstoncs

(i.c. dctrital, production and diagcnetic) and how thcsc componcnts vary on a rangc of

scalcs. With thcsc data and numbcr of kcy paramctcrs can bc obscrvcd including: thc

controls on thc distribution of carbonatc mincrals; and thc typc of carbon prcscrvation

(oxidized or rcduccd). Undcrstanding these paramctcrs makc it possiblc to idcntify how

carbon cycling might influcncc thc rocks sourcc and rcscrvoir potcntial.

To invcstigatc thcsc fcaturcs this study will usc thc rcmarkably wcll-cxposcd

Carbonifcrous (Brigantian) mudstonc succcssion at Strccdagh Point in Sligo County,

Ircland. Hetcrogcncity within thc mincralogical, scdimcntological and gcochcmical

charactcristics of this unit will bc analyzcd on a rangc ofscalcs from macroscopic (ficld)
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to microscopic to dctcrminc how lithofacics variability present might innuence overall

rock forming processes. These features will be tested with variety of optical, electron

optical and geochemical techniques to identify the hetcrogeneity across spatial and

temporal scales. In addition variations in elemental composition will be measured using

both conventional XRF techniques and an ITRAX Core scanner. This will allow for a

comparison between bulk analysis which has a resolution of>50 mm to a techniquc with

a resolution of 2 mm (Core scanner). These data are important as they providc

information about the rocks petrophysical properties, particularly its susceptibility to

hydrofracturing. Moreover, the data gathered here at different scales should enable

insights to be gained into the subtle shifts in the mineralogy that are likely to be

responsible for varying rock rheological properties at different scales.

4.2. MATERIALS AND METHODOLOGY

Samples were collected from outcrop of the Benbulben Shale on Streedagh Point

in Sligo Co. of orthwest Ireland (Figure 4.1). A detailed log was recorded of the field

scale facies variability. A total of 21 samples were collected across a 6 m vertical section

beginning at the base of the formation (field location in Figure 4. I).

Unusually thin (20-25 ~lm), thin sections were prepared from each sample. These

sections were initially describcd through the use on an optical petrographic microscope

(Nikon Eclipse-Pol). Following this the sections were coated with carbon and analyzed

both texturally and compositionally using an FEI Quanta 400 environmental scanning

electron microscope (SEM) equipped with an electron backscattered (BSE) and energy

dispersive X-ray (EDS) detectors. The SEM was operated at 25 kV and 2.0 pA; with a
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working distance of 12 mm. This procedure follows a similar workflow as used in earlier

studies (e.g. MaequakerandGawthorpe, 1993).

For bulk quantitative analyses, 18 mudstone samples were crushed in a tungsten

carbide grinding mill. To minimize cross-sample contamination in the mill, ultra-pure

silica was crushed between each sample and all tools and surfaces were thoroughly

cleaned with ethanol. The mineralogical composition of each sample was determined

using a Rigaku Ultima IV X-ray Diffaetometer (XRD) with a copper Ka X-ray source

equipped with a scintillation counter detector. Total organic carbon analysis was

conducted at the Manchester Metropolitan University (MMU) in a Leeo Induction

Furnace. In this technique total carbon contents of each sample were initially determined.

The samples were then decalcified using warm 2% HCI, and the decalcified carbon

contents were determined using the same Leeo furnace. The TOC contents of each

sample were then determined by difference. A sub-set of X samples was selected to be

analyzed for SI3C and SIXO isotopic analysis and was conducted by the Environmental

Isotope Laboratory in the Earth and Environmental Science Department at Waterloo

University.

Conventional X-ray fluorescence (XRF) spectrometry was utilized to determine

concentration of major and trace elements. For these analyses 5 mg of sample was

weighed and mixed with a 0.7 gm of phenolic resin binder. After mixing, this powder

was placed in a Herzog Pellet Press and pressed for 10 seconds at 20 ton/in 2 pressure.

The pellet was then baked at 200°C for 15 minutes. The operating conditions of the XRF

arc described in Longerieh (1995). In addition, to conventional XRF analysis the samples

were scanned using an ITRAX Core scanner. Prior to scanning the samples on the
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ITRAX scanner, each sample was prepared by manufacturing blocks with a width of 70

mm, depth of 20 mm, variable lengths and preparing a polished surface. This scanncr

creates a high-resolution image and a X-Radiograph imagc of each of the polished

samples, and provides X-ray Fluorescence data at 2 mm intervals across eaeh of the

samples.

Lithofacies present will be elassified using the nomenclature scheme proposed by

Macquaker and Adams (Macquaker and Adams, 2003; Ross and Bustin, 2009) for

mudstones (sedimentary rock eomposed of> 50% grains < 0.063 mm). Thus lithofacies

names will be based on the percentage abundance of materials of either different grain

size or origin within a mudstone and microfabries visible. For example mudstone beds

containing >90% of a particularly grain size are described as being "dominated" by that

component; units that contain between 50 to 90% of a particularly grain size are

described as being "rich" in that component; whereas materials that comprise 10 to 50%

of a particularly grain sizc are described as "bearing" the componenl. With modifiers

(e.g. thin bedded, laminated, burrowed, homogenized, fossiliferous) being prefixed to the

beginning of the name to describe its textural attributes and its compositional attributes

(e.g. siliceous, calcareous, dolomitic, siliclastic) being suffixed to the end of the name.

4.3. GEOLOGICAL HISTORY

The Benbulben Shale Formation was deposited close to the Devonian

Carboniferous boundary. During this time North-Western Ireland was

paleogeographically located just south of the late Mississippian paleoequator (Aretz,

2010). During the Mississippian the region which is currently North-Western Ireland was

part of the larger orthwest European carbonate platform and experienced repeated
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cycles of carbonate dominated and siliciclastic-dominated sediment delivery to the arca

(Aretz, 20 I0). The cycles were a result of regional tectonic activity and sea-Icvcl

oscillations, particularly during the late Visean (Georgc, 1958; Graham, 1996; Mitchell,

2004)

The Bcnbulben shale itsclf was dcposited in an embayment of the much larger

Northwest-European carbonate platform during the Tournaisian-Visean agc (George,

1958; Graham, 1996; Mitchell, 2004; Scvastopulo, 2009). The mudstones in thc

Benbulben Shale are thought to be the rcsult of intrabasinal rise due to regional tectonic

activity (Somerville et aI., 2009). This tectonic activity created a dam restricting in nux of

terrestrial scdiment form the Laurasian continent. Specifically the risc of the Ox

Mountains or from active faults such as thc Grangc Fault (e.g. Figure 4.1) likely created

this dam (Somerville et aI., 2009).

In thc Sligo region underlying the Benbulben shale is the more coarse-grained

siliciclastic matcrial of the Mullaghmore Sandstone Formation. Ovcrlying thc Benbulben

Shalc is thc Glencar Limestone Formation (Somervillc et aI., 2009).

4.4. RESULTS

A 6 m section of the Benbulben Shale, which is exposed at Streedagh Point in

County Sligo of Northwestern Ireland, was measured for this study (Figure 4.1). A total

of 6 Iithofaeies were identified on the basis of differing grain size, mineralogy and

textural attributes. The lithofaeies present include both calcareous sandstones and

calcareous mudstones. The individual units exhibit a variety of laminae geometries and

are variably bioturbated. Detailed descriptions of each lithofacies are given below and
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their stratigraphie distributions are shown in Figure 4.2. ITRAX scan results for each

mudstone lithofacies are also presented in Figure 4.9.

4.4.1. Burrow mottled silt-bearing, clay-rich calcareous mudstone with
broken skeletal debris

The most eommon facies in the measured section are burrow mottled silt-bearing

clay-rich calcareous mudstones (Figure 4.3). These units contain abundant disarticulated

skeletal debris (in the range of 10 to 400 J.1m), and rare relatively large fossil fragments

(> I000 ~lm). The framework of these units is composed of a combination of the fossil

debris (which is composed of calcite) and detrital quartz and feldspars grains, which

range in size from <3 to 35 J.1m. Identifiable fossils preserved in the framework fraction

include fenestrate bryozoans, echinoderm fragments (Figure 4.3 B), and crinoids spines

(Figure 4.3 D)

The fabric of this facies has been intensely bioturbated. Burrowing has destroyed

almost all-visible bedding. Trace fossils preserved in the fabric are commonly of the

ichnogenus Nereites isp. with a clay-filled core and a halo composed of silt surrounding

the core (Figure 4.3 A-B). There are also some trace fossils of Phycosiphon isp. and

Planolites isp. in this facies (Figure 4.3 A-C).

Calcite also occurs as cement surrounding framework grains and filling in pore

space (Figure 4.3 E-F). Albite occurs throughout, both in the clay size fraction within

burrows and as silt-sized framework grains in the host sediment. The silt-sized albite

grains exhibit both irregular and very sharp grain outlines (Figure 4.3 F). Pyrite occurs in

minor amounts as a diagenetic mineral both in euhedral and framboidal forms (Figure 4.3

E-F). XRD analysis indicates the mineralogical composition of this facies is calcite
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(65.5%), quartz (18.5 %), dolomite (8.7 %) illite (5.4 %), albite (4.5 %), and muscovite

(0.78 %), pyrite (0.6 %) (Table 4.1). Total organic carbon of this facies was measured to

be 0.57% and have a o 13Co 1 signature of -27.6 %0 (Table 4.1). In bulk carbonate samples

the OI3C,akilc of was measured to be +3.1 %0 and the olgO,akilc -5.4 %0 (Table 4.1).

The ITRAX scanner identified a moderate response from both calcium and silicon

(Si) (Figure 4.9). Overall the fabric of the rock contains the primarily clastic derived

clements of Silicon (Si), and potassium (K), magnesium (Mg) and aluminium (AI) that

were detected with variable (low to relatively high) responses. Calcium (Ca) is

particularly concentrated in the haloes surrounding common Nereiles isp burrows, and as

silt-sized shell debris. Slightly elevated calcium concentrations arc also visible at the base

of individual beds where relict bedding planes arc visible. Iron (Fe) and sulfur (S)

responses were low in these samples likely due to the low overall pyrite concentrations.

4.4.2. Homogenized, burrow mottled silt-bearing carbonate-rich calcareous
mudstone

Homogenous, burrow mottled silt-bearing carbonate-rich facies arc highly

bioturbated (e.g. Planolilies isp.) and contain no evidence of depositional textures (Figure

4.4). In many of the samples silt-rich halos of the burrows overlap. This has resulted in

the overall fabric of this facies being much more clay-poor, relative to other similar

fabrics in the Benbulben Shale.

The framework of this facies is composed of a mix of well-sorted skeletal

carbonate debris and detrital minerals. The skeletal carbonate fraction, which makes up

most of the framework material, has grain sizes ranging from 10 to 250 pm (Figure 4.4

B-C). Other framework grains include quartz and feldspars (plagioclase) ranging in size
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from <3 to 50 pm (Figure 4.4 E-F). The detrital fraction, which makes up a small amount

of the total rock, includes feldspar, quartz and minor amounts of clays. Minor amounts of

dolomite are present although undetected through XRD analysis. It is present as corroded

grains through SEM analysis. In many areas authigenic fcldspar (albitc) appears to occur

as a rim around corroded dolomite grains. Many well-preserved feldspar (albitc) and

pyrite grains are similar in shape to the trigonal rhombohedral crystal structure, which is

cOlllmon for dolomite cements (Figure 4.4 D-F). The similar shape Illay suggcst that

pyritc and albitc (at different stagcs of diagenesis) may be occurring as a pseudomorphic

replaccmcnt of dolomite. Minor amounts of silica cements are also present. This quartz

rcplaccs prc-cxisting corroded calcitc ccments and allochems (Figure 4.4 C-D) (in thc

form of mega-quartz in the intergranular porosity) (Figure 4.4 C-D). XRD analysis

indicatcs the mineralogical composition of this facies is calcite (81.2 %), albitc (2.7 %),

quartz (II %), illite (2.9 %), and pyritc (0.8 %) (Table 4.1). The total organic carbon

abundance was measurcd to be at 0.61 % havc a 813COM signature of -27.1 %0 (Table 4.1).

In bulk carbonate samples the 8
IJCeakilo of was measured to be +2.9 %0 and the 81XOeakile-

4.9 %0 (Table4.1).

Across this facies the ITRAX scanner identified a relatively high response from

Ca and low response from Si (Figure 4.9). At random intervals the scan idcntificd

corresponding increases in the Fe and S response, likely related to pyritc idcntificd in the

facics. Mincrals suggesting a detrital input (K, AI, and Mg) were all found to be very low

to below detection with the scan. In one samplc a burrow was identified across the centre

of which Si incrcascd with a corresponding decrease in Ca and Sr.
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4.4.3. Homogenized pseudo-sparry calcite- and silt-rich calcareous
mudstone

This well-indurated completely homogenous pseudo-sparry calcite-rich

calcareous mudstone has no visible bedding preserved (Figure 4.5). The pseudospar

crystals are a neomorphic (recrystallization) calcite fabric with crystal sizes ranging from

10 to 250 pm (Figure 4.5 B-C). In addition to the pseudospar crystals, calcite occurs as

comminuted bioelastic debris and as cement surrounding these crystals/grains and filling

in pore spaces (Figure 4.5 B-F).

The relative small fraction of framework grains include quartz and feldspars

(albite) ranging in sizc from <3 to 50 ~lm (Figure 4.5 E-F). The plagioclase has trigonal

rhombohedral crystal structure. The similarity in shape to many of the dolomite grains in

the formation suggests that albite may be of diagenetic origin replacing earlier dolomite

(Figure 4.5 E-F). A minor amount of diagenetic pyrite also occurs in this facies (Figure

4.5 E-F). XRD analysis indicates the mineralogical composition of this facies is calcite

(86.4 %), quartz (8.3 %), illite (3.4 %), albite (2.8 %), pyrite (I.I %) and apatite (0.7 %)

(Table 4.1). Due to the very high concentrations of calcium carbonate, TOC analysis was

not conducted on any of the samples from this facies. In bulk carbonate samples the

.sUC<akil< was measured to be +1.6 %0 and the .s180cakil< -6.1 %0 (Table 4.1).

The XRF scan revealed similar infomlation as the petrographic investigation.

Across the samples the Ca response was consistently high, while Si and K were found to

have a low response (Figure 4.9). Low Si and K is Iikcly a result of the low concentration

of detrital minerals in the facies. The elements AI and Mg were identified in variable

abundance (low to modcrate). The source of AI and Mg is likely related to the
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distributions of albite and dolomite respectively. Fe and S were low, likely due to low

concentrations (-1%) of diagenetic pyrite in the facies.

4.4.4. Homogenized silt-bearing clay-rich calcareous mudstone with broken
skeletal debris

This homogenized silt-bearing clay-rich calcareous mudstone contains relatively

large pieces of broken skeletal debris (100 to >1000 pm) (Figure 4.6). While some of the

skeletal material is partially broken, a significant amount is still intact (Figure 4.6 A-E).

In comparison the detrital siliciclastic minerals present in this facies arc very fine grained

with a grain sizes ranging from clay to silt «3 to 50 pm) (Figure 4.6 C-F). Burrows

containing a mixture of coarse-grained carbonates, and more fine-grained of clays,

feldspars and quartz arc common throughout. Identifiable fossils preserved in the

framework fraction include echinoderms (Figure 4.6 D), and brachiopods (Figure 4.6 B).

The matrix material of this facies is predominantly composed of very fine-grained

quartz, clays and some feldspar, in the fonn of plagioclase (albite) (Figure 4.6 F). Pyrite

occurs in a euhedral form, and is commonly also present as a replacement of large

skeletal grains (Figure 4.6 E). XRD analysis indicates the mineralogical composition of

this facies iscalcite(52.8%),quartz(26%),illitc(17%),albite(3.2 %),and pyrite (1.1

%) (Table 4.1). Total organic carbon of this facies was measured to be 0.76% (Table 4.1)

Overall the framework and matrix fractions arc predominantly composed of

clastic and clay minerals as were identified in the scan with high Si, K, and variable

responses of Mg and AI (Figure 4.9). Overall Ca was identified to have a relatively low

response with positive aberrations occurring when the scan passed over some of the large

skeletal debris (composed of calcite). Relatively high Fe and S were also identified in this
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facies corresponding to increased concentrations of pyrite infilling portions of the large

skeletal debris.

4.4.5. Homogenous silt-bearing clay-rich calcareous mudstone

Homogenous silt-bearing clay-rich mudstone contains framework grains of re-

worked skeletal debris composed of calcite ranging in size from 10 to 100 flm and detrital

quartz and feldspars ranging in size from <3 to 30 ~lm (Figurc 4.7). While the initial

fabrics are barely discernable in these units, discontinuous beds are partially preserved

(Figure 4.7 A-B). The original bedding features have been disrupted by a combination of

soft sediment deformation and bioturbation. Soft sediment deformation has imparted a

convolute fabric (Figure 4.7 A-B). Escape traces, which crosscut the convolute bedding

(Figure 4.7 A-B) are also present. These escape burrows are lined by a thin layer

composed of organic matter and pyrite and contain burrow fills composed of mineral

mixtures of feldspars (albite and corroded K-feldspar), elays and a diagenetic ferroan

dolomite as oppose to calcite, which is common throughout the rest of the facies (Figure

4.7 D). Calcite occurs as a cement forming rims around framework grains (Figure 4.7 C).

Minor amounts of framboidal pyrite are present throughout. XRD analysis indicates the

mineralogical composition of this facies is calcite (72.6 %), quartz (11.8 %), illite (5.8

%), albite (8.6 %), and pyrite (1.2 %) (Table 4.1). Total organic carbon of this facies was

measured to be 0.76 have a 81}CoM signature of -28.8 %0 (Tablc 4.1). In bulk carbonate

samples the 8 13C<akilc was measured to be +2.7 %0 and the 8 IXO<akil< -6.0 %0 (Table 4.\).

The ITRAX scan of this facies identified a moderate response from both Ca and

Si (Figure 4.9). Small-elevated Ca concentrations are present at the base of individual
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(discontinuous) beds, likely as a result of the increased amount and size of shell debris at

the base of beds. All other clements were identified to have variable responses.

4.4.6. Thin-bedded normally graded fossil-bearing, silt-rich calcareous
mudstone

This thin-bedded, normally graded fossil-bearing, silt-rich calcareous mudstone

contains significant volumes of fossil debris (50 to 2000 pm) (Figure 4.8). The individual

beds are normally graded and have fossil lags at their bases and bioturbated tops

(Phycosiphon isp.) (Figurc 4.8 B-C). While mueh of the fossil debris has an

indeterminate origin, fragments of fenestrate bryozoans, bivalves, crinoids and

echinoderm are identifiable (Figure 4.8 A-D).

The detrital fraction range in size from <3 to 25 pm and is composed of quartz,

feldspar and elays (Figure 4.8 E-F). Caleite is present both as the skeletal debris and as

cement, although not as extensive as in other facies, due to a greater amount of dctrital

material (particularly quartz) (Figure 4.8 E-F). XRD analysis indicates the mineralogical

composition of this facies is calcite (64.3 %), quartz (22.3 %), illite (5 %), albite (2.9 %),

dolomite (1.6 %) and pyrite (1.2 %) (Table 4.1). Total organic carbon data is not

available for this facies (TabIc4.1).

The ITRAX scan identified a moderate response from Ca and a moderate to high

response from Si (Figure 4.9). The bases of individual beds are shell rich with larger

grain sizes resulting in an increased Ca response. Moving upwards from the base of the

beds there is less Ca and higher response from Si, and K, Mg and AI. Fe and S contained

variable responses across samples from this facies due to pyrite preserved in portions of

shell material.
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4.4.7. Overall stacking patterns

Across the measured section of the fomlation there appear to be two genetically

related sections, a lower portion and an upper portion. In the lower section (from the base

of the measured section to approximately 4.7 m) and an upper portion (4.7 to 6 m). In the

lower section a series of repeating coarsening upward units ranging from 0.25 m to 1.75

m is present. These units commonly contain a more fine-grained clastic and shcll debris

bearing section undcrlying a more coarse-grained and bioturbatcd intcrval. Intervals that

haven't been complctely bioturbated suggest this lower section contains sediment

delivered via processes that have preserved erosive surfaces and fining upward fabrics.

Approximately 4.7 m above the base a shift occurs. Above this level rhythmic

repeating series of much thinner units (0.1 to 0.25 m) arc present (Figure 4.2). In this part

of the succession the repeating series of units comprise burrow mottled silt-bearing clay

rich mudstone at their base that arc overlain by homogenized and indurated calcareous

mudstones. The framework material of these homogenous units is primarily composed of

silt-sized pseudospar crystal of calcite suggesting a possible diagenetic origin. The less

cemented units have an abundance of trace fossils and a higher input of detrital

framework minerals, e.g. silt sized quartz and feldspars (e.g. Figure 4.3).

4.5. DISCUSSION

4.5.1. Fine-grained sediment production, delivery and accumulation

The lithofacies present arc predominantly composed of calcareous mudstones

with varying lamina geometries and intensities of bioturbation. The framework fraction

of the Benbulben Shale is composed of material derived from two sources i) reworked silt

to sand sized skeletal debris composed of calcite and ii) detrital quartz and feldspars
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derived from weathering in the hinterland that was supplying sediment to the basin. The

matrix and framework fractions of the unit are composed of silt to fine sand (framework)

and clay-sized (matrix) skeletal debris (calcite), quartz, feldspars (mainly albitc) and

clays (primarily illite). Most of this material was either supplied to the basin by rivers or

produced in the basin by biological processes (Ghadeer and Macquaker, 20 II). The vcry

fine-grained material would suggest it has been transported a much further distance then

the bioclastic debris. This difference in source likely results from production derived

bioclastic debris being produced in the basin and being transportcd only short distances

from the site of production (Aplin and Macquaker,2011).

Although disarticulated skeletal debris is found throughout the formation, the

degree of abrasion varies considerably between facies. In some facies it is possible to

identify either whole or mostly intact fossils including: fcncstratc bryozoans, echinoderm

fragments, and crinoid's spines. In some facies however the debris is fragmented to the

point where the initial fossils are unidentifiable. The differences in the degree of sOl1ing

suggest shifts in the point along the sediment transport path whcre production was

occurring with the more fine-grained facies represcnting a longer path and more coarse

fractions a shorter path (Ghadeer and Macquaker, 20 II).

Although most primary sedimentary structurcs (and bcdding planes) havc bccn

disruptcd by bioturbation, thc few structures that are prcserved suggcst normally graded

beds with a shell-rich lags at their bases (Figure 4.7, Figure 4.8). This type of bedding

feature is commonly a product of episodic storm deposition on the distal portion of

shelves - i.e. muddy tempestites (Aigner and Reineck, 1982). The presence of these

fabrics indicates that these beds were deposited above storm wave base (Aigner and
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Rcincck, 1982). In somc instanccs soft scdimcnt dcformation has disruptcd thc scdimcnt

prior to it bcing bioturbatcd. This fabric suggcsts thc scdimcnt foundcrcd prior to it bcing

colonized suggesting that largc volumcs of matcrials wcrc delivcrcd to thc scdimcnt as

discrctc cvcnts that had a highcr rccurrcncc frcqucncics than thc ratc of colonization

(Aplin and Macquakcr,201 I; Bohacsct aI., 2005).

4.5.2. Bioturbation

As indicatcd abovc thcrc arc a numbcr of bioturbation stylcs prcscrvcd in thc

Bcnbulbcn shalc with thc typcs of burrows and asscmblagcs prcscnt varying bctwccn

diffcrcnt facics. Thc prcvalcncc of bioturbation throughout thc succcssion suggcsts that

thc gcochcmical conditions of thc watcr column rcmaincd oxygcnatcd throughout thc

dcposition of thc formation (Gingras ct aI., 20 II). Thc intcnsity of bioturbation rcnccts

thc ratc of sedimcnt accumulation with incrcascd scdimcnt accumulation bcing rclatcd to

lowcrcd bioturbation intcnsitics (Bcntlcy ct aI., 2006; Ghadccr and Macquakcr, 20 II).

Thc most common facics (i.c. burrow mottlcd silt-bcaring clay-rich mudstonc with

brokcn skelctal dcbris) contains an abundancc of Nerities i.\p. and Ph)'cosiphol1 isp. Thcsc

two traccs rcprcscnt slightly diffcrcnt dcpositional cnvironmcnts. Nerities isp. arc

gcncrally indicativc of dccp-watcr (Chambcrlain and Clark, 1989) howcvcr thcy havc

bccn rcportcd in shallow-watcr basins as wcll (Pcmbcrton ct aI., 2002). Ekdalc and

Mason (1988) suggcstcd that rathcr than rcprescnting dccp basinal cnvironmcnts Nerities

isp. may indicatc cnvironmcnts with strcsscd oxygcn or salinity conditions. Duc to thc

dominancc of Phycosiphol1 isp traccs, which typically rcprcscnts normal marinc shallow

shclf typc cnvironmcnts, combincd with thc prcscncc of ncarly intact fossil dcbris it

appcars that thc Bcnbulbcn shalc was most likcly dcpositcd in a normal marinc shallow
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shelf environment (Bednarz, 2009; Goldring et aI., 1991). The presence of Nerities i\p. is

most likely indicative of periods of stressed salinity and oxygen conditions (Ekdale and

Mason, 1988; Gingraset al.,201 I).

4.5.3. Diageneticattributes

Much of the calcite is present in the Benbulben Shale as cement. This cement

infills pre-compaction pore space and is therefore likely to have precipitated close to the

sediment water interface (Morse et aI., 2007). The range of (513C values of these cements

indicates that there is no significant depletion from scawater values, which suggests that

thc carbon for this cement was supplied either from; thc dissolution of calcite and meta

stable aragonite containing tests of organisms and/or, directly from seawater (Whitiear,

1999). Iron-reduction likely occurred in the sediment during this time period leading to

the breakdown of organic matter which further supplied inorganic carbon for calcite

precipitation in the sediment (Adams et aI., 2003; Morse et aI., 2007). At some time after

the precipitation of calcite ccmcnt, but prc-compaction, thc porc-watcrs bccame sulfidic

and more reducing resulting in pyrite precipitation (Taylor and Macquaker, 2000). Pyrite

occurs both in euhedral (replacing shell fossils) and framboidal forms (e.g. Figure 4.6 E,

Figure 4.7 D, Figure 4.8 F) (Berner, 1984; Schoonen and Barnes, 1991; Van Cappellen.

2003). Some euhedral pyrite is similar to the shape of the eorroded pyrite grains and

therefore may also be a pseudomorphic replacement of dolomite (Figure 4.4 D).

Feldspar and quartz are also present as diagenetic minerals. Albite often oecurs

either (i) as a rim around corroded dolomite grains or (ii) as a complete pseudomorphic

replacement of previous diagenetic dolomite (Figure 4.4 E-F, Figure 4.5 E-F) (Nesbitt ct

aI., 1997; Putnis, 2002; Putnis, 2009).
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4.5.4. Interpretation of stacking patters and implications for petrophysical
properties

Throughout the measured succession the cycle of switching betwecn rocks with

larger and smaller grain sizes (i.e. upward coarsening sequences) Iikelyretlects periods of

increased and decreased sediment supply (Ghadeer and Macquaker, 2011). During

periods of moderate to high sediment delivery more tine-grained material transported

from a weathered continental source was deposited (Aplin and Macquaker, 2011). This

lead to a variably burrow mottled, gcnerally silt-bearing clay-rich mudstoncs. In thesc

units the clastic component is greater and there arc lower concentrations of calcium,

leading to less extensive carbonate cements.

During periods of low sedimentation delivery rates the production component

makes up a more signiticant fraction of the mudstones (Bohacs et aI., 2005; Sageman et

aI., 2003). This production componcnt often contained greater grain sizes resulting in the

coarser grained units overlying the more tine-grained clastic units. During the periods of

low sediment delivery a greater amount of time was available for the perception of

extensive carbonate cements (Morse et aI., 2007). These units were generally preserved

as homogenized, silt-rich calcareous mudstones. The low sedimentation delivery rates

also provided the time necessary for the complete destruction of bedding planes by

burrowing organisms (Pemberton et aI., 2008).

At approximately 4.7 m there was a shift, which occurred and appears to

correspond to increased sediment recurrence frequency (Ghadeer and Macquaker, 20 II).

Above this point the sediment no longer had enough time for much carbonate cement to

precipitate in the more tine-grained units. Furthermore the length of the cycles was

shorter as each interval from low to high sediment delivery is shorter (e.g. 0.2 m).
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The stacking patterns of the more clastic and morc carbonate-rich units may have

significant implications for any potential reservoir characteristics of the formation.

Specifically, the more indurated units arc more likely to fracture (Rijkcn and Cooke,

2001). The more clastic rich, less cemcnted units may, however cause a baffle to any

fracturing activity (Rijken and Cooke, 200 I). In the upper section with lower sedimenl

higher sediment recurrence frequency this may be particularly important due to the small

spacing (e.g. - 0.2 m) between the two types of mudstones as it may significantly

decreasetheoverallfracturability.

4.5.5. Scale of compositional variability

In the ITRAX XRF scan the relationship between the calcium and silicon

response trends is particularly significant as in a broad sense it is possible to distinguish

between carbonate-rich and clay-rich facies. (Croudace et aI., 2006). Facies, which

corresponded to increases in the Ca response trend, tend to correspond to carbonate-rich

mudstone facies. Facies, which correspond to increases in Si response, tend to relate to

fine-grained siliciclastic material often present in clay-rich facies.

In individual beds there is significant variation as a result of both bioturbation and

sedimentary structures. The normally graded beds contain a significant amount of shell

debris that forms lags at their bases and are more enriched in clay minerals towards their

tops. The bases of the beds arc therefore richer in Ca and Sr, in contrast to their upper

portions that arc Illore enriched in Si, AI, and K. This pattern was likely a product of

deposition from storms in distal settings with these units being distal Illud tempestites

(Aigner and Reineck, 1982) and leads to beds exhibiting significant small-scale

variability.
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On a bcd-set scale the boundary between beds is very clear as there arc distinct

boundaries relating duc to differences in elemental composition. The shift from the less 10

more cemcnted units (which is common throughout thc succession) corrcsponds to a

large sudden increases in Ca and a corresponding significant decrease in Si (and other

clastic associated clements, AI, K, etc.). At some boundaries this distinct shift has becn

ovcrprintcd by bioturbation, which rcsults in a Icss clcar signal ofbcdding plancs.

In rclation to thc 2 ovcrall scctions ofthc formation thcrc is an gcncral incrcasc in

Si and othcr clastic dcrivcd clcmcnts in samplcs from abovc -4.7 m. This is likcly duc to

an incrcasc in scdimcnt rccurrcncc frcqucncy. Thc highcr frcqucncy of clastic dcrivcd

scdimcnt flux to thc basin Iimitcd both thc production input and thc limc for diagcnctic

cemcnts to prccipitatc, rclativc to thc scction bclow -4.7 m, Icaving incrcascd Si and

generally dccrcascd Ca (Bohacs ct aI., 2005).

This data highlights thc cxtcnt of hctcrogcncity in finc-graincd rocks (Figurc 4.9).

Not only is thcrc largc hctcrogcncity bctwccn samplcs, but also within thc samplc itsclf.

Incvitably, convcntional XRF analyscs that arc pcrformed on hand-spccimcn sizcd

samplcs docs not rccord thc significant variability that is obscrvcd on thc scalc of

individual bcds. To comparc bctwccn thc prcsscd pcllct and ITRAX scanning tcchniqucs

thc averagc rcsponsc for each clcmcnt was calculatcd from thc all data points across

individual samplcs (Figure 4.10). This comparison bctwcen thc convcntional XRF

analysis and ITRAX scanncr suggcst that whilc bulk analysis of XRF samplcs arc uscful

to providc insights into largc scalc trcnds, scanning techniqucs can providc high

rcsolution data, which in vcry finc-graincd rocks clucidatcs a high dcgrcc of

hClcrogcncity that typically is maskcd by bulk analysis. Thc similarity bctwccn thc Iwo
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techniques in the comparison confirmed that while the ITRAX scan did not providc

quantitative values the response trend is very accurate.

4.6. CONCLUSIOI S

A high degree of lithofacies heterogeneity was observed in the relatively short

measured succession of the Benbulben Shale. The heterogeneity was present across a

range of scales from macroscopic to microscopic and in all components of the rock (i)

production -shifts in size and type of fossil debris, (ii) detrital- shifts in abundance and

size of clastic input, and (iii) diagenetic - a range of diagenetic features with more and

less cemented units. This variability is significant as it has important implications for the

rocks reservoir and source rock at1ributes as well as the ability to hydro fracture. The

significant amount of heterogeneity was easily observed through the high-resolution

ITRAX XRF scan across the samples between bcd-sets and within individual beds (e.g.

calcium rich at the base and silicon rich at the tops of individual beds).

Comparison between conventional XRF techniques (pressed pellet) and the

ITRAX scanning technique yielded remarkably consistent results. These results suggest

that while bulk analysis of XRF samples are useful to provide insights into bulk trends,

scanning techniques can provide high-resolution data, which in very fine-grained rocks

elucidates a high degree of heterogeneity which is masked by bulk analysis.
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4.8. FIGURES

Figure 4.1: i) Map of Ireland demonstrating location of field site at Streedagh Point in
Sligo Co. Ireland. ii) Geologic map demonstrating regional geology of orthwest Ireland
and significant syncline structures in the region, BF - Belhavel Fault, CF - Curlew Fault,
CVF - Clogher Valley Fault, GF = Grange Fault, OMPF = Ox Mountains - Pettigoe Fault
(Modified from Aretz et. aI., 2010, after Dixon, 1972).
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Figure 4,2: Stratigraphic log of measured section of the Benbulben Shale at Streedagh
Point, in Sligo County, Ireland.
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Figure 4.3: Petrographic observations of the burrow mottled silt-bearing, clay-rich
calcareous mudstone with broken skeletal debris. (A) Scan of thin section demonstrating
significant preservation of trace fossils. (B-D) Optical images from petrographic
microscope demonstrating the variety of trace fossils; N - Nereites i,p., Phy 
Phycosiphon i,p., Plan - Planolites isp.. Circled in B is an Echinoderm fragment (E-F)
Backscatter electron optical micrographs. Dashed line in E represents the boundary of a
burrow. Mineralogy is arrowed and labeled as; Q - quartz, Ca - calcite, D - dolomite, AI
-albite, and Py- Pyrite.
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Figurc 4.4: Pctrographic obscrvations of thc homogcnizcd, burrow mottled silt-bcaring
carbonatc-rich calcarcous mudstonc. (A) Scan of thin scction. (B-C) Optical imagcs from
pctrographic microscopc; Plan - Planolites isp.. Oiagcntic quartz is visiblc in C. (O-F)
Backscatter electron optical micrographs. Multiplc (production and diagcnctic) forms of
calcitc arc visiblc in O-F. Pyritc (0) and Albitc (E-F) can bc secn occurring as a
pscudomorphic rcplaccmcnt of dolomitc. Mineralogy is arrowcd and labclcd as; Q 
quartz, Ca - calcitc, 0 - dolomitc, AI - albitc, and Py - Pyritc.
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Figurc 4.5: Pctrographic obscrvations of the homogcnizcd, pscudo-sparry calcitc- and silt
rich calcarcous mudstonc. (A) Scan of thin scction. (B-C) Optical imagcs from
pctrographic microscopc with visible pscudo-sparry calcitc. (D-F) Backscattcr clcctron
optical micrographs. Pyritc (D) and Albitc (E-F) can bc sccn possibly occurring as a
pscudomorphic rcplaccmcnt of dolomitc. Mincralogy is arrowcd and labclcd as; Q 
quartz, Ca - calcitc, AI - albitc, and Py - Pyritc.
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Figure 4.6: Petrographic observations of the homogenized, silt-bearing clay-rich
calcareous mudstone with broken skeletal debris. (A) Scan of thin section. (B-C) Optical
images from petrographic microscope (D-F) Backscatter electron optical micrographs.
Visible fossils are abundant in this facies including brachiopods (A-B) and echinoderms
(B, D-E). Mineralogy is arrowed and labeled as; Q- quartz, Ca - calcite, AI - albite, CI 
chlorite and Py- Pyrite.
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Figure 4.7: Petrographic observations of the homogenous silt-bearing clay-rich calcareous
mudstone. (A) Scan of thin section demonstrating soft sediment deformation, which is
cross cut by an escape trace. (B) Optical image from petrographic microscope. (C-D)
Backscatter electron optical micrographs. B shows escape trace and D demonstrates the
composition of the escape trace, with a greater amount of fine grained and organic rich
material. Mineralogy is arrowed and labeled as; Q - quartz, Ca - calcite, AI - albite, CI 
chlorite Fe-D - ferroan dolomite and Py - Pyrite.
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Figure 4.8: Petrographic observations of the thin-bedded normally-graded fossil-bearing,
silt-rich calcareous mudstone. (A) Scan of thin section demonstrating an uneven erosional
surface at the base of a bed. (B-D) Optical images from petrographic microscope. C
demonstrates the upward fining nature of the beds (E-F) Backscatter electron optical
micrographs. The dissolution of a dolomite can be observed in E. Mineralogy is arrowed
and labeled as; Ca - calcite, Al - albite, and Py - Pyrite.
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Figure 4.9: Results from ITRAX X-ray Fluorescence (XRF) data at 2 mm vertical
intervals across a selection of the samples collected.
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Figure 4.10: Comparison between conventional XRF and high resolution ITRAX XRF
scan techniques.
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5. : CONCLUSIONS
The main aims of this study were to collect and characterise mudstones of varying

ages and environments to highlight the significant heterogeneity, which exists both within

and between these successions. Samples from four different successions and two differcnt

geologic time periods were collected. The results from thc analysis of these successions

arc discussed as follows.

The lithofacies and iron-disulfide investigation of the Devonian aged Exshaw

Formation indicate the following:

• Total of5 lithofacies identified with a mix of sandstones and thin-bedded

mudstones.

• Agglutinated benthic foraminifera suggests oxic to dysoxic conditions in

the bottom waters of the basin.

• Pyrite and marcasite cements identified in the succession, with a

significant abundance in the basal arkosic sandstone.

• One population of pyrite appears to be syngenetic while another formed at

a later time during burial diagenesis.

• Marcasite appears to be epigenetic because it has a different source (much

less evolved - abiogenic) of sulfur relative to pyrite.

• Isotopic analysis combincd with textural observations suggests marcasite

formation may be the result ofa process similartothat, which forms Lead-

Zinc type ore deposits.
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• Presence of marcasite alone therefore, cannot suggest that oxygen (or any

other oxidant) was available in the pore-waters during the deposition of a

mudstone.

Comparison between lithofacies characterizations between two Ordovician aged

mudstones of the Utica and Winterhouse Formations indicated the following:

• Total of7 lithofacies idcntificd in the measurcd section of the Utica and 4

in the measured interval of the Winterhouse Formation.

• Scdiment in Utica and Winterhousc was dclivcred from both

allochthonous (quartz, feldspars and clay minerals) and autochthonous

• Sediment was dispersed primarily by waning processcs (storms), but also

occasionally from suspension settling.

• Sediments in the Winterhouse Formation were deposited more proximally

on sediment transport path compared to thosc of the tica Formation.

• Contrary to published models neither succession was dcpositcd during

prolonged periods of bottom water anoxia although scdimcnt porc waters

wercsulfidic.

• Fcldspar dissolution is common in both but more extensive in the

Winterhousc.

• Significant carbonate diagenesis occurred in the Wintcrhousc and to a

lesser extcnt in the Utica, spccifically grain dissolution coupled with

ccmcnt prccipitation.
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• Carbon isotopic data suggests solutes for carbonate cements were derived

both from (i) early mierobial degradation of organic matter - some of

which was methanogenic, and (ii) dissolution of carbonate shells.

• Large volumes of carbonate ccment in the Winterhouse suggest that

microbial decay was responsible for much of the degradation of the source

rock potential.

• In spite of having similar total carbonate contents there is less cement in

the Utica making its reservoir potcntial greater.

• Carbonate cements in both successions increase their susceptibility to

fracturing.

• Neither of the formations are ideal source rocks.

The lithofacies investigation and comparison between XRF techniques using the

Latc Devonian - Early Carboniferous aged Benbulben Shale indicated:

• A high degree of lithofacies (6 identified) heterogeneity in a relatively

short measured succession.

• Heterogeneity was present across a range of scales from macroscopic to

microscopic and in all components of the rock (i) production - shifts in

size and type of fossil debris, (ii) detrital- shifts in abundance and size of

clastic input, and (iii) diagenetic - a range of diagenetic mincrals with

more and less cemented units.

• This variability is significant as it has important implications for the rocks

reservoir and source rock attributes as well as the ability to hydrofracture.
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• The significant amount of heterogeneity was easily observed with the

high-resolution ITRAX XRF scan.

• The scale of elemental heterogeneity ranged from bcd-sets to within

individual beds (e.g. calcium rich at the base and silicon rich at the tops of

individual beds).

• It was not possibly to identify the same scale of heterogencity from the

conventional XRF techniques, due to the very thin beds which occurs in

these fine-grained rocks.

• While conventional analysis of XRF samples provide useful insights into

bulk trends, scanning techniques can provide high-resolution data, which

in very fine-grained rocks better elucidate the high degree of heterogeneity

that is often masked by bulk analysis.

A particular emphasis was placed on comparing early and late Palaeozoic

successions to determine if secular changes can be observed that arc consistent with the

input of detrital materials with different starting compositions, and the effects of inputs

from different microfossil groups. This stratigraphic interval was chosen because it is the

time pcriodassociated with the evolution of land plants and the development ofcxtensive

soil profiles on land.

The anticipation of the project was that the type of weathering and inputs changes,

which have altercd through time, would have an intrinsic effect on the resulting mudstone

composition. This was found to be true as a significant amount of variability was

observed between mudstones from different time periods. Mudstones, which were
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dcpositcd in timc pcriods prior to thc cvolution of soils on land, containcd much morc

variability in mineralogical composition and that crucially thcy contain matcrials that arc

rclativcly susccptiblc to chcmical wcathcring (Brady, 1989; Curtis, 1976; Goldich, 1938).

In thc two succcssions from thc Ordovician a total of 13 mincrals wcrc idcntificd with at

Icast 6 to 7 most likcly bcing of a dctrital source. Whilc in thc samplcs from thc

Carbonifcrous a total of 10 mincrals wcrc idcntificd with 4 most likcly bcing ofa dctrital

sourcc. This is likcly a rcsult of thc fact that as scdimcnt is transportcd and filtcrcd

through soils the increased time and availabilityofrcaction site leads to thcdissolution of

mincrals on land (Algco ct a!., 1998; Davics and Gibling, 20 I0). As thc dissolvcd solutcs

arctransportcdanddepositcdinthcoccansthcrangcofmincralsproduccdarcmorc

likely to bcdiagcnetic and have a smallcrovcrall varicty in dctrital grains.

It is important to notc that therc was considcrable variability idcntificd not just

bctwccn diffcrcnt timc pcriods but also bctwccn succcssions. In thc two succcssions from

thc Carbonifcrous, onc was very silica and clastic rich mudstonc, whilc thc othcr was

much morc carbonatc dominatcd (Chaptcr 2 and 4). In thc Ordovician both succcssions

wcrc dominatcd by calcareous mudstoncs, howcvcr significant variability was still

idcntificd bctwccn thc two duc to diffcrcnt proportions of sequcstcrcd vs. mincraliscd

carbon (Chaptcr 3). Analysis of any individual mudstonc rcvcals that whilc thcy can

appcar to bc very homogenous therc is in fact a significant amount ofhctcrogcncity.
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