Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

cis-Dichlorido(3,6,9-trithiabicyclo-[9.3.1]pentadecane- $\kappa^{2} S^{3}, S^{6}$)palladium(II) acetonitrile 0.8 -solvate

Louise Nicole Dawe, ${ }^{\text {a,b}}{ }^{\text {b }}$ Lisa Penney, ${ }^{\text {a }} \ddagger$ Daniel A. Black, ${ }^{\text {a }}$ David O. Miller ${ }^{\text {a }}$ and C. Robert Lucas ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, Canada A1B 3X7, and ${ }^{\mathbf{b}}$ C-CART X-Ray Diffraction Laboratory, Memorial University of Newfoundland, St John's, Newfoundland, Canada A1B 3X7 Correspondence e-mail: louise.dawe@mun.ca

Received 6 May 2013
Accepted 31 May 2013
In the title complex, $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~S}_{3}\right)\right] \cdot 0.8 \mathrm{CH}_{3} \mathrm{CN}$, a potentially tridentate thioether ligand coordinates in a cis-bidentate manner to yield a square-planar environment for the $\mathrm{Pd}^{\mathrm{II}}$ cation [mean deviation of the Pd from the $\mathrm{Cl}_{2} \mathrm{~S}_{2}$ plane $=$ 0.0406 (7) \AA]. Each square-planar entity packs in an inverse face-to-face manner, giving pairs with plane-to-plane separations of 3.6225 (12) A off-set by 1.1263 (19) \AA, with a Pd \cdots Pd separation of 3.8551 (8) \AA. A partial acetonitrile solvent molecule is present. The occupancy of this molecule was allowed to refine, and converged to 0.794 (10). The synthesis of the previously unreported 3,6,9-trithiabicyclo[9.3.1]pentadecane ligand is also outlined.

Comment

Group 10 transition metal complexes, in the +2 oxidation state $\left(d^{8}\right)$, normally exhibit stable square-planar geometries, in compliance with the 16 -electron rule. However, the presence of two nonbonding orbitals perpendicular to the coordination plane, i.e. the occupied $d_{z^{2}}$ and the empty p_{z}, means that higher coordination numbers can be achieved, with the cation possessing the ability to act as either a Lewis base or a Lewis acid, or in some reported cases, both (Aullón \& Alvarez, 1996). Further, Allan et al. (2006) have reported the highpressure ($46 \mathrm{kbar} ; 1 \mathrm{bar}=100000 \mathrm{~Pa}$) conversion of cis-dichlorido(1,4,7-trithiacyclononane- $\kappa^{2} S, S^{\prime}$)palladium from a square-planar mononuclear complex to a six-coordinate chain polymer via apical coordination to both the third S atom in the ligand and a meridionally coordinated S atom in another nominal monomeric Pd complex. The authors presented their work as a route to novel metal stereochemistries.

In the title complex, (I), the thioether ligand has the potential for up to three metal binding sites, but it coordinates in a cis-bidentate manner via two adjacent S atoms to the Pd
\ddagger Current address: Charles River Preclinical Services, Tranent, Edinburgh EH33 2NE, Scotland.
centre, yielding a five-membered chelate ring (Fig. 1). The overall coordination geometry at the metal atom is square planar, with the remaining coordination sites occupied by chloride ligands. Atom Pd1 deviates from the $\mathrm{Cl}_{2} \mathrm{~S}_{2}$ mean plane by 0.0406 (7) A. A search of the Cambridge Structural

(iii)

(iv)

(4)

Database (CSD, Version 5.34, with February 2013 update; Allen, 2002) for all cis- $\mathrm{PdCl}_{2} \mathrm{~S}_{2}$-containing structures yielded 115 unique observations of $\mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{S}$ bond lengths, and $\mathrm{Cl}-\mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{S}-\mathrm{Pd}-\mathrm{S}$ angles. Average distances of 2.32 (3) and 2.31 (14) \AA were found for $\mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{S}$,

Figure 1
A view of the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A packing diagram for (I), showing the close facial association of the square-planar $\mathrm{PdCl}_{2} \mathrm{~S}_{2}$ fragments. Acetonitrile solvent molecules and H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $-x,-y,-z+1$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $-x$, $y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (v) $-x+\frac{1}{2}, y+\frac{1}{2}, z$; (vi) $x+\frac{1}{2}, y+1,-z+\frac{1}{2}$; (vii) $-x+\frac{1}{2},-y+1, z-\frac{1}{2}$; (viii) $x+1, y+1, z$; (ix) $-x+1,-z+1,-z+1$; (x) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$; (xi) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (xii) $x+\frac{1}{2}, y,-z+\frac{3}{2} ;$ (xiii) $-x+\frac{1}{2},-y, z+\frac{1}{2}$.]
respectively, while for $\mathrm{Cl}-\mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{S}-\mathrm{Pd}-\mathrm{S}$, average angles of 92 (4) and $89(5)^{\circ}$, respectively, were found. The results reported here for (I) are in agreement with the CSD values.

The overall structure of (I) is similar to that reported by de Groot et al. (1991) using the 2,5,8-trithia(9)-m-benzeneophane ligand, but stands in contrast with the coordination mode exhibited by Pd with the 2,5,8-trithia(9)-o-benzeneophane ligand. In that complex, a cis- $\mathrm{PdCl}_{2} \mathrm{~S}_{2}$ coordination motif was also reported (de Groot et al., 1991), but the third S atom was present at a distance of 3.076 (3) \AA, indicating apical coordination to Pd . In the title complex, the intramolecular distance from Pd to the third S atom is 5.0721 (14) \AA, while the closest intermolecular approach of a third S atom to Pd 1 is 5.2031 (14) \AA [for atom S2, generated by the symmetry operation $\left(-x+\frac{1}{2},-y, z-\frac{1}{2}\right)$], which far exceeds the sum of the van der Waals radii for Pd and S (3.43 \AA; Bondi, 1964). For de Groot et al.'s (1991) Pd complex with the 2,5,8-trithia(9)-mbenzenophane ligand, the intramolecular distance to the third S atom was reported to be 5.122 (2) \AA, which is comparable to that of the title complex. Of note in (I) is that the squareplanar $\mathrm{PdCl}_{2} \mathrm{~S}_{2}$ surfaces, oriented away from the uncoordinated macrocyclic atoms, pack in a face-to-face manner across the inversion centres at Wyckoff position $4 b$ (Fig. 2). Plane-to-plane separations for the $\mathrm{PdCl}_{2} \mathrm{~S}_{2}$ pairs are 3.6225 (12) \AA off-set by 1.1263 (19) \AA, with $\mathrm{Pd} \cdots \mathrm{Pd}$ separations of 3.8551 (8) \AA.

Experimental

All starting materials were obtained from the Aldrich Chemical Company and were used without further purification. The 3,6,9-trithiabicyclo[9.3.1]pentadecane ligand was prepared in four steps (see Scheme). Analyses were performed by Canadian Microanalytical Service Ltd.
(i) Step 1 involves the conversion of cyclohexane-1,3-dicarboxylic acid to its dimethyl ester, (1). (\pm)-Cyclohexane-1,3-dicarboxylic acid $(5.20 \mathrm{~g}, 30.2 \mathrm{mmol})$ was dissolved in methanol $(150 \mathrm{ml})$ to which concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{ml})$ was then added. The solution was stirred under reflux for 24 h then cooled to room temperature and neutralized with aqueous $\mathrm{NaOH}(2 M)$, and the solvent was removed under reduced pressure. Water $(100 \mathrm{ml})$ was added to the residue and the mixture extracted with ether $(4 \times 50 \mathrm{ml})$. The extract was dried over MgSO_{4} and filtered, and the ether was removed under reduced pressure to yield (1) as a pale-yellow oil in 99% yield. ${ }^{1} \mathrm{H}$ NMR (500 Hz, TMS): $\delta 3.68$ (6H), 2.20-2.40 (2H), 1.90-2.05 (2H), 1.70-1.80 $(2 \mathrm{H}), 1.50-1.60(2 \mathrm{H}), 1.30-1.40(2 \mathrm{H})$.
(ii) Step 2 involves the conversion of (1) to the corresponding diol, (2). Under an atmosphere of dry nitrogen, $\mathrm{LiAlH}_{4}(9.5 \mathrm{~g}, 0.25 \mathrm{mmol})$ was suspended in dry diethyl ether $(250 \mathrm{ml})$. The temperature of the suspension was maintained with an ice bath and a solution of (1) $(14.5 \mathrm{~g}, 72.5 \mathrm{mmol})$ in dry diethyl ether $(150 \mathrm{ml})$ was added dropwise over a period of 4 h . The mixture was then stirred overnight and allowed to warm to room temperature. Ethyl acetate (150 ml) was added to quench the remaining LiAlH_{4}, followed by dilute (10%) aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(\sim 150 \mathrm{ml})$ to dissolve sodium and aluminium salts. The two-layer mixture was separated, the aqueous layer washed with diethyl ether $(2 \times 100 \mathrm{ml})$, and the washings and original organic layer combined and dried over MgSO_{4}. After filtration, the solvent was removed under reduced pressure to yield (2) as a nearly colourless oil in 85% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{TMS}$): $\delta 3.89(2 \mathrm{H}), 0.8-$ 2.7 (14H).
(iii) Step 3 involves the conversion of (2) to the corresponding dibromide, (3). This procedure was carried out in dry solvents under a dry nitrogen atmosphere. $\mathrm{PBr}_{3}(6.0 \mathrm{ml}, 63.8 \mathrm{mmol})$ was dissolved in dry benzene (15 ml). Pyridine (1.5 ml) was added dropwise over a period of 15 min . A mixture of (2) ($7.2 \mathrm{~g}, 50 \mathrm{mmol}$) and pyridine $(1.0 \mathrm{ml})$ was added dropwise over a period of 4 h while maintaining a temperature of 278 K with a cold-water bath. The reaction was allowed to warm slowly to room temperature while stirring overnight. Water $(250 \mathrm{ml})$ was added slowly to quench the remaining PBr_{3}. The mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 200 \mathrm{ml})$ and the combined extracts dried over CaCl_{2}. The solution was filtered and volatiles
removed under reduced pressure to give (3) as a pale-yellow oil in 70% yield. ${ }^{1} \mathrm{H}$ NMR (500 Hz , TMS): $\delta 3.25-3.40$ (two doublets, 4 H), 2.10-2.70 (10H).
(iv) Step 4 involves the formation of 3,6,9-trithiabicyclo[9.3.1]pentadecane, (4). This procedure was carried out under nitrogen and anhydrous conditions in a three-necked round-bottomed flask fitted with two dropping funnels on top of condensers. Sodium (0.90 g , 40 mmol) was reacted with commercial absolute ethanol (500 ml) in the round-bottomed flask and a solution of bis(2-mercaptoethyl) sulfide ($3.08 \mathrm{~g}, 20.0 \mathrm{mmol}$) in tetrahydrofuran (THF) (75 ml) was placed in one dropping funnel. In the other funnel was placed (3) $(5.40 \mathrm{~g}, 20.0 \mathrm{mmol})$ in commercial absolute ethanol $(150 \mathrm{ml})$. A portion (10 ml) of the THF solution was added dropwise over a period of 10 min with stirring under reflux. Both solutions were then admitted dropwise at a rate of 2:1 ethanol-THF over a period of 4 h , and the resulting mixture was refluxed for a further 24 h . Upon cooling to room temperature, the solvent was removed under reduced pressure and the residue suspended in CHCl_{3} $(300 \mathrm{ml})$. The suspension was washed with water $(3 \times 200 \mathrm{ml})$, and the organic layer dried over CaCl_{2} and filtered. The filtrate was reduced in volume under reduced pressure to approximately 30 ml and hot commercial absolute ethanol (60 ml) added. The solution was filtered and placed in a freezer for 1 d , after which time white crystals of (4) (m.p. 363.5-365.7 K) had formed. These were separated by filtration in 30% yield. ${ }^{1} \mathrm{H}$ NMR (500 Hz, TMS): $\delta 2.60-$ $3.00(12 \mathrm{H}), 0.80-2.20(10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{~Hz}, \mathrm{TMS}$): $\delta 21-42.12$ main peaks, some as doublets due to the presence of two diastereomers. MS, calculated for $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~S}_{3}\right)^{+}: m / z=262$; found: $\mathrm{m} / \mathrm{z}=$ 262.
(v) For the preparation of the title complex, (I), diacetonitriledichloridopalladium(II) $(0.39 \mathrm{~g}, 1.50 \mathrm{mmol})$ was dissolved in acetonitrile (80 ml) to give a yellow-orange solution. Likewise, (4) (0.40 g , 1.5 mmol) was dissolved in acetonitrile (80 ml) to give a colourless solution. The solutions were mixed at room temperature and stirred for 4 h , and then the volume was reduced in a rotary evaporator to $\sim 15 \mathrm{ml}$. The resulting suspension was filtered at room temperature to yield orange crystals of (I) in 95% yield which were dried in air. Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{PdS}_{3} \cdot \mathrm{CH}_{3} \mathrm{CN}$: C 34.97, H 5.24, N 2.91, Cl 14.74\%; found: C 35.23, H 5.82, N 3.02, Cl 14.15\%.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~S}_{3}\right)\right] \cdot 0.8 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}} \\
& M_{r}=472.62 \\
& \text { Orthorhombic, } P b c a \\
& a=24.906(4) \AA \\
& b=18.144(2) \AA \\
& c=8.328(2) \AA
\end{aligned}
$$

$$
V=3763.4(12) \AA^{3}
$$

$$
Z=8
$$

Mo $K \alpha$ radiation
$\mu=1.59 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku AFC-6S diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.715, T_{\text {max }}=0.853$
4892 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.109$
$S=0.99$
3850 reflections
192 parameters

12 restraints
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.46 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.58 \mathrm{e}^{-3}$

H atoms were introduced into idealized positions and refined using the riding-atom formalism (idealized methyl refined as a rotating group), with $\mathrm{C}-\mathrm{H}=0.98$ (methine), 0.97 (methylene) or $0.96 \AA$ (methyl), and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups or $1.2 U_{\text {eq }}(\mathrm{C})$ otherwise. A partial-occupancy acetonitrile solvent molecule was present. All atoms in this group (N1, C13 and C14) were constrained to have the same occupancy, which was allowed to refine freely (tied to the second free variable) and converged to 0.794 (10). A similarity restraint (the command SIMU within SHELXL2013; Sheldrick, 2013) was applied to $\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$. Only reflections between $2 \theta=5$ and 53° were included (the command SHEL 8.146492 0.796384 within SHELXL2013) in order to minimize beam-stop effects and weak intensity at higher angles.

Data collection: MSC/AFC Diffractometer Control Software (Rigaku, 1998); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: MSC/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Financial assistance from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Memorial University of Newfoundland is acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FN3138). Services for accessing these data are described at the back of the journal.

References

Allan, D. R., Black, A. J., Huang, D., Prior, T. J. \& Schroder, M. (2006). Chem. Commun. pp. 4081-4083.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Aullón, G. \& Alvarez, S. (1996). Inorg. Chem. 35, 3137-3144.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Groot, B. de, Hanan, G. S. \& Loeb, S. J. (1991). Inorg. Chem. 30, 4644-4647.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rigaku (1998). MSC/AFC Diffractometer Control Software. Rigaku Corporation, Akishima, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2013). http://shelx.uni-ac.gwdg.de/SHELX/changes.php
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

cis-Dichlorido(3,6,9-trithiabicyclo[9.3.1] pentadecane- $\kappa^{2} S^{3}, S^{6}$) palladium(II) acetonitrile 0.8 -solvate

Louise Nicole Dawe, Lisa Penney, Daniel A. Black, David O. Miller and C. Robert Lucas

cis-Dichlorido(3,6,9-trithiabicyclo[9.3.1]pentadecane- $\kappa^{2} S^{3}, S^{6}$) palladium(II) acetonitrile 0.8 -solvate

Crystal data

$\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~S}_{3}\right)\right] \cdot 0.8 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
$M_{r}=472.62$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=24.906$ (4) \AA
$b=18.144$ (2) \AA
$c=8.328(2) \AA$
$V=3763.4(12) \AA^{3}$
$Z=8$

Data collection

Rigaku AFC6S
diffractometer
Radiation source: fine-focus sealed tube
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.715, T_{\text {max }}=0.853$
4892 measured reflections
3850 independent reflections

$$
F(000)=1917
$$

$D_{\mathrm{x}}=1.668 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$
Cell parameters from 16 reflections
$\theta=10.1-13.1^{\circ}$
$\mu=1.59 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
Irregular, yellow
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

2488 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.000$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=0 \rightarrow 32$
$k=0 \rightarrow 23$
$l=-10 \rightarrow 0$
3 standard reflections every 150 reflections
intensity decay: -5.8%

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.109$
$S=0.99$
3850 reflections
192 parameters
12 restraints
Primary atom site location: heavy-atom method

$$
\begin{aligned}
& \text { Hydrogen site location: inferred from } \\
& \text { neighbouring sites } \\
& \mathrm{H} \text {-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0435 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.58 \text { e } \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Pd1	0.07275 (2)	0.03067 (2)	0.45790 (4)	0.03345 (12)	
Cl1	0.06611 (6)	0.12759 (7)	0.27642 (17)	0.0558 (4)	
Cl 2	0.08395 (5)	-0.05430 (7)	0.25322 (16)	0.0495 (3)	
S1	0.05690 (5)	0.11118 (7)	0.66059 (16)	0.0417 (3)	
S2	0.25544 (5)	-0.07024 (7)	0.61307 (15)	0.0416 (3)	
S3	0.07756 (5)	-0.06267 (7)	0.63987 (15)	0.0400 (3)	
N1	0.3855 (4)	0.2380 (6)	0.3889 (16)	0.148 (5)	0.794 (10)
C13	0.4218 (4)	0.2337 (5)	0.4601 (17)	0.095 (4)	0.794 (10)
C14	0.4692 (4)	0.2286 (5)	0.5518 (16)	0.117 (5)	0.794 (10)
H14A	0.4971	0.2066	0.4881	0.176*	0.794 (10)
H14B	0.4627	0.1987	0.6449	0.176*	0.794 (10)
H14C	0.4802	0.2770	0.5849	0.176*	0.794 (10)
C1	0.1071 (2)	0.1845 (3)	0.6590 (7)	0.0461 (13)	
H1A	0.1067	0.2066	0.5529	0.055*	
H1B	0.0953	0.2221	0.7339	0.055*	
C2	0.16499 (18)	0.1666 (2)	0.6989 (6)	0.0371 (10)	
H2	0.1666	0.1510	0.8114	0.045*	
C3	0.1987 (2)	0.2373 (3)	0.6809 (7)	0.0464 (13)	
H3A	0.1964	0.2550	0.5712	0.056*	
H3B	0.1846	0.2753	0.7511	0.056*	
C4	0.2573 (2)	0.2223 (3)	0.7233 (7)	0.0509 (13)	
H4A	0.2783	0.2662	0.7010	0.061*	
H4B	0.2599	0.2123	0.8375	0.061*	
C5	0.2810 (2)	0.1579 (3)	0.6312 (7)	0.0477 (12)	
H5A	0.3170	0.1481	0.6701	0.057*	
H5B	0.2835	0.1706	0.5183	0.057*	
C6	0.24677 (18)	0.0882 (2)	0.6497 (6)	0.0356 (10)	
H6	0.2457	0.0753	0.7640	0.043*	
C7	0.18938 (18)	0.1054 (2)	0.5957 (6)	0.0378 (11)	
H7A	0.1675	0.0613	0.6044	0.045*	
H7B	0.1896	0.1206	0.4840	0.045*	
C8	0.27251 (19)	0.0237 (3)	0.5589 (6)	0.0394 (11)	
H8A	0.3111	0.0288	0.5693	0.047*	
H8B	0.2640	0.0299	0.4461	0.047*	
C9	0.18580 (18)	-0.0813 (3)	0.5521 (6)	0.0398 (11)	
H9A	0.1771	-0.0450	0.4705	0.048*	
H9B	0.1808	-0.1299	0.5059	0.048*	
C10	0.14825 (19)	-0.0717 (3)	0.6949 (6)	0.0471 (12)	
H10A	0.1590	-0.0282	0.7544	0.057*	
H10B	0.1522	-0.1139	0.7655	0.057*	
C11	0.0531 (2)	-0.0193 (3)	0.8234 (6)	0.0442 (12)	
H11A	0.0141	-0.0198	0.8229	0.053*	
H11B	0.0651	-0.0479	0.9151	0.053*	
C12	0.0723 (2)	0.0593 (3)	0.8418 (6)	0.0476 (13)	
H12A	0.1108	0.0598	0.8606	0.057*	
H12B	0.0548	0.0820	0.9334	0.057*	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	$0.03253(19)$	$0.0364(2)$	$0.03140(19)$	$-0.00201(14)$	$-0.00319(16)$	$0.00041(16)$
C11	$0.0715(9)$	$0.0464(7)$	$0.0494(8)$	$-0.0079(6)$	$-0.0103(7)$	$0.0135(6)$
C12	$0.0517(7)$	$0.0559(7)$	$0.0408(6)$	$0.0035(6)$	$-0.0045(6)$	$-0.0131(6)$
S1	$0.0364(6)$	$0.0443(7)$	$0.0443(7)$	$0.0013(5)$	$0.0016(5)$	$-0.0072(6)$
S2	$0.0415(7)$	$0.0424(7)$	$0.0409(6)$	$0.0107(5)$	$-0.0042(6)$	$-0.0022(6)$
S3	$0.0401(6)$	$0.0411(6)$	$0.0389(6)$	$-0.0051(5)$	$-0.0020(5)$	$0.0051(5)$
N1	$0.103(7)$	$0.145(10)$	$0.196(12)$	$-0.018(7)$	$-0.039(9)$	$0.036(9)$
C13	$0.071(6)$	$0.064(6)$	$0.151(11)$	$-0.006(5)$	$-0.016(7)$	$-0.005(6)$
C14	$0.109(9)$	$0.078(7)$	$0.165(13)$	$-0.011(6)$	$-0.002(9)$	$0.005(8)$
C1	$0.048(3)$	$0.031(2)$	$0.060(3)$	$0.006(2)$	$-0.001(3)$	$-0.012(2)$
C2	$0.038(2)$	$0.030(2)$	$0.044(3)$	$-0.0032(19)$	$-0.002(2)$	$-0.005(2)$
C3	$0.052(3)$	$0.029(2)$	$0.057(3)$	$-0.007(2)$	$-0.004(3)$	$0.003(2)$
C4	$0.049(3)$	$0.040(3)$	$0.064(3)$	$-0.014(2)$	$-0.013(3)$	$0.004(3)$
C5	$0.041(3)$	$0.049(3)$	$0.054(3)$	$-0.005(2)$	$-0.003(3)$	$0.007(3)$
C6	$0.038(2)$	$0.036(2)$	$0.033(2)$	$-0.0014(19)$	$0.000(2)$	$0.003(2)$
C7	$0.036(2)$	$0.036(2)$	$0.042(3)$	$-0.002(2)$	$-0.004(2)$	$-0.009(2)$
C8	$0.036(2)$	$0.048(3)$	$0.034(2)$	$0.004(2)$	$0.001(2)$	$-0.002(2)$
C9	$0.044(3)$	$0.038(2)$	$0.037(3)$	$0.003(2)$	$-0.002(2)$	$-0.001(2)$
C10	$0.044(3)$	$0.054(3)$	$0.044(3)$	$0.008(2)$	$-0.002(2)$	$0.011(2)$
C11	$0.041(3)$	$0.061(3)$	$0.031(2)$	$-0.010(2)$	$0.003(2)$	$0.002(2)$
C12	$0.049(3)$	$0.064(3)$	$0.029(2)$	$-0.001(3)$	$0.006(2)$	$-0.008(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

Pd1-Cl1	2.3246 (13)	C4—H4A	0.9700
$\mathrm{Pd} 1-\mathrm{Cl} 2$	2.3154 (13)	C4-H4B	0.9700
Pd1-S1	2.2669 (13)	C4-C5	1.518 (7)
Pd1-S3	2.2759 (13)	C5-H5A	0.9700
S1-C1	1.827 (5)	C5-H5B	0.9700
S1-C12	1.820 (5)	C5-C6	1.532 (6)
S2-C8	1.814 (5)	C6-H6	0.9800
S2-C9	1.818 (5)	C6-C7	1.531 (6)
S3-C10	1.827 (5)	C6-C8	1.533 (6)
S3-C11	1.824 (5)	C7-H7A	0.9700
N1-C13	1.085 (13)	C7-H7B	0.9700
C13-C14	1.410 (15)	C8-H8A	0.9700
C14-H14A	0.9600	С8-H8B	0.9700
C14-H14B	0.9600	C9-H9A	0.9700
C14-H14C	0.9600	C9-H9B	0.9700
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9700	C9-C10	1.523 (6)
C1-H1B	0.9700	C10-H10A	0.9700
$\mathrm{C} 1-\mathrm{C} 2$	1.514 (6)	C10-H10B	0.9700
C2-H2	0.9800	C11-H11A	0.9700
C2-C3	1.540 (6)	C11-H11B	0.9700
C2-C7	1.531 (6)	C11-C12	1.512 (7)
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700	C12-H12A	0.9700
C3-H3B	0.9700	C12-H12B	0.9700

C3-C4	1.525 (7)
$\mathrm{Cl} 2-\mathrm{Pd} 1-\mathrm{Cl} 1$	91.92 (5)
S1-Pd1-Cl1	89.11 (5)
$\mathrm{S} 1-\mathrm{Pd} 1-\mathrm{Cl} 2$	176.65 (5)
S1-Pd1-S3	89.59 (5)
S3-Pd1-Cl1	178.45 (5)
$\mathrm{S} 3-\mathrm{Pd} 1-\mathrm{Cl} 2$	89.33 (5)
C1—S1—Pd1	110.16 (18)
C12-S1—Pd1	104.33 (17)
C12-S1-C1	103.8 (3)
C8-S2-C9	104.9 (2)
C10-S3-Pd1	106.55 (17)
C11-S3—Pd1	102.68 (17)
C11-S3-C10	98.7 (2)
N1-C13-C14	179.6 (16)
C13-C14-H14A	109.5
C13-C14-H14B	109.5
C13-C14-H14C	109.5
H14A-C14-H14B	109.5
H14A-C14-H14C	109.5
H14B-C14-H14C	109.5
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	107.4
S1-C1-H1B	107.4
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	106.9
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	119.6 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	107.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	108.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	108.6 (4)
C1-C2-C7	114.2 (4)
C3-C2-H2	108.1
C7- $\mathrm{C} 2-\mathrm{H} 2$	108.1
C7-C2-C3	109.5 (4)
C2-C3-H3A	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
H3A-C3-H3B	108.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	110.5 (4)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
C4-C3-H3B	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.0
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.0
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	107.8
C5-C4-C3	113.1 (4)
C5-C4-H4A	109.0
C5-C4-H4B	109.0
C4-C5-H5A	109.3
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.3

C4-C5-C6	111.6 (4)
H5A-C5-H5B	108.0
C6-C5-H5A	109.3
C6-C5-H5B	109.3
C5-C6-H6	108.0
C5-C6-C8	110.3 (4)
C7-C6-C5	108.8 (4)
C7-C6-H6	108.0
C7-C6-C8	113.6 (4)
C8-C6-H6	108.0
C2-C7-H7A	109.5
C2-C7-H7B	109.5
C6-C7-C2	110.7 (4)
C6-C7-H7A	109.5
C6- $\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
H7A-C7-H7B	108.1
S2-C8-H8A	107.4
S2-C8-H8B	107.4
C6-C8-S2	119.8 (3)
C6-C8-H8A	107.4
C6-C8-H8B	107.4
H8A-C8-H8B	106.9
S2-C9-H9A	109.5
S2-C9-H9B	109.5
H9A-C9-H9B	108.1
C10-C9-S2	110.8 (3)
C10-C9-H9A	109.5
C10-C9-H9B	109.5
S3-C10-H10A	108.8
S3-C10-H10B	108.8
C9-C10-S3	114.0 (3)
C9-C10-H10A	108.8
C9-C10-H10B	108.8
H10A-C10-H10B	107.7
S3-C11-H11A	109.1
S3-C11-H11B	109.1
H11A-C11-H11B	107.8
C12-C11-S3	112.7 (3)
C12-C11-H11A	109.1
C12-C11-H11B	109.1
S1-C12-H12A	109.7
S1-C12-H12B	109.7
C11-C12-S1	109.7 (3)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	109.7
C11-C12-H12B	109.7
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	108.2

supplementary materials

$\mathrm{Pd} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$-67.6(5)$
$\mathrm{Pd} 1-\mathrm{S} 1-\mathrm{C} 12-\mathrm{C} 11$	$-38.8(4)$
$\mathrm{Pd} 1-\mathrm{S} 3-\mathrm{C} 10-\mathrm{C} 9$	$-53.7(4)$
$\mathrm{Pd} 1-\mathrm{S} 3-\mathrm{C} 11-\mathrm{C} 12$	$-38.7(4)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$177.4(4)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$54.9(6)$
$\mathrm{S} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{S} 3$	$167.9(3)$
$\mathrm{S} 3-\mathrm{C} 11-\mathrm{C} 12-\mathrm{S} 1$	$52.3(5)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 12-\mathrm{C} 11$	$-154.2(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$178.8(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-177.1(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$53.1(6)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$60.9(5)$

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-53.7(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$56.2(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 8$	$-178.6(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$-60.5(5)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 8-\mathrm{S} 2$	$158.7(4)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-55.8(6)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 8-\mathrm{S} 2$	$-78.9(5)$
$\mathrm{C} 8-\mathrm{S} 2-\mathrm{C} 9-\mathrm{C} 10$	$-98.9(4)$
$\mathrm{C} 8-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$176.2(4)$
$\mathrm{C} 9-\mathrm{S} 2-\mathrm{C} 8-\mathrm{C} 6$	$68.7(4)$
$\mathrm{C} 10-\mathrm{S} 3-\mathrm{C} 11-\mathrm{C} 12$	$70.5(4)$
$\mathrm{C} 11-\mathrm{S} 3-\mathrm{C} 10-\mathrm{C} 9$	$-159.7(4)$
$\mathrm{C} 12-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$43.6(5)$

