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Abstract
Population statistics have a wide range of applications in the fishery industry.

oceanographic research (c.g.. population studies, habitat analysis), as well as for the oil

and gas industry (c.g.. monitoring for impact ). Mos

Remotely Operated Vehicles (ROV) or Autonomous Underwater Vehicles (AUV) image

acquisition transeets produce overlap between successive or adjacent images, such that
individual animals could appear in several images. which could yield inaccurate counts.
In order to eliminate the possibility of counting the same animal more than once. the
overlap between images must be detected. We developed a feature-based mosaicing
algorithm that uses the Scale Invariant Feature Transform (SIFT) in which feature

descriptors of images are extracted and appropriate correspondences are found and

matched by computing the

standardized Euclidean distance between descriptor vectors.
We present a new strategy for finding correct correspondences and discarding incorrect
matches from the background using spatial clustering and standardized Luclidean
distance for computing an adaptive threshold value used by the second-best match

method. Results are provided to validate he proof of concept for our strategy.
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Chapter 1

Introduction

Monitoring the benthic habitat of marine environments has wide application in the oil and

gas industries (¢.g.. population monitoring for environmental impact assessment). as well

hic research (e.g.. studies, habitat analysis) [1]. In order to

as for
use these imagery data effectively. there is a need to develop means to extract information
from raw imagery. With few exceptions. this step has been done manually until recently

12, [1]and [3]. where the rescarchers count the number of animals seen in images or

video sequences for further study. Assuming the automatic or the manual counting works
properly and effectively. there are still conditions that will make the multiple counting o

animal might be

an animal probable. resulting in inaccurate statistics. For example,

counted several times if it appears in multiple images or several times in a video stream,

A sut bl

A common scenario for this problem can be d 1 as follows

which is used for exploring the sea floor could follow cither of the tracks showing in

se (a): for some sections of the tracks there is a possibility of overlapping

Figure 1.1
regions with adjacent tracks. In case (b). the circled area shows an area which is explored
multiple times as it is chosen to be the starting point for several data collecting

explorations.
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(a) (by

Figure 1.1: Typical Remotely Operated Vehicle (ROV) tracks for collecting imagery dat

a) Lawn mower pattern b) Dense center: the dark line illustrates the trajectory of the
submersible and the shaded arca shows the region imaged by the vehicle's came

ise a counting problem,

Not only could the overlap between adjacent or crossing track:

on where the submersible is following a route, image frames

but also in a normal cond

in the image boundaries. it might also be

can also have overlap. If an animal appears

counted several times. This situation is illustrated in Figure 1.2.

2%aq e

‘igure 1.2: Overlap between sequential image frames.

ustrate the situation we are referring to as the multiple

Figure 1.3 and Figure 1.4 wil

counting problem. In the image pair depicted in Figure 13, a total number of four



individus L on the scafloor: whercas. the appearance of two crabs in two

different images might cause multiple counting of the animals which results in six crabs

in the seene.

Figure 1.3: Ilustrating two captured images with animals appearing in the overlap of

im using the multiple counting problem.




In Figure 1.4, a bed of starfish is captured by the camera. As can be seen by a simple
inspection, except for one starfish which is not captured in the first frame but only in the

second frame, the other four starfish are present in both image frames.

Figure 1.

mage pair illustrating the multiple counting problem for a captured scene of
starfish.



s Contributions

In this work of image are gathered in a unique way to

ure matches. Producing a

ncorrect |

design strategies tolerant to a large number of

for the image

well as low contrast

stem able to tolerate projective distortion,

images

arch is not

rch. However. the aim of this res

stitching purpose is another goal of this

1o generate a map of the explored seal’oor area. The final goal is to generate only one

ed image da

representation of a captured scene in the process o prevent potential

multiple counting of animals.

Morcover, a novel approach is proposed for cstimating a previously p

0ld value has been fine-tuned manually.

parameter in feature matching. This thr

The imagery data being used for this work were taken from the Barkley canyon plate off’

the west coast of Vancouver Island. BC. Canada [4] and the U.S. Geological Survey

(USGS) imagery dataset [S]. The Barkley canyon imagery is challenging since it sulfers

from lack of sufficient overlap between images. Morcover, low contrast., non-uniform
lighting. blurry images due to the water quality and the non-planar view in some images

can also be listed as issues. Accurate georeferenced data of the images were not provided

cither. Therefore, in order to match images. the scope was limited to using only the

images without additional metadata. For generating a larger mosaic a set of images with

sufficient overlap should have been used. For this purpose the USGS dataset has been

used 1o justify and demonstrate the robustness of the proposed strate;

Currently. images captured by ROVs are pre-analysed by human operators. The steps are

illustrated in Figure 1.5, Our focus is on the pre-analy




ROV
Images

Counting

animals

Figure 1.5: Diagram showing the counting steps procedure.

uch as

On the seafloor, moving species can be categorized in three groups. Organisms s

corals are sessile creatures and arc immobile [6]. Sea stars include a very large variety of

species living on the sea floor all over te world. These animals propel slowly along the

fine-sediment seafloor [6]. Rockfish are animals living on the occan floor h

ifi s [7]. Throughout this work, we arc assuming animals arc not

moving significantly between successive images.

This rescarch has resulted in the following publications and presentations:

o H.Bagheri, A.Vardy, and R. BEachma Strategies for Filtering Incorrect

n the

Matches in Seabed Mosaicing™. has been accepted for inclusion

Proceedings OCEANS'TT MTS/I 2 KONA., Hawaii. September 2011,

o 11Bagheri. A.Vardy. and R. Bachmayer . “Creating Seabed Image Mosaics for
Counting Benthic Species™. Presentation in workshop on underwater robotics.
Memorial University. St. John’s, NL. May 2011.

and R. Bachmayer. “Image Mosaicing for the multiple

o H.Bagheri, A.Vardy
counting problem in benthic habiiat mapping™. Abstract accepted in MeshAtlantic

rve/CCMAR. June

Video Survey Technigues Workshop, Faro University of Alga

2011,



o ILBagheri, A.Vardy, and R. Bachmayer. “Image Mosaicing for Benthic Species

Multiple Counting Problem™., Pester presentation at CHONe annual conferencs

Montreal, May 2011,

e I.Bagheri, A.Vardy, and R. Bachmayer, “Image Mosaicing for Benthic Species

nized as follows. Chapter 2 gives a comprehensive literature review and

This thesis is orga

our motivation for conducting this rescarch. Chapter 3 addresses the issuce of underwater

imaging and illumination constaney for underwater image processing. Chapter 4 focuses

n methods, and presents an in-depth analysis of the feature-

on image overlay detec

based method including feature extraction, feature matching, and clustering. The image

and ic model estimation are discussed in Chapter 5 followed by a

des

ription of the image blending algorithm used in the mosaicing system in Chapter 6.

Chapter 7 illustrates and summarizes the results with a section on future work concluding

this the

An appendix is provided to include more image mosaics to justify the

proposed strategy.



Chapter 2

Background

In this chapter. background information about seafloor animals™ habitat mapping and a

detailed Titerature review of relevant rescarch in similar arcas will be outlined. At the end

of this chapter. the motivation for conducting this research will be presented.

2.1 Seabed Habitat Mapping

Canada has the largest shoreline in the world which includes fifteen distinetly different

marine ccosystems [8]. Dealing with issues such as how species are related to the

specification of their habitat and evaluating biodiversity in these ecosystems is essential

for managing oceans resources in a sustainable manner. It has been recognized that

characterizing the relationship between biodiversity and habitat in the Arctic due to

significant changes in the polar environment is one of the most urgent needs regarding

ccan health in Canada [8]. Monitoring seafloor organisms using underwater imag n
important tool for scientists to work toward a better understanding. Therefore. developing

image analysis and object recognition tools for quantifying the abundance and diversity of’

the different scabed organisms s highly desirable



crature Re

The presented work involved rescarch along several different directions. This review

provides a detailed view of existing approaches in the field of photo-mos:

t computer vision problem

Identifying similar features between images is an importa

with appli numerous fields, such as image stitching, object detection, imag

o lization, obj image retrieval and mapping. Th
procedure remains challenging due to the existing problems such as partial occlusion of
objects. illumination changes and viewpoint changes [9].

22,1 Photo-Mosaicing
The ficld of image mosaicing is relatively old with an ey re. Photo

in the research literature are mainly categorized in two groups. i.c

direet methods ([10], [11] and [12]) and feature-based methods ( [13]. [14]. [15]and

|16]). Direct methods use all the available image data and can provide accurate results,

but are heavily sensitive to image “brightness constancy” i.c.. the tendency for an object to

s well as

be pereeived as having the same brightness under varying lighting conditions,

initialization due to executing iterative algorithms [17]. On the other hand. the feature

based methods use special characteristics of an image such as the corners. Recently

developed feature based methods use invariant features which makes the mosaicing

ent work on

camera motion and po TI'he most 1

system more robust to light chan

uch

ature extraction has focused on local invariant features [18]. with applications s

image stitching [19], 3D modeling, gesture recognition, objeet recognition [19] and
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robotic mapping [20]. Affine invariant and scale invariant features are presented in [21].
This matching algorithm is able to achicve affine invariance with an 80 degree change of

camera angle. This is done by introducing two camera orientation parameters named

camera longitude angle and camera latitude angle. The latitude angle in this case is
similar to the tilt. This method simulates possible view changes in affine space to gain

high matching accuracy. Szcliski and Shum [22], presented an approach for creating

pre
panoramic mosaics from image sequences. They aim for not having any constraints on
how the images are taken or how camera motion should be controlled. The 3D rotations
are recovered direetly in their method instead of using 8-parameter planar perspective
transforms. However, in this work it is essumed that the camera is centered at the origin

mately plan: defined where the ratio between the distance

In general, an appr

cenc i

to the scene and the variation in ground clevation is high. In [23], Marks ¢/ al. introduce

a real-time system for video mosaicing the occan floor. Their approach uses visual

T during both i and ing o ensure there are no gaps in the

mosaic. In their work, problems such as camera field of view under perspective and

orthographic projections, as illustrated in Figure 2.1, as well as gaps between the captured

images are discussed.



(a) (b)
Figure 2.1: (a) Perspective projection: results of different observations of the same scene
in the overlapping part. (b) Orthographic projection: cameras observe the same scene in
the overlapping arca.

& e

Figure 2.2: A gap between captured images on the top of the knoll. Part of the scene is out

of the carera field of view

Photo mosaicing is affected by several issues. The most important ones are addressed in

camera orientation

this work, and are related to projection geometry, lighting problems

and non

atic scenery or non-planar factors such as fish and their shadows. In this work a
downward pointing camera mounted on an ROV was used. In another attempt [24]. a

projective transformation formula for compensating the perspective distortion in - the

overlapping arca of two images is used. Szeliski, discussed in [11] . proposed an
arithmetic-based method for generating a photomosaic of colour images. Occlusion in

photo mosaicing is of great significance. This issue is addressed in [25]. where an effort

was made 1o reduce occlusion and distortion caused by trees in ortho-image production.



Pritchett and Zi: ets ol local

erman in [26]. presented an approach which generate:

planar homographies. 1 s are 1o be used for providing a more robust affinity

measure for and to restrict the searching stage for

potential feature matches. Defining wide baseline as the condition where the distance

between the cameras compared to the viewed scene is large. Deriche in [27] proposed a

eneral method for m;

ching images om an uncalibrated camera for short bascline

stereo matching. In their paper. correlation is used over a sized scarch window for

matching two features in a pair of imazes. A. Baumberg in [28] presents an automatic

feature matching method for images scen from two arbitrary viewpoints. In his work.

mera

unlike previous stereo matching methods. no prior information about the relative

work was (o

umed  In- fact

position and orientation were a one of the goals of th

determine this information from image feature matches.  Their approach extends the

rotation invariants method with local affine image transformations. Y. Cao et al. in [29]

ne-SIFT and colour moments

d a two-level matching strategy composed of Afl

“Their strategy is to work witk the fusional feature which speeds up the process

Global Po

sitioning System

of finding the local correspondences. Also some works usy

(GPS) data for image matching. The authors in [30]. present a prototype of a system for

image based localization in urban environments by using images tageed with GPS

T'heir work is based on a wide ba stem usi le invariant

locations cline matching s

features o select the best image match from the databa



222 Lighting Problem
Several techniques have been proposed for solving the lighting problem in underwater
images. In order to compensate for the true colour problem. colour contrast is equalized in
Red Green Blue (RGB) colour space followed by transforming the image into Hue,
Saturation and Intensity (HSI) and then stretching the saturation and intensity of the
image [31]. In [32]. climinating the crinkle pattern by choosing appropriate tiles in

cussed. which is implemented

Contrast Limited Histogram Equalization (CLAHE) is dis
in the MATLAB Image Processing Toolbox as well [32]. For compensating for the effect
of the non-uniform lighting problem. Local Histogram Equalization and Homomorphic

filtering are used in [33].

2.2.3  Distance Metric:

Several scholars have conducted research on methods for improving SIFT feature

candidate match is found by

matching. In D. Lowe’s method [34] end [35], the bes

identifying the nearest neighbour in the database of the keypoints with a minimum

Fuelidean distance. In [36]. the metric Euclidean distance is replaced with a combination
of city block distance and chessboard distance where, despite the improvement in

efficiency. this algorithm suffers from using two randomly defined thresholds. These pre-

defined variables from a larger database with

make the algorithm unsuitable for images
different characteristics. A. Baumberg employed the Mahalanobis distance metric to

ame metric is used by [29] where the

measure the similarity between features in [28].The

Mahalanobis distance between two moment invariants with a predefined threshold along



with the lized lation between the

regions is used for the

imilarity. Ferrer ef al in [37] presented a technique for creating a photo

using navigational data for underwater images. Their work was an effort to design

with the available sparse positions and orientation

m for creating mosal

information.

I'he common goal of sion algorithms is 10 extract geometric

computer v

information from image data. Duc to crrors in matching. the available data is usually

corrupted with a large number of incorrect correspondences.  In [38]. the authors

addressed this problem as they proposed a data points classification method by using the

generated hypothesis directly so that the need for pre-defining an inlier threshold

climinated.

224

tching Software

In this study several available software programs were also tested for the Barkley Canyon

imagery data set. The AutoStitch is the implementation of [19] by M. Brown and DD

Lowe. This sofiware creates a panorama from the input images.  Hugin is the

implementation of [39] by P. d"Angelo. Radial light falloff as well as exposure variation,

are the

ponse from overlapping images

white balance variation and non-linear camera r

main foci in their work. An online demornstration of Affine SIFT [21] is also available for

testing the effectiveness of the method on different image pairs.



225 Scafloor Habitat Mapping
With the exception of a few papers ( [1]. [3]and [2]). we are not aware of rescarch on

automating population counting of animals for any purposc.

2.3 Motivation

Finding the overlay of images has been

an interesting problem in image processing and

computer vision. This process can also take advantage of other available information

about the position of the camera or the viewed scene specifications. For example,

knowing the positioning information of the acrial images will assist the algorithm to

decide i a pair of imag

taken from nearby locations or not and they will be

considered as separate images if they

are taken from far enough away. A similar approach

is valid for underwater images as well, where the positioning data is available.

Another possible situation is when the t-ajectory of the camera is known. In this case. it

will be possible to guess the direction of the sequences and further compu

utilize this available information. Some other factors can affect the decision making on
which an overlay detection algorithm is to be used. For example. availability of the

required infc ion for bout the i of the

camera

camera on the submersible, dist

ances between laser pointers and the camera, or the

camera viewpoint angle all have an important role in mosaicing.

T'he imagery data used for this work was collected for the purpose of finding corals on the

Barkley €

sland. BC. Ca

anyon plate off the west coast of Vancouver

nada. These image:

were not taken for the purpose of mosaicing: therefore the overlap of images was not an



16

issue at the time. Morcover, no accurate information about the location of the photos was
available; therefore, techniques for grouping the images to categorize nearby images for
further computation were not possible. Not having the camera information led us to
estimate the perspective geometric transformation between images rather than using
projective transformation.  Morcover. the underwater scenery is challenging. with

the lighting problem resulting in low

common underwater imaging problems such @
quality images.
T'hese limitations have motivated us to propose strategies for matching non-distinctive

atures, as well as for repeated objects in the images to be used by further

image f

mosaicing systems.




Chapter 3

Underwater Imaging: Common Problems

One of the 1

jor problems for processing underwater images is related o the effect of

light in the aquatic environment. Light quality suffers two different processes.

amely

absorption and scattering. The former is where light disappears from the process., and the

latter describes the direction of photons. which is mainly caused by different sizes of

cause some unwanted effects in underwater

particles in the water. These proce

images. such a

the blurring effect. In the past few years. conducted rescarch shows that

aquatic environments raise new challenges due to the light effects. In this chapter.

common problems in underwater image processing will be briefly addressed. We also

the effeet of nor

homogencous | ghting

3.1 Colour Enhancement
In underwater situations. the light absorption effect causes one colour to overshadow
other colours in the image. In this environment. colours fade one by one depending on

their wavelength. Green and blue colours travel the furthest in the water due to their short

An

wavelength. This effect results in images with high blue or green colour density

example of this problem ted in Figure 3.1.



(@) (b)
Figure 3.1: Dominant blue and green colour in underwater imagery caused by light
absorption effect.
Details about solving problems of this type are discussed in [40]. In their method. a

twofold approach is proposed in which contrast stretching on the RGB colour space is

performed to equalize the image colour contrast then HSI colour space is used to increase

the true colour by stretehing the saturation and intensity.

2 Marine Snow

ial

Marine snow refers to particles composed of dead materials and organisms slowly drifting

from higher levels of the ocean. These particles floating in the distance between the

camera and the seabed reflect the light carried by the vehicle causing very bright particle

in the scene. This can be considered to be noise in underwater imagery as can be seen in

oure 3
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(a) (b)
Figure 3.2: Marine snow; bright floating particles in these ima are considered as noise.

3.3 Non-uniform lighting

In the deep sea environment, natural light is insufficient on the seafloor and submersibles
have to carry their own lighting source to provide adequate lighting. Artificial lights
illuminate the scene in a non-uniform fashion, in which there is primarily a bright spot at
the center of the image, and the surrounding area is poorly illuminated, as shown in

Figure 3.3.

Figure 3.3: Images with non-uniform illumination [33].

In this section the lighting effect and illumination model are reviewed. Histogram

specification and Homomorphic filtering are introduced and compared for how they
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compensate for the lighting problem. The experimental results of the techniques

mentioned are presented in chapter 6 and the conclusion closes this discussion. More

details about illumination model.

patial and frequency domain filiering are available in

[41].

330 Histogram Processing

r from lack of contrast. To enhance the

Images with a limited range of grayscale sufl

quality of the images, spatial domain techniques can be employed. The term spatial

domain refers to the image and manipulation of pixcls in the image in which operations

ce on an origin pixel and neighbourhood pixels around the origin. In this

will take ple

section three of these methods will be briefly discussed and compared.
3.3.1.1  Histogram Equalization

m Equalization (HE) the image contrast is maximized by mapping the image

In Histog

histogram based on the probability distribution of the g c image.

This method consists of four stages:

Histogram Equalization

1. Creating the image histogram.

2. Calculating the C I Distribution Function (CDF) of the histogram.
3. Calculating the new values of the histogram.

4. Assigning new values for cach gray-level in the image.




The CDF function is defined as equation 3.1.
'
CDE(k) =Y Hist (i), (3.1
=

where K is a gray-level and Hist denotes the original image histogram.
‘The new values for the equalized histogram are caleulated by using cquation 3

_CDF(i) - CDF
RowxCol - CDF,

EqHist(i) = *(G =1, (3.2)

where Eqtisi(i) is the new equalized value of i vel. Gis the number of gray-

gray-
levels in the image. and Row and Col are the number of rows and columns of the input

image respectively. CDE, s also the minimum value of the caleulated CDF.

In the following example. the histogram of the given image is shown and equalized.

Although the resulting image may not look constant, the cumulative histogram is an exact

lincar ramp that indicates that the density is equalized.

Figure 3.4: The original grayscale underwater image and its histogram.



Figure 3.5: Equalized image and its

within the image

The cumulative g

aph shows the linear nature of gray-level frequencic

[42]. As can be seen. the output of histogram equalization results in an image with

improved contrast.

3.3.1.2 Adaptive Histogram Equalizat

Adaptive Histogram Equalization (AHE) is a more advanced version ol histogs
cqualization. In underwater imaging, the non-uniform nature of light treats different arcas
of the image differently. For this reason. some authors suggest compensating for the

effect of non-uniform lighting by using local histogram equalization [33]. In this method.

a histogram s built for cach pixel in the image. using a specified number of nxn pixel

windows but uniquely modifying the central point of the neighbourhood. This operation

will take place for cach pixel of the image and the result will be a more balanced image

[33]. In other words. this method applies HE for smaller windows on the image.



)

3.3.1.3 Contrast Limited Adaptive Histogram Equalization

Contrast Limited Adaptive Histogram Equalization (CLAHE) is an effective algorithm to

obtain an enhanced image directly from a raw image without a level adjustment. CLATIE

was originally developed for medical imaging. This algorithm oper

of the image and applies the HE to cach one. This will enhance the contrast of cach region

n improved

and thus hidden features of the image more visible [41]. CLAI

fon of AHE. Noise can be reduced while maintaining the high spatial frequency

vel

content of the image by applying a combination of CLAHE, median filtering and edge

que subdivides the image into mxm pixel blocks

the histogram of cach block. Fach window is then equalized by choosing the

lly I ing gray-level formation, mapping the hi of the

desired distribution. However, sclection of a clipping level limits the enhancement of

ceed the ributed

ip limit will be uniformly re

cach block. Those pixel values that

across the histogram [33].

Figure 3.6: The original grayscale images and its histogram before applying CLAHE.



Figure 3.7: Image and its histogram after applying CLAHE with c/ip limir 0.2,

noise in low contrast areas |

s computationally expensive and it amplif

CLAHE help reduce the noise amplification in the low contr:

image.

332 Homomorphic Filtering

o account the illumination-reflectance model is

A common technique that takes il

Homomorphic filtering, which is discussed in detail by R. Gonzales in [41]. In the

n of illumination and

illumination-reflectance model. the image is represented as a functi

ce components. This model is defined in equation 3.3.

refle
fOxy) =i y)r(x, p). (3.3)
where f(x.y) is the image sensed by the camera, i(x. y) is the illumination and r(x.y)

is the “The illuminati of an image is iated with

low frequencies in the image which represent slow spatial variations, whercas the

ociated with high frequencies. The idea

reflectance component varics rapidly and is

behind this method is to separate the corponents so that a filter function //(u.v) can be



1

applied to cach frequency domain separately. On the other hand. by transforming the
spatial image to the Fourier domain, ion of the frequency will not be
possible since the Fourier transform converts the multiplication operation  into
convolution.

The Homomorphic filtering proceeds as follows:

Homomorphic Filtering

Natural logarithm of the grayscale image is taken. This process will convert the

multiplication operation between illumination and reflectance to addition

2. Resultant image from the previous step is converted to the Fourier domain,
I'hen the filter function //(uv) applied to the previous output. This filter
affeets the low and high frequencies of the Fourier transform differently.

4. Filtered image is now converted back into the logarithm space by taking the

inverse Fourier transform.

T'he final image is achieved by applying the exponential function to the image

obtained from the previous step.

Hustrated in Figure 3.8.

Ihe foregoing proces
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The filier response /(u,v) can be approximated using an ideal high-pass filter. For
example. the following formula defines a 2D Gaussian high-pass filter. in which the
cutol frequency is located at a distance 1y from the origin:
av i 3
Huv) =, -7l -e 7. 3.4
where

D(uv)=[(u~M12) +(v=N/2)"|" (3.5)

For an M x N size image, ¢ is the constant to control the sharpness of the slope of the

filter function as it transitions from [ to /1 [2

A reduction of dynamic rang

in
brightness with an increase in contrast is expected from this type of filtering. Figure 3.9
illustrates the cross section of H (u,v)

Hin oy
'

Dot
Figure 3.9: Cross seetion of & circularly symmetric filter function.

If the parameters £ and /7 are chos

enas y, <1 andy, > 1. the filter will increase the

contribution made by reflectance (high frequencies) and decrease the contribution made



by illumination (low frequencies). The overall result will be simultancous dynamic range

compression and enhancement in contra

As a conclus

on. it is fair to say that in HE the goal is to enhance the image to gain an

optimal overall contrast. However. since underwater ima suffer from lack of uniform

ses

illumination. it is more suitable to apply local equalization to the images to gain a better

ion, but also

result. Homomorphic filtering not only attenuates non-uniform illumi:

enhances the high frequencies and sharpens the edges of the objects in the image. Results

of this discussion can be seen and compared in section 6.

3.4 Experimental Results

In this section the aforementioned filtering algorithms will be applied to several sets of
images and the results will be compared. Several tests have been performed to show the
effectiveness of the d ed technique in ing for il ill

underwater images. The Gaussian high-pass filter used for Homomorphic filtering is

3.4 and 3.5. In this type of filtering several parameters have (o be

defined in equations

selected manually to obtain the enhanced image. For these sets, the Homomorphic filter

parameters were chosen as the specification shown in Figure 3.10.




0 &0 w0 70

B0 @0 1o
Di

Figure 3.10: Cros

cection of the designed Homomorphic filter

7, =07
ru =17
c=0.6
D, =80

The cutoff frequency is located at a d

nce /), from the origin. Parameter ¢ is the

constant to control the sharpnes

of the slope of the filter function for an M« N size
imay

it transitions from y, 1o y,. These parameters should be chosen manually

according to the ima

gery data set. Intensity of light in the center of an image along with
the radius of the bright center will give us an af imation to find suitable

manually and experimentally. Thus for different lighting intensity these parameters

should be modified [1]. Figure 3.11 to Figure 3.13 illus

rate images filtered by
Homomorphic filering and CLAHE.
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Figure 3.11: The original grayscale image

Figure 3.12: Image after applying CLAHE



igure 3.13: Image after applying the Homomorphic filter

As can be seen, CLAHE brings the detail out to the front and brightens the image. On the

other hand, some over exposed effects are also visible, ¢.g.. on the starfish and the crab in

the bottom of the images. The result of Homomorphic filtering shows an image in which

not only is the lighting problem partially solved, but also the edges are sharpened.

Comparing the star fish between two images we will see that the result of Homomorphic

filtering shows clearcr objects

By definition, an image artifact is any image feature that appears in the image which is

in the

not present in the originally captured image. By comparing the edges of objects

images around the legs of the bottom crab. it can be seen that Homomorphic

;

filtering generates a result with fewer image artifa nally, enhancing the vis




local details and contrast of the image by CLAHE compared with Homomorphic filtering

should not be neglected.

Highlighting all the details in an image is not always desirable. For example. in Figure

3.14 1o Figure 3.16 a common problem in underwater images is shown, called marine

snow. which is the small particles visib'e on the top right of cach image. These particles

are primarily organic detritus and fine-grained sediment continuously falling from the

upper layer of the ocean. If we consider marine snow as a type of noise for our image

quality. applying CLAHE to the images will increase this noise as it highlights the details.

By comparing the original images with the output of CLAHE, marine snow particles look

larger in size.

T'he same discussion is valid for the rest of images with a similar appearance. For

cexample. a sediment pattern on the scafloor with its high self-similarity will appear

sharper in images processed by CLAHE. This in tum will generate more similar image

On the

ature descriptors which will result in ing more incorrect

other hand. Homomorphic filtering does not increase the marine snow effect.



b}

Ie image showing marine snow

Figure 3.15: Hlustrating the effect of CLAHE on marine snow



Figure 3.16: Result of applying Homomorphic filtering to marine snow

Figure 3.14 to Figure 3.16 distinguish the functionality of CLAHE and Homomorphic

filtering in the case of the existence of marine snow. CLAHE strongly increases the so-
called noise while the result of Homomorphic filtering is more realistic. Also, comparing

wo image: the effectiveness of Homomorphic

some features in- the:

we can

liltering. For example, with a closer look at the crab on the bottom left of the image. it

can be s

cen that the crab has become hidden and barely visible by CLAHIE whereas
Homomorphic filtering makes the crab more visible. This is because Homomorphic
filtering corrects the lighting effect on the one hand and sharpened the edges on the other
hand. However, in situations where the goal is to make the details and features more

visible, CLAHE will be a better choice.



In this scction, several image sets were shown and the effect of CLAHE and

Homomorphic filtering were discussed. Our ion is, d d on the features in

the images and what is expected from the process, cither CLAHE or Homomorphic
filiering can be employed to correct for the lighting effect. In Homomorphic filtering high

frequencies that contain interesting imagery data are separated from lower frequencies

that contain shading and lighting components. This method not only attenuates the non-

uniform illumination but als

o enhances the high frequencies and sharpens the edges of the

objects in the image.



Chapter 4

Image Overlap Detection

Image registration is the proces:

of aligning two or more images taken from different

viewpoints looking at the same scene in order to align images accurately.

Registration methods can be divided into four broad categories [10]

Pixel based method:

Cross-correlation is the basic statistical technique in image registration. This

metric is computed from window pairs of a template image and

imilarity

ed registration can be applied in

reference images. The cross-correlation b

situations where a slight rotation and scale change exist [43]

Fourier method (Phase-cory

ration is more suitable compared to the cross-correlation

Fourier-based regi
method in situations where an acceleration of the computational speed is also
demanded. Moreover, the phase-correlation method is more suitable if the images

are corrupted by noise. This method is based on the Fourier shift theorem

Feature-based method:

derived by a feature extraction

Feature-based  methods use image  featus
algorithm rather than using the pixels” intensity values. The purpose of feature

extraction is to filter out redundant information from the original image and to



abstract information of the image data. Computing a proper geometric

transformation relies on the precise selection of these features. These methods are

the primary approach for registering two images with an unknown transformation:

formation cannot be cas

that is, where the trans ly categorized as a rigid-body

movement [43] [44].

Image registration based on high level featur

s contours and objects for

high level statis

I'his method uses
matching images. The drawback of this method is being manual and therefore
slow [44]. Morcover, not all the underwater photos captured from the scafloor

contain objects which are suitablz for contour or boundary recognition.

method and Feature based methods as two widely used

In this work, the Fourie

ategories will be addressed and - their for underwater images will be

compared

4.1 Fourier-based Methods

I'he Fast Fourier Transform (FI'T) based method scarches for the optimal mateh based on
the information in the frequency domain [13]. This method is basically implementation of

the translation property of the Fourier transform, also known as the Fourier shift theorem

Iixtracting parameters such as translation, rotation and the scale change between a pair of

ene are discussed us follows

images of the same



4.1.1  Extracting Translation

Let fand 7, be a pair of images with displacement (x,

o). (A1)

By applying the Fourier transform, the corresponding 7, and 7, will be:

1L(&m)=e W1 (&) “4.2)

I'he phase difference between the images will be caleulated by the cross-power spectrum

of the two imagy

(4.3)

where ” denotes the complex conjugate of 7 . By taking the inverse Fourier transform of

used for optimally

cquation 4.3, we will have an impulse at the displacement. whi

stering the two images.

412 Extracting Rotational Degree

wand i (

In case there is a translation (x,.y,) and rotation ¢, between i v). then

and i, are related by equation 4.4:

i,(x.3) = i (xC0s 0, + ys

sin0, + yeost, - v,) (44

By taking the Fourier transform,

L&.n)=e x 1 (ncosO, + nsinO,, < sind, +ncosd,). “4.5)

Let M, and M, be the magnitude of /, and 7.,



M(&.)= M (£ cost, +nsind,.~C sind), +ycos0),). (4.6)

By considering the magnitude of /, and 7, we can see that the magnitude of M,
rotated version of the magnitude of M, .

In order to deduce this rotation. translational displacement is replaced with polar
coordinates i.c..

M (p.0

=M,(p.0-0,). “+.7)

ng phase correlation, as sed previously. angle ¢, will be found.

4.1.3 Extracting Scale Ratio

By extending this theory to the ed replica of i, with scale factors

¢ where 7 is
(a.b) for the horizontal and vertical direction and with translation and rotation,

i,(x. ) = (ax.ap). (“.8)

By using the Fourier shift theorem. we can solve for the case where the scaled.

rotated and translated version of i, .

L& =

bl “.9)

Scaling can be reduced to translation by converting the axis to logarithmic scale. i
1(log & logn) = 1 og & ~ log a.log 7 ~ log b). (4.10)
I'his is similar to the form:

Lx.y) = L(x=c.y=d). .11y

logaandd - logh .

where v = log.x = log



I'he translation (c¢.d) can be computed 5y the phase correlation technique and the scaling

‘

(a.h) can be found from the translation (c.d) denoted asa =e¢' and b =¢". where eis

the natural logarithm. By changing the scale from (x.y) to [ ] their polar

ab

representation will be:

(4.12)

1f i, is the scaled, tra

ted. and rotated version of i, . their Fourier magnitude spectra in

polar representation are shown

M (p.0)=M(E0-0,).
a

@.13)
M, (log p.0) = M, (log p—log a.0 - 0,).
which can be written as equation 4.14.
M(£.0)= My(& ~d.0-06,). (“.14)
where
¢ =loep, (@.15)

d=loga.



40

Then by using the phase correlation formula, angle 6,and scale a will be computed. As an
example, Figure 4.1 illustrates an image pair with translation, scale and rotation. The

registered image is shown in Figure 4.2 using FFT-based registration.

e v
Multiple View

lae

Figure 4.1: Image pair used for FFT registration.

Regstored input Image (Average tensiy)

Figure 4.2: Registered images with FFT-based method. Extracted scale=1.21,
rotation= 24.66 degrees, translation (x, y) = (-229, 246).



In the example illustrated in Figure 4.2, averaging the grayscale values of pixels is used
as the image blending method. As can be seen, the boundaries of images in the overlap
arca are clearly visible as sharp edges. In chapter 6 we will also present a multi-band
blending method in which the sharp boundarics in the overlapping arca of the image
mosaics will be converted to seamless transition of the grayscale values.

Ihe image pair shown in Figure 4.1 is taken by a downward looking camera

perpendicular to the image plane. In cases where the camera is not perpendicular to the

image. the FFT-based image registration method may not be accurate. According to the

presented algorithm, this method is able to extract one degree of image rotation only. In

the actual ROV images, the camera is not necessarily looking downward in most cases

I'herefore, this method should be replaced with a method able to tolerate different camera
view angles. Section 4.1.4 presents an example of FIFT-based registration for a pair of

images taken by an ROV for the purpose of clarity.

4.1.4 FFT-based Image Registration for Underwater Ima;

By using FFT-based image registrations, our aim is to highlight and compare the
importance of the camera viewpoint in a dataset. As discussed in section 4.1.2. this
registration method can extract only one rotational degree of the camera viewpoint

Figure 4.3 illustrates an example of this method on an actual image of the scafloor taken

by an ROV



Figure 4.3: Mosaic of a pair of images with translation and projective effect registered by

I-based method

As can be seen, scale, translation and one degree of rotation are taken into account. On

the other hand, due to the 3D projection effect, two images cannot be fully re

Iding a blurred mosaic. For example, the starfish on the top and left, since they appear
on the edge of the image, are affected most by the projective effect. According to this

discussion, not knowing the relative geometry of the seafloor to the camera or the

unknown camera view angles encourages us 10 assess other suitable registration methods.

4.2 Feature Based Method

In the context of local invariant features. for any object in an image. the features represent

interesting points of the object. ranging from complex features such as the obj

simpler structures such as edges or points. Also, these features can be d




invariant to scale and orientation, and to be robust to changes in viewpoint, illumination,
noise. and blurring.

Robust and accurate feature matching can be achieved by extracting the more invariant

features. Therefore, discriminative features should not be extracted from image intensity

or colour values in an image due to incor, ion between images.

Region features are generally high-contrast closed-boundary regions marked by their

features are invariant 1o s

centre of gravity [43]. These ing. skewing, rotation and image

intensity variation. Regions of interests are identified by segmentation procedure. These

wtures can find large rotation:

ature extractors. These algorithms are suitable for

s are another category of f

ich as the C:

identifying contours. Popular edge deteciors ny. Harris or Laplacian filter

lly more robust

are included in this category. Region feature extractors are geners

compared to line feature extractors [46]. A survey of performance evaluations of edge

detection technique: n also be found in [46].

re b

I'he most widely used image registration methods sed on feature extractors using

features based on point localization. These point region feature extractors can provide

ptors which correspond to the feature point coordinate.

ure extraction algorithms which rely on the first derivative analysis such as Harri:

more robust and less sensitive to variation of noise compared to algorithms using the

second derivative or Gaussian curvature. An extensive survey of the performance of local

discussed that embedding a descriptor into

plors is presented in [47]. in w



the  features  keypoints  will  enhance  the  prog of finding correct  feature
correspondences.

. the most widely-us hm that incorporates all the

To the best of our k

aforementioned advantages is the Scale Invariant Feature Transform (SIFT). [34].

4.2.1.1 SIFT Feature Extraction

SIFT is known as a robust feature extraction method published by D. Lowe [34]. This

algorithm is invariant to changes in rotation, translation and

invariant to changes in 3D transformation (viewpoint) and illun

s of invariance and

and detects local features and possesses the particular characteris

robustness.

There are four detection stages for SIFT features. The firs pace extrema

stage

detection which involves applying the Geussian function in order to blur the image.

L(x.p.0) = G(x.y.0) *i(x. y). (4.16)

where i(x.y) is the input image, L(x.y.0) is the Gaussian-blurred image. and the

¢ based on o is defined a:

Gaussian function G with kernel s

Gy p.o) = g et .17y

270

I'he difference of Gaussian space is formed by convolving an image with a Difference-of-

Gaussian filter (DoG):

Gy y. ko) =Gy, y.0). (4.18)



D(x.y.0) = G(x, v.ka)Yi(x, y) - G(x. y.o) ¥i(x. y)
(4.19)
L(x.y.ko) = L(x.y.0).

where 4 is a constant coefficient.
This is basically the difference of the blurred images with Gaussian filters at scale o and

ko as shown in Figure 4.4.

Difference of
Gaussian (DOG)

Figure 4.4: Different scales of the blurred images and computation of DoGs are shown.
Local extrema are then detected [34].

in o

DoG space of images is then obtained and grouped by applying G *i with increas
by octave. An octave corresponds to a doubling of o . The interest points (called

Keypoints herein) are then identified as the local minima or maxima of the DoG space.

le

Lach pixel in the DoG space is then compared to its cight neighbours in the same
and all the cighteen neighbours in the higher and lower scales. If the pixel is a maximum

illustrated in

s identified

or minimum among all the neighbour pixels, it i akeypoint

Figure 4.5



Figure 4.5: Detection of maxima and minima of DoG with neighbourhood pixels [34]
Ihe second stage of SIFT is keypoint localization. In this stage, the position of each

keypoint candidate is determined using interpolation of nearby data. Also. keypoints with

low contrast or those that are classi

fied as belonging to edges are rejected

In the third stage. an orientation is assigned to the keypoints. To compute the orientation.

by using the Gaussian smoothed image. . at the closest scale to the candidate keypoints
scale. a gradient orientation histogram is computed in the neighbourhood of the keypoint.

iach neighbour pixel is weighted by the 2radient magnitude and a

ussian window with
cqual to 1.5 times the scale of the keypoint. The image Z(x,y) with the closest value off

o is used for computing the gr

Jieni magnitude and orientation by the following

cquations

m(x.y) = J(Llx+1y) = L(

=1y (L y+ D= Ly =1)). (4.20)

pley)=tan (Loxey+ D)= L(x.y =)/ (L(x+1.p) = L(x —1.y))). (4.21)
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the formation of the feature descriptors. The feature

“The fourth and final stage of SIFT i
descriptor is computed as a group of histograms of a quadratic pixel neighbours. The

contribution of cach pixel is weighted by the gradient magnitude and by a Gaussian filter

times the scale of the keypoint. According to this. the vector with

with ¢ cqual to 1
respect o p(x, ) is then stored so that the deseriptor vector is invariant to rotation. Each
of these histograms contains cight bins, and cach descriptor includes an array of the

histograms around the keypoint as shown in Figure 4.6, This means that the SIFT feature

descriptor has 4x4x8 =128 clements. That is 4x4 sub region histograms containing 8
bins cach. In order to enhance the invariance to changes in illumination. the deseriptor

vector is then normalized to unit length.

Image gradients Keypoint descriptor

Figure 4.6: Forming the SIFT feature descriptors. This figure illustrates a 2x2 descriptor
formed from an 88 sample array [34].

s of SIFT keypoints extracted from a pair of images are illustrated in

Some exampl

eure 4.8. These images are captured with an arbitrary viewpoint angle,

Figure 4.7 and

scale and translation



o s

2

g

Figure 4.7: Image captured with arbitrary viewpoint. 3 SIFT keypoints are shown.

igital
fmage

re 4.8: Image captured with another different viewpoint showing 3 extracted SIFT

keypoints,

For the purpose of illustration, three matched SIFT keypoints are shown in cach image. It

can be clearly observed that subsets of the extracted keypoints remain the same. For the
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purpose of comparison, two of the matched keypoints are shown in Figure 4.9 in a larger

scale.

Figure 4.9: SIFT feature descriptors; 4x4 SIFT descriptor matched in two different
images of the same scene

An array of histograms around the keypoint is shown in Figure 4.9. Each of these bins
contains 8 orientations for a 4x4 histogram array resulting in a 8x4 x4 =128 dimension
descriptor vector. The actual size of each spatial bin is ko where k is a nominal factor

and o is the scale of the keypoint.

4.2.1.1.1 Affine-invariant SIFT

In ROV imagery data, objects may appear in images with significantly different
viewpoints. These images captured in varying viewpoints undergo 3D deformations.
Affine-transforms of the image plane can approximate these deformations. An affine
transformation is an invertible transformation which is a composition of rotations,
translations, dilations and shears. Using homogeneous coordinates, this transformation
can be shown as equation 4.22. Homogeneous coordinates represent a 2D vector in 3D

space so that translation can be included in matrix manipulation.



. 4.22

where (x,y) and (x',y") are pixel coordinates in the images. The parameters r.r and s
represent the rotation, translation and scale for mapping the pixel (v.y) to the pixel

(x'.2). The SIFT method is successful in being fully invariant to four parameters out of

six of an affine transform, namely scale. rotation and translation invariant.

I'he method illustrated by Affine-SIFT basically simulates different camera viewpoints,

namely latitude and longitude angles. and uses SIFT for extracting features. This method

is mathematically proven to be fully affine invariant as discussed in [21]. but the
simulation of possible viewpoints will be an expensive process therefore SIFT s selected

as the algorithm of choice for the rest of this rescarch

4.2.2 Feature Matching

Identifying similar tures between images is an important computer vision problem

with application in numerous ficlds, such as image stitching. object detection. image
registration. object localization, object recognition, image retrieval and mapping. This
procedure remains challenging due to existing problems such as partial occlusion of

objects. illumination changes. and camera viewpoint changes

finding a reliable set of feature matches

I'he problem being addressed in this section i

several distance metrics

given two arbitrary images of a scene or object. In this chapter.

along with an ambiguity measure are studied and compared to measure similarity between




feature vectors. The experimental results show that using the standardized IFuclidean

distance can increase the ratio of inliers over total matches

4.2.2.1 The Conventional Feature Matching Method

In the conventional feature matching rethod [34]. the best candidate match for cach

keypoint is found by the neare:

t neighbour of the SIFT features. For finding the nearest
neighbours. the minimum  Fuclidean distance for cach candidate matching pair is

computed. However, many features will not be correctly matched by this technique.

I'herefore. it is useful to employ a methed to discard incorrect correspondences. A global

threshold on the Euclidean distance between the descriptor vectors does not perform well

ome features are more discriminative than others. In order to make this

cnough a

process more robust to potential wrong matches. a ratio of the nearest neighbour 1o the

second nearest neighbour is computed. Candidates with a ratio of less than a pre-defined

threshold value are chosen as matching correspondences. We will refer to this method as

the second-best maich method. This method performs well as discussed in [17]. and the
idea behind this method is that the correct matches need to be significantly closer than the

closest incorrect match to be reliable. In the original work [34]. this threshold value is

chosen equal to 0.8. Defining Dist, and Dist, as the first and the second best match

distances corresponding 1o a feature de

riptor in the dataset. a match is accepted iff

equation 4.23 is satisfied

<08 (4.23)

Dist,



significantly closer

Notice the distance ratio has a low value where the best match is at a
distance compared to the second best match. In contrast, a high value of the distance ratio

at least one strong competitor in

is obtained in a condition where the feature point has

ion presented in [34]. it is mentioned that this threshold

terms of distance. In a discu
value is able to eliminate 90% of the false matches while it rejects 5% of the correet

matches [34].

4222 The Proposed Feature Matching Method

spondences may become incorreet matches due to the ambiguous

Many of the initial corrg

and non-distinctive features from the background. The background clutter in our case is
the sediment pattern. This pattern generates highly similar feature descriptors with inter-

feature distances within a small range. In other words, due to the high dimensionality of

the feature space. it is highly probable that a large number of correspondences are within

ances to each other. The second-closest matching method can reject a

very similar dis

¢ matches. However, having a pre-defined threshold value

significant percentage of fal

on making strategy for the next stage of processing. which is

can highly affect our ds
image registration. This means. if we have a suitable percentage of correct matches. using

a geometry model fitting algorithm such as RANdom Sample Consensus (RANSAC).

[48]. the algorithm will be able to estimate the transformation parameters. However. i

there is an insufficient percentage of correet matehes among incorrect matches. additional

strategies should be used to increase this percentage, or more sophisticated algorithms



compared 1o RANSAC should be employed. These are the trade-offs that we need to
manage
Tables 7.1 10 7.3 in the result section will show how a fixed threshold value can influence

the number of correct matches; and morcover. slight changes in the threshold value can

yield different results in finding matched feature descriptors. These tables also highlight

the disadvantages of using a pre-defined threshold value that we attempt to resolve by

defining an adaptive thresholding method.

4.2.2.2.1 Multiple Correspondences
Multiple correspondences refer to the situation where several keypoints in an image are

associated with one single keypoint in another image. This problem could oceur where

the variation of distances between features descriptors is small. In the original algorithm

criptors of an

for finding matching candidates, a situation might occur where multiple des

image are chosen as matches for one single descriptor of a secondary image. Here. we are

features are extracted

trying to find common features of image /; and 7, in which

n

from /, and N, features from/,. To find a suitable matching candidate for the 7

h
de: 4

criptor of . the distance between " deseriptor of /; and all N, descriptors of 1, are

computed as illustrated in Figure 4.10.
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Figure 4.10: This matrix illustration shows a sample distance computation between
descriptor of image /7, and all N, descriptors of 7, ; both are 128 dimension veetors

In this illustration, d, , is " element of i SIFT feature deseriptor in which j < 128 and

i < maximum number of keypoints .
Based on the second-best match method, feature j” of 7, is chosen as a match with i
feature of /1, if the following condition defined in equation 4.24 is satisfied.

n:)% _ < Threshld (@24

T'he closest distance and the second closest distance are shown by Dist, and Dist,,

Indices of the descriptors are also showr in Figure 411 as fdx, and Kdx, for descriptor

m and n from /.

DNy ) N, disances

Dist,.,

|t

Figure 4.11: Hlustrating indices of the closest and the second closest distances



In a case where the features are non-d stinctive and are very similar to each other, the

following problem could occur, except that in this case descriptors m and o from /1,
have the shortest distances with a descriptor j from /, If the condition shown in
equation 4.24 is satisfied. features j and m will be selected as a candidate pair. This is
where the multiple matching problem neeurs. i.c.. when feature m s associated with
more than one feature of /,. The proposed method for solving this problem is described as
follows:

For features of the second image with multiple matches, a reverse mateh finding stage
will be performed. This means we try to find a match for the mentioned feature among all

the features of the fi

st image by using the same algorithm. If the result of the two stages

has common members, the common correspondences will be chosen as a match

Another possible solution for multiple matching of SIFT descriptors could be that the

nearest match among the multiple matches is chosen as the correct correspondence. This

is because, throughout the proc we witness the previously mentioned method

performs better than the latter one

4.2.2.2.2 Results of Resolving the Multiple Correspondences

For the purpose of illustration an example of this situation is circled in Figure 4.12. As

can be seen, for a small threshold value such as 0.66 there are multiple matches for the

s shows there are several numbers

h and the snail shell in the bottom left of 7, . T

ature pairs for which their second-best match threshold is less than 0.66. Figure 4.12



and Figure 4.13 illustrate an example of this situation before and after investigating for

multiple matches.

(1) (k)

Hlustrating features with multiple correspondences. SIFT Threshold — 0.66

2 # *
(1) ()

Figure 4.13: Multiple correspondence problem corrected. SIFT Threshold — 0.66
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Here.

nails in this pair of images are similar (o a rotated replica of one another. Because
of the invariance of SIFT to rotation the multiple matching problem in this case is
expected. In order to solve this problem, an extra reverse correspondence finding stage
was performed. Common members of the two stages are chosen as correspondences

afterward.

4.2.2.2.3 Feature Distance Metri

The accuracy of the Nearest Neighbour (NN) classification for finding the distance

between the feature des

ptors significantly depends on the employed distance metrics.

When there is no available prior knowledge about the descriptor vectors.  the

implementation of NN simply computes the Fuclidean distancy clidean distance i

special case of the Minkowski distance metric. Equations 4.25 and 4.26 show the

Luclidean and M ki me

Minkow (4.20)

" element of vectors

where x, and y,indicate the 7

vand ywith lengthn . For the special

cases where =1, the Minkowski metric shows the City Block metric. r=2 | the

Minkowski metric gives the Euclidean distance, and for r =it gives the Chebychey

distance



=

“uclid

The Minkowski distance family. and accordingly. the an distance. ignores any
statistical regularity that might be estimated from the computing vectors [49]. In other
words. Minkowski metrics do not take into account the difference of scales or

dimensionality. For example, to classify images of faces by age and gender, it is not

ion bec

appropriate to use the same similarity metric for age and gender

their statistics presumably differ. This cxample attempts to emphasise the difference of

scales or dimensions whilst computing distances between vectors. With the assumption
that finding the similarity of a query photo of a person with a group of reference photos is

nd

veetor ining two

demanded and ch photo h:

Person,

o sex,
age,  ©  age,

Assume the age variable range is 1-80 yzars old and the sex variable is 1 and 0 for male

and female respectively. It can be clearly observed that the effect of distance between the

sex variables will be overpowered by the age range in the condition where the selected

distance merric wreats the sex dimension similarly to the age dimension. In the following

nilar result will be achieved if the Minkowski metric is used. which does not

example a

take into account the stati

ical regularity of vectors.

I3 3 n n
o 0 o1
o 31 age:30 o 30

0-0) +(30-3 JO-1y £G30-30y =1

Ve
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where 0 and 1 are associated with female and male variables respectively

IFor matching SIFT descriptors. reviewed in section 4.2.1.1. we are coping with vectors of
128 dimensions as the formation of SIFT descriptors. Minkowski distance is appropriate

are independent of cach other and are of cqual

for the situation where feature vectors
importance. This distance has been the most widely used measure for computing the

sions of’

i metric treats all the dimer

similarity between feature descriptors. The Minkows

the feature descriptors as entirely independent. In order to take into account the similarity
of the descriptor vectors, the quadratic distance is introduced as shown in equation 4.27.

Dist(f,. 1)) == SN - 1) (427)

where f and f are feature descriptors. A is a similarity matrix. If A=7(/ is the

Dist(f..1))

identity matrix) equation 4.27 shows the Euclidean distance. In case A

gives the Mahalanobis distance. where ¥ denotes the covariance matrix of the feature

ance where A

veetors. Also if A=A the equation denotes the standardized Luclidean dis
is the diagonal of &
The matrix of variance ¥ is defined in equation 4.28 as well as Abeing defined in

equation 4.29

X - . (4.28)
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(4.29)

£ is the feature descriptor

Where N is the number of extracted keypoints in the dat
and p indicates the number of dimensions: the diagonal elements denote the covariance.

s the covariance of £ with itself

quently. o,

o, is the covariance of £ and £, . Cons 3
According to the formation of SIFI cescriptors, 128 dimensions are not necessarily

independent from cach other. Therefore, using Minkowski metrics cannot be the best

choice for finding the similarity betwzen the SIFT features. Among quadratic-form
used in this arca. The reason that the

metrics, Mahalanobis distance has beer widely

standardized Fuclidean distance performs better than the Mahalanobis for us lies in the

grouping of our images
The possible scenarios for finding the maiching keypoints in our situation could be

ibe the condition where there is prior

cenario one will des

categorized in two groups.

knowledge available about the similarity of the field images and in contrast. scenario two

tuation where prior knowledge about the collected images is not available

describe the

I'hese two possibilities in our work are described further as below

o Scenario #1: Group of images have very high similarity with cach other.
I'he ultimate goal of this section is to determine if the descriptors of a query image

s laken from the ficld. In

has matches with any descriptors in the group of imagy

this scenario. firstly the covariance matrix £ of all the reference images in the
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training set

should be computed. Thi

is due to the high similarity of features in

the field image. In other words, we already have some information about the

expected and interesting keypoints in the set: therefore some prior inform

exists in this

situation. Accordingly. using the covariance matrix is an appropr

choice. Employing the dependencies between in this

reasonable choice due 1o the existence of high similarities in the datasy

®  Scenario #2: No prior knowledge about features in the images is available.

For example. we have a group of ficld images

and the goal is to find similar

et In this case. we are not

features of a query image among the field image datas

able to firstly, categorize similar features and then analyse whether

query feature

milar to the group of features of the filed image dataset or not. The solution

for this situation depends on the possibly further available knowledge. The options
could be as follows:

(1) I dimensions of the fecture vectors are not nec:

rily independent:

therefore using Minkowski metric

inappropriate.

(2) If there is no prior knowladge about features or the field image set. thus

Mahalanobis may perform incapably. In this situation we suggest using the

standardized Euclidean distance.

I'he standard Euclidean di

tance was previously introduced in equation 4.27. This

dis

ance metric ba anderdization to

ance out the contributions of

variables in different scales of measurements: hence large variables will not dominate
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the calculation of distances and small variables will not be neglected. In this

standardization. variables are transformed to have the same variance of one by centering

the variables at their mean. This transformation is thus shown in equation 4.30.
standardized value = (x — )/ 3., (4.30)

where x s a sa

mple element of our feature vector, ¢ is the mean of the dimension of x

and o denotes the standard derivation of the dimensions. In order to reformulate the

quadratie distance for our purpose we have a discussion as follows:
- n " BT " . e
We define data st P consisting of the SIFT feature descriptors S, =18, | fora sample

image being referred to previously us /, and data set © including descriptors

of a sample image /, . The similarity function for a given pair of descriptors
o

S, andS, from the data set P and Q is defined as the standardized Fuclidean distance

shown in equation 4.31

Dist(p.q

(S, =S, ) [EXIN

T

Next. by using the second-best match approach for rejecting potential wrong matche:
using a distance ratio and a threshold. more of the potential incorrect matches will be
discarded. In section 7.1 experimental results to support the idea of using standardized

Liuclidean dis

ance for finding correspordences in one image pair will be presented as

well

4.2.2.2.4 Match Finding Using the Adaptive Threshold



In this seetion, we present an approach for computing an adaptive threshold value in order
to climinate the demand for defining a constant pre-defined threshold value. We define
the mean of the ratio of the first closest over the second closest distance as the adaptive
threshold value as shown in equation 4.32.

_ 1 & Dist(pg,)
7 ZBp,
N, S Dist(p,.q,)

(4.32)

where N,

denotes the number of features in /. pis the /" feature descriptor of set

o L i . . " -
;.S/, §,1 and S, is the " descriptor of /,.q, is also the ;" descriptor of set

1S, 4. Dist(p,.q,)shows the closest distance of descriptor vector p, andg, . The

number of features in 7, is shown by N, . The second closest distance for deseriptor p, and
«, is denoted by Dist(p,.q, ).

Fuclidean and Mahalanobis distances are generally used to quantify the similarity of two
feature veetors. Feature vectors contain 128-dimension digits and the components of the
feature veetors are incomparable entities: therefore Fuclidean distance is an inappropriate
choice and yields an unsatisfactory outcome. The results to come in chapter 7.1 will

illustrate the effect of the threshold value on the outcome of feature matching.

4.2.2.2.5 Spatial Clustering

Cl

stering is widely used for identifying intere

ing patterns of data. The clus

ering

problem is about categorizing the given data into groups called clusters. Using these

clusters,  ch: of the datasel can be identified. Clustering has several
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applications in patiern recognition. image processing, machine learning and market

rescarch, ete.. [50]. K-means clustering |51] is one of the simplest unsupervised solutions

for clustering problems. This algorithm classifies a given data set through a certain

method is to associate & centroids for &

number of clusters. The main idea of this
clusters, one for cach. These & centroids should be placed as far as possible from cach

other. The next stage in k-means is to associate the given data set members to the nearest

centroid, The first stage is concluded when there is no point pending. Then & new

centroids will be re-calculated by using the result of the previous step. The centroids are

ee, the given data points will be re-associated to

the mean point of the clusters. At this st

the new centroids. This process will be continued in a loop until centroids do not relocate,
T'hat is when there is no change in calculating the new centroids

We have found that object des ble with as few as three features to compute

pose and location which is also mentioned in [34]. Using this fact, we calculate an initial
value for & being used in k-means as shown in equation 433

number of features R -
=— 23, (4.33)

n

where & is the number of clusters and - is the minimum number of features that can be

used for object recognition. By using k-means clustering for corresponding pairs from the
previous stage, we propose a technique to eliminate a large number ol incorrect
correspondences. The hypothesis is based on the fact that if a region of image /, has
overlap with a particular region in image /7, . the corresponding pairs inside these regions

can merge into one cluster. In other words, if features inside one cluster in image /, have
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correspondences in several different feature point clusters in image 7, this indicates

incorrect corresponden In contrast. if features inside one cluster in image /; have

correspondences in one cluster of image /, . this situation indicates the correspondence

pairs are more likely to be correct matches as illustrated in Figure 4.14 and Figure 4.15.

~3 ~4
Ll ) - \
"/ S~ 5

o) (> O

Figure 4.14: [llustrating an example situation where correspondences are considered as

correct matches. Dots show feature points in cach left and right images and circles
illustrate clusters of feature points.

G () 3 id OF
) (: : <‘ &) SQ/
OO0

S: Features of one clust
different feature point clusters in the right image: in this
ciscarded.
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Figure 4.16 and Figure 4.17 illustrate our strategy for rejecting correspondences using

spatial clustering.

(L) (1)

Figure 4.16: Keypoints of one cluster in 7, are associated with two clusters in /,. This is

the condition where the correspondences are rejected. Yellow arrows show the direction
of two red lines.

[} (1)

Figure 4.17: Hlustrating the condition where correspondences are accepted. Yellow
arrows show three lines between matched keypoints between a pair of clusters,
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for

are highlighted in yellow circle

For the purpose of illustration, some sample cluster
clarification. Two yellow arrows show the direction of the matched correspondences. Red
is associated with rejected correspondences by clustering and blue shows accepted

inctive

correspondences by this strategy. A large number of wrong matches of non-dis
features, the sediments pattern herein, are filtered by using the proposed clustering

technique.
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Chapter 5

Image Registration

So far. a large number of corresponding features are obtained from the feature matching

steps. In-this chapter, the estimation of the geometric model between the camera
viewpoints is discussed.

and then

Image registration consists of establishing matches between a pair of images

mapping the images into one planc. This requires finding the geometric transformation

between the image planes.

5.1 Image Transformation Models
Most image registration models assume a planar scene and the rigid body motion of the

S our ass

camera. In this work. existence of the planar scene imption as well. In addition,

in the image database used in this rescarch, the camera mounted on the submersible does

not necessarily look downward

An appropriate strategy to understand image transformation models is to break them into

other simpler  transformations.  This s sed in more detail in [52]. These

transformations can be listed as rigid-body transformation, affine. projective or

homographic and perspective transformations.
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.1 Rigid-Body Transformation (Isometric Transformation)

I'his geometric transformation preserves the distance between source points in an image
and their correspondences in the mapped images. Accordingly angles in this

transformation will be preserved. An isometry is basically a 2D rotation and a 2D

trans transformation can be shown in

ion adding up to three degrees of freedom

LR, .
' = 3 5
P o1 P; (5.1

11y is the mapped

equation 5.1:

where p = (x.y.1) is defined as points in image /, and p'- (v

points in image /, . R, , is the rotation matrix and 1, denotes the translation vector. 0° is

a 2x1zero matrix.

.2 Similarity Transformation
I'his transformation is similar to an isometry except it includes a scaling factor invariant
with respect to the direction (Isotropic). In this condition the distances are no longer

invariant but angles are preserved. This tansformation is shown in equation 5.2

/l'f fa P
o v

where sis the scaling factor.
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Affine Tra

5. lormation

I'his transformation extends the similarity transformation. A similarity is composed of a

rotation and an is

otropic scaling factor whercas an affine trans composed of

add two

two rotations and two ling
degrees of freedom to a Similarity transform adding up to six degrees of freedom. Here,

d

s are not preserved but the ratios of lengths of parallel lin

ances and angly

preserved. This tra shown in equation 3

. R,and s are the rotation and

where R and s are the rotation and scaling in the

scaling by the v direction respectively.

5.1.4  Projective Transformation or Homographices

orm.

s of freedom thar affine tran:

nsformations include two more degre

This will yield cight degrees of freedom. A homography can be written as equation 5.5.

' =
/ Voo

I'he veetor V distinguishes an affine transform from a homogi

10 zero in affine and is 1 = (1,.1,) in phy which is for the proj

effect of the transformation. In order to have a valid decomposition. v # 0.




nsformation can be s1own as a composition of previously defined

projective r

transformations shown in equation 5.6.

sk fooolfr oo
H = Hyp X H g Hocpimns r "
o 1ot
{.l - <
= s (5.6)
v
1
where U SRU 11"

I'he homography between images iand j is denoted as /7, . According to the definition

of the homography which is a 3x3 matrix, only cight degrees of freedom exist. The plane

three degrees of

itsell” has three degrees of freedom: the orientation of the camera has
freedom and finally the translation includes two degrees of freedom. A common solution

for this situation is to divide the entire matrix element by the 9™ element of the matrix.

5.5 Perspective Projection
So far the discussed transformation has cealt with 2D to 2D mapping. In the actual world

condition. the images are transformed from 3D world space to 2D image points. This

transformation can be by a perspective projection as shown in equation 5.7

P =rp .7
where  p=(X.r.Z.1)'is the actual world point represented in the homogencous

coordinates and p' = (x, y.1)is the homogencous coordinate of the mapped point to the



image plane. The projection matrix is a 3x4matrix which ha

cleven degrees of freedom
up to an arbitrary scale. This matrix can be decomposed as shown in equation 5.8

I~ K[R|]. (5.8)
where Kis the camera’s intrinsic matrix represented in equation 5.9 including five

internal parameters

a s ox
K= 0 a x| (5.9)
0 0 1

IHere. sis the skew parameter. ¢ and « are the camera focal lengths in term of pixel

dimension and (x,.y,)is the principal point of the image plane. The matrices Rand rare

the camera orientation and translation te the world including the

six external parameters

(three rotations and three translations) respectively

As discussed in [32]. some assumptions can be made to reduce the cleven degrees of

freedom. 1f it is assumed the camera has

square pixels, then @ =a =« and also in

many casess = 0. Using this assumption we will have nine degrees of freedom which is

still one degree of freedom more than a homography.

In the condition where the intrinsic camera matrices are known. the best result can yield

the extraction of three relative orientations of the camera as well as the image plane

cquation including three rotational parameters and three trar

ational parameters
However. solving for the image plane cquation is only possible if the camera intrinsic

matrix is available as discussed in more detail in . The intrinsic camera matrix was

not available for our case. On the other hand, the homographic model exactly describes a



deformation of a flat scene photographed by a pin-hole camera, the optical axis of which

is not perpendicular to the scen

An ¢

xample of different motion parameters with two

underwater vehicles is illustrated in Figure 5.1

Figure 5.1: Submersibles pose: illustrating translation and rotation parameters affecting
image frames and the overlap area
I'herefore. solving for a homography transformation will be the transformation of our

choice. As the homography transform is written using the homogencous coordinates, the

o i e O
homography 7/ is defined using cight parameters plus a free 9" homogencous scaling
factor. Then for cach corresponding points. we can obtain:
By hy hx
patp=|h, h, h,
Iy hy b1

3 (5.10)



where H is the homography matrix and ~ indicates equality up to scale as /i, = 1. This

equation s0 be written as

equations 5.11 and 5.12.

Iyx v+,
hox+hoy+h,”

X+h,y+h,

Fhoythy

I'herefore, at least four point correspondences providing eight equations are required to

imate the homography.

5.2 Geometric Model Estimation

Ihe RANdom SAmple Consensus (RANSAC) algorithm [48] is a gencral parameter

estimation technique that is widely used in machine vision problems for reconciliation of!

b and

the sample data with of the known ic model due to

simple implementation.  This sampling algorithm attempts to generate a solution by

ed model

selecting the minimum number of data points required to estimate the d

ameters. RANSAC uses the smallest possible set of data points to obtain an initial

P:

solution. We define inlicrs as corresponding points whose distribution fit a geometric

model and for which outliers are correspondences which do not fit the geometric model.

This model-fitting family can be categorized into three broad groups based on the trade-

offs made between speed. robustness and accuracy [54]. This categorization is illustrated

in Figure 5.2:



RANSAC with Boil -0t Test

R-RANSAC with SRT Feng and Hung' MAPSAC

RRANSAC with .., Test
B MLESAC
essive RANSAC e
RANSAC POM-estimator
PROSAC LO-RANSAC
NAPSAC " .
Gasac LESAC
MLESA MAPSAC
Guided MIESA AL QDEGSAC

5

T RANS

Figure AC family in 3 broad categories [54].

RANSAC

s an iterative algorithm of two steps: firstly. hypothesis generation from
random samples and secondly. the evaluation of the hypothesis with the data. It randomly
selects a subset of data and estimates a parameter from the sample. If the parameters to be

estimated fit the given model. the hypothesis is considered true. The RANSAC algorithm

is summarized as follows

RANSAC Algorithm

Randomly select the minimum number of required correspondence pairs to determine

the model parameters

o

Solve for the parameters of the mode! using correspondence pairs

Determine how many correspondence pairs agree with the model with a predefined

tolerance ¢ . Inliers are defined as paivs which fit the model



76

4. If the fraction of inliers over the tolal number of correspondences exceeds a certain

» all identified inliers and

threshold 7, stimate the model by c

terminate.

times.

Otherwise, reiterate steps 1 through 4 to a maximum number of

ible match

The algorithm used here selects s =4 sample pairs from the pool of po:

s0 the inlier ratio to the whole data. The

lences [24]. The probab

onc of the sets o

number of iterations N is chosen high enough to ensure that at le

is

random samples does not include outliers. However, the probability of selecting inlie

unknown: therefore, the number of iterations should be defined manually. In the

generally

nized as the inlier

hypothesis evaluation step. a pair of maiched correspondences is reco

candidate if its error from a hypothesis is less than a predefined threshold. The number off

sample sets to be processed can be calculated as follows:

« : The estimated outlier proportion

s+ The size of the minimum required sample set of points

£ The probability of finding a sample set of all inliers. We assume p = 0.99 .
Therefore, we will have:

1 a: Probability of a point being an inlict

(1-a)": Probability of a set of spoin

containing all inlic

(1) : Probabi setof spoints containing an outlier.

(1-(1-a))" : Probability of N sets of size ssamples all containing an outlicr.



I=(I=(I—a)')" : Probability of N sets of points containing one outlier-free set.
Solving p=1-(1=(1-a)")" for the number of required iterations N . equation 5.13 will
be obtained.

v Joall=p)

=287 0) 513
log(1-a") 619

Table 5.1 illustrates the required number of iterations for the different percentage of

outliers in RANSAC compared to a determined linear system.

Table 5.1: Number of required irerations for geometric model estimation.

Proportion of outliers Determined linear system

Homography 8 177 70188

As can be seen in Table 5.1, the minimum number of required iterations will inci
increasing the number of sample points. Moreover, a dataset including a larger portion of

outliers needs more iterations for the model estimation.



In our case. the objective of using RANSAC is to construct a robust estimation of the
homography matrix. For cach pair of images. the homography is estimated using at least
four pairs of corresponding points. Practically. a larger number of correspondences could
be employed to obtain an over determined linear system. By using equations 5.11 and
5.12 and rewriting /7 in a vector form as =/, gy g o | pairs off

cnable the jion of a 2nx9 lincar system which is

point-

expressed in equation 5.14.

I,
00 0 X, -¥ -1 v
X, 1 0 0 0 -x || A,
0 0 0 =X, -¥ -l vy |
L0 0 o0 x| |20, 504y
g : ol
0 0 0 -x, ¥ -1 X, |k

Solving this linear system involves the caleulation called the  Singular Value
Decomposition (SVD). The SVD corresponds to rewriting the matrix in the form of the
matrix product 4 = D1, where the solution /i corresponds to the last column of the

s ol the

matrix V:then /7 is determined from /1 which is the solution for the paramet

model in step 2 of RANSAC.
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Chapter 6

Image Blending

In image formation, cach pixel along a ray has a different intensity appearing in different

images [32]. This issue appears more in underwater images as the submersible has to

carry its own light source. This artificial light makes the center of the image brighter than
the corners. An object for Mosaicing might appear once at the edge or corners of an
image and another time in the center. having different intensity value. Another reason for
different intensity levels in underwater images is the rapid attenuation of light in aquatic
environments, which causes closer objects to have significantly higher intensity than
further objects in a scene captured by camera. This change in intensity values makes the
task of blending important for underwater images.

Once a pair of images is stitched together. the difference in the intensity level of the

images can lead to clearly visible borders on the overlying area between the images. In

order to solve this problem, a multiband blending approach is used. The method

developed by Burt and Adelson [55] is performed for this

age. The idea behind multi-

d blending s that it decomposes images into several band-pass frequencies and then

ale values. In

c

merges cach frequency band rather than simply averaging the pixel’s gray
this method. images for blending are firstly decomposed into different band-pass
frequency components. Then cach frequency band is merged separately by reassembling

these frequency bands [32].
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an pyramid

In order to generate the different band-pass frequency components, a Gauss

and Laplacian pyramid of images should be constructed. A Gaussian pyramid is formed

by convolving the Gaussian low-pass filter with the original image G, . followed by down
sampling by a factor of two in order 10 obtain image G,. As both the resolution and

sample density are deereased from G,to G, we can say G,is the reduced version of G,

and also a REDUCE function is defined ‘or this purpose as shown in equation 6.1.

(6.1)

= REDUCE(G,

G, the Gau

By applying the REDUCE function to the sequence of images G, ¢
pyramid is constructed. Also EXPAND fnetion is defined as an up sampler function by a

factor of two in equation 6.2.

AND(G, ). (6.2)

[erent levels of the image frequency bands.

The Laplacian pyramid corresponds to the di

This pyramid is constructed by taking the difference of levels in the Gaussian pyramid.

This process is shown in eq

EXPAND(G,,,) (63)

ch of the images are then added together in cach level. The

amids for

The Laplacian py

final scamless ima

ge can be reconstructed from the resultant Laplacian pyramids by

hown in Figure 6.1 for a 4~ level pyramid.

inverting the process. The overall process
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Reconstruc

Figure 6.1: Multiband blending algorithm adds Laplacian pyramids of blending images
and then reconstructs the seamless output image.

IFor the purpose of demonstration. an image from our dataset is divided into two images
with different intensity levels so that the boundary between them is clearly visible. By
applying the multi-band blending algorithm. we can clearly see that the boundary in

Figure 6.2 is converted to a secamless transition of grayscale in Figure 6.3. This process

nce of he final mosaic by smoothing the sharp edges

significantly clarifics the app

cach image in the mosaic



Figure 6.2: An image divided into two different intensity levels in order to generate a
sample sharp edge between images.

Figure 6.3: A slight boundary is visible after applying the multi-band blending method.



Chapter 7

Results

In this chapter, we will show and compare the results obtained from the proposed

strategy. The images used for this research have been collected by the Remotely Operated

Platform for Ocean Sciences (ROPOS) 4] and the U.S. Geological Survey (USGS) |

Implementation of the program was coded in MATLAB using the VLEcat library [56]

for extracting features and the Underwater Image Toolbox from [32] as well.

Di

nce Metries Comparison
I'he purpose of a measure of similarity or distance is to compare two feature deseriptors

imilarity. The following tables 7.1-7.3

and compute a single number to evaluzte thi

o the “second best match threshold® from 0.625 10 0.5 for

show changes after decrea

several distance metrics. In this section we would like to show how matching is sensitive

10 the chosen threshold value to support our adaptive thresholding method. The threshold
range used in Tables 7.1-7.3 is chosen manually so that the number of correspondences
will be comparable. The SIFT feature extractor is controlled by two parameters. namely
the peak threshold and the edge threshold as defined in [56] . The peak threshold
climinates peaks of the DoG scale space which are negligible and the edge threshold
filters peaks of the DoG. of which the curvature is too small. Here, we chose a peak

threshold 0 and an edge threshold=10 1o detect as many keypoints as possible
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Throughout Tables 7.1-7.3 the correctness of matches is determined and counted

manually.

(a) (h)

Figure 7.1: Sample image pair 1. The selected area shows the same region captured in
two different photos.

As can be seen in Table 7.1, these distances are very sensitive to changes in the threshold.

Moreover, not only the percentage of inliers over total correspondences is important. but

in particular the number of inliers is crucial in order to estimate the homography matrix.

able and more suitable result

The standardized Euclidean distance shows a mor
according 1o our application.
Parameters @ and /7 are defined as follows for clarity.

a Number of total correspondences.

£ Number of correet matehes whick are manually counted.



&

Table 7.1: Distance metrics and threshold value comparison #1.

Second-best match

threshold

Mahalanobis

distance

Minkowski metric 926




(a) (b)

Figure 7.2: Sample image pair 2. The cireled arca shows the same region in two different
photos.

Table 7. stance metries and threshold value comparison #2.
Second-best mateh
0625 05 Average
threshold
B Ratio ] Ratio % £ Ratio % | Ratio %
a a a
Euclidean distance | 16/40 | 40 12/24 50 915 60 50
Standardized
1740 | 42 12122 54 1017 58 s
Euclidean distance
Mahalanobis
820 | 40 /13 46 69 | 66 50
distance
City block metric | 15/53 | 28 13/26 50 1018 55 44
Minkowski metric | 16/40 | 40 12124 50 915 60 50




netive. the results off

This attempt shows that if features in pairs of images are disti

different distance metries are similar. Table 7.3 will show the same analysis for a more
challenging pair to support this idea. As can be seen, the average ratio for this condition is

about 60%.

(a) (b)
Figure 7.3: Sample image pair 3. The circled arca shows the same region in two different
photos.
Table 7.3: Distance metrics and threshold value comparison #3.
Sccond-best match
0.625 0.555 0.5 Average
threshold
Distance metric B Ratio % £ Ratio % B Ratio % | Ratio %
a a a
Euclidean distance | 26/50 | 52 424 S8 1/1s 7 61
Standardized
26/47 55 14723 60 7 63 59
Euclidean distance
Mahalanobis
w7 6/9 66 41 57 65
distance
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sitive to the chosen

The tables in this section illustrate how the matching process is s
threshold value (0.625-0.5) and its influence on the number of correct matches for cach

metric: and moreover., slight changes in the threshold value can yield different results in

finding the correct matches. The result of several distance metrics are also compared
under variation of the threshold value. Considering the two factors of higher average

ratio and the number of correct matches 3. standardized Euclidean distance shows a

better performance compared to the other metri

7.2 Results of Feature Matching

To with overlap are

the matching rate, a pair of image:

conventional method and the proposed strategy. Figure 7.4 illustra

by the original algorithm and Figure 7.5 shows the matching pai

approach (Section 4.2.2.2). By introducing the proposed approach, the matching

performance is enhanced and there is a decrease in the false matching rate. Ultimately. the

corresponding lines should be parallel in the absence of rotation following one single

geometric model.



Figure 7.4: The conventional matching method. [34]. with threshold - 0.8. Resulting in 37
correct matches and /70 incorrect matches making up to 23% accuracy

Figure 7.5: Feature matching using the proposed strategy. Up to 84% accuracy with 32
correct matches and 6 incorrect matches.

7.3

inal Image Mosai

Figure 7.6 and Figure 7.7 show images which are stitched together for the purpose of

solving the multiple counting problem. As an example. cireled species in Figure 7.6
appeared in two different images previously causing a counting problem. By stitching

these images together, we will have a single view of the investigated area of the sea floor:

therefore. each animal will be seen once.
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Figure 7.6: Mosaic created by stitching images with the multi-band blending function.
The rockfish circled on the top was originally located on the boundary of one image; now
itis clearly visible once in the image mosaic.

The same disct

ssion is valid for Figure 7.7. This image can also be compared with the

mosaic generated by the FFT-based method in Figure 4.3. Also in Figure 7.7, the upper
corners of captured images could not be retrieved because of the lack of adequate lighting

in the corner areas.
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Figure 7.7: Mosaic of two images of starfish il ing smooth boundari lti-band
blending algorithm. The starfish on top of the ima; ptured in two di
appearing with minimum artifacts in the mosaic.

In order to produce a larger photo-mosaic. a database collected by the U.S. Geologis

Survey (USGS) [5] has been used. Figure 7.8 shows 6 images with cnough overlap for
mosaicing captured by a towed camera. Parameters shown in Table 7.4 are used for the

USGS database presented in this chapter and also presented in Appendix A.
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Table 7.4: 1 of the impl S
Parameter Value

0.0

1000

FFeature matching threshold Adaptive




ncluding images {1, 2, 3, 4. 5. 6}. Images are collected for

2 purpose by the U.S. Geological Survey




94

In order to produce the photomosaic from images shown in Figure 7.8,

h new image is
stitched to the mosaic of the previous images by following the proposed method. We
found that by using this method the mosaicing algorithm does not have to cope with

accumulation errors. In the following mosaics. cach new image (on the right-hand side) is

(on the lefi-hand si

matched with the mosaic of previous images . All correspondences

are initially coloured red. Those which were accepted by condition of the clustering stage

are coloured blue. Fii

pondences which were

lected by RANSAC as inliers

are shown in green.

images {1} on the leftand {2} on the right.
£ 2!

B




Figure 7.11: Feature matching between images {1. 2} on the left and {3} on the right
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Figure 7.13: Feature matching between images {1, 2, 3}on the left and {4} on the right.



_F ey |

Figure 7.14: Imags stitched {1,2,3} < {4
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Figure 7.15: Feature matching images {1, 2, 3, 4}on the left and {5} on the right.
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Figure 7.16: Images stitched{1,2,3,4} « {5} .
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Figure 7.17: Feature matching between images {1, 2, 3, 4, 5} on the left and {6} on the
right.
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Figure 7.18: Images stitched{1,2,3,4, 5} « {6} . A photomosaic of 6 images from the sea
floor collected by USGS.
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Images 1 and 2 of the mosaic (as illustrated in Figure 7.8) are taken from a planar scene

of the seafloor. Here we can see these two images are in a similar plane yielding a

angular shaped mosaic. In the third image of Figure 7.8, some corals can be seen on
the top left. We believe the ratio of the height of the coral to the distance between the

camera and the scene has increased. This creates a semi-planar effect. Therefore, by

mapping pixels from the top of image 3 to image 1's planc, a trapezoidal shaped mosaic

will be formed. The semi-planar effect in images 4-6 does not change significantly

Consequently a similar shape of trapezcid could map image pixels into the first image

plane. Varying threshold values for cach step in producing the mosaic are shown in Table

ng trend when the mosaic enlarges. The reason i

7.5. The threshold shows an incre:

since the mosaic enlarges, the size and number of features contained in the mosaic will

will

increase. Consequently, the number of incorrect correspondences in the mosa
increase. This increase in the number of incorreet correspondences will inerease the mean

value of the ratio accordingly.

Table 7.5: Adaptive thresholds computed by our proposed method for image set #1.

< image] < New image Adaptive computed threshold value

0.7867

{1.2.3.4} «{5) 0.8370
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T'his computation was implemented on & 32-bit MATLAB rut

ng on a 32-bit Windows

operating

stem with 4GB of RAM. After stitching the sixth image of size 680x512

pixels. we reached the memory limitatiors of MATLAB on this particular machine.

In order to illustrate the effectivens

ss of the presented feature matching strategy. a

photomosaic of images in a group of six is created and included in appendix A along with

tables of the adaptive thresholds for cach image

titching stage.

In our attempt to solve the multiple counting problem. we performed several tests on

set was not intended to be used for

different types of underwater images. Our imagery d

image mosaicing when it was collected. This set includes images with the following

characteristics:

o Images typically contain a high proportion of blue and gre

making some details
difficult to observe.

e High similarity of the sediment and shell patterns generates a large number of
correct matches.
o Information about the camera calibration mounted on the submersible was
unavailable.
e« No accurate navigational data suitable for mosaicing purposes wa

e The camera view angle was unknown.
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I'hese real conditions did not meet the constraints of the discussed mosaicing methods:

therefore those methods f

led to match many of the images in our database. Examples of

the FIT-based registration and SIFT-based registration were presented and compared to

illustrate the importance of the orthogonal view angle in Figure 4.3 and Figure 7.7

consequently. The importance of the camera viewpoint could be highlighted. according to

the dis on about the FFT-b:

cu

d mosaicing on the one hand and scale and rotation

invariance features of SIFT on the other hand. By performing several experiments using

different distance metri

we could conclude the effectiveness of the standardized

Luclidean distance for fe:

ure matching in the situation where training images are not

available. In addition. by comparing changes in distances, we gained an understanding

about the distinctivene:

of features in an imag

Image multiband blending performed

satisfactorily. specifically in the case where an animal appears in the boundary of an

image. Using this method we were able to construct the image in a way that the obscrved

species appears clearly in the final mosaic
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Chapter 8

Conclusion

For solving the multiple counting problem for scafloor images. we aimed to design a
system able to tolerate projective distortion and low contrast images. We found feature-
based image registration methods are more applicable for the conditions. The designed

system also had to cope with a large number of non-distinctive features from the

background clutter.

In this thesis an improvement to the original SIFT feature matching algorithm was

proposed. This imp o of the feature matching

algorithm in order to increase the percentage of the correct matches over the wrong

correspondences. An adaptive threshold along with using spatial clustering in order to

discard incorreet correspondences were also proposed. The presented mosaics illustrate

the effectiveness of the proposed approach.

8.1  Future work

I'hroughout this thesis. we were using the term “distinctiveness’ of features in images. To
the best of our knowledge. there is no parameter describing distinctiveness of features. In

our feature matching stage, we investigate a situation which can be used for defining an

index of distinctiveness in future: that is. if objects in an image ook casy fo derect by

human eyes. c.g.. comparing Figure 7.1 with Figure 7.3. The distance

atio of the
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inctive features. On the other hand. we

riptor will have a small variance for non-di
can see larger variance of the ratios for image pairs with distinctive features.

ble will not necessarily

Lven in a favourable situation, the camera mounted on a subme
be perpendicular to the seafloor due to the structure of the seabed itself. By having an

estimate of the view angle and navigational data, an interesting approach for feature

ible view angles. This

extraction could be designed consisting of simulation of the pos

an approach similar 10 the viewpoint simulations in the Affine-SIFT [21]. but with a

limited required number of simulations. In this case the computational load of® Affine-

s will benefit

SIFT feature extraction will be reduced. but the overall registration proc:

from more simulated viewpoints.

Marine biolog ating different types of scafloor in terms

diments are a desired habitat for crabs, and the bedrock

of coverage. For example, soft

h and s

arca is where rocl arfish are mostly found. We believe that by analysing

features of an image it will be possible to recognize different patterns on the scafloor.
T'hus, an automatic visual navigation em could be designed to navigate a submersible
1o search for a desired coverage on the seafloor.
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Appendix A

In this section four sets of images, cech including six images collected by USGS, is

mosaiced. This database includes 32 images. Images {1, 2. 3, 4. 5. 6} were mos

section 7.3 . Due to the computational limitation. images are mosaiced in groups of six in

the following manner:

Image set #1: {1,2.3,4,5, 6} presented in section 7.3,

Image set #2: {6, 7.8.9,10, 11},
13, 14,15, 16},

Image set #3: {11, 12,

18.19.20.21

Image se

Image set #5: {21,22,23,24,2

263.

Image set #6: {26, 27, 28,29, 30, 3

due 1o not having overlap with

Image number 32 is excluded from the mosaicing proce

the other images. Fach set is followed by a table showing the adaptive threshold

computed by our algorithm.

In this section the symbol {x, v} «

image 'z' to the mosaic of images



(1)

Figure A.1: Image set #2, including images {6, 7, 8,9, 10, 11}.



116

Figure A.3: Images stitched {6} <



117

Figure A.5: Images stitched {6, 7} « {8} .
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Figure A.7: Images stitched {6,7,8} < {9}



119

Figure A.8: Feature matching between images {6, 7, 8, 9} on the left and {10} on the
right.

Figure A.9: Images stitched (6,7,8,9} < {10} .



120

matching between images {6. 7. 8. 9. 10} on the leftand {11} on

the

Figure A.11: Images stitched {6,7.8.9.10} < {1



Table A.1: List of adaptive thresholds computed for image set #2.

:Mmﬂic imugc} « New image Adaptive computed threshold value

16,7} {8} 0.6347

16.7.8.9) « {10} 0.7699




122

Figure A.12: Image set #3, including image (11,12, 13, 14, 15, 16}



left and {12} on the right

Figure A-13: Fealure matching between ;mages {113 onthe

Figure AL14: Images titched {113 € 12y



Figure A.15: Feature matching between images {11, 12} on the left and {13} on the right

Figure A.16: Images stitched {1 112} « {13}



Figure A.17: Feature matching between images {11, 12, 13} on the left and {14} on the
right

Figure A.18: Images stitched {11,12,13} < {14}



126

(11,1213, 14} on the leftand {15} on



127

Figure A.21: Feature matching between images {11, 12, 13, 14, 15} on the left and {16}
on the right.

Figure A.22: Images stitched {11,12,13,14,15} « {16} .
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Table A.2: List of adaptive thresholds computed for image set #3.

{Mm ic mulgc} <« New image Adaptive computed threshold value

{1L12} 013} 0.7654

(11121314} « {15} 0.7299

In this set of images, the blue fish appearing in images 12 and 13 has a relatively fast

erefore, in this

movement compared to the capture vehicl ase the multiple counting

problem is unavoided.



129

Figure A.23: Image st #4, including images {16, 17,17, 19,20, 21}






Figure A.27: Images stitched {16,17} « {18}



Figure A.28: Feature matching between images {16, 17, 18} on the left and {19} on the
right.

Figure A.29: Images stitched {16.17.18} < {19}



Figure A.30: Feature matching between images {16, 17,18, 19} on the left and
the right

Figure A.31: Images stitched {16,17,18.19} « {20}

20} on



134

Figure A.32: Feature matching between images {16, 17, 18, 19, 20} on the left and {21}
on the right.

Figure A.33: Images stitched {16,17,18,19,20} « {21} .



Table A.3: List of adaptive thresholds computed for image set #4.

{Mosaic image} < New image Adaptive computed threshold value

) 11617} « {18} 0.9657

116.17.18.19) « {20} 0.7958




136

(26)

Figure A.34: Image set #5, including images {21. 22, 23, 24. 25,26}



Figure A.35: Feature matching between images {21} on the left and {22} on the right

Figure A. 36: Images stitched {21} < {22}
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Figure A.38: Images stitched {21,22} « {23} .
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Figure A.39: Feature matching between images {21, 22, 23} on the left and {24} on the
right.

Figure A.40: Images stitched {21,22,23} « {24} .
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Figure A.41: Feature matching between images {21, 22, 23, 24} on the left and {25} on
the right.

Figure A.42: Images stitched {21,22,23,24} « {25}
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Figure A.43: Feature matching between images {21, 22, 23, 24, 25} on the left and {26}
on the right.

Figure A.44: Images stitched {21,22,23,24,25} « {26} .
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Table A4: List of adaptive thresholds computed for image set #5.

{Mosaic image} < New image Adaptive computed threshold value

0.7660

0.8817




" 30)

Figure A.45: Image set #6, including images 126, 27, 28,29, 30, 31}
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Figure A.46: |

ature matching between images {26} on the left and

"

7} on the right



A e 22
At Oay

Figure A.48: Feature matching between images {26, 27} on the left and {28} on the right
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Figure A.50: Feature matching between images {26, 27, 28} on the left and {29} on the
right.

Figure A.51: Images stitched {26,27,28} « {29} .
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Figure A.52: Feature matching between images {26, 27, 28, 29} on the left and {30} on
the right.

Figure A.53: Images stitched {26,27,28,29} « {30}.
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Figure A.54: Feature matching between images {26, 27, 28, 29, 30} on the left and {31}
on the right.

Figure A.55: Images stitched {26,27,28,29,30} « {31} .



149

l'able A.5: List of adaptive thresholds computed for image set #0.

Mosaic image| < New image Adaptive computed threshold value

126,27} « (28} 0.7497

126.27.28.29} « {30} 0.8654
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