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Cellular automata provide a high-resolution representation of urban spatial dynamics.
Consequently they give the most realistic predictions of urban structural evolution, and in
particular they are able to replicate the various fractal dimensionalities of actual cities.
However, since these models do not readily incorporate certain phenomena like density
measures and long-distance (as opposed to neighbourhood) spatial interactions, their
performance may be enhanced by integrating them with other types of urban models.
Cellular automata based models promise deeper theoretical insights into the nature of cities

as self-organizing structures.
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1 INTRODUCTION

As computing power continues to expand, micro-
simulation models become increasingly interesting
as ways to understand complex systems. The
approach has much to recommend it, since it gets
to the level at which objects or agents act to
structure a system, and thus allows us to explore
the phenomenon realistically while imposing a
minimum of arbitrary simplifying assumptions.
Nevertheless, the strength of the approach is also
its weakness: as the scale of the map approaches
1:1, it no longer provides an overview of the
country. In other words, the detailed nature of
explanation inherent in micro-simulation models
may make it difficult to understand the general
nature of emergent properties. On the other hand,
macro-scale models may give extremely useful

111

descriptions of emergent behaviour, even if they
do not show how these macroscopic structures
arise. Clearly it is desirable to have both levels of
description, since each complements the other, and
the micro-level provides a deeper understanding of
the reasons for the macro-scale phenomena. But
even better is to have an approach that has proper-
ties of both levels, and provides a link between the
two. Cellular automata (CA) are such an approach.

Cellular automata are well suited to urban model-
ling, being inherently dynamic and intrinsically
spatial, with good spatial resolution. Although they
are remarkably simple mechanisms they can gen-
erate spatio-temporal patterns of unlimited com-
plexity (Wolfram, 1984; Langton, 1990; 1992; Bak
Chen and Creutz, 1989), and that is one reason
why they are such powerful modelling tools.
Nevertheless, cities are even more complex, being
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generated by a large number of processes operating
at a variety of spatial and temporal scales. Thus in
order to use CA for modelling cities with a useful
degree of realism, it is necessary to use more
complex CA — that is, CA with more states, a
larger neighbourhood, and more complex transi-
tion rules. It is also necessary to constrain the CA
in various ways in order to represent the effect of
processes operating at scales that cannot be directly
included in the CA transition rules — by in effect
modifying the CA transition rules as the CA runs.

2 DEFINING CELLULAR AUTOMATA
FOR URBAN MODELLING

A CA may be defined as (1) a discrete cell space,
together with (2) a set of possible cell states and (3) a
set of transition rules that determine the state of each
cell as a function of the states of all cells within (4) a
defined cell-space neighbourhood of the cell; (5) time
is discrete and all cell states are updated simulta-
neously at each iteration. While the concept is re-
markably simple, and many of the most intensively
studied CA, like Game of Life are, in fact, almost
trivially simple as mechanisms, the definition leaves
quite a bit of room for variety, and the CA that
have been most useful in urban modelling tend to
depart significantly from the ideal of simplicity. It
is useful, therefore, to elaborate on this definition
from the point of view of urban modelling.

(1) Cell Space. The most important character-
istics of cell space are dimensionality, cell size and
cell shape, and homogeneity or heterogeneity. CA
developed for urban modelling are, not sur-
prisingly, typically defined on a two dimensional
cell space, though it is easy to imagine using a
three dimensional cell space in order to be able to
represent building height, or, more generally,
density of land use. One dimensional CA, while
less common in modelling applications, are being
used for urban traffic modelling (Nagel et al.,
1997; Di Gregorio et al., 1996). Cell size in current
applications ranges from 250m (e.g. White et al.,
1997) down to tens of metres (Batty and Xie,

1994). At the latter scale, cells may represent
cadastral units (i.e. actual land lots), which may
have any shape; thus while it is often convenient
for various reasons (e.g. run time) to use a regular
cell space, that is not necessary. In conventional
CA the cell space on which the cell state dynamics
is defined is homogeneous — that is, all cells are
identical except for their state. In modelling cities,
however, where it is natural to let cell states
represent land use or land cover, it is useful to
work on a heterogeneous cell space, where each
cell may have an intrinsic quality (or a vector of
qualities) representing such characteristics of the
real geographical space as soil quality, slope, or
land use regulations.

(2) Cell State. In most urban modelling appli-
cations, cell states represent land use and land
cover, but depending on the focus of the model,
they may represent other features of the urban
area; Portugali and Benenson (1995; 1996), for
example, use cell states to represent social cate-
gories, e.g. immigrant vs. native populations. And,
broadening the idea of CA, the conventional
Boolean cell state could acquire a cardinal mea-
sure in order to represent such characteristics as
building quality or density. Finally, it is often con-
venient to define some cell states as fixed, so that
while cells in these states can influence the state
transitions of other cells, they are not themselves
subject to changes of state (e.g. White et al., 1997).
Rivers and parks are examples of land uses that
could well be represented by fixed states.

(3) Transition Rules. These are the heart of CA
since they represent the process that is being
modelled; they are thus the key to a good applica-
tion. They may be deterministic or stochastic; very
simple (e.g. a cell changes to the modal state of
its neighbourhood), or quite elaborate, like the
transition rules of the urban model described
below in Section 4. Typically the rules are fixed,
but some work has been done with simple CA
that evolve to solve a test problem, and there is
potential for use of CA with rules that evolve
endogenously to represent such phenomena as
urban real estate speculation.



CITIES AND CELLULAR AUTOMATA 113

(4) Neighbourhood. Conventionally, the neigh-
bourhood to which the transition rules are applied
is small. In two dimensional rectilinear CA the
most commonly used neighbourhoods are the
Von Neumann (4-cell) and the Moore (8-cell).
These are convenient, and for many physical
processes, where field effects are absent and inter-
action occurs only through contiguity, they are
entirely appropriate. They are occasionally used
for urban modelling (e.g. Cecchini and Viola,
1990; 1992); but in general larger neighbourhoods
would seem to be more appropriate, since land
use decisions are made by people who are aware
of and able to take into account conditions over
a larger area than that represented by a Moore
neighbourhood. In general, the size of the neigh-
bourhood should be defined with reference to the
distance over which the processes represented by
the transition rules operate.

(5) Time. Discrete time with simultaneous cell
state transitions is standard. However, there may
be situations where it is convenient to nest time
scales, with some parts of the CA running a
number of time steps for each step in the rest of
the model. For example, in a model of a region in
which some areas are subject to seasonal inunda-
tion, the low-lying areas are modelled on a
monthly basis to capture the dynamics of the
flooding, while upland areas are modelled with a
time step of one year (Uljee et al., 1996). A rather
different approach to time would be to update
cell states sequentially; such an approach would
depend on having a method for choosing the
sequence of cells that was inherently meaningful
in terms of the modelling problem.

3 CELLULAR AUTOMATA BASED
URBAN MODELS

A number of CA models of urban systems have
been developed, together with several modelling
systems. Tobler (1979) was the first to propose a
cellular approach to geographical modelling, and
his idea was followed up by Couclelis (1985; 1988;

1989; 1996) and later Takeyama (1996). Couclelis
uses the ideas of CA modelling to explore the
nature of space and spatial relations in the context
of dynamics, but does not attempt applications to
specific cities. However, she points out that while
standard spatial interaction based approaches to
the modelling of urban and regional systems pos-
tulate a relational space, usually of low resolution,
in which absolute location is virtually irrelevant,
GIS (Geographical Information Systems), on the
other hand, presuppose an absolute space, and
one of very high resolution. Both approaches are
appropriate for certain problems, but an adequate
representation of a city will involve both relational
and absolute spaces. As she says,

On the one hand is absolute space and the concrete
geo-referenced location or object with attributes,
that knows nothing of its surroundings; on the other
is relative space and the varified complex spatial
relation that is so innocent of the specifics of place as
to be dubbed “the geography of nowhere”. In between
is proximal space and the generalized CA models,
that can now . .. partake of the earthy data richness
of GIS while probing hypotheses about the large
scale effects of micro-scale interactions. That these
models can now ...be extended into the realm of
relative space, where the most robust theories of
urban and regional growth are still to be found, is
a[n]...exciting prospect. (Couclelis, 1996, p. 174)

Couclelis (1996) and Takeyama (1996) thus pro-
pose a generalized modelling language which would
permit integrated dynamic spatial modelling at all
scales within a GIS framework.

Batty and Xie (1996) and Xie (1996) have devel-
oped a CA for urban modelling which generates
both land use patterns and an associated transpor-
tation network. Their use of a CA to generate a
network is interesting and novel, but not yet
entirely successful; one problem may be that CA
processes are inherently local, whereas the evolu-
tion of a transportation network must reflect both
local and long range interactions. Their models are
not developed to model actual cities, nor do they
carry out sensitivity analysis to determine general
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characteristics of model behaviour. They conclude
that

It is unlikely that current approaches can really
generate acceptable levels of performance in terms of
the goodness-of-fit to existing patterns in the same
way in which less complex, traditional models are
able, and thus the emphasis in application should not
be on fit but on feasibility and plausibility. (Batty
and Xie, 1996, p. 203)

It is significant that, like Couclelis, they discuss
their CA models in the context of “traditional” (i.e.
“Lowry-type”) spatial interaction based models,
thus recognizing a complementarity. The issue of
“goodness-of-fit” is two pronged. On the one hand,
CA, by virtue of their spatial detail, permit ex-
tremely realistic results; the traditional approaches
capture only highly aggregated measures of urban
structure, though they may be “realistic” in the
sense that an appropriately specified and well-
calibrated model may yield a very good value for
a measure of goodness-of-fit. However, this merely
brings into stark relief the fact that measures of
goodness-of-fit are highly generalized measures,
whereas a city is an extremely complex entity.
A model capable of producing truly realistic
results will thus produce a complex output, and
at present there are no appropriate measures of
goodness-of-fit. As modelling techniques advance,
and with them the quality of the model output,
this problem is becoming critical; we will return to
it below.

Portugali and Benenson (1995; 1997) and
Portugali et al. (1994), while investigating general
principles of urban self-organization by means of
CA models, have gone farther in the search for
empirical realism. They are concerned primarily
with urban social structure, and the attitudes which
engender and are in turn modified by that structure.
They work with models which they characterize as
models of human agents in cell space. The cell space
represents individual residential lots, and cell states
are actually vectors representing such qualities as
status and value of the dwelling as well as the char-
acteristics of the family inhabiting it. Transition

rules relate changes in dwelling characteristics to
the characteristics of families in the cell neigh-
bourhood, and also relate changes in family
characteristics (e.g. ethnicity or attitude toward
neighbours) to the characteristics of families and
dwellings in the neighbourhood. These models
clearly demonstrate the close link between basic
theoretical ideas and empirical realism that is one
of the useful characteristics of cellular automata
modelling.

Other applications of CA to urban structure
(Cecchini, 1996; Cecchini and Viola 1990; 1992)
have emphasized simple automata, for example
two state (urban, rural) or small neighbourhood
(Von Neumann or Moore) formulations. Makse
et al. (1995) have adapted a physical model, a
model of correlated percolation in the presence of a
density gradient, to the problem of urban form.
They use the two state model to simulate the
growth of an urbanized area, and show that the
result has a fractal structure. The fractal dimen-
sions they generate are almost identical to those
characterizing the output of other cellular models
(see Section 4 below) (White and Engelen, 1993b;
White et al., 1997). Since the latter models do not
impose a density gradient, it would seem that that
feature of the correlated percolation model is not
necessary: a global density gradient can be gener-
ated by the local dynamics of the CA itself, a not
uncommon phenomenon.

4 CONSTRAINED CA-BASED
URBAN LAND USE MODELS

White and Engelen (1993a,b; 1994; 1997b), White
et al. (1997), and Engelen et al. (1997a) have also
developed CA based urban models that join theoret-
ical concerns with empirical realism. These are the
only CA based urban models that have been sub-
jected to extensive sensitivity analysis, and also to a
degree of empirical testing. It is thus useful to focus
on these models both in order to get an indication
of the quality of the results possible with CA based
urban models, and also to examine more closely
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some of the major issues that arise in urban
modelling with CA.

Unlike the models of Portugali and Benenson,
which focus on socio-economic phenomena, or
those of Batty and Xie which use a cellular mechan-
ism to generate a transport network, these are
essentially land use models. The focus is specifically
on the dynamics of land use and land cover, while
the transport network is taken as given (though it
may be altered or extended exogenously during a
simulation). Land use and land cover types are
divided into two categories: fixed features, like
water bodies and parks, and active land use
functions like housing, commerce, and industry.
In the neighbourhood dynamics defined for the
CA, fixed features appear as arguments in the
transition rule functions, and so affect the change
of state from one active land use function to
another, but they are not themselves subject to
state changes (other than changes determined
exogenously to the CA mechanism itself). Like
the fixed features, the transportation network may
affect the transition probabilities of active cells, but
is not itself changed by the cellular dynamics.

The transition rules applied to active cells
incorporate five types of factors:

e intrinsic suitabilities representing inhomogene-
ities in the geographic space being modelled
(e.g. soil quality or legal restrictions);

o the neighbourhood effect, representing the attrac-
tive or repulsive effects of the various land uses
(cell states) in the neighbourhood consisting of
the 113 cells lying within a radius of 6 cells of the
target cell;

e a local accessibility effect, representing ease of
access to the transport network;

e a stochastic perturbation capturing the effect of
imperfect knowledge and varying needs and
tastes among the implicit actors whose decisions
are represented by cell state transitions;

e global constraints on the number of cells in each
state, reflecting the fact that the requirements for
land for various activities are largely determined
exogenously to the internal land use dynamics of

the city being modelled, depending rather on
such factors as the size of the city and the need
for a balance among various activities. Thus at
each iteration, a target number of cells for each
state is specified, and the CA determines not the
number of cells in each state, but only their
location. The target numbers for each cell state
may simply be read from a file, or generated by a
linked model as described below.

The first four factors are incorporated into the
calculation of a vector of transition potentials for
each active cell — that is, a potential is calculated
for each possible (active) cell state. Then the
transition rule is applied: each cell is changed to
the state for which it has the highest potential,
subject to the global constraints.

The potentials are calculated as follows:

Py =vaisi(1+Y > > myalia) + H; (1)
k i d

where:

Py; is the transition potential from state 4 to
state j;

myq= a weighting parameter applied to cells with
state k in distance zone d (cells that are closer
usually are weighted more heavily; but weights
may be positive, representing an attractive effect,
or negative, if two states are incompatible);
I,;=1 if the state of cell i=k, otherwise ,;=0,
where i is the index of cells within the distance
zone d (the role of I;;1s simply to ensure that only
the relevant weight my, for the cell at location
i,d — ie. the weight corresponding to cell’s
actual state — is included in the calculation);
H;=an inertia parameter, with H;>0 if j=#h;
otherwise, H;=0 (H; increases the likelihood
that a cell will remain in its current state);
s;=the suitability of the cell state for j, where
0<s <1,

a;= the accessibility parameter,

4= (1+D/§)" )

where D is the Euclidean distance from the cell to
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the nearest link of the network and ¢;
is a coefficient expressing the importance of
accessibility on the desirability of the cell for
land use activity j. Accessibility is thus defined
strictly locally, in terms of distance to the
network, rather than globally in terms of
distances through the network to distant points;
v = the stochastic disturbance term,

v=14(—=In(r))" (3)

where (0 <r<1) is a uniform random variate
and « is a parameter that allows the size of the
perturbation to be adjusted.

The random term permits the cellular citv to
explore its state space, since cells that are appar-
ently unsuited to a particular activity will never-
theless occasionally be converted to that state. Since
the inertia term will normally prevent a cell from
reverting immediately to its previous state, these

cells may function as nuclei of new developments
by increasing the transition potentials of other cells
in their neighbourhood.

This generic cellular model has been used to
generate test cities (Fig. 1) on both a homogeneous
cell space (i.e. space with no suitabilities or trans-
portation network) and a cell space homogeneous
except for the presence of a transportation network,
for purposes of sensitivity analysis. It has also been
used as the basis for simulations of actual cities
and regions (Figs. 2, 4). The results are surprisingly
realistic for such a simple model, especially for
one lacking any representation of long-distance
interactions.

The most striking feature is that all cellular cities
generated with versions of this generic model
exhibit a fractal form:

e The perimeter of the urbanized area (as defined
by cells in any state representing an urban land

FIGURE 1

Simulation of a generic city generated on a homogeneous cell space, with a transport system represented by “road”
cells. Land uses: dark, commerce; medium, industry; light, housing.
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use like housing or commerce) is a fractal
(White and Engelen, 1993b).

e The radial dimensions, calculated as the deriva-
tive of log(area) with respect to log(radius), of
both the urbanized area and of individual urban
land uses are bi-fractals. For example, the urban-
ized area is characterized by a radial dimension
of approximately 1.92 out to a critical radius;
beyond that radius the dimension falls to a value
in the neighbourhood of 1.1. Inside the critical
radius the cellular pattern is relatively stable,
representing an urbanization process that is
essentially complete; outside it, the cell state
configurations change rapidly, as the CA
generates the future urban form (White and
Engelen, 1993b; White et al., 1997).

e The radial dimensions of the individual land
uses are significantly different from each other,
reflecting a relative concentration of the various
land uses in successive concentric zones, with,
for example, commerce relatively concentrated
toward the centre and housing toward the
periphery (White and Engelen, 1993b; White
et al., 1997).

e The size—frequency spectra of land use clusters
are log-linear, another measure of fractal struc-
ture (White and Engelen 1993b; White et al.,
1997).

In all cases, actual cities are found to exhibit the
same fractal dimensionality (White and Engelen,
1993b; White et al., 1997; Frankhauser, 1991;
1994). Frankhauser (1994), for example, found
that for 17 of 19 world cities, the radial dimension
of the urbanized area within the critical radius
(“rayon de ségrégation”) ranged in value between
1.94 and 1.99. 1960 Land use data for Cincinnati,
USA, yielded a log-linear size—frequency spectrum
with a slope of 1.29 for clusters of commercial land;
a cellular simulation of the city to the same year
also gave a log-linear spectrum, with a slope of 1.44
(White et al., 1997). And Batty and Longley (1994)
determined the fractal dimension of the perimeter
of the Cardiff, UK, urbanized area to lie in the
range of 1.2—1.3. Thus in terms of their various
fractal dimensions, cellular cities would appear to
be highly similar to actual cities.

Fractal dimensions are, however, highly general
measures. One of the potential strengths of cellular
modelling lics in the spatial detail, and hence the
realism, that it can provide; and while fractility is a
measure of the complexity of the urban form, itis a
very abstract one, and thus does not capture the
particular form of specific cities or their cellular
simulations. Cellular simulations of actual cities,
for example Cincinnati (Fig. 2), using the actual
transportation network of major roads and

O vacant J commerce B industry

| housing i railway river

FIGURE 2 Simulation of Cincinnati (leff) and actual land use (simplified), 1960 (right); the road system used in the simulation

is not shown. See Colour Plate 1.
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suitability maps representing the slope of the land,
give results that are visually quite similar in form to
the land use map of the actual city.

In the case of Cincinnati, the correspondence of
the simulated map to the actual map of the city is
confirmed by Kappa index values (see Monserud
and Leemans, 1992) ranging from 0.51 (fair) for
commerce to 0.63-0.69 (good) for the other land
uses. However, Kappa is based on a cell-by-cell
coincidence matrix, and so frequently does not
capture the more general similarity of patterns.
This problem is evident in the comparison of the
simulated and actual locations of commercial
activity (Fig. 3), where it is clear that the two loca-
tional patterns are quite similar, even though very
few of the cells coincide. A recently developed map
comparison technique making use of fuzzy set
theory (Power, 1998) is based on a comparison of
local configurations as opposed to individual cell
coincidences. An application to the Cincinnati case
gives similarity values about 15% higher than the
Kappa index. Thus while the various quantitative
measures of the modelling results support the

In map 1. inmap1l, B Inmap?2,
notin 2 in map 2 notin 1

FIGURE 3 Comparison of simulated and actual locations
of commerce, for simulation shown in Fig. 2. See Colour
Plate II.

conclusion that the cellular approach is worth-
while, they serve primarily to reveal the inadequacy
of the current kit of techniques for assessing spatial
patterns — a problem noted by Mandelbrot (1983)
among others. In other words, our ability to model
reality is outrunning our ability to evaluate the
results.

5 LIMITATIONS OF CA DUE TO
SHORT RANGE INTERACTIONS

While it is gratifying that the results of modelling
with cellular automata are as realistic as they appear
to be, it is also, in one respect, somewhat puzzling.
The fractal nature of the patterns generated by
calibrated CA models implies spatial structure at
all scales — i.e. spatial autocorrelation up to the
dimension of the grid (e.g. 80 x 80 cells) — even
though the processes that generate the structure
operate only over short distances (e.g. 6 cell units).
There is no question about how this happens: the
iterative CA process can, given sufficient time,
transmit a signal from any cell on the grid to any
other. Rather, the mystery is why the results are so
realistic, since in real cities the spatial interactions
that generate spatial structure occur not only at a
local scale corresponding to the CA neighbour-
hood, but also at regional or long distance scales
which are not represented at all in the CA models.
Must we to conclude, counter intuitively, that the
enormous volume of long distance interactions
within cities — shopping trips, for example, or the
daily trips to work — are irrelevant to the spatial
structuring of the city?

Most existing models of the dynamics of urban
spatial structure (e.g. Allen, 1983; 1997; White,
1977; 1978; Wilson, 1974; 1976) are based on repre-
sentations of these long distance flows; and as we
have seen, Couclelis (1996), Takeyama (1996), and
Batty and Xie (1996) have reaffirmed the need for
models of this sort, as have White and Engelen
(1994). Fortunately for tradition and intuition, there
are indications that the cellular models do not
handle all aspects of urban spatial structure as well
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as the spatial interaction based models. For
example, cellular models of the sort characterized
by Eqs. (1)—(3) represent land use qualitatively, in
terms of land use type, and do so with excellent
spatial resolution; but they do not represent
quantities such as density. In other words, lacking
a measure of intensity, the cellular model, in spite
of its spatial resolution, cannot give a good quanti-
tative representation of the location of activity.
Thus, if only for such mundane reasons, it will
frequently be desirable to supplement a CA model
with a traditional spatial interaction based repre-
sentation of urban structural dynamics. But in
addition, there is some evidence that intuition is
correct, and that long range interactions are impor-
tant in shaping the urban spatial structure; this is
seen most clearly in the commercial sector.

Major retail centres compete for business at the
scale of the entire urban area. The process of
competition for customers, which determines the
revenues of the centres and thus ultimately their
success or failure, must therefore be modelled in a
way that captures the long distance spatial inter-
action involved, for example by means of a Lowry-
type model, as mentioned by Batty and Xie. The
models of urban retail centre dynamics due to
Wilson (1974; 1976) and White (1977; 1978) are
both based on long distance spatial interaction
models. Extensive simulation experiments with a
similar model (White and Engelen, 1997b) indicate
that the system of major retail centres is character-
ized by two qualitatively different types of stable
states, depending on the values of relevant param-
eters: in one of these a single centre is dominant; in
the other (convex) state, a number of centres of
similar size dominate the hierarchy. If the system is
caused to pass through this bifurcation, it may
spend a significant time in a meta-stable phase
transition state in which the distribution of centre
sizes is log linear, representing a fractal structure
(Nicolis, 1989). Between the late 1950s and the early
1980s, most US cities passed through this bifurca-
tion, spending a decade or two in the log linear,
fractal transition, and then ending up clearly in the
convex state (White and Engelen, 1997b). By

contrast, in all cases where the CA model based
on Egs. (1)-(3) was realistically calibrated, com-
merce was fractally distributed — indeed, with this
model it is difficult to generate distributions that
match either of the stable configurations. The good
agreement between the simulated and actual size
distributions of commerce clusters for Cincinnati
would thus seem to be a fluke, due to the fact that
the simulation was tested against 1960 data, when
the city was coincidentally in the transition between
steady states.

6 INTEGRATING CELLULAR AUTOMATA
WITH OTHER MODELS

In view of these problems, and in recognition of the
fact that activity patterns in cities are dominated by
interactions beyond the scale of a cellular neigh-
bourhood, it would seem obvious to link CA
models of urban structure with other, standard
dynamical models (Uljee et al., 1996; White and
Engelen, 1997b). In this approach the dynamical
model operates at a macro-scale, in contrast with
the micro-scale of the cellular model. It may be
either non-spatial, consisting, for example, of a
model of economic and demographic change in the
urban area as a whole, or spatial, as in the case of
the standard spatial interaction based models
operating on statistical units like census tracts.
Only in the latter case, of course, can it possibly
make up for the deficiencies of the cellular model
described in the previous section. In either case,
however, the macro-scale model constrains the
cellular dynamics by providing target numbers
for cells of each state, but in the case of the spatial
model the targets may be regionally specific.

For example, a macro-scale model may generate
a demand for a certain number of housing cells,
with the actual locations to be determined by the
cellular model; but if the macro-scale model is
regionalized and so contains its own representation
of spatial dynamics, then the model will allocate
the total predicted demand among the regions, so
that the cellular model then works with regional
rather than global targets.
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The discussion in this section is based on
experience with an integrated model consisting of
the cellular model described above (Section 4)
linked to a dynamic, regionalized spatial interac-
tion based model of urban structure (Fig. 4). The
interesting problems arise, of course, in linking the
two levels. While sets of cells can be associated
unambiguously with regions, the same is not
necessarily true of the activities associated with
the spatial units. State variables and parameters
associated with cells can generally be aggregated in
some appropriate way over all cells corresponding
to a region and then assigned to that region in the
macro-scale model. But if regional data is to be
passed to the cellular model, it is frequently not
possible to assign it exclusively to the set of cells
corresponding to the region, as we will see below.
Thus in general the relationship between an activ-
ity variable in the regional model and the re-
gional expression of that variable in cell space
is one-to-many. Furthermore, while in simple

models there may be a one-to-one correspondence
between the activity variables as defined in the
regional model and the cell states defined in the CA
model (e.g. population <> housing), in general this
is not the case: the population variable in the
regional model may correspond to several CA cell
states (e.g. population « [(1) single family housing,
(2) low rise apartments, (3) high-rise apartments]),
and vice versa.

A typical macro-scale model, specifically a re-
gionalized, spatial interaction based model of
urban structure dynamics, will re-allocate activity
(X;) — e.g. population, industry, offices, jobs, etc. —
from one region (i) to another (/) on the basis of
the quantity of activity in each of the two regions
(X, X)), the distance between them (d;), and the
distance weighted attraction of all competing
regions (V}):

i,j,k=1,..., R =number of regions. (4)

[ Natural
Residential
. Commercial

I industry
B Institutional

. Agriculture

Public open space

.Airport + broadcasting towers

D Ponds

D Sea

FIGURE 4 Simulation of St. John’s (note the cellular structure of the land use map), with inset showing the 40 regions on
which the macro-scale regional model operates. See Colour Plate III.
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But as Couclelis pointed out, one of the major
shortcomings of such a model is that its space is
purely relational; the model makes no use of
data with absolute spatial coordinates — i.e.
the sort of data that is stored in a GIS and is
used to generate suitabilities for the CA
model described above. Neither does the model
incorporate possible effects of the micro-scale
configurations generated by the cellular dynamics,
nor does it take into account possible effects of
crowding or land shortages. Thus when such a
model is linked to a CA model there is an
immediate potential for reformulating it so that
it includes additional variables that reflect these
cellular level phenomena:

X = g(Xi, X, dij, Vi, wii, pji, Sji) (5)

where wj; is the ratio of the density of activity in
the destination region j to that in the origin region
i, pj is the ratio of the means of the cellular
potentials for the activity (as in Eq. (1)) in the two
regions, and sj; is the ratio of the mean suitabilities
of cells in the two regions for the activity.

What is gained by introducing these new vari-
ables that summarize information from the cellular
model? Typical urban dynamics models as repre-
sented by Eq. (4) embody only positive feedback
effects: in most formulations the movement of
activity into a region is positively related to the
existing level of activity, with no negative or
inhibitory terms included. In particular, with the
exception of the models due to Allen (1997), they
typically do not include a density term. Yet density
is probably one of the most important controls
on urban dynamics, since as density increases, the
associated costs, particularly the rising cost of land
and the indirect costs of congestion, will eventually
inhibit the continued growth of the most attractive
regions.

Of course such effects can be included in the
model, as Allen (1997) has demonstrated; but to do
so in more than the most arbitrary way requires the
sort of detailed spatial data which resides at the
cellular level. For example, if density is obtained in
the obvious way by dividing the level of activity by

the area of the region, the measure will not be
comparable from one region to another: in one
region the entire area may be available to the
activity, while in another only a small part may
effectively be available, the rest being too steep, to
wet, or occupied by an activity that cannot easily be
dislodged. Thus meaningful densities must be
defined at the cellular level; for example, the densi-
ties uised to define wy; in Eq. (5) could be calculated
as the level of activity in the region divided by the
number of cells occupied by the activity, giving a
measure of actual operating density that would be
closely correlated with density associated costs.

Similarly, the terms p;; and s;; represent the com-
parative attractiveness of two regions in terms of
local or cell scale characteristics within the regions.
The relative mean potentials ( p;;) of the cells in the
two regions provide a summary measure of the
relative attractiveness of the local cell neighbour-
hoods in the two regions, while the relative mean
suitabilities (s;) of the cells generalize the site-
specific qualities of Couclelis’ absolute space to the
regional level. Of course, all three of these variables
summarizing cellular level properties can be speci-
fied in a variety of ways, and others could be defined
as well.

The link from the macro-scale model to the cel-
lular level serves primarily to provide the numbers
of cells required for each activity. But in the case
of the regionalized models, this is also the means
by which the effects of long range interactions on
the spatial restructuring of the city are transmitted
to the cellular model, so that regional scale
inhomogeneities are introduced into the cellular
dynamics. There are a variety of ways in which
the link can be specified, but all of them involve
treating the regional activity levels generated by the
macro-level model as demands (‘*'Xp,) rather
than as actual new levels of activity, and then
passing these demands to the cellular model for
allocation in cell space and hence implicitly among
regions.

A relatively loose connection between the two
levels can be established by using the changes in
demand in each region to re-scale the cellular
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potentials calculated in Eq. (1). Thus the potential
values for cells in a region with a growing demand
for an activity are rescaled upward relative to po-
tentials for cells in regions with lower incremental
demand, but the CA then runs as an unregionalized
whole, constrained only by the total number of
cells required for each sector. Thus in general the
amount of activity implicitly allocated to each
region by the cellular model will not be the same
as the amount called for by the regional model,
although regions with higher incremental demands
(A" ' Xp,) will be relatively more attractive at the
cellular level and thus will typically receive rela-
tively more cells, and consequently more activity.
The level of activity in a region is determined
implicitly by the number of cells together with the
density of activity per cell, so a final regional activ-
ity level (‘*1X,) as established in the CA can be
calculated and returned to the regional model.

A tighter connection can be made by treating the
regional demands for activities as regional targets
at the cellular level. Regional activity demands
("*'Xp,;) are converted to regional demands for
cells, and a regionalized CA attempts to allocate
the cells within the specified regions. While in this
approach the cellular model is regionalized with
respect to target cell numbers, the calculation of
cellular potentials (Eq. (1)) is made without regard
to regional boundaries: the neighbourhood of a cell
may include cells in another region. Thus it is
possible, for example, for clusters of activity to
develop which cross regional boundaries (Engelen
et al., 1997a).

The regional targets approach is not so straight-
forward as it may seem, however, since it is not
always possible to satisfy all of the demands for
cells within a region. Thus there must be mechan-
isms for re-allocating some of the cell demand to
other regions. These may take many forms, but
typically they will be based on such factors as space
available, existing regional demand for the activity
(‘*'Xpj, j#i), density, and suitabilities. The
intensity of the competition for cells in a region
as measured by the ratio of cells demanded to cells
available can be interpreted as a surrogate for land

price. Since higher land prices lead to higher den-
sities, densities are adjusted at each iteration of the
cellular model to reflect the changing demand for
land. Both the new densities and the derived final
regional activity levels (‘" 'X;) are returned to the
macro-scale model.

We do not yet have sufficient experience with
these linked models to know to what degree the
performance of the component models is improved
by the integration. Cellular models generally per-
form very well on their own, so it is to be expected
that linking them with regionalized macro-scale
models would not result in dramatic changes in their
performance. The most noticeable improvements
seem to be in sectors like commerce which are highly
dependent on long range interactions and which
have proved most difficult to model well with stand-
alone CA. On the other hand, the spatial interaction
based regional models may be greatly enhanced by
integration with cellular models, primarily because
the cellular models, taking into account a vast
amount of detailed, high resolution spatial data
concerning factors important to location, act to
constrain the regional dynamics. The traditional
spatial interaction based models, popular among
planners in the 1950s and 1960s, have fallen out of
favour, in part, perhaps because their results are not
locationally specific; i.e. they have extremely poor
resolution, and thus cannot easily be linked to
specific urban phenomena. Potentially one of the
major effects of linking these models to cellular
models will be to revive their popularity.

More generally, there is no reason to limit
integration to urban models. Cities are inherently
complex entities, with socio-economic phenomena
unfolding in an environment that is both con-
structed and natural. In the CA discussed so far,
the built environment is modelled only in a general
way (as land use), and the natural environment is
treated as a set of boundary conditions, repre-
sented in the land cover features and the suitabil-
ities. But the natural environment has its own
dynamics, and in an urban area these dynamics are
intimately linked to the socio-economic and land
use dynamics of the constructed city. For example,
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a regional hydrological model may represent the
dynamics of infiltration, runoff, stream discharge,
and flooding as functions of precipitation and land
cover. But the balance of infiltration and runoff is
largely determined by land cover or land use, so as
urbanization proceeds and land use changes, infil-
tration and runoff will be altered; in consequence
groundwater supplies will be affected and so will
the frequency and extent of flooding. But the latter
effects may in turn feed back on the evolution of
the urban area, for example by discouraging devel-
opment of the areas that are newly at risk of
flooding, or by instigating a planning intervention
establishing a natural reserve dedicated to recharge
of the local aquifer. Thus it is natural to link cellular
urban models to models of natural processes (Uljee
et al., 1996; White and Engelen, 1997a).

In spite of the specific difficulties that are always
encountered, one of the great strengths of CA
based models is the relative ease with which they
can be linked to other models. Because process
oriented models of many phenomena are inherently
spatial and operate at local scales, as do CA, there
is frequently a basic commensurability which
facilitates integration. In this situation the output
of one model may be passed to the other where it
modifies a boundary condition; for example, in a
case where forested land was being converted to
commercial use, the output of an urban land use
model would modify the local infiltration rate
parameters of a hydrological model, which would
thus express the effect of the land use change.

Even when the models are not commensurable,
as is the case with regional models, or with
non-spatial economic models (e.g. input—output
models; see Engelen et al, 1997b; White and
Engelen, 1997a), it is still possible, as we have seen,
to establish strong links between the models. The
reason lies in the rule-based nature of CA. Cellular
models differ from each other primarily in terms of
their transition rules, which can take on virtually
any form, including hierarchical rule sets, in which
one rule may over-ride another. This flexibility
permits models to be linked through their rule sets,
where the output of one model modifies the

transition rules of the other. As the need for
integrated modelling of human—natural systems
becomes more obvious, it seems likely that the
flexibility of CA will be seen as one of their most
important characteristics.

7 CONCLUSIONS

Cellular automata constitute a powerful tool for
understanding cities at more than one level. At the
most mundane level, their high spatial resolution
and micro-scale process modelling permit a high
degree of verisimilitude. Such highly specific
models, linked to the GIS that currently serve as
the primary support for urban spatial planning,
would radically extend the capabilities of the GIS
by adding a temporal, predictive dimension to their
high-resolution spatial database, thus enabling
planners to experiment with possible urban futures.

But there is a deeper significance to the realism
and practicality of CA based models. The history
of urban modelling is plagued by the legacy of
oversimplification. Starting with the standard land
use models, which assumed a monocentric city
lying on an isotropic plain, and continuing with the
macro-scale urban dynamics models discussed
above, which are defined on highly aggregated
regions and thus lack spatial resolution, the results
have been too general or too unrealistic to be of
practical use.

More importantly, these traditional approaches
have furnished relatively few fundamental insights
into the nature of urban systems, primarily, it would
seem, because they are too divorced from the nature
of cities. As self-organizing structures, cities are
inherently complex objects. Even the “simple” pro-
perties of cities cannot be understood if the under-
lying complexity is ignored. For example, the
monocentric structure exhibited by many cities
cannot be explained by a model that assumes
monocentricity; nor can the fractal nature of cities
be discerned in the absence of a representation of
the underlying structural complexity. Thus a deeper
theoretical understanding can only be achieved
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through methods that bring together the general
and the specific — methods that capture and work
with the detail and complexity that characterize
real cities.

Extensive theoretical work on the principles
of self-organization by Langton (1990; 1992),
Kauffman (1989; 1990; 1993), and others (see, e.g.
Forrest, 1991), using CA and related techniques,
has begun to provide deep insights into the behav-
iour of whole classes of complex systems. There
are, for example, strong indications that evolved
complex systems will typically have fractal char-
acteristics. In this light, then, it is not surprising
that cities have a fractal structure, or that cellular
models of cities generate such a structure (and
instructive that traditional urban models do not).
The point is that cellular techniques dramatically
shrink the distance between highly specific models
of actual cities and models formulated to investi-
gate fundamental theoretical issues. They may be
expected to lead to richer and more useful applied
models co-evolving with a deeper understanding of
urban systems.
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