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Abstract

Superconducting phase of PrOs;Shy, is theoretically investigated by means of point
contact Andreev reflection spectroscopy.  The conductance spectrum of a normal-

metal/insulator/PrOs;Sbys junction is caleulated by solving the three dimensional

Bogolinbov-de Gennes equations. By using the phenomenological Landau theory,
various order parameters are selected and examined as a candidate of superconduc-
tivity in PrOs;Sbys. These order parameters include both spin singlet and triplet

channels.

The conductance spectrum of the junction show multiple features in both singlet and
triplet channels including a peak in conductance at different energy points. In par-
ticular, a zero bias conductance peak (ZBCP) can be observed in some of the spectra
which is a direct result of unconventional superconductivity. Comparison with ex-

perimental results indicate that superconductivity in PrOs;Sbhy, is most likely caused

by an order parameter in triplet channel. However, more experimental evidences
are required in order to find the actual symmetry of superconducting phase in this

material.
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Chapter 1

Introduction

superconductivity has been one the most intriguing and fascinating phases of matter
since its discovery [1]. Superconductors are best known for their zero electrical re-

sistivity and perfect diamagnetism below a certain temperature which is referred as

the critical temperature 7, . According to the theory proposed by Bardeen, Cooper

and Schrieffer! in 1957, superconductivity is a condensate of clectron pairs which are
called Cooper pairs. The formation of these pairs is due to an attractive interaction

wered superconductors, electron-phonon coupling

between the electrons. In early di
mediates this interaction. This leads to the formation of the most symmetric Cooper
pairs with vanishing relative orbital angular momentum and a singlet spin configu-

ration. This kind of pairing is known os s-wave pairing since it is characterized by

L =0, where L is the orbital angular momentum. Conventional superconductors are

those with s-wave pairing

Unconventional superconductors are those with L # 0 [2]. In this type of supercon-

ductor, the attractive interaction required for pair formation may originate from other

Tthe BCS theory [1]



are

sources such as magnetic interactions. In some superconductors, the Cooper pair

ate, i.c. pairing with spin S = 1

in a spin triplet s

contained in the

In general, the spin and momentum structure of the Cooper pairs

function is

gap function” [2). This s also known as the superconducting order parame-
ter, and has a direct relation to the pair wave function. In the case of singlet pairing,

the gap function can be characterized by a single complex function (k). For triplet

due to three-fold degeneracy of spin state, the gap function is characterized

pairing

by aveetor function, d(k). The Pauli principle requires that (k) be an even function

of k, while d(k) is odd,

The anisotropic structure of sup lucting gap in u ional sup luctors

is the origin of many interesting features. These features such as high critical tem-

ure and multiple transitions are not observed in conventional superconductors.

per
Hence, understanding the structure of the superconducting gap function and studying
the superconducting mechanism in unconventional superconductors is the subject of

wiany of ongoing works

New improvements in materials science leads to the discovery of new superconducting
materials. Experimental and theoretical studies on these materials increase our knowl-

ys that this knowledge

edge about superconductivity phenomena and reveals the w
can be enhanced. Among various families of superconductors, the filled skutterudite

family [3] is one of the newly discovered examples with interesting superconducting

behaviors. In particular, superconductivity in PrOsiSbys, which is known as the first

heavy-fermion superconductor with Pr atoms, has become the topic of many exper-

imental studies.  Unlike other heavy-fermion superconductors, these atoms have no



magnetic moment [4].

Different studies indicate various unconventional properties for PrOs,Shyy [5] which

include the appearance of two superconducting transition temperatures [6,

8, 9]
These transitions occur at Ty = 1.85 K (phase A) and T,y = 1.75 K (phase B).
Based on these observations, PrOs;Shy is expected to have an unusual pairing mech-
anism. In addition, by using angular magneto-thermal conductivity measurements, it
is shown that the pairing symmetry of PrOs;Sby, experiences a phase transition in a

magnetic field [10]

Experimental reports regarding the topology of the superconducting gap in PrOs;Shys
are not consistent. Some of these experiments predict the presence of nodes in the gap
function while others indicate that it is fully gapped [11]. It has even been suggested
that the observed double superconducting transitions, is a result of a non-nodal su-

perconducting gap together with nodal one [12]

Strong evidence confirming the double transitions scenario can be provided by thermal
conductivity measurements [13, 14]. The provided data shows that PrOs;Sby is very
likely to be an unconventional superconductor, having two transition temperatures. In
fact, small values measured in PrOs;Shy, for residual electronic conductivity divided
by the temperature, /T, indicate the presence of nodes in the superconducting gap
function. On the other hand, measuring the thermal conductivity in an external mag-
netic field shows a rapid growth of thermal conductance at low temperatures. This
Dehavior corresponds Lo a non-nodal superconducting gap, in contrast with exponen-

tial growth of conductivity in the case of a nodal gap.



¢ of the superconducting order pa-

Despite all these experimental efforts, the symmet
rameter is still a central issue in studying superconductivity in PrOs;Shy,. However,
a large number of these experiments are known as bulk probes which are not appro-
priate to directly detect the gap inhonogeneity. On the other hand, point-contact
Andreev reflection spectroscopy (PCARS), is a method of investigating the symmetry

of the superconducting which can be exploited to study local properties of materials

Hence, it is sensitive to the phase of superconducting order parameter [13

| PCARS studies of PrOs;Shy, along with the experimental results, provide

Theoret
useful information regarding the symmetry of the order parameter in this material.
In particular, in cases where there is little or no information about the mechanism of

| Landau theory approach [39] is an ideal tool

superconductivity, the
1o describe the superconducting phase of materials. This approach provides us with
all the possible symmetry properties of the superconducting state only by knowing

the erystal point group symmetry. All the order parameters are classified using this

symmetry group.

Experiments show that the point group of PrOs,Shys is tetrahedral, (73). Therefore
using a Landau theory approach, the superconducting states of this material can be
classified as given in Table 1 [3]

In the following chapters, we study PCARS of normal-metal /insulator/PrOs Sy,

junctions by following the formalism invented by Blonder, Tinkham and Klapwijk

(BTK) [21): In Chapter 2 and Chapter 3 we will develop the required theoretical

tools and in Chapter 4 and Chapter 5 w= will report the results of our calenlation for

a number of states included in Table 1. We use this to show which of these states are



State Symmetry
1D order parameter ) Tx K
(1.0) T(Dy)
2D order parameter | (¢y. ¢én) Dyx K
(m.m)
(1,0,0)
(1,1,1)
(L)

(Iml, ilnl, 0)
3D order parameter | (], |12],0)
(m,m2,0)
Cmlsilmel, [nsl)
(Il le] s
(12 13)

Table 1.1: Superconducting states of the point group 7, obtained by one irreducible
representation. The third column shows the symmetry group of the superconducting
states [3]

real physical candidates of superconductivity in PrOs;Shyy [3].



Chapter 2

Point-Contact Andreev Reflection

Spectroscopy

Point-contact spectroscopy (PCS) is an experimental tool for investigating the interac-
tion mechanisms between electrons and different clementary excitations in solid state
materials [16]. In general, the 7 =V characteristic (and second derivative d*V/dI?)

of small micro-constrictions between two materi;

s include some nonlinearities which
are related to different quantum processes that electrons undergo in their interactions
with elementary excitations. Analyzing these deviations in the 7 — V curve provides
a way to find information on the nature of these interactions. Depending on the ma-
terials used on each side of the contact. different quantum phenomena occur at the
interface. When a superconductor is used in one side of the point-contact (which is the
main topic of this work), it is known as point-contact Andreev reflection spectroscopy
(PCARS) [15] because quantum phencmena, such as quasi-particle tunneling and
Andreey reflection [17], dominate the physical processes that occur at the interface.
This type of point-contact helps to find fundamental information on the excitation

spectrum of the quasi-particles, in other words, on the superconducting energy gap



and its properties. In general, these physical phenomena are affected by the regimes
of conduction in the contact. Understanding these regimes may help in better un-
derstanding the theoretical and experimental aspects of point-contact spectroscopy in

normal metals and superconductors.

2.1 Regimes of the conduction in a point-contact

The radius of the point-contact, which is simply a contact between two materials
(normal-metal and superconductor in this work), characterizes the regime of con-

ductance in a point-contact spectroscopy experiment. Depending on the size of the

contact a in comparison to the electron mean free path [, three different regimes of

conductance are possible, as explained in the following,

2.1.1 Ballistic regime

In this regime, the electron mean free path ¢ is much larger than the contact radius
a (I a). By applying voltage V' to the contact, the clectrons will be accelerated
within the distance of a mean free path. These electrons experience no scattering and
flow through the contact ballistically. In this case, their kinetic energy is equal to eV’

(see Figure 2.1). The resistance of the contact in this regime is equal to

which was calenlated by Sharvin [18]. In this equation p indicates the resistivity of
the contact material. Considering the fact that in metals p oc [ ', Ry can be written

in the following form, in the free electron approximation



a)
b)
T=0 s
fa< @< (lefy)
\] ev
o

Figure 2.1 Schematic illustration of different conduction regimes in a point con-
tact [24] where N and S represent norme l-metal and superconductor respectively. (a)
Ballistic regime with no scattering. (b) Diffusive regime in which only clastic scatter-
ing occurs in the contact. (¢) Thermal regime with inclastic scattering.




where kg is the Fermi momentum of the material [19]. Therefore in the ballistic
regime, the energy of the electron is known and related to the applied voltage.
2.1.2  Thermal regime

This regime is the opposite case of the ballistic regime in which [ < a (sce Figure 2.1).

In the thermal (also called Maxwell) r

me, electrons can undergo both clastic and

inclastic scattering in the contact region. This is similar to the behavior of electrons

in bulk. The resistance of the junction is determined by

Ry

which was already caleulated by Maxwe 1 [20]. In this equation p shows the resistivity

of the metal. Due to Joule heating, the local temperature of the contact increases

max = Toan + 17 (249

where iy, indicates bath temperature and L is the Lorentz number whose value is

roughly 2.45 x 1073V2/ K2, Since the resistivity of metals p hecomes greater with
temperature, the conductance of the contact decreases with bias and any informa-

tion on the inelastic scattering of the electrons is lost. Therefore, energy resolved

spectroscopy s ot possible in the thermal regime.



2.1.3 Diffusive regime

It is also possible to define another regime between the thermal and ballistic regime

in which £, < a < L. Accordingly, the quasi-particles inside the contact region can

undergo elastic scattering but not an inclastic one. Therefore, because of elastic scat-
tering, these particles lose the momentum information while the energy information is
retained due to lack of inelastic scattering. Hence, in the diffusive regime only energy

resolved spectroscopy can be performed with a point-contact.

In gencral, only the ballistic regime provides a way to perform both energy and
momentum resolved spectroscopy with point-contacts. In the rest of this work, we
always consider a point-contact in the ballistic regime. Therefore, the whole voltage

drop for the particles occurs at the interface.

2.2  Physics of the interface in a point contact

2.2.1 Andreev reflection

In the case of a normal-metal /supercondnctor contact, the electrical transport through
the contact is dominated by a process called Andreev reflection which was first pre-
dicted by Andreev [17]. This process is illustrated in Figure 2.3 in which a normal
metal (N) is brought in direct contact with a superconductor (S). Working in the
Dallistic regime, an electron coming frem the N side accelerates in applied voltage
V and gains an energy equal to eV If this energy is less than the superconducting
energy gap in the S side, A, then electrons can not propagate throngh the interface.

ts in this energy range in S and the

This happens becanse only the Cooper pair «

clectron is umable to form a pair with an energy less than the superconducting cnergy



Figure 2.2: Ordinary specular refiection (left hand side) and Andreev reflection (right
rticles is shown by

hand side). The group velocity of the incoming and outgoing pi
the arrows. In the case of the Andreev reflection, the outgoing particle traces back
the trajectory of the incoming particle which is called retro-reflection

gap eV < A. In this case, the incident electron is reflected back inside the normal
metal as a hole, and two electrons transmitted in the superconductor as a Cooper

pair, such that the total charge and momentum is conserved. If we consider a singlet

spin Cooper pair in the S side, the reflected hole propagates in the opposite spin band
to that of the incident clectron with opposite wave vector. This phenomenon is called

retro-reflection, in which the hole traces back the trajectory of the incoming electron

(see Figure 2.2)
On the other hand, if eV > A, then the incoming electron can propagate to the S side
and form a Cooper pair. This pair is the source of the super current in the supercon-
ductor. However, there are still electrons with energy less than the superconducting
energy gap, which may undergo Andreev reflection. There is also another possibility
in which the incoming electron is reflected normally as an electron at the interface,

)

This phenomenon is called specular refloction (see Figure 2



12

Due to Andreev reflection, the conductance of the junction becomes double for ¢V <
A. This provides useful information on the energy gap in the S side which is the main
application of PCARS. In general, the state of the quasi-particles at the interface of
the N/S junction is described by the solution of the Bogoliubov-de Gennes (BdG)
equations [19]. From these equations, one can conclude that Andreev reflection does
not occur abruptly at the interface. In fact, it happens over a length scale of the order
£ This length is the same as the superconductivity coherence length over which A
is depressed because of the proximity efect generated by N on S. For contact sizes

8

smaller than £ this effect can be negleg

Therefore, it is necessary to use contacts which are smaller than the electron mean

free path (a < 1) and the coherence length (a < €) to avoid the heating and proximity

effects respectively:

2.2.2  The Blonder, Tinkham and Klapwijk (BTK) formalism

Although Andreev reflection was discovered in the early 1960s, it took almost 20 years

to develop a framework for analy the PCARS spectrum. This work was done by
Blonder, Tinkham and Klapwijk [21] which is known as the BTK theory. In this
model, the state of the quasi-particles at the N/S interface can be described by the
BAG equations. The barrier at the interface is shown by a repulsive potential and all
of the system is considered to be one dimensional. In the following, the details of this

theory are explained.

2.2.2.1  Bogoliubov-de Gennes cquations

The BAG equations provide an appropriate method for analyzing quasi-particle spec-

tra in superconductors. In particular, the state of quasi-particles is described by two



functions w and v (considering particles without spin) [19]

w(r) Akr)  Alkr) w(r)
€ -
i(r) Atk r) —M (k1) we(r)

where /1 = 34(p — €A)? + V — Ep. I this equation, A and V' represent external

magnetic and electric potential respectively, and Ey: is the Fermi energy of the ma-
terial under consideration. Also ¢ is the energy of quasi-particles measured from the

a function

rmi energy and A shows the superconducting pairing potential, which i
of position r and momentum k in general. In case of metals where A vanishes, these
w and v functions describe state of independent electrons and holes, while in a su-

ations

perconductor with non-zero A, we deal with a mixture of hole and electron ex

Following the BTK formalism, if we consider a one dimensional interface located in

the ry plane at = = 0, all the momenta in the problem are normal to the interface and
thus parallel to the z axis. We also assume that interface is described by a repulsive

Ao,

delta potential H5(z). In the case of conventional superconductors with A(k, r)
the BAG equations at the normal-metal /superconductor (N/S) interface are reduced

to

= h(z)u(z) + AgO(2)0(2) (26)

= —h(z)u(z) + DyO(=)u(z) (2.7)

where h(z L O(2) is the Heaviside step function and

energy of the injected particles.



2.2.2.2 BTK cocff

nts

According to the BTK model, which is based on zero temperature caleulations, the

injected electron from the normal side to the superconductor may undergo different

processes depending on the energy £, as shown in Figure 2.3, The probability of these

processes can be obtained by solving the aforementioned BAG equations and using

appropriate boundary conditions. When the electron approaches the interface with

s in four trajectori

rger than the pair potential amplitude (£ > [Ag]), it advance

1

The electron can be reflected as an electron whose momentum component nor-
mal to the interface is reversed and the two other momentum components are
conserved becanse of the translational symmetry at the interface, i.c. it propa-

gates with (k. k assuming that (kg k,. k.) represents the wave veetor of

the incident electron. The probability of this process is denoted by B.

The electron can also be reflected as a hole (Andreev reflection). In this case, the

ctly opposite to that of the

hole propagates in the metal with a wave vector ¢
clectron, i.e. (—ky, —ky, —k.) which is called retro-reflection. The probability of

this process is denoted by A.

. The electron can be transmitted te the superconductor as an electron-like quasi-

particle (ELQ) whose probability is denoted by C.

1. The electron can be transmitted to the superconductor as a hole-like quasi-

particle (HLQ) whose probability is denoted by D.

In the case of Andreev reflection, the injected electron forms a Cooper pair with an-

other electron near the Fermi surface of the superconductor. This electron should
have a wavevector inverse to that of the first electron. Hence the vacant place of this

clectron propagates with the inverse wavevector, which is equivalent (o the cmission



of a hole.

On the other hand, when energy of the mjected electron s less than the pair potential
amplitude (£ < |Aq|), the transmission of the electron as ELQ and HLQ is forbidden
and the current is carried by Cooper pairs (see Figure 2.3). Obviously, the existence

of the pair potential causes the Andreev reflection process.

2.2.2. Solution of the BAG equations for one dimensional junction

As already mentioned, the probability amplitude of each process (A,8,C,D) can be
found by solving Equations (2.6) and (2.7) following the appropriate boundary con-
ditions. These equations are similar to the ordinary Schrodinger equation in the case

of a 0 potential where the wave-functions in the N and S sides are forced to match at

= = 0 with boundary potential H4(z). Therefore, the wave function on the normal

s explained in the previ-

side is the sum of the wave functions of the possible proces

s the wave function on

ous section multiplied by their amplitudes. Considering ¢/

the N side then we have
UN(2) = Yine(2) + Aa(2) + Bia(z) (2.8)

where 2, is the wave function of the incoming particle and ¢, and ¢y, represents the
wave functions of Andreev and speeular reflection respectively. On the superconductor

en by

particle wave functions i

=

side, the superposition of the quas

Us(2) = Cvl) + Diul=) (29)

Here, 1) and ¢y describe the state of electron-like and hole-like quasi-particles respec-

tively.



(@ N AE S
Injected electron
; @® > Transmited ELQ
Reflected electron
A”
E, >z
4
7Au
Reflected hole
o O »  Transmitted HLQ
U(2)=H 5(z)
(b) AE
N S
L 2,
Injected electron @ .
Reflected electron <« @ | @~ Cooper pair
{ >
E, Jee ~
Reflectedhole < O [©]
_Au
U(z)=H &(z)
Fignre  2.3: Schematic  illustration  of clectron —injection in a normal-
metal /superconductor junction.  The electron s injected with encrgy £, Open

cireles represent hole (-like quasi-particle) while closed circles show clectron (-like

quasi-particle). For £ > |Aq| (a) the clectron (hole
ELQ (HLQ). For I < [Aq] (), the prescence of the F

superconductor. Hence, the current is earried by form

is normally transmitted as an
JQ (HLQ) is forbidden in the

ation of a Cooper pair
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1l we assume injected electrons with wave

or k¥, then the wave functions of the

particles propagating on the normal side can be written as

1
Vine = f"k‘: a

0
0

Yo = etkn (2.10)
1
1

= e-ikhe
0

The first function shows an electron moving in the positive 2 direction with wave

vector A% while the last one represents an electron moving in the negative z direction

lated to the motion of a hole toward

with wave vector ky. The second function is re

the positive = with wave veetor ky

For the S side these wave functions include BCS' coherence factors (see Appendix

and are expressed in the following form

ue-i

i are a result of the




where u and v are written as

— A2

Q= \/E

in which we consider £ as the encrgy of the injected particle. Using these wave

[unctions, the state of the system is written as

1 0 e
etk + A(B)et + B(E)e v <0
u(z) 0 1 0
W(z) = . «
v cwyerts| " | 4 pEyense| 220

ve-i® e~

The wavefunction is contimious everywhere, in particular it is continous at = = 0;
but its first derivative has a discontinuity because there is a d-function potential at

2= 0. Thercfore the matching conditions of the wavefunction are:

W(2)lz0r = W(2)]:0

d 4
FVE0e = Ve = T

which can be used together with BdG cquations to find cight unknowns k3, ky, k%,

kg, A(E), B(E), C(E), D(E).
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Substituting (2.13) into (2.6) and (2.7) results in

B [e 4 B(E)e %] = 72'% (k)™= + (—ik} )2 B(E)e™
= Bp [R5 4 B(E)e ]
EA(E)e*~* = ﬁ(lk{/)zﬂ(b")l"“': + EpA(E)e 2.16)

for & < 0 and

E (OB 4+ D(E)ve*s]
e

2m
— B [C(BY S + D(Byue5*] + Bg [C(E)ve %65 + D(E)ue %]

[k OBy 4 (~ikg)? D(E)ve k<]

E[C(E)ve e+ 4 D(E)ue e
n*
2m

+ B [C(B)ve e 4 D(E)yue e

+ (—ikg)* D(B)yue e s

(ikd2C(E)ve™

A (OB + D(Eyoe 7]
1

(217)

for > 0. In addition, the boundary cenditions yield the following equations

1+ B(E) = C(E)u+ D(E)o (2.18)
A(E) = C(E)ve + D(E)ue* (2.19)

[k + (~ikg)D(E)e] — [(kE) + n(r;)(ﬂk;.)\ = z%u

[@kCE)we "+ (wikg)D(EYue ] ~ [AE)(iky)| = _'l_,'l{.x(l-:)] (2.21)
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Equations (2.16) and (2.17) can be simplified as

(k) Epu+ Dgve

om(Ey+ E)

V2m(Ey + Q)

= |3

The amplitude of the different processes at the interface are also obtained as

uve ™"

ME) = =7
B = 2042

a+ ) (2.21)
o(B) = U%
P E—

(14 2% =

where 7 = /. Finding these unknowns enables us to caleulate the conductance

spectrum of the junction in terms of the energy of the injected particle, ie. the bias

voltage.



2.2.2.4 Normalized conductance

PCARS is considered as one of the highest-energy resolution probes of the electronic

states. The amplitude of the current flew (7) depends on the bias voltage (V) which
reflects the electronic structure of materials used on both sides of the contact. The
essential concept of the BTK theory is 1o express the conductance of the junction by
means of the reflection amplitude for electron injection. This approach is quite similar

, which is uscful for contacts made of normal metals. In this

to Landauer’s formula [2
formulation, the electrons are randomly injected from a implicitly assumed thermal

equilibrium heat bath. If we consider no scattering interaction in the junction area,

then the conductance of a single channel is quantized in units of 2¢/h* [23]. In the
presence of scattering interactions, the transmission probability amplitude is different

than one, hence the net current per channel is decreased.

In the BTK method, one of the electrodes is replaced by a superconductor, which
results in the incorporation of Andreev reflection probability into the formula [21]
Consequently. net current associated with the Andreev reflection process affects the
conductance spectrum in a serious way  Once the reflection coefficients of the BTK
theory are found, it is possible to caleulate the conductance spectrum of the N/S
Jjunction by

a5(E) =1+ [A(E)? - |B(E)

where the factor 2¢/A2 is neglected for simplicity. Although as(£) is written in terms

of A and B, the contribution of €' and D is already included in the caleulations.
This equation can easily be interpreted in terms of the charge flow conservation. If
the injected electron is reflected as another electron, there is no contribution to net

current flow. On the other hand, in case of Andreev reflection the reflected hole



inereases the et current flow througl the barrier, which is twice the probability
amplitude of the Andreev reflection process. Dividing o(E) by the conductance of
the junction when it is in normal state (o) gives the normalized conductance which

is the outcome of the PCARS experiment (21, 22]

N

Using the reflection cocfficients in equation (2.21), o(E) is given by

o(B) [P+ (o ~ DI

T N (on -l
where
o - (228)
and
A

In the next section, the conductance spectrum of a junction for various values of Z is

caleulated, ranging from a perfectly transparent junction Z = 0 to Z — oo

2.3 Conductance spectrum of one dimensional junc-

tion

In this Section, we consider a conventional superconductor with A = A for the S side

of the junction. Equation '7) enables us to caleulate the conductance speetrum of
such a junction. In the actual experiment, the bias voltage, which forms the r-axis
of the spectrum, is normalized to the largest value of the gap function (A in this

section). In fact, all the spectroscopic information on the superconducting state is
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Figure 2.4: Normalized conductance spectra @ of a normal-metal /conventional super-
0 as a function of Z.

conductor junction at 7

extracted from o vs. o graph where @ stands for £/|g|. As already mentioned,  is

the energy of injected electrons which depends on the applied voltage to the junction

= ¢V, Multiplying and dividing I in (2.29) by [Aq| results in

Thercfore, the conductance in terms of “he new parameter « is given by

sl v = Vgl
(ow ~ D)

As can be seen from this equation, the vormalized conductance is a function of Z (in

addition to ) which represents the characteristics of the interface.

Figure 2.4 shows the normalized conduerance spectrum of a one dimensional normal-
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metal /conventional superconductor junction for various Z values. In the case of a

perfectly transparent junction, where Z = 0, the conductance for M’—‘ < 1is doubled
with respect to the conductance in the normal state (o). In this regime, which is
called the pure Andreev regime, Andreev reflection takes place with probability 1

According to (2:24), for Z =0, B is zero and A is given by

2.33)

With increasing 7, peak structures appear in the spectrum at ;1= & 1. As can be seen

from Figure 2.4, the amplitude of the peaks increase on increasing Z. For larger Z

values, the normalized conductance takes the form of the BCS quasi-particle density
of states [24]

The BTK model can reproduce all the different experimental situations which arise
from different. transparencies at the N/S interface by introducing a simple parameter
(Z). This parameter can range from zero to infinity. In particular, (2.27) enables
us to extend the simple BTK formalism to two and three dimensional problems with
more complexity. However, it should be noted that the original BTK model is derived

by considering a large number of appreximations and simplifications which can be

listed as [24]

All the caleulations are performed at zero temperature (7' = 0).

2. The problem is limited to one dimension, such that all the injected particles



perpendicular to the plane interface.

The barrier is a

sumed to be ideal with no thickne

We consider a spherical Fermi surface in both sides of the junction

Fermi velocity is the same in the N and S sides.

6. The N/S interface is assumed to be atomically flat.

In the following chapter, we will extend the BTK model to more realistic conditions

I

relaxing most of these restrictions. This provides us with a way for the analysis of

PCARS results corresponding to a varicty of unconventional superconductors such as

PrOs;Shy,, which is the main superconductor under study in this work.



Chapter 3
Beyond the BTK Model

In a real normal-metal /superconductor (N/S) junction, the current injection is not
really perpendicular to the interface. In fact, charge carriers approach the inter-

face of N/S junction in any direction. The only constraint on the k vector is that

ved due to translational symme-

its components parallel to the interface are cor
try at the interface. Because of this conservation rule, the injected particle can still

undergo the same processes at the interface as of a one dimensional junction (see Fig-

ure 3.1) 22, 26). On the N side the injected electron with momentum k = (k,. k,, k.)
might be reflected as a hole with opposite wave vector (k) or as an electron with op-

verse component of the wave vector (A, ky, —k.). On the S side the ELQ

posite trans

propagates in the same direction as the neident particle (considering the same Fermi
velocity in both sides of the junction), i.c. with the wave vector k while the HLQ
propagates with the wave vector (—k,., k. k.). Therefore the BTK model should be

extended to at least two dimensions.

Extending the BTK model to more than one dimension is also necessary when one

deals with pair potentials having anisotropy in k-space or unconventional supercon-

26
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5

ductors. Since PCARS s a local probe, the interaction of the injected particle with

the superconducting pairing potential depends on the direction it approaches the in-

terface. Depending on this direction, the particle interacts with different parts of the

pairing potential which generally are not the same.

The BTK model can also be generalized to situations where the Fermi velocity on

N side differs from that on the S side. Following the formulation by Bruder
we extend the BTK model to two-dimensional and three-dimensional systems in this

chapter.

3.1 2D system with singlet pair potential

3.1.1 Scattering amplitude coefficients

Suppose the injected electron on the N side, has energy E with upper-right-going wave
vector as can be seen in Figure 3.1. This electron makes an angle ¢ to the interface
normal (#) such that —7/2 < 0 < 7/2. Suppose that the wave vector of this electron
is given by ki. The components of this wave vector are
Ky = ki cosd
(3.1)

ki, = ki sing

If the pair potential is singlet, then we can treat the problem without including spin

in the equations, similarly to the convertional superconductor case. Therefore, there

are fonr possible scattering processes at the interface for the injected electron. These

four trajectorics and their corresponding wave veetors are given as

1. Andreev reflection: ky



Reflected electron

Reflected hole

Injected electron

N

NS

Transmitted ELQ

Transmitted HLQ

Figure 3.1: Schematic illustration of possible scattering processes at the interface of
The electron is injected with angle 0 to

normal-metal/anisotropic superconductor.

the interface normal (z-axis). Because of the assumed approximations, all trajectories

have the same angle
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2. Normal reflection: K
3. BLQ: K
1 HLQ: kg
Due to translational symmetry, the component of these wave vectors parallel to the

interface (y-component) are all the same in magnitude. Thercfore,

(32)

Ky = 1| = vy | = k| = 13

The solution to the BTK coefficients can be obtained through the same steps as in
Chapter 2 but it should be noted that the transmitted ELQ and HLQ interact with
different effective pair potential. This happens because these particles propagate with
different wave vectors, k¢ and kg, respectively. Hence, the pair potential returns
different values for these veetors in k-space (A = A(7) with 5 = k/[K]),

Ay = A1) = Akg/ k)

(3.3)
A= A0) = Alkg/Ikg])-

Consequently, the BCS coherence factors, as a function of A, are different for ELQ

and HLQ [27). In addition, the phases of the effective pair potentials are given by

exp (i)
(3:9)

exp (i¢ )
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Using these equations, the wave functior of the system can be written as

1 0 i
Wy (r) = b + A(E)exT +B(E)e T
0 1 0
(3.5)
)ik e Ne ks T v
Ws(r) = C(E)e™s +D(E)e™s
s B

where

wy = \(E+0)2E
v = (E-0)/2E (3.6)

Qi = /B2~ A

Substituting (3.5) in the BdG equations and applying the boundary conditions en-
ables us to find the probability amplitude and the wave vectors. Because of trans-
lational symmetry at the interface and conservation of the momentum components
along y-direction, only the .« dependent part of the above equations participates in

calenlations. According to (3.2)

Ky = (kyo k)
N = (Kxe —hNy)
kf = (kd by,

ks = (ks —kR,)



Therefore (3.5) is written as

i i 1 + 0 + 1
Wy(r) = eheretiby & A(B)s I
0 1 0
, u j
Wy(r) = C(B)ebreikny ' + D(E)e ksm iy !
V€ —i6+ u_e '
(38)

Finally by factoring e, we find

; e 0 . 1
W (r) = em [ethher + A(E)e vt + B(E)e #ha
0 1 0
(3.9)
ikl vy ikl U + kg r L
Ws(r) = " M¥ |C(B)e'se + D(E)e s
vye o e '
Hence, boundary conditions are only applied in a-dircction,
W () ]em0- = s (r)]e=0s (3.10)
1Ws(r Ay (r 2mH .
Wty N2 ) (3.11)
di dir I



From the BAG equations, one can find

B [e%er 4 B(E)e ,’i" (e 4 (il B(E) e ]
= Ep [¢"ht 4 B(E)e 47|
1

EA(E)e*se = I AN 4 B (B
E[C(Ep, %+ D(E)o_obert] =

[('kt,)l (Eyuy et 4 (=ikg, ) D(E)o_e~kser

zm
—Ep [C(E)uy ™5™ + D(E)v_e *se*

FA[C(E)uye M 4 D(Eyu_e® ¢ kst

E[C(Eyo e et 1 D(E)u_emié-e %5t =
B e by ikt f 0 il e
m{(m;,)((ﬁ)u,( ek g (—ikg,)2D(E)u e ¢ ks
B [C(E)v e R 4 D(Eu e ¢ "’n']m' (G e 4 D(E)e ]
(3.12)
The boundary conditions yield
1+ B(E) = C(E)u, + D(E)e- (3.13)
A(E) = C(Eyo,e 4+ D(Eyu_c (3.14)

[k )CCEY s + (—ikg)D(EY- ] — (k%) + BUE)(~ik},) —%”[I+Ii(l‘,‘)]

[(RE OBy e 4 (—ikg ) D(EYue™ | = [A(E)iky,)| = )”’” U AE)].

(3.16)
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By solving this

t of equations the wave vectors and probability amplitude are found

as
it = \[2m(Ep £ &)
k= \2m(Er £ 92;)
. exp(—igy Ju_vy
A(E0) =
(B0 = T 7 = 20,0 explio —idy)
B(,0)— Z'(i+ Z'(vyv_explio- —ipy) — usu_]) (3.17)
T (U4 2P — 2% v_explio- —igy)
. (1—iZ')u_
C(E,0) =
(B0 = Tz~ Zo,v_ oo —idy)
. explid- — ig,)iZ'v,
D(E,0) =
(E,9) (U4 Z7)wu_ — 2700 oxplig- — i)
where Z' = 2L Assuming that By > E,[A(K)], the magnitude of all the wave
Ty cov0

veetors can be approximated by k.,

Ny = \2m(Ep + E) = hky.
Wkt = \Jam(Ep + Q0) ~ Dk

As a result, all the particles make the same angle as the incident particle with the

(3.18)

a-divection, i.¢ all the trajectorics are dcfined by angle 0 as shown in Figure 3.1.

Kby = vy = ki, & kg, ~ ki cosd (3.19)

Also, we already assumed that is the same in both sides of the junction (|k

"

|kss)). Note that for a conventional superconductor (A = A_), we retrieve the BTK



result by putting ¢ = 0 in (3.17),

(—ig)uv (3.20)

AMEO) = e - 7

B0y = 20t A wd)

As it is expected from the Andreev theory [17], when there is no insulating barrier at

the interface (i.c. Z = 0), the normal reflection cocfficient B, 0) vanishes. T this

situation, only A, contributes to Andreev reflection.

3.1.2  Conductance spectrum
Using the above coeflicients, the angle-resolved and normal conductance for the elee-

tron injection with angle ¢ are given by [22]

s L+ on|0y* + (on = DN T
J(E,0) = 32
7B 0) = O T E T T exp (i — ip1)F (321
1
v = 3.22
NETy 77 (22)
E-Q

is reduced

(

By setting Ay = A, ie. the case of conventional superconductor,
en, these equations are not symmetric with

to the usual BTK formula. As can be



respect to the exchange of the subscripts + and —. Therefore, for injection angles

and —f, the conductance spectrum looks different.

).

cr in k-space, the normalized conductance

For a real N/S junction, the particles are injected from all angles (—7/2 < 0 < 47/

Hence, since the injection is toward -

spectrum o(£) can be obtained by the integration over the solid angle on the hall-

sphere of the Fermi surface:

I dw os(E,0)
[ dway

o(E) =

The solid angle for a two-dimensional system is given by

dw == cosf) dO,

therefore (3.24) can be written as

[, d0 cos0 o

(3.26)

In addition to the amplitude, the conductance spectrum is also sensitive to the phase
of the pair potential. Therefore, studying the phase of the Cooper pairs in a super-

spectrum of a

conductor is also possible by analyzing the normalized conductanc
N/S junction. In the next Section, we will analyze the conductance spectrum for a

number of junctions with various symmetries for the superconductor.

3.1.3 Conductance spectrum of two dimensional junctions

In this section we analyze the conductance spectrum for the following ¢

LA =A Dy




2. A, =

=N

3. A, explin/2) LY}

In each case, o is caleulated for different Z values. 1 may be noted that these cases
include differences in both the amplitude and phase of the pairing gap. Then we

analyze high-T; superconductor junctions which are two dimensional.

3.1.3.1 Caseone: A, =A =4,

This case corresponds to an s-wave superconductor. Since the symmetry of the pair
potential is isotropic, the conductance of the two dimensional junction looks exactly
the same as the one dimensional junction. Using (3.21), we can write the conductance

in terms of a new parameter « as,

L oullP + (o — DI

as(o.0) = v

F=z—Va

/12| The conductance spectrum for this case is shown in Figure

where r =

3.1, A =4y

.2 Case two: A, =

In this case, the phases of Ay and A_ are different. The phase difference is 7 which

canses the appearance of a peak at zero energy (sce Figure 3.3). This peak is called

a zero bias conductance peak (ZBCP). The conductance can be written a

1+ on |0y + (on = DT T

750 = N T el (@29
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Figure 3.2: Conductance spectrum for a 2D junction with A, = A
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Figure 3.3: Conductance spectrum for a 2D junction with A, = —A
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Normalized Conductance (o)

.0
0.0 0.5 10 L5 2.0
E/ag

Figure 3.4: Conductance spectrum for a 2D junction with A, exp(in/2) = ~A_ =

A,

3.1.3.3  Case three: A, exp(in/2) = Ay
In this case, the phase difference of A and A_ is 7/2. The conductance can be

written as

1o+ (on — DT
NMTF (en — DO T exp(in/2)

as(r,0) =0

(3.20)
1

My=z-
For this symmetry, a peak is observed a- £/Ag = v/2/2 (sce Figure 3.4).

3.1.3.4  Junctions with high-7, superconductors
When a junction is made of high-T; superconductors, the effective pair potential is
generally only a function of two components of the k vector. For example consider

extended s wave, s + idye_ 2 wave and dyz_ e superconductors. The functional forms
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of these pair potentials are

Ak) = Ay + Ay

40, (3.30)

Alk

Ay + 1Ay cos 20, (3.31)

- Ay cos 20,

A(k)

respectively.

Here, 0, represents the angle between a axis of the superconductor and the vector

(ks ky. 0), (see Figure 3.5). ng the above formulation, the conductance of the
junction can be caleulated for different tunneling directions.  In the case of two-

dimensional superconductors, we can have c-axis tunneling and ab-plane tunneling,

For the c-axis tunneling, A, = A rdless of the injection angle and symmetry of

the pair potential. Fignre 3.6 shows the conductance spectrum of c-axis tunneling for

s for the various parameters which

the above for the above pairings. Arbitrary valu

appear in the order parameter were used

On the other hand, when the tunneling direction is in ab-plane of the superconductor,

Ay = A is not generally satisfied. Therefore, the conductance is expected to depend

on a, the angle between the a axis and the interface normal. The pair potentials for

the above symmetries in terms of a are

A(k) = Ay + Aycosd(0 — )

A(K) = Ay 4 iBg cos2(0 - a)

A(k) = Ay cos2(0 — a)



Figure 3.5

b-axis

Definition of the angle 6 for a d2_2-wa
is defined as the angle between the injection

~vector and the a-axis of the cr

10

superconductor. For this case, it
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Figure 3.6: c-axis conductance spectra for: (a) dy2_,2 wave with Ay = Ag; (b) ex-
tended s wave with Ay = 0.78 and Ay = 0.3A¢; (¢) s + id,2_ 2 with A, = .74
and Ay = 0.34,

where 0 is the injection angle. Figures 5.7, 3.8 and 3.9 show the conductance spectra

for these three superconductors.

In the next section we will see how these results can be extended to the case of triplet
pair potentials where spin of the particles becomes important in solving the BdG

cquations

3.2 2D system with triplet pair potential

In this Section, we analyze the tunneling conductance spectra of normal-metal /insulator/triplet
superconductor junctions by extending the theory that we developed in previous sec-
tions for anisotropic singlet superconductors. In particular, we will investigate the

spin dependence of the conductance spectra and the influence of the non-unitary
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Figure 3.7: ab-plane conductance spectrum for a d,2_,2 wave superconductor with
Ay =2 (a) a=0; (b) a=n/dand () a=7/8
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Figure 3.8 ab-plane conductance spectrum for an extended s wave superconductor

with Ay = 078 and A = 038 () a = 0; (b) a = 7/4 and (¢) a = 7/8.
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Figure 3.9: ab-plane conductance spectram for a s+id,2 2 wave superconductor with
Ay = 0.7Ag and Ay = 0.3A (a) a = 0; (b) a = 7/4 and (c) a = /8

states on the final results.

3.2.1 Spin dependent BdG equations

In the case of triplet superconductors, the spin structure of the pair potential should
be included in the caleulations. As a result, the BAG equations cannot be in gen-
eral decoupled into separate equations and the spin part of the equations plays an

important role in the caleulations. In this case, the state of the quasi-particles are de-

scribed by four-spinors in Nambu (particle-holesspin) space [29]. These four-spinors




are determined by the solution of the BAG equations [2

up(r)

(Hy = B)dy A wlr) | _ 0 (3.36)
At —(H{ + E)dy vp(r)
vy(r)

where Hy = (—~12%/2m —

7o and E is the energy of the particles with

o

uy(r) corresponds to an ELQ with spin up while u (r) describes the state of an ELQ

with spin down. vr(r) and vy(r) corresponds to a HLQ with spin up and down, re-

spectively.

Similar to the singlet superconductor case, an injected electron with spin up can un-
dergo four different processes at the interface. However, this time each process can
happen with two spin possibilities (up or down). Therefore, there are eight scattering
processes at the interface in total whosc probabilities can be found by applying the
appropriate boundary conditions. Figure 3.10 illustrates these possible processes at

the interface of a N/S junction.

Equation (3.36) can be written in the following form

() + 3 Agrvg(r)

P)s(r) + 30 Al ug(r)
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In these equations, spin index s can take two values T and |, k represents the relative
motion of the Cooper pairs fixed on the Fermi surface ([k| = ki) and r describes the
center of mass coordinates of the Cooper pair. We also assume that the Fermi wave

vector is the same on both sides of the junction [30]

3.2.2  Spin dependent normalized conductance

Because of translational symmetry at the interface of the junction, only z-component
of the present wave vector in the problem contribute to the final result.  Hence,
following the BTK model, the solution of Equation (3.36) can be written as the lincar

combination of possible scattering processes. Considering an injected electron with

spin up, for z < 0 the wave function of the system is given by [2, 30, 31]

1 0 0 0
0 v 0 0| .x
Py = (1+byy) e * gy ok
0 )
0 0 0 1
(3.39)
For = > 0. the solution can be written as
Un Urz
Us st s
ds=len| P A= dbg P
Uy Us,
Un Usn
(3.40)

The coefficients used in these equations are:

reflection;

a, the coefficients of Andr
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Figure 3.10:

Schematic illustration of the reflection and

the transmission process

of an injected electron with spin up at the interface of a normal-metal/triplet-

superconductor junction



b, the reflection coefficients of noriaal reflection;
¢, the probability amplitude of transmission as an ELQ; and

d, the probability amplitude of transmission as a HLQ.

Finally, U,; are the components of the Bogoliubov (unitary) transformation matrix [2]

(see Appendix A)

For example, byy is the probability amplitude of normal reflection with spin up, when
the injected particle is a spin up electron, while ay, is Andreev reflection of a spin

down hole,

In the weak coupling limit, the amplitude of all the wave vectors are fixed to the

Fermi surface such that

~ ky:cos (3.41)

where 0 is measured with respect to normal to the interface (2 . The rest of the

wnknowns can be found using the appropriate boundary conditions

D5(2) o= ¥(E) Leco
! 2mil
or =N (E) |ec-= T () oo

- given in Appendix B

The general form of these coellicients a



18

Finally, by finding these coefficients for both spin up and spin down injection we can

caleulate the normalized conductance o(E) of the junction which is given by [30, 32]

(3.44)

where ag; and o, are the conductance of the junction for spin up and spin down

injection at a given angle 6, respectively. These two functions are defined as

ast =1+ lan "+ La [* = | by [* = [ b, [*

L g e R e PR e T

The normal conductance of the junction oy is given by

cos? 0+ Z? " 4
mi (3.46)
[z

Section we will review the conductance spectra of some N/S junctions

In the nex

with triplet pair potential superconductivity.

3.2.3  Conductance spectra of 2D normal-metal/triplet su-
perconductor junctions

In this Section we calenlate the conductenee spectrum of a junction with a spin-triplet
superconductor for both unitary and non-unitary gap functions. In general, for triplet
superconducting states the gap function is parametrized by a vector function d(k) (see
Appendix A)

A(K) = i0y(d(K) - 0) (3.47)
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where d(k) is an odd function of k

In 2D, the most symmetric unitary triplet state is given by

d(k) o< %k, + §k, (3.48)

Also, a simple example of non-unitary state is written as

(3.49)

From these vectors, we can form the appropriate gap function which is used in turn

to calculate the normalized conductance.

3.2.3.1  Unitary example

Using (3.48), the gap function is

—k+ik, O
Alk) = Ay (3.50)
0 Ky + ik
In cylindrical coordinates, this matrix is rewritten as,
—cos0 +isin0 0
Alk) = &) (3.51)
0 cos0 + isin

This matrix is used to find the normalized conductance spectrum of the junction,

shown in Figure 3.1 for various Z values.
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Figure 3.11: Normalized conductance of normal-metal /insulator /unitary-triplet su-
perconductor junction for various Z values

3.2.3.2  Non-unitary example

Using (3.19), the gap function is

Ak) = Ay (3.52)
0 0
or
—cosf +isinfl 0
Alk) = &) . (3.53)
0 0

This matrix results in a conductance spectrum as is shown in Figure 3.12
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E/ay

Figure 3.12: Normalized conductance of normal-metal /insulator /nonunitary-triplet
superconductor junction for various Z valucs

3.3 3D system

The results of the two dimensional calculations are only applicable to junctions which
are made of superconductors whose pairing potentials are invariant in the third diree-
tion. For superconductors that are three dimensional, we have to extend our model to
three dimensions. However, since the transverse components of the momentum vector
are conserved, the different scattering processes always take place in the plane of these
components [22, 30, 32]. Hence, the BAG equations are confined to this plane and the
problem can be reduced to two dimensions. However, the pair potential depends on

all three components of the k vector (we assume A has no spatial variation),

Alk,r) = A(K)O(2) (3:51)
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(where the junction interface is perpendicular to z-axis). Therefore, after finding

the corr conductan

, the normalized conductance integration
is carried over a three dimensional solid angle, covering the half of the Fermi surface
with k. > 0. Using spherical coordirates, the conductance is given by following

formula

6, E) +05,(0,6, E)) d2

-
[ 2oy d (3.55)

where # and ¢ are polar and azimuthal coordinates, respectively

The superconductor that we are studying in this work (PrOs;Sbyy) is cubic. Therefore,

analyzing the conductance spectrum of normal-metal /PrOs;Sbys junctions requires a
3D treatment. In the next Chapter we will present three dimensional caleulations of
tunneling conductance of such a junction using various candidates as the pair potential

of PrOs;Shy



Chapter 4

Conductance spectrum for
Normal-Metal /Insulator /PrOs,;Sb1,

Junctions

As already mentioned in Chapter 1, the superconducting gap topology of PrOs;Sha
has been the subject of variety of experimental studies. However, none of these ex-
periments has confirmed the actual symmetry of the superconducting phase in this
material [33, 34, 35, 36, 37, 38]. PCARS, known as a local probe of electronic struc-
ture, provides us further information about the symmetry of the superconducting gap.
This information can be used along with results of other experiments to find a more

aceurate picture about the structure of the gap function of PrOs,Sby,.

By using the formalism developed in pravious chapters, in this chapter we caleulate
the conductance spectrum of a Normal-Metal/Insulator/PrOs,Sby junction. The cu
bic symmetry of PrOs;Sbys crystal structure forces us to employ a 3D analysis of

the spectrnm. The conductance can be caleulated for various superconducting gap



Normal Metal Pr OS4Sb 12

Figure 4.1: Schematic illustration of normal-metal/insulator/PrOs,Shy, junction.
The interface is located at 2 = 0 and is perpendicular to

xis.

symmetries. One of these possible symmetries is expected to be the symmetry of the

superconducting phase in PrOs;Sbya.

In geners

I, applyi

the phenomenological Landau theory to crystal symmetry group

of PrOs;Shyy provides us with all the possible symmetry groups of superconducting

3], These symmetr

gap [3 andidates can be divided into two groups: singlet and

triplet pair potentials.

In the following sections, we will explain the model which our conductance caleulation

is based on it. Then we will report the result for cach group (singlet and triplet)

parately.




4.1  Normal-Metal/Insulator/PrOs;Sb;, Junction

4.1.1  Set-up

Throughout this chapter we consider a junction as it is shown in Figure 4.1. Accord-

ing to this picture, electrons are injectad into the superconductor with wave vector

(ks ky, ko) such that k; > 0. The interface is located at 2 = 0 and it is described by
Ho(z). All the scattering processes at Lhe interface take place in a two dimensional

em. In this

plane which is defined by a fixed angle ¢ in the spherical coordinate sys

system, the wave vector of the incident electrons are written as
k = kp(sin 0 cos ¢, sin 0 sin ¢, cos 0) (4.1)

where we assumed that the amplitude of this veetor is fixed to the Fermi surface (weak
coupling limit approximation). &, > 0 implies the following condition on the range of

azimthal and polar angles

(1.2)

0<0<n/2
In addition, the possible scattering processes are shown in Figure 4.2. The con-
ductance coefficients are generally a function of 0, ¢ and £ for this configuration
Since the amplitude of the Fermi energy is the same on both sides of the junction
(Epy = Eps), all the particles in the problem make the same angle 6 with the normal

to the interface (z-axis)

= kpcost (4.3)
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Figure 4.2: Schematic illustration of normal-metal/insulator/PrOs;Sbyy junction.
The interface is located at 0 and is perpendicular to the z-ay

4.1.2  Conductance
Once the conductance coefficients are formd, the normalized conductance is calenlated

by integration over the hemisphere in k-space defined by

k>0
0<¢<2m (4.1)
0<0<7r/2

Therefore, using the spherical solid angle, the normalized conductance is written as

T (051(E,0,9) + 05,(E,0,0)) sind dode

2 772 ; (4.5)
JE I 2 on sing dode
where the normal conductance oy for this particular configuration is given by
cost0 )
ONZ= ROL 2R (4.6)

0+

and so the denominator of Equation (1.5) is 47 7% oy sin0 df.



In general, oy can be obtained through angle-resolved conductance formula, once A

vanishe

oy = limo 17
¥ A0 3 ( I)

It may be noted that, although oy and o, are generally two different functions, th

become equal for singlet pair potentials and those triplet states that are uni

4.2 Singlet states

For a singlet. pair potential which is antisymmetric under exchange, A is an even

Tunction of k, since the whole state is antisymmetric. Therefore the antisymmetric

matrix A(k) is parametrised by a single even function ¢

A(K) = ioyi(k) = (1.8)

Tetrahedral point group T, (the point group of PrOs;Sh;2) has 1D, 2D and 3D order
parameters in each of the singlet and triplet channels [3]. The 1D order parameter
in the singlet channel is nothing more than ordinary s-wave symmetry which has no

nodes at all.

The 2D order parameter includes two phases that are accessible from the normal
state. The first phase has 7'(Dz) symmetry. This phase includes cight point nodes

and three equivalent domains.

The sccond phase of 2D order parameter has Dy x K symmetry group, a subgroup of
Ty, Since the s-wave superconductivity may appear as a secondary order parameter

in this phase and remove the nodes in the gap function, we do not consider this case



in our calculations.

There are four phases for 3D order parameter accessible from the normal state. The

first phase has symmet

T(Dy) x K and contains three domains. This phase has

line nodes.

The second phase has Cy x K symmetry. This phase includes s-wave as
its secondary order parameter and hence of no particular interest. The third phase is
probably not an acceptable candidate for superconductivity because of its three-fold

symmetry. However, we consider this case in present work. It has Cy( ) symmetry

Finally, we consider the fourth phase with symmetry Dy(E) which also has line nodes

In the following section we will present the conductance spectrum caleulation for each

of aforementioned cases.

4.2.1 Case one: T(D,)

This case is the first phase of 2D order parameter with components (1,0). The gap

function is described by

U(k) ~ ek + €k + k2
sin’ 0 9)
+i

~ Do (mnl 0

This gap function is complex. By using the above gap function, we can caleulate the

conductance which is shown in Figure ¢
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Figure 1.3: Normalized conductance of normal-metal /insulator/PrOs;Shy, junction
with singlet-T(1,),(1,0) state for various Z values.

4.2.2  Case two: Dy(Ch) x K
This case has has three domains. The gap function for the first domain is given by

D(k) ~ by
(4.10)

Bo . og
2 sin 20 sin 0.

This gap function results in a conductance spectrum shown in Figure 4.4, The second

domain has (k) ~ k,k., which results in the same spectrum as the first

The third domain is defined by

U(k) ~ ko,
(4.11)

0 2 ;
sin® 0'sin 2¢

and Figure 4.5 shows the corresponding spectrum. As it can be seen from this figure,
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: Normalized conductance of normal-metal /insulator/PrOsSby junction
Dy(C) x K state in first domain for various Z values.

Figure 4
with sing]

the conductance at some points is different from the first domain’s spectrum.  In

particular, there is no zero bias conduciance peak in the second spe
4.2.3  Case three: Cy(F)
The gap function is defined by

P(k) ~ chyky + Choks + kyh,

026 — sin 20sin ¢ — sin 20 cos & (4.12)

in 20(sin ¢ — cos )

Figure 4.6 illustrates the conductance spectrum for this casc.
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Figure 4.5: Normalized conductance o” normal-metal /insulator/PrOs;Sby, junction
with singlet-D,(Cy) x K state in third domain for various Z values.

Normalized Conductance (o)
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Figure 4.6: Normalized conductance ol normal-metal /insulator/PrOs;Shys junction
with singlet-Cy(E) state for various Z values.
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Figure 4.7: Normalized conductance of normal-metal/insulator/PrOs;Shys junction

with singlet-D,(£) state in first domain for various Z values. The ratio of Ag/A; is
set to 10.

4.2.4  Case four: Dy(F)
This case has three domains the first of which is described by

GOR) = ks + il by i

A Ao
~ = sin20cos 6 + ik sin’ Osin 20,

The corresponding conductance spectrum is shown is Figure 4.7.

The second domain is introduced by

(k) = |mlkyks + ilnalkeky,
. (1.14)

A
~ SEsin20sin 6 + 5" sin 20 cos

and the third domain is ¢(k) = | [kek, + ilnalhy k..
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Normalized Conductance ()

0 s 20
E/8y

Figure 4.8: Normalized conductance of normal-metal/insulator/PrOs;Shyy junction

with singlet-Dy(E) state in second domain for various Z values. The ratio of Ag/A,

is set to 10.

For this symmetry the shape of the concuctance spectrum for the first and the second

domains is almost the same.

4.3 Triplet states

Triplet pair potential is an odd function of k. In general, the A(k) matrix is given by

—d, (k) + id, (k) d.(k)
A(k) = i(d(k) - 6)o, = (4.15)
d. (k) do(k) + idy (k)
where d(k) is an odd vectorial function (see Appendix A). According to this defini-

tion this matrix is always symmetric.
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Similar to the singlet case, the triplet case can be divided to 1D, 2D and 3D order

parameter. These order parameters which are already introduced has the same prop-

erties as the singlet case (same symmetry, domains and ete. ). However, there are

some differences between singlet and triplet order parameters. In particular, the first

phase of 2D order parameter and the third and fourth phase of 3D order parameter

are non-unitary states. In general, for these non-unitary states, we have to calculate
the conductance for both spin up and spin down injection since these conductances
are not the same any more. As alrcady mentioned, the normalized conductance is
obtained by adding these two functions together. The conductance spectrum of the
triplet states can be found in the following which are divided into unitary and non-

unitary cases.

4.3.1 Unitary pair potentials

4.3.1.1  Case

This is a 1D order parameter. The gap function is defined by a simple d vector

) ~ (ks ky k) (1.16)

The corresponding gap function is given by

ketik, Ok _
Alk) = . (4.17)
& ky + iky

This matrix can be written in a more useful way since we assume all the wave veetors
are fixed to ky
—sinfle " cost
Alk) =g (1.18)

cosf sin fe'?
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re 4.9: Normalized conductance of normal-metal/insulator/PrOs;Shys junction
with unitary triplet-7" state for various Z values [40].

The corresponding conductance spectrum s shown in figure 4.9,

4.3.1.2  Case two: Dy(Ch) x K
This is a 3D order pavameter which has three domains. The first domain is defined

by d(k) ~ (0, bk, ak,) and the gap function is given by

iDgcost AysinOsing

A(k) (4.19)

Apsintsing  iAgcosl

where Ag and A, are two arbitrary parameters.

The second domain is characterized by d(k) ~ (bk,, ak,.0). The following gap fune-
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Figure 4.10: Normalized conductance of normal-metal/insulator/PrOs;Shy junction
with unitary triplet-D,(Cy) state in first domain for various Z values. From top to
bottom the ratio of Ag/A is set to 10, I and 0.1 respectively [40]
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Figure 4.11: Normalized conductance of normal-metal/insulator/PrOs Sy junction
with unitary triplet-D,(Cy) state in second domain for various Z values. From top to
bottom the ratio of Ag/A is set to 10, 1 and 0.1 respectively [10].
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tion can be built using this vector

sinsin g + i, sinf cos ¢ 0
(4.20)
0 Agsinfsing +iA; sinf cos ¢

Figures 4.10 and 4.11 illustrates conductance spectrum for these two domains. The
third domain is d(k) ~ (ak.,0,bk,) and yields results equivalent to the first domain
4.3.2  Non-unitary pair potentials

4.3.2.1  Case one: T(Dy)

This 2D order parameter is shown by d(k) ~ (ck,, %k,

) which results in

—esinf cosd + ie’sinb sin cost

Ak) = Ay (1.21)

cost) esinf cos ¢ + i

infsin ¢

where ¢ = exp(+i27/3). In addition, the q vector (which characterizes the non-

unitary states, see Appendix A) for this case can be written as
a(k) = V3(kyks, koke, hoky) (4.22)

The conductance spectrum for this non-unit

case is seen in Figure 4.12
1.3.2.2  Case two: C4(E)

This 3D non-unitary order parameter hes (¢, %, 1) components. The d vector for this

case is more complicated and has three non zero components

d(K) = (ak, + bk, bk, + ak,, cak, + *bk,)
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Figure 4.12: Normalized conductance of normal-metal /insulator/PrOs;Shyz junction
with non-unitary triplet-7(D,) state for various Z values [0]

This vector results in the following q vector

= VB0 ks + @by — abk?, 0%k ks + Uk, — abk?, a*koks + D7

The conductance spectrum for this case is represented in Figure 4.13.

4.4 Summary

The conductance spectra caleulated in previous sections show important features in
both singlet and triplet channels which are helpful for finding superconducting state
in PrOs Sbys. ZBCP is one of the most important features which appears in many of
these spectra. This feature is known as a main characteristic of gap functions with

nodes.  Hence, if experimental PCARS results show a conductance spectrum with

ZBCP for PrOs;Sbya, then one could expect that superconductivity in PrOs,Shy, is
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unconventional [41]

In general, these results provide a powerful way of studying superconductivity in

PrOs;Shyy if they are combined with experimental results.



Chapter 5

Conclusion

The overall objective of this work

as 1o investigate the symmetry of the supercon-

ducting state in PrOs;Shyy by means of PCARS. The symmetry of the crystal in
its normal state in PrOs;Sby, is descrived by 7), point group. This point group is
the starting point of studying the symmetry of the superconducting order parameter

based on phenomenological Landau theory. In fact, order parameters are classified

weording to representations of the point group of the crystal. In PrOs;Shy, case,

these order parameters can be categorized into one dimensional, two dimensional and

three dimensional irreducible representations (one of cach) where each representation
can be further divided into spin-singlet (even) and spin-triplet (odd) channels. Based
on experimental data, some of these states are more likely to be responsible for su-

perconductivity in PrOs;Shy,

PCARS method is based on the information that can be extracted from the normal-
ized conductance spectrum of a normal-netal /superconductor junction. The starting
point of conductance caleulations is to understand the scattering processes an in

jected particle may undergo at the interface of the junction. This can be performed




by using the BAG equations together with BTK model. The conductance problem
for PrOs;Shyy is three dimensional sine: it has cubic symmetry. In order to find the
conductance coefficients we employed a combination of analytical and computational

methods.

The calculated conductance spectrum for each order parameter of PrOs;Shy, shows
many interesting features including peaks at different energy points. These features
can be interpreted by developing appropriate theories about tunneling phenomena
which occur at the interface of the junction. Besides the theoretical aspects of these

ssults, the main purpose of this work was to provide a complete catalog of conduc-

tance spectrum for various superconductivity candidates in PrOs;Shy,. This catalog
can be used along with any experimental work in order to investigate the actual su-

perconducting phase of PrOs;Shys

In general, experimental results show some additional features which cannot be ob-

served in this theoretical work.  However, these features can be a consequence of

tion, the quality of the

experimental conditions which may include sample prepar
contact and ete. Despite these minor differences, comparing the overall shape of the

experimental and theoretical spectrum is a reliable way of analyzing superconducting

ieh as conductance p

state in PrOs;Sbys. In particular, ontstanding features

and singularities are believed (o be independent of experimental inaceuracy.

Further information about the superconducting gap could be obtained by using spin

polarized current in the junction. This is possible by using a ferromagnet /supercon-

the properties

ductor instead of normal-metal /superconductor junction. In this

of Andreev reflection are significantly wodified. In this way, one can even find more



ructure of the superconducting pairs in a superconductor

information about the s

Using a multi-band order parameter is the other direction in which this work can be

generalized. Although it has not been proved yet, variety of experimental results can
be interpreted by considering a multi-band superconductivity for PrOs;Sby,. This

scenario may also be the source of experimentally-observed features of conductance

spectrum that were not found in any of the calenlations of this thesis

Although PCARS cannot. point conclusively at a particular order parameter, it can
certainly rule out some possibilities. These are the 1D order parameter in both singlet
and triplet channels. In particular, the theoretical PCARS caleulations are consistent

The main characteristics of

with some experimental results obtained recently [42
these results are appearance of ZBCP and non-zero spectral weight. These features
can be observed in the conductance spectrum of many of the 3D triplet symmetries
Therefore, we can conclude that superconductivity in

investigated in Chapter 3.

to the 3D representation in the

PrOs;Shyy s unconventional, and most. ikely belong
triplet channel. However, more experimental efforts are requires in order to specify

ing phase in PrOs;Sbya.

the exact symmetry of superconduc



Appendix A

Generalized theory of

superconductivity

According to the BCS! theory [1], the appearance of superconductivity in materials is
associated with formation of a pair of conduction electrons. In fact, in the presence of
an attractive potential, the Fermi sea of conduction electrons becomes unstable. The

new stable ground state is

a quantum condensed state consisting of so-called Cooper
pairs. In general, the attractive potential between the electrons originates from vari-
ous mechanisms. In conventional superconductors, the electron-phonon interaction is

the sonrce of this potential,

Considering a pairing potential in momentum space, the effective Hamiltonian of the
paired particles can be written as
N 1 < i
H=Yce®alme+5 3 Vo K)al e a ey, (A1)
2k

In this equation, £(k) represents the band energy which is measured relative to the

"Bardeen, Cooper and Schrieffer
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chemical potential i and Vy,,,yy,, is defined as

(=K, s1:k, 52 V| = K, 54

) (A2)

In fact, Vi 4,4, is the matrix element of a general effective attractive interaction be-

tween two electrons.

By defining the following mean fields, we can treat the Hamiltonian in Equation (A.1)

as a many body niltonian,

Ag(k) == 3 Virgsaus (kK ) (s, @s,)

e

Al(k) = = 3 VoK k)0 o, ale,)

(A3)

where the brackets show the expectation value. Assuming small mean field fluctua-

tions we can approximate the effective Hamiltonian by

3 (ARl 0l i, = A%, (“K)a g ar (A1)

Kot

11 =3 e(k)a, +%
o

This new Hamiltonian is a single particle operator which can be diagonalized by a

(unitary) Bogolinbov (or canonical) transformation
iy = 3 (1o + sl o) (A5)

Here af and ay, are the eigenoperators of the single particle Hamiltonian which satisfy



the following relations

Doy = ilil ) = — By
(A6)

dal = i[f,al] = B

The transformation equation can be written in a more compact way by introducing

a four-component notation

ay = (e, g al g aly)
(A7)
[ ("k!v“kb“'ky-“'ki)
then
a, = Uponee (AS)

Here Uy is the unitary transformation matrix which is defined in terms of the 2 x 2
matrices of Equation (A.5)

U= (A9)

where Ul =

Following this notation and by defining the eigenvalues matrix

Fe, 0 0 0

0 By 0 0
* (A.10)

]

00 0



the diagonalization of 17 is given by

UlEUn (A.11)

where & is the 4 x 4 representation of

where A(k) is the 2 x 2 gap function matrix, defined below

In general, symmetry of A(k) in k-spacc is the same as the symmetry of pairing wave

function. Therefore, since the total wave function of fermions is antisymmetric, we

can write for A(k)
Ak) = —A" (k). (A.13)
When the paired particles are in their singlet state (i.c. odd under exchange). the

effective pairing potential A is an even function in k-space

(A.14)

which means that A(k) is an antisymmetric matrix. This matrix can be written by

introducing a single even function (k)
A(k) =i, (k) = : (A15)

For triplet paring (i.c. even under exchange), the effective pair potential s an odd

function in k-space, hence A s symme:ric and can be characterized by a vectorial
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function d(k) which is odd in k.

—dy (%) +idy (k) de(k)
(k) d, (k) + id, (k)

(A.16)

The solution to the transformation matrix U} can be divided into two categories based
on whether A matrices are unitary or non-unitary. For singlet pairing A is always

unitary

AA! x 0y, (A7)
On the other hand, the triplet A matrix can cither be unitary or non-unitary depend-
ing on the quantity q,

AAY = |d] +q6
(A.18)

q=i(dxd)
This state is unitary if q vanishes, otherwise it is non-unitary. The solution to Equa-
tion (A.11) for the unitary case is given by
[ + =(K)Joo
{[Bic + (k)2 + SrAAt ()} 172

-Ak)
{[Bi + (k)2 + StrAAN (k) }172

(A19)
b=

where the energy spectrum of the elementary excitations is defined by

2 (A.20)
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For non-unitary A, these solutions are more complicated. The 1, matrix is given by

7“") (laldo +a.6)(o +

e ek /2
; (M) (laléo — a.6)(d ~ n;)}

(A21)

and the i matrix can be written as

o= *'Q[%[ ald - i(d x a)|.53,(d + )
Eii [Exy +£(Kk)] A2
1
*m[lq\d +i(d x q)].56,(d — )}

with the following definitions

Q *=dldl(al +4:)
(A.23)

e = /=(k)? + [d(K)[* + |a(k)|
In this work, the Uy matrix is used to find the quantum states of the quasi-particles
at the interface of a normal-metal/superconductor junction. Then one can find the
conduction coefficients from these quanium states by employing the BdG equations

and appropriate boundary conditions.



Appendix B

Conductance coefficients

calculations

Assuming injected electrons with k. > 0 in the normal-metal side of the junction
the reflected particles can be either elecirons or holes with k. < 0. The spin of these

particles can posses two orientations, up and down. Then the normal-side Hamiltonian

is given by
c 0 0 0
0e 0 0
H= (B.1)
00 - 0
00 0 «
where ¢ is measured with respect to the Fermi surface. The trial solution to the

cigenvalue problem for this Hamiltonian are plane waves for cach component of the

spinor,

() = explik.r) (B.2)
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where appropriate k vector should be used for various excitations (holes and clec-

trons). In the superconductor side, the Hamiltonian is given by (see Appendix A)

dkjog  Ak) (B.3)
A*(-k) —e(k)ay

This Hamiltonian can be diagonalized by using the appropriate unitary transformation

Ui
B, 0 0 0
0 0

= ULHU, (B.1)
0 0




The cigenstates of this Hamiltonian are the basis column vectors,

1

5 0
1By = (B.5)

0

0

0

" 1
|Ey-y = (B.6)

0

0

0

: 0
|Eow) = (B.7)

1

0

0

" 0
|Eok) = (B.8)

0

1
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Since £y = ULHUs, the cigenstates of 11 are given by Uli) where [¢) is one of the

watrices in Equation (B.4). Therefore, the physical basis cigenstates are written as

(B.9)

(B.10)

Uy
b (B.11)
Uss
Uiy

(B.12)

with cigenvalues iy, Fi, —E; and —E . respectively. U are the components

of the transformation matrix which arc given by (sce Appendix A

U= . (B.13)

The aformentioned states correspond to negative and positive energy electrons. There-
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fore, the negative energy electron states need to be re-written as positive energy holes.

In the hole picture, the Hamiltonian in the normal-metal side is

— 0 00
0 - 00

H= (B.14)
0 0 €0
0 0 0 ¢

(B.15)

Similar to the electron picture, the quasi-particle states are described in terms of the

components of the transformation matrix Uy which in the hole picture is given by

U= (B.16)

These cigenstates (positive energy electrons and positive energy holes) can be used in

the solution of the BAG equations at the ‘nterface of normal-metal /insulator/PrOs;Shy,

Jjunctions. The conductance coeflicients are calculated by using the following Mathe-

matica code:

This code caleulates conductance coeflicients of a junction for spin-up electron injec-
tion

b1 = spin-up electron

b12 = spin-down electron

all = spin-up hole



86

al2 = spin-down hole
Unm = components of the transformation matrix for positive energy electrons and
holes

All the wave veetors in the problem are already fixed to kg

Remove[“Global*”]

Normal - metal (N) side wave function

uN1[x_]:=Exp[ICos[0]z] + b0O11Exp[—ICos[6)x];

uN2[x_]:=b012Exp(~ICos[0)];

vN1[x_]:=a011Exp[ICos{6]z];

VN2[x_]:=a012Exp[ICos{0]z];

Superconductor (8) side wave function

uS1[x_]:=cO1Exp|ICos[0]2]U11 + c02Exp|ICos[0]z]U12 + dO1Exp| I Cos{0]2]U13+
d02Exp[—ICos{f]z]U14;

uS2[x_]:=c01Exp|ICos{0]2]U21 + c02Exp|ICos{0]2]U22 + dO1Exp(—ICos{0]2] U23+
d02Exp[—1Cos{0]z]U24;

VS1[x_]:=cO1Exp[ICos[0]z]U1 + c02Exp|ICos[0]z]U32 + dO1Exp|—ICos[0]z] U33+

d02Exp|—1Cos{0]2]U34;
VvS2[x_]:=cO1Exp|ICos[0]2]U41 + c02Exp|ICos{0]z]U42 + dO1Exp[—ICos[0]z] U43+
d02Exp[—ICos{6]z]U44;

First derivatives - N side
uN1ffx_] = d,uN1[z];
uNaflx_| = d,uN2[a];
WIffx_] = 3,vN1[a];
WN2ffx_]

8,VN2[zl;
First derivatives - S side

uSlflx_] = duS1[z];



uS2f[x_] = 9,uS2[x];

VS1f[x_] = 8,vS1[z);

VS2[x_] = 8,v82[xl;

Boundary conditions

eqnd = {uS1[0] — uN1[0] == 0,uS2[0] — uN2[0] == 0,vS1[0] — vN1[0] == 0,
v82(0] — vN2[0] == 0,uS1f[0] — uN1f[0] == 2ZuN1[0], uS2f[0] — uN2f[0] == 2ZuN2(0],
VvS1f{0] — vN1f[0] == 2ZvN1[0], vS2f[0] — vN2f[0] == 2ZvN2[0]};
Finding conductance coofficients

sol3 = Solve[eqn3, {a011,a012, b011, b012, ¢01, c02, d01, d02}];
all = a011/.s0l3;

212 = a012/.s0l3;

b11 = b011/.s013;

b12 = b012/.s0l3;

cl = c01/.5013;

€2 = c02/.s013;

d1 = d01/.s0l3;

d2 = d02/.s0l3;

Conductance coefficients

all = all[[1]];

al2 = al2[1]);

b11 = b11([1];

b12 = b12([1]];

Ihis code calenlates conductance spectrum for a singlet superconductor
Remove[“Global*”]

Defining gap function



610_, ¢_Ji=Cosl6]"2 — 5Sin[o]*2 + .58 qrt[3]Sin[9]2Cos(24]
Defining U matrix components

up = V((y + V(¥"2 — Abs[8[0, 6]1"2))/(29));

vp = V(¥ — V(¥"2 — Abs[3[6, 4]1"2))/(2v));

um = /((y + V("2 — Abs[8[0, ¢ + 7]]*2))/(24));
vm = /((y = V(y"2 — Abs[3[6, ¢ + 71]"2))/(20));
phasep = 5[0, ¢]/Abs[5(6, ¢]};

phasem = 6[0, ¢ + 7]/ Abs[3[0, ¢ + x]J;

Ul = up;

U12 = vm;

U21 = vpphasep;

U22 = umphasem;

Wave functions and their first derivativos
uN1[x_]:=Exp[ICos{f]z] + bOExp[~ICos[f]z];
VN2[x_]:=a0Exp|ICos{6]q];

uS1[x_]:=cOExp|ICos{f]z] Ul1+
d0Exp[—ICos{6]z] U12;
vS2[x_]:=cOExp|ICos[0]a] U21+
d0Exp[—ICos{0]z] U22;

uN1ffx_] = d,uN1[z];
VN2Afx_] = B,vN2zl;
uStffx_] = d,uS1z];
VvS2[x_] = 0,v82xl;

Boundary conditions



eqn3 = {

uS1[0] — uN1[0]==0,

vS2[0] — vN2[0]==0,

uS1f[0] — uN1f[o]== 2 uN1[0],
vS21[0] — vN21[0]==2 Z vN2[0]};

Conductance coeflicients

s0l3 = Solve[eqn3, {a0, b0, c0, d0}];

a = a0/.s0l3;
b= b0/.s0l3;
¢ = c0/.s0l3;
d = do/.sol3;

a=al[1]];

b= b[[1]};

Angle-resolved conductance

sigmaS[Z_,0_,¢_,y | =1+ Abs[a]"2 — Abs[t]"2;
f[Z_,y_):=NIntegrate[Sin[f]sigmaS|Z, , , y), {6, 0,7/2}, {$,0,2r}]
Normal conductance

sigmaN[Z_,0_] = Cos[0]"2/(22 + Cos[0]*2);
n[Z_]:=NIntegrate[Sin[0]sigmaN(Z, 0], {60,0,7/2}, {$,0,27}]
Normalized conductance for various Z values

10 = Table[{y, /.000000001, 3] /n[0.000000001]}, {y, 0.00001, 2, 0.02}];

£1 = Table[{y, /2, 3)/n[0.2]}, {1, 0.00001,2,0.02}];
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12 = Table[{y, /5, 4]/n[0.5]}, {3, 0.00001,2,0.02}];

£3 = Table[{y, /[.8,y)/n[0.8]}, {#.0.00001,2,0.02}];
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