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In a recent paper (Lewis, 2008) a class of models suitable for application to collision-sequence interference was introduced. In
these models velocities are assumed to be completely randomized in each collision. The distribution of velocities was assumed to
be Gaussian. The integrated induced dipole moment μk , for vector interference, or the scalar modulation μk , for scalar interference,
was assumed to be a function of the impulse (integrated force) fk , or its magnitude fk , experienced by the molecule in a collision.
For most of (Lewis, 2008) it was assumed that μk ∝ fk and μk ∝ fk , but it proved to be possible to extend the models, so that
the magnitude of the induced dipole moment is equal to an arbitrary power or sum of powers of the intermolecular force. This
allows estimates of the infilling of the interference dip by the disproportionality of the induced dipole moment and force. One
particular such model, using data from (Herman and Lewis, 2006), leads to the most realistic estimate for the infilling of the vector
interference dip yet obtained. In (Lewis, 2008) the drastic assumption was made that collision times occurred at equal intervals. In
the present paper that assumption is removed: the collision times are taken to form a Poisson process. This is much more realistic
than the equal-intervals assumption. The interference dip is found to be a Lorentzian in this model.

1. Introduction

Spectra resulting from dipole moments induced in molecular
collisions typically have the form of broad bands with widths
determined by the durations of those collisions [1]. However,
these broad bands often exhibit narrow features, which
result from the coherence or correlation of induced dipole
moments extending over successive or sometimes many
collisions. The most conspicuous such features are the vector
intercollisional interference dips found in the fundamental
bands of H2 − X spectra and in the pure translational bands
of mixtures of rare gas atoms [2]. Also well known are
scalar collisional interference features found in the R and P
transitions in the fundamental bands of HD− X spectra [3–
5] and the corresponding R transitions in the pure rotational
spectra [6, 7]. The terms “vector intercollisional interference”
or “vector collision-sequence interference” refer to the fact
that an internal H2 scalar transition operator is modulated
by a vector function of intermolecular displacement. Thus
only a Q branch is observed, with the intercollisional
dynamics being those which describe the vector property

(intermolecular force, to a good approximation) of the exter-
nal coordinates.

The present work is based on that of paper I, which
will henceforth be referred to as paper I. In paper it was
assumed that the collisions suffered by a molecule occur at
equally spaced times. This drastic Ansatz allowed the use of
the apparatus of discrete Fourier transforms. In this present
work it is assumed that the collision times of a given molecule
are distributed exactly as a Poisson process, which is in fact an
excellent approximation to reality (see [9, 10]). A summary
of this work has appeared in [11].

2. Poisson-Distributed Collision Times

At sufficiently low densities and for the study of interference
phenomena collisions can be assumed to be instantaneous;
the dipole moment induced in one atom or molecule by
interaction with a bath of dissimilar atoms or molecules can
be represented as

µ(t) =
∑

k

µkδ(t − tk)e−ιω0t, (1)
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where binary collision k occurs at time tk and the dipole
moment induced in collision k is µk. For the vector
interference dips in Q branches the quantity µ j is parallel
to and approximately proportional in magnitude to the
impulse (integrated force) fk experienced by a molecule in
the collision. Our models will be expressed in terms of these
impulses fk. A second assumption is that the velocities before
and after a collision are uncorrelated and are Gaussian:

P(. . . , vk, vk+1, vk+2, . . .) = . . . P(vk)P(vk+1)P(vk+2) . . . ,
(2)

where

P(v) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2π

e−(1/2)v2
in two dimensions,

1

(2π)3/2 e
−(1/2)v2

in three dimensions.
(3)

Then the persistence of velocity is zero. This is a fair
approximation in some useful cases, such as H2−H2, H2−He,
and HD−He, and a good approximation for systems such
as H2 in Ar. It is inappropriate for high-mass atoms or
molecules dilute in a fluid of low-mass molecules, such as
Ar in H2. Equations (2) and (3) are exact for hard spheres of
equal mass, as was first shown by Clerk Maxwell [12].

In general, as stated above, the collision times tk approx-
imate to a Poisson process, and in the present work it will be
assumed that they are drawn from a true Poisson process,
with frequency ν, whereas in paper I the collisions were
assumed to occur at equal intervals.

Equation (1) describes the transition moment for a
transition with frequency ω0 in the absence of shifting and
broadening mechanisms.

It will be assumed initially that N collisions lie in the
finite-time time interval [0,T) such that 0 ≤ t1 ≤ · · · ≤
tN−1 ≤ tN ≤ T . The time T is of course a random variable
if N is fixed, but when N is large the record length T can be
taken equal to its expectation value, which will be N/ν. The
Fourier transform of µ(t) is

a(ω) =
∫∞

−∞
eιωtµ(t) dt

=
∑

k

µke
ιω̃tk ,

(4)

where ω̃ ≡ ω − ω0. The unaveraged periodogram is given by

1
T
|a(ω)|2 = 1

T

∑

k

∑

k′
µk · µ∗k′eιω̃(tk−tk′ ), (5)

whence the spectrum itself is given by

S(ω) = lim
T→∞

1
T
〈|a(ω)|2〉

= ν
[〈

µk · µ∗k
〉

+ 2Re
〈
µk · µ∗k+1e

ιω̃(tk−tk+1)
〉

+2Re〈µk · µ∗k+2e
ιω̃(tk−tk+2)〉 + · · ·

]
.

(6)

In the present class of models, as stated above, µk is expressed
in terms of the impulse fk. Hence, in full generality,

µk = µk(vk, vk+1) (7)

whence, by (2) and (3),

〈µk · µk+p〉 = 〈µk〉2 = 0 for p ≥ 2. (8)

Then (6) for the spectrum becomes

S(ω)
ν
=
〈
µk · µ∗k

〉
+ 2Re

〈
µk · µ∗k+1e

ιω̃(tk−tk+1)
〉
. (9)

A principal assumption of the present model, and the
feature in which it differs from the class of models discussed
in paper I, is that the intervalsΔk ≡ tk+1−tk , k = 1, 2, . . . ,N−
1 between collisions are independent of the velocities of the
particle, that is, the collision times tk, . . . , tk′ , . . . are ran-
dom variables which constitute a Poisson process. Poisson-
distributed collision times are a good approximation for real
gases [9], even at high densities [10], though not exact.

If the random variables . . . tk, . . . , tk′ , . . . form a Poisson
process, then the intervals Δi are exponentially distributed
[13]:

P(Δi) = νe−νΔi . (10)

The intervals [0, t1) and [tN ,T) of durations Δ0 and ΔN ,
respectively, also follow the distribution law (11), this
constitutes a well-known “paradox” in the theory of Poisson
processes.

From (10) it follows immediately that

〈eιω̃(tk−tk+1)〉 = 〈e−ιω̃Δi〉 = ν

∫∞

0
e−(ν+ιω̃)Δ dΔ = ν

ν + ιω̃
.

(11)

Then the spectrum is, from (9), given by

S(ω)
ν
=
〈
µk · µ∗k

〉
+ 2Re

{〈
µk · µ∗k+1

〉 ν

ν + ιω̃

}
. (12)

The dipole moment or transition moment induced in
a collision is roughly but not exactly proportional to the
intermolecular force; the overlap parts differ in range by
about 25%. For purposes of calculating the intercollisional
interference the integrated induced dipole moment µk can
be taken parallel to the intermolecular force fk, but with
magnitude proportional to some nonlinear function of
the magnitude of the intermolecular force; specifically, we
consider

µk = fk
(

1 + α f
β
k

)
=
(

1 + α|vk+1 − vk|β
)

(vk+1 − vk),

(13)

where α and β are constants, which will not in general be
integerial. With this model for µk, the calculation of

max S = lim
ω→∞S(ω) =

〈
µk · µk

〉
,

min S = S(0) = 〈µk · µk〉 + 2
〈
µk · µk+1

〉 (14)

is exactly the same as in paper I.
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2.1. Two Dimensions. For two dimensions it was found in
paper I that

〈
µk · µk

〉
= 4 + α2β+3Γ

(
β

2
+ 2

)
+ α222β+2Γ

(
β + 2

)
,

〈
µk · µk+1

〉
= −2− 2αJ

(
β + 1, 1

)− α2J
(
β + 1,β + 1

)
,

(15)

where

J(ν, ν′) ≡
〈

(vk − vk−1) · (vk+1 − vk)|vk − vk−1|ν−1

×|vk+1 − vk|ν′−1
〉

= 3(ν+ν′)/2+1Γ(ν/2 + 3/2)Γ(ν′/2 + 3/2)
8

×2 F1

(
ν

2
+

3
2

,
ν′

2
+

3
2

; 2;
1
4

)
.

(16)

Note that ν and ν′ are exponents, typically fractional, and are
not connected in any way with the mean collision frequency
ν.

Because

J
(
β + 1, 1

) = 2β+1Γ

(
β

2
+ 2

)
, (17)

it follows that

min S = 2α2
(

22β+1Γ
(
β + 2

)− J
(
β + 1,β + 1

))
. (18)

For the power-law model, which is a limiting case for α�
1 of (13) such that

µk = fk f
β
k (19)

with β ≈ −0.25 (for which value see [14]), it can be shown
that

min S = 2
(

22β+1Γ
(
β + 2

)− J
(
β + 1,β + 1

)) = O
(
β2)

(20)

while

max S = 22β+2Γ
(
β + 2

)
. (21)

For the case β = −0.25, we obtain

min S

max S

∣∣∣∣
β=−0.25

= 0.0088399. (22)

2.2. Three Dimensions. The necessary integrals to evaluate
min S and max S in three dimensions are evaluated in
Appendix A. It is found that

〈
µk · µk

〉
= 6 + 2α

2β+3

√
π
Γ

(
β

2
+

5
2

)
+ α2 22β+3

√
π

Γ
(
β +

5
2

)
,

〈
µk · µk+1

〉
= −J3D(1, 1)− 2αJ3D

(
β + 1, 1

)

− α2J3D
(
β + 1,β + 1

)

= −3− 2α
2β+2

√
π
Γ

(
β

2
+

5
2

)

− α2 3β+3/2

2π
Γ

(
β

2
+

5
2

)2

× 2F1

(
β

2
+

5
2

,
β

2
+

5
2

;
5
2

;
1
4

)
.

(23)

Then from (14), it follows that

min S = α2

⎡
⎣22β+3

√
π

Γ
(
β +

5
2

)
− 3β+3/2

π
Γ

(
β

2
+

5
2

)2

× 2F1

(
β

2
+

5
2

,
β

2
+

5
2

;
5
2

;
1
4

)]
,

(24a)

max S = 6 + O(α). (24b)

The fact that

min S

max S
∝ α2 (25)

is in accord with discussions in [2, 15].
For the power-law model given in (19), we have

min S = 0.58β2 + O
(
β3), (26a)

max S = 6 + O
(
β
)

(26b)

and, for β = −0.25, we obtain

min S

max S

∣∣∣∣
β=−0.25

= 0.0064980 (27)

which may be compared with the two-dimensional value
given in (22).

3. Conclusions

In this paper, we have extended a class of model developed
in paper I for the study of collision-sequence interference
effects in collision-induced absorption, to include realis-
tic distributions of collision times. In these models, a
single particle is followed. Its collisions are supposed to
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be instantaneous. In paper I the collisions were assumed
to occur at equally spaced times, whereas in the present
work the collision times are distributed according to a
Poisson process. Velocities are supposed to be completely
randomized at each collision. It is supposed that the dipole
moment µk or μk induced in a collision is proportional to
the integrated intermolecular force fk or fk, respectively, or
a power or sum of powers of the integrated intermolecular
force.

It is important that the model spectra can be deter-
mined analytically, or at worst, reduced to straightforward
numerical integrations. The models of paper I, of [11], and
of the present work are among the few exactly soluble but
nontrivial models found in spectral line-shape studies.

The extension of the induced dipole moment model
to dipole moments which are proportional to an arbi-
trary power of the integrated intermolecular force shows
that the interference dip is partially filled in for any
disproportionality between induced dipole moment and
integrated induced dipole moment. In this paper, the
calculation is given for the three-dimensional case. For a
realistic value of the power the infilling is slight, being
about 0.6% of spectral maximum for the three-dimensional
case.

Appendix

A. Evaluation of Certain Integrals

A.1. Evaluation of 〈 f ν〉. In three dimensions, the Gaussian
distribution of velocities is given by

P(v) = 1

(2π)3/2 e
−(1/2)v2

(A.1)

whence

〈 f ν〉 = 1
8π3

∫
d3vd3v′e−(1/2)(v2+v′2)

∣∣v − v′
∣∣ν (A.2)

which, setting u = v − v′ and U = (1/2)(v + v′), yields

〈 f ν〉 = 1
8π3

∫
d3ud3Ue−(1/4)u2−U2

uν

= 2
π

(∫∞

0
dUU2e−U

2
)(∫∞

0
due−(1/4)u2

uν+2
)

= 2ν+1

√
π
Γ
(

ν + 3
2

)
.

(A.3)

Then

〈 f 〉 = 4√
π
= 2.2567583, 〈 f 2〉 = 6. (A.4)

A.2. Evaluation of J3D(ν, ν′). For these vectorial cross terms
we have

J3D(ν, ν′) = − 1

(2π)9/2

∫
d3vd3v′d3v′′e−(1/2)(v2+v′2+v′′2)

× ∣∣v − v′
∣∣ν−1∣∣v′ − v′′

∣∣ν′−1(v − v′) · (v′ − v′′).
(A.5)

We set u = v−v′ and u′ = v′ −v′′ and U = (1/2)(v +v′+v′′)
so that

⎛
⎜⎜⎝

v

v′

v′′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
3

u +
1
3

u′ +
2
3

U

−1
3

u +
1
3

u′ +
2
3

U

−1
3

u− 2
3

u′ +
2
3

U

⎞
⎟⎟⎟⎟⎟⎟⎠

,

1
2

(
v2 + v′2 + v′′2

) = 1
3
u2 +

1
3

u · u′ +
1
3
u′2 +

2
3
U2.

(A.6)

The Jacobian of the transformation ux,u′x,Ux ← vx, v′x, v′′x is

∣∣∣∣∣∣∣∣∣∣∣∣∣

2
3

1
3

2
3

−1
3

1
3

2
3

−1
3
−2

3
2
3

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 2
3
. (A.7)

Then

J3D(ν, ν′)

= − 1
54
√

2π9/2

∫
d3ud3u′d3U

× e−((1/3)u2+(1/3)u·u′+(1/3)u′2+(2/3)U2)

× uν(u′)ν′ cos ϑ

= −3(3+ν+ν′)/2

π

∫∞

0
du
∫∞

0
du′

×
∫ π

0
dϑ sin ϑuν+2(u′)ν′+2e−(u2+uu′ cos ϑ+u′2) cos ϑ

= 2× 3(3+ν+ν′)/2

π

∫∞

0
du

×
∫∞

0
du′uν(u′)ν′e−u

2−u′2 (uu′ coshuu′ − sinhuu′),

(A.8)
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where ϑ = �u, u′. This gives

J3D(ν, ν′) = 2× 3(3+ν+ν′)/2

π

∞∑

k=0

1
(2k + 1)!(2k + 3)

×
∫∞

0
du
∫∞

0
du′u2k+3+ν(u′)2k+3+ν′e−u

2−u′2

= 3(3+ν+ν′)/2

2π
Γ
(

2 +
ν

2

)
Γ
(

2 +
ν′

2

)

×
∞∑

k=0

(2 + ν/2)k(2 + ν′/2)k
(2k + 1)!(2k + 3)

= 3(1+ν+ν′)/2

2π
Γ
(

2 +
ν

2

)
Γ
(

2 +
ν′

2

)

×
∞∑

k=0

(2 + ν/2)k(2 + ν′/2)k
(5/2)kk!

(
1
4

)k

= 3(1+ν+ν′)/2

2π
Γ
(

2 +
ν

2

)
Γ
(

2 +
ν′

2

)

× 2F1

(
2 +

ν

2
, 2 +

ν′

2
;

5
2

;
1
4

)
.

(A.9)

Then

J3D(1, 1) = 3,

J3D
(
β + 1, 1

) = 2β+2

√
π
Γ

(
5 + β

2

)
,

J3D
(
β + 1,β + 1

) = 33/2+β

2π
Γ

(
5 + β

2

)2

×2F1

(
5 + β

2
,

5 + β

2
;

5
2

;
1
4

)
.

(A.10)
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