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Abstract
Absolute identification (Al) experiments are interested in how people remember the

m

identity of simple perceptual stimuli. Function learing (FL) explores how people |

continuous relationships between stimulus (S) and response (R) dimensions. Although Al

and FL are used to explore different cognitive processes, there are several important

similarities between the two tasks, most importantly, the congruent S-R mapping

Al creates a positive linear function. Three experiments begin to explore the

commonalities between Al and FL. Experiments 1 and 2 use an Al methodology with 2

phases and increased the number of stimuli in phas

2 by adding cither interpolation or

extrapolation items. Classic Al and FL data patterr:s were both found depending on how

the data were analyzed. Also, there was some evidence that people could respond

timulus values. E i 3 i the i given to

accurately to nov

the participant (either Al or FL instructions) and the type of response labels (letters or

numbers). Classic Al effect Iso, there was no differe

s were observed for all groups

" - ion performance. Overall, Experiment 3 revealed little

evidence for differences between Al and FL, suggesting that both Al and FL involve the

same cognitive proc

Sses.



Acknowledgements
I would like to thank my supervisor, Dr. lan Neath for his help, guidance and

encouragement. | would also like to thank the members of my supervisory committee,

Dr. Aimée Surprenant and Dr. Rita Anderson for their advice and feedback. T would also
like to acknowledge the members of the Cognitive Aging and Memory Lab, Annic

Jalbert, Sophie Kenny, Roberta DiDonato, Marlena Hickey, Jamie March and Brittany

Faux for their help and support. Finally, I would like to thank my wi fina Dewshi

for her endless support and encouragement.



Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

List of Figures

Proportion of correct responses in Phase 1 as a function
of relative stimulus magnitude. Error bars show the standard
error of the mean.

Proportion of correct responses in Phase 2 as a
function of stimulus magnitude. Error bars show the standard
error of the mean.

‘Training item accuracy in Phase 1 and Phase 2 for the Odd
Training Group (top) and the Even Training Group (bottom).
Error bars show the standard error of the mean.

Mean Absolute Errors in Phase 1 as a function of trial
block. Error bars show the standard error of the mean.

Mean responses as a function of stimulus magnitude.

Percentage of participants who were correct the first

time they responded to an item in Phase 2. Untrained items
had never been seen before, whereas Trained items had been
seen in Phase 1. The Mean Over All Presentations is the

mean number of participants who were correct over all
stimulus presentations.

Proportion correct in Phase 1 as a function of stimulus
magnitude. Error bars show the standard error of the mean.

Percent correct as a function of stimulus magnitude
in Phase 2. Error bars show the standard error of the mean.

Proportion correct for training items in Phase 1 and in
Phase 2, as a function of stimulus magnitude. Error bars
show the standard error of the mean.

Mean absolute error as a function of training blocks.
Error bars show the standard error of the mean.

Mean responses as a function of stimulus magnitude.

28

30

48

49



Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Mean signed error as a function of stimulus
magnitude. Error bars show the standard error of the mean. 51

The percentage of participants who were correct the

first time an item was presented in Phase 2. The Mean

Over All Presentations is the mean number of participants

who were correct over all stimulus presentations. 52

Figure 14: Screen shots for the Al/Letter condition (top) and the
FL/Number condition (bottom). 61

Mean absolute errors as a function of training
stimuli for each of the four groups. Error bars show
the standard error of the mean. 68

Mean absolute errors for training items in both the
Training and Test phases averaged across groups.
Error bars show the standard error of the mean. 70

Mean signed errors in the Training Phase. Error bars
show the standard error of the mean. 72

Mean absolute errors as a function of training block
(averaged over all groups).
Error bars show the standard error of the mean. 73

Proportion of incorrect responses in Phase 1 for each
response category. 75

Mean response to each stimulus, plotted separately for
each of the four conditions. 77

Mean signed error as a function of stimulus
magnitude for both FL and Al groups. Error bars show
the standard error of the mean. 78

Mean absolute errors (averaged across conditions)
as a function of stimulus magnitude. Error bars
show the standard error of the mean. 82

Mean absolute errors from the correct response, and

mean absolute error from a participant’s mean response

as a function of stimulus magnitude.

Error bars show the standard error of the mean. 84



Figure 24

Figure 25

‘The mean number of times participants used

each response category. 86

The proportion of times responses to adjacent
stimulus presentations were: repeated, changed in the

correct direction, or, changed in the wrong direction. 88



Table of Contents
Title Page
Abstract
Acknowledgements
List of Figures
Table of Contents

Chapter 1 Introduction
1.1  Purpose of Research
1.2 Absolute Identification
1.3 Function Learning
1.4 A Comparison of Absolute Identification and Function Learning
1.5 Theories of Absolute Identification and Function Learning,
1.6 Differences Between Absolute Identification and Function Learning
1.6.1 Performance Measures
1.6.2 Strategy
1.63 Experimental Design
1.6.4 Feedback
1.6.5 Surface Characteristics and Response Scales

1.7 Summary

Chapter 2 Experiments

iii



2.1 Experiment 1
2.1.1 Purpose and Predictions
2.1.2 Method
2.1.2.1 Design
2.1.2.2 Participants
2.1.2.3 Stimuli
2.1.2.4 Procedure
2.1.2.4.1 Phase 1
2.1.2.4.2 Phase 2

2.1.3 Results

2.1.3.1 Absolute Identification Analysis

2.1.3.1.1 Phase 1

2.1.3.1.2 Phase 2

2.1.3.2 Function Learning Analysis

2.1.3.2.1 Phase 1

2.

2.2 Phase 2
2.1.4 Discussion
2.2 Experiment 2
2.2.1 Purpose and Predictions
2.2.2 Method
2.2.2.1 Design

2.2.2.2 Participants

viii

23

23

24

24

26

27

27

27

27

42

42

43

43

44



2.2.2.3 Stimuli
2.2.2.4 Procedure
2.2.3 Results
2.2.3.1 Absolute Identification Analysis
2.2.3.1.1 Phase 1
2.2.3.1.2 Phase 2
2.2.3.1 Function Learning Analysis
2.23.1.1 Phase 1
2.2.3.1.2 Phase 2
224 Discussion
2.3 Experiment 3
23.1 Purpose
2.3.2 Predictions and Design
2.3.3 Method
2.3.3.1 Participants
2.3.3.2 Stimuli
2.3.3.3 Response Scales
2.3.3.4 Procedure
2.3.3.4.1 Instructions
2.3.3.4.2 Phase 1/Training
2.3.3.4.2 Phase 2/ Test

2.3.4 Results

44

44

45

45

48

48

49

62

63

64

64



2.3.4.1 Phase 1/Training
2.3.4.2 Phase 2/Test
2.3.5 Discussion
Chapter 3 General Discussion
3.1 Performance Measures

3.

N

The Bow-Effect

3.

w

Accuracy and Response Patterns

8

>

Learning

2

Interpolation

3.6 Summary

References

106

108

109

111



Chapter 1 Introduction
1.1 Purpose of Research

In order to survive, an organism must not only identify individual objects, but
must understand how individual objects relate to each other. Understanding that
two unique objects are similar provides a method for grouping these objects within
a single category, these categories can then provide a way to predict the behaviour
of novel objects. For example, when we see an unfamiliar animal we can predict
something about its behaviour by determining it is of the category dog, and objects
belonging to the dog category are associated with barking and tail-wagging.
Psychologists are often interested in exploring how people identify/categorize
stimuli and how they use conceptual information to make predictions. Two
methods for exploring these questions are absolute identification and function
learning.

Absolute identification (Al) involves the mapping of unidimensional stimulus
magnitudes onto discrete responses. For example, a participant might need to
remember that the 600 Hz tone is response 1 the 800 Hz tone is response 2, the
1000 Hz tone is response 3, and so on.. Stimuli are presented one ata time and the
participant tries to select the correct response. Feedback is provided after each trial
so the participant can learn the correct response to each stimulus. Where Al uses
discrete categories as response options, function learning (FL), on the other hand,

involves the mapping of a continuous set of stimulus magnitudes onto a continuous



response scale. For example, a participant might need to learn how much fuel is
required to drive a certain distance. Participants try to learn the functional
relationship between the predictor (e.g., distance) and the criterion (e.g., amount of
fuel needed). Participants learn the function relationship by estimating criterion
values for a series of predictor values and receive accuracy feedback. At test,
participants must respond to new predictor values and the accuracy of these
predictions reflects how well the function concept was learned. Both Al and FL can
be interpreted as conceptual tasks: categorization in the case of Al, and prediction in
the case of FL. Research on Al and FL differ in their focus, but there are overlapping
features between the two tasks. Because Al and FL try to answer different
questions, some of the methodological details differ between the two paradigms.
For example, Al and FL often use different dependent measures and different types
of stimuli. In the research presented here, similar stimuli and dependent measures
will be used in order to directly compare Al and FL. The goal of the research
presented here is to examine the amount and type of overlap between Al and FL.
tasks.

The next sections will first describe the Al and FL tasks and compare the
classic effects found in both paradigms. Next, an overview of Al and FL theories will
be provided. Finally, the major methodological differences between FL and Al will

be described and how these differences could affect performance will be addressed.



1.2 Absolute Identification
In a typical Al task a single unidimensional stimulus is presented and the
participant responds by choosing a discrete response label. Feedback about the

correct label for the presented stimulus is then provided. Several key phenomena

are associated with the Al igmi ing: a performance limit that is resistant
to practice, set-size effects, edge/bow effects, and sequential effects (for recent
reviews see Petrov & Anderson, 2005; Stewart, Brown & Chater, 2005).

Al performance is notoriously resistant to improvement despite extensive
practice (Miller, 1956; Shiffrin & Nosofsky, 1984). People are not able to perfectly

identify more than the equi of about seven unidi | stimuli; a

surprisingly small limit when compared to the near infinite number of multi-
dimensional stimuli that can be identified (Miller, 1956; Shiffrin & Nosofsky, 1984;
Siegel & Siegel, 1972). Although the Al performance limit is one of the classic
psychological effects, some recent research has called this limit into question. For
example, Rouder, Morey, Cowan and Phaltz (2004) found that Al performance did
improve with practice, with participants able to identify the equivalent of between
12 and 20 unique items (also see, Dodds, Donkin, Brown & Heathcote, 2011).

The size of the stimulus set affects how accurately people can discriminate
between individual items; for example, two lines that are easily discriminated in the
context of a two-item set become much more difficult to discriminate in the context
of a ten-item set. Lacouture, Li and Marley (1998) provide data that clearly

illustrate both the set-size effect and the bow-effect. The bow-effect (or edge-effect)



refers to the finding that responses to items from the ends of the stimulus range are
more accurate than responses to middle items. Lacouture et al. (1998) found that as
the number of items increased, performance became worse and the bow-effect
became more pronounced. However, Lacouture et al. (1998) attributed the drop in
performance to the number of response categories, not the number of stimuli.

Sequential effects in Al refer to how the immediate context (i.e., previous

stimuli, responses, and feedback) affects responses to the current item (Lockhead,
1984). For example, responses to a current item are often pulled toward the
immediately preceding item (i.e., assimilation) and pushed away from items further
back in the series (i.e., contrast).

The identification of one-dimensional stimuli is superficially a simple task,
however it can be approached from several inter-related perspectives; as a
psychophysical task, as a memory task, or, as a categorization task. The
psychophysical approach focuses on perception and attempts to describe how
stimulus magnitudes are psychologically represented. As the goal of such research
is to describe perception, researchers attempt to control factors such as memory or

sequential effects (Lockhead, 2004).

In memory research, the Al paradigm is used to study how well simple

litems are r ed and the patterns of errors that people make.
Al as a tool for studying memory has two advantages: Because the stimuli typically
vary along a single dimension the physical magnitude of the stimuli can be used to

calculate how similar or different a particular item is from other items in the set



(e.g., Murdock, 1960; Neath, Brown, McCormack, Chater & Freeman, 2006).
Secondly, the unidimensional nature of the stimuli reduces the possibility of some
confounds that may occur with more complex stimuli.

Al can also be viewed as a special case of categorization where the number of
categories equals the number of stimuli, and category membership is determined by
the stimulus magnitude (Garner & Hake, 1951; Nosofsky, 1984). The focus of the
categorization literature is to study concepts. In other words, categorization is used
to gain insight into the rules, processes, and mental representations involved in
determining if an exemplar is a member of a particular category. Interpreting Al as
categorization provides a theoretical link between Al and other concept-learning,
tasks such as FL.

1.3 Function Learning

In order to explore how conceptual knowledge is psychologically
represented researchers often employ categorization tasks. A categorization task
usually involves presenting a stimulus to a participant, who then chooses the
discrete category to which the stimulus belongs. However, many concepts are
better described as continuous functional concepts, as opposed to categorical
concepts. The FL paradigm is used to explore concepts where both the stimulus (X)
and response (Y) are represented on continuous scales and the relationship
between X and Y is determined by a mathematical function.

Functional relationships between variables are common in the environment

and learning these relationships allows people to respond accurately to novel



stimulus values. Kalish, Lewandowsky and Kruschke (2004) give the example of a
city worker who could determine the distance to a water main break (Y) based on
the frequency of the sound (X). Other examples include being able to convert the
price of an item from one currency to another ( Juliusson, Gamble & Griling, 2005),
or estimating the amount of pollution in the environment at some future point in
time (Wagenaar & Sagaria, 1975). To explore function concepts in the laboratory,
participants learn the X-Y relationship from a series of exemplars. For example, the
participant may be asked to predict “level of physiological arousal” for different
quantities of a drug (e.g, Kwantes & Neal, 2006). Participants are trained on X-Y
pairs and receive feedback about their accuracy. At test, the participant is shown
new X values from within the training range (interpolation items) as well as outside
the training range (extrapolation items). To illustrate, participants might learn the
relationship between the speed of a car and stopping distance for speeds between
40km/hrand 65 km/hr. At test, participants apply their knowledge to make
stopping distance estimates for speeds between 10km/hr to 39 km/hr (lower
extrapolation) and between 66 km/hr to 100 km/hr (upper extrapolation). In
addition, they will have to respond to speeds between 40 km/hr and 65 km/hr that
were not used as training items (interpolation). Accuracy in responding to these
novel stimulus values indicates how well the participant learned the relational
concept.

Several typical findings within the function learning literature include:

positive linear functions are easier to learn than negative linear functions, linear



functions are easier to learn than non-linear functions, and interpolation is more
accurate than extrapolation (for a review see, Busemeyer, Byun, Delosh & McDaniel,
1997). Participants also tend to underestimate Y values in the extrapolation regions
of a linear function (Delosh, Busemeyer & McDaniel, 1997), although this effect may
be more reliable for the lower region than the upper region (Kwantes & Neal, 2006).
1.4 A Comparison of Absolute Identification and Function Learning

The similarity between Al and FL arises because of the relationship between
the stimulus and the response scales. Usually, Al response keys are labeled and

nged so they correspond to the magnitude of the stimuli they represent (e.g., the

smallest stimulus is labeled 1, the next smallest is labeled 2, etc.). The ordered
mapping means that there are at least two ways a participant can solve the
identification problem. The first option is that specific S-R pairs can be memorized.
A second option is that the overall relationship between stimulus magnitude and
response magnitude can be used to infer stimulus identity. In other words, a
positive linear function based on ordinal values can be used to complete the
identification task. FL tasks involve a regular and continuous S-R mapping which
differentiates it from other categorization tasks (Busemeyer et al,, 1997). The
congruent S-R mapping in Al means that it meets the criterion needed to be
considered a FL task, therefore, could potentially share some underlying processes
with FL.

FL and Al both involve participants making a response from an ordered set

when presented with a stimulus from a ordered set. However, participants appear



to be much more accurate when completing a FL task than when completing an Al
task. A classic finding within the Al literature is the inability of participants to
correctly identify more than the equivalent of seven different unidimensional
stimuli regardless of amount of training. Miller’s (1956) paper emphasizes the

ubiquity of this performance limit, as it occurs across stimulus modalities (e.g, line

length, frequency, saltiness) and experimental paradigms. This classic limit is not
readily apparent in the function learning literature. For example, Delosh et al.
(1997) used a FL task and trained participants on 8, 20 or 50 unique stimuli. Across
training blocks, absolute deviations from the true function decreased to an average
of 2.5 units on a 250 unit scale, and the number of unique training stimuli did not
affect accuracy. In contrast, previous research on Al performance would predict
accuracy to decrease as the number of training items increased and little
improvement despite extensive training.

Participants appear to be very accurate by the end of FL training; however,
the rate of learning is similar to what would be expected in an Al task. For linear
functions, most of the improvement occurs within the first few blocks of trials after
which there appears to be little improvement (Delosh et al., 1997; Kwantes & Neal,
2006; Lewandowsky, Kalish & Ngang, 2002). Similarly, Al accuracy does not
continue to improve after the first few blocks of trials despite prolonged training.
For example, even after experiencing 12000 Al trials, performance will remain poor
(Garner, 1953; but see, Rouder et al,, 2004). Generally, FL experiments use fewer

training trials than Al experiments, however, the number of trials can vary



substantially within the Al paradigm. For example, Garner (1953) presented each
stimulus up to 600 times, where as Murdock (1960) presented stimuli 10 times
each. FL does not typically use an extremely large number of trials, for example,
Delosh et al. (1997) presented training items either 4, 10, or 25 times each.
However, in both the Al and FL paradigms, the data suggests that additional practice
has minimal effect on accuracy after peak performance has been reached.

During the training phase of a FL task participants receive feedback. Because
feedback is given, a FL training phase can be thought of as an identification task
where the participant must remember the correct response value for each
presented stimulus value. Most FL studies do not plot the training accuracy as a
function of stimulus magnitude, therefore it is not possible to determine whether
accuracy follows the bow-shaped pattern typical of AL One exception is Kwantes
and Neal (2006) and their data do not show the bow-effect for training items.
Kwantes and Neal (2006) presented X values (i.e., stimulus values) as marked points
along a scale as well as the numeric values. This additional information likely
increased stimulus discriminability and may have eliminated any advantage for the
edge items of the training set. Delosh (1997) found a bow-effect when the S-R
mapping was random but not when the S-R mapping followed a negative linear
function. However, Delosh (1997) looked for a bow-effect as a function of serial
position (i.e., accuracy as a function of when an item was presented) not stimulus

magnitude.



The ordered S-R mapping in Al means that Al meets the criteria to be
considered a FL task. If the S-R function in Al provides participants with an
additional source of information, a random S-R mapping would be expected to make
performance worse. In general, S-R compatibility improves speed and accuracy
when the experimental S-R mapping is congruent with an intuitive mapping (Fitts &
Deininger, 1954), however, within the Al literature, the advantage of S-R
compatibility is less clear. Lacouture and Lacerte (1997) showed that a congruent
S-R mapping improved Al performance only marginally and that the effect was
limited to the mid-range items. Eriksen and Hake (1957) also found that altering
the S-R mapping did not affect accuracy, and the bow-effect remained as a function
of stimulus magnitude. Additionally, Eriksen and Hake (1957) found that when Al
stimuli varied on a dimension that had no natural end points, the bow-effect
remained as a function of the response scale (but see Costall, Platt & Macrae, 1981).

Delosh (1997) studied FL and used a S-R mapping that was either random or
followed a negative linear function. Participants were less accurate in the random
mapping condition compared to the function mapping condition, suggesting that the
congruency between the stimulus and response dimensions is an important source
of information. Also, only when the mapping was random did increasing the
number of items result in poorer performance, a pattern typical of Al. This finding is
interesting because, as previously stated, the S-R mapping in an Al task is usually
not random and is therefore more similar to the function mapping condition of

Delosh (1997). An important difference between Delosh (1997) and the Al studies



conducted by Lacouture and Lacerte (1997) and Eriksen and Hake (1957) may be
that Delosh (1997) used a random S-R mapping, whereas the S-R mapping in the Al
studies maintained some structure.

The effect of a preceding stimulus on the response to a current stimulus is
often explored in Al (for a review see Matthews & Stewart, 2009). Little work has
been done on sequential effects in FL; however, McDaniel, Dimperio, Griego, and
Busemeyer (2009) looked at ordered and random presentation in FL. If stimulus
presentation is ordered during training, training performance is more accurate than
if presentation is random. However, being trained on ordered items does not
improve transfer performance (transfer items were presented randomly). Hu
(1997) found similar results using an Al task. Hu manipulated the variability of the
step size (either small or large) during training; participants were then tested
without feedback (in random order). Performance in the training phase was better
for the small-step group compared to the large-step group; however, during the test
phase, the small-step group were less accurate than the large-step group. The
results of both Hu (1997) and McDaniel et al. (2009) have parallels in the
categorization literature if the range of stimuli is viewed as the category and the
stimuli are viewed as category members. Receiving a highly variable set of category
exemplars during training improves transfer performance compared to receiving a

less variable training set (Posner & Keele, 1968).



1.5  Theories of Absolute Identification and Function Learning

Theories of Al and FL often overlap; for example, both FL and Al can be
modeled using an exemplar framework. Exemplar models (e.g.,, Nosofsky, 1984;
Nosofsky, Kruschke & McKinley,1992) propose that a stimulus is categorized based
on how similar it is to the stored exemplars in memory. Exemplar models can
model categorization in general, as well as Al in particular (Kent & Lamberts, 2005).
Busemeyer et al. (1997) proposed a modified exemplar model (Extrapolation-
Association Model [EXAM]; see also, Delosh et al., 1997) with the aim of explaining
FL within a general categorization framework. In order to account for extrapolation,
EXAM includes a linear rule component that allows it to respond to novel items
outside the training range. Without the rule component, exemplar models of FL,
underestimate accuracy on extrapolation items because the model can only output
the response associated with the nearest training item.

Alternative to exemplar theories in the Al paradigm are relative judgment
theories (Laming, 1984; Stewart, et al,, 2005). Relative judgment theories posit that
Al performance is dependent on comparing the current stimulus to the immediate
context (i.e., recently presented items). Because responses are made relative to
recent items, there is no need to assume that representations of absolute magnitude
play a significant role in Al performance (see Stewart, et al., 2005, for a review of
absolute and relative models).

Alternative to exemplar models in FL are rule-based models (see McDaniel &

Busemeyer, 2005 for a review). The rule-based approach proposes that during



training participants learn an abstract rule that represents the relationship between

the predictor and the criterion (Koh & Meyer, 1991). The rule learning proc

often conceptualized as learning the correct parameter values for a regression
equation. When a novel predictor value is presented, participants use the rule to
determine the correct criterion value. One problem with the rule-based models is
that they overestimate extrapolation accuracy. If participants use a regression-like
rule, performance should remain accurate regardless of how far an item is from the
training range; however, participants do not extrapolate as well as rule models
predict (Delosh et al., 1997). Recent rule models, such as the Population of Linear
Experts (POLE; Kalish, et al., 2004) are more successful at predicting human
performance by assuming that complex functions are approximated by selecting
from a set of simple linear functions.

Relative models of Al could potentially be used to model FL performance.
Because relative models do not respond based on stored absolute magnitudes, they
may provide a parsimonious explanation of transfer performance, with responses
being determined relative to recently presented items. For example, the Relative
Judgment Model (R]M; Stewart et al,, 2005) uses the differences between stimuli in
order to model Al In effect, participants learn the difference between stimuli that is
equal to a unit change in the response category (Stewart & Matthews, 2009); this is,
in some ways, very similar to learning the slope that relates the stimulus and
response scales (see Kwantes, 2003 for a similar approach to modeling FL).

However there may be important theoretical differences between the slope involved



in the RJM (or a similar approach) and the slope as conceptualized in rule-based FL.
models (e.g, Kalish etal,, 2005, Koh & Meyer, 1991). One theoretical difference
between the slope of an RIM-like approach and the slope of a rule-based approach is
that, with a rule-based model, the slope is an abstraction representing the overall S-
Rrelationship, whereas the RJM-like slope is derived from instances.
1.6  Differences Between Absolute Identification and Function Learning

The defining feature of a FL task is the continuous S-R mapping (Busemeyer
etal, 1997); a characteristic shared by Al. Therefore, although Al can be thought of
as a FL task, Al performance seems to be quite different than FL performance. There
are several key differences between the tasks that need to be addressed. These
differences include: how performance is measured, the cognitive strategy
participants use, the experimental design, the presence or absence of feedback, and
the surface features of the stimuli and responses.
1.6.1 Performance Measures

Perhaps the simplest explanation for the discrepancy between Al and FL
performance is how performance is measured in the respective tasks. FL studies
often measure deviations from the correct response (either absolute or signed),
whereas Al experiments may use proportion correct, information transmitted (IT)
or measures of discriminability. Therefore, participants in a FL experiment are
given credit for being close to the correct answer. Averaging responses in FL. may
result in performance that appears very accurate, despite participants never being

exactly correct. More stringent measures of performance used in Al (e.g., proportion



correct) will result in performance that appears inferior when compared with FL,
performance. Although it is not uncommon for both Al and FL experiments to use
different measures of accuracy within the same study, to my knowledge there has
been no cross-paradigm examination of how the performance measures affect data
patterns. Therefore, it remains an open question as to whether Al performance and
FL performance will mimic each other if performance is measured the same way.
The dependent measure can be critical, not only for assessing accuracy in
general, but also for elucidating different qualities of the response pattern. For
example, the mean response to a stimulus provides a measure of both the direction
and degree of error in mapping stimulus magnitudes onto response magnitudes;
however, the mean response might look quite accurate despite large response

variability. Koh and Meyer (1991) addressed the averaging problem by measuring

both constant errors (CE; the mean response for a particular stimulus) and variable

errors (VE; the standard deviation of response values for a particular stimulus).
and VEs address two different aspects of performance; CEs are a measure of how
well participants have learned the correct S-R mapping (i.e., the functional
relationship), whereas VEs assess how consistently participants respond to a
stimulus regardless of the experimental mapping.

Similar to VE, the information transmission (IT) measure used in Alis a
measure of consistency, but unlike VE, IT is non-metric (Garner & Hake, 1951). For
example, using the IT measure, a participant consistently calling stimulus 5

response 10 has the same effect as consistently calling stimulus 5 response 6. VE:




on the other hand, are affected by the distance between a response and the mean
response to a particular stimulus. Overall, because different measures of accuracy
are used in Al and FL it may look as though people are much more accurate in FL
simply because of how accuracy is assessed. For example, Petrov and Anderson
(2005) show that when the range of errors is taken in to account, Al performance
can look more accurate than when using the IT measure.
1.6.2 Strategy

Another possibility for the superior FL performance compared to Al is that
participants may use different strategies for the two tasks. Lindahl (1964, 1968)
emphasizes the distinction between general and non-general strategies. A general
strategy is similar to adopting an abstract rule that can be applied to novel stimuli,
whereas non-general strategies are based on specific stimulus/perceptual

characteristics. A FL task may induce participants to adopt a general strategy

g learning the S-R relati ip, similar to participants learning an
intervening concept that relates stimulus magnitude to response magnitude
(Busemeyer, McDaniel & Byun, 1997). In the case of Al, participants may use a non-
general strategy focusing on specific stimulus characteristics (i.e., the stimulus
magnitude). Although the Al problem is solvable by using relational information
between the stimulus and response scales, participants may simply not recognize
this strategy and rely on an item memorization strategy.

Differentiating between item information and relational information has

been explored with verbal tasks, and there is evidence that relational and item

16



information are separate and additive (Hunt & Einstein, 1981; Hunt & Seta, 1984).
However, the relational information in a verbal memory task involves the
relationship between stimuli (e.g.,, words from the same category are highly related).
In contrast, a FL task focuses on the relational information between the stimulus
and response scales. Within the categorization literature, strategy has been shown
to affect how a participant categorizes novel stimuli (Medin & Smith, 1981). For
example, participants can be induced to categorize based on rules or on overall
similarity depending on strategy instructions (Allen & Brooks, 1991; Smith, Patalano
& Jonides, 1998). Also, and more generally, the literature on transfer-appropriate
processing (Morris, Bransford & Franks, 1977), and encoding-specificity support the
view that how an item is encoded (e.g, the strategies used, the task relevant
features, etc.) has a strong effect on performance. It is therefore plausible that a task
that focuses on the global relationship between stimuli and responses (i.e., FL) will
result in a different level and pattern of performance compared to a task that
focuses on item identity (i.e., Al).
1.6.3 Experimental Design

Al experiments involving the effect of set size often use a between-subjects
design. In FL studies, the number and range of stimuli is a within-subjects factor,
increasing from the training to the test phase. The Al studies that manipulate set
size within-subjects show participants display both higher accuracy and
improvement with training compared to between-subjects experiments (Dodds,

Donkin, Brown, Heathcote & Marley, 2011; Dodds, et al,, 2011; Kent & Lamberts,



2005; Rouder, et al., 2004). Also, within-subject designs can the bow

effects found in between-subjects designs (Dodds, Donkin, Brown, Heathcote &
Marley, 2011). The within-subjects design of FL experiments may partially explain
the discrepancy between Al and FL in the level and pattern of performance.
1.6.4 Feedback

Because experimenters conducting FL studies are interested in participants’
ability to apply learned concepts to novel exemplars, feedback is not provided
during the transfer test. The absence of feedback during transfer means that the
participants must rely on their knowledge of the X-Y relationship rather than their
memory for specific items (Delosh et al,, 1997). In contrast, in Al experiments
participants are typically give feedback throughout testing. When the effect of
feedback is explored in Al, providing feedback tends to improve performance.
However, feedback may act to influence the S-R mapping rather than improve
stimulus discriminability (e.g., Eriksen, 1958). Mori and Ward (1995) found that
feedback did not affect the discriminability of stimuli, but instead altered how the
current response was affected by the preceding stimulus and response.

Brehmer and Svensson (1976) examined the effect of feedback in a FL.
experiment. Participants were informed of the shape of the function (either U or
inverted U shaped) and had to predict a criterion for different levels of a predictor
variable. Brehmer and Svensson found that providing feedback did not improve

performance compared to a no-feedback condition.



1.6.5 Surface Characteristics and Response Scales

Al responses are usually made by selecting a discrete (but ordinal) response
category, whereas FL responses are made by selecting a point along a continuous
response scale. This difference means that FL gives participants access to many
more unique response values compared to AL Although this difference may seem
important, previous research would suggest that making the response scale
continuous would have little effect on performance, at least in terms of IT (Hake &
Garner, 1951). However, others have found that Al performance gets worse as the
number of response categories increases (Lacouture, et al., 1998). The method of
responding may play an important role in how participants approach the task.
Specifically, a continuous response scale may make the S-R relationship more salient
compared to a discrete response scale.

Surface characteristics of the stimuli in a typical FL task may make these
stimuli easier to remember and therefore result in accurate performance compared
to AL. Within the FL paradigm, stimuli can take a variety of forms, for example,
position of a marker on a scale (Delosh, et al., 1997), a line length (Kalish, et al.,
2004), or numerals and letters (Sniezek & Naylor, 1978). In some FL procedures the
stimulus characteristics may provide the participant with additional information
that is typically not present in Al. For example, if the stimulus is presented as a
marker along a scale, a participant may use the distance from the beginning of the
scale, the distance from the end of the scale, and/or the distance from specific tick

marks to aid in discriminating stimulus values. McDaniel et al. (2009) addressed the



role of tick marks on the stimulus scale in a FL experiment. Stimulus values were
presented either as a filled bar on a marked scale or as segments of a circle with no
scale markings. If tick marks on the stimulus scale provided additional information,
participants should have been more accurate in the marked scale condition
compared to the circle segment condition. However, McDaniel et al. found the
opposite effect; participants performed better in the circle segment condition than
in the scale condition. However, note that the segment stimuli also have additional

information not usually present in an Al task because the size of the filled portion of

the circle is perf

tly correlated with the size of the unfilled portion. In general, the
stimuli in FL. may be easier to discriminate or remember because they have multiple
correlated dimensions (see Garner, 1974).

When Al experiments use visual stimuli, additional cues, such as the distance
from the end of a line to the edge of the screen, are often controlled. Although many
FL experiments use multidimensional stimuli, some use stimuli that are very similar
to those used in AL For example, some FL experiments use the length of a line, or
the distance between two markers to represent the level of a predictor variable (e.g.,
Brehmer, 1979, Koh & Meyer, 1991); a stimulus dimensions commonly used
throughout the Al literature. Therefore, if a FL experiment uses line length as a
predictor, the functional relationship is positive and linear, and participants receive
feedback (e.g., the training phase), the FL task essentially becomes an Al task with

the number of available respons; eeding the number of stimuli.
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1.7 Summary
Al and FL paradigms both involve the study of concepts, but focus on
different kinds of concepts. In FL, the participants’ task is specifically to learn a

relational concept; in Al the participants’ task is to categorize stimulus magnitudes

with discrete r In Al the corr between the stimulus scale and
the response scale makes the task solvable using a general function concept that
relates stimulus magnitude to response magnitude. The results of Al and FL.
experiments differ substantially in terms of both level and pattern of performance.
Different patterns of results in the two paradigms could be the result of: different
strategies, different measures of accuracy, experimental design, and differences in
the stimulus/response discriminability.

Therefore, in the present series of experiments, the goal was to begin to
examine the factors that result in different data patterns in FL and Al. Experiments
1 and 2 follow a general Al procedure; participants were told to remember the
correct numeric label for each stimulus and received feedback. Participants
responded to a subset of items during the first phase of the experiment, then, the

number of items was increased. Therefore, experiments 1 and 2 are identification

experiments with a within-subjects set-size manipulation. The parallel to FL lies in
how the set size was increased. The new items were either intermediate in size to
the phase 1 items (i.e., interpolation items), or were larger and smaller than the
phase 1 items (i.e., extrapolation items). Of particular interest in Experiments 1 and

2 is whether both classic Al and FL data patterns can be found in an identification

21



experiment simply by changing how the data are analyzed. Specifically, will the data
look typical of Al performance when the proportion correct is the dependent
measure, and will the data look typical of FL performance when the mean response
is the dependent measure.

Experiment 3 also involved two phases, however, Experiment 3 did not
provide feedback in the second phase. The absence of feedback means that the
ability to transfer knowledge to novel stimuli can be assessed. Participants were
instructed to either learn the relationship between stimulus magnitude and
response magnitude, or, learn the identity of individual stimuli. Also, the response

labels were manipulated so they represented either discrete categories or a

continuous response scale. One of the critical questions for Experiment 3 wa

whether FL instructions result in better transfer performance than Al instructions.
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Chapter 2 Experiments
2.1 Experiment 1
2.1.1 Purpose and Predictions

Experiment 1 followed an Al procedure and had two main purposes. The
first purpose was to examine performance from both an Al and a FL perspective. In
other words, if the measure of accuracy is changed, do the same data qualitatively
mimic classic patterns in the two paradigms?

Al studies will often use the proportion of correct responses as a measure of

performance. FL studies, on the other hand, often average the responses given to

each stimulus. Experiment 1 will look at the data using both approaches. If Al and
FL are highly similar tasks, the data should indicate low accuracy, and a bow-effect
when proportion correct is examined. In contrast, when mean responses are
examined they should appear very accurate and closely follow the S-R function.

The second purpose was to examine how increasing the number of items
affects performance, and if receiving extra training on specific items improves
performance on those items. Previous Al experiments have shown that receiving
additional training on items can sometimes improve performance (Dodds et al.,
2011; Cuddy, Pinn, Simmons, 1973; but see, Chase, Bugnacki, Braida & Durlach,
1982).

In Al terms, Experiment 1 involved a within-subjects set-size manipulation.

Participants were trained on a subset of possible items during Phase 1. In Phase 2



the number of items was increased by adding stimulus magnitudes that were
between the Phase 1 items. Increasing the number of items within-subjects is
analogous to a FL experiment where the number of items is increased in the test
phase. A second parallel between Experiment 1 and FL experiments involves how
the set size was increased. Experiment 1 increased the number of items by adding
items that are intermediate to the initial stimulus magnitudes (i.e., interpolation
items).

It was expected that typical Al effects would be observed in Experiment 1,
namely, a bow-effect (i.e., improved accuracy for the items at the edges of the
stimulus set) and a set-size effect (decreased accuracy when the number of items is
increased). However, when mean responses are used as the performance measure,
the bow-effect should not be observed and the mean responses should follow a
linear pattern consistent with the S-R relationship. Also, if giving participants extra
practice on items improves accuracy for those items, it is predicted that when the

set size is increased in Phase 2, Phase 1 items should have an advantage over new

items.
2.1.2 Method
2124 Design

The basic design has two within-subjects factors: stimulus magnitude (14
different stimuli) and Phase (Phase 1 and Phase 2). In order to separate the effect of
additional training from the effect of stimulus magnitude, a between-subjects factor

(Training Set; 0dd/Even) was used. In Phase 1, the Odd group saw stimuli 1, 3,5, 7,
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9,11, 13, and the Even group saw stimuli 2, 4, 6,8, 10, 12, 14. In Phase 2, both
groups saw all 14 stimuli.

The 0dd/Even manipulation means that when the Even group sees Stimulus
1 in Phase 2, Stimulus 1 is technically an extrapolation item because it is outside the
training range. The compliment occurs for the Odd group; with Stimulus 14 being
outside the training range. Because there is only one extrapolation item per group
and it is a direct neighbor of a training item, for the sake of convenience, | will refer
to all new items as interpolation items.
2.1.2.2 Participants

Forty undergraduate students (6 males and 34 females) were recruited from
Memorial University. All participants gave their informed consent before
participating in the study. The mean age was 19.4 years (SD = 1.9). Participants
were paid $10, and the experiment lasted approximately 30 minutes.
2.1.2.3 Stimuli

Stimuli were 14 red circles presented on a computer screen. Each stimulus
had a unique numeric label (1 through 14) corresponding to its ordinal magnitude.
The smallest stimuli (labeled 1) had a diameter of 10 pixels. The diameter of the
circles increased by a constant 10 pixels (e.g, circle 14 had a diameter of 140 pixels).
2.1.2.4 Procedure

Participants were tested individually in a quiet testing booth. An iMac
computer was used to present stimuli and collect responses. Participants sata

comfortable distance from the screen. The experimenter explained that the



participants’ task was to remember the correct label for each circle. Participants
were told that there were two phases and that in the second phase they would see
new intermediate items as well as the old items.

2.1.2.41 Phase 1

Before testing began, participants were shown the seven Phase 1 stimuli with
their correct label one at a time (once in ascending order once in descending order).
The seven Phase 1 stimuli were then presented 10 times each, in random order
(completely randomized without replacement). Response buttons for Phase | were
seven virtual buttons (with numeric labels) in a single line along the bottom of the
screen. The response buttons for all stimuli were in two rows at the top of the
screen but only the bottom buttons were used for Phase 1.

The Phase 1 items were then presented individually and participants used
the mouse to click on a response button. After making a response, the stimulus
disappeared and participants were given feedback. If the response was correct the
participant saw, “Correct! It was” with the correct label (printed in green), if the
response was wrong the participant saw “Sorry! It was” with the correct label
(printed in red). Feedback was presented visually in the center of the screen and
remained on the screen until the participant clicked the “Next Trial” button.. Upon
completing the 70 Phase 1 trials, participants were told that they would now see
new items as well as the Phase 1 items. It was made clear that the Phase 1 items

kept the same numeric labels in Phase 2.



Phase 2

Unlike in Phase 1, the entire Phase 2 stimulus set was not presented before
testing began. The procedure for Phase 2 was the same as Phase 1 except all 14
stimuli were presented and responses were made using the 14 buttons at the top of
the screen. Participants continued to receive feedback on all trials.

2.1.3 Results

The alpha level was set at .05 for all statistical tests. When the sphereicity
assumption was violated, the Greenhouse-Geisser correction was used, and the
adjusted degrees of freedom reported.
2.1.3.1 Absolute Identification Analysis
2.1.3.1.1 Phase 1

A2 (Training set) x 7 (Relative Stimulus Magnitude) mixed-model ANOVA
was conducted to determine if the relative magnitude of a stimulus affected
accuracy, and whether the absolute magnitude of the stimuli affected accuracy. The
dependent variable was the proportion of correct responses (e.g., the number of
times response 7 was chosen when stimulus 7 was presented, divided by the
number of times stimulus 7 was presented).

Figure 1 shows proportion correct plotted as a function of the relative
stimulus magnitude. Both training groups show the typical bow-effect, with
performance being better for the smallest and largest items compared to the middle
items. As is evident in the figure, there was a significant effect of relative stimulus

magnitude (F (6, 38)= 32.43, MSE = 0.023, p <.01).



Unexpectedly, there was also a main effect for training group (F (1, 38) =

0.06, p =.047. Participants who were trained on the odd-item stimuli

4.23, MSE
performed better than participants trained on the even-numbered items (Odd items,

=0.021).

M =0.85, SE = 0.021; Even Items M = 0.79, S

Proportion Correct Phase 1

—— Ol

== L e

Relative

Phase 1 as a function of relative stimulus magnitude.

Figure I: Proportion of correct respons
Error bars show the standard error of the mean.

Evidently there was something that made the even stimuli more difficult to
identify. However, there was no significant interaction between the relative

stimulus magnitude and training set (F(6,38) = 0.842, MSE = 0.023 p =.514)

indicating that the relative stimulus magnitude did not change the advantage held
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by the odd-item group overall. Thus, this difference between the conditions did not
affect the pattern of performance as a function of relative magnitude.
2.1.3.1.2 Phase 2

One purpose of Experiment 1 was to determine whether receiving extra
training on an item improved accuracy for that item when the size of the stimulus
set was increased. A 2 (Training Set) x 14 (Stimulus Magnitude) mixed-model
ANOVA was conducted to determine if being trained on an item in Phase 1 improved
performance on that item compared to novel items in Phase 2. The dependent
variable was the proportion correct.

Figure 2 illustrates the proportion correct as a function of stimulus

magnitude. Asin Phase 1, a bow-effect is evident for both training groups. There

was a significant main effect for stimulus magnitude (F(13, 494) = 85.99, MSE =
0.036,p <.01).
The training set had a significant effect on Phase 2 performance. Specifically,

if participants were trained on the odd training items their performance in Phase 2

was superior to participants who were trained on the even items (0dd; M =.497, SE

=0.02; Even; M = 426, SE = 0.02; F(1,38) = 6.08, MSE = 0.115 p =.018).

The interaction between Training Set and Stimulus Magnitude did not reach

significance (F(13, 494) = 1.35, MS|

=0.032, p =.18). Although the training set
used in Phase 1 affected accuracy in Phase 2, there was no evidence for item specific

effects.
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Figure 2: Proportion of correct responses in Phase 2 as a function of stimulus magnitude. Error
bars show the standard error of the mean.

Visual inspection of performance in Phase 1 and Phase 2 shows that accuracy
decreased when the set-size is increased. In order to examine the effect of set-size,
performance on the seven Phase 1 items was examined in both Phase 1 (i.e., a small
set context) and in Phase 2 (i.e., a large set context). The set-size effect was
confirmed by conducting a 7(Stimulus Magnitude) x 2 (Phase) within subjects
ANOVA for both the Odd and Even training groups. The proportion correct was the
dependent measure.

Similar effects were found for both training groups. When the set-size
increased in Phase 2, accuracy dropped for both the Even training group (Phase 1: M

=0.788, SE = 0.022; Phase 2: M = 0.417, SE= 0.018; F(1,19) = 257.71, MSE = 0.037, p



<.001) and the Odd training group ( Phase 1: M = 0.848, SE = 0.019; Phase 2: M =
0.521, SE = 0.028; F(1,19) = 296.63, MSE = 0.025, p <.001).

Increasing the set-size reduced participants’ accuracy overall; however, not
all items were equally affected. The interaction between Stimulus Magnitude and
Phase was significant for both the Even (F(6,114) = 5.51, MSE = 0.028, p <.001 ) and
the Odd training groups (F(6,114) = 17.098, MSE = 0.018, p <.001 ). Visual
inspection of Figure 3 reveals that items from the ends of the range were less

affected when the set size was increased.
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There was a significant effect of Stimulus Magnitude for both the Even
training group (F(6, 114) = 53.42, MSE = 0.025, p <.001) and the Odd training group
(F(6, 114) = 50.44, MSE = 0.023, p <.001). The data show the bow-shaped pattern
previously discussed.
2.1.3.2 Function Learning Analysis
2.1.3.21 Phase 1

Because the relative stimulus magnitude can perfectly predict the relative
response magnitude, it is possible that participants are using conceptual
information as described in the FL literature to make their responses in the context
of an Al task. Itis worth clarifying that in Experiment 1 feedback was provided
during the Phase 2 trials, therefore a direct comparison between FL and Al is not
possible in the current design. However, the data from the current experiment can
be explored using the methods common to FL experiments.

To examine the effect of learning over trials, the mean absolute deviation of
the participant’s response from the correct response was calculated for each trial in
Phase 1. The absolute deviations were then averaged into blocks of 10 trials.

A2 (Training Set) x 7 (Block) mixed-model ANOVA was conducted to
determine whether participants became more accurate with practice. Figure 4

shows the reduction in error as a function of trial block. It is apparent that

participants were learning over trials, however, most of the improvement occurred
during the first block of trials. There was a significant main effect of trial block (F(6,

228) =5.53, MSE = 0.016, p <.001). The linear trend was significant (F(1,38) = 8.23,
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MSE = 0.026, p =.007), however, higher order trends were also significant

(quadratic F(1,38) = 9.9, MSE = 0.016, p = .003; cubic F(1,38) = 4.94, MSE = 0.018, p
=.032; order 4 F(1,38) = 6.64, MSE = 0.01, p =.014). These results replicate the
finding that Al performance shows little overall improvement with practice. FL
experiments also show a similar pattern learning over training blocks. For example,

Delosh et al. (1997) found that absolute errors decreased quickly and asymptoted to

amean error of 2.4 or roughly 2.7% of the training range of the response scale. In

the current experiment the mean error at the end of Phase 1 was 0.175 (. 0.018).

Interestingly, if the mean absolute error in Experiment 1 is taken as a percentage of
the number of responses, the resulting value is 2.5% similar to the error found by

Delosh et al. (1997).

Learning Over Blocks of Trials

—a-

ing Block

Figure 4: Mean Absolute Errors in Phase 1 as a function of trial block. Error bars
show the standard error of the mean.



The effect of Training Set was marginally significant (F(1,38) = 3.97, MSE =
0.074, p =.053). The trend suggests that individuals in the Odd training group (M =

0.157, SE = 0.023) were more accurate than the Even training group (M = 0.222, $

0.023); a conclusion which is supported by the statistically significant difference
found when proportion correct was used as the dependent variable. There was no
significant interaction between Training Set and Block (F(4.84, 183.86) = 0.171, MSE
=0.074,p=971).

2.

.2 Phase 2

Phase 2 performance was examined by calculating the mean response for
each stimulus and plotting it as a function of stimulus magnitude. Figure 5 shows
the effect of stimulus magnitude on the direction of errors; as stimulus magnitude
increases participants tend to underestimate more. Itis apparent that when the
mean response is the dependent measure, participants appear to be much more
accurate than when the proportion correct is used as the performance measure. In
order to examine the pattern and direction of errors in more detail, the difference
between each participant’s mean response and the correct response was calculated
for each stimulus. A 2(Training Set) x 14 (Stimulus Magnitude) mixed-model
ANOVA was conducted to determine if the direction of errors differed as a function
of stimulus magnitude, and, whether this effect depended on the training items.
There was a significant main effect for stimulus magnitude (F(4.63, 175.84) = 12.75,
MSE = 0.735, p <.001. The main effect of Training Set was not significant (F (1,38) =

3.01, MSE = 0.866, p = .09), nor was the interaction between Training Set and
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Stimulus Magnitude (F(4.63, 175.84) = 0.91, MSE = 0.735, p = .469). The linear trend

5, MSE = 0.873, p <.001).

Mean Responses

Stimulus Magnitude

Figure 5: Mean responses as a function of stimulus magnitude.

Participants’ ability to use conceptual information to infer the identity of
novel items can be assessed, in part, by examining responses to the first
presentation of an item in Phase 2. The number of participants who were correct on
the first presentation of each stimulus in Phase 2 was summed. Figure 6 plots the
percentage of participants who were correct on the first presentation of each

stimulus (for both trained and untrained items) as a function of stimulus magnitude.



As a comparison, the mean number of participants who responded correctly over all

stimulu

pr was calculated. Quali ly, the shape of the function for
first presentations is very similar to the mean of all presentations. There is some
suggestion that seeing an item in Phase 1 increases the probability of a participant
being correct on the first presentation of that item in Phase 2, particularly, for the
largest items. However, the similarity between accuracy for first presentations and
mean accuracy suggests that, to some extent, people are able to use what they

learned in Phase 1 to respond to new items in Phase 2.

First Presentation Performance

Mean Over NIl Pre

Stimulus Magnitude

Figure 6: The percentage of participants who were correct the first time they responded to an item in
Phase 2. Untrained items had never been seen before, whereas Trained items had been seen in Phase
1. The Mean Over All Presentations is the mean number of participants who were correct over all
stimulus presentations.

2.1.4 Discussion
Experiment 1 addressed two main issues: first, whether receiving extra

training on a subset of items improves accuracy for those items when the number of
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stimuli is increased, and second, if the method of analysis is a major difference
between Al and FL performance.

From an Al perspective, Experiment 1 replicated the bow and set-size effects
typical of Al performance. However, Experiment 1 did not support the proposition
that increasing the amount of practice on specific items improves performance on
those items compared to less practiced items. Al usually does not improve beyond a
low limit, however some recent studies have found that people can continue to
improve if given enough practice (Dodds et al., 2011; Rouder et al,, 2004). For
example, Dodds, Donkin, Brown, Heathcote and Marley (2011) found improved
performance on items that were presented more often. There are several important
differences between their procedure and Experiment 1. Dodds, Donkin, Brown,
Heathcote and Marley used stimuli that varied on a single dimension (the distance
between two markers, or tones), whereas Experiment 1 used stimuli that were
simple but not strictly unidimensional. Also, participants in Dodds, Donkin, Brown

Heathcote and Marley experienced many more trials (1600 overall) than

participants in Experiment 1 (210 trials overall). However, perhaps the criti

al
difference is how the set-size was increased. They presented the two middle stimuli
more often than the other stimuli, but in the current experiment, seven items
received extra practice, and, these items were every-other item from the whole
stimulus set. The distribution and number of stimuli that receive extra practice
within the stimulus set may play a role in the efficacy of practice (also see

Experiment 3 of Dodds, Donkin, Brown, Heathcote & Marley, 2011). If similar items



are seen more often, it may allow participants to organize the stimulus set into
chunks, and therefore reduce memory load. In Experiment 1, the distribution of
Phase 1 items (i.e., every other item from the whole set) may have made
organizational strategies more difficult (see, Miller, 1956; Seigal & Seigal, 1972).

Surprisingly, Experiment 1 revealed an effect of training set on accuracy.
Participants who were trained on the odd stimuli were more accurate than
participants trained on the even stimuli. This effect in Phase 1 is likely due to the
psychological spacing of the stimuli. If the psychological distance between stimuli is
estimated by taking the log value of the stimulus diameter, the mean psychological
distance between stimuli is greater for the odd set (M = 0.427, SD = 0.351) than the
even set (M = 0.324, SD = 0.202). The increased stimulus spacing in the odd set
might make these items less likely to be confused with each other, and therefore
improve accuracy compared to the more closely spaced even set.

Psychological stimulus differences are a likely explanation of the advantage
held by the odd-set in Phase 1, however, this does not explain why the odd-set
advantage carries over into Phase 2. In Phase 2, both training groups saw the exact
same stimuli; yet, the odd-set group was more accurate than the even-set group on
both old items and new items. It is also worth noting that the variability of the
stimulus differences is greater for the odd set than for the even set. Therefore, it is
equally plausible that increased variability of the differences, not the size of the
differences is the root of the odd group advantage. Within the categorization

literature increasing the variability of the training items improves transfer



performance (Posner & Keele, 1968), yet, from an absolute judgment perspective,
Lockhead (2004) would suggest that increased variability (on a trial by trial basis)
would make performance worse. Resolving this issue is beyond the scope of the
current paper but may be a interesting topic for future research.

The effect of the Phase 1 training set on performance in Phase 2 is interesting
because it implies that people are learning something in Phase 1 that alters how
they respond to Phase 2 items. The FL literature specifically focuses on this kind of
knowledge transfer from training to test. Experiment 1 shows that a similar kind of
transfer can occur even when feedback is provided on all trials.

When the results of Experiment 1 were approached from a FL perspective,
two notable patterns emerged. First, when the mean response was plotted as a
function of stimulus magnitude, participants appeared to be highly accurate and
mean responses followed a linear pattern. Also, similar to Delosh et al. (1997), there
was a tendency for larger stimuli to be underestimated. However, the pattern of
underestimation of smaller items found by Delosh et al. (1997) and Kwantes and
Neal (2006) was not apparent in the current study. The pattern of responses in
Experiment 1 was qualitatively similar to FL results for positive linear functions
despite Experiment 1 using very different stimuli and procedures. This similarity
suggests that the accuracy measure in FL is why performance appears so accurate
compared to Al performance.

In addition to the overall accuracy data mimicking both Al and FL patterns,

the learning data in Experiment 1 also showed a pattern that is typical of both FL
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and AL Most learning occurs early in training and does not continue to improve
across blocks of trials.

Responses to new items are the main focus of FL. Examining accuracy for the
first time a stimulus was presented suggests that participants are relatively accurate
in responding to novel items. This result implies that participants can infer
something about novel items based on what they know about other items, and, that
this learning can occur even when the task is to identify items, not learn a relational
concept. Additionally, interpolation performance in Experiment 1 involved item
specific interpolation rather than interpolation based on mean responses.
Interpolation, as measured in a FL task uses the mean response given to a new item;
therefore, it is possible that people are not inferring a specific response value, but
rather, the distribution of errors centered on the correct response. The examination
of first-presentation performance in Experiment 1 used a stricter criterion
(right/wrong), therefore suggesting that item specific interpolation can occur within
Al

Four observations from Experiment 1 support the position that Al and FL are
similar tasks. First, the shape of the learning curve was similar to previous work in
both Aland FL; performance improved quickly, then leveled off at a suboptimal
level. Second, by changing the dependent measure, the data mimic the patterns
found in both Aland FL. Third, accurate responding to novel items suggests that
participants can use knowledge about previous items to interpolate. Finally,

exposure to a particular training set can affect how people respond to new items.
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2.2 Experiment 2
2.2.1 Purpose and Predictions

In Experiment 1 the number of items was increased from Phase 1 to Phase 2
by including intermediate items. In Experiment 2 the number of items from Phase 1
to Phase 2 was again increased, however, the new items were stimuli that are
smaller and larger than the Phase 1 items. Expanding the stimulus set in this way is
analogous to a FL task where participants must extrapolate above and below the
training range. In addition to changing how the set-size is increased, Experiment 2
altered the stimulus spacing. The diameter of the stimuli in Experiment 1 increased
by a constant (10 pixels), in Experiment 2 the diameter of the stimuli increased
exponentially (increasing by 30%). Exponential stimulus spacing may be
interpreted as a logarithmic function between stimulus magnitude and response

the hological spacing of the responses is linear and there

is a linear relationship between the stimulus physical magnitude and psychological
magnitude.

Thirteen different stimuli were used in Experiment 2 compared to the 14 in
Experiment 1. Although the number of stimuli was different in Experiment 2, using
13 items allowed the number of training items to be the same as Experiment 1 (7)
and allowed an equal number of upper and lower extrapolation items.

The purpose of Experiment 2 was to examine an Al task where the range of
stimuli is increased by including extrapolation items. Similar to Experiment 1,

performance was analyzed from both an Al perspective and a FL perspective. It was
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predicted that both a bow-effect and a set-size effect would be observed when
proportion correct is examined. Mean responses to stimuli should follow a linear
pattern.

The effect of practice on Phase 1 items cannot be answered definitively with
the current design because the effect of practice is confounded with stimulus
magnitude. Instead, the effect of practice will be addressed qualitatively by
examining the overall pattern of accuracy in Phase 2.

2.2.2 Method
2.2.21 Design

Experiment 2 was a within-subjects design, the variables of interest were
stimulus magnitude (13 different stimuli) and Phase (Phase 1 and Phase 2). Phase 1
used the seven stimuli from the middle of the stimulus set; Phase 2 used all 13
stimuli, therefore, each phase could be examined separately to determine the effect
of stimulus magnitude on performance. Also, accuracy for Phase 1 items could be
examined in a small set context (Phase 1) and in a large set context (Phase 2).

There are several confounds that occur with this design, for example, the
order in which Phase 1 and Phase 2 was presented is not counter-balanced. Also,
because only middle items are used as training items, stimulus magnitude is
confounded with training. However, the purpose of Experiment 2 was to expand the
stimulus set in a way that mimics FL and to approach the analysis from both an Al

and a FL. perspective. Therefore, the confounds that exist in Experiment 2 are the
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same confounds that exist in a typical FL task. Because the present research is
exploratory these confounds are not fatal to the current objectives.

2.

.2 Participants

Twenty undergraduate students (8 males and 12 females) were recruited
from Memorial University. All participants gave their informed consent before
participating in the experiment. The mean age was 21.1 years (SD = 3.0).
Participants were paid $10 for their time. The experiment took approximately 30
minutes.
2223 Stimuli

The entire stimulus set consisted of 13 circles. The diameter of the circles

ranged from 30 pixels to 699 pixels, with the diameter of each circle increasing by
30%. Each circle was given a numeric label (1-13) corresponding to its ordinal

magnitude.

4 Procedure

Experiment 2 followed the same general procedure as Experiment 1 with the
following exceptions. In Experiment 2, the number of items was increased in Phase
2 by adding extrapolation items. In contrast, Experiment 1 increased the number of
items by adding interpolation items. Thirteen stimuli were used in Experiment 2
instead of 14 in Experiment 1, and the Experiment 2 stimuli increased in diameter

geometrically instead of linearly.



2.2.3 Results

The alpha level was

set at .05 for all statistical tests. When the sphereicity
assumption was violated, the Greenhouse-Geisser correction was used, and the
adjusted degrees of freedom reported.

2.2.3.1 Absolute Identification Analysis

22311 Phase 1

Accuracy for Phase 1 was assessed using a one-way, within-subjects ANOVA

with seven levels representing the seven Phase 1 stimuli. The dependent variable
was the proportion of correct responses. Participants were more accurate when

responding to end items compared to middle items (see Figure 7). There was a

significant effect of stimulus magnitude (F(6,114) = 16.33, MSE = 0.027, p < .001).

The quadratic trend was significant (F(1,19) = 83.69, MSE = 0.026, p <.001).

Phase 1 Performance

Stimulus Magnitude

Figure 7: Proportion correct in Phase 1 as a function of stimulus magnitude. Error bars show the
standard error of the mean.
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2.23.1.2 Phase 2

Accuracy in Phase 2 was assessed using a one-way within-subjects ANOVA
with 13 levels representing the 13 stimulus magnitudes. The dependent variable
was the proportion correct. There was a significant effect of stimulus magnitude
(F(12,228) = 14.71, MSE = 0.028, p <.001. As in Phase 1, the quadratic trend was
significant (F(1, 19) = 47.77, MSE = 0.07, p < .001). More interestingly, items that
were edge items in Phase 1 were responded to more accurately than would be
expected if accuracy was a simple U-shaped function of stimulus magnitude. Instead
of a simple U-shaped function, the advantage held by the Phase 1 edge items
resulted in a “double-bow” effect (see Figure 8). This pattern was significant, as

evidenced by a sixth-order trend (F(1,19) = 10.25, MSE =

033, p =.005).

Phase 2 Accuracy

Figure 8: Percent correct as a function of stimulus magnitude in Phase 2. Error bars
show the standard error of the mean.



In order to confirm that the data demonstrate a set-size effect, a 7 (Stimulus
Magnitude) x 2 (Phase) within-subjects ANOVA was conducted. This analysis
compared performance on the seven Phase 1 items to performance on the same
items when they were seen in Phase 2. The dependent variable was the proportion
correct.

The data demonstrate a set-size effect: when the items were presented in the

context of a larger set, performance dropped from M = .71 (SE = 0.025) to M = 529
(SE=0.042, F(1,19) = 25.43, MSE = 0.091, p <.001). As in Experiment 1, there was a
significant effect of Stimulus Magnitude (F(6,114) = 10.928, MSE = 0.031, p <.001).
Averaged over phases, performance still showed a bow effect (quadratic trend:
F(1,19) = 54.218, MSE = 0.034, p <.001).

Figure 9 displays the proportion correct as a function of Stimulus Magnitude
for both Phase 1 and Phase 2 and shows that increasing the set-size reduces
accuracy more for the Phase 1 edge items than the middle items. Increasing the set-
size did not hurt accuracy equally for all stimulus magnitudes; the Stimulus
Magnitude x Phase interaction was significant (F(6,114) = 7.61, MSE = 0.02, p<

001).
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Figure 9: Proportion correct for training items in Phase 1 and in Phase 2, asa
function of stimulus magnitude. Error bars show the standard error of the mean.

2231 Function Learning Analysis
22311 Phase 1

Learning in Phase 1 was assessed using a one-way, within-subjects ANOVA
with 7 levels, representing seven 10-trial blocks. The dependent variable was the
absolute difference between each participant’s response and the correct response
(averaged over blocks of 10 trials). Figure 10 plots mean absolute errors as a
function of training block and shows a steady reduction in errors across blocks. In
contrast to Experiment 1, learning in Experiment 2 appears to be a slower, more

gradual process. There was a significant effect of training block (F(6, 114) = 2.56,

MSE

.026, p =.023). Errors decreased from the first block of trials (M = 0.405,
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SE=0.047) to the last block of trials (M = 0.225, SE= 0.032). The linear trend was
significant (F(1,19) = 8.53, MSE = 0.04, p =.009) but no higher order trends were

significant (all Fs < 1).

Learning Over Trials

1 2 3 1 5 o

Blocks of Trials

Figure 10: Mean absolute errors as a function of training blocks. Error bars show
the standard error of the mean.

2.2.3.1.2 Phase 2
Performance in Phase 2 was analyzed as if it were a FL task by calculating the

mean response for each stimulus magnitude. Figure 11 plots the mean response for
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each item as a function of stimulus magnitude. When the identification task is
plotted as if people were learning a conceptual S-R relationship, participants appear

to be very accurate on average.

The direction and degree of error was analyzed for Phase 2. Each
participant’s mean signed response error for each stimulus was calculated. The
mean signed error was used as the dependent measure in a one-way, within-
subjects ANOVA with 13 levels for the 13 stimuli. Figure 12 shows the mean signed
error plotted as a function of stimulus magnitude, all stimuli, with the exception of

the smallest, tend to be underestimated. The U-Shape of Figure 12 illustrates better

accuracy for the end items compared to the middle items. There was a significant

effect of stimulus magnitude (F(4.69, 89.04) = 3.902, MSE = 0.337, p =.004).

Mean Responses Phase 2

1 2 3 T A T R [ R T B A F
Stimulus Magnitude

Figure 11: Mean responses as a function of stimulus magnitude.



Signed Error Phase 2

Stimulus Magnitude

Figure 12: Mean signed error as a function of stimulus magnitude. Error bars
show the standard error of the mean.

The ability of participants to infer the identity of novel items was explored by

looking at the responses for the first presentation of an item in Phase 2. The
percentage of participants who were correct on an item’s first presentation is

plotted as a function of stimulus magnitude, the number of correct participants

averaged across all stimulus presentations is also plotted (see Figure 13). The main

point of interest is that performance on the first presentation of an item is similar to

mean performance. When presented with new items, there is some indication that

participants are able to correctly infer the correct response for those items,

especially the smallest and the largest items.
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Figure 13: The percentage of participants who were correct the first time an item was

presented in Phase 2. The Mean Over All Presentations is the mean number of participants
who were correct over all stimulus presentations.

2.2.4 Discussion

Experiment 2 demonstrated both a set-size effect and a bow-effect typical of
Al, however, the bow-effect in Phase 2 was not a simple U-shaped function.
Specifically, edge items from Phase 1 maintained an advantage when new items
were added to the ends of the stimulus range. Dodds et al. (2011) also found a
modulated bow-effect using an Al task, and found that items presented more

frequently were responded to more accurately. The results of Experiment 2 cannot
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differentiate between the effect of additional stimulus presentations and the role of

organization on performance. Receiving initial training on the middle items may
allow participants to organize the stimuli into chunks (e.g., small, medium, large)
and therefore facilitate performance (Miller, 1956; Seigal & Seigal, 1972). In
Experiment 1 found there was no advantage for items that had been seen in Phase 1,
perhaps because the structure of the Phase 1 items (every other item) did not allow
efficient organization of the stimulus set.

When performance was examined using FL. measures, several interesting
patterns emerged. Similar to Experiment 1, the mean response to a stimulus
appeared to be very accurate and followed a linear pattern. However, the direction
of errors did not follow what is typical of FL. There was no indication that the
largest or the smallest items were underestimated.

Comparing the learning rate in Experiment 1 and Experiment 2 (although
qualitative) shows an interesting parallel between Al and FL. When the S-R
relationship was linear (Experiment 1), participants quickly reached asymptotic
performance. In contrast, when the $-R relation ship was non-linear (Experiment 2)
performance improved linearly across training blocks. Similarly, within the FL
literature, participants are able to learn linear functions more quickly than non-
linear functions. However, it is not possible to say that the difference in learning
between Experiment 1 and Experiment 2 is due to a different functional relationship
between the stimulus and response items. It is just as likely that the difference is

due to the stimulus spacing alone and not the S-R relationship.



Similar to Experiment 1, the number of participants who were correct when
presented with a novel stimulus was similar to the mean number of participants
who were correct across all stimulus presentations in Phase 2. This result suggests
that participants can infer the identity of novel items, but the ability to infer a novel

item’s identity is most impres

ive for the Phase 2 edge items. The probability of a
participant being correct on the first presentation of items between the Phase 1
edge and the Phase 2 edge is not much different from chance performance if it is
assumed that participants know that the item is smaller (or larger) than the Phase 1
edge items (i.e., probability of guessing correctly is 1 out of 3). Although the results
of Experiment 2 do not speak to what information participants are using when
responding to novel items, the main point is that participants know something that
allows them to be relatively accurate when responding to novel items.

Experiments 1 and 2 explored an Al task from the perspective of a FL task.
The goal of the two experiments was not to provide definitive evidence that Al and
FLL involve similar processes, but rather, the intention was to approach the analysis
of Al data from different perspectives, and determine whether the data matched
classic patterns in the Al and FL paradigms.

Not surprisingly, how performance is measured plays a significant role in
how accurate participants appear to be. The mean response can look very accurate
and follow a linear trend (typical of FL) even when proportion correct displays

relatively poor performance and follows a bow pattern (typical of Al). Therefore,



different accuracy measures in FL and Al probably account for the different levels of
accuracy in the respective tasks.
In FL, responding accurately to novel stimuli is taken as evidence that the

relational concept has been learned. In Experiments 1 and 2, novel stimuli were

responded to relatively accurately indicating that parti

pants can (at least to some
degree) interpolate/extrapolate in an Al task.

FL studies show that non-linear functions are learned more slowly than
linear functions (Busemeyer, et al., 1997). When the relationship between stimulus
magnitude and response magnitude was linear (Experiment 1) accuracy improved
quickly and leveled off. In contrast, when the S-R relationship was nonlinear
(Experiment 2), accuracy improved gradually across training blocks.

2.3 Experiment 3
2.3.1 Purpose

Experiments 1 and 2 followed a general Al procedure. Experiment 3 used a
procedure more similar to FL than Al FL involves participants learning the correct
S-R relationship during a training, during which feedback is given. At test,
participants must respond to novel stimulus values, and are not given feedback. Al
tasks typically provide feedback throughout the experimental session. If feedback is
withheld, an Al task becomes absolute judgment rather than absolute identification
(see Neath et al, 2006). For the sake of consistency, the term Al will be used to

describe tasks that focus on item identity (even though feedback will not be



provided during testing). The term FL will be used to describe tasks that focus on
learning the S-R relationship.

The goal of Experiment 3 was to directly compare Al performance with FL.
performance using a FLL type procedure. The Al/FL comparison was made by
manipulating aspects of the task participants performed. A significant difference
between Al and FL is the strategy used when completing the tasks. Orienting
participants toward either FL or Al strategy was done by providing participants
with instructions highlighting either the S-R relationship (FL instructions) or
highlighting item identity (Al instructions). In order to strengthen the
relational /item processing distinction, FL participants responded by moving a slider
underneath the response value they wanted, whereas Al participants clicked a
response button. The type of instructions and the response method represent the
general variable Task (FL or Al).

Another difference between Al and FL is the continuous response scale used
in FL. compared to the discrete/ordinal response scale of Al. The response scale in
Experiment 3 used either letters or 3-digit numbers as response labels. Letter labels
were meant to represent discrete response categories, whereas, numbers were
intended to make the response scale appear more continuous. Experiment 3
manipulated these two variables in a 2 (Task; FL or Al) x 2 (Response Label;
Letters/Numbers) between-subjects design. Therefore, the FL/Number cell is a
good approximation of a typical FL task, while the Al/Letter cell approximates a

typical Al task. The procedure followed a general FL methodology: participants
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were trained on a subset of items from the middle of the range and given feedback,
then, participants were tested (i.e., no feedback) on the training items, interpolation
items, and upper and lower extrapolation items.

2.3.2 Predictions and Design

The experimental design was a 2(Task; FL/AI) x 2 (Label; Letter/Number)
factorial. As previously noted, the FL/Number cell was the best approximation of a
FL task, whereas, the Al/Letter was the best approximation of an Al task. Therefore,
given the high performance levels found with FL and the poor performance
associated with Al, participants in the FL/Number condition are predicted to be
more accurate than participants in the Al/Letter condition.

If both FL instruction and a continuous response scale improve accuracy and
instruction has a stronger effect, then, the FL./Number group should show the
highest accuracy, followed by FL/Letter, followed by Al/Number, followed by
Al/Letter. On the other hand, if the continuous response scale is a necessary
condition for a FL instruction advantage, then the FL/Number group should show
the highest accuracy and there should be no difference between the other groups.
Predictions regarding accuracy can be examined for both the training phase and the
test phase. If there is an advantage for the FL groups in the training phase (when
feedback is provided) it would provide evidence that Al and FL strategies are
inherently different because feedback should make the responses of FL and Al
groups similar. Alternatively, the advantage of a relational (i.e., FL) strategy may

only improve performance for new items.



One of the questions of interest is the degree to which participants can use
previous experience to respond to new stimuli. The FL instructions should improve
extrapolation performance compared to Al performance. If extrapolation
performance depends on the response scale being perceived of as a continuous scale
then the FL/Number group should extrapolate better than the FL/ Letter group.
However, if extrapolation can occur with a discrete ordinal scale then extrapolation
performance should be similar in the FL/Number and FL/Letter group.

As well as looking at how the Task and Response Label variables affect test
phase accuracy, the data will be analyzed to look for classic Al effects, namely the
bow-effect, the set-size effect, and asymptotic learning. If FL. and Al represent two
completely different kinds of tasks, the Al effects should appear only for the Al
group, and, these effects should be most robust for the Al/Letter group. However,
both Al and FL probably require some of the same processes and therefore an
attenuation of the three Al effects in the FL groups is the most likely scenario.

2.3.3 Method
2.3.3.1 Participants

Fifty-two students (36 female and 15 male) from Memorial University of
Newfoundland participated in the experiment. The mean age was 19 years old (SD=
1.59). Participants were paid $10 for participating, and the experiment took
approximately 45 minutes. Participants were randomly assigned to groups and

informed consent was obtained from all participants before the experiment began.
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23.3.2 Stimuli

Stimuli were 25 vertical, blue lines measuring 9 pixels wide. The shortest
line was 35 pixels long and the longest line was 765 pixels long, increasing by a
constant 30 pixels (approximately 8mm). Lines were presented within a light grey
rectangle (resembling an unmarked scale) 30 pixels wide and 800 pixels high,
centered horizontally and positioned 319 pixels from the bottom of the screen. The
distance between the top of the longest line and the top of the scale was 35 pixels,
equal to the length of the shortest line. This control means the range of possible
(but not presented) stimulus values was equal above and below the presented
stimulus set. All lines were anchored at the bottom of the rectangle and extended
upward.

Seven stimuli from the middle of the stimulus range were used as training
items. The training range was from stimulus 7 (218 pixels long) to stimulus 19 (583
pixels long). Alternating stimuli were used from the training range providing seven
unique training items. The remaining six items from the training range were used
as interpolation test items; the six items below the training range and the six items
above the training range were used as extrapolation items.
2.3.3.3 Response Scales

In order to strengthen the task manipulation, two different response
procedures were used. When the instructions emphasized the S-R relationship (i.e.,

FL instructions), participants used the mouse to move a slider along a horizontal



track (from left to right) until it was positioned under the desired response label.
Responses were registered after the participant released the mouse button.

When instructions emphasized item identity (i.e, Al instructions),
participants made their response by clicking a response button. Response buttons
were contiguous, light grey in colour, and arranged horizontally (in ascending order
from left to right). The length of the response scale was the same for both response
methods (approximately 47.5 cm), and the width of a button was equal to the width
of slider range dedicated to each response label (approximately 19mm). Figure 14
illustrates how the stimuli were presented and the response method.

The labels used on the response scale were either the letters A through Y, or
numbers corresponding to a linear function. Response labels were printed in a
black 15pt. font. The use of letters should induce participants to view the responses
as discrete categories, whereas numbers should make the response scale appear
more continuous.

Because there are no numeric stimulus values, applying numeric response
labels is arbitrary for a linear function. The numeric labels were based on the linear
equation y= 1.7x + 91 with the 30 pixel difference between stimuli representing 10
theoretical units. The lowest response label was 108 and labels increased by 17, to

a maximum of 516.
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n shots for the Al/Letter condition (top) and the FL/Number condition

Figure 14: S
(bottom)

2334 Procedure
An iMac computer was used to present stimuli and collect responses.
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Participants were arbitrarily assigned to one of four experimental cells from the 2
(Task: FL/AI) x 2 ( Label: Letter/Number) design.
2.3.3.4.1 Instructions

d the

Participants in the Al condition received instructions that emph:
memorization of stimulus magnitudes. Al participants were told that the purpose of
the experiment was to determine how well people could remember simple stimuli.
Participants were told that they would see lines of different lengths and their task
was to remember the correct label for each line length.

Participants in the FL condition received instructions that emphasized the
relationship between line length and response magnitude. The cover story for the
FL/Number condition was that a greenhouse owner had determined there was a
relationship between the amount of fertilizer a plant receives and how tall the plant
grows. The amount of fertilizer was represented by the length of the line, and plant
height (in centimeters) was the numeric response label. Participants were told that
their task was to learn the relationship between fertilizer and height.

Because there is not an intuitive relationship between amount of fertilizer
and a letter, participants in the FL/Letter condition received slightly different
instructions. FL/Letter participants were told that the greenhouse owner had
developed a system for categorizing plants based on how much fertilizer they
required and the categories were represented by the letters A through Y.
Participants were told that their task was to learn the relationship between the

amount of fertilizer and the category label.
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All participants were told that there were two phases to the experiment and

they would see a subset of stimuli during Phase 1 and be given feedback. They were
also told that in Phase 2 they would see all of the items and they would not be given
feedback.

The experimenter answered any questions and made sure participants
understood how to make their responses.
2.3.3.4.2 Phase 1/Training

The seven training items were presented 15 times each in random order
(without replacement).

After the participant selected his/her response, feedback was given. If the
participant was correct, the words “Correct! The correct answer is” with the correct
response label appeared, printed in green. If the participant was incorrect, the
words “Incorrect. The correct answer is ...” with the correct response label,
appeared printed in red. The feedback was presented in a grey box that appeared
near the bottom of the screen.

For the conditions that used the slider response method, the slider remained
in the response position the participant had chosen while feedback was presented.
For conditions that used response buttons, the participant’s response remained
highlighted during feedback (a light blue highlight appear around the response
button when that button was chosen). The letters (or numbers) of the correct
response appeared in green on the response scale while feedback was presented.

Participants clicked on the feedback box to proceed to the next trial. When the
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feedback button was clicked, the stimulus line disappeared and a 750 ms delay
preceded the next trial. The slider was reset to the far left, or, the button highlight
was removed before each trial. At the end of training, a screen appeared providing
instructions for the test phase. The instructions indicated that participants would
now see all the stimuli and feedback would not be given.
2.3.3.4.2 Phase 2/ Test

All 25 items were presented 10 times each in random order during the test
phase. When a response was made a grey box appeared at the bottom of the screen
with “ Click to Continue” printed in it. Participants clicked this box to proceed to the
next trial. Upon completion of the test phase, participants were asked about any
strategies they used while completing the task.
2.3.4 Results

Data from twelve participants were excluded from the analysis. One
participant withdrew before completing the experiment. One participant responded
in a highly idiosyncratic manner that appeared almost random. Nine participants
were excluded because they reported explicitly limiting their responses to every
other response option in the test phase. The training phase consisted of every other
item from the middle of the set. It appears as if these nine participants extrapolated
the same pattern throughout the test phase, despite being told that the test phase

ned their

contained all of the items. Of the participants who explicitly const
responses, five were from the Al/Letter group, one was from the Al/Number group,

one was from the FL/Letter group, and two were from the FL/Number group.
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Although this kind of responding may be interesting in itself, [ limited the analysis to
participants who were at least open to using all the response options in the
extrapolation phase. One additional randomly selected participant was removed in
order to equate the number of participants in each condition (10 in each cell). The
final sample was 28 female (Mean age = 18.9, SD = 1.8) and 11 male participants
(Mean age = 19.4, SD = 1.6; one participant’s demographic information was lost).

Responses that were more than six response categories away from the
correct response were removed from the analysis. This criterion was set with the
intention of including the full range of errors, while attempting to minimize noise
from accidental responses. There were 84 responses (out of 15620) removed using
this criterion. The alpha level was set at .05 for all statistical tests and the
Greenhouse-Geisser correction was used when the sphericity assumption was
violate
2.3.4.1 Phase 1/Training

It was expected that the edge items of the training range would be responded
to more accurately than items from the middle of the training range. However, it
was also expected that orienting participants toward a relational strategy would
change the shape of the bow effect, namely, the bow effect was expected to be less
pronounced for participants receiving FL instructions compared to participants
receiving Al instructions, especially for numeric response labels.

Performance on the training phase was first assessed by calculating the mean

absolute deviation (AD) of a response from the correct response for each stimulus
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magnitude. As can be seen in Figure 15, all four groups show a bow-effect, with
participants being more accurate in responding to the edge training items. A7
(Stimulus Magnitude) x 2 (Task) x 2 (Response Label) mixed-model ANOVA was
conducted to determine if either the response labels or how the task was framed
affected accuracy.

There was a significant effect of Stimulus Magnitude on accuracy (F(6, 216) =
8.24, MSE = 0.153, p <.001). Participants were more accurate when responding to
items from the edges of the training range compared to items from the middle, as
evidenced by a significant quadratic trend (F(1, 36) = 21.75, MSE = 0.275, p< .001).
Contrary to what was expected, Stimulus Magnitude did not interact with either
Task or Response Label, nor was the 3-way interaction significant (all Fs< 1).

Neither the type of task (F < 1) nor the type of response labels (F(1,36) =
2.93, MSE = 0.623, p =.096 ) had an effect on accuracy. Additionally, the Task x
Response label interaction was not significant (F(1,36) = 1.05, MSE = 0.623, p =
312).

The results from the training phase indicated that the type of instructions
given to participants did not modulate the bow-effect during training. Therefore,
when feedback is provided, focusing a participant on the relationship between
stimulus magnitude and response magnitude does not affect accuracy.

The other classic finding in Al is the set-size effect; the finding that items are
responded to more accurately in the context of a small set than in the context of a

larger set. In order to determine if a set-size effect occurred in Experiment 3,
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performance on the training items in the training phase was compared to
performance on the same items in the test phase. A set-size effect would appear as a
decrease in accuracy from the training phase to the test phase for the training items.
Figure 16 shows that when the Phase 1 items were seen in Phase 2, accuracy
for the Phase 1 items decreased. However, the drop in accuracy in Phase 2 was not
equal for all stimuli, specifically, the switch to Phase 2 was most detrimental for the
Phase 1 edge items. A 2 (Phase) x 7 (Stimulus Magnitude) x 2 (Task) x 2 (Label)
mixed-model ANOVA was conducted to determine if accuracy decreased from
training to test, and, whether either instructions or responses labels moderated the

drop in accuracy. The dependent variable was the AD scores.
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Figure 15 Mean absolute errors plotted as a function of training stimuli for each of the four
eroups. Error bars show the standard error of the mean.
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There was an overall set-size effect. Errors increased from M = 0.92 (.

0.047) in the training phase to M = 1.207 (SE = 0.083) in the test phase (F(1,36) =
17.29, MSE = 0.665, p <.001). As is typical of the set-size effect, increasing the
number of items did not affect all stimulus magnitudes equally, as evidenced by the
significant Stimulus Magnitude x Phase interaction (F(4.53, 162.94) = 12.25, MSE =
0.271, p <.001). Figure 16 shows that increasing the number of stimuli increased
error for the edge items, leaving the middle items relatively unaffected.

The three-way interaction between Phase, Stimulus Magnitude and Task was
not significant (F(4.53,162.94) = 1.89, MSE = 0.271, p =.106 ), nor was the three-

way interaction between Phase, Response Label and Task ( F(1,36) = 1.5, MSE

0.271, p =.229). Therefore, the overall set-size effect was not affected by how the

participants were told to approach the task, or by the response labels used.

"

Neither the type of response label (F(1,36) = 2.48, MSE = 1.897, p = .124) nor

the type of task (F <1) had an overall effect on accuracy. Also, the main effect of
Stimulus Magnitude was not significant (F (3.82, 137.59) = 1.89, MSE = 0.555, p =
118). No other effects were significant (all other Fs < 1).

Overall, the data show that when the number of items a participant must
respond to was increased accuracy became worse. Finding a set-size effect in
Experiment 3 is important because the procedure of Experiment 3 was more similar
to a FL experiment than an Al experiment, yet, the data revealed a classic Al effect.
Itis worth pointing out that the set-size effect in Experiment 3 confounded set-size

with feedback and therefore should be interpreted with caution. The point of the
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ze analysis

was to provide preliminary evidence that a set-size effect is

plausible with a FL task.

Accuracy for Training Items

9 " 13 15 17 19

Stimulus Mag

igure 16: Mean absolute errors for training items in both the Training and
Test phases averaged across erouns. Error bars show the standard error of

So far, orienting participants toward either relational or item processing
appears to have no effect on performance. Because the current research is
exploratory, it is worthwhile to thoroughly examine the patterns of performance.

The mean absolute error is useful for measuring accuracy in general,
however, absolute deviations may obscure directional trends in the data. In order to
look at the direction of errors in Phase 1, the mean signed error was calculated for
each stimulus. The signed error was used as the dependent measure ina 7

(Stimulus Magnitude) x 2 (Task) x 2 (Label) mixed model ANOVA.
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There was a significant effect of Stimulus Magnitude (F(3.53, 127.23) = 12.83,
MSE =0.433, p <.001). Signed errors were more negative for the larger training
items than for the smaller training items. The linear trend was significant ( F (1,36)
=37.13, MSE = 0.448, p <.001). The quadratic and cubic trends were also significant
(quadratic: F(1,36) = 4.52, MSE = 0.28, p = .04; cubic: F(1,36) = 8.31, MSE = 0.17, p =
.007). Stimulus Magnitude did not interact with Response Label (F(3.53, 127.23) =
1.23, MSE = 0.433, p =.302), Task (F < 1), or the Response Label x Task interaction
(F<1).

There was a main effect for Task ( F(1,36) = 8.96, MSE = 0.877, p = .005).
Signed errors were more negative in the FL condition (M= -0.255, SE= 0.079) than in
the Al condition (M= 0.08, SE= 0.079). The main effect for Response Label was also
significant ( F(1,36) = 4.82, MSE = 0.877, p =.035) with signed errors being more
negative for the Number Label group (M =-.021, SE =.079) compared to the Letter
Label group (M = 0.35, SE =0.079). However both main effects were moderated by a
significant Task x Label interaction (F(1,36) = 5.72, MSE = 0.877, p = .022).

In order to determine the nature of the Task x Label interaction, the
difference between the Letter group and the Number group was examined
separately for both task conditions. If participants performed a FL task with
numeric labels, responses were more negative (M =-0.512, SD = 0.32) than if they
performed a FL. task with letter labels (M = 0.002, SD = 0.439; ¢(18) = 2.99, p = .008).

However, if participants performed an Al task, the response labels did not make a
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difference (Letter: M = 0.069, SD = 0.375; Number M = 0.091, SD = 0.254; ¢ (18) = -

0.154, p =.879; see Figure 17).
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Figure 17: Mean signed errors in the Training Phase. Error bars show the

standard error of the mean.

The third analysis for the training phase examined learning over trials. The
105 training trials were grouped into 7 blocks of 15 trials each. The mean absolute
error was calculated for each block and used as the dependent measure. A 7( Block)
x 2 (Task) x 2 (Response Label) mixed-model ANOVA was used to determine if
either instructions or response label affected the rate of learning.

Figure 18 illustrates learning over blocks of trials. Generally, errors decrease

across training blocks, with the most improvement early in training. The mean
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error for the first block was 1.375 (SE = 0.078) and decreased to 0.737 (SE = 0.057)
in the final block (F(4.36, 156.85) = 19.5, MSE = 0.158, p < .01; Linear Trend: F(1, 36)
=44.05, MSE = 0.248, p <.001). The quadratic and the 5th order trends were also
significant (quadratic (F(1, 36) = 26.4, MSE = 0.077, p <.001; order 5 F(1, 36) = 4.76,

MSE = 0.069, p =.036).

ning Phase

3
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Figure 18: Mean absolute errors as a function of training block (averaged over all groups). Error
bars show the standard error of the mean.

Because feedback was given throughout Phase 1, Phase 1 can be thought of
as an identification experiment with 7 stimuli and 25 possible responses. Because
the number of allowable responses is greater than the number of stimuli, Phase 1
was different from standard Al, yet, typical Al effects occurred.

Participants responded to items from the edges of the Phase 1 set more

accurately than to items from the middle of the set, yielding the bow-shaped pattern
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typical of AL An important point is that, in Experiment 3, the bow-effect occurred
even though participants had access to responses that are beyond the edges of the
stimulus set. Because participants could make errors in both directions for the
smallest and largest Phase 1 stimuli, the bow-effect cannot be due solely to the
limited response options for edge items. However, even though smaller and larger
responses were available, participants may have learned the set of valid responses
and explicitly ignored the other response options. Therefore, although response
options for the edge items were not objectively limited, they may be subjectively
limited.

Participants seemed to know the set of possible responses, and restricted
their responses accordingly. For example, incorrect responses to Stimulus 11 will
usually be Response 9 or 13 (i.e,, valid Phase 1 responses), rather than Response 10
or 12. In order to look at this pattern, I calculated the number of times each
response was used incorrectly as a proportion of the total number of incorrect
responses (calculated for each participant, then averaged). The data showed a saw-
tooth pattern for responses across the training range (see Figure 19). Additionally,
when the proportion of incorrect responses was calculated for only the first 50 trials
avery similar pattern emerged. The similarity between the pattern of errors on the
first 50 trials and pattern of errors on all trials suggests that participants quickly

learned what response options were valid and limited their responses accordingly.
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Figure 19: Proportion of incorrect responses in Phase 1 for each response category.

2.3.4.2 Phase 2/Test

The ability of participants to correctly infer the identity of novel stimuli was
assessed by examining transfer performance. It was expected that if participants
receive instructions that focus on the relationship between stimulus and response

magnitudes, they would be able to use this information to accurately respond to

novel items. On the other hand if the task is framed so that participants focus on the
identity of individual items, transfer performance will be impaired.

The mean response was calculated for each stimulus magnitude. Figure 20
shows the mean response as a function of stimulus magnitude for the four

experimental conditions. For all four conditions, mean responses appear to follow a



linear pattern with slight under-estimation occurring in the upper extrapolation
region and slight over-estimation occurring in the lower extrapolation region.

In order to determine the exact pattern of errors, the mean signed error was
calculated for each stimulus and used as the dependent measure. A 25 (Stimulus
Magnitude) x 2 (Task) x 2 (Response Label) mixed-model ANOVA was conducted to
determine if the pattern of errors differed among groups.

Stimulus magnitude had a significant effect on performance (F(2.74, 98.58) =
50.29, MSE = 6.794, p < .001). Figure 21 illustrates the pattern of errors; smaller
stimuli tend to be overestimated whereas, larger stimuli tend to be underestimated.

Stimulus Magnitude did not interact with Response Label (F < 1) and the

Stimulus Magnitude x Task x Response Label interaction was not significant (F(2.74,

98.58) = 1.28, MSE = 6.794, p = .286). There was no overall effect of Task or
Response Label, and the Task x Label i action was not significant (all
Fs<1).

The Task x Stimulus magnitude interaction was not significant ( F(2.74,
98.58) = 1.71, MSE = 6.794, p = .174), however, visual inspection of Figure 21
suggests that the FL group may be more accurate than the Al group for a subset of

stimuli.
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Signed Errors Phase 2

Stimulus Magnitude

Figure 21: Mean signed error plotted as a function of stimulus magnitude for the FL and Al groups.
Error bars show the standard error of the mean.

Before concluding that the type of task had no effect on participants’
responses, a second analysis is warranted. The stimuli were grouped into the four
important regions; lower extrapolation (stimuli 1-6), training items (stimuli
7,9,11,13,15,17,19), interpolation (stimuli 8,10,12,14,16,18), and upper
extrapolation (stimuli 20-25). A 4 (Region) x 2 (Task) mixed-model ANOVA was
used to determine if the type of task affected performance differently across
stimulus regions. This analysis also allows for an examination of the Stimulus
Magnitude main effect, with Stimulus Magnitude grouped by region. The mean

signed error was the dependent measure.
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There was a significant effect of Region (F(1.47, 55.65) = 84.04, MSE

1.029,
p <.001). Follow up paired t-tests confirmed the pattern implied by Figure 21. The

items from the lower region (M = 0.932, SD = 0.953) were overestimated compared

to the interpolation items (M = -0.392, SD = 0.848, t(39) = -7.317, p <.001) and the
items from the upper region (M = -1.56, SD = 0.883) were underestimated compared
to the interpolation items(t(39) = 8.944, p <.001).

The Region x Task interaction was not significant (F(1.47, 55.65) = 2.06, MSE
=1.029, p=.149, observed power =.348). Therefore, if the marginal Task x
Stimulus Magnitude interaction implied by Figure 21 is a real effect, the effect does
not correspond to the important stimulus regions.

The pattern of signed errors suggests that people tend to underestimate
items from the upper region and overestimate items from the lower region,
regardless of either how the task is framed or the type of response labels. This
pattern is not entirely consistent with previous FL studies that found
underestimation in both the upper and the lower extrapolation regions.

The signed error (derived from the mean response) provides an estimate of
the direction of errors, whereas the absolute error provides a more general estimate
of accuracy. Delosh (1997) used absolute error as a dependent measure and found
that when participants performed a FL task, there was no bow-effect. However,
Delosh (1997) was looking for a serial position curve (accuracy plotted as a function
of when the item was presented) rather than the bow-effect of Al experiments

(accuracy plotted as a function of stimulus magnitude). If the flattening of the bow
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effect is a result of how participants approach the task, the bow effect should only be
present in the Al Instruction group.

A 25(Stimulus i ) x 2(Task) x 2 (. Label) mixed del

ANOVA was conducted with the mean absolute deviation (AD) from the correct
response used as the dependent measure.

The magnitude of the stimulus had a significant effect on accuracy (F(5.64,
202.85) = 6.15, MSE = 1.804, p <.001). The pattern of errors did not constitute a
typical bow-effect (quadratic trend, F<1). Figure 22 shows that accuracy took on a
double-bow shape with accurate performance on the middle items as well as the
typical advantage for the end items (order 4 trend, F(1,36) = 24.59, MSE = 1.321,p <
.001).

Stimulus Magnitude did not interact with Task (F < 1) or Label (F(5.64,
202.85) = 1.02, MSE = 1.804, p = .409). None of the between-subjects effects were
significant (all Fs< 1), nor was the Task x Label x Stimulus Magnitude interaction
(F(5.64,202.85) = 1.61, MSE = 1.804, p = .15).

The stimuli were grouped according to region (Lower, Training,
Interpolation, Upper) and a 4(Region) x 2 (Task) x 2 (Label) mixed-model ANOVA
was conducted. The Region x Task x Label interaction was not significant (F(1.77,
63.59) = 1.56, MSE = 0.379, p =.219) indicating that any potential differences among
groups do not correspond to the important stimulus regions.

The effect of Region was significant (F(1.77, 63.59) = 6.77, MSE = 0.379, p <

.001). One of the benchmark findings of the FL literature is that interpolation is
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more accurate than extrapolation. Two paired t-tests compared accuracy for
interpolation items to accuracy for lower extrapolation and upper extrapolation
items. Interpolation was more accurate than extrapolation in the upper region
(interpolation: M = 1.39, SD = .448; upper: M =1.66,5D =.79,t(39) =-1.964, p=
.029), however, there was no difference between interpolation accuracy and lower
extrapolation accuracy (Interpolation: M = 1.39, SD = .448; lower: M = 1.3, 5D =.603,
t(39) = 0.982, p =.166). Therefore, Experiment 3 only partially supported the
premise that interpolation is more accurate than extrapolation.

A critical factor may be that participants in Experiment 3 had to respond to
both training items and interpolation items at test. Training items were responded
to more accurately than interpolation items (Training: M = 1.21, SD = 0.518;

Interpolation: M = 1.39, SD =448, t(39) = 6.109, p <.001).
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Stinmatis A1

Figure 22: Mean absolute errors (averaged across conditions) plotted as a function of
stimulus magnitude. Error bars show the standard error of the mean.

When accuracy was scored as the mean absolute error, there was no

indication that changing how the task is framed affects the pattern of performance.

This result disconfirms the prediction that participants given the FL task would
show an attenuated bow-effect compared to participants given an Al task. For both

groups, there was an accuracy advantage for middle items, resulting in a “M” shaped

pattern, not the typical bow-shape.

Because feedback was not provided during the test phase, measuring
performance relative to the “correct” response may not provide a complete picture

of performance. In other words, how consistently a participant responds to a
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particular item over multiple presentations provides a measure of performance
relative to a participant’s subjective S-R mapping.

In order to measure response consistency, the mean response for each
stimulus was calculated for each individual participant. The mean absolute
deviation for each stimulus was calculated relative to a participant’s mean response
to that stimulus (MDA) and submitted to a 25(Stimulus Magnitude) x
2(Instructions) x 2 (Response Label) mixed-model ANOVA to determine if either
instructions or response labels affected consistency.

There was a significant effect of stimulus magnitude on consistency (F(10.53,
379.11) = 10.7, MSE = 346, p <.001). Participants were more consistent when
responding to items from the ends of the stimulus range compared to the middle
(quadratic trend; F(1,36)= 86.05, MSE= 0.195, p<.001). Several higher order trends
were also significant, however the overall pattern in Figure 23 shows increased
consistency for the edge items. Stimulus magnitude did not interact with Response

Label (F(10.67, 426.73

=1.11, MSE = 0.346, p = .327) or Task (F<1). The 3-way
interaction was also not significant (F< 1).

There was no main effect of Task (F <1) and no interaction between Task and
Response Label (F < 1). The effect of Response Label approached significance
(F(1,36) = 3.67, MSE = 1.476, p = .063), suggesting that participants were somewhat
more consistent when using letter response labels (M = 0.704, SE = 0.054)

compared to numeric response labels (M = 0.852, SE = 0.054).
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Interestingly, when response consistency was measured the data take on a
qualitatively different pattern compared to when accuracy was measured.
Specifically, response consistency revealed a typical bow-effect, whereas, absolute
deviations from the correct response showed an advantage for the middle items as
well as an advantage for end items.

The results of Experiments 1 and 2 suggested that participants could infer
the identity of novel stimuli within an Al task. Visual inspection of Figure 20 shows
that mean responses to training range items were closer to the correct responses

than items outside the training range. This result is consistent with the benchmark

84



FL result: interpolation is more accurate than extrapolation (Busemeyer et al.,
1997). However, as pointed out previously, accurate interpolation in FL is often
inferred from mean responses. The design of Experiment 3 allows for a stronger
test of how well people are able to interpolate, specifically, whether item specific
interpolation occurs or whether accurate interpolation is due to averaging. To
clarify, if participants were presented with Stimuli 9 and 11 during training and
then receive Stimulus 10 at test, the participant might not be able to differentiate
Stimulus 10 from either 9 or 11 and might use Responses 9 and 11 when presented
with Stimulus 10. Therefore, the mean response will be approximately 10 even
though the participant never actually interpolated a response.

In order to see if item specific interpolation occurred in Experiment 3, the
mean number of times each response was used was calculated. Figure 24 shows
that participants rarely used interpolation responses and instead use the responses
associated with the training items for interpolation items. Therefore, there seems to
be little evidence for item specific interpolation in Experiment 3, rather, participants
overwhelmingly used the Phase 1 responses when responding to interpolation

stimuli.
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Figure 24: The mean number of times participants used each response category,

One possibility for participants’ unwillingness to use interpolation responses

is that the adjacent stimuli were not different enough to be perceptually

discriminated and therefore interpolation could not occur because of a perceptual
limit. In order to test this possibility, | examined trials in which the current stimulus
was preceded by one of its immediate neighbours (e.g. Stimulus 5 followed by
either Stimulus 4 or 6). Responses were then examined to determine if the direction
of responding was the same as the direction of the stimulus change. If adjacent
stimuli cannot be discriminated, the response should be the same on both trials (i.e.,
response repetition) and non-repetitions should be due to random error and
therefore approximately evenly distributed on either side of the previous response.
Ifadjacent stimuli can be discriminated, the response should change in the direction

of the stimulus change.
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Adjacent stimuli were presented on 733 trials. Of these trials, response

repetitions (RR) occurred 346 times and response changes in the correct direction

D) occurred 370 times, leaving 17 responses that changed in the wrong
direction. The CCDs were examined as a function of stimulus magnitude. The CCDs

were calculated as a proportion of the number adjacent trials that occurred for that

stimulus. Figure 25 plots CCD as a function of stimulus magnitude. The general
pattern is that participants were more likely to shift their responses in the correct
direction when the stimuli were from the ends of the stimulus range. Therefore, the
items from the ends of the stimulus set appear to be easier to discriminate than
items from the middle of the stimulus set.

If participants always made CCD responses and never repeated responses, it
would provide strong evidence that the stimuli were different enough to be
discriminated. The data indicate that response repetitions were very common;
therefore, it is possible that neighbouring stimuli were too similar to allow
interpolation to occur. However, participants rarely made responses in the wrong,
direction. If two neighbouring stimuli were perceptually indistinguishable, when a
previous response is not repeated, responses should be equally likely to occur in the
wrong direction as in the right direction. CCDs were much more frequent (n = 370)
than response changes in the wrong direction (n = 17; Sign Test; p <.001). Because
participants rarely made responses in the wrong direction there is some evidence

that the stimuli were pair-wise discriminable. Also, the 30 pixel difference (equal to
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approximately 8mm) between stimuli was similar to the stimulus differences used

studies (e.g,, Brehmer, 1979; Kalish et al., 2004).
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Figure 25: Plots the proportion of times responses to adjacent stimulus presentations were
vepeated, changed in the correct direction, or, changed in the wrong direction.

2.3.5 Discussion
The goal of Experiment 3 was to compare FL and Al by manipulating how the

ale used. It was expected that drawing

task was framed, and the kind of respon:
attention to the S-R relationship would result in a different pattern of performance
than if attention was drawn to item identity. Specifically, transfer performance

should be better if participants are given FL instructions than if they are given Al
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instructions. The results of Experiment 3 did not support the conclusion that
focusing on the functional relationship improves transfer performance.
When the results of Experiment 3 are considered overall, the data seem to

s in both Al and F

support the conclusion that participants use similar proce:

However, one result points to a difference between Al and FL tasks: the interaction
between Task and Label in the training.

The best evidence for differences between Al and FL comes from the Task x
Label interaction during the training phase, when feedback should have made
responses more similar among groups. The FL/Number group underestimated
responses more than the FL/Letter group or the Al groups. This difference did not
translate into a difference in accuracy, but rather, reflected a tendency for the
FL/Number group to use lower response magnitudes. Research on numeric
estimation suggests that people can have different representations of numeric
magnitude (Seigler & Opfer, 2003); therefore, one possible explanation is that the
numeric label determined the subjective response magnitude for the FL/Number
group, while the ordinal response value determined the subjective response
magnitudes for the FL/Letter and Al groups. In other words, the response label 210

may be subjectively larger when interpreted as a magnitude (i.e,, FL instructions)

compared to when it is interpreted as a label (i.e., Al instructions). Differences in

the representation of the response magnitudes may account for the lower responses

given by the FL/Number group.
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Previous research in Al and related tasks, such as magnitude estimation, has
shown that participants’ responses can be shifted by giving them prior experience
with a particular S-R mapping (Ward & Lockhead, 1970; West, Ward & Khosla,
2000). The current research provides some preliminary evidence that it is possible
to shift the pattern of responding simply by changing how participants interpret the
task. Because FL instructions with letter labels did not affect responses, the source
of the effect may be due to the interpretation/mental representation of the response
scale, not a distinction between relational and item-based strategies.

The results of Experiment 3 provides three strong lines of evidence that
support the premise that Al and FL involve overlapping processes; the lack of
significant differences between groups, the presence of classic Al patterns in the FL
group, and the presence of FL patterns in the Al group.

Over multiple comparisons the Al and the FL groups were not significantly
different from each other (with the exception of the Task x Label interaction during
training). However, it is difficult to use null results to conclude that there is no
difference between Al and FL tasks. Experiment 3 may not have had enough
statistical power to detect differences between Al and FL. The lack of statistical
power means a claim that Al and FL are essentially the same task is weakened. In
future studies, the statistical power problem could be addressed by increasing the
number of participants. Also, the prolonged testing period may have increased the
amount of statistical noise because of participant fatigue, thus making the encoding

strategy manipulation less influential as testing progressed.
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An alternative to relying on null results is to determine how well
performance on one task predicts performance on the other. For example, overall
performance on a FL task can be viewed as output from an undefined cognitive
model. If mean FL performance (the model’s output) can accurately predict Al
performance, it provides evidence that the same processes are involved in both
tasks. In the case of Experiment 3, the mean responses of the FL/Number group
almost perfectly predict the mean responses of the Al/Letter group (i.e., the two
groups that should have been the most different; R? =.997, F(1,24) = 8394.61, p <
.001; Al'=0.909 +0.938(FL) ) . This suggests that both tasks involve similar
processes, and could potentially be explained using a common theory.

The pattern of responses also provides evidence that Al and FL involve
similar processes. Participants were provided with feedback during Phase 1 of
Experiment 3; therefore, the training phase was equivalent to an identification task
with 7 stimuli and 25 allowable responses. The training phase of Experiment 3
showed that when performance was examined as a function of stimulus magnitude,
participants responded more accurately to edge items than to middle items (i.e.,

bow-effect). In addition, when accuracy was measured across blocks of trials,

accuracy did not continue to improve with more practice (i.e,, asymptotic learning).
Although the bow-effect and asymptotic learning are usually associated with Al,
framing the task as FL did not change the pattern of performance.

When the training items were presented in the context of a larger set of

stimuli (i.e,, the test phase), accuracy for the training items decreased. This is

91



typical of the set-size effect found in Al, and, like the bow-effect, was not affected by
the task. However, not all training items were affected to the same degree;
specifically, most of the reduction in accuracy occurred for the edge training items.
This pattern is the same as observed in Experiment 2 despite very different
methods. Most notably, participants were provided with feedback throughout
Experiment 2 but not during the test phase of Experiment 3.

Previous FL studies have shown that increasing the number of training items
does not reduce accuracy during training (Delosh, 1997; Delosh et al,, 1997). This
lack a set-size effect is interesting because it stands in stark contrast to what would
be expected given typical Al results. One possible explanation is that the lack of a
set-size effect in previous FL experiments involves an interaction between three

factors: the dis;

riminability of the stimuli, the response spacing, and the measure of
accuracy (i.e, absolute deviations). Ifa small training set and a large training set are
taken from the same training range, the small set stimuli will be more widely spaced
than the large set stimuli, making the small-set stimuli easier to discriminate.
However, the small set also has a disadvantage because the valid responses are also
widely spaced. The type of errors participants made in Experiment 3 suggested that
participants quickly learned the valid responses and limited their responses
accordingly. If participants only use the learned valid responses, absolute errors in
the small set would be larger than absolute errors in the large set. For example, if
the small set contains Stimuli 3, 5, and 7, an error on Stimulus 5 would probably be

either Response 3 or 7 (i.e., absolute error of 2), even though participants have
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access to Responses 4 and 6. However, if the large set contains stimuli 3, 4, 5, 6, and
7,an error on Stimulus 5 will probably be either Response 4 or 6 (i.e., absolute error
of 1). Therefore, it may be easier to be exactly correct with a small stimulus set
because of stimulus discriminability, but, when errors do occur, the errors will be
relatively large. In contrast, it may be difficult to be exactly correct with a large
number of stimuli (because the stimuli are more similar/confusable), but the
magnitude of errors will be relatively small. These two effects may cancel each
other out resulting in a null effect of set-size. If this explanation is correct, it implies

that in tasks such as FL, participants may not treat continuous response scales

continuous, but rather constrain their responses to the set of learned valid response
values.

In order to look for the bow-effect in the test phase of Experiment 3, the
mean absolute deviations (AD) were used as the measure of accuracy. ADs followed
a double-bow pattern in the test phase, not the typical single bow found in Al. When
a measure of response consistency was used (the mean deviation from a
participant’s mean response; MDA scores), the data resembled a single bow pattern
typical of AL

Both AD and the MDA are measures of variability. The main difference
between these measures is the reference point from which the variability is
calculated. Because AD uses the correct response as its reference point, it can be
considered a measure of how well participants have learned the correct S-R

mapping. MDA, on the other hand, is a measure of performance that is independent

93



of the correct S-R mapping, beca

error is calculated relative to a participant’s
mean response to each stimulus.

Interestingly, these two measures show very different patterns. When the
correct mapping is considered (ADs), participants are more accurate for the items in
the middle of the stimulus set, as well as items at the ends of the stimulus set. This
pattern is consistent with previous FL studies showing higher accuracy for training
range items than for extrapolation items. In contrast, the MDA scores do not show
the advantage for items from the middle of the set and are consistent with the single
bow pattern typical of Al. In addition, MDA scores appear to be more accurate
overall than AD scores. MDA scores may be more accurate because, essentially, any
error that is due to incorrect S-R mapping is being ignored in the performance
measure.

One way to interpret the pattern of MDA scores is to attribute them to the
psychological discriminability of the stimuli. Items from the ends of the stimulus set
may be easier to discriminate from their neighbours and therefore it is easier for
participants to respond consistently to those items. If MDA scores represent effects
attributable to stimulus characteristics and AD scores represent effects attributable
to S-R mapping errors, the different pattern of results for the two measures suggests

that these effects may be due to distinct processes. Theories of Al often distinguish

between stimulus and response effects (see, Nosofsky, 1983), as well as effects due
to S-R mapping (Lacouture & Marley, 1995). The AD and MDA scores may provide a

intuitive method for measuring different components of Al and FL performance;
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however, more research is needed to determine the validity of the measures and
specify their underlying assumptions.

All groups in Experiment 3 demonstrated effects typically associated with Al
(bow-effect, a set-size effect and asymptotic learning). If the bow-effect, the set-size
effect and asymptotic learning are important phenomena in the Al paradigm, and
these effects are found in a FL tasks it suggests that whatever processes cause these
effects in Al are also affecting FL performance.

The Al/Letter group was the best approximation of an Al task because the
instructions focused on item identity, and the response labels were discrete
categories. Even though the experimental conditions for the Al/Letter group did
not emphasize learning a functional S-R relationship, the Al/ Letter group’s mean
responses to novel items were still quite accurate. The mean responses followed the
general pattern typical of FL experiments, with accurate performance on items from
the training range, and worse performance on extrapolation items. The accurate
transfer performance of the Al/Letter group suggests that even in a simple
perceptual identification task, people are able to respond accurately to novel items.

One of the benchmark findings in the FL literature is that interpolation
performance is more accurate than extrapolation performance (Busemeyer et al.,
1997; Delosh et al,, 1997). The results of Experiment 3 showed that mean
responses in the training region were more accurate than responses outside the
training region, hence replicating the advantage for interpolation over extrapolation

found by Delosh et al. (1997) and Kwantes and Neal (2006). However, closer



examination of the data suggests some potential limitations. First, when the mean
absolute deviations are measured, interpolation performance only holds an
advantage over the upper extrapolation items, not the lower extrapolation items.
The mean absolute deviation score may not have revealed an interpolation
advantage because the AD scores are a stricter measure of accuracy compared to
mean responses. That is, overestimation and underestimation will cancel each other
out when the mean response is calculated, but not when the mean absolute
deviation scores are calculated. Participants rarely used interpolation responses;
therefore, accurate interpolation appears in Experiment 3 mainly because of
averaging responses over stimulus presentations.

Experiment 3 revealed little evidence for item-specific interpolation;
however, the FL,/Number group may have perceived the response magnitudes as
discrete categories rather than a continuous scale, and this may have hindered

interpolation by facilitating bias toward specific training responses. If the response

scale had been continuous (with no scale markings), it would be more difficult to
remember the exact location of previous responses, and, therefore, participants
would be less likely to be biased toward any specific response value. However, even
if a continuous response scale is used, interpolation responses may come from two
distinct response distributions associated with the nearest training items. In order
to determine whether item-specific interpolation occurs in FL, future studies could
use a continuous response scale without intermediate labels and examine the

distribution of responses to interpolation items. Item-specific interpolation would
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reveal itself as a uni-modal distribution centered on the correct response value,
whereas, a bi-modal distribution with the peaks centered over the nearest training
responses would be evidence against item-specific interpolation and would be more
indicative of stimulus generalization.

Previous research has shown that people can interpolate even when the

response categories are discrete (Levine, 1960). In addition, people are able to

tion of

perform a wide variety of inference tasks (e.g., transitive inference, categor
novel exemplars, etc.), therefore, it is likely that item-specific interpolation could
occur in FL if the experimental procedure better supported interpolation. It could

be argued that the stimuli in Experiment 3 were too similar to each other to allow

participants to discriminate interpolation items from training items, and this is why

people did not interpolate. However, when neighbouring stimuli were presented on

consecutive trials, participants’ resps rarely broke icity. This suggests
that the lack of interpolation was not due to a perceptual limit. Determining the
factors that allow for item-specific interpolation with a continuous response scale
would have both theoretical and practical implications. Practical application of this
knowledge may include determining the best kind of scales or dials to use on
equipment, as well as determining the most efficient training methods.

Intuitively, the distribution of interpolation responses in Experiment 3 is

more consistent with exemplar-based theories than rule-based theories. An

exemplar approach would predict that when presented with a novel stimulus, the

responses associated similar training stimuli would be recalled. A rule-based
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approach would probably predict a more continuous distribution of responses;
however, both of these predictions are speculative, and a more formal test is
necessary in order to differentiate the two theories. Also, although responses in the
training range are more consistent with exemplar theories, a strict exemplar theory
would have trouble accounting for the relatively accurate extrapolation
performance.

Strong evidence that participants in the FL task learned a relational concept
and participants in the Al group learned the identity of specific items would involve
accurate extrapolation for the FL group and poor extrapolation for the Al group; this
pattern was not found in Experiment 3. However, it is important to recognize that
the task manipulation involved only changing how the task was framed (i.e.,
instructions) and the response method, and was therefore a relatively weak
manipulation. Additionally, both groups were informed of the test phase at the
beginning of the experiment. Informing the Al group of a test phase may have
caused them to pay more attention to the S-R relationship during training in order
to respond accurately during test. Therefore, both the Al and FL groups may have
approached the task in similar ways, reducing the strength of the Task
manipulation.

The effect of instructions on performance has sometimes been found to
influence participants’ responses in tasks such as probability learning; a task similar
to FL (Brehmer & Kuylenstierna, 1980). One possibility is that FL instructions give

meaning to the stimuli and responses, causing participants become more engaged in

98



the task. This engagement may result in better performance compared to when
abstract stimuli and responses are used (as the case with Al). The results of
Experiment 3 did not find improved accuracy for the more engaging FL instructions,
therefore there seems to be no differences in participant motivation between the FL

and Al groups. The possibility of different levels of engagement/motivation may be

an important factor to consider in future research. For example, it may be necessary
to provide a cover story for the identification group as well as the FL group in order
to equate how interested participants are in the task.

Delosh et al. (1997) found that specifically telling participants to learn the
functional S-R relationship did not change the pattern of responses compared to
when the S-R relationship was not emphasized. However, even when the functional
relationship was not emphasized, participants were still told that the stimulus and
response magnitudes represented the values of variables (amount of growth
hormone and plant height). The use of these labels may have induced participants
to focus on a predictive relationship despite not being instructed to do so. The
results of Delosh et al. in combination with the results of Experiment 3 suggest that
specifically looking for a functional relationship is not necessary for accurate
transfer.

Although there seems to be little evidence to suggest that participants used
different strategies or processes for Al and FL in Experiment 3, a stronger
manipulation may show different results. For example, not informing participants

of the test phase may accentuate differences in encoding strategy. Also, positive
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linear functions are known to be the easiest to learn and the most intuitive,
therefore, using a less intuitive function (e.g, exponential, quadratic etc.) might yet
highlight differences between FL and Al processes.

Overall, the results of Experiment 3 suggest a significant amount of overlap
between Al and FL tasks. Three general findings support the idea that the same
processes are involved in Al and FL. First, classic Al effects appeared for all groups.
Second, the type of task did not change transfer performance. Finally, the strong
correlation between the Al/Letter group’s mean responses and the FL/Number
group’s mean responses suggests that both tasks could be explained with a common
theory or model.

The best evidence for differences between Al and FL comes from the pattern
of responses in the training phase. During training, the FL/Number group tended to
use lower responses than the FL/Letter or the Al groups. Tentatively, this pattern
may be better explained by differences in the mental representation of the response

scale, not a distinction between relational and item-based strategies.
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Chapter 3 General Discussion

There are several reasons why Al and FL. may be similar tasks. First, both Al
and FL can be viewed as conceptual tasks. Second, the stimuli in some FL
experiments can be quite similar to the kind of stimuli used in Al experiments (e.g.,
line length). Third, and most importantly, the congruent S-R mapping used in Al
means there is a continuous relationship between the stimulus and response values.
This continuous mapping means that an Al task can be solved by learning the
correct label for each stimulus, and/or, by learning the functional relationship
between the stimulus and response scales.

The experiments presented in this paper demonstrate several interesting
similarities and differences between Al and FL and the methods used in the
respective paradigms. Although, a claim that Al and FL are essentially the same task
is weakened by a lack of statistical power in Experiment 3, the overall pattern of
results suggest a significant amount of overlap between the tasks
3.1 Performance Measures

Previous FL and Al research would suggest that FL performance is more
accurate than Al performance. The results of Experiments 1 and 2 indicate that
people may appear to be more accurate in FL tasks because of how accuracy is
measured in the respective tasks. If the participants’ mean response is used as the
measure of accuracy in an Al task, participants appear to be very accurate, however,

when the proportion correct is used as the dependent measure, accuracy appears
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much worse. This

not surprising because proportion correct is a stricter measure
of accuracy than mean response.

Experiment 1 als

showed that the pattern of performance can be changed
depending on how accuracy is assessed. For example, Experiment 1 showed a bow-
effect when the proportion correct was used (typical of Al experiments), but when
the mean response was used, participants tended to underestimate the larger
stimuli, which is arguably similar to the underestimation that occurs in the upper
extrapolation region of FL experiments. A bow-effect for mean responses would be

demonstrated if the mean response to the larger items trended back toward the S-R

function line (this pattern was seen in Experiment 2).

Delosh et al. (1997) found that people underestimated a positive linear
function in the upper and lower extrapolation regions. Kwantes and Neal (2006)
found that underestimation was more reliable in the lower extrapolation region

than in the upper extrapolation region. Experiment 1 revealed that, when the

stimulus magnitudes increased by a constant, underestimation occurred for the

larger items, even though feedback was given on all trials. Experiment 2 used
stimuli that were geometrically spaced and larger on average than Experiment 1
stimuli. Experiment 2 found that, with the exception of edge items, there was a
general tendency to underestimate. Speculatively, underestimation of the upper

extrapolation region, found in FL studies, may be (at least partially) a perceptual

phenomenon rather than a conceptual one. In other words, underestimation may
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not be due to extrapolation processes, but larger stimuli may be generally
underestimated.

Although larger stimuli seem to be underestimated in general, the pattern of
under /overestimation may be due to how people use the response continuum and
not how they perceive the stimuli. Musielak, Chasseigne and Mullet (2006)
compared FL with positive linear, negative linear, U-shaped, and inverted U-shaped
functions. The patterns of responses found by Musielak et al. suggest that the
response magnitude, not the stimulus magnitude, controls the pattern of
over/underestimation. For example, when the function was positive linear, larger
stimuli were underestimated and smaller stimuli were overestimated; in contrast,
when the function was negative linear, the larger stimuli were overestimated and
the smaller stimuli were underestimated. This pattern of results is consistent with
results from magnitude estimation studies showing that people have a bias toward
using responses from the middle of the response range (i.e., contraction bias;
Poulton, 1979). It is possible that the pattern of extrapolation found in FL is due to
both the psychological representation of the functional concept and a general
response bias. Future studies may try to separate these two effects by manipulating
training region and stimulus magnitude independently.

3.2 The Bow-Effect

All three experiments presented in this thesis revealed that the edge items of

the stimulus set have an advantage over items from the middle of the set. However,

some important qualifications need to be considered. When the number of items
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was increased by adding new items to the ends of the initial training range
(Experiment 2), items that were previously edge items held an advantage over the
intermediate items. Speculatively, adding items to the ends of the stimulus set may
have provided a way for participants to break the stimulus set down into distinct
sections (small, middle, large) and this organization may have aided performance.

For example, the old edge items may have been used as anchors or subjective

standards from which intermediate items were judged (Eriksen & Hake, 1957;

Petrov & Anderson, 2005). Other Al studies have been able to modify the bow-effect
through different means, such as stimulus spacing (Lacouture, 1997; Neath et al.,
2006) or by presenting some items more often (Dodds, Donkin, Brown, Heathcote &
Marley, 2011). The present research provides an additional demonstration that
changing the experimental procedure can modify the bow-effect in an Al task.
Experiment 3 also showed a bow-effect during training, and this effect was
not modulated by how the task is framed. If FL. and Al are fundamentally different
tasks, a stronger bow-effect was expected for the Al group than for the FL group.
Kwantes and Neal (2006) found that FL accuracy was relatively constant across all
training stimuli (i.e, no bow-effect). However, there are some important differences
between the methods used by Kwantes and Neal and the methods used in
Experiment 3. For example, Kwantes and Neal presented stimulus and response
values numerically as well as graphically, thus providing participants with more

information about stimulus and response identity. Under the conditions of the
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training phase used in Experiment 3, both FL and Al strategies resulted in a bow-
shaped pattern of accuracy.

Experiment 3 showed modulation of the bow-effect in the test phase, with
participants being more accurate on the middle items as well as edge items.
However, this modulation of the bow-effect was only evident when participants’
responses were scored in relation to the correct response. When response
consistency was the dependent measure, the middle items no longer had an
advantage, and a more typical bow-effect emerged. A plausible explanation is that
edge stimuli are perceptually more discriminable from their neighbours than items
from the middle of the stimulus set, and this allows participants to respond more
consistently to edge items.

3.3 Accuracy and Response Patterns

In Experiment 3, despite participants being no more accurate in the FL
condition than in the Al condition during training, how the task was framed did
affect the direction of responses. During training, participants in the FL/Number
group had lower mean responses than the FL/Letter group or the Al groups. The
interaction suggests that the different response pattern is not solely due to the
response method/instructions, or the numeric labels, but rather it is the
combination of both factors that affects mean responses. Speculatively, FL.

instructions may have affected how participants

presented the numeric response
values. For example, Response 210 may have been interpreted as a magnitude in

the context of FL instructions, but interpreted as a label in the context of Al
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instructions. The lower response magnitudes given by the FL/Number group may
have been the result of a bias against large response magnitudes, or, perhaps a non-
linear representation of the response scale. Although the exact reason for the lower
FL/Number responses is unclear, the result demonstrates the importance of context
on performance.

3.4  Learning

Previous FL studies have plotted learning over trials; these graphs usually
show that, when the function is linear, most of the learning occurs early in training
and performance does not continue to improve over all training blocks. This
learning pattern found in FL studies parallels the pattern of asymptotic learning that
occurs in AL. When there was equal stimulus spacing (Experiments 1 and 3)
performance improved quickly then leveled off, replicating previous FL and Al
findings. Interestingly, when the stimulus spacing increased geometrically
(Experiment 2), performance gradually improved over all training blocks.

If the magnitude of the stimuli increases by a constant, it could be argued that
this represents a positive linear function between the stimulus and response scales.
If, on the other hand, the same response scale is used but the stimuli increase
geometrically, there is a non-linear function between stimulus magnitude and
response scales. The gradual improvement across training blocks when the
stimulus spacing was geometric, and the quick, asymptotic learning when the
stimulus spacing was constant is similar to FL studies that show that linear

functions are learned more quickly than non-linear functions. However, a
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comparison of learning rates between Experiments 1 and 2 is qualitative and
therefore future research could examine the effect of stimulus spacing on learning
rates under more controlled conditions.

Slower learning of geometrically spaced stimuli in an Al task raises some
interesting questions about the difference between learning linear and non-linear
functions. When linear and non-linear functions are compared in FL (e.g, Delosh et
al, 1997), the same stimulus values are used for both linear and non-linear groups;
this means that the difference between the functions is in the spacing of the
responses, not the spacing of the stimuli. If the S-R function is what determines task
difficulty, then adjusting the spacing of the stimuli and responses independently of
the function could help clarify the issue. For example, if exponentially-increasing
stimuli were mapped on to exponentially-increasing response values, the S-R
relationship would be linear and should be easy to learn. If the response spacing
increased exponentially while the stimulus spacing increased by a constant (or vice
versa), the S-R relationship would be non-linear and should be more difficult to
learn. By manipulating the stimulus and response spacing independently of the
mathematical function, it may be possible to determine whether the formal function
is the important variable in FL.

Different effects of stimulus spacing and response spacing have been
explored in Al tasks. For example, Bahrick and Nobel (1961) found that when
responses were widely spaced, accuracy was better when the stimuli were also

widely spaced, compared to when the stimuli were narrowly spaced. However,
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when the response spacing was narrow, the stimulus spacing did not make a
difference. Exploring the effects of stimulus and response spacing may be a
productive avenue within the FL paradigm in order to determine if the functional S-
R relationship is the factor that influences different performance levels and learning
rates.
3.5 Interpolation

Experiments 1and 2 provided some evidence that participants could infer
the correct responses for specific items; however, the response distributions in
Experiment 3 provided evidence against item-specific interpolation. Itis likely that
item-specific interpolation can occur under appropriate circumstances. However,
two questions need to be addressed in future research. The first question is
whether item-specific interpolation occurs with the kind of stimuli and response
methods used in FL experiments. Ferrando (2003) explored the difference between
continuous and discrete response scales when participants respond to
questionnaire items (e.g., a personality instrument). When continuous response
scales were used, people tended to limit their responses to a few points on the
continuous scale. In the case of a FL experiment, participants may learn a set of
discrete response values during training and continue to use these responses for
interpolation items, resulting in accurate mean performance but no item-specific
interpolation.

A second question regarding interpolation is: What information does the

participant use? A rule-based FL approach may assume that participants are
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learning the formal function and are able to use this abstract information to respond
to new items. However, item-specific interpolation could also occur by a deductive

process based on exemplar knowledge. For example, when presented with a new

intermediate stimulus (e.g., Stimulus 5), the participant might be able to respond
correctly by recognizing that the new stimulus is too large to be 4 and too small to
be 6. Assessing the merits of rule-based and exemplar-based theories is one of the
main theoretical issues within the FL literature (Kalish et al., 2004; Koh & Meyer,
1991; McDaniel & Busemeyer, 2005). The apparent lack of interpolation in
Experiment 3 suggests that examining the response distributions may provide a way
of determining which theories are more correct.

3.6 Summary

The goal of the present thesis was to compare Al performance to FL
performance. The congruent S-R mapping that is usually present in Al means that
the Al task is solvable by either remembering item-specific information, learning the
functional relationship between the stimulus and response scales, or, a combination
of both processes.

Three main findings speak to the similarities between FL and Al. Comparing
previous FL and Al studies leaves the impression that FL performance is much more
accurate than Al performance. Experiments 1 and 2 demonstrated that the
appearance of highly accurate FL performance is probably due the measures of
accuracy used in the respective tasks. Second, classic Al effects occurred ina FL,

task. Finally, participants were equally adept at extrapolation/interpolation,
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regardless of whether they were instructed to learn the functional relationship or
were told to memorize the identity of stimuli. These three general findings suggest
a significant amount of overlap between Al and FL processes.

A fourth finding is perhaps the most interesting, as it speaks to a potential
difference between FL and AL Manipulating how participants interpret the task can
affect the responses they make. Specifically, if participants were given FL
instructions with numeric labels they tended to use lower response magnitudes
than if they were given FL instructions with letter labels, or, if they are given Al

instructions. Although interesting, more research is needed to determine the exact

nature of the effect. Tentatively, the effect may be due to differences in how the
response values are psychologically represented, not a difference between relational

and item based strategies.
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