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ABSTRACT: Despite the obvious relevance of the high latitude oceans to models and budgets of bio- 
genic carbon, the seasonal patterns of energy flow through the lower food web in this region are poorly 
understood. It has been suggested that, in high latitude and cold oceans, the rates of bacterial metabo- 
lism and growth are low and are depressed to a much greater degree than those of CO-occurring phyto- 
plankton and metazoan heterotrophs. The low-temperature suppression of bacterial growth would 
reduce microbial food web activity, bacteria would consume and recycle less primary production and 
more phytoplankton carbon would be available to metazoan grazers. The implications of this scenario 
for models of oceanic carbon flow are profound. In this paper, we present an analysis of 66 published 
studies on temperature and growth rate for bacteria from the World Ocean, including polar regions, 
and examine the results of a field investigation of bacterioplankton growth in seasonally cold New- 
foundland (eastern Canada) coastal waters. Based upon the analysis of published data, where approx- 
imately 50% of the observations were from environments 24°C we report a weak (r2 = 0.058. n = 231) 
relationship between specific growth rate (SGR) and temperature with a Qlo = 1.5. The mean (0.39 to 
0.41 d-l) and median (0.25 to 0.29 d-l) SGR of bacteria from cold (14°C) and warm (>4"C) waters were 
not significantly different. For both the published data as well as for the field study in Conception Bay, 
Newfoundland, the SGR was significantly greater (p < 0.01) when computed from empirical thymidine 
conversion factors than from theoretical or literature derived thymidine conversion factors. Our analy- 
sis suggests that the growth rates of bacterioplankton from cold and temperate oceans are similar at 
their respective ambient temperatures, when the appropriate conversion factors are used to compute 
growth. We propose that bacteria-based food webs and microbial trophic pathways are as important in 
overall energy and material cycling in high latitude oceans as they are at lower latitudes. 
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INTRODUCTION 

It has been recognized for over 2 decades that hetero- 
trophic bacteria are a crucial component of marine food 
webs (Pomeroy 1974, Azam et al. 1983). Although it is 
generally accepted that the microbial trophic pathways 
(e.g. phytoplankton + DOC + bacteria + protozoa + 
metazoa) will consume and recycle 20 to 60% of pri- 
mary production in temperate and tropical marine 
ecosystems (Cole et al. 1988, White et al. 1991), recent 
investigations show that bacterially mediated elemen- 
tal fluxes are highly variable in rate and composition 
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(Azam et al. 1994). Carbon fluxes can vary from 0 to 
>loo% of local primary production (Findlay et al. 1991, 
Pomeroy et al. 1991, Hoch & Kirchman 1993 and refer- 
ences cited therein) and, depending on the composition 
of the available substrates, bacteria can switch roles as 
net rernineralizers or consumers of inorganic and or- 
ganic nitrogen and phosphorus (Wheeler & Kirchman 
1986, Goldman et al. 1987, Kirchman 1994). Because 
the rates and patterns of nutrient utilization can be 
highly variable, elucidating the factors regulating bac- 
terial growth and metabolism and their concomitant in- 
fluence on elemental fluxes is central to understanding 
biogeochemical cycles in the sea (Ducklow & Fasham 
1992, Fasham et al. 1993, Ducklow 1994). 
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The principal factors regulating bacterial growth and 
abundances are temperature, substrate supply, preda- 
tion and mortality due to viruses (Li & Dickie 1987, 
White et al. 1991, Ducklow & Carlson 1992, Fuhrman 
1992, Shiah & Ducklow 1994a, b, 1995, Kirchman et al. 
1995 and references cited therein). Surprisingly, how- 
ever, the qualitative and quantitative relationships 
among these factors are poorly understood. In low to 
middle latitudes, bacterial activities are normally at a 
minimum when water temperatures are low (Findlay 
et al. 1991, Hoch & Kirchman 1993, Shiah & Ducklow 
1994b, 1995, and others). For example, in 2 estuaries 
on the east coast of North America, significant correla- 
tions between bacterial growth or production and 
temperature were observed only during the colder 
months, approximately November to May (<12"C in 
the Delaware Bay, Hoch & Kirchman 1993; and <20°C 
in the Chesapeake Bay, Shiah & Ducklow 1994b, 
1995). During the warmer periods, bacterial activity 
was controlled by substrate supply, grazer predation, 
or viruses rather than temperature. 

Clearly, in much of the World Ocean, bacteria and 
bacteria-based food webs process a large fraction of 
local organic production and the rates and temporal 
patterns of microbial activity are frequently regulated 
by temperature (DucMow & Carlson 1992, Pomeroy & 
Wiebe 1993). However, the role of bacteria in mediat- 
ing the flux of dissolved organic carbon to protozoan 
and metazoan grazers in high latitude and other per- 
sistently cold environments is still unresolved. 
Pomeroy and coworkers (Pomeroy & Deibel 1986, 
Pomeroy et al. 1990, 1991, Pomeroy & Wiebe 1993) 
have put forward the 'cold ocean paradigm': '...the 
rates of bacterial metabolism and growth are de- 
pressed to a much greater degree than those of phyto- 
plankton at low (<4"C) seawater temperatures...'. 
These authors reported low bacterioplankton growth 
rates (0.002 to 0.033 d-') and inferred that the low-tem- 
perature suppression of bacterial growth also reduces 
microbial loop activity. Hence bacteria consume less 
primary production and more phytoplankton carbon 
would be available to metazoan grazers. Low-temper- 
ature suppression of bacterial growth has not been 
universally observed. For example in Antarctica, bac- 
terial growth rates of ca 0.01 to 2 d-' have been 
reported at -1.5"C (Hanson et al. 1983, Kottmeier et al. 
1987, Kottmeier & Sullivan 1988, Cota et al. 1990, 
Rivkin 1991, Rivkin et  al. 1991). In the North Bering 
and Chukchi Seas, bacteria grew at 0.1 to 0.54 d-' at 
< l °C (Anderson 1988) and in Resolute, NWT, Canada, 
sea ice bacterial growth rates were 0.02 to 0.25 d-' at 
-1.7"C (Smith et al. 1989, Smith & Clement 1990). 

Accurately quantifying bacterioplankton growth 
rates and knowing how these rates compare to those of 
bacterioplankton from lower latitude oceans is funda- 

mental to understanding the role of microbial trophic 
pathways in mediating carbon flow in high latitude 
and cold ocean ecosystems. Other crucial questions 
concern whether the large differences in growth rates 
reported in the literature are due to seasonal or spatial 
phenomena, a consequence of localized substrate 
enhancement or temperature limitation or whether dif- 
ferences are the result of different methodologies. In 
this paper, we present an analysis of published data on 
temperature and growth rate for bacteria from the 
World Ocean, including polar regions, and examine 
the results of a field investigation of bacterioplankton 
growth in seasonally cold Newfoundland (eastern 
Canada) coastal waters. From these data, we suggest 
possible explanations for the wide discrepancy in the 
published data on bacterial growth. 

METHODS 

Analysis of published data on temperature depen- 
dent bacterial growth rates. Data were obtained from 
66 separate published studies representing a wide 
diversity of marine environments, depths (1200 m) and 
seasons (Table 1). The data set consists of 231 observa- 
tions of specific growth rate (SGR) and incubation tem- 
perature (Temp). These were distributed nearly 
equally between 14°C (108 observations from 23 stud- 
ies) and >4"C (123 observations from 45 studies). In 
228 cases, SGR was estimated from [ rne th~ l -~H]  thymi- 
dine ( 3 ~ - ~ d ~ )  incorporation, and the remaining 3 were 
by frequency of dviding cells or changes in abun- 
dance. Bacteria were normally enumerated by epi- 
fluorescence microscopy after staining with acridine 
orange or DAPI (4', 6-diamidino-2-phenylindole) and 
all stained bacteria were considered to be physiologi- 
cally active. Only studies which included temperature, 
SGR and thymidine conversion factors (TCF), or which 
had information from which SGR and TCF could be 
calculated, were included in the statistical analyses. 
Where necessary, bacterial carbon production was 
converted into increases in cell number using factors of 
8 and 20 fg C cell-' for studies carried out at 54 and 
>4"C, respectively (Fuhrman & Azam 1980, Bratbak & 
Dundas 1984, Lee & Fuhrman 1987). 

The relationship between Temp and SGR was exam- 
ined by least-square regression after log-transforming 
SGR. The difference among data subsets (e.g. SGR 
54°C and >4"C) was tested using both parametric and 
non-parametric methods, as appropriate. All statistical 
analyses were performed using SAS/STAT. 

Field studies in Newfoundland coastal waters. Sam- 
pling was carried out in Conception Bay, Newfound- 
land between early 1992 and late 1993. Conception 
Bay is a deep (>300 m) fjord-like bay with a sill at 
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Table  1 .  Sources of da ta  for statistical analysis. Some references provide da ta  for more  than  o n e  condition 

Permanently cold (54°C) Seasonally cold (54°C) Warm (>4"C) 
- - - - - - 

Anderson et a1 (1990) Anderson (1988) Admiraal et a1 (1985) Jonas & Tuttle (1990) 
Bjornsen & Kupannen (1991) Ducklow & Kirchman (1983) Anderson (1988) Ki~chman & Hoch (1988) 
Cota et a1 (1990) Hoch & l r c h m a n  (1993) B~llen & Font~gny (1987) K~rchman et a1 (1982) 
Fuhrman & Azam (1980) Kirchman et a1 (1982) Borsheim (1990) h r c h m a n  et a1 (1989) 
Grossmann & D~eckmann (1994) Kuosa & l v i  (1989) Ch~n-Leo  & l r c h ~ n a n  (1988) ffirchman et a1 (1991) 
Gustafson et a1 (1990) Pomeroy et a1 (1991) Ch~n-Leo  & Benner (1991) l r c h m a n  et a1 (1993) 
Hanson e t  a1 (1983) Chrzanowsk~ & Zingmark (1989) Kuuppo-Lein~kki (1990) 
Helmke & Weyland (1995) Douglas et a1 (1987) Laanbroek & Verplanke (1986) 
Karl et a1 (1991) Ducklow (1982) L1 et al (1993) 
Kottmeier et a1 (1987) Ducklow (1986) Malone et al (1986) 
Kottme~er & Sullivan (1990) Ducklow (1993) Malone & Ducklow (1990) 
Pomeroy et a1 (1990) Ducklow & Krchman (1983) Monarty et a1 (1985) 
R~vkin et a1 (1989) Ducklow et a1 (1992) Monarty et a1 (1990) 
Rivkin (1991) Fuhrman & Azam (1980) Newell & Fallon (1982) 
Sullivan et a1 (1985) Fuhrman et a1 (1980) Painting et a1 (1989) 
Sullivan et a1 (1990) Fuhrman et a1 (1985) Pedros-Aho & Newel1 (1989) 
Thingstad & Martlnussen (1991) Fuhrman et a1 (1989) Peele et a1 (1984) 

Gnffith et al (1990) Rosenberg et a1 (1990) 
Hanson e t  a1 (1986) Sand-Jensen et a1 (1990) 
Hanson et a1 (1988) Sherr e t  a1 (1989) 
Hoch & Krchman (1993) van Duyl e t  a1 (1990) 
J o ~ n t  & Pomeroy (1983) Wlkner et a1 (1990) 
Joint & Pomeroy (1987) 

ca 170 m. The mouth of the bay opens onto the east 
coast of Newfoundland. A tongue of the inshore 
branch of the Labrador Current enters Conception 
Bay, and below ca 100 m, water temperatures are 
always <-l.O°C (deYoung & Sanderson 1995). Most of 
our sampling was carried out from the Department of 
Fisheries and Oceans vessels CSS 'Shamook' or CSS 
'Marinus' at  our regular sample site, Stn BRLP5 
(47" 32.5' N, 53" 07.8' W). When our sample site was ice 
covered, samples were collected at  a nearby deep 
water site. Water samples were collected with acid 
cleaned 5 1 Niskin samplers equipped with silicon elas- 
tic closures. Prior to water sampling, a Seabird CTD 
was deployed and the density and temperature charac- 
teristics of the 238 m water column were determined. 

Bacterial growth was calculated from the bacterial 
abundances and incorporation rate of radiolabelled 
thymidme (Fuhrman & Azam 1980, I(lrchman et  al. 
1982). Water was collected from 4 to 6 depths in the 
upper 150 m. Samples for enumerating bacteria were 
drawn from Nislun bottles and immediately preserved 
with glutaraldehyde (2% final concentration). Cells 
were filtered onto Poretic pre-stained black 0.2 pm 
polycarbonate filters, post stained with acridme orange 
(Hobbie et  al. 1977) and counted using epifluorescent 
rnicroscopy. For each sample, duplicate filters were 
prepared and at least 300 cells per filter were counted. 
Preliminary studies showed that TdR uptake ([methyl- 
3~] thymid ine :  ICN, 60 to 90 Ci mmol-') was saturated 
and isotopic dilution of internal pools was negligible at  
5 nmol TdR I-'. Samples were incubated with 3H-TdR 

(final concentration of 5 nmol) in the dark at  the ambi- 
ent  temperature (+0.2"C) of the depth of collection, and 
the total raloactivity available for uptake was assessed 
from aliquots collected from each replicate 100 ml poly- 
carbonate incubation bottle, at  both the beginning and 
the end of the incubation. Triplicate 10 to 20 rnl aliquots 
were removed immediately after adding the isotope ( t  = 

0) and at the end of a 3 to 4 h incubation. Particulate 
material was collected onto 0.2 pm Poretics filters, 
serially rinsed 2x  with filtered seawater, 3 x  with 3 m1 of 
ice cold 5 % trichloroacetic acid (TCA), l X with filtered 
seawater. Filters were placed into liquid scintillation 
vials and counted on shore. 

The conversion factors relating cell production to 
substrate uptake were empirically determined (Kirch- 
man et  al. 1982) for bacterial populations in the surface 
mixed layer (usually 5 m) and from 125 m. This deep 
sample was always below the seasonal pycnocline. 
Seawater dilution cultures were prepared by diluting, 
at  a ratio of 1 5 ,  a <1.0 pm filtrate (1 part) with 0.2 pm 
membrane filtered seawater (4 parts). 3H-TdR was 
added to 1 1 acid cleaned polycarbonate bottles con- 
taining 900 m1 of the dilution culture and the time 
course of change of cell abundances and  the incorpo- 
ration of TdR were determined at  ca 6 to 12 h intervals 
for 36 to 48 h. All incubations were carried out in the 
dark at  the temperature from the depth of collection. 
Conversion factors determined using the integrative 
(Riemann et  al. 1987, Kirchman & Hoch 1988) and 
cumulative (B j~rnsen  & Kuparinen 1991) methods 
were similar. 
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Radioactivity was counted using a Packard Tricarb 
2500TR liquid scintillation spectrometer with Biofluor 
as a scintillant. All counts were corrected for quench 
by the external standards method and for background 
radiation. 

RESULTS 

Temperature dependent bacterial growth rate 

The descriptive statistics (minimum, maximum, 
median, mean and standard deviation) for SGR, Temp 
and TCF calculated for the entire temperature range of 
-1.9 to 30S°C as well as for the temperature ranges 
1 4  and >4"C are summarized in Table 2. There were 
approximately equal numbers of observations above 
and below 4°C. Over the entire temperature range and 
at low seawater temperatures (e.g.  -1.9 to 4"C), SGR 
varied by 104 (0.0002 to 2.1 d-l), whereas at  higher sea- 
water temperatures (e.g. 4.01 to 30.5"C), SGR varied 
by ca 103 (0.003 to 2.2 d-l.). Although the minimum 
SGR in the 54°C group was 10 fold smaller than in the 
>4"C group, the median and mean SGR for the 2 
groups were not significantly different (Wilcoxon rank 
sum test, Z = -1.56, prob > Z = 0.122). 

For the entire data set (Eq. 1; n = 231, F  = 14.2, p = 
0.0002), as well as for the >4"C group (Eq. 2; n = 123, 

Table 2. Summary of descriptive statistics for specific growth 
rate (SGR, divisions d-l), temperature ("C) and thymidine con- 
version factor (10" cells produced per mole thymidine incor- 
porated) from the publications in Table 1. For the >4"C 
subgroup, n = 120 for the TdR conversions factors. nd: not 

determined 

SGR Temp TdR conversion 
factor 

All data (n  = 231) 
Minimum 0.0002 -1.9 0.1 
Maximum 2.2 30.5 30.0 
Median 0.26 6.0 nd 
Mean 0.40 9.3 3.4 
SD 0.43 10.9 5.4 

sd°C (n = 108) 
Minlmum 0.0002 1 . 9  0.1 
 maximum 2.1 4 0 30.0 
Median 0.25 -1.0 nd 
Mean 0.39 -0.8 5.1 
SD 0.42 1.4 7 .2  

>4"C (n  = 123) 
Minimum 0.003 4.2 0.7 
 maximum 2.2 30.5 17.0 
Median 0.29 17.7 nd 
Mean 0.4 1 18 1 1.9 
SD 0.42 7.5 2.2 

Tenoeroture 

Fig. 1 Relationship between bacterial specific growth rate 
(SGE, divisions d-l) and temperature ("C). The regression line 
(dashed line) represents the linear least square fit of the log 
SGR vs Temp. The equation for the regression is log SGR = 
0 . 9 4 9 ( r  0.0669) + 0.0176(+ 0.0047)Temp, r2 = 0.058 (value in 
parentheses is the standard error of the estimate). Open sym- 
bols in the temperature range 24°C represent growth rates 
calculated using E-TCF (empirical thymidine conversion fac- 
tor); filled symbols in the temperature range 54°C represent 
growth rates calculated using T-TCF (theoretical thymdine 
conversion factor). For cornpanson, the temperature depen- 
dent growth rate model for marine systems (model 7; White et 

al. 1991) has been superimposed on our data 

F =  6.04, p = 0.015), there were significant relationships 
between Temp and log SGR (Fig. 1). 

log SGR = -0.949(* 0.0669) + 0.0176(* 0.0047)Temp 
(r2 = 0.058) (1) 

log SGR = -0.918(* 0.1252) + 0.0157(+ 0.0063)Temp 
(r2 = 0.047) (2) 

In contrast, for temperatures <4"C, the relationship 
between Temp and log SGR was not significant (F = 

2.67, p = 0.105). In Eqs. (1) and (2), the values in paren- 
theses are the standard errors of the intercepts and 
slopes, respectively. 

Computing rates of growth from 3H-TdR incorpora- 
tion requires that cell production be related to TdR 
uptake by a thymidine conversion factor (TCF). 
Despite the fact that the empirically determined 
thymidine conversion factors (E-TCF) can vary >500 
fold (Kirchman et al. 1982, Coveney & Wetzel 1988, 
Smits & Riemann 1988, Ducklow & Carlson 1992, 
Ducklow et al. 1992), the E-TCF is not routinely mea- 
sured during most field studies. Instead, a theoretical 
thymidine conversion factor (T-TCF), or average value 
derived from the literature (typically 1 to 4 X 10" cells 
produced per mole TdR incorporated) is normally 
used to convert TdR uptake into cell production. To 
determine if there was a systematic difference 
between SGR calculated using E-TCF or T-TCF, the 
low temperature range (54°C) was partitioned into 



R~vkin et  al . .  Microbial processes In cold oceans 

Table 3. Summary of descript~ve statistics for specific growth 
rate (SGR, divisions d.'), temperature ("C) and thymidme con- 
version factor (lO1%ells produced per mole thym~dlne  incor- 
porated) from the pub l~ca t~ons  in Table 1 The 54°C group 
was p a r t ~ t ~ o n e d  Into subgroups based upon use of an empiri- 
cal thymidme converslon factor or a theoret~cal or dn assumed 
thym~dine  converslon factor to calculate growth rate. nd .  not 

determined 

SGR Temp TdR conversion 
factor 

<4"C; empirical thymidine conversion factor (n = 50) 
M ~ n i m u m  0.04 -1.9 0.7 
Maxunum 1.44 4.0 30 0 
Median 0.48 -1 0 nd 
Mean 0.55 -0.5 8.9 
SD 0.38 1.6 9.2 

<4"C; theoretical thymidine conversion factor (n = 58) - 

Minlrnum 0 0002 -1.9 1 .O 
M a x ~ m u m  2 1 4.0 4.0 
Median 0 05 -1.0 nd 
Mean 0.26 -0.9 1.9 
SD 0.44 1.3 1 .O 

subgroups based upon whether an  E-TCF (n  = 50) or 
a T-TCF (n = 58) was used to compute SGR. The 
descriptive statistics (minimum, maximum, median, 
mean and standard deviation) for SGR, Temp and 
TCF for these groups are presented in Table 3. The 
SGR varied by factors of ca 36 and 104 in the E-TCF 
and T-TCF groups, respectively. The mean SGR was 2 
fold and the median SGR was 10 fold greater when 
calculated using the E-TCF than a T-TCF (Table 3) .  
The differences between the SGR in the E-TCF and 
T-TCF groups were highly significant (Wilcoxon rank 
sum test, Z = 5 . 1 7 ,  prob > Z = 0.0001). 

The frequency distribution of SGR for the teinpera- 
ture ranges (a)  <4"C, (b)  >4"C, (c) 54°C where SGR 
was calculated from the E-TCF, and (d) 54°C where 
SGR was calculated from the T-TCF is shown in Fig. 2. 
The distribution in all temperature ranges was non- 
normal and skewed to the lower growth rates. Except 
for group (c), the highest frequency of occurrence was 
for growth rates of 50.15 d-l. Over 65 % of the observa- 
tions were 50.15 d-' in group (d) compared with 
ca 40% and 15% in groups (a) and (c), respectively. 

Seasonal patterns of bacterioplankton growth in 
Newfoundland coastal waters 

The rates of bacterioplankton growth were mea- 
sured in Conception Bay, Newfoundland over a 15 mo 
period. Here we report on the patterns in the surface 
mixed layer (typically collected at 5 to 10 m)  and from 
125 m. This deep sample was 110 m above the bottom 
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y L 60 - E - 1  i b E i o i 3  9 10 4 C C Emplr#cal Convlrs!an Foclor 
3 - 1 9 t o  4 C T b e ~ r e l ~ c o l  C~nuet~zon Factor 
v 
0 50 - 
0 

0.15 0 45 0.75 l 05 1.35 1.65 l 95 2.25 

S p e c ~ f i c  Growth Rote 

Fig. 2. Frequency d ~ s t n b u t ~ o n  of bacterial spec~f ic  growth rate 
(SGR, divis~ons d.') for the temperature ranges 54"C, >4"C; 
54°C where SGR was calculated from the E-TCF (empirical 
thymidme conversion factor); and 54°C where  SGR was  cal- 
culated from the T-TCF (theoretical thym~dine  conversion 

factor) 

and thus was not influenced by benthic resuspension. 
The samples collected at  125 m were within the sub- 
surface tongue of Labrador Current water, hence 
water temperatures were always below -l.O°C. In con- 
trast, temperatures in the mixed layer ranged from a 
minimum of -1.8"C in January and February to a max- 
imum of ca 13°C in August and September (Table 4) .  
The seasonal variation in the E-TCF was about 10 fold 
both in the mixed layer (1.1 to 9.5 X 1018 cells m01 
TdR-'; mean k SD = 4.4 + 2.6) and at  125 m (5 to 49 X 

10'' cells m01 T ~ R - ' ;  mean ? SD = 20.3 k 11.8) with the 
seasonal maxima occurring in January and February 
in the mixed layer and in October and November at 
125 m. The E-TCF was significantly greater (Student's 
t-test, p = 0.0005) at 125 m than in the mixed layer 
(Table 4).  

Growth rates were computed using both the E-TCF, 
and a T-TCF of 2 X 10" cells m01 T ~ R - '  incorporated. 
The SGR was significantly greater (Student's t-test, p = 
0.004) when calculated from the E-TCF than the 
T-TCF (Table 4). When SGR was computed from the 
E-TCF, growth rates were significantly greater (Stu- 
dent's t-test, p = 0.03) at  125 m (mean ? SD = 0.32 k 
0.14, n = 14) than in the mixed layer (mean * SD = 
0.21 ? 0.10, n = 15). In contrast, when SGR was com- 
puted from the T-TCF, growth rates were significantly 
greater (Student's t-test, p = 0.01) in the mixed layer 
(mean + SD = 0.13 k 0.06, n = 15) than at  125 m (mean k 
SD = 0.04 ? 0.02, n = 14). For SGR computed from 
E-TCF, seasonal maxima occurred in August through 
October in the mixed layer and in October, November, 
and May through August at 125 m. For SGR computed 
from T-TCF, seasonal maxima occurred in April 
through August both in the mixed layer and at  125 m. 
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Table 4 .  Seasonal patterns of temperature ("C), empirical thymidme conversion factors (E-TCF; 10" cells produced per mole of 
TdR ~ncorporated) and speclfic growth rate (SGR, divisions d.') of bacterioplankton collected in the surface mixed layer (typically 
5 to 10 m) and from 125 m at or near Station BRLP5 (Conception Bay, Newfoundland, Canada).  SGR was computed from 3 H - ~ d ~  
incorporation using the E-TCF (E-SGR) and theoretical thymidine conversion factor (T-SGR) of 2 X 10" cells produced per mole 

of TdR incorporated. nd: not determined 

Date Mixed layer 125 meters 
Temp E-TCF E-SGR T-SGR Temp E-TCF E-SGR T-SGR 

Jun 1992 
Jul 1992 
Aug 1992 
Sep 1992 
Oct 1992 
Nov 1992 
Dec 1992 
Jan 1993 
Feb 1993 
Mar 1993 
Apr 1993 
May 1993 
Jun  1993 
Jul 1993 
Aug 1993 
Sep 1993 
Oct 1993 

DISCUSSION 

If the cold ocean paradigm is correct, and tempera- 
ture suppression of bacterial metabolism and of micro- 
bial food web activity are general characteristics of 
high latitude oceans, the implications for global carbon 
flow models would be profound. Firstly, approximately 
25 % of global marine primary production occurs above 
50" latitude. Although net photosynthesis sets the up- 
per limit of the magnitude of the biological pump that 
transfers atmospheric CO2 into the ocean interior, it is 
the sinking or advection of dissolved and particulate 
inorganic and biogenic carbon below the pycnocline 
which is one of the principal factors controlling the flux 
of atmospheric CO2 into the upper mixed layer. Bacte- 
ria and bacteria-based food webs influence the magni- 
tude and composition of sinking fluxes by altering both 
the size of sinking particles and the equilibrium 
between the particulate and dissolved phases (Cho & 
Azam 1988, 1990). Thus, heterotrophic microbes play a 
key role in material processing within, and export 
from, the surface layer of the ocean. Secondly, if the 
low-temperature suppression of metabolic activity and 
growth is greater for bacterioplankton than for co- 
occurring autotrophs and metazoan heterotrophs, a 
potentially large proportion of phytoplankton carbon 
would be diverted from the microbial into metazoan 
food webs. Moreover, since a large fraction of the pri- 
mary production grazed by mesozooplankton will be 
rapidly exported in the form of sinking faeces, the sup- 
pression of bacterial activities at  high latitudes could 

enhance the carbon export from the upper ocean and 
potential carbon sequestration into the deep ocean. 
Thirdly, a consequence of depressed bacterial growth 
would be low abundances of bacterivorous flagellates 
and their ciliate predators. This could alter the feeding 
strategies of metazoan grazers in high latitudes and 
cold oceans. For example, during periods when inci- 
dent irradiances are nil or low, or when appropriate 
phytoplankton prey are scarce, algae-based food webs 
would be of negligible importance. At these times, 
mesozooplankton would be omnivorous and ingest 
ciliates and flagellates (Gifford 1991, Sanders & Wick- 
ham 1993, Ohman & Runge 1994). However, a pre- 
requisite for omnivory on flagellates and ciliates is 
the presence of an active microbial trophic level. 

The relationship between temperature and bacterial 
growth has been studied in specific environments (Li & 
Dickie 1984, 1987, Kottmeier & Sullivan 1988, Billen & 
Becquevort 1991, Hoch & Kirchman 1993, Shiah & 
Ducklow 1994a, b. Kirchman et al. 1995 and references 
cited therein) and examined in several general reviews 
(White et al. 1991, Jumars et al. 1993, Pomeroy & 
Wiebe 1993). Temperature is clearly an important reg- 
ulator of microbial growth, however it is not the only 
one. Based upon both statistical analyses (White et al. 
1991) and empirical studies (Pomeroy et al. 1991, 
Wiebe et al. 1992, 1993, Kirchman et al. 1993, Shiah & 
Ducklow 1994a, b, and others), interactions between 
substrate availability and temperature have been 
inferred (from chlorophyll a concentrations; Pomeroy 
et al. 1991, White et al. 1991) or measured directly 
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(Christian & Wiebe 1974, Billen & Becquevort 1991, 
Wiebe et al. 1992, Shiah & Ducklow 1994a, b).  The 
strong positive correlation between phytoplankton and 
bacterial biomass and production usually observed in 
field and enclosure studies suggests that phytoplank- 
ton exudates may be an  important autochthonous 
source of bacterial substrates (Cole et al. 1988, 
Williams 1990, Wood & Van Valen 1990, White et al. 
1991). However, there are other sources. Viral lysis of 
both bacteria and algae may also be a significant 
mechanism for the production of dissolved organic 
material (DOM) in the sea (Fuhrman 1992, Bratbak et 
al. 1994). In addition, both micro- and mesozooplank- 
ton rapidly recycle and regenerate both dissolved 
organic and inorganic nutrients through sloppy feed- 
ing, excretion and leaching of faecal pellets (Azam et 
al. 1983, Hagstrom et al. 1988, Jumars et al. 1989, 1993, 
Roy et al. 1989, Caron & Goldman 1990, Pomeroy & 
Wiebe 1993). Indeed, zooplankton rather than phyto- 
plankton may be the principal autochthonous source of 
bacterial substrates. 

Based upon correlations between bacterial activity 
and phytoplankton biomass, Pomeroy et al. (1990, 
1991) suggested that at  low temperatures, bacteria 
require higher concentrations of DOM than are nor- 
mally present except in regions of elevated phyto- 
plankton biomass, such as at  subsurface chlorophyll 
maxima. Furthermore, laboratory culture studies with 
psychrotrophic bacteria isolated from the Arctic Ocean 
and Newfoundland coastal waters have clearly 
demonstrated reciprocal interactions between sub- 
strate concentration and temperature (Wiebe et al. 
1992). Bacteria could grow rapidly at low (<O0C) tem- 
peratures and high (micromolar) substrate concentra- 
tions, or at high (>1O0C) temperatures and low 
(nanomolar) substrate concentrations, but not at low 
temperatures and low substrate concentrations. 
Although growth rates of these psychrotrophic bacte- 
ria were significantly enhanced when temperature or 
substrate concentrations were increased, their growth 
rate was 20.6 d-' at -1.5"C and the lowest substrate 
concentrations. This was ca 40 times faster than the 
rates reported for the bacterioplankton population 
(Pomeroy et al. 1990, 1991) from which the strains of 
bacteria which Wiebe used were isolated, and are sim- 
ilar to growth rates of bacteria from temperate and 
tropical regions (White et al. 1991, Ducklow & Carlson 
1992). Since Wiebe determined growth rates from 
changes in cell numbers and biovolume rather than 
TdR uptake (Wiebe et al. 1992), his reported growth 
rates were not confounded by the uncertainties associ- 
ated with converting substrate uptake into cell produc- 
tion using a T-TCF (Pomeroy et al. 1990, 1991). 

In a comprehensive analysis of temperature depen- 
dent bacterial processes reported by White et al. 

(1991), observations from cold and polar environments 
were under-represented relative to temperature distri- 
bution in the World Ocean. Only 3 of the 33 studies 
analyzed from estuarine and marine environments 
were from polar regions and < 10 % of the 425 observa- 
tions were from temperatures <5"C. By contrast, 70% 
of the ocean is always <5"C and 90% is seasonally 
<5"C (Baross & Morita 1978, Levitus 1982). The tem- 
perature dependent bacterial growth model reported 
here (Eq. 1) was developed from a data set where 
>35% of the studies and >45% of the observations 
were from cold (14°C) oceans. We found a weak but 
significant temperature dependence of SGR with an  
explained variance of ~ 6 % .  For comparison, the tem- 
perature dependent growth rate model reported by 
White for marine systems (model 7; White et al. 1991) 
has been superimposed on our data in Fig. 1. The 
marked difference in the 2 models may reflect the 
much larger number of observations at low tempera- 
tures and the fact that the median SGR for our 54°C 
group (Table 2) is higher than any of White's observed 
growth rates below 5°C. The Qlo  for our models are 1.4 
to 1.5, which is 2 to 3 fold lower than reported by White 
et  al. (1991) and Shiah & Ducklow (1994a, b), but is 
similar to the Q l o  reported by Hoch & Kirchman (1993). 

In Conception Bay, the spring phytoplankton bloom 
typically occurs in mid-April when the water tempera- 
tures are -1.0 to 0°C. At this time of year, bacterial 
growth rates were ca 0.20 d-' in the surface layer to 
ca 0.40 d-' at 125 m. These are similar to the average 
annual SGR (0.21 d-l for the mixed layer and 0.32 d-' at  
125 m). The average annual bacterial growth rates 
computed from T-TCF (0.13 d-' for the mixed layer and 
0.04 d-' at 125 m) are similar to those reported by 
Pomeroy et al. (1991) for Conception Bay. It is impor- 
tant to note that the subsurface chlorophyll a maximum 
typically occurs between 25 and 50 m, hence our mea- 
surements of bacterial growth (Table 4) were not asso- 
ciated with elevated phytoplankton biomasses and 
substrate concentrations. Based upon these results, 
and assuming an invariant growth efficiency, 2 to 
8 times more dissolved organic carbon would be 
required to sustain bacterioplankton when growth is 
computed from E-TCF compared to the T-TCF. 

The E-TCF is highly variable over depth and season 
in Conception Bay (Table 4). Cross-system variability 
in the TCF has been reported (mean = 2 X 1018 cell m01 
TdR-', range = 0.1 to 60 X 1 0 ' ~  cell m01 TdR-'; Ducklow 
& Carlson 1992). Clearly, using the appropriate con- 
version factor will have considerable influence on the 
computation of the growth rate and ultimately the rela- 
tionship between microbial processes and environ- 
mental variables. In Conception Bay, there are times of 
year when the E-TCF = T-TCF, however for most of the 
year E-TCF S- T-TCF. Thus SGR computed from T-TCF 
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would be systematically underestimated relative to 
SGR computed from E-TCF. For example, the average 
TCF of 2 X 10" cell m01 TdR-' for oceanic bacteria 
(Ducklow & Carlson 1992) is similar to the mean TCF 
for the >4OC group (Table 2), however it is 4.5 fold 
smaller than the mean E-TCF for cold regions (i.e. 
14°C; Table 3) and is 10 fold smaller than the mean E- 
TCF measured at 125 m in Conception Bay (Table 4). 
Thus, we propose that using an average TCF deter- 
mined for bacteria from temperate regions, or the T- 
TCF, would underestimate the rates of growth and pro- 
duction of bacteria from both persistently cold 
environments and from seasonally cold oceans when 
water temperatures are low. 

How will our models of heterotrophic processes be 
influenced if the rates of bacterial growth are underes- 
timated from T-TCF when seawater temperatures are 
low? Firstly, the SGR in the 54°C group determined 
from T-TCF are shown in Fig. 1 as filled circles. When 
these values are not included in the regression analy- 
sis between Temp and log SGR, the relationship for the 
entire temperature range of -1.9 to 30.5"C is no longer 
significant (F= 3.12, p = 0.079, n = 193). Secondly, the 
mean SGR in the 14OC and >4OC groups are not signif- 
icantly different (Table 2). However, when the SGR in 
the 54OC group is calculated only from E-TCF 
(Table 3), the SGR of the 54°C group (mean = 0.55 d-l; 
Table 3) is significantly greater (Wilcoxon rank sum 
test, Z = 2.731, prob > Z = 0.006) than for the >4OC 
group (mean = 0.41 d-l; Table 2).  Clearly, bacteria from 
cold oceans grow as fast as bacteria from warmer 
waters, when the appropriate conversion factors are 
used. This conclusion is supported by the observations 
from Conception Bay showing generally higher 
growth rates of bacteria from 125 m compared to the 
mixed layer. Hence the paradigm of slow bacterial 
growth in cold water may be incorrect. 

In persistently cold environments, such as polar 
oceans and the deep sea, what regulates bacterial 
activity? Substrate availability undoubtedly interacts 
with temperature. For example, in Conception Bay, 
bacterioplankton from 125 m show a 6 and 10 fold 
annual variation in SGR and E-TCF, respectively, yet 
water temperatures are constant (Table 4). Based upon 
substrate amendment studies, carried out at approxi- 
mately bimonthly intervals (Rivkin unpubl.), ambient 
concentrations of dissolved organic carbon and nitro- 
gen can limit bacterial growth during certain times 
of year (Rivkin & Matthews 1993, Rivkin unpubl.). Pre- 
liminary studies suggest that the E-TCF is not temper- 
ature dependent, rather it appears to be influenced by 
both substrate availability and nutritional status of the 
bacterioplankton. Initial studies suggest that nutrient- 
limited bacteria may catabolize TdR as a carbon or 
nitrogen source, hence the TCF is lower than would be 

anticipated than when TdR was used primarily for 
DNA synthesis. This relationship is currently being 
studied. 

It should not be inferred from the above models that 
the maximum growth rate of bacteria in cold and warm 
waters is the same. Indeed, the SGR of nearly 31 d-' 
reported from a warm (>30°C) tropical lagoon (Torre- 
ton et al. 1989) is >20 fold higher than the observed 
maximum growth rate of bacteria from cold waters. 
Furthermore, growth rate is not the same as production 
rate. Growth is an intrinsic cellular characteristic 
whereas production is the product of growth and the 
standing stock of bacterial biomass. The latter reflects 
the balance between growth and mortality. Bacterial 
abundances in polar and other cold ocean regions can 
be up to 10 fold lower than in warm temperate and 
tropical oceans. Hence, although average growth rates 
of bacteria in cold and warm oceans may be similar, 
rates of bacterial carbon production in seasonally and 
permanently cold ocean environments would be lower, 
by virtue of lower standing stocks. 

The average growth rates of bacterioplankton from 
cold and temperate oceans appear to be similar, at 
their respective ambient temperatures. However, it is 
generally observed that in polar seas, despite high 
rates of growth, bacterial abundances are relatively 
low and constant (Billen & Becquevort 1991, Rivkin 
1991, Thingstad & Martinussen 1991). Since the 
steady-state abundance is the balance between 
growth and mortality, the magnitude of grazing losses, 
due to bacterivory (Anderson et al. 1990, Rivkin 1991) 
and perhaps viral lysis (Maranger & Bird 1995), must 
be similar to that of cell divisions. Based upon the 
observed high rates of bacterial growth and grazer 
mortality (Launon et al. 1995, Anderson & Rivkin 
unpubl.), we propose that bacteria-based food webs 
and microbial trophic pathways are as important in 
overall energy and material cycling in high latitude 
oceans as they are at lower latitudes. It is clear that 
simple temperature dependent models of growth, 
developed from observations in temperate systems, 
where there are seasonal cycles in temperature and 
phytoplankton production (which are often corre- 
lated), may not be appropriate for cold environments 
without careful consideration of the physiology of the 
cold water microbial community. 
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