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Ahslr:lct 

Absolute identitication (AI) experimcnts arc interested in how people remember the 

identity of simple perceptual stimuli. Function Icarning (FL) explores how people ledrtl 

cOr11inllOus relationships between stimulus (S) and response (R) dimensions. Allhough AI 

and FL arc used to explore different cognitive proccsses. there arc several important 

similarities bclween the two tasks. most import:mtly. the congrue11l S· R mapping uSlxl in 

AI creates a positive linear tUIl(;tion. lhree experiments begin 10 explore the 

commonalities betwo:en AI and FL. E.~periments 1 and 2 usc an AI methodology with 2 

phases and increased the number of stimuli in phase 2 by adding eitho:r interpulation or 

extrapolation items. Classic A I and FL data pattcrr;s were both found tkpending on how 

the data wcre analyzed. Also. there was some evidence that people eould rcspond 

aceuratdy to novel stimulus values. Experiment 3 manipulated the instmctions given to 

the p~1I1ieipant (either AI or FL instructions) and the type ofrcsponse labels (lettcrs or 

numhers). Classic AI effects were obscrved li)T al l groups: also, there was no di lference 

in cxtmpolationl intcrpolation pertormanee. Ovcrall. Experiment 3 revei! lcd lill ie 

evidence lor dilferences between AI and FL. suggesting that both AI and FL involve the 

samccogmtlve processes. 
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Chapter 1 Introduction 

1.1 Purpose of Rcsean:h 

In order to su rvive, an organism must not only identify individual objects. but 

must understand how individual objects relate to each other. Understanding tha t 

two unique objects are similar provides a method for grouping these objects within 

<l single category. these categories can then provide a way to predict the hehaviour 

of novel objects. For example. when we see an unfami liar animal we can predict 

something about its behaviour hy determining it is of the cMegory dOl}, and objects 

belonging to the dog category are associated with barking and tail -wagging. 

Psychologists are often interested in exploring how people identify/categorize 

stimuli and how they use conceptual information to make pred ictions. Two 

methods for exploring these questions are absohlfe identification <lnd {ul/ction 

learning 

I\bsolute identification (A I) involves the mapping of unidimensional stimulus 

magnitudes onto discrete responses. For example. a participant might need to 

remember tha t the 600 Hz tone is response I the 800 Hz tone is response 2, the 

1000 liz tone is respunse 3, and so Oil . . Stimuli arc presented one ata time <lnd the 

participant tries to select the correct response. Feedhack is provided after each tria l 

so the participan t can learn the correct response to each stimulus. Where AI uses 

discrete cJtegories as response options, function learning (FL). on the other hJl1d. 

involves the mapping of a continuous set of stimulus magnitudes onto a continllolls 



response scale. For example, a participant might need to learn how much fuel is 

required to drive a certJin distance. Participants try to learn the functional 

rel<ltionsh ip between the predictor (e.g., distJnce) and the cri terion (e.g., amount of 

fuel needed). PJrticipJnts leJl"l1 the function relationship by estimating criterion 

values for a series of predictor values and receive accu racy feedback. At test, 

pal"ticipants must respond to new predictor values and the JccurJcy of these 

pred ictions reflects how well the function concept WJS learned. Both AI and FL ca n 

be interpreted JS conceptuJI tasks: categorizatio n in the case of AI, and predictioll in 

the CJse of FL. Research on AI a nd Fl. differ in their fOCllS, but there are overlapping 

features between the two tasks. llec<luse AI and FL try to Jnswer different 

questions, some of the methodological details differ between the two parJdigms. 

For example, AI and Fl. often use different dependent measures and different types 

of stimuli. In the research presented here, similar stimuli and dependent meJsures 

wil l be used in onler to directly compa re AI and FL. The goal of the research 

presen ted here is to examine the amount and type of overlap between AI Jnd FL 

tasks. 

The next sections will first describe the AI <lnd FL tasks and compare the 

classic effects found in hoth paradigms. Next, an overview of AI and FL theories will 

be provided. FinJlly, the major methodological differences between FL and AI will 

be described and how these diffcrenccs could affect perfOrmJllCe will be add ressed . 



1.2 Ahsol ute Id e ntifica tion 

In a typical AI task a single unidimensional stimulus is presented and the 

participant responds by choosing a discrete response label. Feedback about the 

correct label for the presented stimu lus is then provided. Severa l key phenomena 

are associated with the Al paradigm including: a performance limit that is I"esistant 

to practice, set-size effects, edge/how effects, and sequential effects (for recent 

reviews see Petrov & Anderson, 2005; Stewart,Brown & Chater, 2005) 

AI performance is notoriously resistant to improvement despi te extensive 

practice (Miller, 1956; Shiffrin & Nosofsky, 1984). People a re not able to perfectly 

identify more than the equivalent of about seven unidimensional stimuli; a 

surprisingly sma ll limit when compared to the ncar infinite number of multi ­

dimensiona l stimuli that can be id entified (Miller, 1956; Shiffrin & Nosofsky, 1984; 

Siegel & Siegel, 1972). Although the AI performance limit is one of the classic 

psychological effects, some recent research has ca ll ed this limit into q uestion. For 

example, Rouder, MOI'ey, Cowan and Phaltz (2004) found that AI performance did 

impruve with practice, with participants able to identify the equivalent of bet we ell 

12 and 20 unique items (also sec, Dodds, Donkin, Brown & Heathcote, 2011) 

The size of the stimulus set affects how accurately people can discriminate 

between individua l items; for example, two lines that are easi ly discriminated in the 

context of a two-item set become much more difficu lt to discrim inate in the context 

of a ten -item set. Lacouture, Li and Marley (1991:1) provide da ta that dearly 

illustrate buth the set-size effect and the bow-effect The bow-effect (or edge-effect) 



refers to the finding that responses to items from the ends of the stimulus range arc 

morc accurate than I'csponscs to middlc items. Lacouture et al. (1998) found that as 

the number of items increased, performance became worse and the bow-effect 

became more pronounced. However, Lacouture et al. (1998) attributed the drop in 

perforrnance to the number of response categories, not the number of stimuli. 

Sequential effects in AI refer to how the immediate context (i.e., previous 

stimuli , responses, and feedback) affects responses to the current item (Lockhead, 

1984), For example, responses to a current item are often pulled toward the 

immediately preceding item (i.e., assimi lation) and pushed away from items further 

back in the series (i.e"contrast). 

The identification of one-dimensional stimuli is superfiCially a simple task, 

however it can be approached from several inter-related perspcctives; as a 

psychophysical task, as a memory task, or, as a categorizatio n task. The 

psychophysical approach focuses on perception and attempts to describe how 

stimu lus magnitudes are psychologically represented. As the goal of such research 

is to describe perception, researchers attempt to control facto rs such as memory ur 

sequentia l effects (Lockhead, 2004). 

In memory research, the AI paradigm is used to study how well simple 

unidimensional items arc remembered and the patterns of errors that people make. 

AI as a tool for studying memory has two advantages: Because the stimuli typically 

vary along a single dimension the physical magnitude of the stimuli can be used to 

calculate how similar or different a particular itcm is from other items in the set 



(e.g., Murdock, 1960; Neath, Brown, McCormack, Chater & Freeman, 2006). 

Secondly, the unidimensiona l nature of the stimuli reduces the possibility of so me 

con founds that may occur with more complex stimu li. 

Al can also be viewed as a special case of categorization where the number of 

categories equals the number of stimuli, and category membership is determined by 

the stimulus magnitude (Garner & Hake, 1951; Nosofsky. 1981). The focus of the 

categoriza tion literature is to study concepts. In other words, categorization is used 

to gain insight into the rules, processes, and ment<ll represent<l tions involved in 

determining if an exemplar is a member of a particular category. Interpreting AI as 

categorization provides a theoretical link between Al and other concept-learning 

t<lsks such as FL. 

1.3 Functio n Lea rning 

In order to explore how conceptual knowledge is psychologically 

represented researchers often employ categorization tasks. A categorization task 

usually involves presenting a stimulus to a participant. who then chooses the 

discrete category to which the stimulos belongs. However, many concepts arc 

beller described as continuous functional concepts, as opposed to categorical 

concepts. The FL paradigm is used to explore concepts where both the stimulus (X) 

and response (Y) are represe nted on continuous sca les and the relat ionship 

between X and Y is determined by a mathematical function. 

Functional relationships between variables are common in the environment 

and le<lrning these relationships allows people to respond accurately to novel 



stimulus values, Kalish, Lewandowsky and Kl'uschke (2U04) give the example ofa 

city worker who could determine the distance to a water main break (Y) based on 

the frequency of the sound (X). Other examples include being able to convert the 

price of an item from one currency to another (juliusson, Gamble & Griiling, 2005), 

or estimating the amount of pollution in the environment at some future point in 

time (Wagenaar & Saga r ia, 197.5). To explore function concepts in the laboratory, 

participants learn the X-Y rel<ltinnship from <I series of exemplars. For eX<lmple, the 

participant may be asked to predict "level of physiological arousal" for different 

quantities of a drug (e.g., Kwantes & Neal, 2006). Participants <Ire trained on X-Y 

pairs and receive feedback about their accuracy. At test, the participJnt is shown 

new X values frolll within the trJining range (interpolJtion items) as well JS outside 

the training range (extrJpolation items). To illustrate, participants might learn the 

relationship between the speed of <I car and stopping dist<lnce for speeds between 

10km/hr and 6.5 kill/hr. At test, pJrticipants apply their knowledge to make 

stopping distance estimates for speeds between 10km/hr to 39 km/hr (lower 

extr<lpolation) and between 66 kill/hr to 100 km/hr (upper extrapolation). In 

addit ion , they wi ll hJve to respond to speeds between 4U km/hrand 65 km/hr that 

were not used as training items (interpolation). Accuracy in responding to these 

novel stimulus values indicates how well the participant learned the relation:)1 

concept. 

severJI typicJI findings within the function learning literature include: 

positive linear functions <Ire easier to leJrn than negative IineJr functions,l ine,u' 



functions arc easier to learn than non-linear functions, and interpolation is more 

accurate than extrapolation (for a review see, ~usemeyer, l3yun, Delosh & McDaniel, 

1 (97) . Participants also tend to underestimate Y values ill the extrapolation regions 

ofa linear function (Delosh, ~usemeyer & McDaniel, 1997), although thi s effect may 

be more reliable forthe lower region than the upper region (Kwan tes & Neal, 2(06). 

1,4 A Comparison of Abso lu te Ide ntificatio n a nd Functio n Lea rni ng 

The similarity between AI and FL arises because of the relationship between 

the stimulus and the response scales. Usually, AI response keys afe labeled and 

arranged so they correspo nd to the magnitude ofthe stimuli they represent (e.g., the 

smallest stimulus is labeled 1, the next smallest is labeled 2, etc.). The ordered 

mapping means that there are at least two ways a participant Gill solve the 

iden tification prublem. The first option is that specific S-R pairs can be memorized. 

1\ second option is that the overall relationsh ip between stim ulus magnitude and 

response magnitude can be used to in ferst irn ulus identity. In other words, a 

positive linear funct ion based on ordinal values can be used to complete the 

identification task. FL tasks involve a regular alld continuous !l-R mapping which 

differentiates it from other ca tegorization tasks (Buscmcyer et aI., 1997). The 

congruent S-R mapping in A! means tha t it meets the criterion needed to be 

considered a FL task, therefore, could potentially share some underlyi ng processes 

withFL. 

Fl. and AI both involve participants making a response from an urdered sct 

when presented with a stimulus from a ordered set. However, participants appear 



to be much more accurate when completing a FL task than when completing an AI 

task. A classic finding within the AI literature is the inabi lity of participants to 

correctly identify more than the equivalent of seven different unidimensional 

stimuli regardless of amount of training. Miller's (1956) paper emphasizes the 

ubiquity of this performance limit, as it occurs across stimulus modillities (e.g., line 

length, frequency , saltiness) and experimental paradigms. This classic limit is not 

readily app<lrent in the function learning literature. For example, Delosh et al. 

(1997) used a FI. task and trained participants on 8, 20 or SO unique stimuli. ,' cross 

train ing blocks, absolute deviations from the true function decreased to an average 

ofL5 uni ts on a 250 unit scale, and the number of unique training stimuli did [lOt 

illTect accuracy. In contrast, previous research 011 Al performance would predict 

accuracy to decrease as the number oftrilining items increased and little 

improvement despite extensive training. 

l'ilrtidpants ilppeilr to be very accurate by the end ofFL training; however, 

the rate of learning is sim ila r to what would be ex pected in an Al task. Fur linear 

fWKtiollS, most of the improvement occurs within the first few blocks oftriills ,[fter 

which there appears to be little improvement (Delosh et aI., 1997; Kwantes & Neal, 

2006; Lewanduwsky, Kalish & Ngang, 2U02). Similarly, AI accuracy docs not 

con tinue to improve after the first few blucks of trials desp ite prolonged trai ning. 

For examp le, even after experiencing 12000 AI triills, perfo nnilnce wil! remain poor 

(Garner, 195:~; but see, Rouder et aI. , 20(4). Generally, FL experiments use fewer 

training trials than AI experimerl1s, however, the numberoftriills can vilry 



substantially within the AI pa radigm. For example, Garner (\953) presented each 

stimulus up to 600 times, where as Murdock ( 1960) presented stimuli 10 times 

each, rL does not typically use an extremely la rge num ber of tria ls, for exa mple, 

Delosh et al. (1997) prese nted training items either 4, 10, or 2S times each 

However, in both the AI and FL paradigms, the data suggests that add itional practice 

has minima l effect on accuracy after pea k pertonnance has been reached . 

During the training phase ofa FL task participants receive feedback. Because 

feedback is given, a FL training phase ca n be thought of as an identific;.ltion task 

where the participant must remember the correct response va lue for each 

presented stimulus value. Most FI. studies do not plot the training accuracy as a 

fUIKtion of stimulus magnitude, therefore it is not possible to determi ne whether 

accuracy follows the how-shaped pattern typical of AI. One exception is Kwantes 

and Neal (2006) and their data do not show the bow-effect for training items. 

Kwantes and Nea l (2006 ) presented X val ues (i.e., stimu lus va lu es) as marked poi nts 

along a scale as well as the numeric values. This additional information likely 

increased stimulus discriminabili ty and may have eliminated any advantage for the 

edge items of the trai ning set. Delos h (1997 ) fou nd a bow-effect when the S- I{ 

mapping was random but not when the S-R mapping followed a negative linear 

function . Ilowever, Delosh (1997) looked for a bow-effect as a function of seriill 

positio n (i.e., accuracy as a func tio n of when an item was presented) not sti mulus 

magnitude 



The ordered SoH mapping in /\1 means that AI meets the criteria to be 

considered il FL task. If the S-R function in AI provides particip<lnts with an 

additional source of in ton nation, a random S-R mapping would be expected to m<lke 

perfurmance wurse. In general, S-R compatibility improves speed and accuracy 

when the experimental S-R mapping is congruen t with an intuitive mapping (Fitts & 

Deininger, 1954), however, within the AI li terature, the advantage ofS-R 

compatibility is less clear. L.lCou ture and Lacerte (1997) showed that a congruent 

S-R mapping improved AI performance only marginally and th.lt the effect was 

limited to the mid-range items. Eriksen and Ilake (1')57) also found thaI altering 

the S-R mapping did not affect accuracy, and the how-effect remained as a function 

of stimul us magnitude. Addit ionally, Eriksen and Hake (1957) found that when Al 

stimuli varied on a dimension that had no natural end points, the bow-effect 

remained as a function of the respunse scale (but see Costall, Platt & Macrae, 1981). 

Delosh (1')97) studied FLand used a SoH mapping that was eit her random or 

followed a negative linear function. Participants were less accurate in the random 

mapping condition compared to the function mapping com\ition, suggesting that the 

congruency between the st imulus and response dimensions is an important source 

of information . Also, only when the mapping was random did increasing the 

number ufitems resu lt in poorer performance, a pattern typical of AI. This finding is 

interesting because, as previo usly stated, the S-I{ mapping in an AI task is usually 

not random and is therefore more similar to the function mapping condition of 

Delosh (1997). An important difference between Delosh (\997) and the AI studies 

10 



conducted by Lacouture Jnd Lacerte (1997) Jnd Eriksen and Hake (1957) lIlay be 

that Delosh (1997) used a random S-R mapping, whereas the S-H. mapping in the AI 

studies maintained some structu r e. 

The effect of a preceding stim ulus on the response to a CUtTent stimu lus is 

uften explured in AI (for a review sec Matthews & Stewart, 2009). Little work has 

been done on sequential effects in FL: however, McDaniel, Dimperio, Griego, and 

Busemeyer (2009) looked at ordered and random presentation in FL. If stimulus 

presentation is ordered during training, training performance is more accurate than 

if presentation is rJndom. Ilowever, being trained on ordered items does not 

improve transfer performance (transfer items were presented randomly). Hu 

( 1997) found similar results using an AI task. Hu manipulated the variability of the 

step size (either small or large) during training; participants were then tested 

without feedback (in randum urder) . Perfurmance in the training phase was better 

for the small-step group compared to the large-step group: however, during the lest 

phase, the small-slep group were less accurate than the large-step group. rhe 

results of both Hu (1997) and McDaniel et al. (;,:009) have parallels in the 

categorization literature if the range of stimuli is viewed JS the category and the 

stimuli are viewed as cJtegory members. Receiving a high ly vJriJble set of category 

exemplars during training impruves transfer performance compared to receiving a 

less variable training set (Posner & Kee le, 1968) 

II 



1.5 Theori es of Absolute Identification and Function Learning 

Theories of AI and FI. often overlap; for example, both FL and Al can be 

modeled using an exemplar framework. Exemplar models (e.g., Nosofsky, 1984; 

Nosofsky, Kruschke & McKinley,1992) propose that a stimulus is categorized based 

011 how similar it is to the stored exemplars in memory. Exemplar models Gin 

mudel categorizatiun in general, as well as 1\1 in particular (Kent & Lamberts, 2005). 

Busemeyer et al. (1997) proposed a modified exemplar model (Extrapolation­

Association Modell EXAM I; see also, Delosh et aI., 1997) with the aim of expl;lilling 

I~'L within a general categorization framework. In order to account for extrapolation, 

EXAM includes a linear rule component that allows it to respond to novel items 

outside the training range. Without the rule co mponent, exemplar models of FL 

underestimate accuracy on extrapolation items because the model can only output 

the response associated with the nearest training item 

Alternative to exemplar theories in the AI paradigm are relative judgment 

theories (Laming, 1984; Stewart, et al .. 2005). Helative judgment theories posit that 

Al performance is dependent on comparing the current stimulus to the immediate 

context (i.e., recen t ly presented items). 8ecause responses arc made relative to 

recent items, there is no need to assume that representations of absolute magnitude 

playa significant role in Al performance (sec Stewart, et al. ;WOS, for a review of 

absolute and relative models) 

Alternative to exemplar models in PL are rule-based models (see McDaniel & 

F!usemeyer, 2005 for a review). The rule-based approach proposes that during 

12 



training participants learn an abstraLt rule that represents the relationship between 

the predictor and the cri terion (Koh & Meyer, 1991). The rule learning process is 

often conceptualized as learning the correct parameter values for a regression 

equation. When a novel predictor value is presented, participants use the rule to 

determine the correct criterion value. One problem wi th the rule-based models is 

that they overestimate extrapolation accuracy. If participants use a regreSSion-like 

rule, performance should remain accurate reganlless uf how far an item is from the 

training range; however, participants do not extrapolate as well as rule models 

pred ict (Delosh et al., t 997). Recent rule models, such as the Population of Linear 

Experts (POLE; Kalish, et aI., 2001) are mure successful at predicting human 

pel'formance by assuming that complex functions arc approximated by selecting 

from a set of simple linear functions. 

Helative models of AI could potentially be used to model FL performance. 

Because relative models do not respond based on stored absolute magnitudes, they 

may provide a parsimoniOUS explanatiun of transfer performance, with responses 

being determined relative to recently presented items. For example, the Relative 

Judgm ent Model (RJM; Stewart et aI., 2005) uses the differences between stimu li in 

order to model AI. In effect, participants learn the difference between stimuli that is 

equal to a unit change in the response category (Stewart & Matthews, 2009); this is, 

in some ways, very similar to learning the slope that relates the stimulus and 

response scales (see Kwantcs, 2003 for a similar approach to modeling FLJ. 

Ilowever there may be important theoretical ditlerences between the slope irlVolved 
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in the RIM (or a similar approach) and the slope as conceptu<llizcd in rule-based FL 

models (e.g., Kalish et aI., 200S, Koh & Meyer, 1991). One theoretica l difference 

between the slope of an RIM-like approach and the slope of a rule-based approach is 

that, with a rule-based model, the slope is an abstraction representing the overall S­

R relationship, whereas the RJM-like slope is derived from instances. 

1.6 Differences Between Absolute Identification and Function Learning 

The defining feature of a FL task is the continuous S-R mapping (Rusemeyer 

et al., 1997); a cha racteristic shared by AI. Therefore, ;.Ilthough Al Gin be thought of 

as a Fl. task, Al perform<l nce seems to he quite different than FL performance. There 

;.Ire several key differences between the tasks that need to be addressed. These 

differences include: how performance is measured. the cognitive stra tegy 

participants usc, the experimental design, the prese nce or absence of feed hack, ;.Ind 

the surface features of the stimuli and responses. 

1.6.1 Performance Measures 

Perhaps the simplest explanation for the discrepancy between Al and FL 

performance is how performance is measured in the respective tasks. FL studies 

often measure deviations from the correct response (either absol ute or signed). 

whereas AI experiments may use proportion correct. information transmitted (IT) 

or measures of discriminability. Therefore, participarlls in a FL experiment arc 

given credit for heing close to the correct answer. Averaging responses in FL may 

result in performance that appears very accura te, despite participants never being 

exactly correct. More stringent measures of performance used in Al (e.g .. proportion 

11 



correct) will result in performance that appears inferior when compared with FL 

performance. Although it is not uncommon for both AI and FL experiments to usc 

different measures of accuracy within the same study. to my knowledge the re has 

been no cross-paradigm examinatio n of how the performance measures affect data 

patterns. Therefore, it remains an open question as to whether AI performance and 

FL performance will mimic each other if performance is measured the same way. 

The dependent measure can be critical, not only for assessing accuracy in 

general, but also for elucidating different qualities of the response pattern. Fur 

example, the mean response tu a stimulus provides a measure of both the direction 

"nd degree of error in mapping stimulus magnitudes onto response magnitudes; 

however, the mean response might look quite accu rate despite large response 

variability. Kuh and Meyer (1991) addressed the averaging problem by me"suring 

hoth COllstollterrors (eE; the mean response for a particu la r stimulus) and variable 

ermrs (VI:; the standard deviation of response values for a particular stimulus). CEs 

"nd YEs address two different aspects of performance; CEs are a measure of how 

well participants have learned the correct 5-1{ mapping (Le., the functiona l 

relationship), whereas VEs assess how consistently participants rcspond to a 

stimulus regardless of the experimental mapping. 

Simi lar to VE, the information transmission (IT) measure used in AI is a 

measure of consistency, but unlike VE, IT is non-metric (Garner & Hake, 19S I) . For 

cxamplc. using the IT measure, a participant consistently calling stimulus 5 

['csponse 10 has the same effect as consistently Glili ng stimulus 5 response 6. YEs, 
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on the other hand, are affected by the distance between a response and the mean 

respunse to a particular stimulus. Over .. !!l, because different measu res of accuracy 

are used in AI a nd FL it may look as though people are lTlu ch more accurate in FL 

simply because of how accuracy is assessed. For example, Petruv and Anderson 

(2005) show that when the range of errors is taken in to account, Al perfonnance 

can look more accurate than when using the IT measure. 

1.6.2 Stra tegy 

Another possibility fo r the superior FL pe rform ance compared to AI is that 

participants may usc different strategies for the two tasks. Lindahl (1964, 1968) 

emphasizes the distinction between general and non-general strategies. A general 

strategy is similar to adopting an abstract rule that can be applied to novel stimuli, 

whereas non-general strategies are based on specific s ti mulus/perceptual 

characteristics. A FL task may induce participants to adopt a general strategy 

involving learning the S-R relationship, similar to participants lea rning an 

intervening concept that relates stimu lus magnitude to response magnitude 

(Busemeyer, McDaniel & Byun, 1997). In the case of AI, participants may usc a non­

general strategy focusing on specific stimulus characteristics (i.e .. thestimulus 

magnitude). Although the AI problem is sulvable by using relational information 

between the stimulus and respo nse scales, participants may si mply not recugnize 

this strategy and I·ely on an item memorization strategy. 

Differentiating behveen item information and relational information has 

been explored wi th verbal tasks, and there is evidence that relational and item 
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information are separate and additive (Hunt & Einstein, t 98 1; Hunt & Seta, 1981). 

However, the relational information in a verbal memory task involves the 

relationship between stimul i (e.g., words from the S;J mc category are highly related). 

In contrast, a FL task focuses 011 the I·clalional inform;Jtion between the stimulus 

and response scales. Within the categorization literature, strategy has been shown 

to affect how a participant categorizes novel stimuli (Medin & Smith. 1981). FOI· 

example, participa nts G.ln he induced to categorize based on rul es or on overall 

similarity depending on strategy instructions (Allen & Urooks, 1991; Smith, Patalano 

& Jonides, 1998). Also, and more generally, the li terature on transfer-appropriate 

processing (Morris, Bransford & Franks, 1977), and encoding-specificity support the 

view that how an item is e ncoded (e.g., the strategies used, th e task relevant 

features, etc.) has a stro ng effect on performance. It is therefore plausihle that a task 

that focuses on the globa l relationship betw een stimuli and responses (i.e., FL) will 

result in a different level a nd pattern of performance compared to a task that 

focuses on item identity (i.e., A[). 

1.6.3 Expe rim e nt,ll Des ign 

A[ experiments invulving the effect of set size often use a between-subjects 

design. [n FL studies, the number and range of stimu li is a within-subjects factor, 

increasing fro m the training to the test phase. The A[ studies that manipulate set 

size within-subjects show participants display both higher accu racy and 

impruvement with training compared to between-subjects experiments (Dodds, 

Donkin, Brown, Heathcote & Marley, :W l l; [Jodds, et aI. , 2Ul1; Kent & Lamberts. 
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2005; Rouder, et aI., 2004). Also. within·subject designs can modulate the bow 

effects found in benveen·subjects designs (Dodds, Donkin, Brown, lleathcote & 

Marley, 2011). The within-subjects design ofFI. experimen ts may pa rtially explain 

the discrepancy between i\! and FI. in the levcl and pattern of performance. 

1.6.4 Feedback 

Because experimenters conducting Fl. studies are interested in participants' 

ability to apply learned concepts to novel exemplars, feedback is not provided 

during the transfer test. The absence of feedback during transfer means that the 

participants must rely on their knowledge of the x-v relationship rather than their 

memory for specific items (Delosh et aI., 1997). In contrast, in AI experiments 

participants are typically give feedback throughout testing. When the effect of 

feedback is explored in AI. providing feedback tends to improve performance. 

However, feedb~lCk mily act to influence the S-R mapping ra ther than improve 

stimulus discriminability (e.g., Eriksen . 19SIl ). Mori and Ward (1')95) found that 

feedback did not affect the discriminability of stimuli, but instead altered how the 

current response was affected by the preceding stimulus and response. 

Brehmer and Svensson (1976) examined the effect of feedback in a FL 

experiment. Participants were informed of the shape of the function (either U or 

inverted U shaped) and had to predict a criterion for different levels of a predictor 

variable. Brehmer and Svensson found that providing feedback did not improve 

performance compared toa Ilo-feedbackcondition. 
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1.6.5 Surface Characteris tics and Response Sca les 

AI responses a re usually made by selecting a discrete (bu t ordina l) response 

catego ry, whereas FL respo nses are made by selecting a point along a continuous 

response scale. This difference means that FL gives participants access to ma ny 

more unique response values compared to AI. Although this difference may seem 

important, previous research would suggest that making the response scale 

continuous would have little effect on performance, at least in terms of IT (ilake & 

Garner, 1951). However, others have found that AI performance gets worse as the 

number of response catego ries increases (Lacou ture, et aI., 199A ). The method of 

responding may play an important role in how participants approach the task. 

Specifically, a continuous response scale may make the S- R relationship more salient 

com pared to a discrete response scale. 

Su rface characte rist ics of the stimuli in a typical FL task may milke these 

stimuli easier to remember and therefore resu lt in accurate performa nce compared 

to AI. Within the FL paradigm, stimuli ca n take a variety offonns. for exa mple, 

position ofa marker on a scale (Delosh, et aI., 1997), a line length (Kalish, et aI., 

2004), or numerals and letters (S niezek & Naylor, 1978). In some FL procedures the 

stimu lus characteristics may provide the participant with additional information 

that is typically not present in AI. For example, if the stimul us is presented as a 

marker along a scale, a participant may use the distance from the beginning of the 

scale, the distance from the end of the scale, and/or the distance fro m specific tick 

marks to aid in discrimi nating stimulus values. McDaniel ct al. (2009) addressed the 
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role or tick marks on the stimulus scale in a FL experiment Stimulus values were 

presented either as a filled bar on a marked scale or as segments of a circle with no 

scale markings. If tick marks on the stimulus scale provided additional information, 

participants should have been more accurate in the marked scale condition 

comp<lred to the circle segment condition. However, McDaniel et al. found the 

opposite effect; participants performed better in the circle segment condition than 

in the scale condition. However, note that the segment stimuli also have additional 

information not usu<llly present in an 1\1 task because the size of the filled portion of 

the circle is perfectly correlated with the size of the unfilled portion. In general, the 

stimuli in FI, may be easier to discriminate or remember because they have mUltiple 

correlated dimensions (see Garner, 1974). 

When AI experiments usc visual stimuli, additional cues, such as the distance 

from the end ofa line to the edge of the screen, arc often controlled. Although many 

FL experiments use multidimensional stimuli, some use stimuli that are very similar 

to those used in AI. For example, some FL experiments usc the length of a line, or 

the distance between two markers to represent the level ofa predictor variable (e.g., 

Brehmer, 1979, Koh & Meyer, 1991); a st imulus dimensions commonly used 

throughout the AI literature. Therefore, if a Ft experiment uses line length as a 

predictor, the functional relationship is positive and linear, and participants receive 

feedback (e.g., the tr<lining phase), the FL task essen t ially becomes an 1\1 task with 

the number of available responses exceeding the number of stimuli. 
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1.7 Summary 

AI and FL paradigms both involve the study of concepts, but focus on 

different kinds of concepts. In FL, the pa rticip<lI1ts' task is specifically to learn a 

relational concept; in AI the participants' task is to categorize stimulus magnitudes 

with discrete responses. In AI, the correspondence between the stimulus scale and 

the response scale makes the task solvable using a general function concept that 

relates stimulus magnitude to response magnitude. The results of AI and FL 

experiments differ substantially in terms of both level and pattern of performance. 

Diffcrent patterns of resu lts in the two paradigms cou ld be the result of: different 

strategies. different measures of accuracy, experimental design, and differences in 

the stimulus/response discrimi nability. 

Therefore, in the present series of experiments, the goal was to begin to 

examine the facLOrs that resu lt in different data patterns in FLand AI. Experiments 

1 and 2 follow a general Al procedure; p<lrlicipants were IOld to remembet· the 

correct numeric label for each stimulus and received feedback. PJrtidpants 

responded to J subset of items during the tlrst phase of the experiment, then. the 

number of items was increased. Therefore, experiments I and 2 are identification 

experiments with a within -subjects set-size manipulation. The parallel to FL lies in 

how the set size was increased. The new items were either intermediate in size to 

the phase I items (Le .. interpolation items), or were larger and smaller t han the 

phJse 1 items (i.e., extrapolation items). Of particular interest in Experiments 1 and 

2 is whether both classic AI and FLdata patterns can he found inan identificJtion 
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experiment simply by changing how the data are analyzed. Specifically, will the data 

look typical of Al performance when the proportion correct is the dependent 

measure, and will the data look typical of FL performance when the mea n response 

is the depe ndent measure. 

Experiment 3 also involved two phases, however, Experiment 3 did not 

provide feedback in the second phase. The absence of feedback means that the 

a bility to transfer knowledge to novel stimuli can be assessed. Pa rticipants were 

instructed to either learn the relationship between stimulus magnitude and 

response magnitude, or, learn the identity of individ ual stimuli. Also, the response 

labels were manipulated so they represented either discrete categories or a 

continuous response scale. One of the critical questions for Experiment 3 was 

whether FL instructions result in better transfer performance tha n Al instructions 
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Chapter 2 Experiments 

2.1 Experiment t 

2.1. 1 Purpose and Predictions 

Experiment 1 followed an AI procedure and had two m;lin purposes. The 

first purpose was to exa mine performance from both an AI and a FL perspecti ve. In 

other words, if the measure of accuracy is changed, do the same data qualita t ively 

mimic classic patterns in the two parad igms? 

AI studies wi ll often use the proportion of correct responses as a measure of 

performance. FL studies, on the other hand, often average the responses given to 

each stimulus. Exper iment 1 will look at the da ta using hoth approaches. If AI and 

FL are highly simila r tasks, the data should indicate low accuracy, and a bow-effect 

when proportion correct is examined. In con trast, when mean responses are 

examined they shou ld appear very <lccurate and cl osely fo ll ow the S- R function . 

The second pu rpose was to examine how increasing the number of items 

affects performance, and if receiving extra tr<lining on specific items improves 

perforrnance on those items. Previous 1\1 experiments have show n that rece iving 

additional training on items can sometimes improve performance (Oodds et aI., 

20 11 ; Cuddy, Pinn, Si mmons, 1973; but sec, Ch<lse, l3ugnacki, I3raida & Ourlach, 

1982). 

In AI terms, Experiment 1 involved a within-subjects sct-size manipulation. 

Participants were trai ned on a su bset of possible items during Phase I . In Phase 2 
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the number of items was increased by adding stimulus magnitudes that were 

between the Phase 1 items. Increasing the number of items within-subjects is 

analogous to a FL experiment where the number of items is increilsed in the test 

phase. A second parallel beh'leen Experiment I ilnd FL experiments involves how 

the set size was increased. Experiment 1 increased the numbe r of items by ildding 

items that ilre intermediate to the initial stimulus magnitudes (i.e., interpolation 

items). 

It was expected that typical Al effects would be observed in Experiment I, 

namely, a bow-effect (i.e., improved ilccuracy for the items at the edges orthe 

stimulus set) ilnd a set-size effect (decreased accuracy when the numher of items is 

increased). However, when mean responses are used as the performance measure, 

the bow-effect should not be observed and the mean responses shou ld follow a 

linear pan ern coosistent with the SoH relationship. Alsu, if giving participants extra 

practice on items improves accul·acy fur those items, it is predicted that when the 

set size is increased in Phase 2, Phase I items should have an advantage over new 

items. 

2.1.2 Metho d 

2.1.2.1 Des ign 

The basic design has two within-subjects factors; stimu lus magnitude (11 

different stimuli) and Phase (Phase I and Phase 2). In order to separa te the effect of 

additional training from the effect of stimulus magnitude, a between-suhjects factor 

(Trilining Set; Odd/Even) was used. In Phase I, the Odd group saw stimu li 1,3,5,7, 



9,11,13, and the Even group saw stimuli 2, 1, 6, 8, 10,12,11. In Phase 2, both 

groups saw al! 11 stimuli. 

The Odd/Even manipulation means that when the Even group sees Stimulus 

1 in Phase 2, Stimulus 1 is technically an exlrapolatiun item because it is outside the 

training range. The compliment occurs for the Odd group; with Stimulus 11 being 

ou tside the training range. Because there is only one ext rdpolatioll item per group 

and it is a direct neigh bor of a training item, for the sdke of convenience, I will refer 

to Jil new items as interpolJtion items 

2.1.2 .2 Participants 

Forty undergraduate studen ts (6 males and 34 females) were recruited from 

Memorial University. All part icipants gave their informed cunsent before 

pal· t icipat ing in the study. The mean age was 19.1 years (SD "" 1.9 ). Participants 

were paid $10, and the experiment lasted approximately 30 minutes 

2.1.2 .3 Stimuli 

Stimuli were 14 red circles presented on a computer screen Each stimulus 

had a unique numeric label (1 through 14) corresponding to its ordinal magnitude. 

The smallest s t imu li (labeled 1) had a diameter uf 10 pixels. The dianreter of the 

circles increased by a constant 10 pixels (e.g., circl e 14 had a diameter of 140 pixels) 

2.1.2.4 Procedure 

Participants were tes ted individually in a quiet tes t ing booth. An iMac 

compu ter was used to present stimuli and collect responses. Participants sat a 

comfortable distance from the scree n. The experi men ter explained that the 



p;lrticip,mts' task was to remember the correct l;lbel for each circle. Participants 

were told that there were two phases and that in the second phase they would see 

new intermedi<lte items as well as the old items. 

2.1.2 .4.1 Phase 1 

Before testing beg,ul, participants were shown the seven Phase 1 stimuli with 

their correct label one at a time (once in ascendi ng order once in descending order). 

The seven Phase 1 stimuli were then presented 10 times e<lch, in r<ll1(iom order 

(completely randomized without repl<lcement). Response buttons for Phase I were 

seven virtu<ll buttons (wi th numeric labels) in a single line along the bottom of the 

screen. The response buttons for a ll stimuli were in two rows at the top of the 

screen but only the bottom buttons were used fo r Phase 1. 

The Phase 1 items were then presented individually and pa rt icipan ts used 

the mouse to click on a response button. After making a response, the slimulus 

disappeared and participants were given fe edback. [fthe respo nse was correct the 

participant saw, "Correct! It was" with the correct I<lbel (printed in green), if the 

response was wrong the participant saw "Sorry! It was" wi th the correct label 

(printed in red). Feedback was presented visually in the center of the screen and 

remained on the screen until the p<lrticipant clicked the "Next Tri;ll" button .. Upon 

completing the 70 Phase 1 t rials, participants were told that they would now sec 

new items as well as the Phase 1 items. It was made clear that the Phase I items 

kept the same numeric labels in Phase 2. 
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2.1.2.4.2 Phase 2 

Unlike in Phase 1, the entire Phase 2 stimulus set was not presented before 

testing began. The proced ure for Phase 2 was the sa me as Pha se 1 except all 11 

stimuli were presented and responses were made using the 14 buttons at the top of 

the screen. Participants contin ued to receive feedback on all trials. 

2 .1. 3 Results 

The alph a level was set at .05 for all statistical tests. When the sphereicity 

assumption was violated, the Greenhouse-Geisser correction was used, and th e 

adj usted degrees of freedom reported. 

2. 1.3 .1 Absolute Identification Ana lysis 

2. 1.3. 1.1 Pha se 1 

II 2 (Training set) x 7 (Relative Stimulus Magnitude) mixed-model ANOVA 

was conducted to determine if the relative magnitude of a stimu lu s affected 

accu ra cy, and whether the absolute magnitud e of the sti mu li affected accuracy. The 

dependen t variable was the propo rtion of correct responses (e.g., the number of 

times response 7 was chosen when stimulus 7 was presented, divided by the 

number of times stimul us 7 was presented), 

Figure 1 shows proportion correct plotted as a function of the relative 

stim ulus magnitude. 130th training groups show the typical bow-effect, with 

performance being better fo r the smallest and largest items cu mpared to the middle 

items. As is evident in the figure. there was a significan t effect of relative stimulus 

magnitude (F (6, 30)= 32.43 , MSE = 0,023, P < .01). 
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Unexpectedly, there was also a main effect for tTilinillg group (F (I, 38) = 

1.23, MSE = 0.06, p = .047. Participants who were trained on the odd -item stimuli 

performed better than participants trained on the evelHlllmbered items (Odd items, 

M = 0.85, Sf = 0.021; Even Items M = 0.79, Sf = 0.021) 

Fi.qu/"e I: Proportion OfCOITl,{:\ resl}(JnS<'s in Phase 1 as a function ufrebliveslimulus m:JgnilU111' 
Errur bars sliulV lhl'slamlard crroroflherne:tn. 

Evidently there was something that made the even stim uli more difficult to 

identify. However, there WilS no significant interaction between the relative 

stimulus magnitude a nd training set (/-'(6,38) = 0.812, MSE = 0.023 P = .514) 

indicating that the relative stimulus magnitude did not change the advant~lge held 
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by the odd-item group overall. Thus, this difference between the conditions did not 

affect the pattern of performance as a function of relative magnitude. 

2.1.3 .1.2 Phase 2 

One purpose of Experiment 1 was to determine whether receiving extra 

training on an item improved accuracy for that item when the size of the stimulus 

set was increased. A 2 (Training Set) x 14 (Stimulus Magn itude) mixed-model 

ANOVA was conducted to determine ifbeing trained on an item in Phase 1 improved 

performance on that item compared to novel items in Phase 2. The dependent 

variable was the proportion correct. 

Figure 2 illustrates the proportion correct as a function of stimulus 

magnitude. As in Phase I, a bow-effect is evident for both training groups. There 

was a significant main effect for stimu lus magnitude (F(13, 194);:: 85.99, MSf;:: 

0.036,p<.0 1) 

The training set had a significant effect on Phase 2 performance. Specitically. 

if participants were trained on the odd training items their performance in Phase 2 

was supe rior to participants who were trained on the even items (Odd; M = .-1-97, SF. 

'" 0.02; Even; M = .-1-26. Sf;:: 0.02; F(1,38) ;:: 6.08, MSE ;:: 0.1 1 5 P =. 0 18) 

The interaction between Training Set and Stimu lus Magnitude did not reach 

significa nce (F(13, 494) '" 1.35, MSE '" 0.032, P = .18). Although the tr<lining set 

used in Phase I affected accuracy in Phase 2, there was no evidence for item specific 

effects. 
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Visual inspection of performance in Phase 1 and Phase 2 shows that accuracy 

decreased when the set-size is increased. In order to examine the effect of set-size, 

performance on the seven Phase 1 items was examined in both Phase 1 (i.e., a small 

set context) and in Phase 2 (i.e., a large set context). The set-size effect was 

confirmed by conducting a 7(Stimu lus Magnitude) x 2 (Phase) within subjects 

ANOVA for both the Odd and Even training groups. The proportion correct was the 

dependen t measure. 

Similar effects were found for both training groups. When the set-size 

increased in Phase 2, accuracy dropped for both the Even training group (Phase 1: M 

'" 0.7BB, Sf = 0.022; Phase 2: M = 0.417, SE= (J.(J 18; F( 1, 1 9) '" 257.71, MSE = 0.037, P 
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< .00 1 ) <lnd the Odd training group ( Phase 1: M:; 0.848, SE :; 0.0 19; Phase 2: M = 

0.521, S£ = 0.028; F(I,19) = 296.63, MSF.:; 0.025, p < .001 ). 

Increasing the set-size red uced pa rt icipants ' accuracy overall; however, not 

all items were equ<llly affected. The interaction between Stimu lu s Magnitude Jnd 

Phase was sign ificant for both the Even (F(6,lI1) = 5.51, MS£ = 0.02f1, P < .00 I ) and 

the Odd training groups (F(6,1l4) = 17.098, MS£ = 0.D18, P < .00 1 ). Visual 

inspection of Figure 3 reveals that items from the ends of the range were less 

affected when the set size was increased. 
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There was a significant effect of Stimulus Magnitude fo r both the Even 

trai ning group (F(6, 111) = 53.42, MSF. = 0.02S, p <: .001) and the Odd tr<lining group 

(F(6, 114) = 50.11, MSE= 0.023, P <: .001). The da ta show the bow-shaped pattern 

previously discussed. 

2.1.3.2 Fun ction LearningAnalysis 

2. 1.3 .2.1 Pha se 1 

lJecause the relative stimulus magnitude can perfectly predict the relative 

response magnitude, it is possible that participants are using conceptual 

informiltion as described in the Flo literature to make their responses in the context 

of an AI task. It is worth clarifying that in Experiment I feedback was provided 

during the Phase 2 trial s, therefore il direct comparison between FLand Al is not 

possible in the cu rrent design. However, the data from the current experiment can 

he explored using the methods common to FL experiments. 

To examine the effect of learning over tria ls, the mean absolute deviatiun of 

the participant's response from the correct response WilS calculated for each tl'ial in 

Phase l. The absolute deviations were then averaged into blocks of to trials. 

A 2 (Training Set) x 7 (13Iock) mixed-model ANOVA was conducted to 

determine whether participants became more accu rate with practice. Figure 4 

shows the reduction in error as a function of trial block. It is :lpparent that 

pal·ticipants were learning over triills, however, most of the improvement occurred 

during the first block of trials. There was a significant main effect of trial block (r(6, 

22R) = 5.53, MSE = 0.016, P <: .001). The linear trend was significant (1'(1,38) = 8.23 . 
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MSE = 0.026, P = .007), however, higher order trends were also signifiCillH 

(quadrJtic F( US) = 9.9, MSE = 0.016, P = .003: cubic F( 1,38} = 4.94, MSE = 0.1l 18, P 

= .032: order -1 F( 1,38) = 6.64, MSE = 0.0 I, P =.0 14). These results replicate the 

finding that AI performance shows little overall improvement with practice. FL 

experiments also show a simil<l f pattern learning over training blocks. Forex<lmple, 

Delosh et al. (1997) fou nd that absolute errors decreased quickly and asymptoted to 

a mean error of 2.4 or roughly 2.7% of the training range of the response sca le. In 

the current experiment the mean error at the end of Phase I was 0.175 (Sf = 0.0 18). 

Interestingly, if the mean <lbsolute error in Experiment I is t<lken as <I percentage of 

the number of responses, the resulting value is 2.5% similar to the error found by 

Delosh e\<lI. (1997). 

1 .• ·"rnill;.: lh.·r 1I1",· I;~"fTri"l< 
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l'(qun:4: MCJIlAilsolutcErrorsinl'hasc 1 JSafUIlCliolloftriJI IJ locl;. Error bars 
showthc stamlardcrrorofthclllcali. 
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The cffectofTrainingSetwas margina lly significant (F(1,38) = ].97, MSE = 

0.071, P = .(53). The trend suggests that individuals in the Odd training group (M = 

0.157, SF: = 0.023) were more accurate than the Even training group (M '" 0.222, SE = 

o.on): a conclusiun which is supported by the statistically significant difference 

found when proportion correct was llsed as the dependent variable. There was nu 

Significant interaction between Training Set and Block (F(4.81, lB3.1l6) = 0.171, MSE 

'" 0.074,p = .971). 

2. 1.3.2 .2 Phase 2 

Phase 2 pei"formance was examined by calculating the mean response fur 

each stimulus and plotting it as a function of stimulus magnitude. Figure 5 shuws 

the effect of stimulus magnitude on the direction of errors; as stimulus magnitude 

increases participants tend to underestimate more. It is apparent that when the 

mean response is the dependent measure, participants appear to be much more 

accurate than when the proportion correct is used as the performance measure. In 

order to examine the pattern and direction of e!To rs in more detail, the difference 

between each participant's mean response and the correct response was calculated 

for each stimulus. A 2{TI·ainingSet) x 14 (Stimulus Magnitude) mixed-model 

ANOVA was conducted to determine if the direction of errors differed as a functiun 

of stimulus magnitude, and, whether this effect depended on the training items. 

["here was a significa nt main effect for stimulus magnitude (/""(4.63, 175.84) '" 12.75, 

MSl:." '" O.735,p < .001. rhe main effect ofTrainingSel was not significant (F(I,38) = 

].01, MSE = 0.866, P = 09), nor was the interaction between Training Set and 
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Stimulus Magnitude (,,"(4.63,175.34) = 0.91, MS[ = 0.735, P = .469). The linear trend 

was significant ("'(1,38) = 45.35, MSI:: = 0.873, p < .00 I). 
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Participan ts' abi lity to use conceptual information to infer the identity of 

novel items can be assessed, in part. by examining responses to the first 

presentation of an item in Phase 2. The number of participants who were correct on 

the first presentation of each stimulus in Phase 2 was summed. Figure 6 plots the 

percentage of participants who were correct on the first presentation of each 

stimulus (for both trained and untrained items) as a function of stimulus magnitude. 
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As a comparison, the mean number of pal"ticipants who responded correctly over a ll 

stimulus presentations was calculated. Qualitatively, the shape of the function for 

first presentations is very similar to the mean of a ll presentations. Th ere is some 

suggestion that seeing an item in Phase 1 increases the probability of a participant 

being correct on the first presentation of that item in Phase 2, particularly, for the 

largest items. Howeve r, the similarity betwcen accuracy fo r first presentations and 

Illean accuracy suggests that, to some extent, people are able to usc what they 

learned in Phase 1 to respund to ncw items in Phase 2. 

Fintt'n'S('u ta l iuli t'nfurlllaun' 
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Fi,qWl! 6: The percentage of parlicillJ!1ts who wen' corrL'<:t the tirs! time they respunded to an itelll in 
Phase 2.lJntrJined items had ,lever heen seen before, whereJs TrJ ined items h<ld been seen in I'h"se 
I. The Mean Ova All Pn:senl(ll;Ons is the medn number ofp:l ,·ticipants who werecorrec! ove r all 
stirllutuspresenta!ions 

2.1.4 Discussion 

Experiment 1 addressed two main issues: first, whether receiving extra 

training on a subset of items improves accura cy fo r thuse items when the number of 
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stimuli is increased, and second, if the method of analysis is a major difference 

between AI and FL performance. 

From an AI perspective, Experiment I replicated the bow and set-size effects 

typical of AI performance. However, Experiment I did not support the proposition 

that increasing the amount of practice on specific items improves performance on 

those items compared to less practiced items. Al usually docs not improve beyond a 

low limi t , however some recent studies have found that people can continue to 

improve ifgiven enough practice (Dodds et aI., 20 11 ; Houder ct aI., 2004). For 

example, Dodds, Donkin, Brown, Heathcote and Marley (20 II ) found improved 

performance on items that were presented more often. There are several important 

differences between their procedure and Experiment 1. Dodds, Donkin, Browll, 

Heathcote and Marley used stimu l i tha t varied on a single dimension (the distance 

between two markers, or tones), whereas Experiment I used stimuli that were 

simple but not strictly unidimensional. Also, participants in Dodds, Donkin, BI'own 

Heathcote and Marley experienced many more trials (1600 overall) than 

participants in Experiment I (210 trials overall). Ilowever, perhaps the cri t ical 

difference is how the set-size was increased. They presented the two middle stimuli 

more often than the other stimuli, but in the current experiment, seven items 

received extra practice, and, these items were every-other item from the whole 

stimulus set. The distribution and number of stimuli that receive extra practice 

within the stimulus set may playa role in the efficacy of practice (also see 

Experiment 3 of Dodds, Donkin, 13rowll, Heathcote & Marley, 20 I t). If similar items 
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are see n more often. it may allow participants to organize the stimulus set into 

chunks, and therefore reduce memory load. In Experiment 1, the distribution of 

Phase 1 items (i,e., every other item from the whole set) may have made 

organizational strategies more difficult (see. Miller. 1956; Seigal & Seig<ll. 1972). 

Surprisingly. Experiment 1 revealed an effect of training set on accuracy. 

Participants who were trained on the odd sti muli were more accurate than 

participants trained on the even stimuli. This effect in Phase 1 is likely due 10 the 

psychological spacing of the stimuli. If the psychological distance between stimu li is 

estimated by taking the log value of the stimulus di.:lmeter, the mean psychological 

distance between stimuli is greater for the odd set (M = 0.427, SD = 0.351) than the 

even set (M = 0.324, SD = 0.202). The increased stimu lus spacing in the odd set 

might make these items less likely to he confused with each other. and therefore 

improve accuracy compared to the more closely spaced even set. 

Psychological stimulus differences are a likely explanation of the advantage 

held by the odd-set in Phase I, however, this does not explain why the odd-set 

advantage carries over into Phase 2. In Phase 2, both training groups saw the exact 

same stimuli; yet. the odd-set group was more accurate than the even-set group on 

both old items and new items. It is also worth noting that the variability of the 

stimul us differences is greater for the odd set than for the even set. Therefore, it is 

equally plausible that increased variability of the differences, not the size of the 

differences is the root of the odd group advantage. Within the ca tegorization 

literature increasing the variability of the train ing items improves transfer 
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performance (Posner & Keele, 1968), yet, from an absolute judgment perspective, 

I.ockhead (2001) would suggest that increased variability (on a trial by trial basis) 

would make pe rformance worse, Hesolving th is issue is beyond the scope of the 

current paper but may be a interesting topic for future research 

The effect of the Phase 1 training set on performance in Phase 2 is interesting 

because it implies that people are learning something in Phase 1 that alters how 

they respond to Phase 2 items. The FL literature specifically focuses on this kind of 

knowledge transfer from training to test. Experiment 1 shows that d similar kind of 

trdnsfer can occur even when feedback is provided on all trials. 

When the results of Experiment I were approached from a PI. perspective, 

two notdble patterns emerged. First, when the mean response was plotted as a 

functio n of stimulus m<lgnitude, participants appeared to be highly accurate and 

mean responses followed a linear pattern. Also, similar 10 Delosh et al. (1997), there 

was a tendency for larger stimu li to be un de restimated. However, the pattern of 

underestimation of smaller items found by Delosh et al. (1997) and Kwantes and 

Neal (2006) was not apparent in the current study. The pattern of responses in 

Experiment 1 was qualitatively similar 10 FL resu lts for positive linear functions 

despite Experiment! using very different stimuli and procedures. This similarity 

suggests that the accuracy measure in FL is why performance appears so accurate 

compared 10 AI performance. 

In addi tion to the overall accuracy data mimicking both Al and Fl. patterns. 

the learning data in Experiment 1 also showed a pattern that is typical of both Fl . 



and AI. Most learning occurs early in training and does not continue to improve 

across hlocks of trials. 

Responses to new items are the main focus of FL. Exam ining accuracy for the 

first time a stimulus was presented suggests that participants are relatively accurate 

in responding to novel items. This result im plies that participants can infer 

something about novel items based on what they know abou t olher items, and, that 

this learning can occur even when the task is to identify items, not learn a relational 

concept. Additionally, interpolation performance in Experiment 1 involved item 

specific interpolation rather than interpolation based on mean responses. 

Interpolation, as measured in a FL task uses the mean response given to a new item; 

therefore, it is possihle that people arc not inferring a specific response value, but 

rather, the distribution of errors cen tered on the correct response. The examination 

of first -presentation performance in Experiment 1 used a stricter criterion 

(right/wrong), therefore suggesting that item speci fi c interpolation can occur within 

AI. 

Four observations from Experiment 1 support the position that AI and FL are 

similar tasks. First. the shape of the learn ing curve was similar to previous work in 

both AI and FL; performance improved quickly, then leveled off at a suhoptima l 

level. Second, by changing the dependent measure, the data mimic the patterns 

found in both AI and FL. Third, accurate responding to novel items suggests that 

participants can usc knowledge about previous items to interpolate. Finally, 

exposure to it particular tnl ining set can affect how people respond to new items 
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2.2 Experimen t 2 

2.2.1 Purpose and Predictions 

In Experiment I the nurnber of items was increased from Phase I to Phase 2 

by including intermediate items. In Experiment 2 the numbcr of items from Phase 1 

to Phase 2 WdS again increascd, however, the new items werc stimuli that arc 

smaller and larger than the Phase 1 items. Expanding thc stimulus set in this way is 

analogous to a FL task where participants must extrdpolate above and below the 

training range. In addition to changing how the set-size is increased, Experiment 2. 

altercd the stimulus spacing. The diamcterof the stimuli in Experiment I increased 

by a constant (10 pixels), in Experiment 2. the diameter of the stimuli increased 

exponentially (increasing by 30%). Exponential stimulus spacing may be 

intcrpreted as a logarithmic function bctween stimulus magnitude and response 

magnitude, assuming the psychological spacing of the responses is linear and there 

is a linear relationship between the stimulus physical magnitude and psychological 

magnitude. 

Thirteen different stimuli were used in Experimcnt 2 comparcd to the 14 ill 

Experimcnt 1. Although the number ufstimuli was different in Experiment 2, lLsing 

13 items allowed the numberoftraining items to be the same as Experiment I (7) 

and allowed an cqual number of upper and lower extrapolation items, 

The purpose of Experiment 2 was to examine an AI task where the range of 

stimuli is increased by including extrapolation items. Similar to Experiment !, 

performance was analyzed from both an AI pcrspective and a FL perspective. It was 



predicted that both a bow·effec t and a set·size effect would be observed when 

proportion correct is examined. Mean responses to stimuli should follow a linear 

pattern. 

The effect of practice on Phase 1 items cannot be answered definitively with 

the current design because the effect of practice is confounded with stim ulus 

mClgnitude. Instead, th e effect of prClctice will be addressed qua lita tively by 

examining the overall pattern of accuracy in Phase 2 

2.2.2 Melhod 

2.2.2 . t Design 

Experiment 2 was a within-subjects design, the vClriClbles of interest were 

stimulus magnitude (13 different stimu li) and Phase (Phase 1 and Phase 2). Ph;lse 1 

used the seven stimuli from the middlcof the stimulus set; Phase 2 used all 13 

stimuli, therefore, each phase could be examined separately to determine the effect 

uf stimulus magnitude on performance. Also, accuracy for Phase 1 items cou ld be 

examined in a small set context (Phase I) and in a large set context (Phase 2) 

There are several confounds that occur wi th this design, for example, the 

order in which Phase 1 and Phase 2 was presented is not counter-balanced. Also, 

because only middle items arc used as training items, stimulus magnitude is 

confounded with training. However, the purpose of Experiment 2 was to expand the 

stimulus set in a way that mimics Fl. and to approach the analysis from hoth an Al 

a nd <l FL perspective. Therefore, the confounds that exist in Experiment 2 are the 
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same confounds that exist in a typical FL task. Because the present research is 

exploratory these confounds are not fatal to the current objectives 

2.2.2.2 Participants 

Twenty undergraduate students (8 males and 12 females) were recruited 

from Memorial University. All part icipants gave their informed consent before 

participating in the experiment. The mean age was 21.1 years (SD = 3.0) 

Participants were paid $10 for their time. The experiment took approximately 30 

minutes. 

2.2.2 .3 Stimuli 

The entire stimulus set consisted of 13 ci rcles. The diameter of the circles 

ranged from 30 pixels to 699 pixels, with the diameter of each circle increasing by 

30%. Each circle was given a numeric label (1-13) corresponding to its ordinal 

magnitude. 

2.2 .2.4 Procedure 

Experiment 2 followed the same general procedure as Experiment I with the 

following exceptions. In Experiment 2, the number of items was increased in Phase 

2 by adding extrapolation items. In contrast, Experiment 1 increased the number of 

items by adding interpolation items. Thirteen stimuli were used in Experiment 2 

instead of 11 in Experiment I, and the Experiment 2 stimuli increased in diameter 

geometrically instead of linearly. 



2.2.3 Result s 

The alpha level wa:>:>et at .05 for all :;tatistical tests. When the sphereicity 

assumption was violated. th e GreenhOll se-Geisse r correctio n was used. a nd the 

adju:;ted degrees offreedom reported. 

2.2.3 .1 Abso lute Id e ntificat ion Ana lys is 

2.2.3 .1.1 Phase 1 

Accur<lcy for Phase 1 was asses:;ed using 01 one-way, within-subjects ANOVA 

with seven levels representing the seven Phase I stimuli. The dependent v;u'iable 

was the proportion of correct responses. Participants were mo re accu rate when 

responding to end items compared to middle items (sec Figure 7). There W<lS a 

sign ificant effect of stim ulus magn itude (F(6. 114) = 16.33. MSt: = 0.027, P <: .00 I). 

The quadratic trend was significant (F( 1.19) = 83.69, MSF: = 0.026, p <: .00 I). 

I'h:.w I I'l'rfurrmuu; l ' 

F(""rc7: Pro)lOrtion correct in Phase 1.lsafunctionofst i mll l usm<l~nitut1e, Errorilal"sshowthe 
~!all{!ar<1 crrorof!hc mcan 
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2.2.3. 1.2 Pha se 2 

/\ccuracy in Phase 2 was assessed using a one-way within-subjects ANOVA 

with 13 levels representing the 13 stimulus magnitudes. The dependent variable 

was the proportion correct. There was a significant effect uf stimulus magnitude 

(F{12. 22S) = 14.71. MSE = 0.02S. P < .00 1. As in Phase I. the quadratiC trend was 

significan t (F(1. 19) = 47.77, MSE = 0.07.p < .001). More interestingly, items that 

were edge items in Phase 1 were responded to more accurately than would be 

expected if accuracy was a simple U-shaped function of stimulus magnitude. Instead 

of a simple U-shaped function. the advantage heJd by the Phase 1 edge items 

resulted in it "duuble-bow" effect (see FigureS). Th is pattern was significant. as 

evidenced by a sixth-order trend (F( 1, 19) = 10.25. MSF. = 0.033, I' = .005). 
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In order to confirm thJt the d<lt<l demonstrClte Cl set-size ellett, Cl 7 (Stilllulus 

MJgnitude) x 2 (PhJse) within-subjects ANOVA W<lS conducted. This analysis 

compared performance on the seve n Phase 1 items to performance on the same 

items when they were seen in Phase 2. The dependent variable was the proportion 

correct. 

The da ta demonstrate a set-size effect: when the items were presented in the 

context ofa larger set, performance dropped from M = .71 (Sf = 0.025) to M = .529 

(Sf = 0.012, F( 1,19) = 25.13, MSf = 0.091, P < .00 1). As in Experiment I, there was a 

significa nt effect of Stimu lus Magnitude (F(6,l11) = 10.92B, MSE = 0.031.p < .00 1) 

I\veraged over phClses, performance still showed a bow effect (quadratic trend: 

F( 1,19) = 54.218, MSE = 0.034, P < .001). 

Figure 9 displays the proportion correct as a function of Stimulus Magnitude 

for both PhJse 1 and Phase 2 Jnd shows thJt increasing the set-size reduces 

accuracy more fo r the Phase 1 edge items than the middl e items. Increasing the set­

size did not hurt accuracy equally for all stimulus magnitudes; the Stimulus 

Magnitude x Phase interaction was significant (Ff6, 1141 = 7.6 1, MSf·;= 0.02, P< 

.0(1). 
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2.2.3.1 Function L.ea rning Analysis 

2.2.3.1.1 Ph ase 1 

Learning in Phase 1 was assessed using a one-way, within-subjects AN OVA 

with 7 levels, representi ng seven lD -trial blocks. The dependent variJble was the 

absol ute difference between each parti cipant's respunse and the correct respo nse 

(averaged over blocks ofl0 trials). Figure 10 plots mean absolute errors as a 

fUllction of training block a nd shows a steady reduction in errors across blocks. In 

cuntr<lst to Experiment I. learning in Experiment 2 ap pears to be a slower, more 

gradual process. There was a significant effect of training block (P(6, I 11) = 2.56, 

MSt: = 0.026, P = .023}. Errors deaeased frum the firs t block of tr ials (M = 0.105, 
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SF.= 0.017) to the last block of trials (M = O.2LS,SE= 0.(32). The linear trend wa s 

significa nt (F(1,19) = 8.53 , MS£ = 0.01, P = .009) but nu higher order trends were 

significa nt (a ll Fs < 1). 

E 111 
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f"i.q"reIO: Meanailso[uiccrrorsasafunctionoftrainingh[orks. Errorb"r~sh"w 
Ihcsl"",ldrdcrroroflhcltlc,"". 

2.2.3.1.2 Ph ase 2 

Perfo rmance in PhJse 2 WJS analyzed as ifit werea FL task by calculating the 

mean response for each stimulus magnitude. Figure 11 plots the me;.!n respunse for 
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each item as a function of stimulus magnitude. When the identification task is 

plotted as if people were learning a conceptual 5-1{ relationship, p<lrticipants <lppear 

tn he very accurate on average. 

The direction and degree of error was analyzed for Phase 2 Each 

participant's mean signed response error for each stimulus was calculated. The 

me<ln signed error was used as the dependent measure in a one-way, within-

suhjects ANOVA with 13 levels for the 13 stimuli. Figure 12 shows the mean signed 

error plotted as a function of stimulus magnitude. all stimuli, with the exception of 

the smallest, tend to be underestimated. The U-Shape of Figure 12 illustrates better 

accuracy for the end items compared to the middle items. There was a significant 

effect of stimulus magnitude (F(4.69, 89.04) =: 3.902, MS£ =: 0.337, p =: .004). 
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The ability of participants to infer the identity of novel items was explored by 

looking at the responses for the first presentation of an item in Phase 2. The 

percentage of participants who were correct on an item's first presentation is 

plotted as a function of stimulus magnitude, the number of correct participants 

averaged across all stimu lus presentations is also plotted (see Figure 13). The main 

point of interest is that performance on the first presentation of an item is similar to 

mean performance. When presented with new items, there is some indication that 

pal" t icipants arc able to correctly infer the correct response for those items, 

es pecially the smallest and the largest items. 
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2.2 .4 Discussion 

Experiment 2 demonstrated both a set-size effect and a bow-effect typical of 

AI, however, the bow·effect in Phase 2 was not a simp le U-shaped function. 

Specifically, edge items from Phase 1 maintained an advantage when new items 

were added to the ends of the stimu lus I·ange. Dodds et al. (20 11) also found a 

modulated bow-effect using an 1\1 task, and found that items presented more 

frequently were responded to more accurately. The results ot Experiment 2 cannot 
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differentiate between the effect of additional stimu lus presentations and the role of 

organization on performance. Receiving initial training on the middle items may 

allow participants to organize the stimul i into chunks (e.g., small. medium, large) 

and therefore facilitate performance (Miller, 1956; Seigal & Seig<Jl, 1972). In 

Experiment 1 found there was no advantage for items that had been seen in Phase l, 

perhaps because the structure of the Phase 1 items (every other item) did not al low 

effi cient organization of the stimulus set. 

When performance was examined using FL measures, several interesting 

patterns emerged. Similar to Experiment 1, the mean response to a stimulus 

appea red to be very accurate and followed a linear pattern. However, the direction 

of errors did not follow what is typical ofFL. There was no indication that the 

la rgest or the smallest items were underestimated. 

Comparing the learning rate in Experiment I and Experiment 2 (although 

qualitative) shows an interesting parallel between til and FL. When the S- f{ 

relationship was linear (Experiment 1), participants quickly reached asymptotic 

performa nce. In contrast, when the S-R relation ship was non-lineilr (Experiment 2) 

performance improved linearly across training blocks. Similarly, within the FL 

literature, participants arc able to leilrn linear functions more quickly than lIon­

linear fUlictions. However, it is not possible to say that the difference in learning 

between Experiment 1 and Experiment 2 is due to a different functional relationship 

between the stimulus and response items. It is just as likely that the difference is 

due to the stimulus spacing alone and not the S-R relationship. 
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SimilJr to Experiment 1, the number of participants who were correct when 

presented with J novel stimulus was similar to the mean number of participants 

who we re correct JCross Jil stimulus presentJtions in Phase 2. This result suggests 

that pJrticipants CJn infer the identity of novel items, but the <lbility to infer J novel 

item's identity is most impressive for the Phase 2 edge items. The probability of a 

participant being correct on the firs t presentation of items between the Phase 1 

edge and the Phase 2 edge is not much different from chance performance if it is 

assumed that participants know that the item is smaller (or larger) than the Phase 1 

edge items (i.e., probability of guessing correctly is lout of J). Although the resu lts 

of Experiment 2 do not speJk to whJt information participants Jre llsing when 

responding to novel items, the main point is th at pa rt icipants know something that 

allows them to be relatively accurate when responding to novel items. 

Experimen ts 1 and 2 explored an AltJsk from the perspective of a FL task 

rhe goal of the two experiments was not to provide definitive evidence that ,' I and 

FL involve similar processes, hut rather, the intention was to approach the an;llysis 

of AI data from different perspectives, and determine whether the data I11Jtched 

classic patterns in theA I and FL paradigms. 

Not surprisingly, how performance is measured plays a Significant role in 

how accurate participants appear to be. The mean response can look very accurate 

and follow a linear trend (typical of Fl.) even when proportion correct displays 

r·elatively poor performJnce and follows J bow pattern (typicJI of AI). Therefore, 
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different accuracy measures in FL and A[ probably account for the different [evels of 

accuracy in the respective tasks. 

[n FL. responding accurately to novel stimu l i is taken as evidence that the 

relational concept has been learned. In Experiments l and 2. novel stimuli were 

responded to relatively accurately indicating that participants can (at [east to some 

degree) interpolate/extrapolate in an AI task. 

FL studies show that non·linear functions arc learned more slowly than 

linear functions (llusemeyer. et al.. 1997). When the relationship between stimulus 

magnitude and response magnitude was linear (Experiment 1) accuracy improved 

quickly and leveled off. [n contrast. when the SoH relationship was nonlinear 

(Experiment 2). accuracy improved gradually across training blocks. 

2.3 Experiment 3 

2.3 .1 Purpose 

Experiments 1 and 2 followed a general Al procedure. Experiment] used a 

procedure more simi lar to FL than AI. FL involves participants learning the correct 

S-H relationship during a training. during which feedb'lLk is given. At test. 

participants must respond to novel stimulus values, and arc not given feedback. Al 

tasks typically provide feedback throughout the experimental session. [ f feedback is 

withheld. an A[ task becomes absoluteJudgmellt rather than absolute identi[iClltioll 

(see Neath et al.. 2006). For the sake of consistency, the term AI will he used to 

describe tasks that focus on item identi ty (even though feedback will not be 
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provided during testing). The term FL will he used to describe tasks that focus on 

learningtheS-R relationship. 

The goal of Experiment 3 was to di t·ectly compare AI performance with PI. 

performance using a FL type procedure. The AI/FL compal"ison was made by 

manipulating aspects of the task participants performed. A Significant difference 

between AI and FL is the strategy used when completing the tasks. Orienting 

participants toward ei ther FL or AI strategy was done by providing participants 

with instructions highlighting ei ther the S-R relationship (FL instructions) or 

highlighting item identity (A I instructions). In urder to strengthen the 

t·clational/item processing distinction, FL participants responded by moving a slider 

underneath the response value they wanted, whereas AI participants clicked a 

t·esponse button. The type of instructions and the response method represent the 

ge neral variable Task (FLorAl) 

Another difference hetwcen AI and FL is the continuous response scale used 

in FL compared to the discrete/ordinal response scale of AI. The response scale in 

Experiment 3 used either letters or 3-digit numbers as response labels. Letter labels 

were mean t to represent discrete I·esponse categories, whereas, numbers were 

intended to make the response scale appear more continuous. Experiment J 

m<'lIlipulated these two variables in a 2 (Task; FL or ,\I) x 2 (Hesponse Label; 

I.etters/Numhers) between-subjects design. Therefore, the FL/Number cell is a 

good approximation of a typical FL task, while the !\I/I-etter cell approximJtes J 

typical AI task. The procedure folluwed a general FL methodology: participants 
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were trained on a subset of items from the midd le of the range and given feedback, 

then, participants were tested (i.e., no feedback) on the training items, interpolation 

items, a nd upper and lower extrapolation items. 

2.3.2 Pre d ictio ns a nd Des ign 

The experimental design was a 2(Tilsk; FL/AI) x 2 (L.lbel; Letter/Number) 

facto ria l. As previously noted, the FL/Number cell was the best approximation at a 

FL task, whereas, the AI/I.etter was the best approximation of an AI task. Therefore, 

given the high performance levels found with FL and the poor performance 

associated with AI, participants in the FL/ Number condition are predicted to be 

more accurate than participants in the AI/Letter co ndition 

If both FL instruction a nd a continuous response scale improve accuracy and 

instruction has a stronger effect, then, the FL/Number group should show the 

highest accuracy, followed by FL/Letter, followed by AI/Number, followed by 

AI/Letter. On the other hand, if the continuous response scale is a necessal·y 

condition for il FL instruction advantage, then the FL/Number group shou ld show 

the highest accuracy and there should be no difference between the olher groups 

PI·edictions regil rding ilccurilCY can be examined for both the training phase and the 

test phase. If there is an advantage for the FLgroups in the training ph;lse (when 

feedback is provided) it would provide evidence that AI and FL strategies a rc 

inherently different because feedback should make the responses of FI. a nd AI 

groups similar. Alternatively, the advantage of a relational (i.e., FL) strategy may 

only im prove performance for new items. 
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One of the questions of interest is the degree to which participants can use 

previous experience to respond to new stimuli. The FL instructions should impruve 

extrapolation performance compared to Al performance. If extra po lation 

performance depends on the response scale being perceived of as a continuous scale 

then the Fl.jNumber group should extrapolate better than the rL/ Lelter group 

However, if extrapolation can occur wi th a discrete ordinal scale then extrapolation 

performance shou ld be similar in the FI./Number and Fl./I.etter group 

As well as looking at how the Task and Hesponse Label variables affect test 

phase accuracy, the data wi ll be ana lyzed to look for classic AI effects, namely the 

bow-effect. the set -size effect, and asymptotic learning. If FL and AI represent two 

comp letely different kinds of tasks, th e AI effects should appear only for the AI 

group, and, these effects should be most rubust for the AI/Letter group. Ilowever, 

both AI and FI. probably require some of the same processes and therefore an 

attenuation otthe three AI effects in the Fl. groups is the most likely scena rio. 

2.3.3 Method 

2.3.3.1 Partidpilnts 

Fifty-two students (36 female and 15 male) from Memorial University of 

Newfoundland participated in the experiment. The mean age was 19 years old (SD= 

1.59). Part icipants were pa id $ 10 for participating, and the experiment took 

approximately 45 minutes. Participants were randomly assigned to groups and 

informed consent was ohtained from all participants before the experiment began. 
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2.3.3.2 Stimuli 

Stimuli were 25 vert ical. blue lines measuring <) pixels wide. The shortest 

line was 35 pixels long and the longeslline was 765 pixels long. increasing by a 

constant 30 pixels (approximately 8mm). Lines were presented within a light grey 

rectangle (resembl ing an unmarked scale) 30 pixels wide and 800 pixels high. 

centered horizonta l ly and positioned 3 19 pixels from the bottom of the screen. The 

distance between the top of the longest line and the top of the scale was 35 pixels. 

equal to the length of the shortest line. This control means the range of possible 

(but not presented) stimulus values wa s equal above and below the presented 

stimulus set. All lines were anchored at the bottom of the rectangle and extended 

upward. 

Seven stimuli from the middle of the stimulus range were llsed as training 

items. The training range was from stimulus 7 (218 pixels long) to stimulus 19 (583 

pixels long). Alternating stimuli were used from the traini ng range provid ing seven 

unique train ing items. The remaining six items from the training range were used 

as interpolation test items; the six items below the training range and the six items 

above the training range were used as extrapolation items. 

2.3.3.3 Response Scales 

In order to strengthen the task manipulation. twu different response 

procedures were used. When the instructions emphasized the S-R rela t ionship (i.e .. 

FL instruction s), participants used the mouse to move a slider along a horizontal 
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track (frum left to right) until it was positioned under the desired response label. 

Responses were registered <lfter the particip<lnt released the mouse button 

When instructio ns emphasized item iden tity li.e .• AI instructions), 

participants made their response by clicking a respo nse button. Response buttons 

were contiguous, ligh t grey in colour, and <lrranged horizontally (in ascending order 

from left to right). The length of the response scale was the same for both response 

methods (approximately 4-75 em), and the width ofa hutton was equal to the width 

of slider range dedicated to each response label (approximately 19rnrn). Figure 14 

illustrates how the stimuli were presented and the response method 

The labels used on the response scale were either the letters II through Y, or 

numbers co rrespo nding to a linear function. Response labels were printed in a 

black 15pt. fOIlt. The use of letters should induce participants to view the responses 

as discrete categories, whereas numbers should m<lke the response scale appear 

more conti nuou s. 

Llecause there <Ire no numeric stimulus values, applying numeric response 

labels is arbitrary for a linear function. The numeric labels were b<lsed on the line<lr 

equatio n y= 1.7x -t 91 with the 30 pixel difference hetween stimuli representing 10 

theoretical units. The lowest response label was 108 and labels increased by 17, to 

<I maximum of 5 16. 
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fiyw,,'14: Screensho[sfo["theAI/Lcttcrco lldition(lOp)andthcFL/Nu lll bcrrondit io" 
(bottom) 

2.3.3.4 Procedure 

,\n iMac computer was used to present stimuli and collect responses. 
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Participants we re arbi trarily assigned to one of four experimental cells froillthe 2 

(Task: Flo/AI) x 2 (Label: Letter/Number) design. 

2.3.3.4.1 Instructions 

Participants in the AI conditiun received instructions that emphasized the 

memorization of stimulus magnitudes. AI participants were told that the purpuse of 

the experiment was to determine how well peop le could remember simple stimu li. 

IJarticipants were told that they would sec lines of different lengths and their task 

was to remember the correct label for e<lch line length. 

Participants in the Flo condition received instructions that emphasized the 

relationship between line length and response magnitude. The cover story for the 

FL/Number cundition was that a greenhou se owner had determined there was a 

relationship between the amount of fertilizer a plan t receives and how ta ll the plant 

grows. The amount uffertilizer was represented by the length ufthe line, and plant 

height (in centimeters) was the numeric response label. Pa t·ticipa nts were told that 

their task was to learn the relationship between fertilizer and height 

Because there is not an in tuitive relationship beLween amou nt of fertilizer 

and a letter, participants in the FL/Letter condition received slightly diffe re nt 

instructions. FL/ Letter participants were tuld that the greenhouse owner had 

developed a system for ca tegorizi ng plants based on how much fertilizer they 

requ ired and the categu ries were represented by the letters 1\ through Y. 

Participants were told that their task was to learn the relationship between the 

amount of fertilizer and the category label. 
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All participants were told that there were two phases to the experiment and 

they would see a subset uf stimuli during Phase 1 and be given feedback. They were 

<llso told that in Phase L they would see al l of the items <lnd they would not be given 

feedback. 

The experimenter answered any questions and made Sllre participants 

understood how to make their responses. 

2.3.3.4.2 Phase l / Tra ining 

The seven training items were presented IS times each in random order 

(without replacement). 

After the participant selected his/her response, feedback was given. If the 

participant was correct, the words "Correct! The correct answer is" with the unrect 

response label <lppeared, printed in green. If the participant was incorrect, the 

words "Incorrect. The correct answer is .... with the correct response label, 

appeared printed in red. The feedbac k was presented in a grey box that appeat"ed 

near the bottom of the screen. 

For the conditions that used the slider response method, the slider remained 

in the response position the participan t had chosen while feedback was presented. 

For conditions that used response buttons, the participant's response remained 

highlighted during feedback (a light blue highlight appear around the response 

button when that buttun was <:hosen). The letters (ur numbers) of the correct 

response appeared in green on the response scale whi le feedback was presented 

Participants clicked on the feedback hox to proceed to the next trial. When the 
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feedback button was clicked, the stimulus line disappeared and a 750 ms delay 

preceded the next trial. The slider was reset to the far left, or, the button highlight 

was removed before each tridl. At the end of trai ni ng, a screen appeared providing 

instructions for the test phase, The instructions indicated that participants would 

now see<111 the stimuli and feedback wou ld not be given. 

2.3.3 .4.2 Phase 2 / Test 

All 25 items were presen ted 10 times each in random order during the test 

phase. When a respunse was made a grey box appeared at the bottom of the screen 

with" Click to Continue" printed in it. Participants clicked this box to proceed to the 

next trial. Upon completion of the test phase, participants were asked about any 

strategies they used whi le completing the task 

2.3 .4 Resul ts 

Data from twelve participants were excluded from the analysis. One 

participant withdrew beFore completi ng the experiment. One partici pant responded 

in a highly idiosyncratic manner that appeared almost random. Nine participants 

were excluded because they reported explicitly limiting their responses to every 

other response option in the tes t phase. The training phase consisted uf every other 

item from the middle of the set. It appears as if these nine IMrticipants extrapolated 

the same pauern throughou t the test phase, despite being told that the test phase 

contained all of the ilems. Oflhe participants who explicitly constrained their 

I'esponses, five were from the AI/Letter group, one was from the AI/Number group, 

one was from the FL/L.etter group, and two were from the FI./Nulllber group 
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Although this kind of responding may be interesting in itself, I limited the analysis to 

participants who were at least open to using all the response options in the 

extrapolation phase. One additional randomly selected pa rticipan t was removed in 

ol"(ler to equate the number of participants in each condition (10 in each cell). The 

final sam ple was 28 female (Mean age = IB.9,SD = 1.8) and II male participants 

(Mean age = 19.1, SD = l.6; one participant's demograph ic information was lost) 

Responses that were more than six response categories away from the 

correct response were removed from the analysis. This critcrin n was set with the 

inte ntion of including the tull range of errors, while attempti ng to minimize noise 

from accidental responses. There were 84 responses (ou t of 15620 ) removed using 

this criterion. The alpha level was set <It .05 for a ll st<ltistical tests and the 

GreenhOllse-Geisser correction was used when the sphericity assumption was 

violate 

2.3.4.1 Phase 1/ T ra ining 

It was expected that the edge items of the training range would be responded 

to more accurately than it.ems from the middle of the training range. However, it 

was also expected that orienting participants toward a relational strategy wou ld 

change the shape of the bow effect, namely, the bow effect was expected to be less 

pronounced for participants receiving FL instructions compared to participa nts 

receiving Al instructions. especially for numeric response labels 

Performance on the training phase was first assessed by calculating the mean 

.lbsol ute deviation (AD) of a I'esponse from the correct respollse for each st imul us 
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magnitude. As can be seen in Figure IS, all four groups show a bow-effect, with 

participants being more accurate in responding to the edge training items. A 7 

(Stimu lus Magnitude) x 2 (Task) x 2 CI{esponse Label) mixed-model ANOVA was 

conducted to determine jf either the response labels or how the task was framed 

affected accuracy. 

There was a sign ifi cant effect of Stimu lus Magnitude on accu racy (F(6, 2 16) :: 

8.24, MSJ:: :: 0.153, (J < .0(1). Participants were more accur;Jte when responding to 

items from the edges of the training range compared to items from the middl e, as 

evidenced by a significant quadratic trend (F(I, 36 ) :: 21.75, MSE:: O.27!i, (J< .0(1). 

Contrary to what was expected, Stimulus Magnitude did not interact with either 

Task or Kesponse Label, nor was the 3-way interaction significant (all Fs< I). 

Neither the type of task C"'< 1) nor the type of response labels (F(I,36):: 

2.93, MSE :: 0.623, (J:: .(96) had an effect on accuracy. Additionally, the Task x 

Response label interaction was not significant (F( 1,36) = 1.05, MSE 0.623, (J:: 

.312). 

The results from the training phase indica ted that the type uf instructiuns 

given to participants did not modulate the bow-effect during training. Therefore, 

when feedback is provided, focusing a participant on the relationship between 

stimulus magnitude and response magnitude does not affect accuracy. 

The other classic find ing in AI is the set-size effect: the finding that items are 

t·esponded to more accurately in the con text of a small set than in the context of a 

larger set. In order to determine if a set-size effect occurred in Experiment 3, 



performance on the training items in the training phase was compared to 

performance on the same items in the test phase, A set-size effect would appear as a 

decrease in accuracy from the training phase to the test phase for the training items. 

Figure 16 shuws that when the Phase 1 items were seen in Phase 2, accuracy 

for the Phase 1 items decreased. However, the drop in accuracy in Phase 2 was not 

eq ual fo r all stimuli, specifically, the switch to Phase 2 was most detrimental for the 

Phase 1 edge items. A 2 (Phase) x 7 (Stimulus Magnitude) x 2 (Task) x 2 (Label) 

mixed-model ANOVA was conducted to determine if accuracy decreased from 

training to test. and, whether either instructions or responses labels mod era ted the 

drop in ilccuracy. The dependent variable was the AD scores 
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There was an overall set-size effect. Errors increased from M = 0.92 (Sf = 

0.047) in the training phase to M = 1.207 (SI:: = 0.(83) in the test phase (F(I,36) = 

17.29, MSE = 0.665, P < .(01) . As is typie<.d of the set-size effect. increasing the 

number of items did not affect all stimulus magnitudes equally, as evidenced by the 

significa nt Stimulus Magnitude x Phase interaction (F(453, 162.(4) = 12.25, MSf = 

0.271, P < .(01). Figure 16 shows that increasing the number of st imuli increased 

error for the edge itcms, leaving the middle items relatively unaffected. 

The three-way interaction between Phase, Stimulus Magnitude and Task was 

nut Significant (F( 4.53,162.(4) = 1.89, MSF. = 0.271, fJ = .106), nor was the three­

way interaction between Phase, I{esponse Label and Task (1-"{I,36) = 1.5, MSE = 

0.271, P = .229). Therefore, the overall set-size effect was not a ffected by how the 

participants were told to approach the task, or by the response labels used. 

Neither thc type uf response label (F(1,36) = 2.48, MS£ = 1.897, P = .124) nor 

the type of task (F < 1) had an overall effect on accuracy. Also, the ma in elTect of 

St imulus Magnitude was not significant (I-" {3.B2, 137.5'J) = 1.89, MSE = 0.555. P = 

.11ll) Nu other effects were significant (all other Fs < I). 

Overall, the data show that when the number of items a pal·ticipant Illu st 

respond to was increased accuracy became worse. Finding a set -size effect in 

Ex periment 3 is important because the procedure of Experiment 3 was more similar 

to a FL experiment than an AI experiment, yet, the data revealed a classic ,'I effect. 

It is worth pointing out that the set -size effect in Experiment 3 confounded set-size 

with feedback and therefore should be interpreted with caution. The point of the 

69 



set-size analysis was to provide preliminary evidence that a set-size effect is 

pl<lusible with a FL task. 

I . ~ 

1.1. 

" 1.-' 

"li",,,lu, 'h:.;uihl .. k 

Fiyure 16: Me;!n "bsoilite c rrors for tr,liniog items in both the Training;!nd 
Tcstllhascs<lvcral!cdacross l!rouus. Errol· hars sh"wthestarulan!crror"f 

So far, orienting participants toward eit her relationa l or item processing 

appears to have no effect on performance. Because the current research is 

exploratory, it is worthwhile to thoroughly examine the patterns of performance. 

rhe mean absolute error is useful for measuring <tccuracy in general, 

however, absolute devi<ttiuns may ohscure directional trends in the data. In order to 

look at the direction of errors in Ph ase 1, the me<lll signed etTOrW<lS calculated for 

each stimulus. The signed error was used as the dependent measure in a 7 

(Stimulus Magnitude) x '2 (Task) x '2 (Lahel) mixed model AN OVA. 
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There was a signiticant effect of Stimulus Magnitude (F(3.53, 127.23) = 12.83, 

MSE = O.4B, P < .(01). Signcd errors werc more negative for the larger training 

items tha n fo r the smaller t rain ing items. The linear trend was sign ificant (F (1 .36) 

= 37.13, MSE = 0.448, P < .001). The quadratic and cubic trends were also signi ficant 

(quadr<ltic: P(1,36) = 4.52, MS£ = 0.28, P = .04; cubic: F(1 ,]6) = U.3 1, MSH : 0.1 7, p = 

.007). Stimulus Magnitude did not interact with Response I.abel (F(3.53, 127.23) = 

1.23, MSI:: = 0.433, P = .3(2), Task (F < 1), or the Hesponse Label x Task interaction 

(F < I) 

There was a main effect for Task ( F( 1.36) = 8.96, MSE = 0.877, P = .005). 

Si gned errors were more negative in the FL condition (M: -0.255 . SE= 0.079) than in 

the Al cundition (M= 0.08, SH= 0.(79). Thc main effect fu r Hcspu nse bbel was also 

significant (F(1,36) = 4.82, MSE = 0.877,p = .035 ) with signed errors being more 

negative for the Number I.abel group (M = -.021.5£ = .079) compared to the Lcttcr 

Labcl group (M = 0.35, SE =0.079) . Il owever both main effects were moderated by a 

significant Task x Label interaction (F( I,36) = 5.72, M5£ = 0.877, P = .022). 

In ol'del" to determine the n<lture of the Task x Label interaction, the 

difference between the Letter group <Jnd the Number group wa s examined 

separately for both task condit ions. If participants performed a FL task with 

numeric labels, responses were more negative (M = -0.512, SD = 0.32) than if they 

performed a FL task with letter labcls (M = 0.002, SD = 0.4]9; t{lS) = 2.99, P = .0(8). 

However , if participants performed an AI task, the response label s did not Imke a 
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difference (Letter: M '" 0.069, SD '" 0.375; Number M '" 0.091, SD 0;; 0.251; t (18) .= -

0.154, P '" .079; see Figure 17). 

rr : tiu i Jl~ l' lw\(": .'i i !!1H' ~1 Erm r 

"" ;,,, ,,J,,, .\ I" ~ lIjl"d ,· 

FiiJlln: 17, Me;,n signed errors in theTrJining Ph;osc. Error b;o rs ~h"w the 
sl.md"ni errorofthemean 

The third analysis for the training phase examined learning over trials. The 

105 training trials were grouped into 7 blocks of 15 trials each. The mean absolute 

error was calculated for each block and used as the dependent measure. ,\ 7( LlIock) 

x 2 (Task) x 2 (Itesponse La bel) mixed-model ANOVA was used to determine if 

either instruct ions or response label affected the rate oflearning. 

Figure 18 illustrates learning over blocks of trials. (;enerally, errors decrc;lse 

across training blocks, wi th the most improvement early in tra in ing. The meJn 
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error fOl·the first block W<lS 1.375 (5£= 0.078) and decreased to 0.737 (SF. = 0.057) 

in the fina l hlock (F( 1.36, 156.85 ) = 19.5, MSE = 0. 158, P <: .0 1; Li nedr Trend: F(I, 36) 

= 11.05, MSt: = 0.218,p <: .(01). The quadrat ic <l nd the 5th ord er tre nd s were also 

significant (quadratic (F(1 , 36) = 26.4. MS£= O.077,p <: .001; order 5 F(1, 36) = 1.76, 

MSE = 0.069. P =.036}. 

I .l'arn iu!!: rr" i u in~ Ph" ", 

, 
IU".-I. 

Fin urt· W ; Me<l!l<lhsoiutet'rrors;Jsa furl ctinn nftrJininghlnck (averagell nv erallgroups). Errol 
hars showtllt'sta"darderroroftht'Illt'" " 

BeGluse fcedbdck was given throughout Phase I, Phase I can be thought of 

as an identification experiment with 7 stimu li and 25 possible responses. Because 

the number of allowable responses is greater than the number of stimuli, Ph ase I 

was different fro m standa rd AI, yet, typical AI effects occurred. 

Participants respon ded to items from the edges of the Phase 1 sel more 

;lccurately than to items from the middle of the set, yielding the bow-shaped pattern 
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typical of AI. An important point is that, in Experiment 3, the bow-effect occurred 

eve n though participants had Jccess to responses thJt are beyond the edges of the 

stimulus set. Because participants cou ld make errors in both directions tor the 

sma llest Jnd IJrgest Phase 1 stimuli, the bow-effect cannot he due solely to the 

limited response options for edge items. However, even though smaller and larger 

responses were availahle, participants may have learned the set of valid n.'sponses 

and explicitly ignored the other response options. Therefore, although response 

options for the edge items were not objectively li mited, they may be subjectively 

limited. 

Participants seemed to know the set of possible responses, and restricted 

their responses Jccurdingly. For example, incorrect responses to Stimulus 11 will 

usually be Response 9 or 13 (i.e., valid Phase 1 responses), rather than Response 10 

or 12. In order to look at this pattern, I calculated the number oftimes each 

response was used incorrectly as a proportion of the lotal number of incorrect 

res ponses (calculated for each participant, then averaged). The dJta showed a SJW­

tooth pattern for responses across the training range (see Figure 19). Additionally. 

when the proportion of incurrect respunses was calculated fo r only the first SO triJls 

a very similar pattern emerged. The similarity between the pattern of errors on the 

first SO trials and pattern of errors on all trials suggests that pJrticipants quickly 

learned what response options were valid and limited their responses accordingly. 
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F'Yllre 19: Proportionofincorrcct responses in Phase 1 for each respollsccatl'gory. 

2.3.4.2 Phase 2j Test 

The ahility of participants to correctly infer the iden tity of novel stimuli was 

assessed hy examin ing transfer performance. It was expected that ifparticipants 

receive instructions th<lt focus on the relationship between stimulus and response 

magnitudes, they would be able to use this information to accurately respond to 

novel items. On the othe r hand if the task is framed so lhat participa nts focus on the 

identity of individua l items, transfer performance will be impaired 

The mean response was calculated for each stimulus magnitude. Figure 20 

shows the mean response as a funct ion of sti mu lus magnitude for the four 

experimental cond itions. For all four cond itions, mean responses appear to follow a 
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linear pattern with slight under-estimation occurring in the upper extrapolation 

region and slight over-estimation occurring in the lower extrapolation region. 

In order to determine the exact pattern of errors, the mean signed error was 

calculated for each stimulus and used as the dependent measure. A 25 (Stimulus 

Magnitude) x 2 (Task) x 2 (Hesponse Label) mixed-model ANOVA was conducted to 

determine if the pattern of errors differed among groups. 

Stimulus magnitude had a significant effect on performance (F(2.H, 'Jll.51J) = 

50.29, MS£"= 6.794, P < .001). Figure ZI illustrates the pattern of errors; sm;lller 

stimuli tend to be overestimated whereas, larger st imuli tend to be underestimated. 

Stimulus Magnitude did not interact with Response Label (1-'< 1) and the 

Stimulus Magnitude xTask x Response Label interaction was not significant (F(2.74, 

98.58) = I.Z8, MSE= 6.794,p = .286). There was no overall effect of Task or 

I{esponse Label, and the Task x Response LJbel interaction was not signitlcant (all 

Fs< 1). 

The Task x Stimulus magnitude interaction was not significant ( "'(2.74, 

')8.58) = 1.71, MSE = 6.794, P = .171), however, visual inspection of Figure 21 

suggests that the FL group may be more accurate than the AI group for a subset of 

stimuli. 
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Signl'd Errurs Phasl,.' 2 

S timulus .\ Ia:: ni tudc 

Fig !!re 2 1; Mean si ~ned error plotted as a function of stimu lus m<lgnitude for the FL and Al groups 
Error bars s how the st~lItbnt er!'Or of the meall 

Before concluding that the type of task had no effect on participants' 

responses, a second analysis is warranted . The stimuli were grouped into the four 

important regions; lower extrapolation (stimuli 1-6), training items (stimuli 

7,9,11,13,15,17,19), interpolation (stimuli 8,10,12,11,1(;,18), and upper 

extrapolation (stimu li 20-25). A 4- (Region) x 2 (Task) mixed-model ANOVA was 

used to determine if the type of task affected performance differently across 

s timulus regions. This analysis also allows for an examination orthe Stimulus 

Magnitude main effect, with Stimulus Magnitude grouped by region. The mean 

signed error was the dependent measure. 
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There was a significant effect of Region (F( 1.17,55.65) 0:0 111.04, MSE 0:0 1.029. 

(J < .00l). Follow up paired t-tests confirmed the pattern implied by Figure 2 1. The 

items from the lower region (M = O.Y :U, SD = 0.953) weI"e overestimated compared 

to the interpolation items (M '" -O.3')2,SD= 0.818, t(39) = -7.317,p < .00t) and the 

items from the upper region (M = -1.5("SD = 0.1l83) were underestim<lted compared 

to the interpol<ltion items(t(39) = 8.944, P < .001) 

The Region x Task interaction was not significant ("-(1.17, 55.65) = 2.06, MSE 

= 1.029, P =.119, observed power = .318). Therefore, if the marginal Task x 

Stimulus Magnitude interaction implied by rigure 21 is a real effect, the effect docs 

not correspond to the important stimu lus regions. 

The p<lttern of signed errors suggests that people tend to underestimate 

items from the upper region and overestimate items from the lower region, 

reg,lf(lIess of either how the task is framed or the type of response labels. This 

pattern is not entirely consistent with previous FL studi es that found 

underestimation in both the upper and the lower extrapolation regions. 

The signed error (derived from the mean response) provides an estimate of 

the direction of errors, whereas the absolute error provides a more general estimate 

of accu racy. Delosh (1997) used absolute error as a dependent measure and found 

that when participants performed a FL task, there was no bow-effect. However, 

Delosh (1997) was looking for a serial position curve (accuracy plotted as a funct ion 

of when the item was presented) rather than the bow-effect of AI experimen ts 

(accur<lcy plotted as a function of stimulus magnitude). If the tlattening orthe bow 
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effect is a result of how participants approach the task, the bow erfect should only be 

present in the AI Instruction group. 

A 25(Stimu lus Magnitude) x 2(Task) x 2 (Response Label) mixed-model 

ANOVA was conducted with the mean absolute deviation (AD) from the correct 

response used as the dependen t measure. 

The magnitude of the stimulus had a significant effect on accuracy (F(5.61, 

202.85) " 6. IS, MSE" 1.801, P < .00 I). The pattern of errors did not constitute a 

typical bow-effect (quadratic trend, F<l). Figure 22 shows that accuracy took on a 

duuble-buw shape with accurate performance un the middle items as well as the 

typical advdntage for the end items (orded trend, F( I ,36) " 21.59, MSE = 1.321, P < 

.001). 

Stimulus t-,'l agnitudedid not interact with Task (F< I) or Label (F(5.61, 

202.85)" 1.02, MSE" 1,801, P" .109). None of the between-subjects effects were 

significdn t (a l l Fs< l ), nor was the Task x Label x Stimulus Magnitude interaction 

("'(5.61,202.85) = 1.6 1, MSE= 1.804, P" .15). 

The stimuli were grouped according to region (Lower, Traininl;. 

lnterpolation, Upper) and a 4(Hegion) x 2 (Task) x 2 (Label) mixed-model AN OVA 

was conducted. The I{egion x Task x Label interaction was not significant (F( 1.77, 

63.59) = 1.56, MS/:' = 0.379, P" .219) indicating that any potential differences among 

groups do not correspond to the important stimulus regions 

The effect ofHegion was significant (F(I.77, 63.59) = 6.77, MSE = 0.379.p < 

.001). One of the benchmark findings of the FL literature is that interpolation is 

80 



more accurate than extrapolation. Two paired t-tests compared accuralY fo r 

interpola tion items to accuracy for lower extrapolation and upper extrapolation 

items. Interpolation was more accurate than extrapolation in the upper region 

(interpolation: M = 1.39, SD = .448; upper: M = 1.66, SD = .79, 1(39) = -1.964, P = 

029), however, there was no difference between interpolation accuracy and lower 

extrapolation accur<lcy (Interpolation: M = 1.39, SD = .448; lower: M = 1.3,SD = .60:~, 

t(39J = 0.982. P = .166). Therefore, Experiment 3 only partially supported the 

premise that in terpolation is more accurate than extrapolation. 

A cri tical factor may be that participants in Experimen t 3 h<ld to respond to 

bOlh training items and interpolation items at test. Training items were responded 

to more accurately than interpolation items (Tra ining: M = 1.2 1, SD 0.':' W; 

Interpolation: M = 1.39, SD = .448, r(:19) = 6.109, fJ <: .001). 

8' 



Fiy",.e 22: Me,,,, "b~ulute e r -ru r'~ (,lVcr"ged "LrO~S lundit i uo~l plotted "~,, fuoLli"" of 
s t i tnul l ls""'~llitlidc. ErrorbJrsshowthes!Jlldardcrrol·ofthenwJIl. 

When accuracy was scored as the mean absolute error, there was no 

indication that changing how the task is framed affects the pattern of performance 

I'his result disconfirms the prediction that participants given the FL task would 

show an attenuated bow-effect compared to participants give n an AI task. Por both 

groups, there was In <lccuracy advantage for midd le items, resulting in a 'M" shaped 

pattern, not the typicJI bow-s hJpe. 

Uecause feedback was not provided during the test phase, measuring 

performance relative to the "correc t"' response may not provide a complete picture 

of performance. In other words, how consistently a participant responds to J 
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particular item over multiple presentations provides a measure of performance 

rela t ive to a part icipant's subjective $-R mapping 

In order to measure response consistency, the mean respo nse fur each 

stimulus was calculated for each individual participant. The mean absolu te 

deviation for each stimulus was calculated relative to a participant's mean response 

to that stimulus (MDA) and submitted toa 25(Stimulus Magnitude) x 

2(1nstructions) x 2 (Response Label) mixed-model ANOVA to determine if either 

instructions or response labels affected consistency 

There was a significant effect of stimulus magnitude on consistency (F(1O.53, 

379.11) = 10.7, MSEo:: .346, p < .001}. Participants were more consistent when 

responding to items from the ends of the stimulus range compared to the middle 

(quadratic trend; F( 1,36)= 86.05, MSE= 0.195, p< .00 I). Several higher order trends 

were also significant, however the overall pattern in Figure 23 shows increased 

consistency for the edge items. St imulus magnitude did not interact with Response 

I..abel (F(1O.67,426.73 ) = 1.11,MSE=0.H6,p=.327)or Task(F< 1). The3-way 

interaction was also not significant (F<: 1). 

There was no main effect of Task (F<I) and no interaction between Taskand 

Iksponse Label (F <: I ). The effect of Response Label approached significance 

(F(I,36) '" 3.67, MSE: IA76,p = .063), suggesting that part icipants were somewhat 

more consistent when using letter response labels (M = 0.704, Sf = 0.051) 

compared to numeric response labels (M = 0.852, SF. = 0.051). 
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,\c cliracy and Consiste ncy 
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Interestingly, when response consistency was measured the data t<.lke on a 

qualitatively (lirfercnt pattern comp<.lred to when accuracy was measured 

Specifically, response consistent:y revealed a typical bow·effect, whereas, absolute 

deviations from the correct response showed an advantage for the middle items as 

well asan advantage for end items 

rhe results of Experiments land 2 suggested that participants could infer 

the identity of novel stimu l i withi n <.In AI t<.lsk. Visual inspection of Figure 20 shows 

that mean responses to training range items were closer to the COITect responses 

than items outside the training range. This result is consistent with the benchmark 



Fl. result: interpolation is more accurate than extrapolation (Busemeyer et ;;II., 

1997). However, as pointed out previously, accurate interpolation in FL is often 

inferred from mean responses. The design of Experiment 3 al lows for a stronger 

test of how well people are able to interpolate, specifically, whether item specific 

interpolation occurs or whether accurate interpolation is due to averaging. To 

clarify, if participants were presented with Stimuli 9 and! 1 during tr;;lining and 

then receive Stimulus 10 at test, the participant might not be able to differentiate 

Stimulus 10 from either 9 or 11 and might use Hesponses 9 Jnd 11 when presented 

with Stimulus 10. Therefore, the mean response will be approxima tely 10 even 

though the pJrticipJnt never JctuJlly interpolated a response. 

In order to see if item specific interpolation occurred in Experiment 3, the 

mean number of times each response was used was calculated. Figure 21 shows 

that participants rarely used interpolation responses and instead usc the responses 

assuciated with the training items for interpo)Jlion items. Therefore, there seems to 

be little evidence for item specific interpolation in Experiment 3, rather, participants 

overwhelmingly used the I'h Jse I responses when responding to interpolation 

stimuli. 
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One possibility for participants' unwillingness to use interpolation responses 

is that the adjacent sti mul i were not different eno ugh to be perceptu<llly 

discriminated and therefore interpolation could not occur hecause of a perceptual 

limit. In order to tes t this possihility, I examined trials in which the cu r rent stimulus 

was preceded by one of its imm ediate neighbours (e.g., Stimu lus 5 followed by 

either Stimulus 4 or 6). Responses were then examined to determine if the direction 

of responding was the same as the directiun of the stimul us change. If adjacent 

stimu li cannot be discriminated, the response should be the same on both trials (i.e., 

response repetition) ,lr1d non-repetitions should be du e to random error and 

therefore approximately evenly distributed on either side orlhe previous response. 

If adjace nt stimuli can be discriminated, the response should change in the direction 

of the stimulus change. 
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Adjacent stimuli were presented on 733 tr ials. Of these trials, response 

repetitions (RI{) occurred 346 times and response changes in the correct direction 

(CCO) occurred 370 times, leaving 17 responses that changed in the wrong 

direction. The CCDs were examined as a function of stimulus magnitude. The CCDs 

were calculated as a proportion of the number adjacent trials that occurred for that 

stimu lus_ Figure 25 plots CCD asa function of stimulus magnitude. The general 

pattern is that participants werc more likely to shift their responses in the correct 

direction when the stimuli were from the ends of the stimulus range. Therefore, the 

items from the ends of the stimulus set appear to be easier to discriminate than 

items from the middle of the stimulus set. 

[fparticipants always made CC D responses and never repeated responses, it 

would provide strong evidence that the stimuli were different enough to be 

discrimin<lted. The dat<l indic<lte that responsc repetitions were very common; 

therefore, it is possible that neighbouring stimuli were too simibr to allow 

inte rpol<ltion to occur. However, part icipants rarely made responses in the wrong 

direction. If two neighbouring stimuli were perceptually indistinguish<lble, when <I 

previous response is not repeated, responses should be equally likely to occur in the 

wrong direction as in the right direction. CCDs were much more frequent (11 = 370) 

than response changes in the wrong direction (n = 17; Sign Test; p < .00 1). Because 

participants rarely made responses in the wrong direction there is some evidence 

that the stimuli were pair-wise discriminable. Also, the]O pixel difference (equal 10 
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appruximately Bmm) between stimuli was simila r to the stimulus differences used 

in previous FL studies {e.g., Brehmer, 1979; Kalish et aI., 2004). 

ll in'f'inn .)flh" I")Il'l'S 

"'iUlU' u, \ I":!nil ll 't,. 

fimlrel5 : I'lois the proportion ofli"'es ['('sponses IO ;"Hli ;Kenl Sl imulus pres"nta liunsw"re: 
r"p"awd,c ll ~ng('dinlhecorrectd ireCiio n.or,changed inl ll ewrongdircc.ion 

2.3.5 Discussio n 

The goal of Expe riment 3 was to compare FLand AI by manipula ting how the 

task was framed, and the kind of response scale used. It was expected that drawing 

attention to the S-Il relationship would result in a different pattern of performance 

than if attention was drawn to item identi ty. Specilkally, transfer performance 

should be bettcr if part ici pants are givcn FL instructions than if they arc given Al 
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instructions. The results of Experiment 3 did not support the conclusion that 

focusing on the function<ll rd<ltionship improves transfer performance. 

When the resu lts of Experiment 3 are considered overall. the data seem to 

support the conclusion that participants use similar processes in both AI and FL. 

However, one result points to a difference between AI and FL tasks: the inter<lctioll 

between Task and L<lbel in the tr<lining. 

The best evidence for differences between AI and FL comes from the Task x 

Label interacti on during the training phase, when feedback should have made 

responses more sim ilar among groups. The FL/Numher group underestimated 

responses more than the FLjLetter group or the Al groups. This difference did not 

translate into a diffe rellce in accuracy, but rather, reflected a tendency for the 

FL/Number group to use lower I'esponse magnitudes. t{esearch on numeric 

estimdtion suggests that people can have different represelltations of numeric 

magnitude (Seigler & Opfer, 2003 ); therefore, one possible explanation is that the 

numeric labc! determined the subjective response magnitude for the FLjNumber 

gruup, while the ordina l response value determined the subjective response 

magnitudes for the FLjLetter and AI groups. In other words, the ['espo nse label 210 

may be subjectively larger when in terpreted dS a magnitude (i.e., FL instructions) 

compared to when it is interpreted as a label (i.e., AI instructions). Differences in 

the representation of the response magnitudes may account for the lower responses 

given by the Fl.jNumber group. 
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PreviollS research in AI and related tasks, such as magnitude estimation , has 

shown that participants' responses can be shiFted by giving them prior experience 

with a pa rticular S-R mapping (Ward & Lockhead, 1970; West, Ward & Khosla, 

2000). The current research provides some preliminary evidence that it is possible 

to shiFt the pattern of responding simply by changing how participants interpret the 

task. Because FL instructions with letter labels did not affect responses, the source 

of the effect may be due to the interpretation/mental representation of the response 

scale, not a disti nction hetween relational and item-hased strategies. 

The results of Experiment 3 provides three strong lines of evidence that 

support the premise that AI and FL involve overlapping processes; the lack of 

significant differences between groups, the presence of classic AI patterns in the Fl. 

group, and the presence of FL patterns in the AI group. 

Over multiple comparisons the AI and the FL groups were not significantly 

different. from each other (with the exception orthe Task x Label interaction during 

training). However, it is difficu lt to usc null results to conclude that there is no 

difference between AI and FL tasks. Experiment 3 may nut have had enough 

statistical power to detect differences hetween AI and FL. The lack ot statistical 

power means a claim that AI and FLare essentially the same task is weakened. In 

future studies, the statistiGl1 power problem could be addressed by increasing the 

!lumber of participants. Alsu, the pt' ulonged testing period may have increased the 

amount of statistical noise because of participant fa tigue, thus making the encoding 

strategy manipulation less influential as testing progressed. 
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An a lternative to relying on null results is to determine how well 

pertormance on one task predicts performance on the other. For example, overall 

performance on a FL task ca n be viewed as output from an undefined cognitive 

model. If mean FL performance (the model's output) can accurately predict Al 

performance, it provides evidence that the salTle processes arc involved in buth 

tasks. In the case of Experime nt 3, tht! mean responses of the FL/Number gl"Oup 

almost perfectly predictthe mean responses of the AI /Letter group (i.e., the two 

groups tha t should have been the most different; IF = .997, F(l,21) = B3'J4.6 1,p < 

.OU 1; AI = U.9U9 + 0.93U(F L) ) . This suggests that both tasks involve similar 

processes, and could potentially be e.\plained using a common theory. 

I'he pattern of respo nses also provides evidence that AI a nd FI. involve 

similar processes. Participants were providt!d with feedback during Phase 1 of 

Experime nt 3; therefore, the tra ining phase was equivalent to an iden tification task 

with 7 stimuli and 25 allowable responses. Th e training pha se of Experiment 3 

showed that when performance was examined as a function uf stimulus magnitude, 

participants responded more accurately to edge items than to middle item s (i.e., 

bow-effect). In ad ditio n, when accu racy was measured across blucks of trials. 

,lCcuracy did not continue to improve with more practice (i.e., asymptotic learning). 

Although the bow-effect and asymptotic learning are usually associated with AI, 

fra ming the task as FL did not change the pattern of performance. 

When the training items were presented in the context of a Idrger set of 

stim uli (i.e" the test phase), accuracy for the training ite ms decreased. Thi s is 
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typical of the set-size effect found in 1\1, and, like the bow-effect, was not affected by 

the task. ttowevcr, not all training items were affected to the same degree; 

specific<llly, most of the reduction in accuracy occurred for the edge training items. 

This pattern is the samc as observed in Experiment 2 despite very different 

methods. Most notably, participants were provided with feedback throughout 

Expcriment 2 but not during the test phase of Experimen t 3 

Previous FL studies have shown that increasing the number of training items 

docs not reduce accuracy during training (Delosh, 1997; Delosh et at., 1997). This 

lack a set-size effect is interesting because it stands in stark contrast to what would 

be expected given typical Al results. One possible explanation is that the lack of a 

set-size effect in previous FL experiments involves an interaction between three 

factors: the d iscrimi nability of the stimuli, the response spacing. and the me<lsure of 

accuracy (i.e., absolute deviations). If a small training set and a large tra ining set arc 

taken from the S<l me traini ng range, the sma ll set st imuli will be more widely spaced 

than the large set stimuli, making the small-set stimuli easier to discriminate. 

However, the small set <llso has a disadvantage bec<luse the valid responses arc also 

widely spaced. The type of e rrors participants made in Experiment 3 suggested tha t 

participants quickly learned the v<llid responses and limited their responses 

accordi ngly. If participants only usc the learned valid responses, absolute errors in 

the small set would be la rger than ahsolute errors in the large set. For example, if 

the small set contains Stimuli 3, 5, and 7, an error on Stimulus 5 wou ld probably be 

either Response 3 or 7 (i.e., abso lute error 01 2), eve n though pa rticipants have 
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access to Responses 4 and 6. However, if the large set contains stimuli 3, 4, 5, 6, and 

7, ,Hl error on Stimulus 5 will probably be either Response -1 or 6 (i.e., absolute error 

of 1). Therefore, it may be easier to be exactly correct with a small stimulus set 

because of stimulus discriminability, but, when errors do occur, the errors will be 

relatively large. In contrast, it may be difficult to be exactly correct wi th a la rge 

number of stimuli (because the stimu li arc more similar/co nfusable), but the 

magnitude of errors will be relatively small. These two effects may cancel each 

other out resulting in a null effect of sel -size. lflhis explanation is correct, it implies 

that in tasks such as Fl., participants may not treat continuous response scales as 

continuous, but rather constrain their responses to the set of learned valid response 

values 

In order to look for the how-effect in the test phase of Experiment 3, the 

Illeiln ilbsolute deviations (AD) were used as the measure of accuracy. ADs fo llowed 

a double-bow pattern in the test phase, not the typical single bow found in AI. When 

a measure of response consistency was used (the mean deviation from a 

participant's mean response; MDA scores), the data resembled a single buw pattem 

typical of i\l. 

Both AD and the MDA arc measures of variability. The main difference 

betwee n these measures is the reference point from which the variability is 

calculated. Recause AD llses the correct response as its reference point, it can be 

considered a measure of how well participants have learned the correct S~R 

mapping. MDA, on the other hand, is a measure of performance that is independent 

')3 



of the correct S-R mapping, because error is calculated I"dative to a participant's 

mean I·esponse to each stimulus. 

Interesti ngly, these two measures show very different patterns. When the 

correct mapping is considered (ADs), participants arc more accurate for the items in 

the middle of the stimulus set, as well as items at the ends of the stimul us set. This 

pattern is consistent with previous FL studies showing hi gher accu racy for training 

range items than for extrapolatioJl items. In contrast, the MDA scores do not show 

the advantage for items from the middle oflhe sel and are consistent with the single 

bow pattern typical of AI. In addition, MDA scores appear to be moreaccufate 

overall than AD scores. MDA scores may be more accurate because, essentially, ;.lIlY 

error tha t is due to incorrect S-R mapping is being ignored in the performance 

One way to in terpret the pattern of MDA scores is to attrihu te them to the 

psychological discriminability of the stimuli. Items from the ends ofl he sti mulus set 

may he easier to discriminate from their neighbours and therefore it is easier for 

participants to respond consistently to those items. If MDA scores represent effects 

attrihutahle to stimulus characteristics and AD scores represent effects attribu ta ble 

to S-R map ping errors, the different pattern of results for the two measures suggests 

that these effects may be due to distinct processes. Theories of AI often distinguish 

betwee n stimulus and response effects (see, Nosotsky, 1983), as well as effects due 

to Son mapping (Lacouture & Marley, 1995). The AD and MDA SCOfes may provide a 

intuitive method for measuring different components of Al and n, perfOl"lllanCe; 
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however, more research is needed to determine the validity 01 the measures and 

specify their underlying assu mptions. 

All groups in Experiment 3 demonstrated effects typica lly associated with AI 

(bow-effect, a set-size effect and asymptotic learning). Ifthe bow-effect, the set-size 

effect and asymptotic lea r ning arc important phenomena in the AI paradigm, and 

these dfects arc found in a FL tasks it suggests that wh<ltever processes cause these 

effects in AI arc also affecting FL performance 

The AI/Letter group was the best approxirn<ltion of an AI task because the 

instructions focused on item identity, and the response labels were discrete 

categories. Even though the experimental conditions for the AI/Letter group did 

not emphasize learni ng a functional 5-1{ relationship, the AI/ Leller group's mea n 

responses to novel items were still qui te accurate. The mean responses followed the 

general pattern typical of FL experiments, with accurate performance on items frum 

the training range, and worse performance on extrapolatio n items. Th e accurate 

tr<lllsfer perfortnance of the AI/Letter group suggests th<lt even in a simple 

perceptual identificatiun task, people arc able to respond accurately to novel items. 

One of the benchmark findings in the FL li terature is that interpolation 

performance is more accurate than extrapolation performance (l3usemeyer et aI., 

1997; Delosh et aI., 19(7). The resul ts of Experiment 3 showed that mean 

responses in the training region were more accurate than responses outside rhe 

tf<lining region, henfe replicating the advantage for interpolation over extrapolation 

found by Delosh et al. (1997) and Kwantes and Neal (2006). However, closer 
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examination orthe data suggests some potential limitations. First, when the mean 

absolute deviations arc measured, interpolation performance only holds an 

advantage over the upper extrapolation items, not the lower extrapolation items. 

The mean absolute deviation score may not have revealed an interpolation 

adva ntage because the AD scores are a stricter measure of accuracy compared to 

mean responses. That is, overestimation and underestimation will cancel each other 

out when the mean response is calculated, but not when the mean absolute 

deviation scores are calculated. Participan ts rarely used interpolation responses; 

therefore, accurate interpolation appears in Experiment J mainly because of 

averaging responses over stimulus presentations. 

Experiment 3 revealed little evide nce for item-specific interpolation; 

however, the FL/Number group may have perceived the response magnitudes as 

discrete categories rather than a continuous scale, and this may have hindered 

int erpolation by faci litating bias toward specific train ing responses. If the response 

scale had been continuous (with no scale markings), it would be more difficult to 

remember the exact location of previous responses, and, therefore, participants 

would be less li kely to be biased toward any specific response value. However, even 

if a continuous response scale is used, interpolation responses may come from two 

distinct response di stributions associated with the nearest training items. In order 

to determine whether item-specific interpolation OCl:urs in FL, future studies could 

usc a continuous response scale without intermediate labels and examine the 

distribution of responses to interpolation items. Item-specific interpolation would 
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reveal itself as a uni-modal distribution centered on the correct response value, 

whereas, a bi-modal distribution with the peaks centered ove r the nearest training 

responses would be evidence against item-specific interpolation and would be more 

indicative of stimulus generalization. 

Previous research has shown that people can interpolate even when the 

response categories are discrete (Levine, 1960). In addition, people are able to 

perform a wide variety of inference tasks (e.g., transitive inference, categorization of 

novel exemplars, etc.), therefore, it is likely that item-specific interpolation could 

occur in FL if the experimental procedure better supported interpolation. It could 

be argued that the stimuli in Experiment 3 were too similar to cach other to aJlow 

participants to discriminate interpolation items from training items, and this is why 

people did not interpolate. However, when neighbouring stimuli were presented on 

consecutive trials, participants' respo nses rarely broke monotonicity. Thi s suggests 

that the I<lck of interpolation was not due to a perceptual limit. Determining the 

factors that allow for item-specific interpolation with a continuous response scale 

would have buth theuretical and practical implications. Practical application of this 

knowlcdge may includc determining thc best kind of scales or dials to use on 

C{luipmcnt, as wcll as determin ing the most efficient training methods 

Intuitively, the distribution of interpolation responses in Experimcnt 3 is 

more consistent with exemplar-based theories than rule-based theories, An 

exemplar approach would predict that when presented with a novel stimulus, the 

responses associated similar training stimuli would be recalled. A rule-based 
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approach would probably predict a more continuous distribution of responses; 

however, both of these predictions are specuiJtive, a nd a more forma l test is 

necessary in order to differentiate the two theo ries. Also, although responses in the 

training range are more consistent with exem plar theories, a strict exemplar theory 

wou ld have trouble accounting for the relatively accurate extrapolation 

performance. 

Strong evidence that participants in the FL task learned a relational concept 

and participants in the AI group learned the identity of specific items would involve 

accurateextrapoiJtion for the FI.groupand poorextrapol<.ltion for the "I group; this 

pattern was not found in Experiment J. However, it is important to recognize that 

the task manipulation involved only changing how the task was framed li.e., 

instructions) and the response method, and was therefore a relatively weilk 

manipulation. Additionally, both groups were informed of the test phase <.It the 

beginning of the experiment. Inform ing the " I group ofJ test phJse may have 

caused them to pay more <.Ittention to the S-R relationship during training in order 

to respond accurately during test. Therefore, both the Al and FL groups may have 

approached the task in similar W,IYS, reducing the st rength of the Task 

manipulation 

The effect of instructions Oil performance has sometimes been fo und to 

in!luence participants' responses in tilsks such as probilbility learning; a task similar 

to Fl. (Brehmer & Kuylenstierna, 1980). One possibility is that FL instructions give 

meaning to the stimuli and responses, causing participants become more engaged in 
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the task. This engagement may result in better performilnce compilred to when 

abstract stimuli and responses are used (as the case with AI). The results of 

Experiment 3 did not find improved accuracy for the more engaging rl. instructions. 

therefore there seems to be no differences in part icipant motivation between the FL 

;md Al groups. The possibility of different levels of engagement/mot iviltion may be 

an important factor to consider in future research. For example, it may be necess;lry 

to provide a cover story for the identification group as well <IS the PI. group in order 

to equilte how interested participants are in the task. 

Delosh et at (1997) found that specifically telling participants to learn the 

functional S-R relationship did not change the pattern of responses compared to 

when the S-R relationship was not emphasized. However, even when the functional 

relationship was not emphasized. participants were still told that the stimulus and 

response magnitudes represented the values of variables (amount of growth 

hormone and plant height). The usc of these labels may have induced participants 

to focus on a predictive relationship despite not being instructed to do so. The 

results of Delosh ct al. in combination with the results of Experiment 3 suggest that 

specifically looking for a functional relationship is not necessary for accurate 

transfer 

Although there seems to be little evidence to suggest that participants used 

different strategies or processes for A[ and FL in Experiment 3. a stronger 

manipulation Illay show differen t results. For example. not informing participants 

of the test phase may accentuate differences in encoding stra tegy. A[so. positive 
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lincar functions <Ire known to be the e<lsie~t to IC<lm and the most intuitive, 

therefore, using <I less intuitive function (e.g., exponenti<ll, quadr<ltic etc.) might yet 

highlight differences between FLand AI processes. 

Over<lll, the resu lts of Experiment 3 suggest a significant <lmOllnt of overl ;l p 

between AI and FL tasks. Three general findings support the idea that thes<lme 

processes arc invulved in AI and FL. First, classic AI effects appeared for all groups 

Second, the type of task did not change transfer performance. Finally, the strong 

correlation between the AI/Letter group's mean responses and the FL/Number 

group's mean responses suggests that both tasks could be explained with a cOlllmon 

theory or model. 

The best evidence for differences between AI and FL comes from the pattern 

uf responses in the training phase. During training, the FL/Number group tended to 

use lower responses than the FL/Letler or the AI groups. Tentatively, this j)<lttern 

m<ly be better explained by differences in the ment<ll representation of the response 

scale, not a distinction between relational and item-based stra tegies. 
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Chapl er 3 Ge nera l Discllssio n 

rhereare several reasons why Al and FL rnay be sirnilar tasks. First, both AI 

and FL can be viewed as conceptual tasks. Second , the stimu li in some FL 

experimcntscan be quite similar to the kind of stimuli used inAlexperiments(e.g., 

line length). Third, Jnd most importantly, the congruent SoH mapping used in I" 
means there is a continuous relationship between the stimulus and response values. 

rhis continuous mapping means that an AI task can be solved by learning the 

correct label for each stimu lus, and/or, by learning the functional rcl<ltionship 

between the stimulus ,md respollsescaies 

The experiments presented in this paper demonstrate several interesting 

similarities and differences between Al and FL and the methods used in the 

respective paradigms. Although, a claim that AI and FL are essentially the same task 

is weakened by a lack of statistical power in Experiment 3, the overall pattern of 

results suggest a significant amount of overlap between the tasks 

3 .1 Pe rforma nce Me as ures 

Previous FL and AI research would suggest that FL performance is more 

accul'ate than AI performance. The results of Experiments 1 and 2 indicate that 

people may appearto be more accurate in FL tasks because of how accuracy is 

rneasuredintherespectivetasks, If the participants' mean response is used as the 

measure of accuracy in an AI task, participants appear to be very accurate, however, 

when the proportion correct is used as the dependent measure, accuracy appears 
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much worse. This is not surprising because proportion correct is a stricter measure 

of accuracy than mean response. 

Experiment 1 also showed that the pattern of performance can be changed 

depending on how accuracy is assessed. For example, Experiment 1 showed a bow­

effect when the proportion correct was used (typical of Al expcrimcnts), but when 

the mean response was used, participants tended to underestimate the larger 

stimuli, which is arguably similar to the underestimiltion that occurs in the upper 

extrapola tion region of FL experiments. A bow-effect for mean responses would be 

demonstrated if the mean response to the larger items trended back toward the S-R 

function line (this pJttern was seen in Experiment 2) 

Delosh et al. (1997) found that people underestimated a positive linear 

function in the upper and lower extrapolation regions. Kwantes and Neal (2006) 

found that underestimation was more reliJble in the lawerextrapolatian regian 

than in the upper extrapolation region. Experiment I revealed tha t, when thc 

stimulus magnitudes increased by a constant, underestimation occurred far the 

larger items, even though feedback was given on all trials. Experiment '2 used 

stimuli that were geometrically spaced and larger on average than Expcriment 1 

stimuli. Experiment 2 found that, with the exception of edge items, there was a 

general tendency to underestimate. Speculatively, underestimation of the upper 

extrapolation region, found in FI. studies. mJY be (at least partially) a perceptual 

phenomenon rather than a conceptual one. In other words, underestimation may 
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nol be due to extrapolation processes, but larger stimuli may be generally 

underestimated. 

Although larger stimuli seem to be underestimated in general, the pattern of 

under/overestimation may be due to how people use the response continuum and 

not how they perceive the stimuli. MusieJak, Chasseigne and Mullet (2006) 

comp<lred FL with positive linear, negative linear, U-shaped, and inverted U-sh<lped 

functions. The p<ltterns of responses found hy Musiclak et al. suggest that the 

response magnitude, not the stimulus magnitude, controls the pattern of 

over/und erestimation. Fur example, when the function W<lS positive linear, ];}rger 

stimuli were underestima ted and smaller stimuli were overestimated; in contrast, 

when the function was negative linear, the larger stimuli were overestimated and 

the smaller stimuli were underestimated. This pattern of results is consisten t with 

results from magnitude estimation stodies showing that people have a hias tow<lrd 

using respo nses from the middle oflhe response range (i.e., contraction bias; 

Poulton, 1979). It is possible that the pattern of extrapolation found in FL is due to 

both the psychological representation of the functional concept and a general 

response bias. Future stud ies may try to separate these two effecls by manipulating 

training region and stimulus magnitude independently. 

3.2 The Bow-Effect 

All three experiments presented in this thesis revea led that the edge items of 

the stimulus set have an advantage over items from the middle oflhe set. However, 

some important qua lificatio ns need to be considered. When the number of items 
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was increased by adding new items to the ends of the initial training range 

(Experiment 2). items that were previously edge items held an advantage over the 

intermedia te items. Speculatively, adding items to the ends ofthc stimulus set may 

have provided a way for participants to break the stimulus set down into distinct 

sections (small. middle, large) and this organization Illay have aided performancc. 

For cxample, the old cdgc itcms may have bcen used as anchors or subjective 

slandM(/s from which in termediate items were judged (Eriksen & I·lakc. 1957; 

Pctrov & Anderson, 2005). Other Al studies have been able to modify the bow-effect 

through different means, such as stimulus spacing (Lacnuturc. 1997; Neath et al.. 

2006) or by presenting some items more often ([)odds. Donkin, Brown. Heathcote & 

Marley, 20 11). The present rcscarch provides an additional demonstration that 

changing the experimental procedure can modify the bow-effect in an Al task. 

Experiment 3 also showed a bow-effect during training. and thi s effect was 

not modulated by how the task is framed. If FL and Al arc fundamen tally different 

tasks, a stronger bow-effect was expected for the Al group than for the FL group. 

Kwantes and Neal (2006) found that Ft accuracy was rclalivelywnstallt across all 

training stimuli (i.e .. no bow-effect). However, there are some important differences 

between the mcthods used by Kwantes and Neal and the methods used in 

E.\perimen t 3, For example, Kwantes and Neal presented stimulus and response 

values numerically as well as graphically, thus providing participants wi th more 

information about stimulu s and respunse identity. Under the wnditions of the 
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tr<lining phase used in Experim ent 3, hoth FI. <.Ind AI strategies resulted in a bow­

shaped p<.lttcrn of an:uracy. 

Experiment 3 showed modulation of the bow-effect in the test pl1<lse, with 

p<.lrticipillltS being more accur<lte on the middle items <lS well as edge items. 

lI owever, this modul<ltion of the bow-effect was only evident when particip<.lnts' 

responses were scored in relation to the correct response. When response 

consistency was the dependent measure, the middle items no longer had an 

<.Idva ntage, ,mu a more typic<.ll bow-effect emerged . A pl<lusib le explanation is that 

edge stimuli are perceptually more discriminable from their neighbours than items 

from the middle of the stimulus set, and this allows participants to respond more 

consistently to edge items. 

3.3 Accuracy and Response Patterns 

In Experiment 3, despite participants being no more accurate in the I'L 

condition than in the AI condition during trai ning, how the task was fra med did 

affect the direction of responses. During training. participants in the FI. /Number 

group had lower me<lrl responses than the FL/Letter group or the AI groups. The 

interaction suggests that the differen t I·esponse pattern is nut solely due to th e 

response method/instructions, or the numeric labels, but rather it is the 

combination of both factors that affects mean responses. Speculatively, FI. 

instructions Illay have affected how participants represented the numeric response 

values. For example, Hespol1se 2 10 may have been interpreted <lS a magnitude in 

the context of FI, inslructions, but interpreted as a label in the context ot AI 
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instructions. The lower respunse magnitudes given by the FL/Number group may 

have been the result of ,I hias against large respunse magnitudes, or, perhaps a non­

linear representat ion oftlH! response scale. Although the exact reason for the lower 

FL/Number responses is unciear, the result demonstrates the importance of context 

on performance. 

3.4 Le;u ning 

Previous FL studies have plotted learning over trials; these graphs usually 

show that, when the function is linea r, most of the learning occurs early in training 

and performance docs not con t inue to improve over all training blocks. This 

learning pattern found in FL studies parallels the pattern of asymptotic learning th<lt 

occurs in AI. When there was equal stimulus spacing (Exper imen ts 1 and 3) 

performance improved quickly then leveled off, replicat ing previous FL and AI 

findings. Interestingly, when the stimulus spacing increased geometrically 

(Experiment 2), performance gradually improved over all training blocks. 

If the magnitude of the st imuli increases by a constant, it could be argued that 

this represents a positive linear function between the stimulus and respo nse scales. 

If, on the other hand, the same response scale is used but the stimuli increase 

geometrically, there isa non-linear function between stimulus magnitude and 

response scales. The gradual improvement across training blocks when the 

sti mulus spacing was geometric, and the quick, asymptotic learning when the 

stimulus spacing was constant is similar to Fl.studies that show that linear 

functions arc learned lllore quickly than non-linear functions. However, a 
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comparison of learn ing r<ltes between Experiments 1 and:: is qU<llitative and 

therefore future research could examine the effect ot stimulus spacing on learning 

rates under more contro lled conditions 

Slower learning of geometric<llly spaced stimuli in an AI task raises some 

interesting questions about the difference between learning linear and non-linear 

functions. When linear and non -line<lr functions are compared in FL (e.g., Delosh et 

aI., 1')<)7), the same st imulus values are used for both linear and non-lineargroups; 

this means that the difference between the functiuns is in the spa tingofthe 

responses, not the spacing orthe stim uli . If the SoH function is what determines task 

difficu lty. then <ldjusting the spacing of the stimuli and responses independently of 

the function could help clarify the issue. For example, if exponentially-increasing 

stimuli w ere mapped on to exponentia lly -increas ing response v<llues, the SoH 

relationship wuuld be linear and should be easy to learn. If the response spacing 

increased exponential ly whi le the stimu lus spaci ng incre<lsed by a consta nt (or vice 

versa), the SoH relationship would be non-linear and should be more difficu lt to 

learn. l3y manipu lat ing the stim ulus and response spacing independ ently of the 

mathematical function, it may be possible to determine whether the formal function 

is the important va riable in Fl.. 

Different clfects of stimulus spacing and response spacing have been 

explored in AI tasks. For example, l3ahrick and Nobel (1961) found that when 

responses were widely spaced, accuracy was better when the stimuli were also 

widely spaced, compared to when the stimuli were narrowly spaced. Iluwevcr, 
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when the response spacing was narrow, the stimulus spacing did not make a 

difference. Exploring the effects ofstimulus and response spacing may be a 

productive avenue within the FL pdradigm in order to determine if the functional S­

R relationship is the factor that influences different performance levels and learning 

rates 

3.5 Interpolation 

Experiments 1 and 2 provided some evidence that participants could infer 

the correct responses for specific items; however, the response distributions in 

Experiment 3 provided evidence against item -specific interpolation. It is likely that 

item-specific interpolation can occur under appropriate circumstances. However, 

two questions need to be addressed in future resea rch. The first question is 

whether item-specific interpolation occurs with the kind of stimuli and response 

methods used in FL experiments. Ferrando (2003) explored the difference between 

continuous and discrete response scales when participants respond to 

qllestionnaire items (e.g., a personality instrument). When continuolls response 

scales were used, people tended to limit their responses to a few points on the 

co ntinuous scale. In the case ofa FL experiment, parlicipants may learn a set of 

discrete response values during training and continue to use these responses for 

interpolalion items, resu lt ing in accurate mean performance but no item -specific 

interpolation. 

i\ second question regdrding in terpolation is: What information dues the 

p;u·ticipant use? i\ rule-based FL approac h may assume that participants are 

lOB 



leJl"ning the formal function and are able to use this abstract information to respond 

to new items. However, item-specific interpolation could also occur by a deductive 

process hased on exemplar knowledge. For examp le, when presented with il new 

intermediate stimulus (e.g., Stimulus 5), the participant might be able to respond 

corr'ectly by recognizing that the new stimulus is too large to be 4- and too smal l to 

be 6. Assessing the merits of rule-based and exempla r-based theories is one of the 

main theoretical issues within the Fl. literature (Kalish et al.. 2001; Koh & Meyer, 

1991; McDaniel & Busemeyer, 2005) . The apparent lack of interpolation in 

Experiment 3 suggests that exam ini ng the response distributions may provide a way 

of determining which theories arc more correct. 

3.6 Summary 

The goal of the present thesis was to compa re AI performance to FL 

performance. The congruent S- R mapping that is usually present in Al means that 

the AI tas k is sol vable by ei th er rememhering item -specific information. learning the 

functional relationship between the stimulus and response scales, Ot·, a combination 

of both processes. 

Three ma in find ings speak to the similarities between FL and AI. Comparing 

previous FL and AI studies leaves the impression that FL performance is much more 

accurate than AI performance. Experiments 1 and 2 demonstrated that the 

appearance of highly accurate Flo performance is probably due the measures of 

accuracy used in the respective tasks. Second, classic AI effects occurred in a Fl. 

task. Finally, participants were equally adept at extrapolation/ interpolation, 
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regardless ot' whether they were instructed to lea rn the functiunal relationsh ip or 

were told to memorize the identity of stimuli. These three general findings suggest 

a significant amou nt of ove rlap between AI and FL processes. 

A fourth finding is perhaps the most interesting, as it speaks to a potential 

difference between FL and AI. Manipulat ing how participants interpret the task can 

affect the responses they make. Specifically, ifparlicipants were given FL 

instructions with numeric labels they tended to use lower response magnitudes 

than if they were given FL instructions wi th letter labels, or, if they a re given 1\1 

instructions. Although interesting, more research is needed to determine the exact 

nature of the effect Tentatively, the effect may be due to differences in how the 

respunse va lues are psychologically represented, not a difference between rda tiona l 

and item based strategies. 
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