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- ABSTRACT -

During winter. the coastal waters of Newfoundland can be considered a "freeze risk 

ecozone" for teleost fishe s. The benthic Atlantic (Allorhichos lupus - II W) and spoued 

wolffish (A. millor - SW) reside at opposite ends oflhis ecozone. with the A W facing the 

greateSt risk because of its shallower niche. To resist freezi ng. A W !>Ccretes fi ve times the 

level of plasma antifreeze protein (AFP) activity than does SW. 

The main basis fo r this difference in plasma AFP levels is gene dosage. as II W 

has approximately three times more AFP genes than SW. Perhaps as a result. AF!' 

transcript levels in liver (the primary source of circulating AF!'s) are severa l times highcr 

in A W. One explanation for the!>C gene and transcript dosage di lferences is the presence 

oftandemly arrayed AF!' gene repeats in II W that make up two-thirds of its AFP gene 

jX)Ol. Such repeats are not present in SW. A Wand SW diverged from a common ancestor 

at a timc when the ebb and flow of north em glaciations would have resulted in the 

emergence of "freeze risk ecozones" Thc duplication/amplification o f AF!' genes in a 

subpopulat ion o f ancestral wolfli sh would have facilitated the exploitation of this high 

risk habi tat. rcsulting in the divergence and evolution o f modem day A Wand SW 

species. 

Investigations on artific iall y produced AW/SW hybrids showed that all the AF!' 

genes ofSW arc likel y shan..-d with A W. which supports recent gene amplification as an 

impetus for speciation. The high dynamism of the A W AFP locus (through high 

variability in dosage and organisation) was best visualized in the single haplotype 



inherited by the hybrids. Their intermediate levels of plasma AFPs make these fish unfit 

for survival within the sha llowest part of the "freeze risk ecozone" 

While the totallevcls of AFP genc transcripts var ied little from winter to summer 

in both species (especially in the liver). differential expression of members of the two 

subfamilies of type II I AFPs. the SP- and QAE.type genes (appellation based on the ion­

exchange Sephadex resins to which each type of isoform binds), was observed. While the 

expression of the QAE-type transcripts was ubiquitous (both temporally and spatially), 

that of the SP-type genes seemed to show some levcl of tissue specificity. which 

highlights the complex evolutionary history of these genes. 
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-CHAPTER 1 -

1.1 - Background ofstudv 

The cha llenge of subzero temperatures 

Water exists in its aqueous form between DOC and 100°C (at sea leve l). Since the 

appearance of life in the primal ocean. Earth has offcred a climate where this temperature 

window could be satisfied. and evolution has worked around water as the universal 

solvent for the chemistry of li fe . However. important cooling events have punctuated 

Earth's climatic history. The onset of the most recent of these events. during the Cenozoic 

Era. brought forth the Antarctic glaciat ion at the Eocene-Oligocene boundary. - 34 Ma 

ago (lachos et af .. 2001,2008; DeConto el af., 2008). The Earth then passed from a "Hot 

House" to an "lee House" state that became firmly establ ished by the mid-Miocene and 

sti ll persists today (Katz 1.'1 al.. 2008). The transi tion oceurred quickly in geological time 

(Coxall e/ af. , 2005), and life at sea level found itself exposed to the threat offn.-ezing for 

the first time after 200 Ma of re lati vely warm cl imate (Fletcher I.'t (11.,2007; Retallack. 

2009). Clades in all kingdoms encountered some level of extinction not only at the 

threshold of the Icc House. but also during the cooling preceding the glaciation (reviewed 

by Prothero, 1994; Thatje et at.. 2005). Indeed. lo .... 'er temperatures lower the rate of 

biochem ical processes, and total and uncontrolled freezing of an organism renders all 

watcr inaccessible to the cell's biochemistry, Moreover, because water expands while 

freezing, its so lidification disrupts the tissues and mechanically damages the cell 

membranes, which results in cell leakage - and death - upon thawing. The establishmenl 



of an lee House on Earth thus could easi ly have been a death sentence for Li fe itself. Life. 

however. persisted and adapted. 

Ada ptations del'eloped by homeothermic endotherms 

First of alL freezing could be inherently avoided by those animals - birds and mammals ­

that had evolved the ability to metabolically generate and maintain high body 

temperatures independent of their thermal environment. Endothenny - which emerged 

independently in these two lineages during the Cretaceous. and possibly earlier in 

mammals (Ruben. 1995; Ruben & lones. 2000; Hi llenius & Ruben. 2004; Portner. 2004: 

Lovegrove, 20 12) - was a convenient pre-requisite 10 a cooling cl imate: freez ing cou ld be 

avoided by metabolically keeping the Ixxiy temperatures above the freezing point (FP) of 

the body nuids. As the global temperature progressively dropped dur ing the Eocene. birds 

and mammals took over the niches left vacant by the retreating ectothenns. and 

eventually became the dominant terrestrial vertebrate clades in high latitude 

environments. 

While endothermy allows animals to stay acti ve in the cold. it is a highly costly 

adaptat ion. and the energy invested in keeping the body at a constant warm temperature 

in the face of heavy heat loss to the env ironment (homeothermy) must be maintained 

through constant food availability. Seasonal migration to wanner locations thus became a 

key to survival for those animals that cannOI access enough resources duri ng winter. The 

best known examples of animals using this strategy are found among birds. in which 

migratory behaviour is known to haw evolved independently several times (pullido. 



2007), and in some instances, likely in response to climate cooling (see review by 

Sa lewski & Bruderer, 2007). In contrast. animals that are pennancnt residents of cold 

latitudes evolved resistance strategies such as better insulation against heat loss. rete 

mirabile to wann the blood going from the limbs to the heart. tissue eurythenny. 

relatively compact body shape. and higher metabolism (Scholander. 1955; Lovegrove. 

2001; Portner. 2004). Among these animals, some actively forage while maintaining high 

metabolism and body temperatures. and rely on efficient body insulation while resting or 

sleeping. On the other hand. some birds will enter a torpid. hypothennic-hypomctabolic 

state during the cold winter nights, and resume normal act ivity during the day. thus sav ing 

precious energy (Schleucher, 2004). This ability to switch from a homeothermic state to a 

more poiki lothennic-like state on a dai ly basis is defined as heterothenny. 

Some other animals take controlled hypothennia and hypometabolism a step 

fu rther, by entering hibernation. This fascinating trait is thought to have evolved from the 

ples iomorphic ability of ancestral mammals 10 perfonn daily heterothenny (reviewed by 

Grigg et al., 2004). In mammals. heterothenny likely led to the evolution of endothenny 

(portner, 2004; Lovegrove, 2012). and is essentially lost in non-hibernating mammals. As 

winter closes in. hibernators accumulate food and/or fat reserves, select 

microenvironments (h ibernacula) where the temperature will stay around or above DoC, 

and allow their metabolism and body temperatures to lower significantly. in a controllt:d 

fashion. For instance, the core temperature ofa hibernating Arctic ground squirrel will 

fall as low as _2 °C, while the ground temperature varies between -10 and _15 °C (Boyer 

& Barnes. 1999). 



On another note -and interestingly - facultative endothermy exists in some plants 

and insects, while regional endothermy has been reported in reptiles and fish (Heinrich. 

1974: McNab, 1983; Minorsky. 2003; Dickson & Graham. 2004). However. endothermy 

is not considered a tool against freezing in thcsc organisms. 

Ada ptations developed byectotherms 

For those life forms that did not evolve endothenny, migration and hibernation are 

strategies in use. Many spedes of insects and fish will retreat to warmer regions at the 

approach of winter (Oberhauser & Peterson, 2003: Goddard & Fletcher. 2002). Others 

will enter dormancy in a hibemaculum where they arc in no danger of freezi ng. Th is laller 

line of action is followed by some insects, includ ing the mosquitoes (Becker el 01., 2010). 

Moreover, various amphibians and reptiles will bury in the soft sed iment at the bottom of 

icc-covered ponds, lower their metabolism. and survive in anox ia in this thennally 

buffered environment (Bouti lier cl (II .. 1997; Jackson, 2002). A sha llow water marine 

fish, the cunner (Taulogolabrus arispen-us), will hide among rocks or in crevices on the 

seabed, enter a torpid state. and avoid contact with suspended ice crystals while tolerat ing 

seawater temperatures near - 2 °C (Green & Farwell, [971). All these animals. as do the 

endotherms. practice what is collectively called freeze avoidance strategies. For 

organisms that cannot select an environment or hibemaculum of stable. non-freezing 

temperature. two options remain: to to lerate or resist freezing. 

Freezing tolerance is found among numerous life fonns. including microbes. 

plants. invertebrates, amphibians, and reptiles (Kukal el a/.. 1988: Storey & Storey, 1996: 



Loomis & Zinser. 2001; Voituron 1:/ (I/.. 2002: Walker ('/(1/.. 2006). A fascinating and 

widely stud ied example of such freeze tolerance is that of the wood frog (Ranfl sill'lllica). 

which overwinters underneath the snow-covered leaf litter. and allows itself to freeze 

solid if temperatures fall below its eq uilibrium FP (rev iewed by Storey & Storey. 2004). 

The freezing will init iate through skin contact wi th icc (Layne et (II.. 1995), and will first 

spread within fluid spaces (e.g. the abdominal cavity. eye lens). tben through the vascular 

spaces of the organs. drawing water out of the cel ls. Here. extracellular init ia tion of 

freezi ng is crucial. Indeed, as the highly organised intracellular environment is 

mechanically disrupted by the expanding icc. intracellular freez ing leads to death in most 

cases (Sinclair & Renault . 20 10). To avoid uncontrolled and hannful icc growth within its 

body. the wood frog ut ilizes ice-nuc leating proteins (INPs). These lNPs are of two 

sources: some are secreted in the frog's plasma (Wolanczyk ('/ (1/.. 1990; Storey e/a/., 

1992). while olhers originate from lNP-produeing bacteria eo lonising the skin and gut of 

the animal (Lee el al .• 1995). By lowering the amount of under cooling of its body fluids. 

the INPs grant the wood frog a controlled and progressive freezing. [n the absence of ice 

nucleators (small icc crystals or impurities). undercooling occurs when the temperature of 

a given fluid is lowered below its FP. An undercooled flu id will ultimately freeze 

sponteanously several degrees below its FP. at a point ca lled the undercooling point. 

INPs were shown to reduce the amount of undercooling. promoting freezing 

nearer the FP ofa given fluid. For freeze-tolerant organisms. th is is of cnlCial importance: 

the higher the degree ofundercoo[ing. the faster the ice gro\\1h as nucleation initiates. and 

the higher the potent ial for damage to the cell membranes. INPs thus promote a more 



controlled. gradual ice growth to occur. which lowers chances of lethal punctures or 

shearing to the cellular membranes. As ice slowly propagates. the frog's cd Is will get 

progressively dehydratcd by osmosis. i3y becoming highl y concentratcd in sa lt and othcr 

osmolytes (inc luding the cryoprotectant glucose). the inncr cell environment will have a 

lower FP that will prevent it from freezing at the temperatures the organism endures. The 

animal wi ll surv ive in this condition unt il the spring. when it thaws and resume activi ty. 

While some details of this mechanism change among species. one combination remains 

crucial : the presence of bath cryoprotectants and icc nucleators. which together promote 

controlled extrace llular ice grolMh. 

Finally. a strategy shared by a staggering number of eClolhenns allows survival at 

subzero temperatures: freeze res istance. This is accomplished by a decrease of lhe 

organismal FP below that of the surrounding environment. The most obv ious advantage 

of this strategy is the maintenance of activity in the cold polar environments. and during 

winter in the temperate regions of the globe. Sti ll . some freeze resistant species 

overwinter in an inactive state. The spruce budwonn is one such example (reviewed by 

Tyshenko et al .• 1997). These insects spend the winter hidden in cocoons at the tip of 

conifer branches where they can withstand temperatures of ::;: ·30°C. They decrease the FP 

of their hemolymph using different cryoprotectants. such as glycerol. which can be 

accumulated at high concentrations before reaching cytotoxic levels (glycerol is 

considered an osmotically compati ble solute. as opposed to Nael: Watanabe et al .. 2003). 

as well as unique molecules, called antifreeze proteins (AFPs) (Hew et al . . 1983: Qin et 

at.. 2007). AFPs inhibit ice growth by lowering the FP of their hosts to or preferentiall y. 



past the coldest temperature they face in their environment. and can be found across livc 

kingdoms of li fe (according to Cavalier-Smith. 2004). within an extensive list of freeze 

resistant ectolhennic organisms ranging from bacteria (Gilbert 1:1 01.. 2004: Raymond 1:1 

01 .• 20(8). fungi (Hoshino 1'1 01.. 20(3) and microalgae (Jam:eh 1:1 (iI.. 2006).10 vascular 

plants (Griffith & Yaish. 2004). nematodes (Wharton el at .. 20(5). Collembola (Graham 

& Davies, 20(5). arachnids (Duman el at., 2004). insects (see above), crus taceans (Kiko. 

20 I 0). and fishes (reviewed in Flelcher ('I al.. 200 I: Goddard & Fletcher. 20(2). The rich 

diversity of these proteins bet .... 'een and even with in these groups suggests that AFPs 

evolved independently several times in response to the shared threat of freezing faced by 

life on Earth during the Cenozoic glaciations. 

Interestingly, the synthesis of AFPs is not limited to freeze res istant organi sms. 

For instance. a freeze tolerant insect has recently been found to produce antifreeze agents 

(Walters ('I al.. 2009). The role of this agent within the freeze tolerance strategy of this 

animal is unknown. but may prevent the recrystall ization ofiee duri ng freeze-thaw 

episodes (see later sections). In freeze tolerant plants. the presence of weak AFPs exist as 

a mechanism to favor the fonnation of ice at relatively high temperatures. which allows 

for a slower more controlled ice growth (they can act as lNPs). and the inhibition of 

recrystallization during freeze-thaw cycles (Griffith & Yaish. 20(4). Finally. an extreme 

case of freeze-resista nce was recently discovered in an Alaskan popu lation of the red flat 

bark beetle (Cucujus clavipes) which can surv ive temperatures down to - IOO ' C (SfomlO 

et al .. 2010). These insects do!>() in a vi trified state that is accomplished through 

extcnsive dehydration and elevation of glycerol and AFP concentrations. Here. the AFPs 



not only lov.'er the FP of these insects. but also mask potential ice nucleators. When the 

hemolymph of the beetle reaches the supercooling point (- -40 "C). the animal freezes 

instantly. In some cases. as the supercooling point dropped below 58 ' C (which can be 

encountered in the insect"s harsh winter environment). the occurrence of vi trification was 

demonstrated through the use of differential scanning calorimetry (Sformo el 01.,2010). 

In this instance. no ice crystals formed: the water insh::ad adopted a glass-like state 

(amorphous ice) without the expansion characteristic of normal ice formation. 

Mechanica l cell damage was thus avoided. 

AFPs and INPs are part ofa functional group of proteins recently grouped under 

the general appellation "ice-binding proteins" (IBP) (Janech el a/ .. 2006). As Iheir name 

indicates. alllBPs share a high amnity 10 the molecular structure ofwaler in its sol id 

phase. to which they bind. Today. the AFPs aretbe mosl widely studied of the IBPs. and 

were the first to be discovered by DeVries & Wohlschlag(1969) in Ihe plasma ofa 

freeze-resistant Antarctic teleost fi sh, the bald rockcod (TrI.'malomu.\"l l'agOlhl!nia 

borchgrevinki. family Notolhen;idae), 

T he d iscovery of AFr s in freeze resistant teleost fishes 

The road to the understanding of organismal freeze resistance opened in the early I 950s. 

when Dr. R. H. Backus asked Dr. r. F. Scholander Ihe following question: 

··When arctic fishes swim about in ice water at -1.7 to _1 .8°C, why don't they freeze? Do 

they have twice as high an osmotic concentrat ion as ordinary tishes [ .. JT (Seho lander el 

al .. 1957) 



This prompted the latter to go to Labrador. After many experi ments on fishes ret rieved 

from the frigid waters of Hebron Fjord - and measurements of their blood FPs - the 

scientist gave what he believed then to be an easy answer to what appeared to be an 

"aurJctiveiysimpleproblem": 

"The shallow water fish moving about in the ice in the winter double their 

osmoconcentration at that time. i.e., until it almost matches the sca watcr. and are thereby 

protected against freezing:' (Scholandere/a/ .. 1957) 

These fish did have FPs nearing that of seawater. but Dr. Scholander was 

mistaken in the interpretation of the underlying cause. This is because his field 

osmometer didn't offer the accuracy needed to detect a feature nowadays considered 

diagnostic of the presence of AFPs: freezing hysteresis (HI) - i.e. the discrepancy 

between the FP and the melting point (MP) ofa solution . Although he did notice a slight 

FH (- D. I 0c) in the plasma of his fishes. the value was so low (and only D.D5°C above the 

difference measured in his control) that it was not given further thought. In fact. we now 

know that these measurements were underestimated . However. one thing was certain to 

this researcher and his colleagues: whatever was responsible for the lower Fl's of the 

shallow water Labradorean fishes. it was not NaCI (Scholander el al .. 1957). The fishes 

were "somewhat protected". and the molecule(s) responsible were still to be discovered. 

A few years later. Scholander and his colleges went back to t'lebron Fjord. in 

order to identify the osmolyte(s) responsible for the high winter FPs of these fishes. The 

species investigated then included the shorthorn scu lpin (Myoxacephaflls scorpills) and 



the Grt.--enland cod (Gadus ogac). Thcy measured the plasma concentrations ofa vast 

selection ofosmolytes, but their compi led contribution (convened in °c of FP depression) 

st ill did not match the absolute FPs measured with their osmometer (Gordon 1'1 al., 1962). 

They postulated that an obscure "antifreeze substance" may be responsible for this gap in 

their valucs. Interestingly, the amino acid present at the highest conccntration in thc 

shorthorn sculpin plasma was alanine (Gordon 1'1 a/., 1962). Nearly two decadcs latcr. a 

high-alanine content AFP wou ld be discovered by Hew er a/. ( 1980) in the plasma of that 

vcryspec ics. 

During the late I 960s, Arthur L. DcVries - then a doctoral student under the 

supervision of Dr. Donald Wohlschlag - found that several spec ies of Antarct ic 

notothcnioid fi sh had lo .... ·cr blood FPs than expected for tekosts. which arc normally 

hyposmotic to their environment. He successfu lly iso lated the osmolyte responsible for 

what he initially interpreted as being an isosmotic state with seawater. and deduced that it 

was a set of carbohydrate-containing proteins (DeVries & Wohlschlag, 1969). The 

heavily glyeosylated proteins were purified and characterised (DeVries 1'1 al.. 1970: 

Komatsu et aL. 1970). and their sequence and structure eventually sol ved (DeVries 1'1 (I/.. 

197 1; Shier 1'1 a/., 1972). This family of antifreeze agents became known as "antifreeze 

glyeoproteins" (AFGPs). 

AF(G) l's gmnt (reele resistance th rough thermal hysteresis 

Had these early investigators used a vapour point osmometer instead of a freezing 

point osmometer, the discovery of AFGPs and AFPs might have taken much longer. This 
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is because these fasc inating prote ins do not act in the same way as other solutes to lower 

the FP of a solution. In chemistry. the FP is a colligative property ofa so lution. i.e .• a 

property that undergoes changes with the addition of solutes. and that will solely depend 

on the amount of solutes added (number ofmolccules). not on their identity (s ize or mass. 

For instance. I M sucrose (342 gil) and I M NaCI (58.44 gil) wi ll lower the FP ofa 

solution to the same extent. Colligative FP depression occurs because the molecules of 

solute disturb the order and availability of the water molecules to a growing crystal. 

Hence. energy needs to be removed from the system for this entropy to dccreasc and for 

icc to form. As the FP decreases. so does the MP. as the two are at equi librium. Thus. in a 

system that follows colligative laws. the FP is tcrmcd "cquilibrium FP" 

In contrast. the FP ofa solution Ihat contains AF(G)Ps will not be at equilibrium 

with its MP (non-equilibrium FP). Thi s is because these proteins work non-colligative ly. 

i.e. they cause FP depression in a way that would not be predicted by their concentration 

alone. For instance. while the glycopeptides from Antarctic wcre found to be as cffcctive 

as NaCI in depressing the FP of water when compared on a mass basis (DeVries & 

Wohl schlag. 1969). thc AFGP proved to be 200 to 300 timcs more efficicnt when 

compared to the salt on a molal basis (DeVries I!I al.. 1970). Such non-colligative action 

of AF(G)Ps is a clear advantage for an organism. as most osmolytes would become 

cytotoxic at the concentrations necessary to prov ide freezing resistance. The mechanism 

by which AF(G)Ps lower the FP of solutions is accomplishcd by the binding of the 

proteins to the surface of nascent ice crystals. which halts thcir growth. Unrestricted icc 



gro\\.1h. j,e, freezing, will only occur once the non.equilibrium FP is reached. This 

explains why FH is characteristic of aqueous solutions that contain AF(G)Ps (Fig. 1.1). 

1) No AFPs Melting point 

Crystal grows Crystal melts • 2) AFPs 

~7 
Thermal Hysteresis Gap Crystal melts 

~ r Crystal stable 

Fig. 1.1. Thennal hysteresis and behaviour or ice crystals in presence (2) and absence ( I) 

or AF(G)ps. Image graciously provided by Dr. Peter Davies. 

The measurement of FH was first conducted by DeVries (1971) on a pure rraction 

or AFGPs from the serum oran Antarctic notothenioid /ish. He was the /irst to propose 

that the glycoproteins lowcr the FP of fish plasma by adsorption onto the surface of ice 

crystals. This led to the development of the theory of "'adsorption/inhibition·· as an 
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explanation for the non-colligative action of the AF(G)ps on FP (Raymond & DeVries. 

1977). A schematic of the FP depression mechanism can be visualised below (Fig. 1.2). 

anlifreeze 
molecule. 

Fig. 1.2. Mechanism by which AF(G)ps cause FP depression (and HI). according to the 

theory ofadsorptiortlinhibition (image modified from: Arthur L. DeVrie~. 'Antifn."eze 

(biology)," in AecessScience, OMcGraw-Hill Companies. 2008. 

11llr:llwww.acce~sscience . coll1 ). 

If the temperature ofa so lution containing ice crystals with adsorbed AF(G)Ps is 

lowered below the equilibrium FP (which is equal to the MI'. hence its name). curved ice 

fronts begin to fonn between adjacent adsorbed AF(G)Ps. As ice nonnally lonns in a 

highly organised fashion, growth of these fronts will hal t at a certain level of curvature 

(Kelvin effect). The extent to which the FP will be depressed will be a function of the 

concentration of AF(G)Ps. The closer together are the bound proteins at the erystal"s 
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surface. the faster the curvature of the intercalated ice fronts attains a threshold whereby 

gro\l,1h ceases. Hence. in the presence of AF(G)Ps. growth will only resume once lower 

temperatures arc reached. At that point. new water molecules with lower kinetic energy 

will be able to bind to thc crystal. despite doing so into a less ordered and angular fashion 

The temperature at which this occurs corresponds to the non-equilibrium FP. An icc 

crystal then appears to burst out of control a long its c·axis (F ig. 1.2). as the curved ice 

fronts finall y resume growth and fuse over the embedded AFPs. The AF(G)Ps are then 

buried with a speed being proportional to the extent to which the fluid was undercooled 

(i.e. cooled below the equilibrium r p) 

If the AF(G)Ps halt ice growth because they adsorb to the surface of an ice crystal. 

could they prevent melt ing from occuring? Knight & DeVries (1989) were the first to 

obtain qua li tative evidence that this is indeed the case. They observed irregular faceting 

fonning within a hole that they had drilled in ice and filled with an AFP-containing 

solution. This observation strongly suggested that the proteins had bound to the walls of 

the hole and wou ld not allow melting to occur unifonn ly. as it did in the control 

experiment (conducted with pure water). Their work offered qualitati"e evidence that the 

MP can be affected by adsorbed AF(G)Ps. and that some level of melting hysteresis (MH) 

will occur in AF(G)P--containing solutions (akin to the r t-I that was by then already 

routinely measured). The topic was then virtually forgotten for about two decades. until 

Cc lik el al. (20 10) resumed investigation and found quantitative evidence of melting 

hysteresis MH in the presence of AFPs. Using a Cl ifton nanoliter osmometer (a device 

which allows the user to visualise the behaviour of microscopic ice crystals in controlled 



thermal condit ions). they froze a solution contain ing AFPs. and slowly melted it unti l a 

single tiny crystal remained. The highest temperature at which this crystal would stop 

shrinking and remain stable was determined as the MP of the solution. They then 

gradually lowered the sample's temperature down through its FH window to a poim 

where the crystal burst and the sample re-froze. Finally. they increased the temperature 

unti l the sample started to melt again. Interestingly, at the melting temperature detcmlined 

above. all but the original ice crystal had melted. This is because the AF(G)Ps bound 10 

that crystal before the sample was re-frozen. and were now preventing bound water 

molecules from leaving the ice fractio n for the liquid fraction. The sarnple· s temperature 

needed a further increase in temperature in order to finall y melt the crystal. Even in the 

presence ofre lativcly high concentrations of AFPs « 10 mglml). the resulting MH was 

small (at most. a few tenths ofa degree) when compared to what the FH would have 

been. This explains why it could not easily be detected before. when the Clifton nanoliter 

osmometer was used with a coarser temperature cont rol. The study ofCelik ('I (1/. (2010) 

not only gave irrefutable proof of the existence ofM H. it also consolidated the theory of 

adsorption/inhibition (along with studies from Wilson el (1/ .• 1993; Pertaya eill/ .. 2007) 

according to which AF(G)Ps bind irreversibly to ice (Raymond & DeVries, 1977). 

The amount of thermal hysteresis (TH = FH + MH) measured in an aqueous 

sample has been shown to be proportional to the concentration of AF(G)Ps in solution 

(DeVries. 1971: Celik el a/.. 2010). according to a non-linear re lationship which can be 

determined by building a standard curve of lll/ lAFPI for any new A F(G)p tested (Davies 
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& Hew. 1990) (see Fig. 1.3). In contrast, other so lutes (l ike NaCI or sugars), follow a 

linear relationship with temperature (DeVries cl "f., 1970). 
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Fig. ) ,3, Standard curveofnUrAFP] from Desjardinscl af. (2006), us ing type III AFPs 

from ocean pout (Macrozoarces americanlls) resuspended in ammonium bicarbonate 

buiTer(O.Or M). 

For a given [A F(G)P], a threshold (plateau) will be approached where the FPIMP 

of the solution cannot be decreased (FP) or increased (MP) signifi cant ly further from the 

equilibrium FP/MP. The location of lhis threshold will depend on the type of AFP 

investigated. and on the presence of other osmolytes in solution. some of which have b .. o.en 

16 



shown to enhance the activi ty of AF(GjPs (Duman. 200 1; Jin. 2003; Evans 1'1 (II .. 2007: 

Amomwittawat el al.. 2009; Gong el al., 20 I 0). The magnitude o f the TH of a sample is 

also inversciy proportional to the size of the crystal and the rate of cooling u~ed during 

measurement (Takamichi ell/I. , 2007). In vim. AF(G)Ps will bind to nasccnt icc crystals 

that may be too small to be observed through a microscope. As a result. the non­

equi librium FP and MP of an AF(G)P-eontaining aqueous solution is likely always 

underestimated when measured in the laboratory. 

Other properties of AF(G)Ps 

While the achievement of freeze-resistance in living organisms bytheFP 

depression of their physiological fluids is a key feature of the AF(G)ps. these proteins 

display other unique and important properties. One of those is the inhibition of ice 

recrystallization (Knight el al.. 1984). lee recrystallization happens when the temperature 

ofa frozen sample fluctuates slightly below its MI'. This can be visualised and assessed 

experimentally using a "splat assay". Here, a bit of sample is splattered upon a plate of 

frozen metal and incubated for hours at low subzero temperatures (Knight e( al .. 1988). 

Under such thennal conditions. the tiny crystals thus generated will remain unchanged in 

the presence of even trace amounts of AF(G)P, wh ile those within a sample devoid of 

antifrecze will gradually increase in size. and decrease in numbers (as the water o f the 

smallest crystals is redristribuK-d to thc biggest ones). The outcome of icc reerystallisation 

can be experienced in everyday life. as coarse ice crystals in an ice cream quart or other 

frozen food item that has spent too much time in the grocery's freezer (which are self-
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defrosting regularly). To solve such palatability issues. a frozen dessert-producing 

company (Breyers. Unilever) actually patented the use of a fi sh AFP in some of their 

products (U.S. Patent # 200501 298 10. Fig. 1.4). The AFP (which they rc- Iabelled as " ice-

structuring prote in" to enhance public perception and avoid confusion with cthylcne 

glycol. the car antifreeze) is expressed by and extracted from cultures of genetieally-

modifi ed yeas t (Saccharomyces cercl'isiae) that conta ins an AFP gene from the te leost 

ocean pout (Macrozoarc('s americ-anus). fo und in the shallow waters of the North Atlantic 

Ocean. The cost of including AF(G)Ps into frozen products is negligible. because 

AF(G)Ps perfonn ice recrysta ll izat ion inhibit ion at ve ry low concentrations ( 10-" mg/m !. 

Knight Cf af .. 1984). A team from the Uni versity of Guelph is current ly working on 

AF(G)Ps applications in the frozen foods industry; they are interested in AFPs from 

winter wheat grass. Triticum aestivum (Kontogiorgos et a{ .. 2007). 
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Fig. 1.4. A fi sh AFP is pan of the ingredients listed in a frozen dessert produced by 

Breyers (Unilever). Source: hllp:llwww.brcycrs.com/produetslSmoolh-and-Dream y-Bars­

and-Sandwiehcsfrrio le-Chocolalc-Chip-Bars.aspx 
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In nature. ice recrystallization can be a life-threatening issue. both during cycles of 

extreme freeze·thaw (Walker el (II.. 2006), and when slight variations around the 110n­

equilibrium FP and MP occur. For instance. some AFGP-producing notothenioid fi shes 

thai live in the perennially icy waters of the Antarctic are known 10 harbour icc crystals 

within their spleen (Praebel et al .• 2009). Funher investigation revealed that ice crystals 

bound with AFGPs are selectively absorbed by phagocytes in the spleen tissue. where 

they are stored (Evans et al .• 2010). To reach this conclusion. the researchers used 

nanospheres coated with fluorescently-Iabelled AFGPs that they injected in the fish' s 

bloodstream. It is yet unverified if these Antarctic fi shes can ever remove their internal 

icc. but it is theoretically possible. Indeed. these fish can encounter local temperature 

variations that span their TH window in nature. This may occur when performing venical 

movements through the water column during summer towards the warmer surface layers 

(Hunt 1:/(11.. 2003). That is where the danger arises. Were it not for AF(G)Ps conferring 

anti.recrystallisation propenies. a fi sh moving to warmer waters at temperatures between 

its non-equilibrium FP and MP (TH gap) could suffer damage to its tissues as some of its 

splenic ice crystals would grow bigger. Fonunately. the ice grains are completely 

neutralised in the presence of AF(G)Ps. Recrystall isation inhibition is possible because. 

as mentioned above. AF(G)Ps bind irreversibly to icc. 

Yet another propeny of AF(G)Ps appears to be cell membrane protection at low 

temperatures (Rubinsky el (I/. , 1990: reviewed by Wang. 2000 and Tomczak et (Ii. 2002). 

AI hypothermic temperatures, the membranes of non-acclimated cells williransiently leak 

as they pass from a liquid-crystalline state to a gel-like state (reviewed in Tomczak et al .. 
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2002). During the phase transition. both states are thought to co-cxist. which may actually 

cause the leakage through packing defects (Clerc & Thompson. (995). Rubinsky el 1I1 

(1990.1991.1992) were the first to measure an effect of AF(G)Pson cell survival in 

cold. hypothermic temperatures. They chiJlt:-d pig oocytes in the presence of AFGPs 

extracted from notothenioid blood and did not observe the level of damage that would 

usually occur at thesc temperatures. Instead. at a concentration of I mglmL 80% survival 

was observed among the cells. As an explanation. they proposed that the AF(G)ps 

prevcnt mammalian cell leakage by blocking the ion channels. which they viewed as the 

cellular weak link. Because a later study by Hays er al. (1996) showed that AF(G)Ps 

preserve the integrity ofliposomes (artificially prepared vesicles whose membrane do not 

contain proteins, therefore ion channels), it was speculated that AF(G)ps would instead 

impro\'c the imerae/ioll between the membrane proteins and phoSPholipids. as the phase 

transition takes place (Tomczak & Crowe. 2002). The AF(G)Ps may do so by inserting 

themselves into the membrane, or binding to its surface. depending of the nature of the 

AF(G)p studied (reviewed in Inglis el al.. 2006). These observations are exciting because 

they imply that the AF(G)Ps could be used for cold storage of human cells and organs 

(Lee et af .. 1992; Tablin er af .. 1996: Amir et al .. 2oo4a. 2004b). which would extend 

their "shelf lifc" between donor and patient. although certain issues need 10 be resolved 

first (see Inglis et al., 2005). This membrane stabili;r..ation property also implies that in 

nature. AF(G)Ps might be useful to organisms facing high subzero (non-freezing) 

temperatures. through a mechanism yet to be fully elucidated. 
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The storage of reproductive cells and embryos at subzero temperatures in the 

presence of AFPs may represent an additional path. and encouraging results have been 

obtained (Rubinsky 1.'1 (II. , 1992; Arav 1.'1 aL 1993; Robles 1.'1 al.. 2005: Le Franrvois 1.'1 (II., 

2008). Experiments arc currently undcr way in Dr. Fletcher's lab to see if a line of cells 

from the non.A F(G)P-producing Chinook salmon (Oncorhynchus Ishall'ylscha) exposed 

to cold/freezing temperatures will show increased survival in the presence of AFPs. This 

role in the prcvention of cell leakage during exposure to cold temperatures also attracted 

the attention of the cosmetic industry. with LlFTLAB recently commercial ising a linc of 

facial creams containing a fish AFP among its ingredients 

(http: //theliftlab.com!vl /oagcslSli OP.htm]). The company currently holds patcnts that 

grant them the right to use AF(G)Ps from fish and insects in their products. They renamed 

the AF(G)ps "cell protection protein". in an attempt to emphasis their claim that the 

customer' s skin would be protected against cold damage. 

Interestingly, another potential application of AF(G)Ps invo lvcs a rcsult that is the 

polar opposite to those just mentioned: cell destruction. This was inspired by anothcr 

unique property of the AF(G)Ps: ice-shaping. As illustrated in Fig. 1.2. bound AF(G)ps 

will causc an ice crystal to develop an hexagonal shape by binding on its prism face (as 

opposed to icc with no AF(G)ps. which will expand as a rounded disk). Because the 

proteins can also bind to the pyramidal plane of the growing crystal . but cannot do so on 

its basa l plane. the ice will elongate along the c-axis (Fig. 1.2). Thi s eventually stabilises 

the crystal as a hexagonal bipyramid between the equil ibrium and non-equilibrium FPs of 

the fluid (see image on Fig. 1.[), Once the non-equilibrium FP is reached (which should 



not happen in the host organism). gro\\'Ih will resume in an uncontrolled fashion. with 

ncedle-like projections sprouting from the tips of the bipyramid along the c-axis. The 

higher the [AF(G)PJ . the greater the undercooling. and the more dramatic thi s phenomena 

will be. Obviously. if prompted to occur in vil·o. the explosive growth of such needle-like 

crystals would potentially puncture and/or shear any ce ll membranes in their paths. This 

cell-killing consequence of the ice-shaping properties of AF(G)Ps has been not iced and 

tested by medical research teams in an attempt to improve the success rate of cryosurgery. 

Used on small and localised tumors. cryosurgery is perfonned by locally freezing 

cancerous ce ll s with liquid nitrogen circulated through a ··cryoprobe". When highl y 

concentrated AFP solutions were injected into the tumors prior to freezing. resulting ce ll 

death percentages were found to be significan tly higher in mice (Pham 1:1 al.. 1999) and 

rats (Muldrew el af .• 2001). 

This destructive effect of ice helps us to understand why organisms that tolerate 

freezing (such as Rono pipiens) vitally need to control how and where ice grows within 

their bodies. by the secretion of INPs. Thi s is also why freeze-resistant animals - such as 

some teleostean fi shes and the spruce budwonn - must not undercool past their non­

equi librium FP. As a result. organismal freeze resistance will be fine ly tuned to the needs 

of the organi sm. For instance. the spruce budworm will produce enough glycero l and 

AFPs to keep its body fluid s liquid down to -30 °C and slightly colder. while marine 

teleosts only need to protect themse lves from freczing down to - _2 °C, the FP of 

seawater. As water is a more thennally butTered medium than is air. it docs not freeze 

down to great depths at low atmospheric temperatures. 
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The threat of freezing in the ma rine enl'ironment: the ease of the teleost fi shes 

Unlike terrestrial organisms, aquatic organisms arc not typically exposed to 

temperatures lower than the FP ofwaler, freeze-resistant or freeze-tolerant invenebrates 

inhabiting the intenidal zone are an exception (Aarsct. 1982; Murphy, 1983). IndL-ed, 

even in bitterly cold atmospheric conditions, no substamial body of water will freeze to 

the bottom. Fresh water reaches its maximum density at 4°C, and the deepest regions of 

big lakes wi ll stay at this temperature year-round. In Ihe oceans, water (at 35 ppt salinity) 

is al its densest as it reaches its FP (- -2.0 QC), wh ile the temperature of the deep ocean 

water (DOW) remains stable between 0 and 2 °C (Lear el al., 2000). Thus, animals thaI 

live deeper in the water column are protected against freezing by their very location. 

The FP and other colligative properties of seawater will obv iously vary accordi ng 

to its salt contents. The high themlal butTering capac ity of seawater can be best 

understood when comparing its physical properties 10 those of ai r (see Table [.1). At 0 °C 

and sea level atmospheric pn:ssure, 35 ppt seawater has a specific heat capacity (S HC) 

that is four-fold that of air and a density that is - 800 times higher. On a volumetric basis. 

this means that - 3200 times more heat would need to be applied to a given volume of 

seawater. in order to e levate its temperature by the same amount as the equivalent volume 

of air. Scaled up to the total mass they occupy on Earth, the heat capacity (HC) oflhe 

oceans would be - 1000 times higher than that of the whole atmosphere. The seawaler 

would then have to absorb roughly 1000 times more heat than the latter. before its global 

temperature increases a mere 1 oK or 1 °C (Table [.1). Of course, these arc rough 

estimates. but they allow a general appreciation of the fonnidable thennal butTering 
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power of water. and explain why the surface temperature of great bodie~ ofwatcr can 

decrease enough to cause the fonnation of an ice cover. while the tcmperature of the 

undcrly ing watcrs w ill rcmain quite stable. 

Medium 

Seawater 

Air 

SCH 
(kJ/kg'K) 

3.99 

1.00 

1028. 10 

1.29 

YCH 
(kllm" K) 

4 102.12 

1.29 

Tota l mass 
(kg) 

l.4x1011 

5.2 X 101 ~ 

Total HC 
(kl /kg'K) 

5.6x1011 

5.2 X 101 ~ 

Table 1.1. Specific heat capacity (S HC). dens ity, vol umetric heat capacity (V,iC), tota l 

mass. and estimated tota l heat capacity (tota l HC) of seawater and air (to a sa linity of 35 

ppt). 

Freeze-intolerant marine plants and invertebrates. wh ich arc isosmotic to seawater 

(Scholander el (II .• 1957). are in no danger of freezing if they encounter ice within the 

water. as long as they are not exposed to the colder air. In the case of marine fishes . the 

ancient groups Chondrichthyes. Coe lacanth. and Agnatha are isosmotic (or slightly 

hyperosmotic) 10 seawater. The first two groups accumulate diverse osmolytes -

principally urca and tr imethylamine ox ide - tot thai end. wh ile the taller mainta ins a fluid 

composition highly sim ilar (almost isoion ic)to that ofseawaler (Griffith, 1981. 1987). To 

maintain isosmotieity w ith seawater is how. for example. the Greenland shark can swim 

underneath the Arctic and North At lant ic sea ice in search of prey (Skomal & Benz. 2004) 

without any need for AF(G)Ps. The marine tekust fi shes. however. are different in that 

they universally maintain a hyposmotic state comparatively to their environment 

(Griffith. 1981; Evans. 2008). This feat ure is likely a remnant ofa freshwater emergence 



(reviewed in Finn & KristotTersen. 2007). These fish are thus in danger offreezing if they 

contact ice at temperatures below their FP. In comparison, fresh water teleosts arc 

hyperosmotic to their environment (Evans. 2008). As such. and unlike their marine 

counterparts. they are not threatened by freezing and do not need AF(G)Ps. 

From polar to temperate latitudes, seawater will freeze nearer the coast. whcre the 

proximity to colder land and lower heat input from butTering deeper waters will favour its 

surface freezing. A coastal freeze-risk CCOlOne can thus be found seasonally in these 

rcgions. wherc the risk of freezing will decrease with depth. Without adaptation. marine 

teleosts could freeze if they contact ice crystals in the water column. As ice has a lower 

dcnsi ty than liquid water, it has positive buoyancy. and will nonnally stay near the 

surface (see exceptions below). Thus. freeze-susceptib le fishes will nonnally be found in 

deeper waters. where they survive below their FP in an undercooled state (Scholander et 

(11.,1957). Conversely, marine tcleosls li\' ing in sha llowcr surface and coastal watcrs arc 

expected to face, at least seasonally, the threat of freezing. Consequently. most fish that 

stay in the shallowest part of the "freeze risk ecozone" are fully protected by AF(G)Ps. 

However, ice can occasionally occur at greater depths. which renders dimcult a 

clearly delined depth limit to the "freeze risk ecozone", For instance, if a loose slushy ice 

cover ex ists al Ihe surface, high wind-driven turbulence can drive surface frazil ice to a 

depth of several metres (Svensson & Omstedt. 1998). Ice crystals brought down by water 

column convective overturning, or when icebergs scrape the seafl oor can occur as well 

(reviewed in Goddard & Fletcher, 2002). Moreover. ice can be found tethered to the 

bottom (anchor ice reaches depths of30 m in Antarctica, but lesser depths in the Arctic; 
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Dayton el al.. 1969; Reimnitz el al., 1987). Finally. it can form underneath a d(:ep coastal 

glacial ice sheet (e.g. ice platelets were collected at a depth of250 m near the Filcher Ice 

Shelf in Antarctica, Dieckmann, 1986), or can reach down following denser brine sinking 

towards the seanoor from forming surface ice C'brinicles"; Martin. 1974; see also: 

http://www.bbc.co.uk/naturc/ 15835017). As thc harshest conditions occur in the Antarctic 

(deeper anchor ice and ice formation down to several hundreds of meters), fish that live in 

these waters often produce high AF(G)P levels, even when found at great depths 

(DeVries & Cheng, 2005). However, all deeper dwelling temperate Nonh Atlantic fi sh 

investigated for TH in their plasma (e.g. the American plaice, Hippog/oSJoides 

platessoides, and the spotted wolffish, Anarhichas minor) were found to have levcls 

insufficient to grant freeze resistance (Goddard & Fletcher. 2002; Desjardins et af., 2006). 

Exceptional meteorogical conditions or icebergs (scouring the sea noor) moving ice 

crystals into deeper water notwithstanding, fish living in temperate waters deeper than 30 

m theoretically escape the threat offreczing. Thus. thehere·proposed "freeze risk 

ecozone" concept (coined by Dr. Garth L. Fletcher) comprises depths where these 

phenomena can occur. 

In generaL teleost fish plasma or serum osmolarit ies translate to an equilibrium FP 

that ranges between -0.6 and -0.8 "C (Holmes & Donaldson, 1969). Some polar fishes 

have evolved slightly higher serum osmolarities than their temperate counterparts 

(Gordon el al., 1962; O'Grady & DeVries. 1982), with resulting equilibrium Frs 

dropping as low as -1.2 "C in some species (Dobbs & DeVries, 1975). However. the 

colligative contribution of the osmolytes was never sufficient to bring their plasma 



equilibrium FP down to that of their surroundi ngs. Some temperate teleosts also show 

seasonal fluctuation of their plasma OSmOI}1e concentrations, with higher val ues re3ched 

in winter (Fletcher, 1977. Lewis ('/ a/., 2004; Desj3rdins ('/ (I/., 2006). For in~tance. the 

rainbow smelt (Osmcrus monia.>;;). found in the northern Allantic. synthesises high plasma 

levels of relatively inert glycerol. which contributes - 0.5 'C ofFP depression in the 

winter (Lewis el a/.. 2004). Neverthelcss. these fish - as wcl l as other tcmperate and polar 

species - st ill need to lower their FP further in order to resist freezing. This is where the 

AF(G)Ps enter the equation. 

Attaining frl'eze resistance by evolving an isosmotic state with seawater would 

have walTIlnted a whole re-adaptation of organisma l. physiological and biochemical 

processes in marine telcosts. Thus, to evolve AF(G)ps in order to lower the FP non­

colligativcly to (or below) that of seawater. appears a more facile solution. as it docs not 

atTect the ionic and osmotic balance of the fish. Perhaps for this reason. the evolution of 

AF(G)p in marine teleost~ came out as the universal response to the threat offree;:ing, 

with these proteins emerging independently in a beautiful example of convergent 

evolution (Scott er al., 1986; Fletcher ef al.. 2001; Goddard & Fletcher. 20(2). 

Teleost fishes as a mudel fur the study of AFI> evolution 

Teleost fishes emerged relat ively Tl'Cently, perhaps during the middle or late 

Triassic. 220 to 200 Ma ago (Nelson, 2006). Their ancestor. shared by other ray-finned 

fishes. likely dwelled within wann climatic conditions (Prochnow ef af .. 2006). It is thus 

pretty safe to postulate that the teleostean fishes only faced a serious threat offrcezing 
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since the Cenozoic, Indeed, the Earth was mostly within a d imate "Hotl·louse" before 

thtl! era. since as far back as - 200 Ma ago (Early Jurassic) (Fletcher el (If., 2007; 

Retallack, 2009: Price & Nunn. 2010: Dem ef af .. 20 I I: Jcnkyns el (It.. 20 11). This makes 

the study of AF(G)P evolution easier within this group than - for instance - in insects, 

which are an incommensurably diverse and ancient clade. Indeed, the first foss il evidcnce 

of an insect dates back to the early Devonian, some - 400 Ma ago (Enge l & Grimaldi. 

2004), wh ich means Ihat members of th is clade were exposed to one olher major glacia l 

cvent before the Cenozoic Era (Schemer et af., 2003), 

releosts are the most speeiose and diversified vertebrate clade on Earth. Nelson's 

descript ion gives a proper mcasure of that statement: 

"About 26 840 extant species. about 96% of a II extant fis hes, placed in 40 orders. 

448 families, and 4278 genera" (Nelson, 2006). 

Recent e\·idence from the field of molecular biology points 10 a whole genome 

duplication (WGD) event as a trigger to this explosive radiation (Hoegg e/ (II.. 2004: 

Volff, 200S). The main argument behind this is that a greater genetic template was made 

available to evolution. The important evolutive role of gene duplicat ion was brought 

under the spotlight by Ohno (1970), who proposed that after a duplication event, selective 

pressures that preserve the integrity of a givcn gene sequence are re laxed on one of the 

copies. which then becomes frec to accumulate random mutat ions. From there. three main 

paths await for such a duplicate: I) to be conserved as it is, or 2) to accumulate mutations 
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that will progressively erode its sequence (turning it into a pseudogene) or 3) enable it 10 

evolve into a different funcl ional entity (Wagner. 1998: Zhang. 2003: Innan & 

Kondrashow. 2010). For the laller option. an evolving duplicate can sercndipitously 

develop a completely novel functi on (neofunctionalisation) or simply improve a pre­

e:-;i sting. possibly competing one (subfunctionalisation). 

To possess at least two copies of each gene obviously allowed the evolution of an 

array of new phenotypes in the rapidly diversifying te leosts. With time. a lot of the 

supplemental copies that were not selccted for were eventually lost. The most dramatic 

case known to science of a post-duplication genome contraction in a fi sh can be seen in 

the puffer fi sh Tetraodon nigrol'iril/is. for which the genome has been sequenced (Jai llon 

1.'1 01.,2(04). Following detailed analysis, it was concluded that on ly 15 % of the gene 

duplicates were conserved in that species (Brunet 1.'1 al.. 2(06). Such genome contract ion 

(eventually leading to secondary diploidization) was observed in most teleost spec ies 

investigated (de Peer 1.'1 (I/.. 2009). Nevertheless, the WGD event that occurred at the base 

of the teleost lineage likely helped these fi sh to achieve their remarkable biodiversity. 

Teleost fi shes dom inate virtua lly a ll ecological niches in the oceans. from the great depths 

10 the shallows. from the tropics to the poles. where sea ice eventually became prevalent. 

Possessing some genes in duplicate (or more) may have offered a stepping stone 

for the evolution of AF(G)P in marine telcosts. At the onset of the first undisputed 

Cenozoic sea-level glaciations, at the Eocene-Oligocene boundary some 34 Ma ago 

(Zaehos ('/ (II., 2001. 2008: OeConto 1.'1 (1/ .• 2008). the teleostean marine shore fau na 

a lready bore a striking resemblance to modem assemblages (Greenwood 1.'1 (If .• 1966). 
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which means that contemporary teleost suborders and fam ilies were already - or about 10 

be - eSlabl ished (Scott el a/.. 1986). This situation likely e: .. plains the high divcrsity of 

AF(G)Ps evolved by fish belonging to distinct clades (Fig. 1.5). Indeed. it is now agreed 

that the several extant AF(G)p-bearing fish groups evolved thcir AF(G)ps independcnt ly. 

in front of the same and relatively recent threat of freezing (Scott 1:1 al .• 1986; Chen 1:1 

lIf .• 1997a; Fletcher 1:1 01 .• 200 1). Today, these AF(G)Ps are classified as type I. II. II I 

AFPs and AFG Ps based on thcir distinct structures and composition (Davies & Hew. 

1990). and the elucidation of thcir evolutionary origins is the focus of ongoing research 

(see fo llowing section). 

""""250=m""----'''''''''''''----- Atlantic herring ;~ II 
Arctic cod f,;' \, AFGP >150 my a 

I 

Ocean Pout . III 
) 

Snailfish -' I 

Sea Raven II 

Sculpin 

f""-""--- Antarctic toothfish AFGP 

""''''---- Cunner I 

~'-'i'00~m;;'"",;;;-_ Flounder ~ I 
l':'<>200"",m",c!o.m."""",_",,-__ Smelt II 

Fig 1.5. AF(G)Ps distribution within AF(G)P-producing tclcosts. The structures of thc 

different AFPs are shown (that of the AFG r is not yet resolved), and the approximate 
times of divergence oft he older fish clades are indicatcd. This image is used with thc 

pennission ofGauthierel af. (2011). who used the phylogenetic tree built by Miya elaf. 

(2003). and the divergence times proposed by Azuma ellil. (2008). 
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O rigin and emergence of the fish AF(G)I's 

The WGD event that occurred in the early teleost ancestor may have generated 

part of the raw materials needed to rapidly evolve a response to the new risk of freezing 

death. To deduce the o rigin of the AF(G)P genes and their products fi rst involves the 

comparison of the ir sequences to other nucleotide and am ino ac id sequences ava ilable in 

the databases. 

The first AF(G)P fo r which an evolutionary origin has been investigated is the 

type I[ AFP. These AFPs have been found and characterised in the Atlantic herring 

(GIl/pea harengl/s; famil y Clupeidae. o rder C lupeifo rmes) (Ewart & Fletcher. 1990: 

Ewart & Fletcher. 1993). the rainbow smelt and Japanese smelt (O.l'merlls mort/ax & 

H)1)() meslIsj(lponiclls. family Osmeridae. order Osmerifo rmes) (Ewart & Fletchcr. 1990: 

Ewart 1'1 (/1 . . 1992: Yamashita 1'1 (II.. 2003). the sea faven (Hemilriplerlls ameriC(lnIlS. 

fa mily Hemitripteridae. order Scorpaenifonnes) (S laughter 1'1 af.. 1981: Ng & Hew. 

1992). and the longsnoul poacher (Brachyopsis rOSfralllS. family Agonidae. order 

Scorpaenifo rmes) (N ishimiya el a/.. 2008). The presence of five disulfide bridges is the 

major distinguishing feature oflhese 14 to 24 kOa g lobular proteins (sec Davies & Sykes. 

1997). Although very sim ilar in structure. a major difference exists: the pro te ins from the 

sea raven and longsno ut poacher (order Scorpaenifonnes) do not need ca lcium fo r 

activity. while the ones from herring and smelt do (Ewart 1'1 al .• 1992: Nishimiya ef (/1 . . 

2008). This ra ised the possibility of an evolutionary origin from distinct precursor genes 

(Loewen el al .• 1998). However. the present consensus is thm all type II AFPs evolved 

fro m a Ca2+-dependant C-type k-c tin gcne (Ewart el af.. 1992. Ewart & Fletcher. 1993: 

31 



Liu eT al .. 2007; Graham 1.'1 aL 2oo8a). C-Ieetins are sugar-binding proteins whose ro le 

lies in mechanisms of recognit ion between cells and proteins. The type II AFP is 

obviously derived from their carbohydrate-binding site (Ewart eT af .• 1998). However. the 

genetic background for the evolutive mechanisms involved in the emergence of these 

AFPs is st ill lacking. For now. a simplified and likely explanation is that a C-type lectin 

progenitor gene was duplicated. with one copy eventually diverging into the type II AFP 

precursor gene (Cheng & DeVries. 2002). 

When comparing the four different type II AFPs together. another question comes 

to mind: are these AFPs related. and ifso. how? On that question. no consensus has been 

reached as of yet. A first suggestion was that the Ca1' _dependent and -independent AFPs 

are the result of convergent evolution (Fletcher 1.'1 af .• 2001). with the duplication and 

divergence of the original C-Iecti n gene occurring independently within the three teleost 

orders mentioned above. This offered a first tentative explanation for the presence of very 

simi lar AFPs among these distantly related fish groups (see Fig. 1.5). A recent study by 

Liu et af. (2007) suggested an alternative hypothesis: an init ial Cal' -dependent C-!cctin 

gene duplication happened in the common ancestor to all these fish groups. with one of 

the copies eventually giving rise (by subfunctionalisation) to a type II AFr. This AFP 

would have then evolved different ly within the descendent fish elades. with a more recent 

loss of their last Ca2+-binding site. causing the AFP from the Scorpaeniformes to become 

Ca"' -i ndependent. However. when look ing at the great genetic distance separat ing these 

fishes. and Ihe absence of AFP II genes in many c lades that emerged after the 

Clupeiformes (see Fig. 1.5). the scenario of widespread gene loss appears quite unlikely. 
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although it obviously occurred in some cases (e,g.. Tetraodon nigrol'iridis; Liu 1'1 aL 

2007). This is especially true as there seems to be no se lecti ve pressure a!;ting towards the 

loss of unneeded genetic material in eukaryotes (Davies. pers. com.), 

While it is very likely that the AFPs from the sca raven and the longsnout poacher 

share a common ancestor from an o lder Scorpaenifomlcs fish (- 67% identity between 

their amino acid sequences). common ancestry by descent appears somewhat far-fet ched 

when comparing the AFPs of the herring and the smelts (- 84% identity ocl\veen their 

amino acid sequences). Indeed. these spl~ ie s arc quite far apart on the e\'olutionary trce 

(see Fig. 1.5). As mentioned above. it seems incredible that the type II AFPs would have 

becn kcpt in the herring, but lost in the entire Eutelostei sulxlivision. except for the smelts 

and a fcw Scorpaenifonncs. Emergence in a common ancestor to the herring and thesc 

other fishes (dating back to > 250 Ma ago, Azuma el af .• 2008) would also have had to 

predate the onset of the Cenozoic glaciations by more than 200 Ma, This is 

counterin tui tive. considering that the recognised stimulus for AFP evolution is the 

presence of sea ice (Scott et af .• 1986), 

This laller reasoning brings forth again the afore-mentioned scenario of an 

indcpendcnt emergence of thcse proteins by convergent evolution (Fletcher 1'1 (If.. 200 I) 

However, if convergent evolution can potentially produce two nearly identical groups of 

isoforms independently by acting on the coding sequcncc ofa single gene (or gcnes; see 

next case). one would expect to see important differences in the non-coding regions (5' 

and 3' UTRs. and introns). which would not be subjected to select ion. Thus. important 

sequence divergence should be prescnt among these sequences. especial ly considering the 



great genetic distance separating. fo r instance. the herring and the smelts. Reccnt 

comparison ofthc AFP Jl DNA sequcnces from these two species (on their shared 

lengths) revea led hi gh identities betv,'een the exons (- 88.97%). but (surprisingly) slight ly 

higher identi ties between their introns (- 88-99%) (Graham er at .. 2008a). This intriguing 

featu re inspired yet another scenario by the latter authors: the type II AFPs may have 

spread across unrelated fi sh taxa through lateral gene transfer (LGT). That hypothesis is 

currently being cxplored by Dr. P.L. Davies' tcam at Queen's University (K ingston. ON). 

The second AF(G)P for which the evolutionary origin was im·estigated - and 

eventually reso lved - is the AFGP fou nd in fi shes of the suborder Notothenioidei. Chen er 

al. (1997a) obtained the sequence of a complete gene and compared it to the sequences 

available in the da tabases. The ir best hi t was a trypsinogen-l ike serine protease gene 

(cDNA) from a flatfish. Intriguingly. the I\vo gene sequences appeared completely 

unrelated: the only homologies (> 70%) were found in small portions of the sequences 

corresponding to the C- and N-terminals ends of the proteins. and within the DNA 

flank ing the gene at its 3' end. Chen and co lleges (I 997a) then re trieved and sequenced a 

trypsinogen-l ike serine protease gene from a notothen ioid fish (Disso.l"fichILS mawsolII) 

and again. compared that sequence to that of the AFGP gcne. This time. more 

resemblance was fo und. These genes shared high identity between their fi rst exon (96%). 

which codes fo r a signal peptide. and the shared part of the adjacent intron (93%). The 

next region of high identity was observed between the sixth exon of the proteasc gene and 

thc 3' end of the AFGP gene. In between. the sequences were completely unrelated. 
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In lieu of the four other exons found in the protease gene. the AFGI' gene has an 

extensi"e second exon. This exon codes for a highly repet itive AFGP polyprote in. 

containing several AFGl's linked to each other by a conserved three-residue sequence 

(Leucine-A.vxlragine-Phenylalanine or Leuc ine-I.w{cllcille-Phenylalaline). with 

individual AFGP prote ins being released following post-translational rCl110val of that 

linker sequence (Hsiao et al .. 1990). Each AFGP is essentially a repeti tion ofa single 

monomer (threonine-alanine-alanine). that bears a disaccharide on its threonine (Thr) 

hydroxyl group (DeVries. 1988): thi s in tum makes them heavily glycolysated. hence 

their name. Their repetitive structure and other factors re lated to the ir expression render 

them difficult to work with (Brown & S6nnichsen. 2002): as a result . their tert iary 

structure remains unresolvcd. 

Interestingly. this repeated three-residue motif within each AFGP. which 

corresponds to the nucleotide sequence "aca-gcg-gca". was found as a sing le copy at the 

junction between the first intron and the second exon in the notothenioid protease gene 

(Chen el (t/.. I 997a). To explain the evolution o f an AFGJ> gene from the latter. these 

authors proposed that the original protease gene first underwent duplication. Eventually. 

one copy would have had its short "aea-gcg-gca" sequence amplified extensively. while 

its second to fifth exons would have becn deleted (along with the associated introns). 

Shortly after the publication o f this research. the discovery of an active chimeric (hybrid) 

gene that contains a partially amplified "aca-gcg-gca". nested within the complete 

sequence of the protease gene (Cheng & Chen. I 999) validated these authors' hypothesis. 
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The emergence of the nOlhothenioid AFGP has been hypothesised by Cheng 1'1 al 

(2003) to eoincidc with thc specics explosion of Antarct ic representatives of the suborder 

Notothenioide i. These fi sh likely ini tiated their radiation an estimated 24 Ma ago 

(Matshiner ef al., 2011). in response to the intensification of the sea level Antarctic 

glaciations at the Oligocene-Miocene transition (Naish el al. _ 200 1). The rapidly 

diversifying notothenioid fishes gradually spread to a ll niches available within this frig id 

environment. perhaps starting by invading the shallow water habitats where massive local 

exti nctions may have occurred (Eastman. 2005). From there. the notothenioids grad ually 

replaced fi sh in other habitats as well. becom ing one of the most impressive fish fl ock 

known to biology (Eastman & McCune, 2000). along with the cychlids from the great 

East African lakes (Verheyen el at .. 2003). They are today the dominant teleost clade in 

Antarctica waters. representing - 55% of the species richness (Clarke & 10hnston_ 1996). 

This case illustrates a classica l case ofneofunctiona li ~t ion. as the original trypsinogen­

like protease gene_ which would likely code for a digestive enzyme. did not have any 

precursor antifreeze activity to improve upon following duplication. 

Amazingly_ AFGPs have becn found in various species of northcm cod (Hcw el 

al., 198 1; Chen el al .. I 997b). Despite being nearly identical to those of the notothenioids. 

the AFGPs evolved by gadoid~ were hypothesised to have a distinct evolutionary origin 

(Chen 1'/(11., 1997b). Three main facts support this assumption (rev iewed by Cheng & 

DeVries. 2002). First ofal!. the signal sequencc of thc gene coding for thc AFG P in the 

cods is differenl from that of the notothenioid's gene. and 110 homologous sequence could 

be found while browsing the databases. Second. the short repeated motif "Thr-Ala-A la" 
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that fonns the backbone of both AFGPs is coded by distinct codons between the two fish 

groups. and thc amino acid sequencc that acts as a spaccr in the cod AFGP is completely 

different (O'Orady & DeVries. 1982; Chen el at .. 1997b). Finally. these fish belong to 

different superorders (cods: Paracanthopterygii: notothenioids: Acanthopterygii) and are 

thought to have evolved in geographic isolation (Northern and Southern hemisphere 

origin for the eods and notothenioids. respectively). This considerable genetic distance 

(Fig. 1.5) renders an independent origin of the AFGP genes by convergent evo lution a 

more plausible scenario than their inheritance from a common ancestor (followed by 

subsequent loss in all other families of their respective suborders) (Chen 1.'1 at .• 1997b). 

Indeed. as discussed before in the case of the type II AFPs. the lattcr scenario would 

imply that the acquisition ofa functional AFGP had to occur "'ell before the initiation of 

the Cenozoic glaciations. For now. the origin of the cod AFGP remains a complete 

mystery. and may represent another example of (/c no~'o gene evolution 

(neofunctionalisation) in front ofa new cnvironmental stress. 

Another class of AF(G)Ps. generally grouped as type 1 AFPs. have a sti ll 

unresolved evolutionary origin. These alanine-rich. alpha-helix structured protcins also 

fonn the most heterogeneously widespread AF(O)P group (Fig. 1.5). having been 

reported in fishes from four fami lies (Pleuronectidac: righteye flounders (Fourney et af., 

1984: SCOII ('((If.. 1985): Cottidae: sculpins (Hew ('t(l/.. 1980; Low 1.'1 af.. 1998): 

Cyclopteridea: snailfishes (Evans & Fletcher. 200 1; Evans & Fletcher. 2005); and 

Labridae: the cunner, Taulogotabrlls atlsper.rus (Evans & Fletcher. 2004: Hobbs ('I af.. 

20 11». These fam il ies cun in tum be div ided among three orders: the Pleuronectifonnes 
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(Pleuronectidae). Scorpaenifonnes (Cottidae. Liparidae. and Cyclopteridae). and 

Percifonns (Labridae). which all belong to the superorder Acanthopterygii (Nelson. 

2006). The most studied type J AFPs originate from the winter flounder. and all share a 

repetitive unit of II residues (Lin & Gross. 1981): Threonine-Xl-(Aspartic acid or 

Asparagine)-X7. where "X" is most often Ala (Scott el (I/.. 1987). These AFPs arc highl y 

similar in their primary sequence among the three suborders. with half of the remaining 

AFPs also having II repeat units of the Alanine (Ala) residue (except for the sculpin and 

snailfish AFPs). 

A common ancestry for these sequences among fish from three suborders thus 

appears qu ite unlikely. and Gauthier el {l1.·s (201 1) analysis strongly argues lor a repeated 

independent evolution of the type I AFP within the Acanthopterygii by convergence. in 

response to the relative ly recent onset of the Cenozoic sea-level glaciations in well­

establ ished fish superorders (Scott el (il. 1986). The evolutionary origin of each of these 

genes may then involve distinct precursor genes. The best attempt to find such an 

ancestral precursor was made by Evans & Fletcher (2005). who studied sequences 

isolated from a cDNA library constructed from snai lfish liver mRNA. Their goal was 

origi nally to fin d Ihe nucleotide sequence coding for this species' type I AFP. Upon 

sequencing of three of their positi ve clones (that .... ·ere hybridised with a snailfish AFI' I 

eDNA probe). these authors first came across two sequences of an egg shell protein. and 

one sequence of type II keratin. When aligned. significant homologies bctwecn portions 

o f the coding sequence of these latter cDNAs and the AFP sequence were found. These 
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researchers thus proposed that the AFPs from the snailfish may have evolved by co­

option of one of these genes. 

In contrast to the other AF(G)ps, the type II I AFPs have been exclusively found in 

representatives ofa single suborder: the Zoareoidei (order Pereifonnes). Species from 

five fami lies (out of the nine) have been investigated for the presence of the type III AFPs 

and tested JXlsitive for the gene (Davies et 01., 1988; Shears et al.. 1993). Thcse species 

are mcmbers of the families Zoareidae (celpouts). Pholidea (gunnels), Stichaeidae 

(prickJcbacks), Cryptacanthodidae (wrymouths), and Anarhiehadidae (wolffishes). 

Following searches within the available databases, Baardsness & Davies (2001) 

hypothesised that the evolutionary origin of these small (- 7 kDa) globular proteins was a 

sia lic acid synthase (SAS) gene. SAS is an in tracellular enzyme that catalyzes synthesis 

of sialic acids from N-acetylmannosamine or Man-NAc-6-phosphate and 

phosphoenolpyruvate. The SAS gene comprises six exons. with the last one 

corresponding to the sugar-binding domain of the enzyme. The enzyme fu nctions as a 

homodimer, where the C-tenninal of one molecule seals the active site of the other. By so 

doing it also provides residues that interact with the bound substrate (Gunawan el af.. 

2005). Baardsness & Dav ies (2001),s analysis revea led that the mature short AFP III 

sequence shared significant identity with that last exon. A decade later, Deng er af. (20 10) 

sequenced the AFP locus of an Antaretic zoarcid fish (Lycodichthys dearbol1i) and found 

a SAS gene (called SAS-B) flanking an extensive tandcm array of AFP genes. On top of 

its sugar-binding domain, other regions of homology the SAS-B gene shared with the 

AFP gene were its 5' UTR and the beginning of its first exoll. The afore-mentioned 

39 



authors discovered that SAS-B had in fact been translocated to this locus from its original 

SAS locus. following a duplication event. as the original SAS genes (A and 13) are located 

on a different chromosome from the AFP genes. Thus. a likely hypothesis for the 

evolution ofa type III AFP from a SAS-B gene would be a duplication and translocation 

ofa SAS-8 gene. followed by the loss of exons # I to # 5 (except for the first part of this 

first exon) within one of the duplicates. leaving the small sugar-binding domain (exon # 

6) bound to its putative signal sequence (first part of exon 1) by the remaining intron # 5 

ready to evolve into a fu lly functional systemic AFP. 

Interestingly. Deng and colleagues (2010) reported that the SAS B protein. once 

expressed in \'ilro and purified. exhibi ted weak TH (up to 0.015 0C) at a concentration o f 

2 mg/mt. At an identical concentration. the AFP 111 obtained from that same fish showed 

substantial TI-I (up to 0.67 0C). The reported expression of trace activity by this funCiional 

SAS gene brought the authors to conc lude that the evolution of the type 111 AFP 

illustratcd well the concept of "escape from adaptive conflict" (EAC). The EAC model 

(dcrived from the subfunctionalisation model) states that a precursor gene with an 

emergent funClion (besides its primary function) could see this new function selected for 

and improved to a certain degree prior to gene duplication (Hughes. 1994: Piatigorsky & 

WislOw. 1991). Further evolution of the naS(;ent funct ion would be halted by the 

attainment o f conflict wi th the gene's main function. AI that point. duplication would be 

rcquired to allow fu rther special isation. by freeing one copy for the evolution of its 

alternative function. By comparison. the gene subfunclionalisation model stipulatcs that 

evolution of the new underlying function will only initiate after duplication. 
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In conclusion, despite highly differentevolUlionary origins, and the resulting 

diverse structures. the fish AF(G)Ps all display TH through their abi lity to bind to ice 

crystals and halt their growth (Davies & Hew, 1990: Fletcher ('/ at., 2001; Davies et al.. 

2002). A minute ice crystal presents different planes on which an AF(G)p can bind (sec 

Fig. 1.2): the prism. basal and numerous pyramidal planes. which differ by the spacing 

between the oxygen atoms of the bound water molecules. Such differential spacing 

obv iously allowed for the diversity of AF(G)p observed today. where ditlerent AF(G)P 

types will bind to different planes of an icc crystal. For instance, winter flounder 

(/'selldoplellronectes americanlls) type [ AFPs wi ll bind to a pyramidal plane of i(.;e 

(Knight el af.. 199 1), while type III from ocean pout (Macrozoarce.\·omeriClI11/1S) will 

bind to both pyramidal and primary prism faces (Antson elal., 2001) thanks to a 

compound ice-binding site (Gamham 1'1 al., 2010). This compound site is fully functional 

forthe so-called QAE type [I I AFP isofonns. while the isofonns of the other known type 

(dubbed SP type). have a deficient prism plane ice-binding site (appellation based on the 

ion-exchange Sephadex resins to which each type of isofonn binds: see Chapter 2 for 

funher details). Most other AF(G)Ps also bind to the prism and pyramidal planes. which 

generates a stabilised hexagonal bypiramidalerystal. Tharerystal will burst a long itsc­

axis if the temperature is lowered beyond the non-equilibrium FP afforded by the 

AF(G)Ps. Binding to the basal plane of ice seems to be a feat only accomplished by a few 

AFPs (known as hyperactive AFPs). and is considered to be the basis of their potency 

(Scotterel af., 2006). The only fish AF(G)ps likely able to bind to the basal plane is the 

winter flounder hyperactive AFP (Graham er (II., 2008b), discovered by Marshall er (II. 

(2004). 



The search for the AF(G)Ps' respective binding sites has been the object of 

numerous studies. and following the detennination of their tertiary structures (by NMR 

and/or X-ray crystallography). diverse mutant fonns of these proteins (e~pecially typcs I 

and [II AFPs) have been generdtcd and te~tcd for Til in order to dctennine the residues 

that arc important for bindi ng. A few models to explain how AF(G)Ps bind to ice have 

been proposed. The first such model proposed that binding happens through hydrogen 

bonding at AF(G)P surfaces that arc complementary to the ice lattice (Raymond & 

DeVries. 1977; Chou. 1992; Jiael a/ .. 1996). This model by itself has a few caveats: for 

example. it fails to explain why free watcr would not be preferred to ice for binding 

(Davies ('I a/ .. 2002). Other studies hypothesised that the binding was mostly perfonned 

through hydrophobic effects. where bound water molecules would be releascd from thc 

ice-binding site upon AF(G)P attachment to the crystars surface (Chao 1.'1 al .. 1997). 

However, results from molecular dynamic simulations suggests that a relatively 

hydrophobic antifreeze protein face could organise and keep water molecules within a 

Ian ice near its surface (as clathrates. or ice-like waters). which would in tum help the 

AFP to bind to ice. through hydrogen bonding (Nun & Smith. 20(8). The recent 

discovery of bound waters onto a crystallised AFP suppons such a scenario. that in tum 

Icad to the proposition of the "anchored clathratc" model for AF(G)P binding. which 

would theoretically be applicable to all AF(G)Ptypes (Gamham eTal .. 20(1). If proven 

true. such a mechanism would be the basis for the convergent evolution of all AF(G)Ps. 
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Th e first steps into the el'olution offish AF(G)P mult igene families 

Almost all AF(G)P-producing fishes that have had their AF(G)r gene locus 

studied were fou nd to have thei r AF(G)P genes organised as muitigene fami lies (Hew 1'1 

al .• 1995; Chen cl al., 1997b; Fletcher 1'1 al.. 2001. Cheng el al.. 2003). the exception 

being the smelt that very likely inherited one type II AFP gene copy from the herring 

through LGT (Graham el (II.. 2008a: Graham. com. pers). As AF(G)Ps obviously did not 

show the activity they do today when they first emerged. the development of multigene 

fami lies ofpro-AF(G)p genes must have been an essential comer stone for the 

development of freeze res istance in full strength icy seawater. An interesting (yet 

unanswered) question is: how did fish initially survive in ice laden environments without 

a ful ly developed A FCG)P arsenal (i.e. only armed with one or low copy numbers of 

nascent. proto-AF(G)p genes that translated into AF(G)Ps that showed only low to 

marginal act ivity)? As there is no such thing as freezing 'just a little" (Scholandcr 1'1 a/.. 

1957). how did fish succeed in tilling the .:::> 1.0 'c gap between their equi librium FP and 

that of seawater rapid ly enough not to go extinct in face of the cooling c limate? 

A tentative resolution of this apparent paradox is to postulate that emergence of 

the first AFP genes occurred in an environment where the FP of seawater was near thc 

equi librium (colligative) FP of the fish. Marine env ironments of low sa linities do occur. 

and are most frequently encountered in shallow coastal waters where heavy rain. river 

discharges and imponant levels of ice melting take place. For example. extensive areas of 

brackish waters can be encountered along the Arctic coast. panicularly in Nonhem 

Russia. thanks to the freshwater input of major river systems and summer icc mcl! 
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(AMAI', 1998; Fig. 1.6), Important cstuaries also exist at lower latitudes, Fish may have 

evolved a more efficient freeze resistance strategy as thcy moved into salticr icy watcrs. 

Interestingly, many of the most efficient AF(G)P-producing species encountered 

today show some degree of euryhalinity/haloplasticity and can - or could potentially ­

survive in brack ish waters. Examples include representatives of the Zoarcoidei, 

Scorpaenifonnes, Clupeidae, Osmeridae (wh ich are mostly anadromous). Gadidae. 

Labridae. and especially the Pleuronectidae (Novikow et al.. 2000: Mcthven et af .. 2001; 

Le Fran(j:ois et al., 2004; Magnussen et af,. 2008). For instance. the starry flounder 

(P/(itichthy.I' stellatus). a marine fish of the family Pleuronectidae, was reported > 100 

metcrs upstream in thc Columbia Rivcr (reviewed in Oreott. 1950). 
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Fig. 1.6. Winter salinities (ppt) of \he surface waters of the Arctic Ocean. and Northern 

Pacific and Atlantic oceans (modifi ed from AMAP. 1998). 
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The above-mentioned fi sh taxa are mostly found in the Northern hemisphere. In 

comparison. the salinity of the water is higher and more stable in Antarctica. as no 

significant seasonal melting of the ice shelves or freshwater input from rivers occurs 

around the po lar continent (O'Grady & DeVries. 1982). The endemic and fully AFG P· 

fortified Antarctic notothenioid fishes. thought to have originated in ~ilu (Eastman & 

McCune. 2000). may thus have evo lved and stren&,>thened thei r antifreeze defense by 

other means. One possible scenario (which may also apply to some Northern hemisphere 

species) is that they did so in deeper waters. during the progressive cooling of Antarctica 

(Deng eI al .• 2010). As the temperature slowly cooled below their non·colligative FP. fi sh 

wi th low amounts ofa nascent AF(G)ps dwelling in waters 0.1 ' C below their 

equil ibrium FP would theoretically be fully protected. assuming that their AF(G)Ps show 

enough activity to lower their FP of that 0.1 0c. Moreover. if ice does intrude 31 depths. 

the crystals would become thermally unstable when brought down through warmer waters 

(Deng et (II .. 201 0). The oppressive effcet of hydrostatic pressure would also make it 

increasingly difficult for water to stay in its solid phase. as the FP of seawater linearly 

decreases with depth (- 0.0076 °CIIO m) (Fujino et (II .• 1974). Therefore, these intruding 

crystals would be quite small , and as a consequence, easier to neutralise with low 

concentrat ions ofa nascent AF(G)p. This is because TH granted by any AF(GjP is 

inversely proportional to crystal size (Takamichi et (If .• 2007). As water continues to cool 

down gradually over a scale covering millions of years, the freeze res istance ofa given 

species could have progress ively improved to the poi nt where it could dwell safely in 

subzero icy surface waters. 
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The gradual improvement of freeze resistance in fi sh. be it in bracki sh or deeper 

warm water envi ronments, is supponed by the find ing that the precursor genes in the 

Zoarco ids (see previous section) only showed modest activity (Deng el 01..20 10). 

Moreover. the ancestral chimeric protease/AFGP gene of the NOIhotheinioids shows 

transcriptional activity. which indicate that these genes are functional (Cheng & Chen, 

1999). The resu lting proto.AFGP. a lthough not tested for activity. most like ly expresses 

some levels ofTH. due to the significant amount ofThr·AlalPro·Ala repeats (basis for 

antifreeze activ ity) coded by the gene. Finally, it is notewonhy that a fifth type of 

AF(G)P. originally cal led type IV AFP, was characterised by Deng euli ( 1997. [998). It 

was found in the plasma of long hom sculpin (M}"Jxocephofus oClOdecemspillosIIS). a fish 

of the order Seorpaeniformes that synthesises a type I AFP in its skin (Low et al.. 200 1). 

In this case. Deng el al. (1 997) proposed that the precursor gene of the new type IV AFP 

was one encoding an apolipoprotein. although evolutionary separation from this alleged 

precursor is not clearl y apparent (Gauthicr el (Ii. 2008). Then classified as a new AF P. 

this protein 's status was recently revised. Indeed. despite having the potential to develop 

ant ifreeze act ivi ty (it expresses traces ofTH at high concentrations). this protein 

apparently was not selected for thi s role. and thus never evolved into a functional AF P 

(Gauthier el al.. 2008). Jt is possible that. throughout the vast proteome of any given fish. 

numerous other proteins happen 10 exhibit traces of TH. These in tum may have the 

potential to develop antifreeze activity. given the right conditions. 

The TH of any proto.A F(G)P, as low as it likely was. could have meant the 

difference between life and death during a slight undercooling in a fish's envi ronment. 



From there, the fi rst step into getting freeze protection in sa lt ier/colder waters would have 

been to somehow compensate for the init ial low activity. An "easy" way to achievc this is 

to increase the amount of c irculating AF(G)P, th rough the evolution of higher gcne 

dosage. In at least two verified (and two suspected) cases, the evolution of an AF(G)P 

followed the duplication of an ancestral gene, with modi fications accumulat ing on one of 

the copies through point mutations, indels. and other mechanisms involved in gene 

creation. such as atypical splicing and retrotransposition (Ewart el al., 1998: Evans & 

Fletcher. 2005; Cheng& Chen. 1999: Babushok el al .• 2007: Deng el (1/ .• 2010). The 

emergent prolo-AF(G)P gene could eventually be duplicated. 

In eukaryotic genomes. newly duplicated genes are most often closely located. as 

direct or inverted repeats. They general ly appear as a consequence of mistakes during 

DNA repl ication or repair mechanisms. or by meiotic unequal crossing-over, as a result of 

a non-allelic homologous recombination event between repetitive nanking sequences 

(Andersson & Hughes, 2009; Hast ings 1'1 al .. 2009). If Darwinian select ion fav ours higher 

expression of the phenotype. preservation of both copies of a newly duplicated gene will 

be promoted (Kondrashov & Kondrashov, 2006; Conant & Wolfe, 2008). The resulting 

doubled expression levels represent a convenient shortcut to the longer trial-and-error 

mutat ional process of evolving higher transcript ion rates (by muta ting the promoter 

region), or improving the original function (by mutating the coding region) on a single 

gene. More importantly however, a gene tandem becomes the template for higher sca lI:! 

gene amplification, given that positive selection remains poised towards increased 
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expression of that particular phenotype. The resu lt is the gcncrat ion ofa gene tandem 

array. 

Once an initial AF(G)P gene duplication has spread within a fish population over 

generations. further gene amplification most often occurs by meiotic unequal crossing­

over (Hastings et at .. 2009). Another amplification mechanism. called rolling circle 

replication. can create copies ofa gene within extrachromosomal cireular DNA. initially 

excised from its original locus (Cohen & Lavi . 2009). This replication mode can produce 

several copies of the circular sequence at once. independently of the amount ofsl3rting 

material, and the resulting amplified DNA can eventually be re-integrated at the locus of 

origin through homologous recombination. or elsewhere in the genome (Cohen & Lavi. 

2009). Given that natural selection continues to favour an increased number of AF(G)P 

gene copies over time, more beneficial crossing-over events (and/or roll ing circle 

replication events) will be accumulated ovcr generations. In the end. the increased gene 

dosage will lead to a concomitant improvement of the freezing resistance potential of the 

fish through higher synthesis and levels of circulating AF(G)p. Additionally (and as 

ment ioned above), evolution can also act to modify the phenotype itself. by selecting tor 

individuals bearing new beneficial point mutations within those ampl ified genes. 

Onc or several such gene duplication-amplification (GOA) events will eventually 

lead to the creation of multi gene families. Examples of wel l-known and ubiquitous gene 

familie s include the ribosomal proteins genes (Hatanaka & Ga lett i. 2004). and the histone 

genes (Hentschel & Bimstiel, 1981). Interestingly. they also include the C-Iectins (Ewart 

Ifl al .. 2001). the trypsinogen- (ortrypsin-) like serine proteascs (Barrett & Rawlings. 
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1995). and the sialic acid synthases (at least two members in fi sh; Deng el (1/., 20 10). 

which - as discussed in the previous section - supplied members to the evolut ionnary 

processes that lead to the emergence of AF(G)Ps in te leost fi shes. 

Mecha nisms shaping the diversi.,., of AF(G)J> gene muitifa milies and role ofgenc 

dosage in fish speciation 

GOA is in fact a ubiquitous mechanism of rapid adaptation to new environmental 

challenges (Hastings, 2007; Andersson & I·fugues. 2(09). Howcvcr. to say that GOA 

alone has shaped the diversity observed today with in all known AF(G)P mu ltigene 

families would be erroneous. [n fact. these gene fam ilies have also experienced episodes 

of contraction/erosion. which may have taken place during interglacia ls. when selective 

pressures for the expression of high Icvels of circu lating AF(G)Ps were re laxed. The 

present ice-age has seen sevcral glacialcvcnts(52 in 2.8 Ma). interru pted by interglac ia l 

periods (Gibbard & Cohen. 2008). Concurrently. select ive pressures for freeze resistance 

may have gone through as many cyc les of intensifi cation/re laxation. During the glacials. 

~a ice would have been present at lower latitudes, wh ile interglac ials would have been 

characterised by icc fonnation occurring only at re lative ly high lati tudes. such as we 

observe today. As glaciers retreated. some populations of AF(G)p-produc ing fishes would 

have moved into the newly re-exposed sha llow water habi tats. thereby remaining in 

contact with ice. Populations of others freeze resistant fi sh. however. may have not 

changed their geographical distribution. and adapted to the wanning conditions as a 

result. In the absence of sea ice, part of their AF(G)P genes would have been deleted by 

successive crossing over events (and/or inactivated by mutations). as selection would 
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have stopped to encourage the maintenance of freeze resistance. After several 

generations. the resulting offspring would survive with lower AF(G)p gene copy 

numbers. and form an AF(G)P-deficient population. Given enough time. populations 

exhibiting differences in their freeze resistance capabilities could undergo speciation. 

An example of spec ies that have lost most of their AF(G)P genes due to the 

absence of Dar.vinian selection for freeze resistance are the temperate notothenioid fishes 

derived from the Antarctic-evolved famil y Nototheniidae. These fi sh are found in the 

waters of New Zealand (NOIOlhl!nia (lIIgllstata and Notothl!nia microll!pidota) and South 

America (l'aNlnOIOfhl!nia magel/anica). where ice does not form. They are thought to 

have moved Nonhwards fo llowing the expansion of lhe austral glacial front s ovcr the 

Southern Ocean (likely during the Late Miocene. - II Ma ago: Bargelloni et al.. 2000: 

Cheng er 01., 2(03). These fi sh have only two to four copies of the AFGP gene. some of 

which are pseudogenes. 

Confronted with the next glaciat ion. populations/species of secondari ly freeze­

susceptible fi sh may be extirpated or go extinct. or regain high AF(G)P gene dosagc 

through the amplification mechanisms described in the previous section. They also could 

retreat to deeper and/or warmer waters. in order to avoid a threat that thcy can no longer 

handle. Several deeper dwelling fish species that belong to clades known to produce 

AF(G)Ps sti ll possess some ofthesc gcnes. and express low to negligible TH in their 

plasma. These includc. fo r instance. several rightc)'e fl ounder species (Scott ('I a/.. 1988b: 

Goddard and Fletcher. 2002). Another example is the spotted wolmsh (AnarhicJllls 

minor). A member of the suborder Zoarcoidei (type III AFP-producing fi shes). this 
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benthic fish shows low to trace amounts of plasma T1-I (Desjardins 1:1 al.. 2006). In 

comparison. its sister species. the shallower dwelling Atlantic wolffish (Anarhichas 

1111'11.\). produces high plasma levels of the type 111 AFPs (Desjardins 1:/ al . . 2006: 2007). 

As they are closely related. and both occupy distinct thennal ecozones along a depth 

gradient (one with the risk of freezing. the other without). these bottom-dwelling fishes 

ofTer a good opponunity to study the genetic bases for the evolution of difTerential freeze 

resistance capacities, and the potential ro1c such difTerences play in speciation (sec 

objective of study and chapter 2 of this thesis). 

Although an obvious way to regain antifreeze protection in the face ofa recurrent 

threat of freezing is to re-amplify pan of an AF(G)P multigene family within a fish 

population, another possible mechanism could involve the acquisition of genes from 

another, better protected species. The afore-mentioned LGT hypothesis, according to 

which an AFP gene from herring would have brought freeze resi stance to the smelt, is 

such an example (Graham el al., 2008a: Graham, com. pers.). In the case of closely 

relatcd taxa however, a more conventional way to increase one species' AF(G)P gene 

arsenal could be through natural hybridisation witha fully protected species. 

Natural hybridisation is now widely recognized as a source of evolutionary 

novelty (Dowling & Secor. 1997: Arnold. 1992. 1997: Banon. 2001: Mallet. 2005). If the 

fitness ofa hybrid is superior or equal to that of at least one ofils parental species. 

hybridisation represents a potential shoncut for the restoration of freeze resistance in a 

population of marine teleosts. If the hybrids arc fenile and hybridisation does occur 

frequently enough. the evolution of functi ona l antifreeze protection could happen within 
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two scenarios: the creation ofa distinCl "hybrid species" or the introgression of Al' tG)p 

genes from the hybrids back into a population of the unprotected spec ies (Baack & 

Riesebt:rg, 2007; Mallet, 2007). In both cases, as generations pass, a stable AF(G)I' locus 

may de\·clop. after both alleles of most genes become stabili sed within the population. 

which leads to an increased gene dosage, and evemually speciation. 

Fish arc well known for their propensity to hybridise in nature. especially with in 

freshwater habitats. obviously due to their more constrained physical env ironment 

(Hubbs. 1955). For instance. introgressive hybridisation between the rapidly evolving 

c ichlid fishes of Lake Malawi (Africa) generated several new species (Genner & Turner. 

2012). Indeed. an ancient hybridization event between a shallow·water rocky habitat 

"Mbuna" species and a fi sh belongin to a "Shallow· Benthic" soft-sediment feeder group 

resulted in the evolution and radiation of a third group of species (the so·ca lled Deep­

Bcnthic IYpeS). which spec ies adapted to low light habitats. Thus, although the genomic 

DNA of these later fi sh was more closely related to that of the shal low benth ic feeders. 

analysis of their mitochondrial DNA revealed that it was inherited from the Mbuna 

species (Genner & Turner. 20 12). 

Within the marine realm. Hubbs (1 955) reponed that most cases of natural 

hybridisation occur among flatfish s(X."C ies. These fish often share spawning grounds and 

readily hybridise not only across spec ies. but also across genera. This indicates the 

ex istence of re latively weak pre-and post.zygotic barriers to rcproduction among these 

fishes. For example. when anificial ferti lisation is practised on flatfishes (for aquaculture 

purposes), viable hybrids can even be successfully obtained by crossing species belonging 
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to difrerent fa mi lies (c_g P(lra/ich/hy.j· oliWlccw; and KarcillS bien/om/liS: You 1.:1 (II • 

2009). This indicatcs a lack ofgamctic isolation. and apparent abscncc of post-zygotic 

barrier as the ofTspring deve lops and surv ives. While pre-zygot ic harr iers result fro m 

temporal. habitat, behavioural. mechanical and gametic isolation. post-zygotic barriers 

correspond to inviabil ity of the hybrids. their sterili ty. and low fitness in succeed ing 

generations. which is tenned hybrid breakdown (Ell isson & Burton, 2008). The strength 

ofthcse barriers thus dictatcsthc success of hybrid ization. 

The creation of hybrids has gained in popularity in the fie ld of aquaculture, as the 

FI-hybrids often exhibit what is called "hybrid vigour" (posit ive heterosis). and sterility 

(Bartley et af .. 200 1). which together resu lts in highcr growth rates and lowcr production 

costs. It can also allow the creation of animals that combine the best characteristics of 

each parenta l spec ies. The gencration of such high effic iency stocks rnotivatcd scveral 

brecding initiatives in aquaculture research & development. For instance viable hybrids of 

the Atlantic and spotted wolftishes were recent ly created in Quebec (Gaudreau lt e/ al., 

2009), in order to obta in a fish that displays both the high gro\\-'1h rate of the spotted 

wolffish in cold water (Moksness. 1994), and the freeze resistance of the At lantic 

wolffish (Desjardins et a/.. 2006: 2007). The choice of these s~ies was motivated by 

their overa ll high potential fo r cold water fann ing (Le Franyois e/ af., 2002). Duri ng 

growth trials however. the hybrids on ly displayed growth perfonnances comparable to 

those of the spotted wolffish (Gaudreault I.:T lIl., 2009), and thus no apparent hybrid 

vigour. although more tests are needed. These fish wou ld be e.\{pected to produce plasma 

AF P at an intennediary level to that of their parcntal species. assuming that this 



phenotype is inherited in a Mendel ian fashion. In this context, thcsc fish offcr a grcat 

opportunity to slUdy the impact of hybridisation on freeze resistance and its genetic 

components (see objecti ve of study and chapter 3 of the present thesis). 

Factors controlling the expression ormultigene-bascd frceze resistance 

Fish AF(G)p multigene fami lies can comprisc anywhcre from two mcmbers ( in 

the temperate notothcnioid NOIOfhenia angustala, suborder NotOlhcnioidei: Cheng el al.. 

2003) to over a hund red (- 150 members in the ocean pout, MlIco:oarces lInlCr;canll.\·. 

suborder Zoarcoidei: Hew el at., 1988). In all cases. mult iple isoforms (distinct 

sequences) have been fou nd withi n a given AF(G)p fam ily, which differ in sizc and 

composition/structure (hence in potency). Such isoforms may even show different 

pattemsofexpression (i n timi ng and site). 

The species in wh ich the physiology and molecu lar biology of multi gene-based 

antifreeze protection has been most thoroughly studied is the winter floun der 

(Pseudoplellronecfcs americanus, fami ly P1curonect idae) (revicwcd in Fletchcr el al .. 

2001: Miao ellll., 2002). a small flatfis h that inhabit the shallow coastal waters of the 

Northwcstern Atlant ic (SCOIl & Scott, 1988). This specics produccs threc main fami lies of 

type J AFPs isofonns: the so-ca llcd li ver AFPs (wfl AFPs: Daviesci al.. 1982). skin AF Ps 

(wfsA FPs: Gong er af .• 1996), and the therma lly labi le hyperactive AFPs (Marshall el 01 .• 

2004: 2005). In general. the onset of AFP mRNA transcription in winter fl ounder is 

associated with the gradual shortening of day length during the la ll . while cold 

temperatures are needed for the accumulation/retention of the AFPs in the plasma 
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(Fletcher. 1981; Vaisius ('I (II., 1989). Following several experiments spanning a period of 

a decade (reviewed in Fletcher e/ al .. 1989). it was concluded that the production of 

growth honnone (GH) by the pituitary during the summer (but not during the winter) 

inhibits AFP synthesis in the liver of winter fl ounder through an unknown physiological 

chain reaction. They proposed a model where the hypothalamus inhibits the production of 

GH by the pituitary. in response to the shortening of day length. From there. the 

transcription of the AFP genes proceed. Following thei r secretion from the liver. the pre­

AFPs signal seq uences are e leaved off. and the resulting mature AFI)s are distributed 

throughout the organ ism. 

A decade later. Dr. Hew's team added elements to th is model. Their research 

focused on the molecular interactions between the wflA FP genes and some transcription 

factors occurring within the hepatocytes. They observed that the intron of the wflAFP 

gene featured an enhancer element (which they named "element BOO) that binds a liver­

enriched transcription factor, called CCAAT/enhancer binding protein (C/EBPo.) (Chan ('I 

al .. 1997: Miao elal., I 998a). This transcription fact or was responsible for the li ve r­

spec ific transcription of the wflAFP genes. and may act in conjunction wi th a second 

fac tor. which was dubbed antifreeze enhancer-binding protein (A EBP) (Chan elllf .. 

1997). Miao elal. (2002) proposed that the insulin-like growth faclor (IGF-l)could act 

as an intennediary between G~I and wflAFP gene transcription within the hepatocytes. 

According to their scenario. the absence of circulating GH in the fa ll would halt the 

hepatic synthesis of IGF-I. The absence of this factor would in tum activate (or increase 
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the concentrations) of the above-mentioned transcription factors. However. experimental 

cvidcnccforsuch a li nk is not availablc as ycl. 

Whi le the wflAFPs are expressed exclusively in the liver (Gong ('/ at., 1996; Hew 

er a/ .• 1999). the wfsAFPs seem to be ubiquitously expressed in the fish. with highcr 

expression in the peripheral tissues such as the gill filaments and skin (Gong er 01 .• 1996). 

Their synthesis also seems less responsive to seasonality than in the wflAFPs (Gong ('I 

(/i.. 1995). The diffcrent expression patterns of the wflAFP and wfsAFP isofornls appears 

primarily to result from a variation within the short intronic sequence of the ir genes. In 

the wflAFP genes. this sequence (ataatgtttcatcagcactl). corresponds to the afore­

mentionned ··element B·· (Chan 1'1 01 .• 1997) that unlocks the transcription ofwflAFP 

mRNAs exclusively in the liver (Miao el a/ .. I 998a). In the wfsAFP gene. the presence of 

an additional "T A" (ataatgttt!!!.catcageaett) within that same intronic sequence (known in 

Ihis case as e lement "5") prevents proper bind ing of the CIEBl'u (but not that of the 

AEBP) to the DNA (Miao 1'1 (It .• I 998b). Consequently. the e.xpression levels of the 

wfsAFPs arc reduced and ubiquitous. Interestingly. another difference between the 

wflAFP and wfsAFP isofomls is that the latter lack a secretory signal scquence (Gong 1'1 

a/.. 1996). Consequently. thcse AFPs remain intracellular and/or very localy distributed 

with in the skin·s interstit ial space (Murray 1'1 01 .• 2000: 2002). Obviously. more research 

is needed in order to fu lly understand the transcript ional control of th is gene, asa 

supplcmcntal 24 1bp intronic fragment. exc lusive to the wfsAF Ps. is also suspected to 

playa role in the regulation of expression (Miao 1'1 (/1.. 1998b). The ubiquitous nature of 
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the wfsAFPs motivated some authors to hypothesise that they arc precursors to the 

wflAFPs (Gong ('I (Ii. . 1996: Low ('I (Ii . 2002). 

The third known variant ofwintt:r flounder AFP. discovered more rt:cently by 

Marshall et (If. (2004) was dubbed "hyperaetive" AFP. Its discovery resolved a consistent 

discrepancy between the measured non-equilibrium plasma FPs of the fish and that of 

their t:nvironment (Scott et 01., 1988a). This big (- 16.7 kDa) mainly alpha-hdical protein 

fonn homodimers (33,4 kDa) and shows activity 10 to 100 times higher than Ihat of the 

other winter flounder AFP isoforms (Marshall et al.. 2005). Interestingly, and un like other 

fish AF(G)ps. is suspected to be able to bind to the basal plane of an ice crystal (Graham 

ef al.. 2008b). hence its hyperactivity (Scouer el (II .• 2006). Such an AFP was found to be 

the only freeze protectant circulating in American plaice (lfippoglossoides platessoi(/es) 

by Gauthier et al. (2005). 

From the example of the winter flounder. it appears likely that the control of gent: 

expression within AF(G)I> multigene fam ilies is a complex process in general. Other than 

the establishment ofa causal link between environmental factors and the timing of 

AF(GjP appearance in the blood (Fletcher el (Ii. . 1985: 1987: Lewis 1.'1 al .. 2004: 

Desjardins I!f (II .• 2006). or the observation of presence/absence of AF(GjP mRNAs in 

different fish tissues (Gong el (II .• 1992). not much is known about how AF(G)p 

expression is regulated in other fish species. In tht: case of the Atlantic cod (Gat/lis 

morhu(I). temperature is known to be the main factor regulating express ion of the AFGPs 

(Fletcher ef al . . 1987). In type III AFP-producing fishes. photoperiod may be the main 

trigger. and the temperature the secondary modulator. as these fish seem unable to stop 
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producing AFP during summer although the levels are significantly lower (Fletchcr e! af .. 

1985: Desjardins (:1 (I/.. 2006: 2007: Enevoldsen 1:1 (1/ .• 2003). The presence of two main 

classes of type I II isoforms (QAE- and SP.types) in the ocean pout (and potentially other 

spec ies belonging to the suborder Zoarcoidei)justifies the exploration of differential 

expression among classes of para logs within a mul tigene famil y. Here again. the Atlantic 

and spotted wolffishes arc interesting candidates for such an investigation (sec objective 

of study and chapter 4 of this thesis). 

1.2 Objecth'eso( study 

The present study was initiated with the general objective of investigating the molcrular 

bases for interspecific differences and seasonal variation in AFP production in wolffish 

species. It is known from a previous study that the Atlantic wolffish (A W) produces more 

plasma AFPs than does the spotted wolffish (SW) (Desjardins e! af .. 2006). and th:lt the 

levels of TI1 in both species show a strong seasonal component. with the highest valucs 

reached in winter. The result of th is work can be divided into three chapters. presented in 

manuscript fonn within the prcscnt thesis: 

Chanter 2: Antifreeze protein gene amplification faci litated niche exploitation and 

speciation in woHlish 

Evidence from the literature consistently links levels of circulating AF(G)I's in 

fish to the degree of environmental severity in term of risk of freezing (Fletcher e! a/ .• 

1985: Goddard & Fletcher. 2002: Desjardins 1:10/ .• 2006; Bilyk & DeVries. 2010). Highcr 
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plasma TI-I has in tum been correlated with highcr AF(G)P gene dosage (Scott el (// .• 

1988a: Hewe/oJ.. 1988: Chenge/ol .• 2003). Thus fi sh that inh(lbit the sh(li lower w3ters 

of the freeze risk ecozone. such (lS the A W. would be expected to possess more copies of 

their AF(G)p genes th3l1 do spec ies that dwell into deeper w(lters of the same crolOne. 

such as the SW . In order to veri fy if AFP gene dosage may be involved in the 

interspecific differen ce in plasm(l TH previously measured between these two species 

(Desjardins e/ 0/ .. 2006). Southern blots were perfonned on wolffish DNA . Levels of 

AFP t",nscripts in the liver and other tissues were also cornp(lred using Northern blotting. 

and AFP transcripts (as eDNA ) were sequenced and analysed. to verify th(lt the AFP 

genes from both spec ies are functional. Indeed. some species wi th lower AF(G)!, 

expression were found to have AF(G)P pscudogenes (Cheng eill/ .. 2003). The results arc 

discussed within the context of climatic change characterist ic of the present ice age. 

Chapter 3: Effect of interspecific hybridization on freeze resistance capacity in wolllish 

and its evolutionary significance 

The recent generation of A Wand SW hybrids from c(lptive experimental 

aqu(lculture broodstock offered a gre(lt opportunity to invest igate how the AFP genes arc 

inherited in members of the family Anarhiehadidae. as well as the outcome with respect 

to freeze res istance. Gene dosage and organisation were compared among the hybrids (lnd 

their parental spec ies by Southern blotting. Expression of the genes was investigated by 

Northern blotting. Thus we could account for an effect OIher than that ofa variation in 

gene copy number impacting AFP mRNA transcription levels. Fin(llly.the levels of 
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plasma AFP (as TH) were compared among all fish. in order to evaluate the freeze 

resistance capacity of the hybrids. The results are discussed with an emphasis on hybrid 

fitne ss at different points of the glacial-interglacial cycle. i.e. when the intensity of 

select ive pressures for the conservation of high AF(G)P gene dosage may change in 

tempera te fish of the freeze-ri skeeozonc. 

Chapter 4: Temporal and spatial expression oftypc III AFP genes in wolffish species 

Contrarily to the notothenio ids from AntarClica. which producc high levels of 

AFGP year- round. temperate species. including A Wand SW (Desjardins Cf al .. 2006) 

show seasonal fluctuations of their plasma AF(G)P levels. wi th high TH in wi nter and 

low or no antifreeze activi ty during the summer. In wolffish. it is not yet known how 

transcript levels are responding to cnvironmental cues. Here. Northcrn blotting was used 

to see if the AFP mRNA levels reflect the levels ofTH measured in the plasma of the A W 

and SW during winter and summer. Furthermore. as it is known that different isoforms 

can be subjected to differential control within a given spec ies (Gong el (I/.. 1995). RT­

PCR analyses using primers specific to SP- and QAE-type AFP genes were run on cDNA 

samples from different tissues sampled in summer and winter. in order to see if the two 

main AFP gene subfamilies are expressed different ly within (and between) species. and 

betwecn seasons. The rcsults were discussed in re lation to evo lution of para logs within a 

mutigenefamily. 
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-CHAPTER 2-

"Antifreeze protein gene amplification facilitated niche exploitation 
and speciation in wolffish" 

2.1 Introduction 

Changing environmental conditions arc an important driving force ofna!Ural selection. 

and the mechanisms behind adaptive responses to past climate change can sometimes be 

deduced by c)(umi ning extant organisms. Some 34 Ma ago. the onset of the Cenozoic 

glaciations challenged life on Eanh with subzero temperatures (Zachos ('/ (I/.. 2001: 

DeComo el (II .• 2008). likely for the first time afte r a ~ 200 Ma period ofrclativc warm 

cl imate (Fletcher 1,'1 af., 2008: Retallack. 2009). Eventually, glaciations reached sea-leve l 

and marine life inhabiting shallow waters, which became ice-laden, had to face the threat 

of freezing. 

Unl ike marine invertebrates. which arc generally isosmotic with seawater. most 

fish are hyposmotie and can freeze at a higher temperature than the freezing )Xlint (FP) or 

seawater (- - 1.9 QC). Therefore. in the absence of agents tha t inhibit freezing. 

undercooled fish eX)Xlsed to sea ice rapidly freeze and die (Scholander el al .. 1957). 

Many northern species survive exposure to subzero temperatures below thei r FP by 

res iding in deeper waters. where they can avoid or reduce the probability o r ice contact. 

Consequently, only spec ies that have evolved a resistance to freezing arc able to co lonize 

and exploit the shallower watcr niches within a "freeze risk ecozone". where the threat of 

ice contact at subzero te mperatures fo llows a depth and latitudinal grad ient. 
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The most studied freeze resistance mechanism in teleost fish is the production of 

antifreeze proteins (AFPs). Eyidence indicates that the structurally distinct types of AFPs 

and antifreeze glycoproteins (AFGPs) known to sc icnce arose independently in a number 

of diverse fish spec ies (Scott ('I aI., 1986: Chen ('/ al.. 1997a.b: Loewen ('I al., 1998: 

Fletcher el a/., 200 I: Baardncss & Davies. 200 I: Cheng & Detrich, 2007: Deng el (I /., 

2010: Hobbs el al .• 2011). These proteins act by non-colligatiyely lowering the the FP of 

physiological nuids below their equilibrium FP by binding to. and hal ting the gro\\1h of 

nascent ice crystals through an adsorpt ion-inhibition mechanism (Raymond & DeVries. 

1977: Wilson el (II.. 1993: Pertaya el(ll.. 2007: Celik elal .• 2010). The thermal hysteresis 

(TH) that results is a measure of antifreeze activity (Kao el (iI.. 1986), and the temperature 

a which the plasma of AFP-bearing fi sh will freeze is tenned the non-equilibrium FP. 

Adaptat ion to environmental change can occur by thc progressiyc accumulation of 

point mutations, which change the scquence and/or cxpression levels ofa gene in a 

favourable way. l-lowever, this process can be very slow in the face of acute 

environmental strcss. In contrast, gcnc duplication/amplification (G OA) is a more facile 

and rapid solution to such stress. GOA can foster adaptive evolution in two main ways. 

First. it can increase expression levels to bolster a useful phenotype (Hurles. 2004). For 

instancc, the physiological challenges imposed by the frigid conditions encountered in thc 

Antarctic marine environment likely led to the duplication o( at least 118 diffcrent gencs 

in the notothenioid fi shes (Chen el (II.. 2008). Sccond, it provides extra copies that may be 

less constrained by selection. These copies can thcn accrue point mutations and other 

gcnetic modifications (Ohno. 1970) which may lead to improved or altered functi on or 
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the creation ofa ncw phenotype. through gene sub- or ncofunctionali ~tion (I·lurles. 

2004). Adaptive changes brought about by GDA have repeatedly been observed in the 

Illboratory and in the fie ld to promote resistance against d ifTere nt types of strcssors in an 

array of unicellular and multicellular organisms (Hastings. 2007). In AFP-producing 

fishes. GDA appears to be responsible for the emergence and diversification of the 

diverSt: AFP multigene families in po lar and temperate marine fishes (Hew el (I/.. 1988 : 

Scolt e/ a/.. 1988a.b; Hayes el a/.. 1989: Chen el al .• I 997a.b: Cheng ef al .. 2003; Graham 

ef al.. 2008a; Deng et al .. 2010; Hobbs et al .. 201 1; Nicodemus-lohnson el al.. 20 11). 

Eventually. GDA events within a popu lation could lead to the emergence of new spec ies 

if the stress is maintained long enough to act as a substrate for natural selection. 

The Atlantic wolffish (Anarhichas II/pus - A W) and the spotted wolffish 

(Anarhichas minor - SW) are two bottom-dwcll ing specics of the family Anarhichadidae 

(suborder Zoarcoidei) inhabiting the waters of the North Atlantic (l1arsukov. 1959; Scott 

& Scolt. 1988). The AW can be fou nd in shallow areas (Keats el al. . 1985) during periods 

when sea icc occurs (COte. 1989). i.e. in the "freeze risk ecozone·'. whereas the SW is 

usually found at depths greater than 100 m (Kulka el al. . 2004) where the potential for icc 

contact would be minimal. Both species are known to possess and express AFP genes 

(Scott et al .. 1988b: Shears ef al .• 1993; Desjardins el aI., 2006: Cheng el (II.. 20(6). 

However. only the A W seems to have suffic ient levels of AFP in its plasma to resist 

freezing in ice-laden seawater (Desjardins et al.. 2006). Previous studies have noted that 

fish that have a higher probability of encounteri ng ice (according to latitude, depth of 

habitat. and salinity) generally have increased levels of plasma AFPs (!-lew et af .• 1988; 
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Scott Cl al .. 1988a: Hayes etal .. 199 1: Wohnnann. 1997: Goddard & Fletcher. 2002: 

Nabeta. 2009: Bilyk & DeVries. 2010). The one known exception is the cunner 

(Tal/lOgolabrt/S adsperslIs) (Hobbs ('I al .. 20 II). 

Wolffishes. and other members of the suborder Zoarcoidei. produce type III AFl's 

(Wang 1'1 a/.. I 995a.b; Hew 1'1 al .. 1988; Scott 1'1 (II .• 1988b; Shears 1'1 (II .• 1993: 

Nishimiya Cf al .. 2005). Interestingly. type 11 1 AFP has evolved from the small C-tenninal 

domain of the enzyme sialic acid synthase (SAS) (Baardsnes & Davies. 200 1: Deng 1'1 al .• 

2010). which is essent ial for sugar-substrate manipulation (Gunawan 1'1 al .• 2005; Reaves 

Cf al .. 2008). It is postulated that an init ial duplication in a hypothetical ancestral zoarcoid 

generated a copy of the SAS gene that evolved towards improvement of initially weak 

antifreeze activity (Deng 1'1 al .• 2010). At some point. the portion of the SAS gene 

encoding the C-tenninal domain became linked to an exon encoding a signal peptide. 

Further amplification would have facilitated high expression levels of an initially weak 

AFI'. while mutations accumu lated to optimize both expression levels and antifreeze 

act ivity. This is a clear example of adaptive GDA. 

All type II I AFI>-producing fi sh species examined so far possess multiple AFP 

gene copies and/or isofonns (Be\\' 1'1 (II .• 1988: Scott /'1 (II .• 1988b: Shears ('I al .• 1993: 

Nishimiya 1'1 al .• 2005: Deng clal .• 2010). These small. globular - 7 kDa AFPs can be 

roughly subdivided into two groups (SP or QAE). basf..-G on thei r ability to bind to either 

SP orQAE chromatography resin (Hew 1'/ al .. 1984). While there is > 75% identity 

among QAE isofonns and > 90% among SI' isofonn s. lower identity (- 55%) is observed 

between the two groups (Hew Cf al .. 1988). To date. SP and QAE isofomlS have been 

6S 



found in AW and SW. respective ly (Scott ('I al .. I 988b: Chengel al.. 2006). as well as in 

fish ofa re lated family. the Zoarcidae (Hew ('I al .• 1984. 1988: Nishimiya ('I af .• 20(5). 

Some of the differences in amino acid sequence between QAE and SP isofonn s translate 

into structural differences within their compound ice -binding s ite (Gam ham 1'1 al .. 20 I 0). 

such that the SP isofomls show greatly reduced affinity for the primary prism plane. 

Indeed. SP isoforms tested were unable to completely halt icc growth unless a small 

amount (1%) of the fully active QAE form was also present. which implies cooperative 

action (Nishim iya 1'1 al .. 2005: Takamiehi et a/.. 20(9). This case illustrates the level of 

complexity that rapid adaptat ion to a new challenge can attain through adaptive GOA 

under the influence of st rong positive se lecti ve pressures. 

The initiation and development o f adaptive GOA is more difl1cult to witness in 

complex organisms such as vertebrates. as opposed to microbes or lower multicellular life 

fo mls. whose rapid generation times allow for complete laboratory studies. In higher 

animals. evidence for GDA can often only be observed as "snap-shOis" fr01ll the natural 

environment. and deduced through genomic sequence and/or gene dosage comparisons 

among populations experiencing different environmental conditions. As AW ;Jnd SW are 

closely related (sister species) (Johnstone 1'1 (I/.. 2007: McCusker & Bentzen. 20 10) yet 

inhabit different depth ranges atong the sea-fl oor habitat. they provide a valuable 

opportunity to explore the effect of adaptive GDA and differential Danvinian selection on 

the type III AFP muttigcnc famil y. In the present study. we compared the gene copy 

number. nucleotide sequences. and mRNA expression levels of the Ai=Ps in a variety of 

tissues of these two species. The data c learly indicate that the higher freeze resistance 
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capacity in the more shallow-dwe lling AW, as compared with the deeper dwelling S\\', is 

strongly correlated with gene dosage. This agrees we ll with the role ofG DA in enabling 

fi sh to adapt rapid ly to the threat of freezin g, brought on by the onset of glaciation events. 

2.2 Material and Method~ 

Animals, ex perimental conditions and fissue sampling 

Atlant ic wolilish (AW) were reared from two fertilized egg masses collected in 

Conception Bay (NL. Canada) in 2000, and were part of the same stock as the fish used in 

an earl ier study (Desjardins 1.'1 at., 2007). Spotted wolilish (SW) were obtained from 

crosses between wild fish that had been collected in 2003 from the northern part of the 

GulfofSL Lawrence on Beauge Bank (OC, Canada). Both collection sites lie ncar the 

50th parallel. where water temperatures are heavily influenced by the cold Labrador 

Current (de Young & Sanderson. 1995: Colbourne, 2004: Galbraith et ai., 2010). All fish 

wcrc hatchcd and reared at the Centre Aquacolc Marin de Grande-Riviere (MAPAQ, QC, 

Canada) before being transferred to the Institut Maurice-Lamontagne (Mont-lolL QC, 

Canada) where they were reared at 9 0c. They were air-lined from Mont-l oll to the Ocean 

Sciences Centre (Mcmorial University of Newfoundland, St. John·s. NL. Canada) during 

October 2006, where they were maintained in separate tanks (2 m x 2 01 x 0.3 01) at 

seasona lly ambient temperature and photoperiod (Fletcher. 1977), and fed fonnulatcd 

food ad libilllm (Ewos. Marine) 

Blood and tissue sampling took place in early February. during a lime when 

plasma AFP act ivity levels typically are at the ir pt:ak (Dt:sjardins 1.'1 (11.,2006; 2007). Fish 
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were held in a smaller water tank to which a lethal dose of anesthetic (benzocaine r,,"' 11 50 

mg/LJ) was added to the water. After 10 min, mensurations were taken. blood W:lS 

s:lmpled from:l c:lud:ll blood vessel :lnd treated as described by (Desjard ins et a/ .. 2006). 

and the pbsm:l stored in a -70 ' C freezer. Some :lliquots of whole blood were also frozen 

in liquid nitrogen. The anaesthetized fish were given a sharp blow on the head. to ensure 

that they were dead. prior \0 dissection. Tissues ( li ver. skin. gill fi laments. stomach. 

intestine. hean. white muscle. kidney. head kidney. spleen. and brain) were removed from 

the fish as rapidly as possible. immediately frozen in liqu id nitrogen, and stored:l\ -70 OC 

before use. 

The guidelines of the Canadian Council on Animal Care were followed during 

transpon and care of experimental animals. All measures were taken to keep pain and 

discomfon of the fish to a minimum during the blood/tissue samplings. 

Thermal hysteresis measurements 

Wolllish plasma antifreeze activity was measured as thennal hysteresis (TH. in "C). 

which is defined as the difference between pl:lsma melting and freezing temperatures in 

the presence of ice. Measurements were perfonned us ing a Clifton Nanolitre Osmometer 

(Clifton Technical Physic.s.I·lanford. NY. USA) and by following the procedure of (Evlms 

1.:1 (1/ .• 2007). The temperatures at which a small crystal wi ll Sl:1n to melt or grow 

correspond to the melt ing point :lnd non-equilibrium FP of the fish's plasma. respectively 
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Southern blot analysis 

High molecular weight genomic DNA was extracted from frozen liver tissue using the 

method of(8lin & Stafford. 1976) with modific·ations (Scott 1'1 af.. 1985). DNA aliquots 

( 10 flg) were then extensively digested with REs EcoR I. BamHL Sad or Ase! (Ncw 

England BioLabs. Pickering, ON. Canada). Restriction digests wcre e lectrophoresed 

overnight on 0.8% agarose gels (30 V: 1.5 V/cm), and blotted (Southern. 1975) onto (+) 

Zeta-Probe GT membranes (B io-Rad. Richmond. CA . U.S.A.) using a lkaline capillary 

transfer accordingly to manufacturer's instructions. All following steps wcre performcd as 

per Graham 1'1 al. (20083). The blots were reprobed wi th jl·tubulin cDNA fro m chicken 

(Accession no. V00389: from 326 bp to 1423bp) as a loading control. 

A first-stra nd eDNA JX>01 was generated fro m OP liver mRNA that was reverse 

transcribed using SuperScript I1TM RT and an oligo(dTh o primer (Invitrogen Canada Inc.) 

as per the manufacturer 's protocol. PCR products were generated using primer set 5' #2 

and 3' #1 (sec PCR conditions below, and Table 2. 1), subcloned intoa pCR'112.I_TOPO~ 

plasmid vector ( Invitrogen Canada [nc.) using the TOPO~ TA C[oning" Kit (Invitrogen 

Canada [nc.). and thcn transfonned into Subc[oning Efficiencllo! DH5u·IM Competent 

Cells (Invitrogen Canada Inc.) as per manufacturer·s instructions. [solmed colonies were 

inoculated into 1.13 growth medium and plasmid DNA was purified using a Qiaprep Spin 

Mini Prep Kit™ (Qiagen Inc., Mississuuga, ON. Canada). Several clones were sequenced 

(three-fold coverage) at the McGill University and Genome Quebec Innovation Centre 

(Montreal. QC. Canada). A PCR fragment was ampli tied as above from a clonc 

containi ng a 385 bp insert corresponding to bases 36S to 453 and 628 to 9260fthc 
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genomic sequence OP3A from OP (Accession no. J03923). This fragment was labeled by 

the random priming method ( Invitrogen Canada Inc., Burlington, ON. Canada) in thc 

presence ofa lphaJ2 P_dCTP. The resulti ng probe is expected to hybridize to both QAE and 

SP-type AFP sequcnccs. 

No rthern blot analysis 

Frozen tissue samples from two individuals of each species were homogenized in 

TRlzol " reagent (Invitrogen Canada Inc., Burlington, ON, Canada), and total RNA 

isolated according to the manufacturer's instructions. All samples were treated with 

amplification grade DNase. For each tissue analyzed, I ~g of total RNA was separated on 

a denaturing 1.2% agarose gel containing 0.67% forma ldehyde. The RNA was then 

blolled onto a positively charged nylon membrane (Roche Diagnostics, Laval, QC. 

Canada) using a VacuGene XL Vacuum Blotting System~ (Amersham Biosciences. 

Piscataway. NJ, USA). and cross-linked with UV light. 

rhe cloned 385 bp fragment used above for probing Southern blots was subcloned 

into the pGEM'"_T Easy Vector (Promega Corp .. Madison. WI. USA). which has both SP6 

and T7 DNA po lymerase recognition sites. A non-radioactive DIG- II·dUTP labeled AFP 

RNA probe was generated by in \'ilro transcription of this construct using the DIG 

Northem Starter Kitlll (Roche Diagnostics Canada). 

Pre-hybridization. hybridization, washing and detection procedures were 

pcrfomled according to. and using the reagents recommended by. the protocol provided 

with the DIG Northern Starter Kit*. Following incubation with CDP-Star·~. the 
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chemiluminescent signals generated by the hybridized probe were recorded digitally by 

exposure in a light cabinet (G: BOXiChemi). using the image acquisition software 

GeneSnap 7.02 from Syngene (Frederick. MD. USA). To ensure the quality of RNA . thc­

blots were stripped and rc-probed with a OIG- I l-dUTP labeled chicken P-tubulin RNA 

probe (see above section). Atlantic salmon (Salmo .mfar) liver total RNA was used as a 

negativecontfol. 

Cloning of AFP gcnomk and eDNA seq uences 

Genomic AFP sequences 

AW and SW AFP genes were amplified from genomic DNA by PCR using the primers 5' 

#1 and 3' #1 (see PCR conditions. Table 2.1. and Fig. 2. 1). These primers were designed 

from known sequences (Accession nos. J0392J. J03924. and M22 125) in order 10 

amplify the complete open reading frame (ORF) of both SP and QA E type III AFP genes 

Products were ligated into pCR~2.1-TOPO". transfonned. screened and scquenced as 

above . At least three-fo ld coverage was obtained for all sequences. Sequence processing. 

analysis and comparison were carried out using the CLC Scquence Viewer 6.5.1 software 

(CLC biD. Katrinebjerg. Denmark). 

AFP eDNA sequences 

First-strand cDNA was generated from DNase-treated AW and SW total RNA. as 

described above. One tenth of each RT reaction was then included in PCR reactions using 

ei therthe primer pair 5' #2 and 3' #1 or 5' #1 and 3' QAE (sec PCR conditions and Table 
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2.1). Primer 3' QAE was designed from the genomic sequence AWG I. obtained during 

this study (Accession no. JQ(40521 ). Products were resolved on a 1.25%agarosc gel and 

visualized with ethidium bromide. Individual bands were exc ised. purified using a 

QIAquick Gel Extraction KitThl (Qiagen Inc.). then cloned and sequenced as described 

above. 

peR conditions 

All PCR reactions were pcrfomled using an Eppendorf Maslercycler~ (Eppcndorl 

Canada. Mississauga, ON, Canada) in the presence ofTaq DNA polymerase ( Invitrogen 

Canada Inc.). and sequence-specific primers (Table 2.1). The PCR condit ions were as 

follows: 

I)Prilller sel 5'#1 /3'#1 and 5'#2/3'# 1: the initial denaturation step was carried out 

at 95 "C for 2 min. followed by 30 cycles of95 °C (30 s). 60·C (30s). and 72 °C (60 s). 

ending wi th a final 72 "C elongation slep of 10 min. 

2) Primer sel 5'#1/3'QAE: conditions were identical to those above with the 

exception of the annealing temperature. which was 65 °C. 

Note: upon manuscript publication. nucleotide sequence data will be available in the 

GenBank database under the accession nos. A WG 1-4. JQ04052 J. JQ040515. JQ040516. 

JQ0405 J 7; A WE I-3. JQ040522. JQ040523. JQ040524: SWGl-3. JQ040518. JQ040519. 

JQ040520. 
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Table 2.1. peR primers used to amplify AFP sequences from AW and SW and their 

annealing position on reference sequem;es. See Fig, 2, I for the location of the annealing 
sites of the first three primers. which wcre designed to amplify both SP and QAE 

sequences, relative to an SP-type AFP sequence. Primer 3' QAE is spec ific for some QAE 
sequences and was designed based on the sequence of AWOl after it was cloned using 5' 

# 1 and 3' # 1. 

I' r imern ame Seq uence (5'- 3') 

5' #1 gttaagtcctcccacatactg 

3'#1 tccggacagacttgggtttgtg 

5'#2 tctcagccacagccatgaagtc 

3 'QAE ctacgcatacgttttcaccatc 

'" A '" III II 
D IE 

Ref. seq. Accession nos. 

1\122 125 

I\U 2125 

I\U 2125 

JQ04052 1 

A H S' 

III 
IE D 

Posit ion 

270-290 

945-924 

387-408 

586-565 

Fig. 2.1. Map of the tail-to-tail invened AFP gene duplicates from the BamHI clone 
isolated by (Scott c/ af., 1988b) from which two Hind lJI subclones were sequenced. each 
bearing one AFP gene (Accession no. 1\122125). The first gene, AW1.9 (referred in the 
present work as AWir) is in a sense orientation, while the second gene. AW 1.5, is in 
invened orientation. The sequences of both genes arc idcntical, and their coding 

sequences are shown as grey blocks. with arrows inside indicating the direction of 
transcription. Restriction sites for the various REs (8. BlImHI; H. Hind lll: S. SlIcI(Ssll); 
A, Asc!) are indicated above the line. The third Sacl (5.1'11 ) site is polymorphic (indicated 
by an asterisk), and there are actually three cleavage sites for Ase1 with in a 2 1 bp region 
(positions 362-382 and 3033-3013, detail not shown) upstream of each genl':. The 
annealing sites for primer pair 5' #1 and 3' # 1, and primer 5' #2 are indicated by arrows 
underneath the sequence (see Table 2. 1 for their prl':cise position on the source sequence). 

Note: the primers are not to scale. 
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Higher plasma TH activity in the AW compa red to the SW is re lated to gene dosage 

differences 

Representative individuals of the two wolflish species. sampled in Ft:bruary. wt:rc testt:d 

for thei r plasma thennal hys teresis (TH) and plasma non-equil ibrium freezing lXl im (FP) 

values (Table 2.2). The two SW individuals had an average TH value 01'0. [9°C, which. 

in combination with col1igative solutes. resu ltt:d in a FP - 1 "C higher than the FP of 

seawater. In contrast. the twoAW individuals had TH values of - 1 °C for non· 

equil ibrium FPs of - I .50 °C and - 1.85 °C. At this time. the temperature of the ambient 

seawater in the tanks where the wolflishes were held was still abovt: zero (1.80 0q. 

Ta ble 2.2. Mensurations. plasma non-equil ibrium freezing lXlints (FP) and thennal 

hysteresis (HI) va[ut:s for AW and SW individuals [ and 2 

AW SW 

Fish # Mass Length FP TH Fish # Mass Length FP 
(g) (cm ) ("C) ("C) (g) (em) ("C) 

1614 57.8 -1. 50 0.82 483 36.6 ·0.90 

1500 56.5 -1.85 1.19 946 40.5 ·0.82 

There is some uncertainty as to how in vifro TH measurements translate into 

TH 
("C) 

0.24 

0.13 

protection from freezing in the wi ld. For technical reasons and 10 faci litatc comparisons 

between samples. T H measurements arc typically done with a standard cooling rate Ihat is 

mort: rapid Ihan would bt: encounlered in Ihe wild. and a large (SO ftm) seed icc crystal is 
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used to stan the measurements. both of which tend to lower the absolute TH va lue 

(Takamichi el (I/.. 2007). Nevenheless. it is clear that the TH values in the AWare fo ur to 

fi ve-fo ld higher than in the SW. using this protocol. As the relationship between TI-/ and 

[AFP] is hyperbolic rather than linear (Davies & Hew. 1990), the resulting interspecific 

difference in circulatingAFP conccntrJtions is even greater than the TH values suggest 

The above-mentioned results prompted us to examine AFP gene dosage among 

wolffishes. Southem blot analyses showed that type III AFP genes were present in both 

species. but tha t there ",·ere many more copies of the genes inAW than in SW (Fig. 2.2). 

When the DNAs were digested with the restriction endonuclease (RE) Eco RI. the 

differences in the hybridization patterns detected with an AFP probe (AFP) were quite 

marked. The AW blot showed seven or eight posit ive fragmen ts ranging from 3 kb to well 

over 20 kb (Fig. 2.2A). The intensity of lhe signal for some of the larger fragm ents 

suggested the presence of many co-migrating gene copies. In contrast, only four or five 

positive fragments were observed on the SW blot. These fragm ents did not comigrate 

with any AW fragmen ts nor were they panieularly intense . The BamHI digests present a 

quantitatively simi lar picture (Fig. 2.2A). However, in these digests, the strongest s igna l. 

which is indicative of many gene copies. is now found at around 8 kb in A W. In the Sacl 

digests, the average size of the hybridizing bands was lower, and 15 to 17 bands of 

varying intensity were observed in AW. In comparison. only seven bands were observed 

for SW. These latter signals were ofa mort: uniform intensity. consistent with the 

presence of only one or two copies of the type III AFP gene per band. 
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Fig. 2.2. Genom ic Southern blots for Atlantic wolffish (AW) and spotted wolflish (5W) 

individuals I and 2 probed for AFP genes. The genom ic DNA was digested with REs 

EcoR!. BamH I. Sac! (A) and Asci (8). Each blot was probed with a portion of an ocean 

pout QAE-type AFP gene (AFP) then reprobed with chicken l3-tubulin eDNA (TUB) as a 

loading control. The positions or the DNA size markers are indicated on the left. 

Individuals 1 and 2 arc displayed in their numerical order. A section of the Asci blot 

corresponding to the signal in the vicinity of2.6 kb from a shorter exposure is shown on 

Fig.2.1 8, and the putative location of the 2.6 kb band corresponding to the inverted 5 1'­

type gene duplicates sequenced by Scott et al. (1988b) is indicated by an arrow 

To validate that similar quanti ties of genomic DNA were originally loaded on the 

ge l, the blot was stripped and reprobed with ~-lUbulin cDNA (TUB). which is also 

encoded as a Illultigene fam ily (F ig. l.lA). The sim ilar signal intensity for thcse genes 

between AW and SW for all three digests indicates that comparable amounts of DNA 

were loaded in each lane. The banding patterns for TUB were very similar between 

76 



species. with on ly a few restriction fragment length polymorphisms (RFLPs). such as the 

absence of the 3.3 kb band in the fcoR I digest ofSW DNA. This is consistent with recent 

speciation in which there has not been sufficient time for variation to emerge in this 

particular gene family. [n contrast, very few of the AFP gene bands had the same size 

between the two wolfTish species. which suggests that the AFP gene locus has undergone 

dramatic changes since divcrgencc from a common ancestor was initiated in these 

wolffishes. A comparison of the overall signal intensity suggests that there are - 3 times 

as many AFP genes in AW than in SW. which is consistent with the higher TH values seen 

in A W plasma. 

Differences in AFI>gene copy numbers within a tandem array containing inverted 
repeats may account for most ofthe gene dusage differences between AW and SW. 

The main difference between the Southern blots of the two species was the presence of 

intense hands in theAW blot with no equivalent in the SW blo\. These strong signals were 

ev ident at - 8 kb in the BamHllanes (Fig. 2.2A). Th is is consistent with previous 

restriction mapping and partial sequencing done by Scott ('Ilil. (1988b). which indicated 

that the genome of AW contains a tandem array of many copies ofa repeatcd unit. which 

in tum contains two AFP genes in an inverted orientation (Fig. 2.1). These units. nanked 

by BamH[ sites. do nol contain any EcoR[ sites. Consequently. the high molecular weight 

signals dctected in the EcoR [ lanes likely correspond to DNA fragments I:Ontaining 

multiple copies of this iterated unit. The lack of these inlense bands in SW suggests thaI 

the tandem repeats are missing (or present at only one or a few copies). The Sad digests 

support this hypothesis (Fig. 2.2A). Indeed. these digests in SW lack Ihe in tense signals 



found in the vicinity of2 kb and 6 kb in AW. In the laller species, Sod (Ss/l) cuts on 

either side of each AFP gene within the inverted repeats, generating fragments of - 2 kb. 

As one of the restrict ion si tes is po lymorphic, - 6 kb fragments are generated that conta in 

- 4 kb of intergenic sequence (Fig. 2.1) (Scott e/ aI., 1988b). Therefore, these inte nS("" AW 

signals likely correspond to fra gments containing a single gene that originate from the 

tandem array of inverted 8-kb duplicates visible in tbe Baff/HI digests 

A smaller proportion of the AFP genes previously mapped from AW also show evidence 

that they were ori ginally tandemly arrayed. In this locus, however. the genes are 

irregularly spaced and the inverted repeat unit is absent (Scott 1:1 aI., I 988b). Since there 

is a Sac! (Sst l) si te between most of these genes. it is likely that most of the lower-

intensity bands visible on the Sac! blot originate from that minor gene component and 

contain but a single copy of the AFP gene (Fig. 2.2A) 

Analysis of two tail-to-tail AW genes previously doned and sequenced by Scott et 

(I/. ( 1988b) indicated that Asel cuts 22 bp upstream of the init iation codon, in the highl y 

conserved portion of the 5' UTR of each gene in the inverted repeat (Fig. 2. 1). This wou ld 

generate fragments of - 2.6 kb in length containing the two tail-to-tail genes wi thin each 

repeat. An intense hybridization signa l thnt accounted for roughly two thirds of the total 

hybridizat ion was observed at this position for both AW spec imens. Only a single. low 

intensity band was observed in the same region for SW, again suggest ing that this unit 

was not amplified within this species. An expansion of th is region showed that there were 

some differences between the two AW indi viduals (Fig. 2.2B. detail). Additional 

differences between individuals of the same spec ies (more so in AW) were observed in 

most of the digests, suggesting that the AFP loc i are polymorphic 
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Totallh'er AFP gene transcript lewis a re consistent with gene dosage differenccs 

The presence and levels of AFP mRNA transcripts trom a number of tissues were 

dctcmlined by Northern blot analyses of bath species (Fig. 2.3). AFP gene express ion in 

AW was found to be at its highest in the liver (F ig. 2.3A.B. lane Li), which is the main 

secretory organ for most plasma proteins in lish (Fletchcr et al., 200 I). Liver expression 

was much lower in SW (Fig. 2,JC-D. lane Li) and this was confinned when the two 

species were compared on the same blot (Fig. 2,JE, lanes Li). The peripheral tissues 

(skin,gill fi laments, stomach,and intestinc) had significant levelsofAFPtrallscripts in 

both species (Fig. 2,J, lanes Sk, Gi, St, and In. respectively). Very low levels wcre 

de tected in some of the other tissues. such as the kidney, but solely in AW (Fig. 2.3A .B). 

The on ly notable difference between individuals of one species (SW) was in the levcls of 

AFP transcript observed in the intestine. However. this could be 3 result of sampling 

differences. as only a small portion from the middle region of each intestine was used. 

Fillally.AFPswcrenOlexpressed in blood cell s, so the transcripts detected inthevarious 

tissues were endogenous and did not arisc from the blood. Overall, tissue expression of 

AFP gene transcripts is higher in thcAW than in the SW. particularly in the liver. This is 

consistent with - although perhaps not excl usively due to - the higher AFP gene dosagc 

observed in the fomler species (Fig. 2.2). 
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Fig. 2.3. Northern blots of Atlantic wolffish (AW) and spotted wolffish (SW) probed for 

AFP transcripts. 1\. ... 0 AW and two SW individuals were included in the analyses. l3lots 

(Al and (8) correspond to AW individuals I and 2. respectively, whi le Ihe b lots (e) and 

(D) correspond \0 SW ind ividuals 1 and 2. One (ish of each spec ies (individuals AW2 and 

SW1) were also compared on the same blot (E). The tissues analyzed wefe liver (Li), skin 

(Sk). gill filaments (Gi), stomach (St). intestine (In). heart (He), whi te muscle (Mu). 

kidney (Kil, head kidney (Hk). spleen (Sp). brain (Br), blood (Bt). Atlantic salmon liver 

mRNA was included as a negative control (C). Each blot was reprobcd with ~-tubulin 

(TU Il) mRNA as a loading control. The positions of the RNA size markers (nt) are 

indicated on the left. 

80 



Each blot was reprobed with a ~-tubulin mRNA probe to confiml RNA integrity 

and loading. This control house-keeping gene transcript was detected in all tissues but 

was particu lurly ubundant in the bruin. which is known to be rich in tubulin (Lewis el (If., 

1985: Parker & Detrich. 1998). The signal appeared faint in AW livcr. which Illay indicate 

that the relutive proportion of th is trunscr ipt in this fixed amount ofmRNA (I ~Ig) was 

reduced due to the high concentration of the AFP transcript (Hobbs el af., 2008). 

AW a nd SW AFPs are s imilar to those of other type III producin g fishes 

A number of cDNA and genomic c lones were obtained by PCR amplilication from both 

wolffish species. The deduced amino acid (aa) sequences are aligned in Fig. 2.4A,B. A 

tOlal of nine unique sequences were obtained from AW; six SP isofomls and Ihree QAE 

isofonns. The three unique sequences obtained from SW encode SP isofomls, and two 

encode QAE isoforms previously reported by Cheng I'll/I. (2006). 
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Fig. 2.4. Comparison of the deduced type I II AFPs from Atlantic wolffish (A W) and spo11ed 

wolffish (SW) with those from ocean pout (OP) and Antarctic eelpout (AEP) (suborder 

Zoarcoidei). (A) Alignments ofQAE and SP isofonns. Three A Wand two SW QAE isofomls are 

aligned in the top block with IWO or sequences: OPa (HPLC·12. for which the structure is 

known. albeit with the C·tenninus changed from YPPA to YAA) and OPb (OPJA. which is most 

similar to the A W isofonns): and an AEI' sequence (R02. which is most similar to the SW 

isofomlS). Note that the "E" in third position in Orb is not present in the GenElank file bUI more 

recent sequencing ofcDNAs (inc luding the sequcnce we used asa probe in this slUdy) strongly 

suggests that the actual splice acceptor site is three bascs upstream of the one originally pr.:dicted. 

SP isofonns from A Wand SW are aligned in the bollom block with A Wir (AWI.9. encoded by 

one of the genes within a repeat with an invened duplication). and two 01' sequences: Ore 

(HpLe·3. for which a structure is known) and OPd (OP5A. which is the most similar to the 

wolflish isofonns). GenBank, Swissl'rot or rOB database accession nos. are given at the end of 

the sequences. and the literature references for each can bc found in the text (section 4). 

Sequences below the dashed line in each block were obtained in this study. Putative ice·binding 

residues arc highlighted in cyan (pyramidal plane binding) and green (primary prism plane 

binding). according to Gamham el af. (2010). Polymorphisms afe highlighted in red (with 

additionaldifferellces in dark red),darker blue or gret:n ifonthe ice-billdillgsurface. or purple if 

in tile core. Only the mature AFI' sequences are shown as the signal peptide 

(MKSAIL TGLLFVLLCVDHMSSA) was identical for all the wolffish sequences obtained in this 

study. The le11eTS G and E in the names of the wolffish sequences indicate whether they were 

ampl ified from (G}enomic DNA or (E)xpressed eDNA templates. respectively. The mRNAs l\"t're 

obtained from liver (SWE1. A WEI. A WE3). skin (A WE2) and pancreas (SWE2) (Cheng Id al. 

2006: this study). Polymorphic si tes are indicated below the alignments with "#". and core 

residues with side-chains that are emirely buried or that show only limited surface e.~posure in 

recessed areas are indicated by ··B··. Asterisks indicate the two sequences with X·ray structures 

that arc shown in (e) and (D). Note: lowercase le11eTS in A WE I indicate residues that are encoded 

by the end of the primer used to amplify this sequence. (El) Alignmem ofrepresemative A W QAE 

and SI' AFPs colored as in (A). Note that only one core residue is al!ered. (C) Stn.JclUre ofQAE­

type Ol'a (HPLC-12) with residues colored according to their highlighting in (A). with non­

highlighted residues in grey. The image on the right was rotated 180" about the Y-a.~is. The site of 

the single conservative substitution on the basal plane ice'binding face (I to I. in A WE I. position 

13) is in dark blue. Visible on the more variable pyramidal plane iee·binding face arc tile 

polymorphisms at si tes 19.20,41 and 42 (in dark green). (D) Structure ofSp·type OPc (HI'Le-3) 

with coloring and rotation as above. The single conservative subsli tution in the core (I to L) is in 

purple. The Ito M substilUtion on the basal plane ice-binding face is in dark blue. The single 

polymorphism on the pyramidal plane ice.binding face (position 20) is indicated in dark green. 

This image was aligned to the QAE isofonn. so that the orientation is the same. 
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The three newly cloned QAE isofonns from AW v.'ere compared to the two 

published QAE sequences from SW (Cheng eJ al . . 2006) and to three more isofomls 

obtained from other species of the suborder Zoarcoidei (Fig. 2.4A. top). The three 

sequences we retrieved from AWare over 93% identical (gaps exc luded). and share 80-

85% identity with the ocean pout (Macro::oarces mnericanlls: OP) isoform OPa (H PLC 

12) (Hew e/ aI. , 1988) for which an X-ray crystal structure has been determined (Jia eJ aI., 

1996). However, they show even higher similarity to OPb (OP3A) (I'lew et al .. 1988). 

with identities of90-91%. The twO SW isofonns, whi(h arc 95% identical. show the 

highest identity (83-85%) to the AEP (RD2) isofonn from Antarctic edpout (AEP; 

LycodichlhFS dearborni) (Wang c/ al.. 1995a). In wntrast. the identity between the AW 

and SW sequen(es is lower. at just O\'er 70%. This is nOi unexpe(ted as QAE isoforms 

are quite variable. especially near the C temlinus. They can even be quite different within 

a species. as indicated by the ocean pout sequences OPa and OPb. which are only 79% 

identical. Therefore, the lack of higher identities between the QAE isofonns ofSW and 

AW may be a result of sampling bias. as only five sequences are now known. 

It is possible to compare both the coding (276 shared bp) and non-coding 

sequences ofOPb and AWGI as they were cloned from genomic DNA. These two AF l's 

are 91% identical allhe protein level but their coding sequences are 96% identical (data 

not shown). A significant percentage (67%) of these mutations causes missense ( hanges 

and the 174 bp long intronic sequences arc 96% identical as well. This suggests that the 

prOle in sequence may be under selection for mutational improvements while thai same 

select ion maintains the amplieon numbers within Ihe AFP gene locus (8erglhorsson el al .. 

2007). The portions oflhe 5' and 3' UTRs interior to the primer annealing sites arc also 
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very well conserved with 97% and 99% identity. over 110 and 73 bp respectively. 

Additionally. the 3' UTR includes an indd of 3 1 bp 

The SP-type AFP isoforms from both species were compared to AWir (AWI.9). 

onc of the two AFP genes found in the inverted repeat from AW that was cloned and 

sequenced by (Scott 1.'1 1I1., 1988b) (Fig. 2.4A. bottom). Interestingly, AWE3. which was 

dedueed from a liver cDNA sequence, was an exact match to AWir. When all wolflish 

sequences are compared. there are only four polymorphic sites visible. and the sequences 

show at most three polymorphisms (> 96% identity). In addition. some of the sequences 

are identical between the two species (AWG2/SWG3 and AWG3/SWG I). Two OP 

isofonns are shown for comparison: OPc (OPSA) (Hew 1.'1 al . . 1988) for which an X-ray 

crystal structure has been detennined (Yang 1.'1 01.. 1998). and OPd (H PLC3) (Hew et al . . 

1988). which shows the highcst overal l identity (83 to 86%) of a ll published zoarcoid 

sequence~ to the wolffish genes. Note that OPe is based upon a post.translationally 

modified protein sequence and that cleavage can occur at both tennini. which is thought 

not to affect activity (Hew 1.'1 (J/., 1988; Li 1.'1 (I/., 1985) 

The high similarity between the SI' isofonns of the wolffishes extends to their 

DNA sequences. including the intranic and partial 5' and 3' UTR sequences (data not 

shown). For instance. AWG3!S WGI arc also identical at thc nucleotide level. while 

AWG2/SWG3 differ only at one position in the 181 bp intron and two positions within 

the 79 bp of the 3' UTR. Pairwise comparisons between all isofonns of both species 

indicate that both coding and non-coding regions are over 96% identical 

In wolffishes. the variability among the QAE sequences is higher than among the 

SI' isofonns. This was also observed within other representatives oflhe Zoarcoidei, the 
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or (Hew ef al .. 1988). and the notched-fin eelpom ChJarces e/ongafl/s) (N ishimiya ef fI/.. 

2005). However. the greatest differences are seen when QAE and sr isofonns arc 

compared. For example. two representative sequences from A W (Fig. 2.413) share only 

56% identity. The best conserved residues are those that are buried and make up the 

hydrophobic core of the protein. The icc-binding residues arc fairly well conserved while 

there is a great deal of variability in surface residues that are not on the ice-binding 

surfaces. 

AW and SW AFPs are likely functional 

To assess the potential effects of sequence polymorph isms on TI1 activity. the au 

variations in the AFP sequences (Fig. 2.4A) were mapped onto the crystal structures of 

representative QAE (OPa) and SP (OPe) isofonns in figures 2.4C and 2.4D. respectively. 

There are 26 polymorphic sites in the QAE isoforms shown in Fig. 2.4A. but the last four 

are found at the highly variable C tenllinus that was modified tor crystallization (lia e/ 

af .• 1996; Yang ef al .. 1998). so they are not considered funher. Only three (20%) ofthc 

thineen core residues are polymorphic (Fig. 2.4A&C. in purple). and two of these 

substitutions are so conservative (V to I at position 5. and L to I at position 40) that they 

are unlikely to significantly affect the protein fold. The substitution of the smaller T 

residue for M at position 22 could potentially alter the packing orthe core to some 

degree. but is unlikely to totally disrupt the structure. It may be panially compensated for 

by the spatially adjacent substitution of the slightly larger I at position 5. In contrast. the 

surface exposed residues that are not thought to be involved in ice binding are far more 
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polymorphic (Fig. 2.4A&C, in red and dark red) than thc core residues. as thcrc arc 14 

differences at 37 sites (38% polymorphic). These substitutions are general ly less 

conservati ve than those observed in the core 

rhe same general pattern is observed in the polymorphisms found in the SP 

isofonns. For instance. there is on ly one core residue polymorphism: the same highly 

conservative I to L subst itution at position 40 as observed in the QAE isoforms (Fig. 

2.4A&0. in purple). In fact. this substitution is the only one observed in the core when a 

SP and QAE isofonn from AWare compared (Fig. 2.48). There are IWO differences at the 

C-tenninus of the SP isofonns. and five differences among their surface residues located 

between the putative ice binding sites. Here again, these substitutions tend to be less 

conservative. 

The OAE isofomls have a total of five polymorph isms (Fig. 2.4A&C. in dark 

green and dark blue) within the 13 residues that are thought to be involved in ice binding. 

The 110 L substitution found at position 13 in AWEI is not fou nd in anyothcr isoform in 

the database but is so conservative that it is unlikely to drastically reduce antifreeze 

activity. All of the other polymorphisms arc located among residues that belong to the 

surface postulated to bind to the prism planc of icc (in green) (Gamham 1:1 al .• 20 I 0). The 

V to I substitution at position 41 in the SW sequence has also been observed in AEP (Fig. 

2.4A). whcreas the other three polymorphisms at positions 19.20 and 42 arc predominant 

in Iht: SP isofonns from wolffish. 

SP isofonns have been shown to have icc-shaping activity but lack thermal 

hysteresis in the absence ofQAE isoforms (N ishimiya et al .• 2005: Takamichi 1:1 af .• 

2009). This had been attributed to a lack of prism plane binding (Gamham Ifl (If •• 2010). 
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Substitutions at position 20. (shown in dark green. Fig. 2.4A& D) lie on the non­

functional prism plane binding si te ofSP isofom1s and should not influence ice-binding 

activity. The I to M substitution at position 13 (in dark blue) does lie on the fun ctional 

pyramidal plane binding site (cyan). but is an extremely conservative substitution and has 

been seen in numerous isofomls from scvcral spec ies (Fig. 2.4A& D and data not shown). 

Taken together. the sequences shown in Fig. 2.4A exemplify the remarkable 

diversity that exists within the AFP gene pool ofwolffish (and the AFP III mult igene 

family in general), which is a signature ofa highly dynamic locus. The isofom1S can be 

categorizcd as SP- or QAE-types based on thei r overall sequence simi larit ies and it is 

likely that their ice-binding propenies would closely correspond to those sccn for the 

QAE and SP isoforms in other species. Thus. none of the polymorph isms that wcre 

observed in SW appear strongly deleterious or sufficient ly differe nt from those found in 

other type III AFPs to suggest that thcy would lead to a drastic loss of activity relati ve to 

the isoforms found in AW. Therefore, it is unlikely that point mutations contribute to the 

reduced freeze-resistance ofS W. 

2.4 Discussion 

Differences in AFPgene dosage correlate with environment requiremen ts 

Following the analysis ofa number of genom ic and expressed AF P sequences and 

comparison with sequences in the databases (Fig. 2.4). it was fou nd thaI Atlantic (AW) 

and the spoiled (5W) wolftish each possess and express both SP and QAE isofom15 

(Cheng et al., 2006; this study). A combination of these Iwo isoforms is the basis for type 
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1[1 AFP-mediated freeze resistance (N ishimiya el (1/ .• 2005: Takamichi ela/ .. 2009). 

Moreover. their AFPs appear 10 be functional. and are likely to be under selection for 

improved function and maintenance of high dosage in A W. As there are - th ree times 

moreAFP gene copies inAW than in SW (Fig. 2.2). it would appcarlhat gene dosage is 

largely responsible for the higher plasma TH levels observed in AW. This is in accordance 

wi th the differences in risk of freezing faced by the two species. as a result of the depth of 

their respective habitats. AWare found in the shallow waters of Conception Bay 

Newfoundland during spring where they can be exposed to sub-zero tcmperatures in the 

presence of ice, whereas SW remain in deep water (Keats el a/ .. 1985: Kulka el af .. 2004). 

According to a modeling study by Svensson & Omsted (1998). small pieces of ice 

can be driven down to depths of 20 m and more under intense stonn conditions. The 

presence of suspended ice partic1es. which can nucleate freezing. poses a real threat for 

fish that are undcrcooled and lack adequate protection. Indeed. winter kills offish due to 

freezing are not uncommon (Green. 1974: Hoag. 2003: Fletcher & Davies. 2012). 

Considcring this. it is likely that SW would freeze to death if exposed to ice. as its 

average plasma non-equilibrium FP (.0.86 0C) is well above that of the surface wateTS of 

Conception Bay in April (-1.82 to ·1.83 °C)(deYoung & Sanderson. 1995). AW from 

Conception Bay were previously shown to have an average non·equilibrium FP of -1.71 

(SE ± 0.15 ' C) during the early spring (Desjardins ci af .. 2007). which corresponds well 

with the values obtained in the present study (average of ·1.68 ' C). Although this is 

slightly higher than the actual freezing temperature of seawater. these values are 

detennined using isolated plasma in artificial conditions (as outlined earlier). which are 

very likely 10 underestimate the anti freeze protection conferred to the fish in their natural 
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environment (Takamichi 1'1 01.. 2007). Moreover. the fish's freeze resistance is likely 

further improved by the presen",,: of AFPs in epithelial tissues such as skin. gills and 

slomach (Fi g. 2.3). In fact. the skin itsclfhas been shown 10 act as an etlicient barrier 

against icc propagation (Valerio CI al .• 1992) 

A positive correlation between the probabi lity of a fish encountering icc and AFP 

gene dosage is a recurrent observation and has been found to be the main cause for intra-

and interspecific differences in levels of circulating AFPs (Hew 1'1 (II .• 1988: SWII 1'1 al . . 

1988a: Hayes CI al .. 1991: Cheng CI al .• 2003: Nabeta, 2009: Bilyk C'/ al .• 20 10). For 

example. OP from Newfoundland waters were found to have - 150 copies oftypc III AFP 

genes while those from Southern New Brunswick (where sea ice is less prevalent) had 

about one fourth this number of genes (Hew 1'1 al.. 1988). The levels of plasma TH 

measured in these fi sh (Fletcher CI al .. 1985) were consistent with their respective gene 

dosage. A similar study compared four species of righleye flounders (family 

Pleuroneetidae) that synthesise type I AFPs (Scot! 1'1 (il. 1988a). These fi sh inhabit inner­

shelf waters off the Newfoundland coast. Southern blot analyses revealed that the two 

species found in the shallowest areas, the winter floundrr (PwlldOp/CllroIlCCIC'S 

(llIIericanIlS) and the smooth fl ounder (Plellronecre.f pllinallli). had the highest AF t> gene 

copy numbers. This was mirrored by plasma high TH levels during winter. which 

translated into non.equilibrium Frs of -1.7 °C (winter fl ounder) and -1.8 °C (smooth 

fl ounder) (Goddard & Fletcher. 2002). In contrast. the two ot her species investigated. the 

ydJowta ilflounder (Limandajcrrllginca) and the American plaice (Hippoglos.\·oide.5 

pfate.uoides). had lower non-equilibrium Fr s of ·1.I °C (Goddard & Fletcher. 2002). 

These species arc found at depths where they arc less likely to encounter icc. 
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Reeent lImplificlition of AFI> genes mlly han~ led to speciation in wolff ashes 

AW has been shown to have approximately two thirds of its AFP genes organized as an 

array of - 8 kb direct tandem repeats that each contains two SP genes in inverted 

orientation, with the remaining genes clustered and irregularly spaccd (Scott et af., 

1988b). Our Southern blots are consistent with this result (Fig. 2.2A) and the A.I"I'J digests 

allowed us to visualize the tandemly repeated gene copies as a cluster of three to four 

intense bands of - 2.6 kb (Fig. 2.1 & 2.2B). The slight size dillerences observed among 

these bands is like ly due to variability among the intergenic sequences of these duplicates 

(see restriction maps in Scott 1'1 (1/. ( 1988b». In contrast, intensely hybridizing fragments 

of this size. or any sizc for that matter. are not present in SW. We estimate that SW has 

roughly a third of the AFP genes of AW, and that the primary difference between the two 

species is that these tandem inverted repeats ofS P-type genes were nOi amplified in Sw. 

AW shows much higher levels of AFP mRNA in the liver (Fig. 2.3), suggesting that these 

tandem genes are largely responsible for the level of transcript observed in that tissue. As 

the liver is the primary source of circu lating AFPs (Fletcher cl 01.. 2001), this amplified 

gene array could be responsible for the higher plasma TH levels measured in the AW. 

Extensively amplified genes are a hallmark of rapid adaptation (Reams & Neidle. 

2004; Fondon III & Garner. 2004; Ibstings. 2007). Recent GOA is typified by even ly-

spaced tandem arrays ofvinually identical genes. Over time. these tcnd to change imo 

clusters of linked but irregularly spaced genes that are more variable in seq uence 

(Graham. 1995). Tandem arrays are highly unstable, as they are hotspots for unequal 

crossing over during meiotic homologous recombination events (Despons cl (II.. 201 1): 
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consequently. they may vary within a species. This appears to be the case in /\W as the 

lengths of the tandem duplications vary more in one individual than in the other (Fig. 

2.28. detai l) . Whi le tandem arrays can expand rapidly within a popu lation under strong 

Darwinian se lection for an amplified phenotype. they can also contract quickly when 

selection is rela."~ed (Anderson & Hughes. 2009). 

In the Nonhern hemisphere. evidence shows that Cenozoic sea-level glaciations 

began at least 2.5 Ma ago (Shackleton el al .• 1984), although new evidence (Stickley. 

2009) and a recent mode ling study (DeConto el (Ii. 2008) suggest that sea ice format ion 

staned well before that. - 20 to 45 Ma earl ier. Type III AFP genes have been found in five 

families within the suborder Zoareoidei (Shears el al .• 1993; Davies el al .• 1988). which 

suggests thai the type III emerged before or during family radiation. Moreover. members 

of two of these families (wolflishes. 01' and other eelpoUls) have been shown to have 

genes belonging to the SI' and QAE-type AFP gene subfamilies (Hew el a/ .. 1988: Scott 

el a/. , I 988b; Cheng el al .• 2006; this study). Therefore. it is likely that the type II I gene 

fami ly emerged and diversified several Ma ago in the common ancestor of these 

taxonomic groups following at least one GDA event. As the initiation of the sea level 

Cenozoic glaciations is considered the trigger for independent emergence of different AFI' 

types among unrelated fish taxa (Scott et al.. 1986). a similar scenario is proposed as the 

basis forlhc diversity observed among the type I AFP genes found in flatfishes of the 

family P!curonectidac (Scott el (Ii. 1985. 1988a). and the AFGP genes of the 

notothenioids (suborder Nothothenio idei) (Cheng el al.. 2003; Nicodemus-Johnson e/ al .. 

2011) 
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The last few millions years have seen a succession of glacial and interglacial 

episodes (Oppo e/ al.. 1995) so it is possible that AFP genes famili es have expanded and 

contracted several times since their emergence, and in a difTerential fashion a<:ross 

species. This could have led to greater gene content diversity among the multigene 

families ofa given AFP type than that seen, for example. in other genes for which there is 

a constant need. This appears to be the case for the type III AFP genes (SP and QAE) in 

AW and SW.lndeed. RFLPs are rampant within thcirAFP locus and the main cause of the 

interspecific difference in gene dosage is the diffcrential amplification of the tandem 

repeats. In contrast. there are very few RFLPs in the ~-tubulin gene familie~ from both 

species. and they are more similar to each other than are the AFP families. Additional 

examples of diversity within and among individual AFP III gene families are provided by 

other species. Both major plasma AFP isoforms of the AEP are orthe QAE type (see AEP. 

Fig. 2.4) and originate from a long tandem array (Wang clliL 1995b; Deng e/ aL 201 0). 

while the third major isoform in AEP is a fusion of ty,·o QAE isoforms (Wang e/ al .. 

1995b). SP type AFP genes have not been identified in this zoareid. This contrasts with 

the AFP gene organization in AW. where tandcmly arrayed SP genes represent the major 

component of its AFP locus (SCOIl el al.. 1988b). In another zoarcid. the 01', AFI' gene 

organizat ion appears to be quite complex relative to that ofwolffish and AEp, In th is 

species. the - 150 AFP genes encode both SP and QAE types that are not tandemly 

arrayed. although restriction mapping of genomic dones shows that some of the genes lie 

wit hin 2 kb Hind i I! fragments that arc clustered but unevenly spaced (Hew ('I 01.. 1988). 

The authors conduded that differences between populations. and even between 

individuals within the same popu lat ion. could not be explained simply by the expansion 

93 



or contraction ofparlicular repeats and suggested that multiple rounds of contraction and 

expansion must have occurred. In AW. evidcnee of an older amplification evem (possibly 

IWO) can be observed within the cluster of unevenly spaced AFP genes which correspond 

to the minor component of the AFP gene pool that was mapped by SCOI\ c/ (1/. (1988b). 

Indeed, some of the genes were detected within fragmems flanked by similar patterns of 

restriction sites. In contrast. the tandem arrays of SP-type genes in A W genes would be a 

more recent event. as suggested by their evenly spaced distribution within the array 

mapped by Scott c/ ",. (1988b). 

According to recent phylogenetic analyses ofmtDNA, AW ::I nd SW ::Ire sister 

species that diverged approximately - I Ma ago (McCusker & Bentzen. 2010). Their 

close phylogenic relationship is supported by our recovery of identical SP-type AFP gene 

sequences (AWG3 and SWG1; Fig. 2.4A). with others being highly sim ilar. Interestingly. 

the estimated divergence time of AW and SW f::llls within a period when the North 

hemisphere glaciation cycles were at their highest imensity (Gibbard & Kolfschoten. 

2004). with a new glacia l event taking place at - 0.1 Ma intcrvals over thc last Ma 

(Augustin. 2004). The ebb and flow of glaciers would have resulted in the <:yelic 

emergence and disappearance of depth stratified environments. where ice would be more 

prevalent in the shallower regions. During each rclreat of the glacier fronts. shallow water 

habilats offering low competition for resources and low predation on the young would 

become available for colonizat ion by freeze resistant specics such as the AW. In contrast. 

the ancestor to SW would have remained in dceper waters. away from the '"freeze risk 

ecozonc'". Therefore it is reasonablc to suggest that a major contributing factor that led to 

the evolution orthe more freeze res istant AW and its occupat ion of shal lower habitats 
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would have been the gene amplification events that generated the tandemly arrayed AFP 

genes found in this species today. Speciation likely occurred in parapatry, as the 

distribut ion range of these tv.'o species still overlap today (SCOIt & Scott. 1988). 

2.5 Conclusion 

From the evidence collected within Ihe present study, we propose that parapatric 

speciation - based on habitat depth and risk of freezing associated with these depths ­

between the AW and SW has been facil itated ifnot triggered by the extensive re­

amplification of a portion of the AFP multigene fam ily in the genome of the AW. which 

resulted in higher plasma AFP levels and lower plasma non-equlibri um FP in that species, 

compared with the SW. Among members of the suborder Zoarcoidae. the observation of 

significant gene dosage variation between and within species (Hew et al .. 1988; Shears t'l 

(II .. 1993: Deng el af .. 2010; this sludy) atteslS 10 the plast icity of the type III AF I' gene 

loc i. and the rapidity of the molecular adjustments as selective pressures promoting freeze 

resistance played out in these populations. The observat ion of important gene dosage 

plasticity in other AFP multi families (Cheng el al.. 2003: Scott ct (If., 1988a). and the 

likely universa l occurrence of tandem arrays of AFP and AFGP genes within the locus 

(Scott e/ (11.. I 988a,b; Deng el aI. , 2010; Nicodemus·Johnson et al .. 201 1) extends the 

possible ro le of AFP GDA in speciation of AF P·bearing fish in general. during the 

succession of glacials!interglacia ls that punctuated the climate si nce the onset of the 

Cenozoic glaciations. 
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-CHAPTER3 -

" Effect of interspecific hybridization on freeze resista nce capacity in 

wolffish and its evolutionary significance " 

3. 1 Introduction 

The Atlantic and spotted wolffish (An(lrhichas IlipliS. A W; A. minor, SW; fum;ly 

Anarhichadidac; suborder Z03ll:oidci: Nelson. 2006) arc marine fishes characteristic of 

the demersal species assemblage or the North Atlant ic continemal shelves and slopes 

( Barsukov. 1959; Scott & Scott. 1988: Kulka & DeBlois. 1996). Predominantly 

bcnthophagic.lhey feed on echinodenns. mollusks. crustaceans and fish (Albikovskaya. 

1983: Scott & Scott. 1988). During the pasl century. the populat ions o f AW and SW 

dec lined heavi ly in eastern Canadian waters. possibly due to the combined repercussions 

of fishery ac ti vities (by-catch and habitat disruption) (O'Dea & Haedrieh, 2000), and 

anomalous temperature variations since the 1970s (Colbourne el a/.. 2004: Kulka el (ii., 

2004). The two spec ies are now protected under COSEW[Cs (Committee on the Status 

of Endangered Wildlife in Canada) Spec ies At Risk Act (SA RA). and recemly bcrame 

the focus of a recovery/managemem plan (Kulka el al., 2007). 

AW and SW are both found at a wide depth range. In the waters of Newfoundland 

and Labrador. A W can be encoumered from 5 to 350 m (sometimes deeper), while SW is 

found mainly from [00 10600 m (A lbikovskaya, 1982; Keats elal., 1985: Scott & Scott , 

1988; Kulkaelll/.. 2004). AW faces the threat of freezing in the shallowest part of its 

depth range, which can be considered part o f a "freeze risk" ecozone (see Chapter 2). 
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Consequently. thi s species produces high levels of plasma antifreeze proteins (A FPs) 

(Desjardins el (iI.. 2006: 2007). Contrary to the other solutes. these proteins act in a non­

colligative manner. and can lowerthe freezing point (FP) of the fi sh's hyposmotic body 

fluid s bya full degree Celcius (fora review. see Fletchere/lIl .• 2001). They do so by 

adsorbing to nascent ice crystals. thus halting their growth (Raymond & DeVries. 1977: 

Penaya e/ lIl., 2007). The fi sh can then contact and absorb icc without freezing to death. 

which is invariably the outcome in undereooled animals (Scholander ('I al . . 1957). As ice 

docs not nonnally penetrate at great depths in the temperate oceans. the closely related 

SW is thought to be at very little risk of freezing. Consequently. thi s sp<.'(;ics has low 

leve ls of plasma AFPs. which do not confer freeze resistance (Desjardins el al.. 2006). A 

recent study revealed that the lower leve ls of c irculating AFPs in SW were due to a 

correspondingly lower AFI> gene dosage in the fonner spec ies. compared with A W (see 

Chapter 2). More precise ly. SW has roughly three times fewer AFP gene copies than in 

A W. A relationship between AFP gene dosage and freeze tolerance capacity has been 

consistently observed among AFP-producing fishes (Goddard & Fletcher. 2002: Cheng el 

af .• 2oo3). 

AFi> genes are typically organized as multigene families (Fletcher ('I (11.,2001: 

Cheng e/ al .• 2003). These fam ilies like ly arose independently in fou nders of the 

contemporary fi sh clades. in response to the new threat of freezing brought fonh by the 

sea-level Cenozoic glaciations (SCOIl ellll .. 1986). The family of AFP genes found in 

wolmshes (which encode the so-called type II I AFPs) is shared by other fi sh of the 

suborder Zoarcoidei. and varies significantl y in terms of gene numbers. organization and 

composition among - and even within - species (Hew e/ al .. 1988: Scott el al .. 1988b: 
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Shears ('l (Ii.. 1993: Nishimiya el (Ii.. 2005, Deng el al.. 2010). Such variation is also 

observed in the type I AFP gene family of the Nonhern hemisphere righteye flounders 

(fami ly Pleuroneetidae) (Scott el a/ .. 1988a: Hayes et al .. 1991: Nabcta. 2009). and Ihe 

antifreeze glycoprotein (AFGP) gene family of the Southcrn hemisphere notothenioids 

(suborder Notothenioidei) (Cheng el al .. 2003). As the strength of the selective forces 

promoting freeze resistance likely varied according to the numerous glacial/interglacials 

(- 52) that punctuated the Quaternary (Gibbard & Cohen. 2008), the heterogeneity within 

these different multigene families is likely a product ofaltcrnating rounds of strong and 

rela.l{ed natural selection for this trait in the different fish species (sharing a givcn AFP 

gene pool). Thus we can argue that differcntial amplification-deletion of AFP genes may 

have promoted speciation among AFP-producing fishes in response to the ever changing 

climate that characterizes the Quaternary Period (see Chapter 2). This may also explain 

why some fish found in ice-free environments (such as the SW) still produce AF(G)ps 

without an apparent need for them. 

Extensive amplification of pre-existing genes is ollen interpreted as a rapid 

adaptive response to environmental stressors (Hastings. 2007): in this case. the n.:current 

threat of freezing faced by fishes over a geologic time scale. It can also foster the 

emergence of new species (Ohno. 1970: lang. 2003: Gu el al.. 2005). Interestingly. two 

thirds of the AFP gene pool in AWare contained within a large tandem array (Scott el a/.. 

1988b) that appears mainly responsible for the gene dosage difference with SW (see 

Chapter 2). If it is instrumental in wolffish speciation. this amplificalion event has to be 

very recent. as McCusker & Bentzen (2010) evaluated that A Wand SW diverged from a 
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common ancestor - one Ma ago. This divergence time coincides with the height orthe 

North Atlantic Picistoccnc glaciations (Gibbard & Kolfschoten. 2004). 

The synthesis ofhighcr AFP 1c"cls in a wolffish subpopulation may have givcn 

rise to a new Evolutionarily Significant Unit (ESU) that could dwell in the presence of icc 

and re-colonize shallower inshore habitats during the retreat of glaciers. However. newly 

emerged ESUs or species often show incomplete reproductive isolat ion. and 

cnvironmental disturbances (natural or anthropogenic) can increase the probabilities for 

these nascent species to hybridize (Hubbs. 1955; Lamont et (1/ .• 2003; Mallet. 2005: 

Fisher et (11 .. 2006). Natural hybrid ization occurs more frequently among fish than in any 

othcr vcrtebrate group (Allendorf el (II.. 2001). Among marine fishes, mosl cases of 

interspecific (and even intergeneric) hybridization have been reported among flatfishes. 

whose benthic habitats and spawning grounds often heavi ly overlap (Hubbs. 1955) 

Interestingly. despite their partially overlapping distribution range and close genetic 

relatedness, no hybrid of the A Wand SW has been formally characterised in the wild 

(Templeman. I 986c; Imsland el (1/ .• 2008: McCusker el (II .. 200&). Robust pre-zygotic 

bllrriers thus seem to prevail between A Wand SW. lind not enough is known ofwolffish 

biology to understand their basis. What is known. howewr. is that bypassing this initial 

barrier through artificial fertilization results in healthy (Gaudreau el (II .. 2009) and fertile 

offspring (Savoie. pers. com.). Hence. the maintenance or the wolffish lineages in nature 

seems to be mainly achieved through pre·zygot ic barriers (e.g. temporal. habitat. and 

behavioral isolation). which in tum may be preserved by the need of the A W to maintain 

high AFP gene copy numbers 
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The present work aimed to evaluate and compare the freeze resistance capacities 

among Fl A W /SW hybrids and thei r parental species. based on AFP gene dosage and 

organization, AFP mRN A expression, and the actuallcvcls of antifreeze protect ion 

afforded by the c irculating plasma AFPs. The evolut ionary significance ofwolffish 

hybridization in an e\'cr changing cnvironmcnt wi ll be discussed, with consideration of 

anthroJXlgenic disturbance and cl imate change. 

3.2 Materia ls and Methods 

Experimental an imals, condit ionin g and sampling 

The animals used in the present study were all produced in captivity, from broodstock 

harvested in the Northeastern part of the SL Lawrence Gulf( Beauge Bank and East 

Anticosti she lf areas, Quebec. Canada). A fam ily of purebred Atlantic wolffish 

(Anarhicht/S II/pl/s: A W) and two fa mi lies of reciprocal hyhrids of Atlantic and spotted 

wolffis h (A. minor: SW) were used. These fish. weighing an average of 47.S ±16.6 g at 

the onset of the experiment. were produced and hatched during the winter of2007 at the 

Centre Aquacolc Marin de Grand-Riviere (CAMG R. MA PAQ, QC, Canada), The c.; l lIplIs 

x o minor hybrids (fami ly AH2) were derived from the same fe male used to produce the 

family of purebred A W (family A I), A different male was used to produce each of these 

two fam ilies, while the 9,minor x B ll/plI.)' hyhrids (family SH3) were issued from a 

fertil ization event involv ing the semen of severa l males (lnfonnat ion about thesc families 

is presentcd in Table 3.1). 
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Ten fish from each of the three families were transferred to separate tanks. The 

animals, then of age 1+, were exposed to seasonally ambient temperature and photoperiod 

(Fletcher. 1977) from mid-March to mid-Apri l 2008, whi le fed fonnulated food (Gemma 

Skrctti ng Canada. NB) (ld libitum. At the cnd of this period, a preliminary evaluation of 

the plasma AFP levels was conducted for all fi sh. The results (see Thermal hystercsis 

measurements) prompted us to initiate a longer exposure trial. using new fis h from the 

same above-mentioned families of purebred A Wand rec iprocal hybrids (A I: n = 10; 

AH2: n = 10; S1-I3: n = II). The animals were exposed to seasonal ly ambient condit ions 

start ing on October 21" 2008. Five adult purebred SW derived from Quebecois (fam ily 

SQ) and Norwegian (fam ily SN) broodstocks in 2003 were also included in the 

experiment, to allow for comparison (small SW contemporary to the A Wand hybrid 

wolffishjuveniles were not avai lable). 

Table 3.1. Breakdown (by famil y, breed and genitor) orthe origin of the wolffish used in 

this study. 

Family B,"" Genitor provena nce Notes about gen itors 

Al Atlantic wolffish (A. lupus; Quebec (Canada) Same !¥ asA H2 
AW) 

Am Hybrid (!¥ /upus x O'minor) Quebec (Canada) Same !¥ asAI 
SH3 Hybrid (!¥minor x o lupus) Quebec (Canada) Severa l o used 
SQ Spoiled wolffish (A . minor: SW) Quebec (Canada) 
SN Spoiled wolffish (A. minor: SW) Norway 

Blood sampling was conducted on February 20th (2009) for all fish. at a time when 

plasma AFP activity levels were shown to be at their peak (Desjardins el (1/ .• 2006: 2007). 
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At that time. the purebred A Wand the hybrids were of age 2+. while the adult SW where 

of age 6+. Fish were anesthetized for 10 min in a tub containing 50 mg/L fllul[benzocaine]. 

Blood was obtained from a caudal blood vessel us ing I ml heparinized syri nge. 

transferred to heparinized 1.5 ml microcentrifuge tubes and centrifuged 10 remove the 

blood cells (4000 g. 10 min. 4 QC). Plasma samples were stored at -70 QC until ana lysis. 

After sam pling. the fish were given time 10 recuperate in oxygenated lubs before being 

replaced in their respective experimental tanks. Following the measurement of antifreeze 

activity (thennal hysteresis: TH) in the plasma (see Results section). the Iwo best AFP 

producers in each family were selected for tissue and blood sampling. which occurred in 

April. when AFPs are still present in the bloodstream at high concentrations (Desjardins 

el (I/.. 2006; 2007). Fish were anaesthetised and blood sampled as described above. The 

an imals were then killed by a sharp blow to the head. Tissues (liver. sk in. and g ill 

lilaments) were removed from the fish as rapidly as possible. immediately frozen in liquid 

nitrogen. and stored at -70 QC before use in Northern blotting analyses. Extra liver pieces 

were flash-frozen for use in Southern blotting analyses. 

The guidelines of the Canadian Council on Animal Care were followed during the 

experiments. and all measures .... ·ere taken to keep pain and discomfort of the fish to a 

minimum during the blood/tissue samplings. 

Thermal hysteresis measurements 

Plasma antifll.:ezc activity was measured as TH using a Clifton Nanolilre Osmometer 

(Clifton Technical Physics. Hartford. NY. USA) follow ing the procedure of El"(ms ef af .• 
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(2007). TH is defined as the difference between the melting and freezing h:mperaturcs 

("C) ofa test so lUI ion. and is representative of the AFP concentrations present in thaI 

solution. according to a non-linear re lationship (Davies el ai .. 1990). All TH results were 

expressed as mean:l: SD. Statistical analyses (Generalized Linear Model and Mann­

Whilney tests) were conducted on the TH dala using SigmaPlot 10 (Systat Software Inc.). 

At the end of the preliminary trial. the reciprocal hybrids showed similar values of 

plasma antifreeze acti vity (TH: 0.24 ± 0.04 "C for family SH3. and 0.27 ± 0.04 "C for 

family AH2). These values. while lower than those obtained in the A W family (0.43 ± 

0.11 QC). were still superior to average winter levels previou~ly recorded in purebred SW 

(0.10 0c; see Desjardins el al., 2006). This motivated longer trai ls 10 be undertaken (see 

Resuslt section) 

Northern b lot analysis 

A nonradioactive method was used to detect A Wand hybrid wolffish AFP rnRNAs from 

liver. skin and gill tissues on Northern blots, using a 385 bp DIG-II-dUTP-labeled QAE­

type-AFP mRNA probe (Roche Diagnost ics. Laval. QC. Canada). This probe hybridizes 

to both QAE and SP-type AFP genom ic sequences (please see Chapter 2 for details 

related to the template and probe generat ion methods). 

TOlal RNA was extracted from frozen tissues and prepared as outlincd in Chaplcr 

2. BrieHy. 1 ).Ig of lotal RNA a liquOls were separated on a denaturing 1.2 % agarose gel 

containing 0.67 % fonnaldehyde. The RNA was then blotted onto a positively ch:lrged 
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nylon membrane (Roche Diagnostics) using a VacuGene XL Vacuum Blotting System~ 

(Amersham Biosciences. Piscataway. NJ. USA). and cross-linked with UV light. 

Membrane pre-hybridization. hybridization. st ringency washes. hlocking and 

detect ion procedures were performed as described in Chapter 2 using the kit and reagents 

supplied by Roche Diagnostics. accord ing to the recommendat ions by the DIG 

Application Manual for Filter Hybridization (hllns: llwww.roche-applied-

science.com/publications/print mat/di!.! application manual. pd f) . The chem iluminescent 

signals generated by the hybridized probe " 'ere impri nted on a Lumi-F i!mill 

Chemiluminescent Detection Fi lm (Roche Diagnostics). Atlantic sa lmon (Sa/Illo safar) 

total mRNA was used as a negative contro l. as this species docs nO! have AF P genes. 

Southern blot ll na lysis 

The DIG-based method was also used to detect A Wand hybrid wolffish AF P genes on 

Southern blots. The DIG- I I-dUTP- labeled AFP DNA probe was generated from the same 

template used to produce the mRNA probe. us ing the pe R DIG Probe Synthesis Ki t·Jj 

supplied by Roche Diagnostics and specific primers (primers 5'#2 and 3'#1: Chapter 2). 

High molecu lar weight wolffish genomic DNA samples were obtained and 

prepared as described in Chapler2. DNA aliquOis (AW and the hybrids: 10 )Jg: SW: 20 

fig, fo r ease of visualisation) were digested with restriction endonuclease (RE) Asc i (New 

England BioLabs. Pickering. ON. Canada). The choice of thi s particular RE was deemed 

the most relevant fo r interspec ific comparison of AFP gene organizatiun and dosage 

among wolffishes based on the resu lts obtained in our previous study (see Chapter 2). The 
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use of this RE allows AFP genes to be separated on relatively small DNA fragments. and 

precisely isolates a tandemly arrayed inverted AFP gene duplication thai was amplified in 

A W. but not in S W (Scott el (I/.. I 988b; see Chapter 2). 

Restriction digests were e lectrophoresed ovemight on 0.8 % agarose gels (30 V; 

1.5 V/cm). and blotted the fo llowing day and overnight (Southem. 1975) omo a posi ti vely 

charged nylon membrane (Roche Diagnostics. Laval. QC. Canada). accordingly to 

manufacturer's instructions. The nylon membranes were then pre-hybridized and 

hybridized in Easy Hyb hybridization solution at46 0c. The hybridization step was 

conducted ovemight in the presence of the above-mentioned DIG-II-dUTP-labeled 385 

bp QAE-type I II AFP probe. 

Following hybridization. the membranes were subjected to washes of 

progressively increasing stringency. as recommended in the DIG Application Manual for 

Filter Hybridization. Following blocking and successive incubat ion with alkaline 

phosphatase-bearing DIG antibody and chem iluminescent CSPD alkaline phosphatase 

substrate. membranes were exposed to Lumi-Film~' Chemiluminescent Detection Film 

(Roche Diagnostics) for signal recording. 

Cenotyping 

Small aliquots of genom ic DNA (working concentration: 50 nglul) were anal)~l.ed to 

ascertain the hybrid or purebred status of the experimental animals. Two microsatellite 

markers (loc i: Alu27 and Alu28) were chosen for genotyping. These markers. among 

others. were developed by McCusker el al. (2008) and have proven reliable for 



identification of wolffish species and hybrids (Gaudreau ef a/., 2009). This is possible 

because these microsate llites are inherited in a Mendelian way. with hybrid offspring 

getting one distinct allele from each parent (Gaudreau el al .. 2009). whi lst the alleles have 

distinct s ize ranges for each species (McCusker el (II .. 2008). 

The choice of markers used in the present study (Alu27 and Alu2S) was motivated 

by the significant interspecific size difference observed by McCuskcr el al. (200S) 

between the A Wand SW amplicons for these loc i, with SW being homozygous for both 

loci. We thus assumed that these two markcrs would be the most scns ible choice for an 

easy and rapid diagnostic at minor costs. According to the method of McCusker 1:1 al 

(200S). we used fluorescently-Iabeled primers (Bio-Rad. Mississauga. ON. Canada) in 

PCRs to amplify these genetic markers in all our fish. and visualized them by capi llary 

electrophoresis in an AB 3730 4S-capillary DNA Analyzer (Applied Biosystems. 

Burlington, ON, Canada). The results are displayed in Table 3.2 . Whi le the purebred A W 

(fish I & 2) and SW (fish 7 to 10) show values that fall in the predicted size ranges. fi sh 3 

to 6 display a mixture of sizes belonging to both species, thereby confirming their status 

as hybrids. 
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Table 3.2. Observed amplieon sizes (bp) for the two microsatcllitc loci (Alu27 and 

Alu28) analyzed in purebred AW and SW and theirrcciprocal hybrids. In AW. the 

expected sizes were of207·283 bp for Alu27 and of93·253 bp for Alu28. In SW. sizes of 

171 bp for Alu27 and of 123 bp for Alu28 were anticipated. The hybrids were expected to 

show a size combination of the above. due 10 Ihe previously observed pallern of 

inheritance (Gaudreau el lll .• 2009). II is noteworthy thallhe fluoreseenllabel anuched 10 

each primer increusesthe observed size oftheamplicons by 5 to 6 bp (so that Alu27 in 

SW has a real size of 171 bp and not 177 bp. and so on). 

Fish # 
Alu27 Alu28 B,"" Famil~' (blue dye) (grcendyc) 

237 237 232 240 AW Al 
237 281 232 240 AW Al 
l77 28 1 12' 224 Hybrid AH2 
l77 281 128 224 Hybrid AH2 
l77 237 128 236 Hybrid SIB 
l77 237 128 220 Hybrid SIB 
l77 l77 128 128 SW SQ 
l77 l77 128 128 SW SQ 
l77 l77 128 128 SW SN 

10 l77 l77 128 128 SW SN 

Intermediate average plasma TH le\'els in wolffish hybrids are mainly due to 

intermediate gene dosage and expression 

On average. the wolffish hybrids had plasma anti freeze (lctivity levels (expressed here (IS 

thermal hysteresis .1ll) somewhat in termediate between those of tile purebred A Wand 

SW. Following a four·month exposure to seasonally ambient temperature and 

photoperiod. the reciprocaljuvcnile hybrids (~/lIpIIS x 3 minor - family AH2. and 
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~mjnor x t5lupus - family SH3) showed mean February TH va lues (0.42 0c) that were 

significantl y higher (p < 0.01) than in the of the adult SW (0.20 0c). but significantl y 

lower(p < 0.01) than in the AW (0.66 0c) (Fig. 3.1). TheseTH levels led to virtually 

idcntical mean non-equilibrium FPs in the hybrids (-1.05 and -1.08 0c). In comparison. 

mcan non-equilibrium FPs in the SW and A W were -0.85 and -1.33 0c. respectively (Fig. 

3. 1). 

The observed differences in TH averages among wolffish famil ics were parallcloo 

by differcnces in AFP gene dosage. with the hybrids showing a number of genes and a 

banding pattern on thc Ase l Southern biOi that appeared intermediate to those of both 

parcntal species (Fi g. 3.2). A notable feature of the AFP gene profile of the hybrids is the 

presence of a cluster offour bands in the vicini ty of 2.6 kb (see boxed bands in Fig. 3.2). 

That cluster. also vis ible in A W. corresponds to bands which contain two inverted AFP 

genes that belong to an extensive tandem array (Scott el (II.. 1988b). This portion of the 

AFP gene pool of A W was not ampl ifioo in SW (see Chapter 2). Overall. the four 

clustered bands (three in A W individual I) characteristic of A W were visibly fainter in 

the wolffi sh hybrids. 

108 



E 
C ·0.6 
·0 
0. -0.8 
go 
.~ 

.:: 

-0.67 

·0.66 

·1.33 I 

-0.66 

·0.42 

·1 .08 I 

SQ 

~.64 ~.64 ~.66 
.1 -0 85 .0 ~2t .0 85 .0.'19 

-04t . I - I 

·1.05 I 

Breed 

Figure 3.1. February mean plasma non-equilibrium FPs of purebred A W (family AI) and 

reciprocal hybrids ( r;;. lupus x o minor - family A H2. and ~ millor x o lupus - fami ly S1-I3) 

jUlleniles. without (grey bars) and with (grey + white bars) the contribution of TH (white 

bars). Values fro m purebred adult S W from Quebec and Norv.'ay fami lies QC and SN) 

were included for comparison 
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Figure 3.2. AseJ AFP and tubulin Southern blots for IWO individuals 

of A) AW (family AI), r;;. lupu.)' x o minor and ~minor x o Il/pus 
wolffish hybrids (fam ilies AU2 and 51-13). and 8) SW (fam ilies SQ 

and SN). Individual fish appear in order. Bands that may represent 

AFI' genes shared among fishes are indicated by arrows and roman 

numbers. The three \0 four AFP posit ive bands at - 2.6 kb are boxed. 

10 and 20 I1g orONA was loaded per lane for AW and SW, 

respectively_ The marker sizes are in kb. Note: the different intensity 

of the signals across thc tubulin blot is due 10 the uneven spreading of 

one of the reactants within the hybridization bag: the loading gel is 

shown on the right 

0) 

The differences in AFP transcription, observed among the wolmsh families (Fig. 

3.3), were consistent with the gcne dosage differences (Fig. 3.2), and retleet their 

eOnlemporary (April) TI-I values (Table 3.3). as well as the average values measured in 

February (Fig. 3.1). The mRNA was obtained from tissues collected from the two best 

AFP producers (which were dClennined in February). Among Ihe three tissues 
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investigated (liver, skin and gill filaments), transcription was found to be highest in the 

liver, as reponed previously (see Chapter 2). This result is consistent with the liver as the 

main purveyor ofblood-bome AFPs in most AFP-producing fishes (Fletcher 1:1 al .. 200 1). 

In comparison. the peripheral tissues tesll-d (skin and gill filaments) yielded lower 

amounts of transcripts (Fig 3.3), with the general trend for expression levels being to be 

greater in skin than gi lls. Here agai n, the levels of transcript in these epithe lial tissues 

were the highest in A W. the lowest in SW. and intermediate in the hybrids. Since the 

plasma ant ifreeze activ ity initiates its decline during April (in identical experimenta l 

conditions; Desjardins el al.. 2006; 2007). the plasma TH values contemporary to the blot 

data (Table 3.3) were generally lower than in those measured in February for the selected 

individuals (Table 3.4). 

SH3 SQ SN 

57501 

.....1'---. 

S G 

A) B) 

Figure 3.3. Nonhem blots for one individual of A) A W (fami ly A I). 'r- Illpus x 6 minor 

and 'r- minor x 6 lllplis wolffish hybrids (families AH2 and S1-I3), and B) SW (famili es SQ 

and SN). The fo llowing tissues were assayed for the presence of A FP transcripts: liver 



(L). skin (5). and gill filaments (G). This result is contemporary to the TH and FP values 

displayed in Table 3.3. 

Ta ble 3.3. April individual plasma TH and FP va lues rrom the two highest AFP 

producers from each fami ly (A W: fami ly A 1: ~/lIplIsx a minorand ~mi"or x a luflus 

hybrids: rami lies AH2 and 5H3: and SW: families 5Q and 5N). These values are 

contemporary to the Northern blot analysis results (Fig 3.3). and the indi vidual used ror 

these blots are indicated by an asterisk next to itsTH value. 

Family 

Fis h # A l AH2 SW3 SQ SN 

T H (0C) 
0.77+ 0 .42+ 0.44+ 0.02- 0.19· 
0.64 0.40 0.38 O.Q] · 0.17+ 

FP(°C) 
· 1.41 ·1.07 ·1.07 ·0.68 ·0.84 
· 1.28 ·1 .08 · 1.05 ·0.67 -0.87 



Table 3.4. Individual plasma thennal hysteresis (TI-I) and freeli ng point (FP) va lues (0C) 

for both ""'olffish hybrid families (A H2 and SH3). and the A W family . The two highest 

values per family arot indicated bya (+). while the lowest is indicatotd by a (-). The two 

highest AFP producers (+) in each lunot were selected for use in Northern blotting (F ig. 

3.3). 

Family TH {°C) FP {°C) 

AI 0.60 -1.28 
(n = 9) OA8 - 1.07 

0.70 -1.36 
0.75 -lAO 
0.75 -lAO 
0.57 -1.21 
0.71 -1.46 
0.65 -1 .30 
0.74 -IA6 

M I2 OA8 -1.13 
(n O" 10) 0.45 -LID 

0.48 - 1.18 
0.73 -1.39 
0.50 -1. 17 
003 1 -0.95 
0.32 -0.97 
0.49 - LI S 
0.08 -0.74 
0.33 ·0.911 

SH3 0.25 ·0.91 
(n O" II ) 0.37 ·1.03 

0.37 -1.0 1 
O.RO -1.42 
0.60 -1.26 
0.20 -0.85 
0.33 -0.99 
0.47 -1.13 
0.25 -0.85 
0.44 -1.10 
0.42 -1.04 
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Th e AFP gene locus is highly polymorph ic within the hybr id and A W fa milies 

The fou r SW individuals sho .... 'ed what appears to be the same amount of AFP gencs (Fig 

3.2). despite the fact that these fish came from either side of the Atlantic. Moreover. a 

single restriction fragment lenb>1h polymorphism (RFLP) was detected. In contrast. 

considerable levels of variat ion in both the banding pattern and intens ity of individua l 

bands could be observed among the blolled DNA from the reciprocal hybr id and A W 

families (Fig. 3.2). This was even evident between individuals from the same family. For 

instance, when considering the A W (family A I). three bands were missing in individua l I 

compared to indiv idual 2 (between molecular weight markers 2.3 and 4.4 kb). In the 

hybrids. and within that same size range. the occurrence of such gene presence-abscnce 

polymorphisms appeared to be lower. while the intensity of the individual bands was 

highly dissimilar, This is especially true for the hybrid fam ily AH2. and indicates that the 

number of copies for all genes localized on bands localized above band "I" is highly 

variable. Interest ingly, the hybrid famil y AH2 was generated from the samc fem ale A W 

that was used to produce the purebred A W family (A I). and both egg batches were 

fertilized us ing the semen ofa s ingle male (a ditTerent male genitor was used for each 

fami ly. however). 

These high interindividual AFP gene dosage variat ions observed among the A W 

and the hybrids may partly explain the striking variation in plasma TH measured in these 

fish in February (Fi g. 3.1. Table 3.4). In Fig. 3.1. it is noteworthy that the SD values arc 

higher in the reci procal hybrids than in either purebred wolffish species. The individual 

TH val ues can be visualized in Table 3.4, which give a better measure of the intense 
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variation in plasma AFP levels among indi viduals ofa given famil y. For instance. a 

difference of 0.65 °C can be seen between the highest and lowest AFf> producers in the 

hybrid family AH2 (Table 3.4). A simi lar range (0.60 0c) exists between individua ls of 

the hybrid famil y SH3. while the difference is smaller in the A W family (A I) with a 

maximum value of 0.27 °C between fish. Variations among SW individuals arc even 

smaller. 

Some AFP genes appea r to be interspecifieally sha red 

The production of wolffish hybrids offered an easy opportunity to qualitatively explore 

the extent to which AFP genes arc shared between A Wand SW. In our previous study 

(see Chapter 2), we isolated one sequence that was perfectly conserved bet .... ·een the two 

species (A WG3 and SW01; GenBank Accession #s: JQ04051 6. JQ040518). The 

comparison of the wolffish DNA banding patterns on the Southern blot (Fig. 3.2) showed 

that a single band corresponding to the position of each of the SW bands could be seen in 

the hybrid DNA lanes when compared to those of the A W. In other words. the genes 

contributed by the SW parents to the hybrid offspring arc also present in A W. Those 

genes. that arc suspected to be interspecifically shared. arc indicated by arrows and roman 

numbers "r to " 1'/-' on the Southern blot (Fig. 3.2). It is noteworthy that the band "'h'"' 

(also observed in SW) is located at a size that roughly corresponds to an ir1\'erted 

duplicate of AFP genes in A W (Scott eI al., 1988b; sec Chapter 2). In terestingly, this 

band seems absent in A W individual I. A variable number of bands for A W in that - 2.6 
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kb cluster was also recorded in our previous study (sec Chapter 2). A W individual I also 

lacksband··iiF. which is found in all other tishes on the blot 

The highest winter TH \'s lues of the hybrids and AWare equh'alent 

It is noteworthy that while the lowest AFP producers were found among the hybrids 

(when excluding the purebred SW famil ies). the highest winter (February) values in those 

families (0.73 and 0.80 "C) ended up being s imilar to the highest values attained in the 

purebred A W family (0.75 "c). This was quite unexpected. given the apparent Mendel ian 

inheritance of the AFP genes (Fig. 3.2). These fi sh. along with the highest producers from 

the A Wand SW families. were thus selected for use in the AFr gene dosage and 

transcript level comparisons shown in Fig. 3.2 & 3.3. Interestingly. the hybrids showed 

spring (April) TH values that were more related to their respec ti ve gene dosages than 

were their February values. Other (unknown) fac tors than gene dosage may thus help 

explain the relatively high February TH values measured in these indi viduals. despite the 

evidently lower gene dosages when compared to the purebred A W individuals. 

In all cases (and for all fi sh families). the TH values amounted to non-equil ibrium 

FPs that were insufficient to grant freeze resistance in ice- laden waters. This is unusual 

for A W. which is nonnally known to express high TH under identical experimental 

cond itions (Desjardins et at.. 2()()6; 2()()7. see Chapter 2). The reason for this low 

pcrfonnance could be linked to genetics (parents with lower than average AFP gene 

dosage). and to the fact thaI these fi sh were produced in captivity where natural selection 

would not act to maintain AFP higher gene dosage. It cou ld also be due to intra-individual 
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plasticity. Such variations were observed by Desjardins ellli. (2006; 2007) where. for 

reasons yet unknown. some of the A W studied went from producing relatively low 

plasma AFP levels during one winter to expressing higher levels during the next. and 

inverscly(sce individuals4and6. Fig. 3.4). 

1.40 
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E 1.00 .• ! 0.80 

_ 0.60 

§ 
~ 0.40 

0.20 
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Fig ure 3.4. Annual plasma thenna! hysteresis (TH) profiles from eight adult A W 

individuals stud ied by Desjard ins el (I/. (2006). Only the average values were previously 

published. 



On average. the A W /SW hybrids produced winter TH levels that were in tennediate 

between those measured in the AW and SW, These in tum were mirrored by intennediate 

hepatic levels of AFP m RNAs (based on two individuals sampled in April). which were a 

direct consequence of an intennediate A FP gene dosage in these fish. compared with A W 

and SW. In marine teleosts. plasma TH levels have consistent ly been shown to depend 

on AF(G)P gene copy numbers. with lower AF(G)P gene dosages apparently failing to 

provide freeze resistance, Indeed. fi sh with lower plasma AF(G)P levels are mostly found 

in deeper or wanner waters. where the risk of freezing is minimal (Hew ef (II .• 1988: SCOII 

I!I al .. 1988a: Cheng el al .. 2003: Nabeta. 2009: Desjardins el al .. 2006). With a mean 

non-equilibrium FP of - -1.1 °C (maximal indi vidual value: - 1.4 0c). the wolffish hybrids 

surveyed during this study would clearly be at a disadvantage within icy. shallow coastal 

waters (in which FP varies between -1.7 to -1.9 °C. depending o n salinity). 

Interestingly. the Asci-restricted DNA banding profiles of the A W/SW hybrids 

revealed that the SW seems to share most (if not all) o f its AFP genes with AW. Indeed. a 

single positive band was detected on the A Wand hybrid's Southern blots at the 

corresponding positions of each SW band. Eventually. some of these orthologs may have 

accumulated mutations. but the recent discovery o f identical genes between the two 

species (see Chapter 2) suggests that the extent of any sequence divergence may be 

minor. This agrt:es with the close genetic relationship between the A Wand SW. which 

are thought to have diverged between 1.37 and 0.83 Ma (McCusker & Bentzen. 20 I 0). As 

SW has approximately one third of the AFP gene pool oflhe A W (see Chapter 2). the 
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hybrids would likely be homozygous or heterozygous for the interspecifically shared loci. 

but hcmizygous fo r thc two thi rds ofthc gcnes that arc exclusive to A W. 

Of the AFP genes exclus ive to A W. the major ity are part of a large tandem array, 

This feature, partially mapped and sequenced by (Scott et at., 1988b), consists of several 

repeated units that each contains two AFP genes in an inverted (tail-to-tail) orientation. 

On our Southern blots. these inverted duplicates could be isolated and visualized as 

individual DNA fragments. thanks to the usc of the RE Asel. which cuts only a few bp 

upstream of the init iat ion eodons of each AFP genes (see Chapter 2). Based on the 

information fro m Scott el al. (1988b), Ihese inverted duplicates are exp<cted to be 

contained within three to four AscI bands shown in the vicinity of2,6 kb on the blot. with 

all the genes they harbour potent ially sharing perfect to near-perfect identi ties 

Sequence homogeneity is characteristic oftandemly arrayed genes. and stems 

from their recent emergence and/or tendency to undergo gene conversion (Graham. 1995: 

Despons el o/.. 20 10). Their highly repeti tive structure and evenly-spaced genic 

arrangement flag tandemly iterated genes as "hotspots" for meiot ic homologous 

recombination events (Despons I.'t at., 2010). Apart from gene conversion (which does not 

affect the number of gene copies and promotes sequence homogenization). the main 

outcome ofrccombillatioll between homologous chromosomes is crossing-over. Where 

sequence misal ignment occurs. crossing-over will be "unequal". which will cause the 

chromosomes from both donor and receiver to be moditied on the basis of gcnc dosage. 

Thus. each gamete produced by an ind ividual fish has the potential to contain a distinct 

number of AFP genes. This in tum can significantly alTcct the number of these genes 

within a given wolffish populat ion, in one direct ion or the other. depending on select ion . 
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Gene tandem arrays will be maintained (and potentially expanded within a population) 

only if Darwinian selection intensely favors the resulting phenotype (KondrJshov & 

Kondrashov. 2006: Conant & Wolfe. 2008). Relaxation of these selective pressures most 

often results in a rapid decrease in gene dosage over generations. as a direct result of the 

intrinsically unstable nature of gene tandem arrays (Andersson & Hughes. 2009). 

In the two A W individuals studied here. the highest variability in AFP gene 

dosage/organization was observed within the - 2.6 kb bands on our Southern blot. These 

bands (which contain genes that are part of the AFP gene tandem array) varied between 

three and four in number. Significant panem variabi lity was also previously observed in 

AW in this region of the Asel blot (see Chapter 2). As the AW individuals used in the 

present study were produced from the semen of a single male. the absence of the second 

band in the - 2.6 band quanet of individual I indicates that a deletion happened in the 

gametes from both parents at that locus. Alternatively. this observation could be due to 

the occurrence ofa mutation at the Asc i restriction si te. However. as these sites (which 

are AT.rich) seem to be highly conserved among AFP 111'produeing fishes (Zhang 1'1 at.. 

2009) and that the mutation would have to be present in both gametes. the tirst 

explanation appears more likely. 

Other bands were observed to be missing in A W individual I compared to 

individual 2. This implies that crossing.over events are not limited to the genes of the 

aforementioned tandem array. Irregularly spaced gene repeats may act as recombination 

sites as wcll, in the measure where pattern(s) of repetition are still obvious, and where 

dispersion of the genes along a given stretch of DNA is limited. In AW, such genes 

belong to what Scott 1'1 al. (l988b) called the "minor component" of the AFI' gene locus 



Their restriction map shows that these genes are flanked bysequenc esthatretained 

pattemsofredundancy. 

In mUltigene families. an obvious requirement for protection against gene loss by 

unequal crossing-over is the dispersion of individual genes within a heterogeneous genic 

environment (Graham. 1995). Such may be the case for the AFP genesofSW. which may 

explain their apparent stable dosage and organization (see Chap ter2: this study). 

lnterestingly.someold.well-establishedmultigene familiescanresistgenedosage 

alterationswhileconservingatandemlyarrayedorganizationandhigh sequence iteration. 

An example is the ribosomal RNA gcne family. In yeast. DNA replication control 

mechanisms will restore the native dosage of these genes. in the event ofa disastrous loss 

by unequal erossing-over (reviewed in Grenetier 1'I1If .• 2006). Such mechanisms 

obviously do not act on the A W AFP locus. and ils general dosage maintenance may 

depend entirely on natural selection in response to Iheenvironment 

In freeze-resistant fishes. variabil ity in AFP gene copy numbers will be to lerated 

to the extent that the resulting organismic TH is sufficiently high to pre.:lude death in 

presence of ice. An example ofa fish displaying full freeze resistance. despite displaying 

substantial variability in its gene pool. is set by the unrelated notothenioid Dissos/ichlls 

mawsoni. or Antarctic toothfish (Turner 1'1 (II .. 1985: Cheng e/ al .• 2006: DeVries & 

Cheng. 2005). Following the sequencing of the antifreeze glycoprotein (AFGP) gelle 

locus of an individual D. //Iawsoni. Nicodemus-Johnson C/ (II. (201 I) discovered that the 

haplotypes from this particular fish differed widely in tenns of gene dosage and 

organization. While one haplotype contained 14 copies of the AFGP gene. the other 

induded only eight. Each gene was positioned back-to-back with a trypsinogen 
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pseudogene. and found within moderately irregularly-spaced tandem repeats. Obviously. 

this case supports the fact that homologous unequal reeombination can happen readily 

among linkcd but irrcgularly spaced gcnes. and that variation in dosagc among haplmypes 

(and ultimately. individual fish) is not dcleterious. as long as freeze resistance results. 

The high HI variability measured among Ihe reciprocal A W /SW hybrids is most 

likely entirely due to the intrinsic gcne dosage variability characterizing the A W 

haplotype. The presence ofa single A W haplotype in the hybrids offered a clear view of 

the genetic rearrangements that are rampant within the highly dynamic and polymorphic 

AFP locus. The dosage variabili ty was particularly striking within the A H2 hybrids. 

which shared the same mother as the purebred A W. and were produced using thc semen 

ofa single male. Because ofthc intemlooiate plasma Tli levels derived frollltheir 

intermediate AFP gene dosage. natural A W /SW hybrids. if they did occur. could not 

survive in the shallower part o f the freeze risk ecozone unless some ofthcse fish inherit a 

haplotype with unusually high gene dosage frollltheir A W parent. Since there is no 

intermediacy in freeze resistance. such hybrids could not occupy and specialize within a 

hybrid zone based on intermediacy for freeze resistance. Their only apparent viable fate 

would be to remain in the lower risk - deepcr - part of the freeze risk ecozone. and/or to 

back-cross with one of the tWO founder species through introgressive hybridization. The 

fact that F2 hybrids werc successfully produced in captivity (through artificial 

insemination) indicates that hybrids could potentially contribute to dosage cvolution of 

the AFP multigene family in wolffishes. if the condition for their occurrence and survival 

in the wi ld are met. A potential evolutionary significance o f the hybrids would thus be as 
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facilitators of AFP family gene contraction in A W in the absence of freezing risk. andlor 

the introduction in SW of new members of the type III AFP gene family. 

The faetthat no hybrids have becn fonnally reported from the wild (Templeman. 

I 986c: lmsland Cf al .. 2008: McCusker Cf al .. 2008) indicates thaI the occurrence of 

hybridization between the A Wand SW must be extremely rare (if it occurs at all). which 

suggests that well-deve loped pre-zygotic barriers prevai l between the two species. 

However. these natural barriers may be weakened in the face of important environmental 

perturbations (Hubbs, 1955), whether they be caused by large-scale climatic changes or 

anthropogenic generalized environment destruction and overfishing, as both types of 

disturbances have the potential to innuence the direction of selection for freeze resistance 

in marine fishes. 

Since the beginning of the Quaternary Period (- 2.6 Ma). the North Atlantic has 

seen 52 glacials and interglacials (Gibbard & Cohen. 2008). Within the last Ma only. one 

glacial event has occured every - 100 Ka (Augustin. 2004), interspersed by relatively 

short interglacials. It is assumed that seasonal ice fonnation still occurred over the oceans 

during these interglacials, although its intensity and range are impossible to know as yet 

(Lambeck el (1/ .• 2002: Otto-Bl iesner CI af., 2006). Perhaps because of the brevity of these 

wanner episodes (andlor other unknown factors). separate wolmsh species succeeded in 

maintaining their integrity during their - one Ma of existence. However. as the inception 

ofa next glaciation appears to be postponed 10 a distant future (Tzedakis cl a/ .. 2012). the 

present interglacial is forecasted to shadow the previous ones in both lenb1h and intensity. 

Interestingly, wanning water temperatures have been hypothesized 10 be the impetus for a 

northward or depth shift in the distribution of different northern fish spt."\:ies (Perry el al., 
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2005: Dulvy et a/ .. 2008). A depth shift in wolffish distribution was also reported by 

Kulka ct al. (2004) who linked it to temperature changes. The displacement of the A W to 

the deeper level (or out) of the freeze risk ecozone may lead to the intrinsic contnlction of 

AFP gene dosage in A W. through the relaxation of the pressures that maintain high AFP 

gene dosage in this species. Moreover. ifwolffish pre,zygotic barriers are climate-driven. 

a complete and/or longer suppression of the threat of freezin g may encourage the 

occurrence of natural hybridization with SW (unless the hybrids are unfit for other 

reasons). which are sympatric to AW in deeper waters (SCOII & SCOII. 1988). 

Another potential fac il itator of interspecific hybridization and/or intrinsic 

reduction of the AFP gene pool in AWare anthropogenic disturbances. through habitat 

destruction and overfishing. The soli tary. non-schooling habits ofwolffishes. their slow 

maturation rate and their use ofa K-based reproductive strategy make them particularly 

vulnerable (Keats el al.. 1985; Pavlov & Novikov. 1993; Templeman. 1986a:b; 

Gunnarssol1 et a/ .. 2006). Intensive trawling of the sea floor has been shown to 

profoundly alter the benthic ecosystems 011 which wolffish sJX"Cies and other ape;.; 

predators depend for survival (reviewed by Thrush & Dayton. 2010). Although wolffishes 

arc of no commercial value in Canada. they regularly occur as by-catch in diverse ground 

fisheries. As the coastal fish stocks suffered severe depletion due to overfish ing. 

exploitation of the resource was extended to offshore and deeper waters. Now. in 

Newfoundland waters. A W is mostly caught at depths or - 100 m during ground fish 

surveys (Kulka el al., 2004). Nevertheless, archeological evidence hints that predatory 

fishes (incl uding A W) were more prevalent in shallow waters in thc past than they are 

today (Steneck et al .. 2004). As green urchins are a major part of the diet of A W in 



sImI low waters (Keats et al., 1986), it was suggested that the decline of A W populations 

is linked to the recent proliferat ion ofsea-llrchin barrens in coastal watcrs (Stcneek elal., 

2004). 

3.5 Conclusinn 

The observation thaI SW shares most, if not all. of its genes with the A W 

strengthens the hypothesis that speciation in wolffishes was based on freeze resistance 

and prompted by the extensive amplification in an anccstorto AW of an inverted 

duplicate of AFP genes. Following the evaluat ion of the plasma AFP levels displayed by 

the artific ially produced A W/SW hybrids studied here, we conclude that such 

intcnnediate antifrceze activity could not grant these fish a perfo mlanceadvantagewithin 

the shallowcst part of the freeze risk ecozone. However. long-tenn relaxat ion 01 

Darwinian selection for freeze resistance may contribute to the erosion orthc natural 

reproductive barriers between A Wand SW and/or allow the intrinsic compression of the 

highly dynamic AFP gene pool in the AW (and perhaps the integration of new AFI' genes 

in thc genome of the SW). Thus. the maintenance of the anthropogenic andlor natural 

forces that appear to be directing the displacement of the AW to deeper and/ornon­

freezing waters (where the probabilities ofcncounting ice are lowered. and those of 

encountering the sympatrie SW are increased) cou ld potentially favour AFP gene dosage 

contraction in wolffishes. 
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-CHAPTER4 -

" Tempora l and spatial expressio n of type III AFP genes in wolffi sh 
species " 

4.1 - lnlrod uction 

Since the freezing point (Fr) of seawater (- -1.7 to -1.9 *C) can be a full degree lower 

than in their body fluids. marine Ieleosts of temperate (lnd polar regions are at risk of 

freezing if they encounter ice while in an undercooled stale. As freezing invariably results 

in death, some fish avoid this threat by living in deep waters. where their biological fluids 

will remain in a metastable state (Scholander el al .. 1957). However. as temperate and 

polar shallow coastal waters are resource-rich ecosystems. fish that can safely exploi t the 

freeze risk ecozone are clearly at an advantage. 

The attractiveness of these environments is reflected in the cOllvcrgcn! evolution 

of freeze resistance in many distinct !ish clades. through the emergence and evolution of 

distinct fam ilies of antifreeze proteins (A FPs) and glycoprotc ins (AFGI's). Five structure· 

based families of these proteins have been characterised so far (A FGPs and type L II and 

III AFPs). all of which arc cncodcd within distinct multigene families (Fletcher 1.'1 (If.. 

200 1). These proteins grant freeze resistance by lowering. non-colligativcly the FI' of a 

!ish down to that of the surround ing seawater. Despitc their distinct evolutionary origins. 

these proteins all seem to inhibit ice growth by the same general mechanism: by 

adsorbing to the surface o f nascent ice crystals. effectively preventing the binding of more 

water molecules 10 the ice (Raymond & DeVries. 1977). 
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Unlike the coastal waters of Antarctica. where sea icc is perennial. freezing 

cond it ions occur on a seasonal basis in the Arctic and temperate coastal regions. 

Consequently. fish inhabiting these waters will show seasonal variations of their AF(G)P 

blood levels. with higher levels of AF(G)Ps present during winter. and moderate to none 

during summer (Fletcher. [977. [981: Fletcher ('I (I/.. 1982; Fletcher ('/ af., 1985: 

Enedsolven ('I ai .• 2003; Lewis 1.'1 al .• 2004: Desjardins ('I al .• 2006). For instance. the 

shorteni ng of day lenb>1h (decreasing of phOioperiod) is the impetus for the synthesis of 

type I AFPs in the winter flounder (Pseudopleurol/ecles amcriml/lIs: family 

Pleuronectidae). In contrast. thc Atlantic cod (Gadus marhua) needs exposure 10 cold 

temperaturcs in order to exhibit mcasurablc leve ls of circulating AFGPs. regardless of the 

photoperiod (Fletcher el al .• 1987). In fish of the suborder Zoarcoidei. such as the 

ee lpouts (family Zoarcidae) and the wolffishes (family Anarhichadidae). photoperiod may 

be the zeitgeber of the ant ifreeze response (Fletcher 1.'1 a/.. 1985; Desjardins 1.'1 (11.,2006). 

although experimental evidence is wanting. Interestingly. these fi sh seem unable to halt 

the synthesis of their type III AFPs, and low to appn:'c iablc levels can be measurcd in 

their plasma during summer and when water temperaturc is kcpt warm year-round in the 

laboratory (Fletcher 1.'1 (I/. , 1985; Enedsolven 1.'1 (11 .• 2003; Desjardins 1.'1 (I/.. 2006). 

Ev idence suggests that AF(G)ps evolvcd by gene sub- or lK'Ofunctionalisation 

fo llowing the duplication of coding sequences whose products exhibited no to very weak 

antifreeze activity (Chen 1.'1 al.. 1997b: Ewart 1.'1 al.. 1998; Cheng & Chen. 1999: 

Baardsness & Davies. 2001; Deng 1.'1 (I/.. 2010). Consequently. it is likely that extensive 

gene duplication/amplification (G OA) of these nascent sequences (and concomitant 



higher expression) compensated for the initial sub-optimal perfoOllance of the ancestral 

AF(G)Ps. Apart from providing a shortcut to the achievement of freeze res istance in cold 

water marine teleosts. another outcome of GOA was the multiplication of templates for 

adaptive evolution. Consequently, the AF(G)ps found in fishcs today arc fu lly functional 

and often highly diverse in sequence within a given multigene fami ly (Hew ('/ al .. 1984. 

1988; Nishimiya el (I/.. 2005; Scott el al .. 1985, 1988a: Cheng ('/ al .. 2003: Nicodemus­

Johnson el (1/.,2011). In fishes of the suborder Zoarcoidei. the type II I AFP genes and 

their products have Dccn classificd within two subfamilies: the QAE- and the SP-type 

genes. These appellations originate from the propensity of the proteins to either bind QAE 

(anion-exchange) or SP (cation-exchange) Sephadex resins during ion-exchange 

chromatography (Hew el al .. 1984). MemDcrs (genes and proteins) of both subfamilies 

have been reponed in fishes of the families Zoarcidae (Hew el al., 1984, 1988: Wang el 

(1/., I 995a.b; Nishimiya el al., 2(05) and Anarhichadidae (Cheng el al .. 2006: see Chapter 

2). 

The Atlantic wolffish (Anarchichas lupus; A W) and the sfXltted wolffish (A 

minor: SW), arc bollom-dwell ing Anarhichadids that inhabit the Nonhwest Atlantic 

waters. The AW can Dc found in shallow waters and produces high levels oftypc III 

AFPs in its plasma, while the deeper-dwelling SW produce trace amounts (Desjardins el 

al .. 2006. see Chapter 2). In general. the plasma AFPs in A Wand SW will rise to higher 

concentrations during winter and fall to low or trace levels during summer (Enedsolvcn ('I 

al .. 2003: Desjardins el a/., 2006). It is nOI known how these plasma AFP levels relate to 

the amount of AFP transcripts produced by these fish on a seasonal basis. nor if the two 



families of isoforms are differentia lly expressed. The only spedes studied in that respect 

is the winter nounder, a fish that produces type I AFl's. Two of the three subfamilies of 

its AFP genes were found to be differently regulated (Gong el al., 1996: Mia el al., 

I 998a,b), and the levels of plasma AFPs were tightly related to the amount of translatable 

mRNA in the liver (pickett el (II., 1983). The present study thus has two goals: I) to 

evaluate the general levels of type II I AFP gene transcripts in winter and summer in 

different tissues from both AW and SW, and 2) to investigate the spatial and temporal 

expression of the members ofQAE, and SI'-type gene subfamilies in wolffishes. 

4.2 Material & Methods 

Anima ls,eX llcrimenta l cond itions and tissuesamilling 

The Atlantic wolffish (A W) and spoued wolflish (SW) used in the present study were 

derived from the same stock used in Chapter 2. The fi sh of the two species were 

maintained in separate tanks (2 m x 2 m x 0.3 m) at seasonally ambient temperature and 

photoperiods (Fletcher, 1977) in the Ocean Science Centre facilities (Memorial 

Universi ty of Newfoundland), and fed formulated food (Ewos, Marine) ad libilllm. 

Dlood and tissue sampling took place in early February 2007, during a time when 

plasma AFP activity levels are at their peak (Desjardins et al .. 2006; 2007). A second 

sampling took place in July, when the AFP blood levels were at their lowest. Two fish of 

each species were used. Prior to dissection, the fish were immersed in a smaller tank for 

Icthllillnesthesia (benzocaine fl I>OI[50 mglL]). After 10 min, blood was sampled from a 



caudal blood vessel and treated as describt:d by Desjardins el a/. (2006) in order to 

retrieve the plasma. The anaesthetized fish were then given a sharp blow on the head. to 

ensure that they were dead. Various tissues (l iver, sk in. gill filaments. stomach, intestine, 

heart. whire muscle. kidney, spleen, and brain) were sampled and fl ash-frozen to prepare 

for total RNA extractions. All samples (including the plasma samples) were stored at ·70 

"C before use. 

The guidelines of the Canadian Counc il on Animal Care "'ere followed during 

transport and care of the fish. and all measures were taken to keep pain and discomfort in 

our experimenta l animals to a minimum dur ing sampl ing 

Thermal hysteresis measurements 

Plasma antifreeze activity was measured as thermal hysteresis (TH) using a Cl ifton 

Nanolitre Osmometer (Clifton Technical Physics. Hartford. NY. USA) following the 

procedure of Evans et al. (2007). TH is defined as the ditlerenee between the melting and 

freezing temperatures (0C) ofa test solution. and is representative of the AFP 

concentrations present in that solution. according to a non·linear re lationsh ip (Davies I'f 

a/ .. 1990). 

Northern blot analysis 

A nonradioactive method was used to detect A Wand SW AFI' transcrip ts on Northern 

hlots, using a 385 bp DIG- I I-dUTP·labeled QAE·type-AFP mRNA prohe (Roche 
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Diagnostics, Laval. QC, Canada). This probe hybridizes to both QAE and SP-type AFP 

mRNA sequences (please see (sec Chapter 2) for detai ls relative to the template and probe 

generation methods). 

Total RNA was extracted from frozen tissues and prepared as previously 

described (see Chapter 2). Briefly, I ug of total RNA aliquots were scparated on a 

denaturing 1.2 % agarose gel containing 0.67 % formaldehyde. The RNA was then 

blotted onto a posit ively charged nylon membrane (Roche Diagnostics) using a 

VacuGene XL Vacuum Blotting Syslem® (Amersham Biosciences. Piscataway, NJ. 

USA). and cross-l inked with UV light. Analyses were first run on the summer samples. 

Only the mRNA from the tissues that showed significant levels of e:>.:pression in these 

summer blots was used 10 generate the blots for the winter to summer comparison of A FP 

gcnetranscriptlevcls. 

Membrane prc-hybridization. hybridization, stringency washes. blocking and 

detection procedures were performed as outlined in Chapter 2. using the kit and reagents 

supplied by Roche Diagnostics. The chemilumincscent signals generated by the 

hybridized probe were eaptul\,"XI on a Lumi-Fi lm® Chemi luminescent Detection Film 

(Roche Diagnostics). 

RT·PCR condi tions 

First-strand cDNA was generated from the various mRNA sampks through reverse 

transcript ion. using SuperScript lin.· RT and an oligo(dTho primer ( Invitrogen Canada 
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Inc.) according to the manufacturer's protocoL Atlantic salmon (SlI/mo .m/lIr) total mRNA 

was used to generate a negative control (this species does not have AFp genes). One tenth 

of each RT reaction was then included in pCRs using the primer combinations indicated 

below (see primer sequences and references inTable4.1 ). 

The forward primers 5' ALL and 5' ALL-2 sit on the start of exon I and - 100 

upstream of the start codon within the 5' UTR. respectively. The specific reverse primers 

3' SP and 3' QAE were designed to anneal in a region of divergence between the SI'- and 

QAE-type AFPs (Fig. 4.1). and are expected to allow for the detection of all isofonllS 

within each AFP gene subfami ly. Comparisons of nucleotide sequences from wolflish 

(fami ly Anarhichadidae) and ocean pout (family Zoarcidae) found only one polymorphic 

site within each of these SP- and QAE-specific regions. The subfamily-specific primers 

were optimized using both pure SP (AWri: GenBank acccssion number: Iv122125) and 

QAE (AWGI: GenBank accession number: JQ040521) clones as template. Highly 

stringent PCR conditions were used, in order to ensure specific amplification. A third 

primer. 3' QAE-X, was used to detect a specific QAE-type sequence. AWE!. which was 

previously isolated and cloned from AW liver eDNA (see Chapter 2). Among thc 

published sequences avai lable on the databases. this wolflish QAE-type AFP sequence is 

most closely re lated to a genomic sequence from ocean pout (OPb). However. the end of 

its second exon (which corresponds to the mature sequence of the protein) is distinct from 

those of other known type III AFI' sequences. This was where the specific J' QAE-X 

primer was designed (including part of the 3' UTR). from a quasi-identical AW genomic 

sequcnce. AWGI (sec Chapter 2). Finally, the primer pair 5' ACTlY ACT was used to 

amplify ~-actin in salmon cDNA. 
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All RT-PCR reactions wcre perfomled us ing an EppendorfMastt;:rcycler'" 

(Eppendorf Canada. Mississauga. ON. Canada). and were conducted in the presence of 

Taq DNA polymerase (Invitrogen Canada Inc. Burlington. ON. Canada). The conditions 

were as fo llow' 

I) Primer set 5' ALLl3' SP: The PCR was initiated with a --hot start" to minimize 

tht;: fomlation o f primer-dimers. The ini tial dena turation step was carried out al 95 °C fo r 

2 min. and a --touch-down-- procedure was used fo r increased specifi city. where Ihe 

temperature of the first cycles decreased from 74 to 66 °C (in 2 °C decrements). Thi rty 

more cyc les were perfonned at that la tte r annealing temperature. For all cyc1t;:s, tht;: 

annealing step lastt;:d 30 st;:c. and the conditions for denaturation and elongat ionwcrc 

95 °C (30 s) and 72 °C (60 s). respeelivcly. ending with a fi nal 72 "C t;:1o ngation step of 

10 min. Thc cxpected amplicon Silt;: was ~ 200 br. 

2) Primer set 5' ALL/3' OAE: The condit ions were identical to Ihose above. with 

the exception of the start ing annt;:aling tempera tures. which dccreas cd fro m 74t060 °C. 

The expeeled amplicon sile was - 200 bp 

3) Primer set 5' ALL-ln' OA E.X: the ini tia l denaturation step was carried out at 

95 T for 2 min. fo llowed by 40 cyclt;:s of denaturation. annea li ng and elongation thaI 

lasted 95 °C (30 s). 60 °C (30 s). and 72 °C (60 s) t;:a<.:h . The PCR ended with a linal 72 

°C e longation step of ]O min. The expected amplicon size was - 435 bp. 
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4) Primer set 5' ACTI3' ACT: The cond itions were identical to those above with 

the exception of the annealing temperature. which was 65 °C. The expected amplicon size 

was - 675 bp. 

The result ing RT-PCR react ions were run on a 1.5% agarose gel in the presence of 

ethidium bromide. and the resolved bands were visualised with UV light. 

Ta ble 4.1. pe R primers used to amplify AFP nucleot ide sequences from A W and SW 

cDNA. and their annealing posit ion on reference sequences (see also Fig. 4 , I for the 

location of the annealing sites for all primers). Primers used to amplify p-actin sequences 

from salmon cDNA are also shown. 

Primer name Sequence(5 '~3') Ref. seq. Aceession nos. Posit ion 

5' ALL tctcagccacagccatgaagtc J03924 256-277 

3's r gatt tgggacatctctgcgaac J03924 630-620 

3'QAE taatcggggaa1b>1cctcggc J03923 74 1-721 

5' ALL-2 gttaagtcctcccacatactg J03924 131- 15 1 

3'QAE-X gatggtgaaaacgtatgcb>1ag .IQ040521 586-565 

5'ACT cgccgcaclgglIgtlgaca AFO l2125 [5-34 

3'ACT agcaggagatgggcaccgc AFO l2125 689-671 
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J' QAE-X 

, , 
3' SP GTTCGCAGAGATGTCCCAAATC 

3 'QAZ -~C~CATT~CCCGA;rA 

Figure 4.1. Alignments of SP- and QAE-type mature amino acid sequences from 

different species of the suborder Zoarcoidei (SW: spotted wolffish; AEP: Antarctic 

eelpoul: OP: ocean pout: A W: Atlantic wolffish). The residues corresponding to Ihe 

primer annealing siles arc highlighted in yellow. and those involved in ice-binding are 

highlighted in cyan. Lowercase letters in the amino acid sequeneesrcpresentun 

integruK-d primer sequence (i.e. ' .f"'.\!" in A WEI) or an inferred amino acid (i.e .. ··e" in 

OPb).The aligned nucleotide sequences corresponding 10 the annealing sites o f the 

specific SP and QAE primers (3' SP and 3' QAE. respectively) are also shown, with 

arrows indicating the known polymorphic si les. The aSlerisks indicate conserved 

nudeotides belween the two sequences. and the underl ined triple t. the reading frame. 

Plasma TH levels were low during summer. and relatively consistent between Ihe IWO 

individuals of both wolffish species. The mean TH value was higher in A W (0.28 0c) 

than in SW (0.18 0c). and these values were proponional to the conlemporary levels of 

AFI' mRNAs detected within the liver RNA population of these fish (Fig. 4.2). As liver is 
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the main cont ributor of circuiting A FP in non-notothenioid fi shes (Fletcher el a/ .. 200 1; 

Cheng el a/., 2006). the translation ofthesc transcripts is likely di rectly responsible for 

the higher T H measured in the plasma of A W compared to SW. 

When compared to winter (February) data co llected on fi sh from the same lot (see 

Chapter 2) (Fig. 4 .3), the summer TH values were lower in both species, showing a 

predictable decline. Interestingly however. the corresponding summer levels of AFP 

mRNA were comparable to those measured in winter in some tissues. namely the liver 

(F ig. 4jA,B, top). Another ti ssue that retained significant summer expression of the AFP 

genes in the two wolfli sh species is the stomach (Fig. 4.3A. I3, top), although the levels o f 

transc ript appeared signi fic antly lower. In the other tissues, a general summer decrease 

(and sometimes d isappearance) of the amounts of AFP gene transcripts was also visible. 

Overal l, the most notable feature in A W and SW is the continuous expression of high 

(A W) to moderate (SW) levels of AF P mRNAs in the liver and stomach. 

A 

,,,.-. AW - 1 

Li Sk Gi 5t In He Mu Ki Sp Br C 

, . • AW - 2 

B 
·SW · 1 

ID • 

Li 5k Gi 5t In He Mu Ki Sp Br C 
_ SW-2 

Figure 4.2. Northern blots on total RNA extracted from A) two AW and B) two SW 

indiv iduals d uring summer. The contemporary plasma TH values COC) arc superimposed 

on the liverhybridisation signals. The tissues sampled were liv er(Li), skin (Sk). gill 

fi laments (G i), stomach (St). intestine (In). heart (He). white muscle (Mu). kidney (K i). 

spleen (Sp). and brain (Br). Atlantic sa lmon liver RNA was used as a negative control. 
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A SW-winter SW-summer 

e. I • 
U Sk Q ~ In Li ~ Gi & ~ 

SP 1 

OAE - - -- -1- - - -
ACT _____ 1_____ - - 400 

B AW - winter AW - summer 

• 
Li Sk Q & In U ~ G & In 

SP 

OAE 

ACT 

QAE-X _ 

Fig ure 4.3. Comparison of winter and summer lotal AFP mRNA levels (top) and RT­

peR signals (bottom) for SP. QAE, and A WG1-like (QAE-X) sequences in A) A Wand 

B) SW. Individuals 2 (A W) and 1 (5W) from the blots on Fig. 4.2 were used. 

respectivciy. The winter individuals cOITespond 10 individuals I (A W) and 2 (5W) used in 

Chapler 2. Only the tissues that showed significant levels ofacliv ilY were used in these 

analyses, namely liver (Li), skin (Sk), gill filamen ts (Gi), stomach (51). and inlestine (In). 

Atlantic salmon total liver RNA was used as a negative control in the RT-PCRs. Actin 

(ACT) was used as a control for the presence o f mRNA in each reaction. 



In order to invest igate if the transcription o f the AFP genes part of the two main 

subfamilies of type III AFP sequences were differently regulated and expressed. we 

performed RT-PCR analyses using pri mers specific to the publ ished sequences of the SP­

and QAE-type AF P genes (see M & M section for details). We found that the members of 

the two known wolffish type III AFP gene subfamil ies did indeed exh ibit differences in 

their tempora l and spatia l patterns of expression (Fig. 4.3A.B. bouom). Overall, both 

species seemed to express QAE-type AFP transcripts in virtually all tissues. These genes 

were also expressed year-round. although nOI always in significant amounts (here. the 

reader is invited to compare the RT-PCR signa ls to those vis ible on the corresponding 

Northern blots). More precisely_ in the tissues where no or faint expression is evidcnt 

(Fig. 4.3A,B. top), it is unlikely thatlhe transcript levels are of physiological significance 

for organismal freeze resistance. As RT-PCRs wi ll amplify traces of transcript (Fig. 

4.3A.B. bonom). they can on ly show the presence/absence of transcript, irrespective 01 

the actual amounts. 

When compared to the pattern observed on the QAE RT-PCR gels, the RT-PCR 

signals for SP-typc sequences showed marked seasonal changes. While the banding 

pattern for the SP-type amplicons was sightly diffe rent from winter to summer in A W 

(Fig. 4.38. bottom). bands were only visible during winter in SW (Fig. 4.3A. bottom). For 

the latter observation. and because the amount of transcript varies little seasonally, we 

deduced that most of the expressed AFP genes in SW (Fig. 4.3A. top) must belong to the 

QAE-typc gene subfamily (Fig. 4.3A. bottom). [t also appeared that the presence of AFP 

gene transcripts in the stomach was mostly due to the transcription ofQA E gcnes in both 
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species. as was evident by the absence ofa corresponding visible SP-typesignal in the 

RT-PCRs, Finally. the SI' genes did not contribute large amounts of transcript in the liver 

ofSW. as the summer and winter AFP mRNA levels were wmparable. without a 

corresponding SP-type liver signal present in the summer RT-PCR. In A W. however. the 

liver expresses genes belonging to both AFP subfamilies all year. 

Interestingly. an RT·PCR assay using a 3' primer specific to a discrete group of 

genes pan of the QAE-type gene subfamily showed an expression pallem distinct from 

that generated from the complete QAE-type gene pool in A W (no assay was conducted in 

SW). Expression of these genes occurred exclusively in winler. and in only three tissues: 

the liver. skin and gill filaments (Fig. 4.38. bottom. QAE-X gel). A gene belonging to 

that group (AWOl). and a nearly identical cDNA sequence(AWEI). were previously 

characterised from AW (see Chapter 2). 

Tola] AFP transcript levels are not hea\'ily influenced by season 

The data gathered within the present study demonstra tes that wolffish continue to 

synthesise AFPs in thc summer, even though the proteins are not required (Desjardins el 

al .. 2006). The presence of AFPs in the plasma during the summer was directly rclatcd to 

the persistence of high levels of AFP mRNAs in the liver of both species. which is the 

main wntributor of circulating AFPs in fish (Fletcher ef al .. 2001). This result implied 

that transcription of these genes (as a whole) is maintained at long day lengths and warm 
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temperatures. Indeed. although mRNA seasonal profiles from other zoarcoids were not 

ava ilable for comparison. summer plasma TH values (ranging from a low < 0.1 to an 

impress ive 1.35 0c) were reported among members of three other zoarcoid families 

(Zoarcidae. Pholidae. and Stichaeidae: Fletcher e/ al .• 1985: Encvoldsen el 01., 2003). We 

thus hypothesise that similar maintenance of high leve ls of AFP transcripts would be 

observed in other type III AFP.producing fishes (which all belong to the suborder 

Zoarcoidei). The high aestival hepatic transcript ional act ivity of the AFP genes in 

wolffishes contrasted with observations in the winter flounder, for which the levels of 

liver AFP transcripts were shown to be great ly reduced during summer (Pickell ef al .• 

1983). 

In a previous paper surveying the annual profiles of plasma AFP levels in A Wand 

SW. we hypothesised that photoper iod was the zeitgeber for the increase of plasma AFI' 

concentrations in these species. Indeed. A Wand SW kept at temperatures above 10 <Ie 

but e:.;posed to ambient photoperiod still showed a significant (albeit slight) plasma TH 

increase during winter (Desjardins ef (II.. 2006). These results also indicate that low 

temperatures were inst rumental to the establishment of the full winter antifreeze response 

in these fish. when comparisons were made with fi sh exposed to both ambient 

photoperiod and temperature. Experimental evidence from the winter flounder points to 

the importance of cold temperalllres for the retention of the liver AF(G)P mRNAs and 

their products in the bloodstream of the fi sh. as wann water temperatures likely increase 

the Illmover and excretion rates of the proteins (Fletcher el (II.. 1981: Dunkere/ol .. 

1995). During the course of our present experiment the temperature to which the wolffish 
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were exposed varied between 6.7 and 11.9 °C and 0.1 and I.SoC, before the summer and 

winter samplings. respectively. 

Atthe ti me. the mo lecu lar basis for the reduction in the blood summer TH levels 

was unknown. Interestingly. and in contrast with previous data on winter flounder. the 

present observation of high (apparently unaltered) AFP mRNA levels in the liver of bOlh 

wolffish species during the summer suggests that phOlopcriod and temperature do not 

have a significant impact on the levels oftOlal hepatic mRNA transcript in these spec ies. 

Therefore. the summer decrease ofc ireulating AFPs mi ght be affected at a different level 

by these env ironmental factors. possibly al the post-transcriptional level (Keene. 2007). 

The simplest explanation. though. res ides in the balance between plasma AFP synthesis. 

degradation and elearanee. This. however. still docs not explain the occurrence of the 

slight winter plasma TH increase in A Wand SW kept at wann temperatures year-round 

(Desjardins et (I/.. 2006). If they did express s imilarly stable liver AFP mRNA levels 

within that latter experimental setting. 

The expression or s p- and QA [ -type t ranscripts show Sllatia l and temporal 
va riat ions in wolffis b species 

The use of spec ilk primers for SP- and QAE-typc sequences in RT-PCRs 

provided the first insight into the existence of different ial transcript iona l control of the 

type 111 AFP gcnes in wolffish. While the QA E-type genes showed ubiqui tous temporal 

and spatial expression in both species (i.e .. bands were observed at the antic ipaK-J 

amplicon size in both winter and summer samples. and fo r virtually atl tissues). the SP-



type genes showed a more patchy expression pattern. These genes are apparently not 

transcribed during summer in SW. Nevenheless. the tota l amount of AFP transcripts in 

the liver were comparable to winter levels in that species. thereby suggesting that the 

plasma AFP levels in SW are mainly contributed by the hepatic expression ofQAE-type 

genes. 

The genome ofa single fish contains numerous AF(G)P genes. and the evolution 

of these muitigene families likely has a complex history (Hew et (Ii .. 1988: see Chapter 

2). In a previous study we observed that A W fXlssesses - three times more AFP genes 

than in SW (see Chapter 2). We hypothesised that this difTerence in gene dosage was 

mostly due to the presence in A W of a large tandem array of SP-type genes (Scott el ai .. 

I 988b). which seems exclusive to that species (see Chapers 2 & 3). In the present study. 

and {:Qntrary to SW. we found that the SP genes are expressed year-round in the liver of 

A W. We thus postulate that the highest levels of hepatic expression of the AFP genes in 

A Ware mostly due to the year-round transcription of the SP genes pnn of the tandem 

array TCfXlned by Scon el ai. (1988b). 

Interestingly. the difTerential regulation of the AFP genes in wolffish and other 

zoarco ids promises 10 be even more complex. as an underlying level of expression control 

was observed within the QAE-type genes of A W. Indeed. the expressioll ofa spec ific 

subgroup of QAE-type genes (what we will call here A WGI-like genes: see Chapter 2). 

showed an RT-PCR banding pattern (QAE.X) distinct from that of the QAE-type genes 

as II whole. In A W. these genes were expressed only in the liver. skin and gill filaments 

during winter (no assays were done in SW). This result shows that type III AFP genes 
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may a lso be d iffere ntly regulated within each subfami ly, which suggests a complex 

evolutionary history for thc type III AFP gene multifami ly. 

The involvement of an in trinsic seasonal modulator of plasma TH in type III AFP­

produc ing fishcs may be another implicat ion for this last result , although more 

e"perimental ev idence is needed. A rccent study by Takamichi el al. (2009) demonstrated 

a cooperative action between thc QAE- and SP-type AFPs purificd from a d istant rdat ive 

of the wolffishes. the zoarcid notchfi n eelpout (Zoarces elongatlls). Thcse rcsearchers 

showed that the presence of the QAE-type isoform (as little as 1% in solution) was 

essential for the expression of TH by the SP-type isoforms. This d iffe rence in spec ific TI-I 

is likc ly linked to di fferences in the respective binding sites of thescpfOteins(Garhamcl 

al .. 2010). Because the SP-type isoforms may contribute a greate r proportion of the 

blood-borne !\ FPs in A W (contrary to SW). the presence of higher levels ofcirculal ing 

QAE-type AF f>s in the plasma during winter may confer higher adivi l), 10 the ever 

present and over-exprcssed SP-type isoforms in the fis h's plasma. They may a lso panly 

ex plain the higher plasma TH levels measured in winter in AW kcpt above looe 

(Desjard ins etal.. 2006). 

Due to the specific diversity and proport ion of SP- and QAE-type sequences 

observable within indiv idual type III AFP gene pools reported in lOarcoids so far (Hew eI 

al., 1984. 1988: Scol1 e/ al .. 1988: Nishimiya etal., 2005; Chcngel al.. 2006).lhe 

regulation ofAFI' gene expression may have evolved as a tailored solut ion fo r each 

species of thc suborder. So fa r. only the open reading frames of a small number of type III 



AF P sequences are avai lable for analyses. To understand how the transcription of these 

genes is regu lated v·muld warranl an in-depth study of the ir respective promolcr regions. 

4.5 Conclusion 

We found that seasonal va riation in totallcvcls of type II I AFP mRNA was low in 

both wolffish species, espe(; ia li y in the liver. which export the AFPs 10 the blood st ream. 

However. our RT-PCR analyses revealed that some 1cvel of spatial and temporal 

differentiat ion in the regulation ofQAE- and SP-type AF P genes occurs. which warrants 

furt her investigation. Although the RT-PCR ge ls only sho .... ·ed thc presence/absence ofa 

part icular group of transcripts, and thus must beinlerprc!ed withe aution.these 

prel iminary results nonctheless prov ide an insight into the complexity of the expression of 

SP-and QAE type genes within type III AF P-proctucing fishes. The usc of Q-peR would 

allow fo r a more quant itative analys is (once sui table house-keep inggenesare idcnti fied 

and tested in wolt1ish). 
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