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Abstract

Alzheimer's disease (AD) is hallmarked by the presence o fn eurofibrillary tangles and

amylo id-]!plaques. Amyloid-I I plaques consist of the amyloid-f) peptide (AI)) that has

been shown to inducetoxieclkctsonneurons through theactivationofstress-re lated

signalling and neuronal loss. The small heat shock protein. IIspBl (a lso referred to as

Hsp27 and Hsp25 in mouse). is accumu lated in 15% o fn eocort ical amyloid-]! plaques in

AD brains (Wi lhclmus. 2( 06). Whether this represents a potentially protective response

to stress. or is part of the disease process is unknown . We have previousl y reported that

expression of IlspB I not only protects co rt ica l neurons against amyloid tox icity. but also

enhances total neurite growth in these neurons ( King £'1 al.. 2( 09 ).

The amylo id-f) peptide is derived from the proteolyt ic processing of the Amyloid

Precursor Protein (API') by f)-and y-sccrctascs. Mutations in API' alter secretase

cleavage sites. resulting in higher production of the toxic Af)( 1-42) peptide that

undergoes aggregation more readily. Since Hspl3l has been shown to protect neurons

against amylo id toxicit y. it is conceivable that HspB 1 may interact directly with AI) or

API'. Recent studies have demonstrated exogenous IlspB I binding to synthetic Afl. We

have replicated these results in an attempt to determine the roleof HspBI in the inclusion

of AI)aggregates. We hypothesize that Hspl3l interacts with Aft or its precursor API'. to

either alter the distribution of AfVAl'1' within the cell. or its release from the cell.





In order to test our hypot hesis, we incubated His-tugged HspBI with synthetic Afl( 1-42).

at physio logica l temperature 37°C overnight . lmmunoprccipitation. using agarosc

protein A /G beads incubated with the monoclonal ant i-His primary antibody. was used

fill ' our primary analysis ofinteraction. Western blotting ofthe nitrocellulose membrane.

using the 6E lOp -amylo id ( 1-16) mouse monoclona l antibody. demonstrates that All is

immunoprccipit atcd with His-HspB I, These results point to a direct interactio n between

IlspB1 and A[l(1-42). Wc investigatcd the interaction of HspB I with API' in II EK293

cell line express ing wild-type API' (AI'I' -wl) or AI'I'-swcdish mutation (AI'I' -swcl that

predom inately yields AII(1-42) through immunoprccipitation, His-tugged HspB I was

incubated with the conditioned media fro m the AI' I'-wt and AI'I'-swc cells overnig ht at

37°C. lmmunoprccipitai ion was performed using magnetic protein A /G beads incubated

with either 6E 10 p-amyloid ( 1-16) mouse monoclona l antibod y. or anti-HspB I human

(SI'A-XOJ)rabbit polyclonal antibody. Subsequent western blotting oft he nitrocellulose

memb rane using the 6E I0 and the XOJantibodics demonstrate that API' is

immunoprccipitatcd with His-HspB I.

These data suggest lispS I. perhaps via its chaperone activit y. may he altering productio n

of API' and/or All within the cCIIpreventing secretion into the extracel lular

env iro nments.
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Chapter I

Introduction

1.1 Familia l Alzheimer's Disease

In 25 years. the now 500.000 Canadians a ffected by AD will double as the first "ba by

boomer" turns 65 this year. Hcalthcarc costs will increase tenfold from S15 million per

annum to S153 million . While the well-known sporadic limn is more common. 4-5'X, or

the repo rted AD cases arc under age 65 presenting with the familial form of AD.

Diagnosis in these genetically predisposed individuals can occur as young as 30 years of

age (www.alzheimer.ca). Early - onset Familial AD (FAD) symptomatically present s

indistinguishab ly from sporadic or late-onset Alzheimer' s disease (SAD) . Clinically.

both arc characterized by progressive neuronal deterioration resulting in loss o fme mory,

spatial or ientat ion. language defic its. mood as well as personality changes (Morris ct al..

19X9). Physiologically however . there exist differences in disease origin between AD

types. FAD is an autosomal domin ant genetic form of AD. OCCUlTing through mutations

that usually result in increased deposition of the cytotoxic Amyloid beta I-·Q (A]] 1-42)

liagmcnt (A. Eckert ct al.. 2003 : A. Eckert. Marques, Kcil, Schusscl, & Muller. 2003:

Citron ct al., 19l)2 : Weidemann ct al., 1( 97). Three well studied mutations identified in

FAD arc: I) prcscnilin- I on chromosome 14 (Alzheimer's Disease Collaborative Group .

1( 95) . 2) presenilin- Z on chromosome I (Lcvy-Lahad ct al., 1(95) and 3) Amyloid

Precursor Protein (API') on chromo some 2 1 (R. E. Tanzi ct al.. ] 9X7) accounting tor 2%



ofal l FAD cases (Q ucrfurth ct al.. 1(9 5). Triso my-Z l cases arc shown to exhibit FAD

pathology, asso ciating an extra co py ofthe APr gcne with deve lopment o r FAD

(Q ucrfurth, Wijsman, St Geo rge- Hyslop, & Se lkoe, 1( 95).

A major facto r in FAD comm on to all mutations is an altera tion in All genera tion or

cleara nce (Goa tc et al.. 1( 91) . Oft he 2 \ API' allelic mutations ide nti fied, all occur

within or immed iately borderin g on the A[l coding region (Goatc ct al.. \(91) suggesting

that A[l plays a central role in AD pathogenesis (A. Eckert ct al.. 20(3 ). Mutations with in

the All sequence influence aggregation ofA ]] by disturbing the structure ofthe

accum ulated peptide (Mori.C. 2( 02) . Mutat ions bordering on the A[l cod ing region

increase All product ion by affecting API' processing, favouring the amy loidogcnic II

pathway (See Figure 1.3) (Cai, Golde, & Younkin , 1993: Citron ct al.. 1996: Mori ct al..

2(02). Certa in populations appear to be exc lusive Ill!' individual mutation s. For

example, in my research I have specifically focused on the so-called Swedi sh mutation .

The Swedish double mutation consists of substitutions of the Lysh711 and Mcth71residue s

with Asn and Leu preceding the H ~ term inus o r A[I. yield ing a 5-X fold increase in

aggregate prone All (1-42 ) production through enhanced API' vulnerability to ll-secretase

cleavage (C itron et al.. 1992: Schcuncr, Eckman, Jensen, Song, Citron, Suzuki, Bird,

Hardy, Hulton , Kukull, Larson ct a l.. 1996: M. Mullan ct ul., 1992a) . The propens ity or

A[l( 1-42) to agg regate and form plaques that degenera te neurons is the focal point ofthe

amyloid hypoth esis, one o f the proposed prerequi sites of AD.



1.2 C ur rent Hyp othe ses

Three hypotheses arc sugg es ted to account Ill! ' the patho genesis of AD wit h each

bein g exten sivel y studied as the prim ar y insu lt that initiate s the disea se . C urrently. it

appea rs AI3acc um ulation is pre sent init ially . 1()IIO\\ed by tau hypcrphospho rylation, in

co njunc t ion with inflam mato ry res po nses that create a co nt inuum of ins ults. resu lt ing in a

disease state.

1.2.1 Amyloid Cascade Hypo thesis

T he Amy lo id Cas ca de Hypothes is (Figu re 1.1) was int rodu ced in 1992 so o n allcr

the 1\ 13pepti de was found to be the pr imar y co mpo nent ofseni le plaqu es (SP s) believed

to be one of the path ogenic lesion s found in AD brain s (Ma ster s ct a l., 19X5). T his

prop osed that All accumulation wa s the crucial mea sure of AD pathology (J . A. lIardy 8:

Higgin s. 1( 92). T hc di scovery that AI3 was a prod uct of API' meta bo lism (Sclkoc.

2006a) and that mut ation s wit hin A PI' a lte red AI3depo sit ion (H aass ct al., 1992: Se ubert

ct a l., 1992 : Haass.C . 1( 92 ). furt her streng thened the case fix Af3 bein g at the cor e of A D.

Adva nces in thc sequence o fe ve nts in dementia pathology have o ffered suppor t to

T he Amy lo id Cascade Hypo thes is. First ly. an a lterna te limn o fdementia, Fro nto tempo ra l

dementia with Parkinson ism (FTD I') . is characterized by ta u neuro fibrillary tang les

s imila r to tho se found in A D. yet AI3 plaque s arc absent (Goedert , C ro wther. 8:

Spi llantini. 199X). T his sugg cs ts that severe tau misfoklin g is not su ffic ien t to tr igger the

fornmtion ofS l' s found in A D. Seco nd ly. t ransgenic mice o vcrcx prcssi ng bo th mutant



API' and mutant tau exhibit escalated neurofibrill ary tangles in comparison to mice

overcxprcss ing mutant tau alone (1. Lewis ct al.. 2( 0 1) suggesting API' mutations as an

enhancer of further neuro-toxic insults. Th irdly. recent evidence has shown All d imers

generate tau hyperposphorylation causing neurite degenerat ion (Jin, Shepardson. Yang.

Chen. Walsh. & Sclkoc, 20 1Ia). Lastly. a buildup of l\[l is observed in the brain before

symptoms arise (D. M. Walsh. Klyubin. Fadeeva. Rowan. & Sclkoc, 2(02 ) suggesting

that All accumulation precedes clinical signs of AD.

However. the Amylo id Hypothesis has fallen under crit icism as the initiator or

AD since clinical tria ls found no improvement in cognitive function in patients

immunized aga inst All. despite evidence of plaque clearance in the post-mortem brains

(Go lde. Petrucelli. & Lewis. 20 10: Holmes et al.. 200S). While amyloid load appears to

poorly correlate with severity ofcognitive decline in AD. SPs are present in symptomatic

AD. Furthermore. the discrepancy in amyloid load and degree o f cogni tive decline is

controv ersial because a de finite toxic All species has yet to be determ ined ill vivo

(discussed further under "Amylo id-]! Production and Toxicity").

1.2.2 Hypcrphosphorylatcd Tau Hypothesis

The other major hypothesis surrounding AD onset and progression is the

disruption of microtubule assembly and function due to hypcrphosphorylatcd, insoluble.

filamentous Tau protein. Alteration of tau phosphorylation is the principle cause of FTs

thought to play a key role in AD onset (Hernandez, Gomez de Barreda. Fuster-Mata nzo.



Lucas. 8: Avila. 2( 10). Tau is expressed in the central and peripheral nervous system and.

to a lesser exte nt in kidney. lung and test is (Gu. Oyama. 8: lhara, 1( 96). It is most

abundant in neuronal axons (Lee 8: Troja nowski. 200 Ia). but can also be found in

sornatodcndritic compartments (Tashiro. Hasegawa. lhara, 8: lwatsuho, 1(9 7) and

oligodcndrocytcs (c. Klein et al., 20(2 ).

Tau consists ofan N-terminal projection region. a proline-rich doma in. a C­

terminal region and a microtubule binding domain (MB D) through which tau protein

binds to and thus stabilizes microtubule assembly (Mandclkow ct al., 1(96) (Kar. Fan.

Smith. Goed ert. 8: Amos. 2003: Santarclla ct al., 2(0 4). The tandem repeat sequences

within the MBD are thought to direct ly bind microtubulcs through their positive net

charge. which interact s with negatively charged residues in tubulin (Jho, Zhul ina, Kim. 8:

Pincus. 2010: Kar cr ul., 20(3) . Phosphorylat ion oftuu directly influences its ability to

regu late microtubule asse mbly by neutralizing the positive charge and altering

con formation oft he MI3D. detaching tau from the microtubulcs (Fischer ct al., 2(09 ).

The detac hed tau can accumulate in neuronal cell bodies and ncuritcs. forming insoluble

fi laments and Nf Ts (Lee 8: Trojanow ski. 2001b: von Bergen. Barghorn , Biernat.

Mandclkow.z; Mandclkow, 2005: von Bergen. Li, 8: Mandclkow, 2( 05). In addit ion.

the iVIBD or tau contains critical sequences that can assume the l~-sheet structures

required for tau aggregation and formation o r pathological inclusions (von Bergen ct al..

200 I: von Bergen ct al., 20(5) .
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