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Abstract 

These experiments provide evidence that L-Typc Calcium Channels (l TCCs) arc 

present in the neonate rat olfactory bu lb. and thatlhey arc involved in the fo rmation o f 

early olfactory preference memories. Immunohistochemistry staining demonstrated that 

LTCCs arc present in the ollilctory bulb. with the highest concentration observed on 

mitral cell apical dendrites. and on peri glomerular cells. Inhibition of LTCCs was 

sunicientto block early odor learning induced by an intrabulbar infusion or lhe~­

adrenoceptor agonist isoproterenol. Stimu lation of LTCCs in the olfactory bulh was not 

sufficient to induce an early olfactory learning event. hut did succccd in rescuing 

isoproterenol-induced learning from a block of the NMDA reccptor. Finally. an NMOA 

receptor block, but not LTCC block, was m:ccssary to prevent learn ing induced by an 

infusion ofthc GABA receptor antagonist gabazine. These results supporlthe theory that 

LTCCs contribute to the mnairionea .l"lil1lll/1I.I" of early olfiu.:tory learning via the influx of 

calcium into the cell. 
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C II APTE R I - I NTRO I)UCTlON 

1.1 Oven 'iew 

When rat pups are born. thcy arc deaf and blind. They must usc olfactory cues to 

navi~ate Ihrou~h the world (Leon & Moltz. 1971). Early odor memories arc developed 

via a simple classical conditionin~ response by pairin~ a novel odor (the conditioncd 

stimulus) with one of many potential unconditioned stimuli. ineluding warmth. feeding. 

tactile Slimulation or chemical stimulalion within the brain (Galef & Kaner. 1980; 

Mc Lean et al.. 1993: Sullivan & Leon. 1987; Sullivan & Wilson. 1994; Sullivan & 

Wilson. 2003; Sullivan el aI., 2000; Wilson & Sullivan. 1990). Early olfactory learning in 

neonalc ralS, Iherefore. provides us wilh a simplc biological syslcm in which we can 

sludy Ihc cellular processes that contribute to learning and mcmory. 

Previous studies have demonstrated Ihat ~.adrenoceptor (f~-AR) aclivalion 

(Harley el al.. 2006: Sullivan & Wilson. 1989: 1994; Sullivan et at.. 2000). a­

adrenoceplor (a-AR) activation (Harlcy et at.. 2006) and clllcium influx Ihrough calcium 

channels such as NM DA receplors(Cui el al .. 2007: Lethbridge et al.. 20 12: Yuan. 2009) 

each contribulc to Ihc formalion of early odor learning. The specific role of each action. 

however. remains unctellr. II has been suggested Ihat the effecls of ll-AR slimulalion and 

calcium influx combi ne within the mitral cell oflhe olfactory bulh and result in Ihe 

production of plasticity relaled proteins (Yuan el al.. 2003b). In other brain regions. 

howevcr. Il-AR slimulat ion has been shown 10 modulate calcium flow into cells by 

regulating the function ofL-IYpe calcium channels (LTCCs; Davare el al .. 2001; Marshall 

et al .. 2011). LTCCs havc prcviously been idcnlified in neurons oflhe otfaclory bulb 

(Schi ld el aI., 1995; Tanaka el al.. 19(5). Th is raises the interesling possibi lity thallhe 



elled ofj>-AR stimu lation during early olfactory learning is to faci litate the flow of 

calcium into cells. 

In this study. we asked jf LTCCs are present in the olfactory bulb of neonate rats. 

We investigated whether L Tee m:tivation is a necessary component of early o lfactory 

learning. and/or if L TCC activation is sufficient to induce early olfactory learning. Using 

an in I'ilru approach. we attempted to detennine if LTCC activation is a necessary 

comJXment of the generation of mitral cell L TP. Finally. we investigated whcthcr I3-AR 

activat ion has any direct influence on the function of L Tees and Ihe flow of calc ium into 

mitral cells of the ollactory bulb 

In this introduction I will present the structure of the olfactory bulb. and I wi ll 

introduce the most significant neuromodulatot)· inputs to the olfae tot)' bulb as well as one 

internally released ncuromodulator (vasopressin) Ihal has been the focus of reeeni work. 

I will then discuss ways thai olfactory infonnation can be processed. ranging from the 

ra te at which an individual inhales through to cortical processing. I will then introduce 

the polential sources of intracellular caleium for cells in the ollactory bulb. I wil l review 

what is known about early odor preference learning. and present two models of early 

odor preference learning. Finally. I wi ll review the experimental design of this study. and 

identify the major questions that Ihis study set to answer. 

1.2 O lfactory Ci rcui try 

The olfactory bulbs (OB) are a pair of sma If obfong structures that si t 011 top of 

the cribriform plate of the ethmoid bone of the skull. The O Bs receive primary scnsory 



information hom olfactory receptor neurons (ORNs) in the oUaetory epithel ium. and 

transmit information to the olfactory cortex. 

1.2. 1 Olfactory Receptor Neurons 

Mammals sense smells when odor signals from the environment interact with 

ORNs in the nasal cavity in an area called the oUaetory epithelium. This small area of 

specialized epithelium (only 5 cm1 in humans) contains several million ORNs (Morrison 

& Costanzo. 1(90). ORNs are bipolar neurons. and arc unique among neurons in that 

they have a very short lifetime of only 30-60 days. and are continuously being replaced 

by a basal layer of stem cell s in the olfactory epithelium (Morrison & Costanzo. 1990: 

Oraziadei & Monti Oraziadei. 1979). ORN dendrites end in a knob-like structure with 10 

- 30 cil ia projections (Morrison & Costanzo. 1(90). These ci lia contain OltiH.:tOry 

receptors (D Rs). a form of 0 protein-coupled receptor (OPCR) that binds with odor 

signals (Jones & Reed. 1989). These ORN cilia foml a dense mat. which is embedded in 

a mucus layer. The mucus absorbs odor signals from the air. and captures them so that 

they can bind effectively with ORs. 

Odor signals come in the foml of small molecules called odorants (lor review see: 

Shepherd. 1994). Odorants arc usually very small (less than 200Da) volatile molecules 

that are easily carried in the air into individuals' respiratory tracts. and which are easily 

absorbed into the mucus of the olfactory epithelium. A large multi gene family present 

both in rats and in humans encodes for over 1000 different forms ofORs «(}uek & Axel. 

1(91). Some ORs (called "generalists"") bind a wide variety of odor molecules while 

others (called "special ists"") bind much more select ively . Each ORN only expresses one 



f0011 of OR. and in .~i"l hybridization tests have shown that ORs arc expressed relatively 

equally so that each of the 1000 fomls ofORs is expressed in approximately 0.1% of 

ORNs (Ressler et al.. 1994: Vassar et al.. 19(4). This massive diversity ofORs allows 

humans to distinguish between 5000 to 10.000 individual odors (Rcssler et al.. 1994: 

Shcpherd.1994). 

When an odor molttulc binds to an OR. this initiatcs a conformationa l change in 

the GPCR that activatcs a hctcrotrimcrie G protein (Jones & Recd. 1989). This causes 

the release of the G protein's a-subunit. which then activates adenylutc cyclase type III 

(AC3). AC3 catalyzes the conversion of adcnosine triphosphate (ATP) to 3".5"-cycl ic 

adenosine monophosphate (cAMP). cAMP lacili1iltcs the opening of cyclic nucleotidc­

gated cation channels in the membrane. which causes dcpoluriwtion ofthc ccll and the 

gencration of an action potential (Bruch & Teeter. 1990: Jones & Rel'<l. 1989). 

ORN axons project from the olfactory epithelium through the cribrifonll platc and 

terminatc in the Oil (Morrison & Costanzo. 1990: Pinching & Powell. 197Iu). As they 

travel away from the olfactory cpithelium. these myelinated axons foml bund les. which 

togcthcr arc eallcd thc olfactory nerve (ON; Price & Sprich. 1975). 

1.2.2 Layers offhe O lfactory Bu lb 

The mammalian brain contains two OBs. Each DB is a highly organized structure 

with several distinct concentric layers. From the exterior of the OB moving inward. thc 

layers ofthc Oil arc the ON layer. the glomerular laycr (G l ). thc external plcxi lormlayer 

(Elll). the mitT<l1 cell (MC) laycr. the internal plcxifonn layer (II'L). the granule cell 



(ac) layer and the subcpcndymal zone (Pinch ing & Powe ll. 1971 a; Pinching & Powell. 

1971b; Pinching & Powell. 197 1c; Price & Powell. 1970a; Price & Powell. I 970b). 

1.2.2 .1 Olfactory Ncn 'c Layer 

The ON layer is the most supcrfieial laycr of the OB (Figure I). II is made upof 

the terminal ends ororORN axons projecting from the olfaclol)' epithelium. 

1.2.2.2 Glomerula r Laycr 

rhe GL orthe OB lies deep to the ON layer (Figure I). This layer contains round 

structures called glomeruli. Each bulb wntains approximately 3000 glomeruli in rats 

(Meisami & Safari. 1981). and 1800 glomeruli in mice (Mombaerts e\ al., 19(6). 

Glomerul i arc composed or the highly branched dis tal dendritic tree or MCs and tuft cells 

(TCs). l lere the MCs and TCs form synapses with the incoming ORN aITerents. The 

outer boundary of each glomerulus is dclined by a glial wrapping (Bailey ct al.. 1999; 

Kasowski ct al ., 1999; Pinching & Powel l. 197 1 b). 

Three lypeS o r sma!1 intemeurons are present in the 01 " rhesc inelude 

pcriglolllerular (1'0) cell s. external tuned (ET) cells and short axon (SA) cells (Pinching 

& Powell. 1971a; Pinching & PowelL 1971 b; Pinching & Powell. 1971 c). Together. 

these intemcurons arc refe rred to as juxtaglomerular cells (JO). The cell bodies orall JG 

cel ls are located in the PO space, bUI PO and ET cells project a primary dendrite into the 

nearest glomerulus. SA cel l dendrites arc confined to the PO space where they receive 

input from other JG cells. Together. JG cell s fo rm a complex nctwork that mediates the 

responses within glomeruli to incoming signals via the ORNs. 



Figurc I. Olfactory Bulb Circuitry 

This canoon ofthc olfactory bulb circuitry shows thc various layers of the olfactory bulb 

structure. and highlights thc cell types that arc the focus of this study. [I'L. external 

plexiform layer: GC, granule cell: GCL. granule cci liayer: GL. glomerular layer: IPL. 

internal plexiform layer; LOT, lateral olfactory tract; MC, mitral cell; MCL. mitral cell 

layer; OE, olfactory epithelium; ONI., olfactory nervc layer: ORC, olfactory receptor 

cell; PGC, periglomcrular cell. SVZ, subvcntricular zone 



SVZ LOT 
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ET ((][s are excitatory interneUTons that link activity of the ON and other JG (dis 

(liayar et al.. 2004). ET cells receive monosynaptic ON input and. when activated. they 

release glutamate onto PO and SA cells. Inhibitory PO cells release GAAA onlO the ON 

terminals and MC distal dendrites within the same glomeruli. regulating intraglomerular 

inhihition (Murphy et al.. 2005). SA cells project to neighbouring glomeruli. and 

primarily regulate interglomerular inhibition 

Wh(n ORNs arc activated. they reieas( glutamat( onto th( distal dendrites of 

MCs (8(rkowiez et a1.. 1994; Ennis et al.. 1996). MCs (all pass this odor signal to other 

MCs within the same glomerulus by either rc leasing mor( glutalmate at dendro-dendritic 

synapses. or by dcctronic coupling via gap junctions between neighbouring MCs 

(Schoppa & Wcstbrook. 2001). The release of glutamate within glomeruli also stimulates 

the inhibitory PO (clls. and. through thcm. thc rcst of the JO interneurons. 

Up to several thousand ORN axons converge onto a single glomerulus in which 

they synapse with 15-20 MCs. resulting in a 100-fold decrease in the number ofneuTOns 

transmiUing ollilCtOry information (Ressler et a1.. 1994). As previously mentioned. each 

ORN expresses only a single OR. and these receptors arc random ly distributed within the 

olfaclOry epithelium (Ressler et al.. 1994; Vassar et al.. 19(4). In·situ hybridization and 

radiolabelled 2-deoxy-D-glucosc studies have confirmed that ORNs exprcssing sim ilar 

ORsconverge onto two. or at mosl a fcw. glomcru li in Ihe OB (Falasconi et a12012: 

Fletcher et al .. 2009: Jourdan el al .. 1980: Mombaerts el al .. 1996; Ressleret al.. 1994: 

Wachowiak & Cohen. 2001). This wnvcrgcn(c mcans Ihal individual glomeruli. and thc 

MCs that innervate them, arc activated downstream of the stimulation of only one type of 

OR. This demonstrates thai the OB contains an odor response map. and opens up the 



possibility that an odor response map may be consisten1 across individuals within the 

same spec ies. Imaging stud ies bave found evidence that supports this possibility (Vassar 

et al .. 1994: Wachowiak & Cohen. 2001). howcver Ihey have also demonstrated thatlhc 

glomeruli-spccilic response to various odorants is highly variable and subjcct to factors 

such as the in1ensity of the odor stimulus (Flclcher et al .. 2009; Wachowiak & Cohen. 

2001) and thc length of the stimulation (Smear el al.. 2011). 

Within each glomerulus. there is a subdivision of func tional eompartmcnts. 

Immunoflourescenee analysis and elcctron microscopy havc both dcmonstrated that each 

glomerulus contains intcrdigitating, but segregated. axonal and dendritic 

suocompartmcnts (Kasowski ct al.. 1999; Kosab & Kosaka. 2005). Axonal 

subcompartments contain sparse dendritic proccsses. and arc the sitc of axonal· dendritic 

synapses between ORNs and MCs and TCs. Dendritic compartmen1s arc completely free 

ofa.\onal processes. and arc the location of the majority of dendrodendritic synaptic 

connections betwccn PG cells and MCs and TCs (Kasowski et al .. 1999; Kosaka & 

Kosaka.2005). Hclcrogencous PG cells project dillcrentially in10 these two types of 

glomerular subcompartmen1s. Type [ PG cells contain high amounts of GAB A and 

dopamine along with its synthesizing key enzyme tyrosine hydroxylase. These cells 

project their dendrites preferentially towards the axonal subcompartments. and arc also 

activatcd whcn ORNs rcleasc glutamate at ORN-MC synapses (Kosaka & Kosab. 2005). 

Type 2 PG cells contain high amounts of the calcium binding proteins calrctinin and 

calbindin D28K. and project their dendrites preferentially to the dendritic 

suhcompartmcnts ofthc glomcrulus (Kosaka & Kosaka. 2005) 



The 1'(; region or the GL consislsorthe space in octwecn indi vidual glomeruli 

This space contains the cdl bodies and interglomerular thin dendrites of PG cells. the cell 

bodies and secondary dendrites of ET cells. the cnlirety of the SA cells. <lnd the dendrites 

of MCs and -rCs that are projecting towards glomeruli from deeper layers of the bulb 

(l'inehing& Powell. 1971a: Pinching & Powell . 197Ic). 

1.2.2.3 E:xternal l' lexifnrm Layer 

rhc EI'L of the OB lics dcep to the GL (Figure I). Sccondary dendrites of MCs 

and TCs project laterally and fonn dendrodendritic synapses with inh ibitory GCs in the 

deeper portion of the FPI . (Price & Powell I 970b). These connections with GCs ensure 

Ihat only strong odorant stimu[mlls successfully activate MCs. and also serve as an 

opportunity to further process olfactory ill fomllltion as it is transmilled to the oilactory 

eortex (Abmham cl al.. 2010: Assisi e t ai. 2011). The EPL also contains the cell bodies 

ofTCs (Pinching & PowelL 1971a). 

1.2.2.4 Mitral Ccll Layer 

The MC layer of the OB lies decp to the El' l. (Figure I). rhis laycr isonly one or 

two cells thick. and contains the large eel[ bod ies ofMCs in a highly organizcd lamina 

(Price & Powcl[. 1970,,: Price & Powell. I 970b). MCs arc the largest eelltypc in the 013 

(Price & Powell. 1970a). From here, MCs project one primary dendrite to a single 

glomeru[us in the GL. and multiple secondary dendri tes obliquely through the F. PI... MCs 

arc the primary output neuron of the OB, and they project theiraxons dcep into thc 013 

MC axons from the OB come together with TC axons from the OB and MC axons from 

10 



the Accessory OB (A03) to fonn the lateral olfactory tract (LOT) on the olfactory 

pedunele (Price & Sprieh 1975). The axons of the LOT project to the olfactory cortices 

(Priee&Sprich.1975). 

1.2.2.5 In ternal Plexiform Layer 

The IPL of the Oil lies deep to the MC layer (Figure I). it is a very th in layer. 

and is sometimes recognized as the superficial componem of the GC layer. especitllly in 

neonate rats whosc bulbs arc less deve loped. Th is region contains MC axon collaterals 

and GC dendrites that arc projecting superfic ially (Price & I}owel l. 1970h) to the EPL. 

1.2.2.6 Granule Cell Layer 

I'he GC laycrofthe OB lies deep to the MC layer and the IPL (Figure I). rhis 

luyer contains the cell bodies ofGCs (Price & Powell. I 970b). From here. GC primary 

dendrites project up to the EPI .. Smaller OC secondary dcndrites project deeper into the 

GC laycr(Priee & I}owell. 1970b). 'I'his laycr also contains cell bodies orSA cells 

(Price & PowelL 1970a: I 970b). These SA cells. which are morphologically and 

functionally ditTerenl from the smaller SA cells found in the GL. arc morphologically 

distinct from (lCs as they have larger cell bodics. and dendri tes that do not project 

beyond the GC layer (Price & Powell. I 970a). The GC laycr also contains MC a.wns as 

thcy projcct towards thcolfactol)' cortices. 

11 



1.2.2.7 Subcpcodymal Zoo{' 

The subependymallayer is the deepest layer of the OB, lying deep to the GC layer 

(Figure I). This region of the bulb surrounds the remnants of the rostral tip of the lateral 

ventricle (Price & Powell. I 970b), which is why it is also knowTI tiS the subvcntricu lar 

layer. This layer only contains ependymal cells, glial cells, and the deepest dendrites of 

the deepest Ges (Price & PowelL I 970b). The suhcpendymallayer acts as a source of 

neural progenitor cells Ihm migrate superficially and devclop into adult-bom GCs and PG 

cells in the OB (Lois & Alvarez-Buylla, 1993; Luskin, 1993). 

1.2.3 Neuromodulalory Inputs to the Olfactory Bulb 

The OB receives neuromodulatory input from a wide variety of neurotransmitters 

(for review, sec Fletcher & Chen, 2010). 

1.2.3.1 No repinephrine 

rhe locus coeruleus contains the cell bodies ol" all noradrenergic cells in the brain. 

and over 40% of the (I/l'erent fibers from this structure project 10 the OB - f(lr more than 

to any other structure in the brain (Shipley el al.. 1985). The highest density of 

noradrenergic fibers in the OB is observed in the IPL. From here. the fibers projcct 

superfic ially to the [ PL. GC layer and MC layer (McLean et al.. 1989). The GL is the 

least innervated layer, and here most fibers tenninate near the periphery of glomeruli 

without entering the glomerular struclUre (McLean et al.. 1989). It is therc!orc assumed 

that these noradrcnergic fibers tcmlinatc at synapses with PG cells on the periphery of 

glomeruli. The proportional distribution of nor adrenergic libers through the various 
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layers of the OJ) remains consistent throughout deve lopment (McLean & Shipley, 1991) 

rhe density orNE tiber innervation. however. increases throughout development into 

adulthood (M(;Lean & Shipley, 199\). In newborn pups. approximately 200 neurons 

from the locus coeruleus project axons to the 0(3 (McLean & Shipley. 1(91 ). wh ile in 

adult rats 400-600 noradrenergic fibers have been observed proje(;ting to the bulb 

(Sh ipley et al.. 1985) 

Norepinephrine (NE) plays an important role in maintaining active levels of 

pCRF.(3 and the transcription factor (;-Fos in many brain regions of awake animals. NE 

deprivation in awake individuals results in pCREB and c-Fos dropping to normal s[eep­

state levels (Cirel li et al.. 19%). It has been suggested thatlhe reduced activity of the 

locus coreuius. and the subsequent reduced activation of transcription factors and the 

effect on potentiation, may account tor why learn ing docs not normally occur during 

sleep (C irelli et al.. 1996). 

NE has a lso been shown to playa crucial role in early olfactory learning (McLean 

& Harley. 2004; McLean & Shipley, 199 1: McLean et a1.. 1989; Sull ivan & Wilson. 

1994; Sullivan et al .. 1989; Sul livan et al .. 1991; Wilson & Leon, 1988; Yuan et a l. , 

2000). Natural learning involves NE release, and can be blocked with agonists orthe 

NE-binding Il-AR receptor. A lternatively. early olfactory learning can be indu(;cd in the 

abscn(;e orNE release by activating ~-A Rs pharmacologically (McLean & Il arley, 2004; 

Sullivan et al .. 1989; Sul livan et al" 1991 ; Lcthbridge et al 2012). 



1.2.3.2 Serotonin 

Retrograde labeling has demonstrated that at least 1300 neurons project from the 

raphe nuclei to the mature adult rat 08 (McLean & Shipley. 1987a). Co-fluorescence 

labeling demonstrated that the majority of these are serotonergic afferents. Interestingly. 

serotonin (5-hydroxytryptamine; S- H"!") fibers enter the 08 via the ventral and medial 

portion of the ON layer and project into deeper layers of the bulb. S-H I" fibers terminate 

in the Gl.. EPI.. IPI. and GC layer. The density ofS-HT fibers that terminate in the GL is 

2-3 times larger than in other layers of the bulb. and fibers that tenninate here arc larger 

than the libers thaI tcnnin!lteebewherc in the bulb (McLean & Shipley. 1987a) 

Neonate rat pups have very sparse 5-HT innervation in the em (McLean & 

Shipley. 1987h). The density of5-HT fibers innervating thc bulb rises by PND 4-6. but 

the higher relative density of fibers in the GL docsn't occur until PND 14-16. 

5-HT release in the 013 aprears to be a ncccssary component of early olfactory 

learning. 5-1'll dcpletion blocks odor learning. and this elleet is reversed hy thc 

introduction of 5-HT receptor agonists (Yuan et al.. 2003b) or supra-optimal doses of 13-

I\R agonists (Langdon c1 a1.. 1997). It has been proposed that the interaction betwcen 5-

1-IT stimulation and NE stimulation within MCs of the 013 enhances the production of 

cAMP. which is critical for early olfaetol)' learning (Yuan eta1, 2000: Yuan ct al .. 

2003b). 

1.2.3.3 Acetylcholine 

The majority ofacetylcholincsterasc synthesizing neurons that project to the 013 

originate in the nucleus orlhe horizontal limb of the diagonal band (Carson. 1984; Lc 
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Jeune & Jourdan. 1993). Ai l iaycrs of the adult OB contain acetylchol ine (ACh) axons. 

with the highest density expressed in thc II'L EI'L and MC layer (Le kunc & Jourd[ln. 

1991). ACh carrying libcrs [Ire already prescnt in the eaud[ll cnd of the OB a lew hours 

aller birth. Innervation of the other areas of the bulb oceurs rapidly ovcr the tirst few 

d[lYs following birth. By postnatfl l day 17-20 the distribution of the ACh carrying tibers 

throughout the bulb is largely similar to the distribution observcd in the adult bulb (Lc 

Jcune & Jourdan 1991). A small subset of glomeruli on the dorso-medial surface of the 

Oil receive an extremely high density of ACh carrying fibers (I.e Jeune & Jourdan 1991. 

Le Jeune & Jourdan 1993). [t has been proposed thatlhesc glomeruli arc involved in 

early olfactory learning based on olfactory int<::ractions between mothcrs and pups (Ll' 

Jeune & Jourdan 1(91). Within these atypical glomeruli. the main neurons targeted by 

ACh innervation are l'G cells. 

It has been suggested that the etTect of ACh releasc in the OB serves to enhance 

odor discrimination by narrowing the odorant receptive field responses of MC 

populations (Chaudhury et aL 2(09). This would support the dcvelopment of early odor 

memories by facilitating a greater diserim inability of the 1cllrned odor in subscquent 

exposures (Fletcher & Chcn. 2010) 

1.2.3.4 Dopa mine 

Thcre arc no known dopaminergie projections to thc OB. Thcre is some evidence 

that a sub-population of l'G cells producc dopaminc and release it onto MCs via 

dendrodcndritie synaptic connections (I [arasz et aL 1977) 
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1.2.3.5 Vasopress in 

Reccnt work has demonstrated a group of vasopressin producing cells in the adult 

mt O B (Tobin et a1.. 20[0). Thesecclls arc locllted in the EPL. have a primary dendrite 

that extends into a s inglc glomcmlus. and multiple secondary dendrites that extend 

[atemlly to the 7..one around neighbouring glomeruli. Interesting[y. these cel ls are 

glutamatergic. They arc proposed to be a subpopu[ation of TCs (Wacker & Ludwig. 

2011: Wackcrct al., 20 12) but unlike traditional TCs.they do not project outside of the 

OB (Tobin ct al.. 2010). 

robin ct aI., also demonstrated that vasopressin has an important ro[e in fomling 

odor-based social recogni tion memories. The group interfered with vasopressin function 

by infusing a V[ receptor antagonist into the OB. or introducing a si RNA targeting Via 

receptors. Both techniques successfully blocked the development of odor-based social 

memories (Tobin et al .. 201 0). and application of vasopressin or V I antagonists onto the 

OB altered the firing pattern of local GCs. suggesting that vasopressin release in the 013 

may play an important role in filtering olfactory infornlation based on social cues (Tobin 

et a1.. 2010: Wacker & Ludwig. 2011; Wackeret al.. 20 [2). 

1.2.4 Cort iea[ Proj ections of lhe O lfactory Uu[b 

MC axons comprise the majority of fibers that project from the DB to the 

oHactory corte:..:. These axonsjoin a small amount ofTC axons from the OB, and axons 

of MCs from the AOB to form the LOT (Price & Sprich. 1975). The LOT fo rms on the 

olfactory peduncle. ncar the junction of the D B and the anterior olfactory nucleus. At its 

rostml end the LOT is spread out along the peduncle surface. and it assembles into a 
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tighter bundle as it progresses along the ventrolatcml end of the pedunele. An 

examination of adult rat LOT eross sections. taken immediately caudal to the olfactory 

pedunclc. revealed that the LOT carries appro.ximately 42.000 axons towards the 

olfactory cortex (Price & Sprich. 1975). NCltr the caudal limit of the LOT. the tract 

carries approximately 38.000 axons. 

The LOT projects to subcortical and cortical structures (for review sec: Haberly 

2001; Kandel et aL 2000). These include the anterior olfactory nucleus (AON). the 

piriform cortex and the olfactory tubercle. which together form the olfactory cortex. Thc 

LOT also projects to the amygdala and the tmnsitional cntorhinal cortex. MC axons from 

the 013 project toall of these structures. TCaxons from the 013 project to the AON and 

olfactory tubereule. while Me axons from thc AOI3 project only to the amygdala. Recent 

work (Payton et al.. 2012) has suggcstcd thm the pirifoml cortex and the olfactory 

tubercle process olfactory information in pamllel. despite major anatomical dincrences 

betwecn their respective afferent innervations from the 013. 

Brain regions that receive innervation from Ihe 013 project to many subeortical 

and cortical structures where olfactory information is consciously discriminated (Haberly 

& Price 1978 a.b). Some areas of the piri form cortex also project baek 01110 the 013 

( I-Iaberly & Price 1978 a.b). These projections arc believcd to regulate cellular activity in 

the 013. and therefore odor discrimination (Cohen et aL 2011; Martin et al.. 2004; Martin 

et al .. 2006: Sallaz& Jourdan. 1996). Specifically. it is has been shown thaI cortical 

projections temlinate on GCs. where they exert control over GC activity patterns (Gao & 

Slrowbridge. 2009) and c-fos expression in GCs (Sallaz & Jourdan. 1996). Cortical 
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projcctions have also becn shown to regu late the act ivity patterns of other cell s in thc Oll 

(Mart in el al.. 2004: Martin et aI., 20()6). 

1.2.5 Olfactory Processing 

Olfactory in formation is processed at multi pic stagcs as it is transmitted along the 

olfactory pathway. The incoming information can be proccsscd by changes to the 

sniffing pattern and the activation p<lttern ofORNs, as well as by modulation of MC 

activity via cithcr intraglomerular or interglomerular systems in the 08 (for rcview: 

Wilson & Mainzcn, 2006). 

1.2,5,1 Sniffing Ratc 

Since odorants arc carried 10 the olfactory epithclium on air currcnts, thc ratc and 

volume of inhalations help eontrol thc tim ing and degree of odor sampling by ORs 

While early research suggested that modified respiration during testing does not change 

the OB responsc to learncd odors (Sullivan ct aI., 1988), more rccent work has 

dcmonstratcd that changes to sni fli ng patterns can have many effects on the OR response 

to presented odors (for review: Wachowiak, 2(1 1). 

By increasing either thc rhythm or flow rate of inhalation, an indi vidual is ahle to 

lower the detect ion threshold of odor signals in the air being sampled (Buonviso et al.. 

2(06) by bringing a larger volume of odorant molecules in contact with ORs at the 

olfactory epithelium. Rccent work has confirmed that respiration-related acti vation of 

cells in the CNS is regulated by the activation ofORNs, as opJXlsed to by othcr brai n 

regions that regulate breathing patterns ( l3uonvi so ct al. 2006. Wachowiak, 20 11). Just 
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as ORN activation dynamics are coupled to inhalation frequency (Carey ct al.. 2009). 

post synaptic MCs show inhalation driven differences in response latency. ri se time and 

duration (Carey & Wachowiak 20 11 ; Court iol et al. 2011; Wm;howiak 201 1). As Ihe 

inhalation rate increases lowards Ihe range of active snifling (5- 10 1·lz. thcla frequency: 

Young & Wi lson. 1999). MCs demonstrate an increased spike output and temporal 

precision (Balu et al .. 2004). And when ORNs are stimulated in the sn itling range. 

inhibitory GCs demonstrate an increased synchrony and stronger inhibition of MCs 

(Young and Wilson. 1999: Sehoppa. 2006). and the firing range ofE"!" cells is altered 

from a spontaneous burst pallem into a pattern that is synchronous with the incoming 

ORN activation (Ilayar et al. 2006). This sniffing-dependent regulation of various cell 

types within the OB initiates both intraglomerual and interglomerular inhibition and 

olfactory processing (M urphy et al .• 2005: Isaacson and Strowbridge. 19(8). 

1.2.5.2 Inlraglomerula r Processing 

Muny cel ls types project axons or dendrites into glomeruli of the OB (Pinching & 

Powell. 1971a: I' inching& Powel l.197lb: RessJcr etaI..1994). Mostofthescccllscan 

modify Ihe olfuetory signal being curried through un individual glomerulus. Cellulur 

interactions muy increase or decrease Ihe rate of vesicle release by ORNs (McGann et al .. 

2005: Aroniadou-Andcrjaska et al .. 2000). inhibitory interneurons may suppress the 

activation of MCs (Aroniadou-Anderjaska et al .. 2000: Berkowick et al.. 1994: Kasowski 

ct al.. 1999: Murphy et al. 2004: Murphy et ul.. 2005; McGann et al .. 2005). or 

dendrodendritic connections may amplily and coordinate the timing ofMC activation 
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(Najac ct al.. 20 11 ; Nicoll & Jahr. 1982; Sal in et al. 2001: Schoppa & Westbrook 2001 ; 

Yuan & KnopfeL 2006a;b). 

Each ORN projects to a single glomerulus in the Oll. When activated by an 

incoming odor signal. an ORN releases glutamate. which activates MC and PG cells 

inside the glomerulus (Aroniadou-Anderjaska et a1.. 2000; llerkowiek et al.. 1994; 

Kasowski et al.. 1999: Murphy et al. 2004; McGann et al.. 2005). Inhibitory 1'(; cells can 

be activatcd by MCs within the same glomerulus (Murphy et al.. 2005). and SA cells 

from neighbouring glomeruli (Aungst et al.. 2003). When activated. I'G cells release 

GAllA directl y onto MCs. PG dendrites do not form traditional synapses back onto 

ORNs, but ORN cells do express GADAn receptors (Bonino et al. 19(9). Thi s suggests 

that GAllA is either released from PG cells at non-synaptic dendritic sites. or that 

dendritically-released GADA can travel to ORN dendrite tcrminals (Aroniadou­

Anderjaska et al.. 2000; 13onino et al.. 19(9). GA13A release by PG cell s leads to a 

decrease in glutamate vesiele release by presynaptic OR Ns (Aroniadou-Anderjaska et a1.. 

2000; Murphy et aI., 2005; McGann et al.. 2005; Wachowiak. 2005). and suppresses MCs 

activated by any remaining ORN glutamate release (Murphy e\ al .2005; Schoppa & 

Westbrook. 2001). 

Dendrodendritic connections between TCs and MCs within an individual 

glomerulus allow for the coordination and amplification of MC depolarization (Isaacson 

1999: Najac et aI. , 2011; Nicoll & Jahr. 1982; Salin et al.. 200 1; Sehoppa & Westbrook. 

2001; Yuan & KnoplcL 2005). TCs respond to weak ORN stimulation. even ORN 

stimulation that is not strong enough to generate direct MC activation (Najac cl al.. 

2011). TCs arc then capable of activating MCs via dendrodendritic synapses. rhi s 
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feed forward activation by TCs can summate with dircct ORN stimulation of MCs to 

reach thc activation threshold lor MCs in responsc to wcak ORN activation (Najac et aI., 

2011; Yuan & KnopfeL 2005). When MCsare activated directly by a strong ORN 

stimulation, feed forward excitation through dcndrodendritic connections with other MCs 

and Tes generates a biphasic EPSC in MCs. in which the fast component is generated by 

direct ORN input and the slow componcnt is the result of feed forward excitation (Najae 

et al.. 201 1). This serves to am plify thc incoming odor signal (Najac et aI., 20 11). In 

these experiments by Najac et aI., (201 1). NMDARs were blocked with D-APV. so the 

recorded responses were all AMrA-mediated EPSPs. 

It has been proposcd that MC self-excitation may serve to increase the signal-to­

noise mtio by ampl ifying active inputs from ORNs. which may improve the response 

selL-ctivity of cortical neurons responding to olfacto')' input (Salin et al. 2001) 

Dendrodendritie wnnections and gap junctions also serve to increase sensitivity to the 

odor information encoded in incoming olfactory signals. and couples the response of all 

MCs project ing from a glomerulus so Ihat the Mes act as a funct ional un it in processing 

olfactory information (Christie el al. 2005; Schoppa & Westbrook. 2001; Yuan & 

KnopfcL2005). 

1.2.5.3 Interglomerular Processin g 

Olfactory processing o(;curs laterally within the on betwecn cells associatcd with 

separate glomeruli via connections in both the GL and GC laycrofthe bulb. At thc GL. 

SA eells projeclthcir axon betwecn glomeruli. where they inhibit presynaptic release by 

ORNs and postsynaptic depolarization ofMCs (Aungst ct al. 2003; Pinching & Powel L 
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1971 c; Price & Powel l. 1970a). At the GC layer. MC secondary dendrites extend 

laterally to 10m] dendrodendritic synapses with each other or with GCs (Isaacson & 

Strowbridge. 199K; Parrish·Aungst et al. 2010: Price & Powell. 1970b; Rail & Shepherd. 

1968). 

SA cells. despite their name. actually have quite long axons that can project up to 

850 ~m through the GL (Aungst et aL 2(03). For a point of reference. glomeruli have a 

diameter of 50 - 100 ~lIn (Aungst et al.. 2003). These cells have 3-5 short dendrites thai 

connect to 2-4 separate glomeruli. Like other JCi eefls. SA cells are activated by 

glutamate rdease from ORNs. SAs express both OAD-67 derived GA8A and dopamine. 

unlike PO cells which express only OAD-65 derived GAllA. (Aungst et al.. 2003: 

Kosakaet Kosaka. 2007; Parrish-Aungst et al.. 2011). SA cells therefore exert an 

inhihitory influence on neighbouring glomeruli that surround their home glomeru lus. 

rhis leads to an on-centre. ofl'-surround processing of olfactory information (A ungst ct 

aL 2003). It has Ix-en demonstrated that sensory deprivation leads to a reduction in 

OA8A and dopamine synthesizing enzymes in SA cells (Cho et al.. 1996: l'arrish.A ungst 

et al.. 2011). hut not 1'0 cells (Parrish·Aungst el al.. 20 11 ). This likely leads to decreased 

levels of neurotransmitter release by SA cells and therefore less SA-mediated inhibition 

in neighbouring glomeruli. which would increase the sensitivity and dr..-erease the 

selecti vi ty of those glomeruli. 

GCs form dendrodcndritie synapses with laterally projecting MC ser.:ondary 

dendrites (Prir.:e & Powell. 1970b: RaIl & Shepherd. 1968). OCs are activated when 

backspreading action potentials stimulate glutamate re lease from the MC lateral dendrite. 

which binds to GC-bound NM DA receptors (Abraham et al. 2010; Chen et a\.. 2000). 
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The GABAergic GCs induce both feedback inhibition onto the activated Me. as wcllas 

inhibition o fncighbouring MCs (Rail & Shepherd. 1968; Shepherd et al.. 2007; Yokoi el 

al .. \995). The importance ofGC inhibition is belicved to be in refining the spec ificity of 

each glomerular unit. First proposed by Rail & Shephcrd (1968). this model assumes that 

adjacent glomeruli in the 08 respond to the pre~nee of simi lar but sl ightly different 

odorant molecules. While an odorant will generatc thc strongest s ignal in its propcr 

target glomerulus. it could cvoke a small response in neighbouring glomcruli that targct 

simi larly shaped odorants. Thc clTect ofGC inh ibi tion is to supprcss the weak 

stimulation generated in neighbouring glomeruli ensuring that only MCs from the 

correctly targeted glomerulus sends infomlation onto the cortex (Rall & Shepherd. 1968: 

Shepherd et al.. 2007: Yokoi et al.. \995). This helps an individual discriminate quickly 

and accurately between similar odors (Abraham et a1.. 20 10). 

Recent work has demons/THted that canonical transient receptor potential channels 

(TRPCs) arc activated on GCs following NM DAR activation (Stroh et a1.. 20 12). TRPC 

activation plays a critical role in generating a long lasting depolarization response in GCs. 

which is believed to be responsible fo r the asynchronous component orGC inhihition 

(Chen el al.. 2000; Isaacson & Strowbridge. 1998: Strohl el al.. 2012). 

1.2.5.4 Odor Prueessing by the Olfactory Cortex 

Once odor intomlation is conveyed hy MCs and rcs 10 thc olfactory cortex. the 

infonnation is tnmsfomled in a variety of ways that alters the conscious perccption ofthc 

odor. Odor processing within thc olfactory cortex involves interactions among many 

subrcgions of the cortex (lor review; Wilson & Sullivan, 20 11). 
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Due to the extensive innervation of the olfactory cortex back onto the on 

(l'laberty & Price I 978a.b), which terminates primarily on inhibitory (iCs (Gao & 

Strowbridge. 2009). odor learning often involves top-down regulation of cellular activity 

in thc OU by the oltactory cOrle;.; (Cohcn et a1.. 201 I; Manin et aI., 2004: Manin et al.. 

2006; Sallaz & Jourdan, 1(96). Cortical projections have been shown to regulate the 

tiring patterns of cells in the 08 in response to odor presentation (Martin et aI., 2004: 

Martin et al. , 20(6). as well as the expression of the proto-oncogene c-fos in (iCs. which 

is an indirect measure of increased cellular activity (Sallaz & Jourdan. 1996). 

1.3 T he LTCC 

Calcium entry into cells of the OU plays a crucial role in both the transmission 01 

olfactory inlornlUtion and activation of intracellular plasticity-related processes involved 

in tOfllling an ollactory memory. Extracellular calcium enters the cell in a controlled 

fashion by moving through calcium channels. We hypothesize that the L-type calcium 

channel (L TCC) is involved in this process. 

1.3.1 LTCC Structure and Func.fion 

Voltage-gated calcium channels (VOCCs) are membrane bound proteins 

responsible for calcium currents found in all excitable cells (TuckwelL 2011). VOCCs. 

and the currcnts that result from their activation. are subdivided into 5 subgroups: T (for 

··transient"'). L (for "long-lasting)"', P/Q (for "l'urkinje""). R (for "resistant") and N (for 

either "neuronal"". or "neither T nor I.") (Dolphin. 2006; Dolphin. 2009; TuekwclL 20 I I). 

Ofthesc. thc T-subtype is considered low-thresholr.lliow voltage activated, while I .I'/Q, 
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R. and N arc considered high-threshold/high voltagc activated channels (Cattcra ll. 2000: 

Tuckwcll. 2011). 

All VOCCs arc comprised of up to lour suhunits. The principal conducting pore 

of thc channel is thc al subunit. of 190 kOa. This protein contains about 2000 amino 

acids. The protein has four repeatcd domains (I through IV). each of which contains six 

transmembrane segments (S I through S6) and a membrane-associated loop between S5-

S6 (Catterall. 2000). The other subunits arc the extracellular a2b dimer of 170 kOa. the 

intracellular r~ subunit 01"44 kOa. and the transmembrane y subunit of 33 kOa (Catterall. 

2000: Tflkahashi et a1.. 1987). 

rhere are 10 diflcrent formsofthc al subunit. and these are used to define and 

identify 10 distinct subgroups of voces (Catterall, 2000: Dolphin, 2006; Dolphin. 2009: 

ruckwell. 201 1). The category of L TCCs contai ns four subtypes, known as Ca,.1.[ - 1.4. 

Ca,1.I is found mainly in skeletal musele, Ca,.1.4 is found primarily in retinal cells, and 

Ca,.1.2 and 1.3 are found in cardiac cells and neurons (Catterall. 2000: Hell et a1. 199); 

l"uekwcl1. 2(11) including neurons of the on (Schild et al.. 1995; Tanakact al.. 1995). 

The LTCC unit functions by undergoing a eonlonnational change in response to 

depolarization of the membrane in which it is bound (Catterall 2000: Oolphinc 2006: 

lJolphine 2009: Tuckwcll. 2011). A transmembranc segment of the al subunit serves as 

thc voltage sensor for thc unit. This segment moves outwards and rotates when the 

mcmbrane is depolarized. wh ich initiates a conformational change in thc rest or the al 

subunit. eflcctively opening up the channel so that calcium ions are free to flow along 

their electrochemical gradient from the extmecl lular space into the intracellular space 

(CutteraIl2000: Dolphinc, 2006). Each of the VOCC subgroups has unique activation 
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thresholds and properties, which themselves arc also variable given the specific chcmical 

environment orthe cell (Dolphine. 2()(}9: TuekwclL 2011). 

In theCNS, L TCCsare expressed in a widc variety or neurons (TuckwclL 2011: 

West. 2001). 1.TCC function has been implicated in thc amplification of synaptic input 

(Oui et aL 2006; Dixon cl aL 2012; Grande et aI., 2007), including in ORNs in response 

to odor signal stimulation (Gautam et al., 2006: Trombley & Westbrook. 19(1). Calcium 

inllux via presynaptic VC;CCs, including L TCCs, has been implicated in the regulation of 

vcsiclc rclcasc (Merceret ai, 2011: Nehcr & Sakaba, 2008: Silva ct al., 2012). LTCC 

function has also been linked to the activation or transcription ractors in neurons 

throughout thc CNS (Catterall. 2000: Dolmetsch et al., 2001: lmpey e\ al 1996: Marshall 

et al 201 1: Murphy ct al 1991: Satin et aL 2011; Tuckwel12011: West et aI20(1). but 

especially in the hippocampus wherc LTCC-regulated gene transcription is believed to be 

related to synaptic plasticity and mcmory ronnat ion (Fisher & Johnston. 1990: 

Holmgaard et al.. 2008; Impcy ct al.. 1996; Lacinova et aL 2007). 

Culcium influx via LTCCs activates intracellular signaling cascades, which arc 

res]Xlnsible for initiating other activities within the ce ll. The cytosolic region of the 

L TCC contains a binding site ror the calcium-binding messenger prote in calmodu lin, and 

successful calmodulin binding is necessary to initiate intracellular signaling. This 

demonstrates that the LTCC is directly involved in activating signal pathwuys to the 

nucleus, rather than just providing a source of calcium for separate processes (Dolmetsch 

et al .. 2001). Onee ealmodulin senses the presence of calcium, it (letiv(ltes the 

Ras/mitogen-activated protein kinase (MAPK) pathway. which leads 10 the activation of 

cAMP and the phosphorylation ofeAMP response element binding protein (CREO) 
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(Dolmdsch et al .. 2001; Impey et al .. 1996; Marshall et al .. 2011; Murphy el al .. 1991; 

Wcst el al .. 2001 ). CREB is a transcription factor that modulates the tnmseription of 

genes that include (he cAMP response demcnt in their promoters (Silva et al.. 1998). 

Increases in cAMP and CREB phosphorylation have becn implicated in the transcription 

of intennediate early genes involved in synaptic plasticity and long-term learning 

(McLean & !larley. 2004; McLean et a!. 1999; Cui et al . 2007; Silva cl a!.. 199K: Yuan 

et al.. 2003a). 

1.3.2 L TeC Distribution 

I.TCCs are membrane bound proteins. anchored in the phospholipid bilayer with 

both intracellular and extracellular components. l.TCCs have been lound 10 be located 

primarily on the soma and proximal dendrites of neurons (Westenbroek et al.. 1990: Hell 

el al.. 2003). specifically cultured neurons from Ihe 013 (Schild et a1.. 1(95). This 

location dose to the cell body supports (he theOl) ' that calcium entry via LTCCs is 

invol ved in intracellular signaling to the nucleus (Dolmetsch et al .200 1; Impcy ct al.. 

1996; Marshall et al .. 2011 ; Murphy et al .. 1991). 

In some neurons. L TCes have also been implicated in regulating intracellular 

calcium levels at presynaptic tcrminals, which partly controls transmitter release al the 

synapse (Nehcr & Sakaba, 2008; Mercer et al., 201 I). Some evidence suggests that 

L TCCs play this role in ORNs (Trombley & Westbrook . 19(1) where they arc present at 

the presynaptic cleft (Mcrccrct al., 2011). 
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1.3.] L Tee Regulation 

The Cavl.2 and 1.3 forms ofLTCCs play an important role in the regulation of 

pacemaker activity in heart muscle cells (Hell. 2010; Zhang et al .. 2011). Up-regulation 

of LTCCs in heart cells has been implicated in the ··fight-or-fligh"· response in 

vertebrates (Fuller cl al. 201 0; J lell. 2010; Hulme et al.. 2006). [n cardiac muscle cells. 

LTCCs exist in a reccptor-chunncl complex along with [l-ARs. a type ofmclaootropic 

GPCR. und adenylyl cyclase (Fuller cl al.. 2010; Hell. 2010). [n the fight-or-flight 

response. NF: stimulates [l-ARs. which in tum stimulute L TCCs to ullow more calcium 

into the cell. This leuds to u stronger compression of the heart (l3ean et al.. 19R4; 

Dolphin 2009: Ful1crat al.. 2010; \·1c1l 2010; Hulmeet al.. 2006). Recent work has 

suggested that LTCC-[l-AR complexes arc present in some neurons. and that a similar 

regulation of LTCCs by [l-ARs may be at play in these cells (Davare et al.. 2001: Gray & 

Johnston. 1987: Marshall ct al. 2011). To dute. it is unknown if such complexes oceur in 

the DB. 

When execss calcium is present in the intracellular space. the calcium-activated 

protease calpain cleaves the cytosolic-terminus (C-terminus) of the LTCC al subunit at 

residue 1800 (Hulme et al., 2005). The free distal end of the C-terminus (OCT) interacts 

with the proximal C-terminus (PCT), causing a conformational change in the al subunit 

that inhibits the flow of calcium through the LTCC during subsequent voltage-driven 

activations of the channel (Hell, 201 0; Hulme et al., 2005). Calcium inllux from 

NMDARs is suflicien\ to induce calpain cleavage of the u 1 subunit C-terminus in 

hippocampal neurons (Hell et al.. 1996). Activation of the [l-AR portion of the LTCC-[:I-
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AI{ complex relicves this inhibition (Ucan et aI. , 1984: Davarc ct al.. 200 1: Fuller at a1.. 

2010; Gray & Johnston. 1987; Hell 2010; Hulme et al .. 2006; Marshall e\ al .. 2011). 

The L TCC-P-AR complcx is activated ill I'il'v when NE binds to the Il-AR unit. 

This binding activates the P-AR-bound adenylyl cyclase. which converts ATP imo cAMP 

(Hell. 20 1 0). As the local concentration of cAMP increases. cAMP molecules bind to the 

regulatory subunits of endogenous PKA (protcin kinasc A). which leads to the release of 

the catalytic PKA subunits. The activc PKA binds to A-kinase anchor protein (AKA!'). 

which anchors the PKA onto the C-terminusofthe L TCes «I subunit (Gao et aJ.. 19()7: 

Hell et al .. 201 0: Marshall et al .. 2011). This binding stimulatcs phosphorylation of the 

Serl928 site on the OCT. which undergoes a conformational change (Gao el al.. 1997: 

Hulme et al.. 2006). This relaxes the imeraction between the DCl and PCT. which 

relieves the inhibitory effect of the DCT on the PCT and the channel activity. Finally. the 

release of this inhibition allows an incrcased Icvel of calcium to enter the cell the next 

lime the LTCC is activated. providing a strongcr calcium signal to initiate intracellular 

cascadcs via MA!'K and othcr potential calcium-activated pathways (Davare ct al.. 201 0; 

Fuller et al.. 20 I 0; Gao et a l. . 1997; Hcll. 20 I 0; Marshall ct al.. 20 II). The resulting 

increase in LTCC eOicieney from the relief of this inhibition is in thc nmge of I 00-300% 

in cardiac heart cells and ncurons (Davarc e\ al. 2010; Gao et al .. 1(97). 
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1.4 Other Ca lcium Suurces 

1.4.1 NMDARs 

1.4.1.1 NMJ)AR Structure and Function 

The NMDAR is an ionotmpic glutamate receptor. There arc three possible 

subunits for the receptor. which include the GluNI subunit. a fam ily of four distinct 

GluN2 subunits (/\ through D), and two GluN3 subunits (A and B: SLoe Cull-Candy et al.. 

2001; McBain & Meyer. 1994; Collingridge et aI., 2009). Each subunit type has multiple 

isofonns. owing to alternative splicing and post-translational modification. Functional 

NM D/\Rs are heteromcric complcxes contain ing GluN I and some form of 

GluN2 subuni ts. Thc GluN3 subunits canl10t combinc to form 11 fUl1ctional receptor on 

the ir own. butlhey do combine with GluN I/GluN2 subun it complexes (Cull·Candy et aL. 

2001 ). 

rhe subunit composition or the NMDAR has a significant impact on the 

functional properties of lhe receplor. All NMADR uni ts arc permeable to potassium. 

sodium and calcium. The NR2A and NR2B subunits are the mOSI predominant NR2 

subunits fou nd in functional NMDARs in thc forebrain (Errcgcr et a l. . 200S). NR2A 

containing NMDARs have a high open probability and fast deacti vation, decay and rise 

times (Errcgcr cl al., 200S). NR2B containing NMDARs. on the other hand. have a low 

open probability and slow deactivation. decay and fise times (Erreger et al.. 200S). 

NR2B containing NMDARs. therefore, respond 10 glutamate stimulation by generating 

larger EPSCs and by allowing a greater calcium infi ux into the cell This means Ihal 
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NRlB containing NMDA Rs have a stronger ellc(;t on the cel l with ea(;h ind ividual 

activation (Lethbridge el al.. 2012). 

1.4.1.2 NJ\fA))R Activation Requirements 

In its rcsting state. the NMDAR has a voltage-dependent magnesium hlock 

(McBain & Meyer, 1994; Nowak et al.. 1984). Glutamate stimulation orthe receptor is 

therefore insullicient to reliably activate the channel. To activate the NM DAR. it is 

necessary that the cdl oc depolarized to remove the magnesium block. in conjunction 

with glutamate binding to the rceeplor to open the channel (Nowak et aI., 1(84). 

1.4.2 GluR2-lacking AMPAR 

AMPARs, like NMDI\Rs. arc a subrami ly ofionotropic glutamate receptors. Due 

to their fast transmission. they arc usually involved in mediating primary glutamate signal 

transmission (Greger ct al.. 20007). AM PARs arc tetramers comprised or two pairs or 

closcly related subunits - in olher words, they arc dimers of dimers. [a(;h subunit 

contains three transmembrane domains (MI, M3 and M4), as well as a region that loops 

into the membrane and lines the channe l pore (M2). The propenies of the M2 region 

determine the run(;tional eham(;\eristics orthe I\MPI\R (Greger et al. 2007; Seeburg et 

a!.. 2001). 

There arc lour types 01" AM PAR subunits. identified as GluR 1-4. The GluR2 

subunit diIT(;TS rrom the oth(;r thrc(; tyJX:s in that it is modifi(;d posl-lmns(;riptionally to 

contain the amino acid arginine at the critical channel site orthe M2 region, in place of 

glutamine (Seeburg et al.. 20( 1). The suhstitution of a positively charged arginine 
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molccule for the ncutml glutamine at this narrow position in the channel porc makcs thc 

pore impermeable to thc divalent calcium ion. The presence of any GluR2 suhunits is 

therefore sufficient to makc an AMPA R calcium impermeahle. 

Most excitable cells exprcsscalciurn-impermeablc AMPARs that contain thc 

GluR2 subunit. while most inhibi tory intcrncurons exprcss GluRI homomers. which arc 

calcium permeable (Sceburg ct al.. 2001; Tanaka et al. . 2000). I lowcvcr, a reccnt slUdy 

(Abraham et aI., 2010) dcmonstrated that GCs in thc OEl express GluR2-AMPARs. and 

their removal increases thc inh ibitory effect oflhe GCs on MCs 

GluR2-lacking AMPARs have becn implicatcd in early olfactory learning 

Inscrtion ofGluR 1 AM PARs in glomeruli were obscrvcd 3 hours after odor Imining, and 

the increase disappeared within 48 hOUTS. which is consistent wi th the time-course or the 

short-tcrm odor memory (Cui et al.. 2(11 ). 

1.4.3 mGluRs 

Metabotropic glutamate receptors (mGluRs) arc activated by glutamate. the samc 

as thc ionotropie glutamatc receptors NMDAR and AMAPR. Unlike the ionotropic 

reccptors. however, mGluRs are GPCRs and do not contain a channel that allows ions to 

now into thc cel l. mGluRs. likc all GPCRs, havc scvcn tmnsmcmbrane helices, an 

extracellular N terminus Ihal includes the li gand bindi ng sile. and an intracellular C 

Icrminus(Niswcndcr& Conn, 2010; Pin ct al.. 2003). When activaled, the mGluR 

undcrgoes a conformational changc. which activatcs its associatcd G-protein insidc thc 

cell. The G-protcin, depending on its type. goes on to alleel various cllector molecules 

such as cnzymes, ion ehallnclsand tmnseription factors (Niswcnder & Conn, 2010). 
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Thus. while mGluRs do not act as a direct sourcc of calcium. their activalion can have an 

indirect effcct on calcium influx and cell excitability. 

Rccent work had demonstrated that group I mGluRs in neurons orlhe cerebellum 

activate LTCCs (Zheng & Raman. 2(11). And in the nuclcu~ tractus solitarius. mGluR 

~timu l alion was observed to facilitate LTCCs and inhibit Nand r /Q type VGCCs (Endoh. 

2(){)4). The L TCC lacilitution was mediated by both protein kinase C (I'K C). and 

inositol - I,4S-trisphosphate (IP3). 

mGluRs arc expressed wide ly in the OB. with particularly heavy expression of 

group I mGluRs observed on MCs (Sahar et al.. 2004; ShigemOio et al.. 1992). 

Activation of group I mGluRs via ON stimulation leads to 11 slow potentiation of MCs 

and calcium intlux in MC dendritic tutts. even in the presence ofNM DAR antagonists 

(Yuan & Knopfel. 2006b). It is possible that Ihis effect is the result ofmGluR faci litation 

ofLTCCs. as had been demonstrated in other regions of the brain. but this has yct to be 

tested. 

1.4.4 In tracellular Ca lcium Re lease 

Calcium can enter a neuron's cytosoi llot only from extracellular sources. but also 

when it is released from intracellular stores. Within neurons. calcium is stored in high 

concentrations inside the endoplasmic reticulum (ER). The ER extends throughout the 

neuron. reaching the distal ends of both dendrites and axons. Due 10 its presence 

throughout the cell. the ER is sometimes referred to as the "neuron within a neuron."" 

(Berridge. 2002; St utzmann & Malison. 2011). The controlled release of calc iu m from 

the F.R modulates many activities within the neuron. including neurotransmitter release. 
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synaptic plasticity, and the activation of signaling pathways and gene transcription 

(Bcrridge. 2002: Bouchard et a!. 200]: Carlson et al.. 1997; U et al .. 1998; Stutzmann & 

Mattson. 201 I). 

Multiple intracellular signals may lead to the release of calcium from the ER. 

One signal is [1'3. which binds to the 11'3 receptor ( [PJR). IP] is II second messcnger 

generated by GPCRs or tyrosine kinase-like receptors bound to the cell's plasma 

mcmbrane (Stutzmann & Mattson, 2011). Whcn IP3 binds to ER-bound [1'3Rs. calcium 

is released into the cytosol. Calcium itself can bind to [P3Rs, and modulate the function 

orthc channel in aconcentration-depcndent manner. Low concentrations «300 nM) will 

increase the open probability of the channel. while high concentrations will inhibit the 

opening of the channel (Stutzmann & Mattson, 2011). This means that calcium release 

from one channel will facilitate the release of more calcium from neighbouring channels 

on the ER membrane until the local concentration of calcium in thc cytosol becomes too 

high 

r he othcr ER-membrane bound receptor that facilitates calcium relcase is thc 

ryanodine reecptor (RyR: Fill & Copello. 2002). This nonspecific cation channel is 

activated by the binding of calcium itsel[ RyRs are responsible for the phenomena of 

calcium-induced calc ium release. As is the case [or 11'3Rs, however, the dfect of 

calcium binding on RyRs is concentration-dcpendcnt and RyRs are inhibited by high 

conccntrations of cytosolic calcium levels (Fill & Copello, 2002; Stutzmann & Mauson. 

2011 ). 

rhe relcasc of intracellular calcium plays an important role in cells of the OU. A 

study 01'013 neurons in cell culture demonstrated that both projection (MCr rC) and 
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intrinsic (PGIGC) cells express both 11'3Rs and RyRs throughout their soma and 

dendrites (Carlson et al .. 1997). Activation of mGluRs has been observed to mediate 

calcium release from internal stores in GCs of the OB (Heinlxx:kcl ct al.. 2007). It' s 

believed that intracellular calcium release plays an important role in driving GC-mcdiatcd 

inhibition (Heinlxx:kcl ct al., 2007). Intracel lular calcium release has also been observed 

in aSlrocytes of the OB, where it is believed to play an important role in the aSlrocy1cs' 

response to GABA signaling (Docngi et al.. 2(09), as well as their response to glutamate 

sti mulation via mG luRS receptors (Biber et al.. 1999: Glaum et al.. 1(90). 

1.5 Early Odor Prefl"rcnee Learning 

Neonate rat pups arc born bl ind, and unable to thermoregulate. They must stay 

ncar their mother in order to receive warmth. food and protection. Pups learn ami usc 

odor cues 10 locate their mother (Leon & Moltz. 1(71). Pups learn to recognize smcl ls 

associated with their mother via a simple associalion between her odor and the taclile 

stimulation they receive from her and littermates (Galef & Klmer. 1980; Su ll ivan & Leon. 

1987). 'lak ing advantage of this biological syslem. il is possible to Irain rat pups via a 

simple classical conditioning protocol to respond positively towards an odor that they 

would normally find mildly aversive (CS) when il is paired with one or many 

uncondit ioned stimu li (UeS) including warmth, [ced ing, tacti le stimulation or chemical 

stimulation of defined brain regions (McLean el al.. 1993; Sullivan & Leon, 1987: 

Sullivan & Wilson, 1994: Sullivan & Wilson, 2003: Sullivan et al.. 2000; Wilson & 

Sullivan, 1990). Peppermint is trad itionally used as the es in early odor learn ing 

experiments because pups have a natural aversion to the smell and because the glomeruli 
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that respond to peppcnnint arc located on the dorso lateral quadrant of the DB. which is a 

convenient location to access for chemical stimulation and electrical recording (McLean 

et al.. 1999). 

1.5.1 Adl'antages of Studying Early Odor Preference Learning 

Early odor prcierence learning provides an excellent model for studying learning 

and memoI)' as all necessary and sufficient inputs for learning can be localized to a 

simple cortical structure. the 011 Learn ing can be induced via a simple and reliable one~ 

time training event. Since the neonate pups' eyes arc not yet fully developed, inadvertent 

associations or distrac tion by visual cues is not a concern. And. finally. the learning 

cffect is easily quantificd. as mobile pups clearly movc towards or away from odor 

sources during testing. 

1.5.2 Potential Mechanisms of Early Odor Preference Learning 

To date. two models have been proposed to explain how early olrm;tory learn ing 

occurs; the GC· MC disinh ibition modcl. and the MC potentiation mode l. 

1.5.2.1 GC·MC Disi nhibition Modd 

Early work on neonate olfactory learning uncovcred a crucial role lor NE release 

and subsequent ~-AR activation in the OB during learning. It was demonstrated that NF 

release is required for memory ucquisition (Sullivan & Wil son. 1989: 1994: Sullivan el 

aI., 2000). but nOi for memory expression (Sullivan & Wilson. 19(1). It was also 

dcmonstr.lIed that early odor learning led to changes in the activity or MCs. which carry 
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the odor signal out from the OB. Odor learning reduced MC habi tuation during training 

(Wilson & Sullivan. 1992). Aller 11 memory was formed. tra ining resulted in an 

enhanccd probability afMC inhibition by Gc. cven in neonate ORs (Wilson & Leon. 

19RR). 

rhese findings led Wilson and Sullivan to propose 11 GC-MC disinhibition model 

of early olfactory learning (1994). According to this theory. learning occurs due 10 

changes at the reciprocal GC-MC dendrodcndritie synupse (Wilson & Sullivan. 1994: 

Sullivan & Wilson. 200]). These were considered 10 be odor-specilic chunges in the 

lateral and feedback inhibition of MCs by GCs. Within this modeL NE stimulation of13-

ARs acts as a UCS that. when paired with the CS of odor input. inhibits the GCs and 

leads to Me disinhibit ion 

1.5.2 .2 MC Potentia t ion Model 

Further research. however. demonstratLx\ thutthe j3-AR agonist isoproterenol has 

a relatively weak effL'Ct on GCs. Rather. GCs demonstmtcd u much stronger response 

when stimulated with a-adrcnoceptor (a-AR) agonists (Mouly et al.. 1995: Trombley. 

1994: Trombley & Shephcrd. 1992). These studies also demonstrated that NE 

stimulation of a-ARs afTeets MC excitation via a presynaptic modulation of calcium 

influx (Trombley. 1994). Furthermore. NE release during the generation of un early 

olfactory memory was shown to phosphorylate CREB in MCs (McLean et a1.. 1999). 

Sim ilarly. systcmic injection of the j3-AR agon ist isoproterenol. wh ich is a sufTicient UCS 

\0 generate an early ol!aelOry memory (Sullivan & Wilson. 19K9: 19(4). also led to the 

phosphorylulion of CREB in Mes (Yuan et a l.. 2000). Finally. it was observed that 
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application of isoprolcrcnol could compcn~ute for 5-HT depletion. and rescue carly 

olfactory learning from a 5- HT depletion block (Llmgdon ct aI., 1997; Yuan et al.. 20(0). 

This is in linc with evidence from thc rat neocortex that suggests that 5-IIT stimulation 

potentiates 13-ARs and promotes the gencration of cAMP (Morin etul., 19(2). 

rhi s led McLean and his colleagues (Yuan ct al.. 200Jb) to propose a Me 

potentiation model for early olfactory learning. According 10 this theory, the UCS in 

early olfactory leurning was the production of cAM P in MCs. When this UCS converges 

with the CS of odor evoked glutamate release at the ON-MC synapse. the result is the 

phosphorylation ofCREB (Yuan et al.. 2003b). CRER phosphorylation. in turn. is 

responsible for facilitating Ihc production of pluslicily relatcd protcins (McLcan & 

Harley. 2004: Cui et al.. 2007; Silvu ct al.. 1998: Yuan el al . 2oo3a). which serves to 

potentiate the ON-MC synapse in the glomeruli (Yuan et a1. 2003b). 

An important strength of the MC plasticity model is that Ihe mechanisms it 

suggests arc involved in early olfactory learning parallel the model ofscrolonin mediatcd 

sensory learning proposed in Aplysia by Kandel ct al.. (2001). As recognized by Sullivan 

& Wilson (2003) this support~ the intriguing possibility that the intmcellular mechanisms 

involved in the generation and storage of memories may be conserved ucross specics. 

Sincc the MC potcntiation modd was lirst proposed, further evidence has been 

presented to support it. Yuan (2009) ohserved that stimulating the ON with thcta burst 

stimulation (TBS). which mimics the rat's natural sniffing pullern. produced long teml 

potentiation (LTP) ofthc glomerul ar ficld excitatory post synaptic potentials (fEPSPs). 

TBS stimulation in thc prescncc of isoproterenol gencralcd u significant calcium response 

in MC cell bodies (Yuan, 2009). These results confirm that these conditions. which 
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closely represent the conditions during in I'iI'O learning. generate a response in the MC 

nucleus. 

It has also been demonstrated that early ol factory learning leads to a change in the 

AMPAfNM DA ratio expressed in MC dendrites (Yuan & Harley. 2012). Early odor 

memory acquisition involves an increased expression of AM PARs in the postsynaptic 

membrane. and memory stability involves a decreased NM DAR-mcdiated response 

(Yuan & Harley. 2012). Finally. Lethbridge etlll (2012) provided further evidence that 

NMDARs locatcd in thc MC distal dendrites arc involved in in l'il"O odor memory 

fomlat ion. Thc NMDA R GluNI subunits in MC distal dendritcs arc phosphorylatcd 5 

minutes fo llowing carly olfactory training. and thcy are down-regulatcd 3 hours 

followi ng training. which suggests a role in memory formatio n. The GluN2B subunits in 

the same location arc down-regulated 24 hours after tmining. which suggests a role in 

mcmory stability (Lethbridge et al.. 2012). 

1.5.J G ap in Ihe Model - p -Ad renoceplor Mod ulat ion of Calcium Dynamics in the 

Me"! 

I3-AR activation (Sullivan & Wilson, I Q89: 1994: Sullivan CI al ,2000) and 

calcium intlux (Cui cl al.. 2007: Lcthbridge el al.. 2012: Ymln. 2009) havc both been 

established as necessary components of early odor memory IOrmation. Previously, il was 

suggcsted that coincidence detection of j3-AR activation and caleium influx fac ilitates 

calmodulin phosphorylation ofCREB in MCs (Yuan ct al.. 2oo)b). However. it is 

possible that j3-AR activation directly laci litates thc flow of calcium into the cell. A 

previous study (Ymln et al .2004) investigated whcthcr LTCCs arc present in cells of the 
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OB and if they arc under the influence ofi3-AR activation. but jai led to find any evidence 

of L TCC expression or f)-AR modulation on calcium dynamie~ within the OB. 

Other group~. however. have demonstrated that LTCCs are present in cells of the 

03 (Schild et al.. 1995; Tanaka et al.. 1995). i3-AR modulation of calcium signaling 

plays an important role in learning and memory in the hippocampus and amygdala (Gray 

and Johnston 1987; Huang et al. 1993, 1996). and i3-AR adivation modulates calcium 

Ilow through LTCCs in cardiac myocytes (I-lell, 2010). as well as in neurons (Davare et 

al.. 2001: Marshall et al.. 2011). We wanted. therefore. to further examine the po~sib il ity 

that L TCCs may be present in eel l ~ of the neonate rat 03. and that they may ~erve an 

important function during early odor preference learning. 

1.6 Experimental Design 

1.6.1 Are LTCCs Present in the Neonate Olfadory Bulb? 

Previous studies have demonstntted that L TCC arc present in cells of the aU 

(Murphy ct aI., 2005: Schild et a1., 1995; Tanaka et a!. . 1995). and ORNs (Trombley & 

We~tbrook. 1991). To confirm these previous findings as a first step in understanding 

LTCC functioning in the Oil we performed immunohistOChemistry testing with the anti­

L TCC a1 c subunit antibody to check the cell-specific exprcs~ion of L TCCs in the 

neonate rat pup OB. 
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1.6.2 Is L TCC Activation Necessary for Odor Preference Learning'! 

Me-bound NMDARs play an important role in early Oi![KtOry learning 

(Lethbridge ct al .. 20 12; Yuan & Harley. 2012; Yuan et al .. 2003b). In I,jlm experiments 

have shown that stimulation of the ON with TDS paired with ~-AR activation leads to 

NMDAR-depcndent potentiation or ON-evoked Me fir ing (Lethbridge et aI., 2012) 

Applicat ion orTDS and I3-AR activation has also been shown to evoke an increased 

':lIleium response in the Me bodies (Yuan, 2009). Decause L TeCs arc generally located 

ncar the soma (Schild et al.. 1995; Westenbrock et al.. 1990; Hell et al.. 2003). and 

LTees have been impl icated in the activation of intracellular signaling cascades related 

to synaptic plasticity (Fisher & Johnston, 1990; Holmgaard el al.. 2008: [mpcy et al.. 

1996; Lacinova et al., 2007). we suspcct Ihal L TCCs may play an important role in the 

cakium inllux observed in MCs. 

In order to determine if LTCC function is necessary for the development of early 

odor preferences. we performed intrabulbar infusions oflhe L TCC antagonist 

nimodopine during odor pr.:ference training. 

1.6 . .1 Is L TCe Activation Necessary for the Generation of MC-L TI" ! 

LTP is believed 10 be the cellular equivalent ofa memory Im.:e in associative 

learning (Bl iss and Lamo 1973: Drown el a1. 1988: Rarnes 1995; Maknka 1994). In the 

OB. TBS slimulation of the ON aITerent has Oc.:n shown to g.:neratc LTI' orlield EI'Sl's 

at glomerular ON synapses (Yuan. 2009) 
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In order to determine if LTCC function is necessary for the development ofLTP 

at the ON synapse. we performed in viTro electrophysiology studies in which we 

attempted to induce LTP at the glomerular ON synapse in the presence ofnimodipine. 

1.6.4 Is LTCC Acti\'ation Sufficient to Induce Odor Preference Learning'! 

Previous studies have indicated that LTCC function is sometimes regulated by 13-

AR activation (Davarc et al., 2001: Hell, 2010: Marshall et al., 2(11). Other studies have 

demonstratcd a functional relationship between NMDAR and LTCC activation (Silva et 

aI., 2012 ; Turner et al 2009), and have suggested that L TCCs may function downstream 

from NMDARs. 

In ordcr to dctcrmine if LlCC activation is sufficient to indm;c an early odor 

prefercnce. we attempted to induce an early odor preference using an intrabulbar infusion 

of the LTCC agonist 13ayK-8644 as the UCS. We also performed early olfactory training 

paired with an intrabulbar infusion orthe NMDA R antagonist D-APV and the LTCC 

agonist BayK-8644 to determine if activation of LTCCs cou ld rescue early olfactory 

learning from a D-APV block. 

1.6,5 Arc L TCes in the Olfactory Bulb Dependent on the Co-Aeti\'ation of~-

Adrenoceptors'! 

Il-AR activation via NE release from the locus eocru!cus, or the application or the 

Il-AR agonist isoproterenol, is known to be a critical component of early olfactory 

learning. [t has Ix:cn shown thaI Il-AR activation can promote MC cAMP production 

(McLean et a1.. 1999: Yuan et al ,2000; McLean & Haricy, 2004). and rel ieve MC 
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inhibition from PG cells (Murphy et aI., 2005). both clTects which do or could contribute 

to the promotion of early odor preference learning. However. it remains to be testcd 

whether f3-AR activation is directly implicated in genentting a calcium innux in the MC 

layer. Il aving determined that LTeC activation is necessary for early olfactory learning, 

we were interested in cxamining if~-ARs are involvcd in regulating LTCC action in 

neurons of thc 013. as has becn demonstntted in other neurons (Davare ct al . 200 I; 

Marshali ct al.. 201 I). 

In ordcr to dctemlinc if L TCC activity is dependent on the co-activation off3-ARs 

we induced an early olfactory preference by relieving intmglomeular inhibition with an 

intmbulbar infusion oflhe GABA-A receptor antagonist garnlzine. This tntining method 

docs not involve the activation off3-ARs. To detcmline if LTCCs wcre involved in this 

j3-AR-free learning. we attempted to block this learning with an intrabulbar infusion of 

the LTCC antagonist nimodipinc. 
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CIIArHR 2 - M ATERIALS & METHOI)S 

2.1 Animals 

Sprague Dawley rat pups (Charles Ri ver Laboratories) were used in this study, 

Pups were born on-site at the research facility , and were housed with the dam in 

polyearbonate cages. Dams were kept under a reverse 12 h light/dark cycle with lights 

otT at 12:00 pm (noon). food and water were accessible ad libitllm. Animals were 

housed. and behavioural training and testing were performed. in temperat ure-controlled 

rooms maintained at approximately 28°C. The pups' day of birth was considered 

postnatal day (PND) O. LiHers were culled to 12 pups on PND L and an equal number of 

male and fcmale pups were maintained in the litter, and subsequently used in testing. 

whenever possible. Immunohistochem istry testing with the anti-Cavl.2 antibody was 

also performed on juvenile rats (I'ND 20) and adult wild type C570Lf6J mice (> 1 month 

old) as comparisons. 

All experimental procedures were approved by the Institutional Animal Care 

Committee at Memorial iJniversity of Newfoundland, and follow the guidelines set by 

the Canadian Council of Animal Care 

2.2 Immunohistochemistry 

Samples were collected from na"lve J>ND 6 pups for Cu,1.2 staining. (n "'"" 6). 

Animals were deeply anesthetizcd with an intraperitoneal injection of chloral hydratc ( 1.5 

glkg. Sigma-Aldrich) and then perfused transeardially with icc-cold sal inc solution l'or 

one minute, followed by perfusion of ice-cold fixative solution (4% paraformaldehyde in 

0.1 M phosphatc burrer, pH 7.4) l'or 30 minutes. Brains were removed and post-fixed for 
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one hour in the same fixative solution. Brains were then immersed in buncrcd 20% 

sucrose solut ion overnight at 4°C, and stored under these conditions until used for 

imm unohistochemistry . 

For sample sectioning. brains were removed from the storage sucrose solution and 

quick-frozen on dry icc. The 013 was cut into 30).lm coronal sections in a cryostat at - 20" 

C. Sections were mounted directly onto chrome-gelatin coated slides. air-dried at room 

tcmperature, and then incubated in phosphate buffer solution containing the primary 

antibodies. 

To test for the presence ofL TCCs. a solution of the anti-Ca,I.2 antibody (rabbit 

polyclonal. 1:200, Mi llipore : Billerica. MA. USA, catalog number AB5156. purified 

peptide from 8480865 orale subunit orrat brain voltage-gated calcium channel: 

accession number P22002). dissolved in phosphate hutTer saline with 0.2% Triton-X-IOO. 

0.02% sodium azide and 2% normal goat serum was applied to the slices. Some sl ices 

were incubatcd with a solution that also contained a control peptide (M illi pore) to ensure 

that staining observed on test slices was not non-specitic staining. Samples wcre 

incubated with the primary antibody overnight in a 4" C humidified chamber. Thc 

following day. sections were washed in ]'(3S. and thcn incubatcd in a biotinylated anti­

rabbit sl'Condary antibody (Vcctastai n Elite. Vector Laboratories: Burlingame. CA. 

USA). followed by an Avidin and biotinylatcd cnzyme (1\+(3) amplilication step. 

Finally. sliccs underwent a diaminobcnzidine tetrahydrochloride reaction (30 ~II of 30% 

1-1]02 added to 100 ml of2.3 mM diaminobenzidinc tctrahydrochloride). The progress of 

the staining was monitored under an upright light microscope (Olympus). and took 

approximately 2 to 5 minutes. Slices were then dehydrated and covcrslippcd with 
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Permount (Fisher Scientific). Staining patterns were determined via a visual inspection 

oflhe treated slices. Staining intensity was not quantified. 

Photomicrographs of the sliccs were lllken through a Lcica DMR SE upright 

microscope equipped with a DVe 1310 clImerll (M UF Bioscience: Williston. vr. USA). 

Objectives used include HeX PL FL UOT AI{ 5xlO.IS-PHI, HC PL FLUOTAR IOx/0.30-

PilI ; He PL FL UOTAR 20xlO.SO-P H2. 

2 . .1 Jntrllbulbllr Infusion and IJeha\'iour Experim ents 

23. 1 G uide Ca nnulae Unit and Infusion Cannulae J'roduction 

Guide cannula units were constructed hy anchoring stainless steel guide cannulae 

(Vita Ncedlc Comj>l.IIlY: Needham. MA. USA~ 23 gauge - outer diameter 0.025". inner 

diameter O.Olr~ cut to 6 mill length) in dental acrylic (Lang Dental: Wheeling. IL 

USA). Each unit was compriscd of two parallel guide cannulae. separated latera!!y by 4 

mm. each extending 05 mm below the bottom of the acrylic block. Insect pins were 

inserted into thc guide cannulae to prevent pre-test blocking (Figurc 2A). 

Infusion cannulae units consisted ofa stainless steel cannula (Small Parts Inc: 

Seattle. WA. USA: 30 gauge - outcr diameter 0.012". inner diamcter 0.006'": cut to 13 

mm length) inserted into I'E20 polypropylene tubing (Clay Adams: Sparks. MD. USA; 

cut to 20 em). The stl"C1 cannulae were inscrted into the tubing so thai 7 mm of cannula 

eXlended beyond the end of the tubing (Figure 2B). 
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Figure 2. C ustom Made Cannula. 

(A) Photo~raph a guide cannulae unit assembly. Two guide cannulae arc held in parallel 

insidc a block of dental acrylic with 0.5 mm extending below the bottom of the acrylic 

block. (B) PholOgraph of infusion cannula unit. A stainless steel cannula is inserted into 

I'E20 polypropylcne tubing so that 7 mm of cannula cxtends beyond the end or the 

tubing. 
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2 . .1.2 Surgery and Guide Ca nnula Im pleme ntation 

Prior to surgery, PND 5 pups were anesthetized via hypothermia by placing them 

under icc for 15-20 minutes. Pups were placed in a sterl'Otaxie apparatus with bregma 

and lambda in the same horil..Ontal planc. Anesthesia was maintained by covering the 

pups' bodies in icc during Ihe surgieal procedure. 

The skull was exposed and two small holes were drilled through the skull over the 

dorsolaleral surface ofcaeh OB usi ng a micro drill (Fine Science Tools: North 

Vancouver. BC, Canada). The guide cannula units were lowered so that the bottom of 

each guide cannula sat in one of the holes. A plastic screw head (Smalll'arts Inc .) was 

glued upside down onto the skull just posterior to the drilled holes. Using the screw as an 

anchor. the guide cannula unit was IiXl-o to the skull with dental acryl ic (Figure 31\). TIle 

skin was sutured together and pups recovered from their anesthesia on warmed bedding 

lor at lcasl30 minutes before being returned to the darn (Figure .1B) 

2.3.3 i'raining - Intrabul bar Infusion 

On training day, pups received an intrabulbar infusion of drugs or vehicle while 

sitting on peppermint-scented bedding. The infusion solutions were admini stered via the 

infusion cannulae. The fl'ce-end oreach infusion cannula was attached to the ncedle of a 

mi(;rosyringe (Hamilton Company: Reno, NY. USA; 101-11). The mierosyring(;s were 

hcld in a multi-syringe pump (Chcmyx: Stafford, TX, USA). which controlled the rate 

and volumcofthe infusion. 
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"' igure 3. Cannula Implantat ion Surgery 

(A) Photograph of guide cannula insertion during surgcry. Guidc cannulae unit is bei ng 

held in pl ace with thc alligator clip. A scrcw head has been glued on the skull above the 

cortex to be used as an anchor for the guide cannulae unit. The pup is being kept 

hypothennic hy the application of icc on its body. (B) Photograph of post, surgery 

suturing. Following this. the pup will be placed on wamled bedding while it recovers 

from the hypothcrmia. 
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Figure 3 
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Peppcnnint-scented bedding was prepared 30 minutes prior to the beginning of 

training by mixing 500 ml of control bedding with 30,..1 ofpcppcmlint extract. During 

training, the insect pins were removed from the guide cannulae. and the infusion cannulae 

were gently inscned into the guide cannulae attached to the pup's skull (Figure 4). Pups 

werc given three minutes to adjust to the presence of the infusion cannulae. and then they 

were placed on the pcppcnnim-scented bedd ing. 

Thirty seconds after being pl aced on the bedding, a I ,..1 infusion was 

administered over 4 minutes. Pups remained on the pcppcrrnint-scell1ed bedding lor an 

additiona16 minutes (bringing the tOial time on pcppcrrnim to 10.5 minutes). at which 

point the infusion cannulae were removed and the pups were returned to the dam 

To test if LTCC function is required for learning, we asked ifan LTCC antagonist 

would block isoproterenol-induced leaming. During odor training. pups received a 

bilateral infusion ofa vehicle control (sterile saline. with 0. 1% ethanol). a positive 

learning conlrol (isoproterenoL 50 !.1M). or isoproterenol together with nimodipine (10 

,..M), dissolved in the vehicle solution. 

To lest if L TCC activation could rescue isoproterenol-induced odor learning from 

a D-AI>Y-bloek. pups received an infusion ofa vehicle control (steri le saline with 2% 

DMSO and 0.8% Tween 20), a positive learning control (isoproterenol. 50 ~IM) . a 

learning-block control (50 j.l.M isoproterenol. 500 !-1M D-A I'Y). iwprotcrenol with D-

I\PV and l3ayK-8644 (20 [1M. 200 ,..M or2 mM). or L3ayK-8644 (2 mM). dissolved in 

the vehicle solution. 

Finally, to test if~-I\R activation is required lor L TCC function in odor learning. 

pups received an infusion ofa vehic le control (sterile saline. 0.1 % ethanol). a positive 
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Figure 4. I>rug Infusion I>uring Odor I' rcfc rt'ncc T ra ining 

(A) Photograph of pup during infusion. Red oval highl ights the infusion etll1l1ulae. which 

arc insertl'<i into the pup's implanted guide cannuillc. (B) Photogmph of pup. infusion 

emlliulae and infusion pump. The pump regulates the volume lind Tatc of in fusion. 
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learning control (100 J.lM gabazine). gabazine with nimodipine (10 ~IM). orgabazine with 

nimodipine and I)·A IlV (500 J.lM). dissolved in the vehicle solution. 

2.3.4 Two-odo r Choice Testing 

Testing was perfomled on PND 7. 22-25 hours post-training. Testing was 

performed in between 12:00 pm lind 2:00pm in a elimate controlled room mllintllined at 

28 degrees Celsius. The stainless steel testing box (30 em x 20 em x 18 em), was placed 

on top of two training boxes. which were separated by a 2 ern neulral zone. One tT;tining 

box contained pepperm int-scented bedding. and the other non-scented control bedding 

(Figure 5). Peppermint-scented bedding was prepared as described above. Pups were 

placed individually into the testing box for 5 scparate I-minute trials. In each trial. the 

pup was placed in the testing box over the neutml ,..one. lind ll ilowed to move freely. 

When a pup's nose moved from the neutral zone to over either the peppermint or control 

bedding, the experimenter began recording lime. The amount of time the pup spent over 

eileh oflhe two types of bedding WilS recorded for each trial. After each Irial. the pup 

was removed from the test box and placed in a cage with unscemed beddi ng during Ihe 1-

minute inter-trial interval. To account for a potential inherent prelCrcnce to turn either 

left or right. the pup was placed in the testing box in alternating orientations (with the 

peppermi nt scent on either their right or lett side) at the begi nning of each Irial. 

The tOial amount of time each pup spent over peppermint or control bedding was 

calculated. Values reported are the mean ± SEM orlhe pereentages of time pups spent 

over the peppcmlint scented bedding divided by the total time spenl over either bedding 

type A one-way AN OVA was cllrried out ilnd post-hoc Fisher tests were uscd to 
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Figure 5. Two-Odor Choice Preference Test. 

rop-down view of pup during two-odor choice preference test. Pup was pl aced in NZ. 

and is in the processing of moving towards the peppcnnint-scented ~dding. NZ. neutral 
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detem1ine statistical si~nifieanee. Oata from pups that demonstrated little mobility (not 

moving from the neutral zone in >3 Irials of 5) were excluded tram the analysis. 

Aner lesting. animals were sacrificed in order 10 confirm correci placement of the 

guide cannula and infusion. This was perfonned via a visual inspection on the skull. and 

then of the OUs themselves (Figure 6). Only pups that had received an infusion in the 

lateral 0 13 were included in the analysis. 

2.4 Electrophys iology F.xper ime nts 

2.4.1 S lice Preparation 

On PND 5-1 L naIve rat pups were anaesthetized via halothane inhalation and 

decapitated. The pup's brain was quickly dissected and placed into icc-cold aCSF 

containin~ the following (in mM) : 83 NaCI. 2.5 KCI. 0.5 CaU!. 3.3MgSO~. I Nal bPo.!. 

26.2 NaHCOJ • 22 glucose. and 72 sucrose, equ ilibrated with 95% 0 !15% CO2. Sl ices of 

the all were cut along the horizontal plane at 400 ~tm usin~ a vibrating sl icer (Leica VT 

10001'). Slices were hemisectcd and incubated at 34°C for 30 min in the same high-

glucose aCSF solution. Slices were then incubated in solution at room temperature unt il 

2.4.2 F. lectrollhysiology Reco rdings 

OUTing recording, slices were superfuscd with magnesium-free aCSF containing 

the following (in mM): 122 NaCI. 2.5 KCl. 2.5 CaCb. I Nal bPO~, 26.2 Nal [COJ, and 22 

glucose, equ ilibrated with 95% 0 2/5% COl 
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Fi~ure 6. Site of Targeted Infusions inlo the Latera l Olfactory Bulb 

Photographs of a rat hrain, harvested following odor preference testing to confirm the site 

of targeted infusion. Following testing. methyl blue was infused through the guide 

cannulae to stain the infusion site. (A) Photograph taken from the top. with the br<lin 

lying in the horizontal plane. Olfaeto!)· bulbs. with methyl blue stain are pointing 

towards the Ix)ltom of the page. (D) Photograph taken Ii'om the front. with the brain in 

the sagiltal plane. Olfactory bulbs arc pointing up from the page. 
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Slices were viewed with an upright microscope (Olympus BX51) using 

diflcrential imcrfcrenee contrast optics. Ficld recordings were obtained using glass 

pipettes filled with the magnesium-free aCSr. Rewrding pipettes were positioned in the 

centre of glomeruli within the mid-lateral region of the 013 whose ON innervation was 

clearly visible. A concemric bipolar stimulating pipette (FHC) was positioned in the ON 

layer. contacting ON fibers that were innervating the recordcd glomcruli. All recordings 

were acquired at 30°-32°C. 

A stimulation profile was measured for each slice used 10 dctcrminc thc maximum 

and median stimulation thresholds. Uascline recordings of the lEI'S!> werc obtaim:d by 

stimulating a single tcst stimulus (mean stimulation threshold for the slice. within 20- 100 

mA) every 20 sec for 5 minutes. LTI' induction was performed using an established 

protocol (Yuan. 2009). To inducc LTP at the ON-MC synapse. a single strong theta burst 

stimu lation (sTBS: 10 bursts of high freque ncy stimulation at5 H~, eaeh burst containing 

fivc pulses at 100 Hz. same stimulation as test stimuli) was appl ied to the ON. To test for 

the induction of LTP. post-stimulation recordings of lEI'S!' were obtained by stimulating 

the ON with a single test stimulus (same the baseline stimuli) every 20 sec for 60 

minutes. 

To test if I.TCC activation was required for the induction ofLTP at the ON-Me 

synapse. we applied 11 sTBS in the presence ofnimodipine. Thc drug was applied via 

bath wash at a concentration of I 0 ~IM fur 5 minutes before the application of the sTBS. 

after whieh the drug was washed oul with magnesium-tree aCSF. 

Electrophysiology data were recorded with Muhiclamp 70013 (Molecular 

Devices). tiltered at 2 kl·lz and digitized at 10kHz. Data acquisition and analysis were 
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performed with pClamplO (Molccular Dcvices) and Igor Pro 6.10A (WavcMctrics). 

Results were interprcted by dividing the post.stimulation fEPS I' responses by the average 

baseline response of that same slicc. LTP was indicated by a signilicant increasc in the 

post·stimulation rEPS P response relative 10 baseline responscs. 
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CHA t'TF:R 3 - R ESULTS 

3.1 LTCCs are Present in the Neunate Kat Pup Olfactory Bulb 

To test if L TCCs arc expressed in the neonale pup aD. we performed 

immunohistochemistry on aD slil:es harvested from naIve PND 6 pups (Figure 7 1\&13). 

The primary antibody bound 10 the Ca.!.2 subtype of LTCCs. Figure 7 shows that 

significant staining was observed in the aD. Spel:ilieally. staining is consistently strong 

in the ON layer, glomeruli. and the inlemal portion of the EPL of the aD. MC bodies 

(arrows. Figure 7R) are weakly stained. However. the shaft of the MC apil:al dendrites in 

the EPL arc heavily stained (hollow arrowheads. Figure 7D). In addition, the heavy 

stain ing in the internal portion or the FPL is assumed to be on MC primary and secondary 

dendrites, as it is known that this is where MC secondary dendrites extend laterally (Pril:e 

& PowelL 1970b). Ca,.1.2 staining is also observed in PO cells (solid arrowheads) 

surrounding glomeruli. Ca,1.2 staining in juvenile adult rats (I'ND 20-23) showed lUI 

overall weaker pattern of staining (data not shown). We also com pared Ca,.1.2 

expression patterns between rats and C57RLl6J mice (Figure 7C&0). Interestingly, 

Ca,.1.2 expression is observed strongly in MC bodies (arrows, Figure 70 ) in mice and is 

weaker in the Gt.. Thi s suggests there is a difTerenee in Ca,.1.2 expression patterns 

between the two species. Nevertheless. these results confinn that LTCCs arc present in 

the neonate 013. and that they are expressed in Mes, which arc the substnlte for early 

odor preference learning according to the MC-potentiation model (Yuan et al. 2003: 

Yuan 2009: Lethbridge et al .. 2012). 
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Figure- 7. I)istribulion of LTCCs in the- Olfactory Bulb ofa Ne-onale Rat aml;1O 

Adult Wild-T~' pe M O USl'. 

(A) A wrona I section of the olfactory bulb from a " ND 6 rat pup. (B) Increased 

ma~nifieation ofthc medial a rea oflhe olfactory bulb. as indicated in A. (C) A coronal 

scction of the olfactory bulb from a wild type mousc. (D) Increascd ma~nification of the 

medial arca of the olfactory bulb. as indicated in C. Arrows indicate individual mitral cell 

somas with signiticant staining. Solid arrowheads indicate periglomerular cells 

surrounding glomeruli. Hollow arrowheads indicate mitral cell primary dendrites 

extending through the EPL to GL. EPL, extcrnal plexiform laycr: Gc. ~ranulc cell layer: 

GL glomerular layer: Me. mitral cell layer. 
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3.2 LTCC Function is Required fur Isoproterenol-Ind uced Odor Preference 

Lea r ning 

To test if LTCC function is required for odor prefcren(;e kaming. we infused the 

LTCC antagonist nimodipine into the dorsolateral OB during odor training. Figure R 

shows thai an infusion ofisoprolerenol successfully induced an odor preference in the 

animals (60.11 ± 4.33%; one-way ANOV A, 1'(2..) 1) = 13.18, P < 0.01 ). Infusion of the 

vehic le (;ontrol (30.85 ± 3.14%) or nimod ipine with isoproterenol (39.00 ± 4.98%) did 

not induce an odor prc!crenee. A post-hoc Fisher tcst of the mean demonstrated a 

significant difference belween the isoproterenol-only and isoproterenol with nimod ipine 

groups (t = 3.4G, p < 0.0 1). and between the isoproterenol-only and vehicle control 

groups (t = 5.08. p < 0.01). These resul ts suggest that LTee function is required fo r 

isoproterenol-induced odor prc!crence deve lopment. 

33 fE PSI' Experim ents 

L3eeausc slice prepamtion and electrophysiology recordings arc technically 

challenging skills, we chosc not to begin tcsting thc effe(;t ofnimodipine on LTP 

induction until we could reliable produce L TP in at least 60% of control s lices. [)cspite 

significant enon, Ihis kvel of effieien\:Y was never achieved. We attempted to induce 

1..1'1' in 16 slices, over a period of2 weeks. L"I"I' was sllc(;essful ly induc(;d in 3 of lh(;se 

experiments. Example fE PSP TC(;ord ings from a slice Ihal did producc L TP during this 

procedure (Figure 9A) and n'om a slice that did not produce LTP (Figure 9(3) arc 

provided. Figure 9C presents the averaged tEPSP data from all 16 slices 
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Figure 8. Nim odipine Block.~ Isoproterenol-Induced L.earnin g. 

Bars indicate the percentages of time spent in the peppennint side in a two-choice tes\ 

box in difTerent experimental groups . •• p < 0.0 1. Error bars. mean ± SEM. Animals that 

rtteived u I ~U11 infusion of [SO + odor llIlrnining spent signi ficantly more time over the 

peppermint-scented bedding thun the vehicle only group und the [SO+Nim group when 

tested 24 h following tmining. There was no signifieunt difference between the ISO+N im 

und vehicle only groups. Vc. vehicle control; ISO. isoproterenol; Nim. nimodipinc. 
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Figun ' I), Sample rEPSP l\1casur{' rn {' nl.~ from sTHS £x pcrirlH'nts 

(A) Sample recordings from slicc bOI 091 2. which did cxpericnce LTI' rhe tracings arc 

representative samples of tEI'SP recordings before (I'rc) and a1\cr (Post) the sTBS was 

applied. The graph shows thc Normalized n~ l'sl' recording from slicc bOl0912 

throughout the trial. sT8S was applied after 15 stimulations. as noted in Ihe 

graph . Normalized tEI'SI' recordings were calculatcd by di viding cach fl~ PSI' 

mcasurcment by the average o1"lhe 15 basel inc stimulations. (13) Sample rccordings 

from s tice .1010412. which did not expcriell(;c LTI'. The traeings arc repft'scntative 

samples of I[I'SP recordings belore (Pre) and after (Post) the sT 13S was applied. The 

graph shows the Normali l--cd IFf'Sf' recording from slice nOI 041 2 throughout thl' tri al 

sTUS was applicd aftcr 15 stimulations. as noted in the graph. Normalized ILl'S!' 

recordings were calculated by dividing each IEl'SP measurement by the average or the 15 

baseline stimulations. (C) Averaged Normalized IEI'SI' recordings from 16 slices used 

during sTBS experiments. sTBS was applied alier 15 bllse line stimulations. indicated by 

arrows. Norrmrli 7--cd tl~ I'S !' recordings wcre calculatcd by di viding each 1l~ I'SI' response 

by average baseline responses. Note how Ihe average IEI'SI' response docs not change 

significantly over time, indicati ng that LTl' has not been achieved in the majority o1" lhe 

slices. ILl'S!'. field cxcitatory postsynaptic IXltcntial; sTUS. strong theta burst 

stimulation 
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To confirm the presence or absence ofLTI'. "ie compared the average pre- and post­

sTllS peak amplitude ofthc lEPSP responses. The prc-slBS value was the average of 

the peak amplitude fro m the initial 15 baseline stimulations (minutes 0-5). The post­

sTllS value was the average peak amplitude from stimulations 175-190 (minutes 55-60). 

A paired t-test was performed to compare the two groups. Figure 10 shows that there is 

no significant difference between the pre- and post-sTllS groups (the post-slUS is 

normalized to pre-sTBS; t "" 0.85, p > 0.41, n ~ 16). which indicates that the samples on 

average did not experience LTP following the application ora sTBS. This is despite the 

fact that in 3 out of 16 experiments there was measureable LTP of the fEPSI' glomerular 

response (as demonstmted in Figure 9A). 

3.4 LTCC Acti\'ation Rescues Isoproterenol-Induced Learning Frum a I)-A PY 

Ulock, but is Not Sufficient to Inducc Learning lJy Itself 

Recent work from our lab (Lethbridge et al.. 2012) demonstrated a critical role of 

NMDARs in odor preference learning indm;lion. Blocking NMDARs at the ON-MC 

synapse with O-APY prevented early odor preference learning. To test if LTCC 

activation could rescue isoproterenol-induced learning from a O-APY-block. we infused 

an LTCC agonist (UayK-8644) during odor training. Figure II shows that while infusion 

of isoproterenol with D-APY did not induce an odor preference (38.25 ± 4.37%: one-way 

ANOYA. F(~ .. 161 "" 3. 12. fI < 0.05). an infusion of isoproterenol-only (58.29 ± 4.49%) or 

isoproterenol with O-APV and 20 11M UayK-8644 (63.50 ± 9.61%). 200 11M RayK-8644 

(61.83 ± 8.12%) or 2 mM RayK-8644 (66.17 ± 10.25%) allied to Ihe development of an 

odor preference. Infusion of the vehicle control (33.25 ± 2.93%) did 110t induce an odor 
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Figun' 10. sTBS of the Olraeto ry Nerve is Not Sufficient to Induce L TI' in the fEl'Sf 

Response or Olfactory Bulb Glomeruli 

Bars indi(;ut(; the average normalized fE PSP peak amplitude measured pre- and post­

slBS. Error bars. mean ± SCM. 
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Figure 11. lJay K-S644 Rescues Learning from a NMI)AR lJIoek, but It Is Not 

Sufficient to Induce Learning on Its Own. 

Bars indicate the percentages of time spent in the peppemlint side in a two-choice test 

box in different experimental groups. ·p<O.OS."p < 0.01. Error bars, mean ± SEM. 

Animals who l1:eeived an infusion of ISO-only. or ISO, D-APV and either 20!-1M. 200IAM 

or 2mM BayK-8644 spent significantly more time over peppermint-scented bedding than 

the vehicle control or ISO+I1-A PV groups. Animals who received a I ~Im infusion of 

just BayK-X644 did not spend significantly morc time over peppermint-scented bedding. 

as eompmed to the vehicle control or ISO+D-APV groups. Vc. vehicle contro l: [SO, 

isoproterenol: 13K. BayK-!!644.VC, vehicle control; ISO, isoproterenol: BK. BayK-8644 . 
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preti::rencc. Interestingly. an infusion of 2 mM BayK-8644 only (45.33 ± 10.16%) did 

not induce odor preference. A post hoc Fisher Test of the mean demonstrated II 

signitiellm ditTerence between the vehicle cont rol and isoproterenol with D-AllV and 20 

!-lM BayK-8644 (t '" 2.46. p < 0.05). 200!-lM Bay K-8644 (t '" 2.32. P < 0,05) and 2 mM 

BayK-8644 (t '" 2.68. P < 0.05) groups. as well as betwecn thc vehicle control and 

isoproterenol-on ly groups (t = 2.1 0. P < 0.05). Signitieant dinerenees wcre also 

demonstrated between the isoproterenol with D-APV group and the isoproterenol with D· 

APV and 20 !-lM BayK-8644 (t = 2.65. P < 0.05). 200 !-lM BayK-R644 (t '" 2.48. p < 0.05) 

and 2 mM llayK-8644 (t "" 2.93. p < 0.01) groups. as well as between the isoproterenol 

with D-A I'V and the isoproterenol-only group(t = 2.21 . p < 0.05). These results suggest 

that LTCC activation with a wide·range of BayK-8644 concentrations successfully 

rescues isoproterenol-induced odor pn::ferenee from ,I I)·A PV block. but that LTCC 

activalion by itself is nol sunicicntlO induce an odor preference. 

3.5 NMI)AR Bloekal?,e is Necessary to Prevent Gabazine-Intluced Odur 

I)rcfercnccs 

To further test iffl-AR aCllvation is required for LTCC fun ction on MCs. we 

induced an odor preference independent offl,-AR activation. and lesled if LTCe 

inhibilion with nimodipi ne inhibits this learning. We infused gabazine. a GAIlA-A 

antagonist. 10 induce odor pre terence learning. Figure 12 shows that an infusion of 

gab.1zine-on ly induced an odor preference (57.85 ± 4.25%: one-way ANOVA. I~ J. lII ) = 

3.84, fJ < 0.05). compared to the vehicle infusion (36.18 ± 5.16%). Interestingly. addi lion 

ofnimodipine 10 Ihe infusion cocktail did not prevent the gabazine-indueed odor 
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Figure 12. NMJ)A H.eeeptor lJIoekage is Necessary to Prevenl Gabazinc-Induced 

Odor "rden·nees. 

Ban; indicate the percentages of time spent in thc peppennint sidc in a two-ehoicc test 

box in different experimental groups. *p<0.05, **" < 0.01. Error b.1rs. mean ± SEM. 

Animals who received a I ",m infusion of gabazinc spent significantly more time over 

the peppermint-sccnted bedding. Animals who received an infusion of both gabazine and 

nimodipine did not spend significantly morc time over the peppennint-scented bedding. 

Vc. vehicle control: Gab. gabazine: Nim. nimodipine. 
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preference (62.71 ± 8.85%). This result suggests lhal gabazine-induced learning is not 

dependent on LreCs in the Me layer. Further addition of D-AI'V to the gabazine and 

nimodipine cocktail blocked odor preference development (36.66 + 10.72%). A post hoc 

Fisher Test of the mean demonstrated a signilicant difference between the vehicle control 

and both the gabazine-only (t =0 2.4 1. P < 0.05) and the gabaz.ine with nirnodipine (t = 

2.50. p < 0.(5) groups. A significant difference was also observed between the gabazine 

with nimodipine and D-AI'V group and both the gabazine-only (I = 2.26. P < 0.05) and 

thc gabazinc with nirnodipine (t =0 2.39, p < (J.05) groups. While these results did not 

shed light on the relationship of LTCCs and I3-ARs on MCs. they suggest that activation 

of the NMDA reccptor is suffic ient for gabazine-induced leaming. 
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C HAI'TF.:R 4 - DI SCUSSION 

4.1 Summary 

Our results show Ihal LTCCs arc present in the naIve neonate DB. amI. 

demonstrate cell-s[X.'t:ific localization of LTCCs throughout the bulb. Our work also 

shows that DB LTCCs arc involved in early odor learning and short-term memory 

fonnation. L TCCs playa critical role in natumllearning. LTCC activation is not, 

however, sutlicient to induce learning on its own, and L TCCs do not appear to play an 

important role in £ubazine-induced learning that suppresses PO inhibition. These resu lts 

provide further evidence in support or thc MC potentiation model of carly olfactory 

learning (Yuan et aI., 2003b), which proposes that the UCS and CS of odor learning 

wnvcrge within the Mc' and result in CREB phosphorylation and the production 01 

plasticity related proteins within thc MC (McLean & I larley, 2004; Cui et aI., 2007; Si lva 

et al.. 1998: Yuan et aI., 2003a). We suggest that. within this model. the function of 

L TCCs is to contribute to the CS via the in!lux of calcium in response to an odor-evoked 

responsc. It remains unclear from our results if the role orj3-ARs within the MC 

potentiation model is tied exclusively to contributing \0 the UCS of cAM P production, or 

irj3-AR activation also contributes to the CS by facilitating calcium influx via LTCCs. 

4.2 l Tce Activation is Necessary to Induce Natural Early Odor Prcfen'nce 

l earning 

In nature, pups develop an odor prclcrencc when novel odors are paired with 

tactile stimulation from the dam, which stimulates NE relcase from the locus cocrulcus 

(Gu1cf& Kaner, 1980; Mcl.ean et al.. 1989; Su ll ivan & Leon, 1(87) Isoproterenol 
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infusion faci litates the development of odor preference learning because it mimics natural 

NE release into the Oil by stimulating ~ARs (Langdon ct al.. 1997: Sull ivan & Wil son. 

19K9: 1994). To test ifLTCCs are involved in enrly odor preference learning. we co­

infused isoproterenol with the LTCC antagonist nimodipine. Pups that received an 

intrabulbar infusion of isoproterenol developed a preference for peppernlint-secnted 

bedding. while pups that received an in fusion of isoproterenol along with nimodipine did 

not develop an odor prererenee (Figure 9). This suggests that LTCC activation is a 

necessary component of the natural odor preference lellTning proccss. 

Previous duta in our lab (Lethbridge et al.. 20 12) have shown that activation of 

MC-bound NM DARs is required ror early odor preferencc learning. They demonstr.tted 

that a co-infusion of the NMDAR antagonist D-A I'V was sullicient to block 

isoprOierenol-induced learning. To rurther confirm ir LTCCs arc involved in early 

olfactory learning. we co-infused the LTCC agonist 13ayK-8644 along with an infusion of 

isoproterenol and D-APV to see if L TCC uetivation could reseue the isoproterenol­

induel-d Ie:lrning !i'om the D-A I'Y block. In our experimcms. pups who received u 

llayK-8644 infu sion successfull y developed a preference ror peppermint-sccntl-d 

bedding. overcoming thc D-AI'Y block (Figure II). This provides further evidence that 

natuml odor preferencc learning is a L TCC-dependent process. 

4.3 ~-Itdn'noccplor Rcgubll ion or Glomeru lar L TCCs Rcma in .~ Unclear 

Accordi ng to the MC potentiat ion model or early olractory learning proposed by 

Mc Lcan and colleagues (Yuan et <II.. 2003b). learning arises when the CS of odor evoked 

glutamate release at the ON-MC synapse is pairl-d with the UCS or cAMP production in 
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MCs. When these two events occur together. this leads to the calcium/calmodulin­

regulated phosphorylation ofCRL::IJ, and the subsequent production ofplasticit),-rciated 

proteins (MeLcun & Hurley. 2004: Cui et al.. 2007: Silva et aI., 1998: Yuan et aL 2003a). 

Previous work has demonstrated that pairing odor exposurc to 13-I\R stimulation (either 

naturdl or phamJacologieally induced) is suflieient to induce an early odor preference 

learning (Sullivan et aI. , 2000; Yuan et al.. 2003b). From these findings. it has been 

assumed that fI-AR activation contributes to the UCS of cAMP production in MCs 

(Sullivan & Wilson. 1989; 1994; Yuan et al.. 2oo3b). It has also been shown. however. 

that fI-AR ar.:tiva tion is invol ved in calcium modulation during learning events inthc 

hippocampus and amygdala (Gray and Johnston 1987: 1 luang ct al. 1993. 19(6). und that 

li-I\Rs regulate L Tee funclionulity in cardiac myocytes (Hell 201 0). as well as in 

neurons (Davarect al.. 2001: Marshall e\ aL 2(11). We were therefore interested in 

examining if fI-AR activation contributed to the CS by facilituting calcium inllux via 

L TCCs. in addition 10 the 1~-AR" s accepted role in contribution to the ues of cAMP 

produr.:tion. during carly odor preference learning. 

In order to examine lhis question. we induced an early odor preference without 

stimulating I~-/\Rs in the OR. This was accomplished by infusing the GAUI\-/\ receptor 

antagonist gaha7.ine into the lateral OB. This re lieved the baseline inhibi tory inlluence 

exerted by 1'0 eells on both ONs and Mes. so that the incoming odor signal was strong 

enough to activate intracellular signaling pathways (assumed 10 be the 

calcium/calmodulin mediated phosphorylation ofCREll). We then co-infused the LTeC 

antagonist nimpodipine along with gabazinc.lo deternline if preventing LTCC function 

would block the gabazine-induced learning. If learning had been blocked by nimodipine. 
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this would have demonstrated that Ll CCs were contributing to odor learning 

indepcndentofj3-AR activation. 

Our results indicated that nimodipine infusion was insuflicientto block the 

gabazine-induced learning (Figure 12). We do not believe. however. that this implies 

natural early olfactory learning is LTCC-indcpcndent. Me di sinhibition via an 

intmbulhlar infusion of gabazine is not rcflective of any physiological process likely (0 he 

involved during in vil'o carly olfactory learning. Gabazine-induced learning was 

employed nOI as a model ofnalUral early olfactory learning. but in an ullempt (0 stimulatc 

L TCCs without the co-acti vation of ~-ARs. Furthermore. this docs not necessarily 

indicate that I.TCCs arc inactive without f3-AR co-activation. L Tees have been 

implicated in GAllA release from rG cells (Jerome et al.. in press; Murphy et a1.. 2005) 

rhe application ofnimodipine during gabazine-induced learning would haw had the 

ellect of inhibiting GABA release from PG cells. Nimodipine-supprcssion ofrG cell 

GABA release would have enhanced the gabazinc-indul:ed disinhibition on the ON-Me 

synapse since the gahazine would be competing with less GABA for the available 

GAllA-A sites. This efTect of the enhanced disinhibition may have ocen sunil:ient (0 

mask thc effect of any parallel suppression of Me-bound LrCes. Given the unrwtural 

over-excitation of mitral l:ells in (his cirl:umslance. calcium in11u.\ via other channels 

(NMDARs. mG luRs, or calcium-induced calci um release from intracellular stores) may 

have been suffic ienlto ini tiate the calcium/ealmodin phosphol)' lation ofCREB in these 

circumstances. This later thl"Ory is supported by the fact thatthc co-infusion ofthc 

NMDAR antagonist D-APV along \Vith nimodpinedid successfully block gabazine­

induced learning (Figure 12). rbis is inline with findings from Lethbridge ct al. (2012) 
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who demonstratcd that the co-infusion of [)-APV into the lateml 0[3 was sufficient to 

block gllhazine-induced learning. 

Furthcr work is nceded in order to expand upon our results presented here. and 

clarify the role B-ARs in the processes of early olfactory learning. 

4.4 LTCC Aetivatiun Uues Nut Appear to be Sufficient to Induce [arly Odur 

Preference Lea rning 

Once it had been estahlished that natuml early odor preference learning was 

dependent on LTCC activation (Figure 9). we were interested in testing if L TCC 

actiyation itsclfwas sul1icient to induce an early odor prefcrence learning. In a similar 

study by Lethbridge ct al. (2012) on the role of MC-bound NMDARs on early olfactory 

learning. the group li rst dcmonstrated that NMDAR [I(;tivat ion on MCs was ncccssary for 

early olfactory learning. and then supportcd this finding by dcmonstl"'dting that 

stimulation ofNMDARs at the ON-MC synapse was sullicient to induce the carly odor 

preference. In our experiments. we inJilsed the L TCC agonist BayK-8644 into the latcral 

01l:lctory hulb to tcst if LTCC activation was sufficient to induce learning. Pups that 

received an intmbulbar infusion of BayK-8644-only did not develop an odor preference 

(Figure II). This suggests that LTCC activation by itself is not sufficicnt to inducc early 

odor preference learning. In order to understand this potentially surprising result. it is 

necessary to consider that BayK-!!644 infusion into the dorsolateral 013 would activate all 

thc LTCCs present in thc area. 

Our immunohistochemistry resu lts indicate that in this region. LTCCs arc present 

on MC apical dendritcs. and on PG cclls (Figure 7: Scction 4.3). Pre,·ious work by 
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Murphy et al.. (2005) demonstrated that LTCCs arc pre~nt on 1'0 cells and that Ihey un:: 

involved in dendritic calcium spikes. which trigger the rc!case of GAB A from 1'0 cells. 

They dcmonstrated that dendritic caleium spike in PO cells were inhibited by the LTCC 

antagonist nimooipine. and cnhanced by the L TCC agonist L3ayK-X644. 

In our work. infusion of the LTCC agonist BayK-8644 into the lateral 013 was 

expected to activale MC-bound LTCCs. It is possible. however. that the drug activated 

both MC-bound L TCCs and PO-bound LTCCs. Activation oflhe MC-L TCCs. if it 

occurred. would support MC depolarization. Activation of I'G-L TCCs. however. would 

lead to an increased release ofOAIJA onto the ON-MC synapse. which would both 

inhibit the release of glutamate by presynaptic ONs and hyperpolarize the postsynaptic 

MCs. Indeed, Western blot analysis has confirmed that BayK-8644 infusion into the 

dorsolateral 013 promotes vesicle release. potentially from PO cells (Jerome et al.. in 

press). The inereascd inhibition of the MCg due to I'G-LTCC activation may have ocen 

sunieient to block the depolarizing effect of MC-L TCC activation. 

Electrophysiology techniques arc able 10 apply small volumes of pharmacological 

agents in extremely small areas. such as through a puff pipette, or releasing a caged 

substam:e with focal laser activation so that only cells in a targeted ureu will be 

significuntly affccted by their re!case. Ouring electrophysiology experiments. it may be 

possible to activate or inhibit MC-LTCCs without influencing the acti vity ofI'G-LTCCs. 

Further ek't:trophysiology experiments will therefore bc helpful in detennining it 

activation of MC-I.TCCs, without the co-activation of I'G-LTCCs. is sufficient 10 

depolarize the MC and initiate LTI' of the ON-MC synapse. 
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4.5 LTCC Activation Scrvcs to Amplify C alcium Influx Following NM1>AR 

Activation 

Recent studies have demonstrated that NMDAR activation is critical for odor 

preference learning (Lethbridge et al. 2012; Yuan & Harley. 2012). These findings arc 

supported by the results of our experiments in which the NMDAR antagonist D-A Il V 

blocked both isoproterenol-induced (Figure II) and gabazine-induced learning (Figure 

12). Our results confiml that ooor prdcrcncc learning is NMDAR-{)ependenl. and 

suggests that LTCCs can serve to amplify the cOcet of NMDAR activation hy providing 

a secondary path by which extracellular calcium can enlcr MCs. 

Isoprotercnol-induecd learning. which involves an intrabulbar infusion of 

isoproterenol. is successfully blocked by the co-infusion of either the NMDAR antagonist 

D-!\ PV. or the LTCC antagonist nimooipine. Since both NMDARs and LTCCs arc 

calcium channels. this suggests that signilieant calcium innux is required lor early 

olfactory Icarning. and that simultaneous activation of both NMDARs and LTCCs arc 

required tor early ollactory learning. This co-activation is necessary to produce a signal 

strong enough to counter the inhibitory effect of PG-released (;ABA on the Me (Murphy 

ct al. 200S). 

A BayK-H644 infusion did. however. rescue isoproterenol-induced learning from 

a D-!\ PV block. !\ strong L TCC stimulat ion is \herclore insullic ient to overcome PO 

inhibition and induce learning. This suggests that LlCCs may act downstream of 

NMDARs in the MC response to incoming odor infonnation. This hypothesis is 

supported by the activation mechanisms of the two calcium channels. Activation of 

NMDARs via glutamate could reasonably trigger the subsequent activat ion of the 
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voltage-gated LTCCs. but LTCC activation could not lead to the activation of glutamate­

activated NMDARs. 

4.6 Our Findings Support the Me I'otcnliation Model of Early Odor I'rderence 

Learning 

The (iC-MC disinhibition model (Wilson & Sullivan. 1994) and the MC 

potentiation model (Yuan et al.. 2003b) arc two competing theories of the physiological 

processes that underlie early olfactory learning. Recent studies have provided growing 

evidence in support uflhe MC potent iation model. Yuan (2009) demonstrated that 

stimulation orthe ON with TDS produces LTP of the glomerular rEl'SI' in the Oll. and 

that TBS in the presence of isoproterenol induces a significant ealeium response in the 

cell bodies ofMCs. Yuan & I larley (20 12) demonstrated that early olfactory learning 

involves a change in postsynaptic AMPAINMDA mtio at the ON-MC synapse. And 

Lethbridge et aL (2012) provided further evidence that NMDARs located on 

postsynaptic MCs arc phosphorylated during odor memory fonnation. and down· 

regulated 3 hours following odor prcterencc training. All of these findings indicate that 

the active physiological processes that lead to early olfactory formation take place within 

the Me. as proposed by the MC potentiation model. 

Our study provides Iresh evidence in support orthc MC potentiation model 01 

early odor preference learning. OUf experiments have demonstrated that learning is 

dependent on LTCCs located in the lateral OB. far away from the MC-GC synapse. 

Infusion of the L TCC antagonist nimodipine is sunieient to block isoproterenol-indue(·d 

learning (Figure 9). We suggest that this indicates I.TCCs arc functioning downstream 01 
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MC-bound NMDARs. Just as L TCCs allow calcium influx into the dendrites ofPG cells. 

whidl leads to GABA release from those cells (Murphy et a1.. 2(05). we suggest Ihal in 

our experiments Me-bound LTCCs allow an influx of calcium along the MC dendrite. 

We suggest that this calcium influx activates the calcium/calmodulin pathway. whidl 

leads to the phosphorylation ofCREB. which in turn facilitates the production of 

plasticity related proteins. These proteins (;Quid be responsible for the eh~mges in the 

AMI'AINMDA ratio and NMDAR subunit composition observed by Yuan & Harley 

(2012) and Lethbridge et aL (2012). In this case. LTCCs would be (;Qntributing to the 

CS within the MC potentiation model. since they would be activated downstream of the 

glutamate-induced activation ofNMDARs 

Finally. our results suggest that [)-ARs may play an additional role in the MC 

JX)\entiation model of early olfactory learning. While previous studies have locused on 

the contribution orr~-ARs to the UCS within this model. we observed evidence that 13-AR 

activation may also be crucially involved in regulating calcium intlux during the CS. Our 

observations that LTCC stimulation is not sufficient to induce a learning event (Figure 

11 ) is in contrast to the previous findings that stimulation of MC-bound NMDARs was 

sufficient to induce an early odor preference (Lethbridge et al .. 2012). This suggests the 

possibility that MC-bound L TCes arc under the regulation ofl3-ARs. as has been 

suggested in myocetes (Hell. 2010) and in some ncurons (lJavarc et al.. 2001). Further 

work is necessary to determine what role. irany. B-ARs contribute to LTCC regulation 

and the CS within the MC potentiation model. 
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4.7 Iliscussinn nffEl'SP Ex pcriml'nts 

Despite significant eHort. [ was not able to achieve regular or reliable induction of 

L TP at the ON-Me synapse in control sli(;es. We were therefore unable to test for the 

etl(."ct ofinhibitin£ LTCC function on the induction of L TP. The protocol used in these 

experiments has been used successfully be loTe (Yuan. 2009). and so the inability to 

achieve LTP in control slices is likely due to the skill level of the operator. 

Prcparing and perlorming electrophysiology recordings is an advanced technical 

procedure. In our experiments des(;ribcd here. we were able to re liably obtain baseline 

recordings in whi(;h glomerular IEPSPs demonstrated a strong response to stimulation of 

the incoming ON. Thi s suggests that [ had developed suflicient skill in perlonning the 

electrophysiology re(;Qrdings. My error was nOllikely due to incorrect placement of the 

re(;urding pipette within the glomerulus or the stimulation electrode on the appropriate 

section of ON. This also suggests that the electrophysiology appamtus itself was 

functioning properly. and our la(;k of results were nut due to faulty equipment or 10 

background interference. 

Rather, the lack ofsuccessful1.TP induction suggests that the cells were not 

healthy enough to undergo LTP. The area in need of improvement is therc10re likely my 

skill in slice preparation. At each stage of slice preparation (harvesting. cooling. (;utting 

and in(;ubation) there is risk of damaging the cell s in the slice. One signilicant risk is of 

physically damaging the cells during the harvesting and cutting stages. or from handling 

the samples during any stage of the process. Another significant concern is the elled of 

oxygen deprivation. Samples arc kept in oxygenated solut ion at most points throughout 

sample preparation. but during the harvesting stage and when the sample is being 
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mounted atlhe beginning of the cutting stage, the samples are:lt greater risk of oxygen 

deprivation. As an inexperienced technician, I performed slice preparat ion slower than 

an e.-..:pericnced technician (increasing the periods of oxygen deprivation) and I handlcd 

slices more than an experienecd tcehnieian would have. which likely damaged or killed 

cells in the test sliccs 

An unhealthy cell could respond to an incoming signal and achieving an action 

potentiaL so long as the cell's membranc was intact and the membrane-bound channels 

still functioncd. As such. unhealthy cells could still be capable of establishing a tl~ I'SI' in 

a glomerulus in response to ON stimulation, as we observed. An unhcalthy cdl is much 

less likely, howevcr. to he able to undergo LTP, as this process involves the recruitment 

of much more cellular machinery involved in intracellu lar signaling. and protein 

transcription, translation, and trafticking 10 the membrane. 

4,8 Condusion a nd Future I)irections 

This study has provided, for the first lime, a cell-specific map ofJ.: rcc 

expression within the neonate rat olfactory bulb. We have demonstrated that LreCs play 

an important function in allowing calcium in10 MCs as part of the CS during early 

olfllctory learning. LTCC activation was dctcrmim:d to be necessary lor early olractory 

learning 10 occur. LTCC activation docs not seem to be suflicienl to induce an early 

olfactory preference. though this may be due to the unspecific way in which LTCCs were 

activated in the region orlhe OEl glomerulus. It remains unclear if LTCC activation 

dcpends on the co-activation orB-ARs, as has been demonstrated in other areas of the 

brain. 
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Future work should focus on darifying, the funetionlll relationship between 

LTCCs and B·ARs in neurons of the OR Further electrophysiology experiments will be 

helpful in determining if MC-LlCC activation is necessary for ON-MC LTP. Other 

electrophysiology experiments will be llble to test ifaetivation of MC·LTCCs. without 

the eo-aet ivlltion of PO-L TCCs. is sufficient to depolarize the cell. Optogenetie tools 

may also be used to selectively suppress or increase the activity ofspcciiic neurons ill 

vivo. Amongst other possibilities. this will provide an opportunity to study Mes free 

from the in!luem:e of PO cells. 
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