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Abst

Alzheimer’s discase (AD) is hallmarked by the presence of neurofibrillary tar
amyloid-p plagues. Amyloid- B plaques consist of the amyloid-f peptide (A) that has

related

been shown to induce toxic effects on neurons through the activation of stre:

signalling and neuronal loss. The small heat shock protein, HspBI (also referred to as

lated in 15% of | amyloid-f plagues in

Hsp27 and Hsp25 in mouse
AD brains (Wilhelmus, 2006). Whether this represents a potentially protective response

10 stress, or is part of the discase process is unknown. We have previously reported that

expression of HspB1 not only protects cortical neurons against amyloid toxicity, but also

enhances total neurite growth in these neurons (King ef al., 2009).

“The amyloid-f peptide is derived from the proteolytic processing of the Amyloid

Precursor Protein (APP) by f3- and y-secretases. Mutations in APP alter secretase

cleavage sites. resulting in higher production of the toxic AB(1-42) peptide that

undergoes aggregation more readily. Since HspB1 has been shown to protect neurons

ainst amyloid toxicity, it is conceivable that HspB1 may interact directly with Ap or

APP. Recent studies have demonstrated exogenous HspB1 binding to synthetic A, We

have replicated these results in an attempt to determine the role of HspB1 in the inclusion
of ABaggregates. We hypothesize that HspB1 interacts with Af. or its precursor APP. to

cither alter the distribution of AB/APP within the cell. or its release from the cell






In order to test our hypothesis, we incubated His-tagged HspB1 with synthetic AB(1-42).
at physiological temperature 37°C overnight. Immunoprecipitation, using agarose

protein A/G beads incubated with the monoclonal anti-His primary antibody, was used

for our primary analysis of interaction. Western blotting of the nitrocellulose membrane,

using the 6E10 B-amyloid (1-16) mouse Lantibody, d that AB is

immunoprecipitated with His-HspB1. These results point to a direct interaction between
HspB1 and AB(1-42). We investigated the interaction of HspB1 with APP in HEK293
cell line expressing wild-type APP (APP-wt) or APP-swedish mutation (APP-swe) that
predominately yields AB(1-42) through immunoprecipitation. His-tagged HspB1 was

incubated with the conditioned media from the APP-wt and APP-swe cells overnight at

37

Immunoprecipitation performed using magnetic protein A/G beads incubated

with cither 6E10 B-amyloid (1-16) mouse monoclonal antibody, or anti-HspB1 human
(SPA-803) rabbit polyclonal antibody. Subsequent western blotting of the nitrocellulose
membrane using the 6E10 and the 803 antibodies demonstrate that APP is

immunoprecipitated with His-HspB1

These data suggest HspB1, perhaps via its chaperone activity, may be altering production
of APP and/or A within the cell preventing secretion into the extracellular

environments.
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Chapter 1

Introduction

Familial Alzheimer’s Dise

In 25 years, the now 500,000 Canadians affected by AD will double as the first “baby
boomer™ turns 65 this year. Healthcare costs will increase tenfold from $15 million per
annum to $153 million. While the well-known sporadic form is more common, 4-5% of

the reported AD cases are under age 65 presenting with the familial form of AD.

Diagnosis in these genetically predisposed individuals can oceur as young as 30 years of

age (Www heimer.ca). Early - onset Familial AD (FAD) symptomatically presents

se (SAD). Clinically,

indistinguishably from sporadic or late-onset Alzheimer’s d
both are characterized by progressive neuronal deterioration resulting in loss of memory.

ality changes (Morris et al..

spatial orientation, language deficits, mood as well as persor
1989). Physiologically however, there exist differences in discase origin between AD
types. FAD is an autosomal dominant genetic form of AD. occurring through mutations

that usually result in increased deposition of the cytotoxic Amyloid beta 1-42 (A 1-42)

fragment (A. Eckert et al.. 2003 A. Eckert, Marques, Keil, Schussel, & Muller, 2003

Citron et al., 1992; Weidemann et al., 1997). Three well studied mutations identified in

Group,

FAD are: 1) presenilin-1 on ch S 14 (Alzhei

1995), 2) presenilin-2 on chromosome | (Levy-Lahad et al., 1995) and 3) Amyloid

Precursor Protein (APP) on chromosome 21 (R. E. Tanzi et al., 1987) accounting for 2%



are shown to exhibit FAD

ofall FAD cases (Querfurth et al., 1995). Trisomy-21 cases

pathology, associating an extra copy of the APP gene with development of FAD

(Querfurth, Wijsman, St George-Hyslop, & Selkoe, 1995).

A major factor in FAD common to all mutations is an alteration in AR generation or

clearance (Goate et al., 1991). Ofthe 21 APP allelic mutations identified, all occur
within or immediately bordering on the A coding region (Goate et al.. 1991) suggesting

that A plays a central role in AD pathogenesis (A. Eckert et al., 2003). Mutations within

the A sequence influence aggregation of AB by disturbing the structure of the

accumulated peptide (Mori,C. 2002). Mutations bordering on the Af coding region

increase AP production by affecting APP processing. favouring the amyloidogenic 3
pathway (See Figure 1.3) (Cai, Golde, & Younkin, 1993; Citron et al., 1996 Mori et al.,
2002). Certain populations appear to be exclusive for individual mutations. For
example, in my research | have specifically focused on the so-called Swedish mutation.
The Swedish double mutation consists of substitutions of the Lys*™ and Met®”' residues

5-8 fold increase in

with Asn and Leu preceding the NH, terminus of Ap. yielding
aggregate prone A (1-42) production through enhanced APP vulnerability to f-secretase
cleavage (Citron et al., 1992; Scheuner, Eckman, Jensen, Song, Citron, Suzuki, Bird,
Hardy, Hutton, Kukull, Larson et al., 1996: M. Mullan et al.. 1992a). The propensity of

AP(1-42) to aggregate and form plaques that degenerate neurons is the focal point of the

amyloid hypothesis, one of the proposed prerequisites of AD.



1.2 Current Hypothy

Three hypotheses are suggested to account for the pathogenesis off AD with cach

s the discase. Currently, it

being extensively studied as the primary insult that initiat
appears A accumulation is present initially. followed by tau hyperphosphorylation, in
conjunction with inflammatory responses that create a continuum of insults, resulting in a

disease state.

2.1 Amyloid Cascade Hypothesis

The Amyloid Cascade Hypothesis (Figure 1.1) was introduced in 1992 soon afier
the A peptide was found to be the primary component of senile plaques (SPs) believed
to be one of the pathogenic lesions found in AD brains (Masters et al., 1985). This
proposed that AB accumulation was the crucial measure of AD pathology (J. A. Hardy &
Higgins, 1992). The discovery that A was a product of APP metabolism (Selkoc.
2006a) and that mutations within APP altered AB deposition (Haass et al., 1992: Seubert

etal, 1992; ", 1992). further strengthened the case for A being at the core of AD.

Advances in the sequence of events in dementia pathology have offered support to

The Amyloid Cascade Hypothesis. Firstly, an alternate form of dementia, Frontotemporal

dementia with Parkinsonism (FTDP), is characterized by tau neurofibrillary tangles
similar to those found in AD. yet AB plaques are absent (Goedert, Crowther, &

s that severe tau misfolding is not sufficient to trigger the

Spillantini, 1998). This suggests

formation of SPs found in AD. Secondly. transgenic mice overexpressing both mutant



in comparison to mice

hibit escalated neurofibrillary tangl

APP and mutant tau ¢

s an

overexpressing mutant tau alone (J. Lewis et al., 2001) suggesting APP mutations

enhancer of further neuro-toxic insults. Thirdly. recent evidence has shown A dimers

generate tau hyperposphorylation causing neurite (Jin, Shepardson, Yang,
Chen, Walsh, & Selkoe, 201 Ta). Lastly. a buildup of AB is observed in the brain before
symptoms arise (D. M. Walsh, Klyubin, Fadeeva, Rowan, & Selkoe, 2002) suggesting

that AP accumulation precedes clinical signs of AD.

fallen under criticism as the initiator of

However, the Amyloid Hypothesis has
AD since clinical trials found no improvement in cognitive function in patients

-mortem brains

immunized against AP, despite evidence of plaque clearance in the pos
(Golde. Petrucelli, & Lewis, 2010: Holmes et al., 2008). While amyloid load appears to
poorly correlate with severity of cognitive decline in AD, SPs are present in symptomatic
AD. Furthermore, the discrepancy in amyloid load and degree of cognitive decline is

yet to be determined in vivo

controversial because a definite toxic AB species h

(discussed further under “Amyloid-[3 Production and Toxicity™).

122 Hyperphosphorylated Tau Hypothesi

The other major hypothesis surrounding AD onset and progression is the

disruption of microtubule assembly and function due to hyperphosphorylated. insoluble.

filamentous Tau protein. Alteration of tau phosphorylation is the principle cause of NE

thought to play a key role in AD onset (Hernandez, Gomez de Barreda. Fuster-Matanzo.



Lucas, & Avila, 2010). Tau is expressed in the central and peripheral nervous system and,

to a le: extent in kidney. lung and testis (Gu, Oyama, & Thara, 1996). It is most

abundant in neuronal axons (Lee & Trojanowski, 2001a), but can also be found in
somatodendritic compartments (Tashiro. Hasegawa, Ihara, & Iwatsubo, 1997) and

oligodendrocytes (C. Klein et al., 2002)

Tau consists of an N-terminal projection region. a proline-rich domain, a C-

terminal region and a microtubule binding domain (MBD) through which tau protein

binds to and thus stabilizes microtubule assembly (Mandelkow et al., 1996) (Kar, Fan,
Smith, Goedert, & Amos, 2003: Santarella et al., 2004). The tandem repeat sequences
within the MBD are thought to directly bind microtubules through their positive net
charge. which interacts with negatively charged residues in tubulin (Jho. Zhulina. Kim. &

Pincus, 2010 Kar et al., 2003). Phosphorylation of tau directly influences its ability to

regulate microtubule assembly by neutralizing the positive charge and altering

conformation of the MBD. detaching tau from the microtubules (Fischer et al., 2009).

The detached tau can accumulate in neuronal cell bodies and neurites, forming insoluble
filaments and NFTs (Lee & Trojanowski, 2001b: von Bergen, Barghorn, Biernat,
Mandelkow, & Mandelkow. 2005: von Bergen, Li, & Mandelkow, 2005). In addition,

ime the f-sh

the MBD of tau contains critical sequences that can structures

required for tau aggregation and formation of pathological inclusions (von Bergen et al..

2001: von Bergen et a
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