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Hoteling’s T? control charts are widely used in industries to monitor multivariate processes. The classical estimators, sample
mean, and the sample covariance used in T* control charts are highly sensitive to the outliers in the data. In Phase-I monitoring,
control limits are arrived at using historical data after identifying and removing the multivariate outliers. We propose Hoteling’s
T? control charts with high-breakdown robust estimators based on the reweighted minimum covariance determinant (RMCD)
and the reweighted minimum volume ellipsoid (RMVE) to monitor multivariate observations in Phase-I data. We assessed the
performance of these robust control charts based on a large number of Monte Carlo simulations by considering different data

scenarios and found that the proposed control charts have better performance compared to existing methods.

1. Introduction

Control charts are widely used in industries to moni-
tor/control processes. Generally, the construction of a control
chart is carried out in two phases. The Phase-I data is
analyzed to determine whether the data indicates a stable (or
in-control) process and to estimate the process parameters
and thereby the construction of control limits. The Phase-
IT data analysis consists of monitoring future observations
based on control limits derived from the Phase-I estimates
to determine whether the process continues to be in control
or not. But trends, step changes, outliers, and other unusual
data points in the Phase-I data can have an adverse effect on
the estimation of parameters and the resulting control limits.
That is, any deviation from the main assumption (in our case,
identically and independently distributed from normal distri-
bution) may lead to an out-of-control situation. Therefore, it
becomes very important to identify and eliminate these data
points prior to calculating the control limits. In this paper, all
these unusual data points are referred to as “outliers.”
Multivariate quality characteristics are often correlated,
and to monitor the multivariate process mean Hoteling’s T*
control chart [1, 2] is widely used. To implement Hoteling’s T*

control chart for individual observations in Phase-I, for each

observation X; we calculate

T (x) = (x,-%)'s;' (x,- %), M

wherex; = (x,X5,..., xjp)' is the jth p-variate observation,
(j = L,2,...,m) and the sample mean X, sample covariance
matrix S; are based on m Phase-I observations. In Phase-
I monitoring, the Tz(xj) values are compared with the T*

control limit derived by assuming that the x;’s are multivariate

normal so that the T? control limits are based on the beta
distribution with the parameters p/2 and (m — p — 1)/2.
However, the classical estimators, sample mean, and sample
covariance are highly sensitive to the outliers, and hence
robust estimation methods are preferred as they have the
advantage of not being unduly influenced by the outliers.
The use of robust estimation methods is well suited to
detect multivariate outliers because of their high breakdown
points which ensure that the control limits are reasonably
accurate. Sullivan and Woodall [3] proposed a T* chart with
an estimate of the covariance matrix based on the successive
differences of observations and showed that it is effective in



detecting process shift. However, these charts are not effective
in detecting multiple multivariate outliers because of their
low breakdown point.

Vargas [4] introduced two robust T? control charts based
on robust estimators of location and scatter, namely, the
minimum covariance determinant (MCD) and minimum
volume ellipsoid (MVE) for identifying the outliers in Phase-I
multivariate individual observations. Jensen et al. [5] showed
that TI%,ICD and T,y g control charts have better performance
when outliers are present in the Phase-I data. Chenouri et
al. [6] used reweighted MCD estimators for monitoring the
Phase-II data, without constructing Phase-I control charts.
However, in many situations Phase-I control charts are
necessary to assess the performance of the process and
also to identify the outliers. We propose T control charts
based on the reweighted minimum covariance determinant
(RMCD)/reweighted minimum volume ellipsoid (RMVE)
(TﬁMCD /TéMVE) for monitoring Phase-I multivariate indi-
vidual observations. RMCD/RMVE estimators are statisti-
cally more efficient than MCD/MVE estimators and have a
manageable asymptotic distribution. We empirically arrive at
Phase-I control limits for the TéMCD / TﬁMVE control chart for
some specific sample sizes and fitted a nonlinear model to
determine control limits for any sample size for dimensions 2
to 10. Our simulation studies show that T}%MCD / TéMVE control
charts are performing well compared to Teycp,/Tagy control
charts for monitoring the Phase-I data.

The organization of the remaining part of the paper
is as follows. In Section 2, we discuss the properties of a
good robust estimator and we briefly explain the MCD/MVE
estimators and their reweighted versions. The proposed
Tamen/Tayye control charts are given in Section 3 along
with the control limits arrived at based on Monte Carlo sim-
ulations. We assess the performance of the proposed control
charts in Section 4, and the implementation of the proposed
methods is illustrated in a case example in Section 5. Our
conclusions are given in Section 6.

2. Robust Estimators

The affine equivariance property of the estimator is important
because it makes the analysis independent of the measure-
ment scale of the variables as well as the transformations
or rotations of the data. The breakdown point concept
introduced by Donoho and Huber [7] is often used to
assess the robustness. The breakdown point is the smallest
proportion of the observations which can render an estimator
meaningless. A higher breakdown point implies a more
robust estimator, and the highest attainable breakdown point
is 1/2 in the case of median in the univariate case. For more
details on affine equivariance and breakdown points one may
refer to Chenouri et al. [6] or Jensen et al. [5].

An estimator is said to be relatively efficient compared to
any other estimator if the mean square error for the estimator
is the least for at least some values of the parameter compared
to others. A robust estimator is considered to be good if it
carries the property of affine equivariance along with a higher
breakdown point and greater efficiency. In addition to the
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above three properties of a good robust estimator, it should
be possible to calculate the estimator in a reasonable amount
of time to make it computationally efficient.

It is difficult to get an affine equivariant and robust
estimator as affine equivariance and high breakdown will
not come simultaneously. Lopuhaéd and Rousseeuw [8] and
Donoho and Gasko [9] showed that the finite sample
breakdown point of (m — p + 1)/(2m — p + 1) is difficult for
an affine equivariant estimator. The largest attainable finite
sample breakdown point of any affine equivariant estimator
of the location and scatter matrix with a sample size m and
dimension p is (m — p + 1)/2m [10]. Therefore relaxing the
affine equivariance condition of the estimators to invariance
under the orthogonal transformation makes it easy to find an
estimator with the highest breakdown point.

The classical estimators, sample mean vector, and covari-
ance matrix of location and scatter parameters are affine
equivariant but their sample breakdown point is as low as
1/m. The MCD and MVE estimators have the highest possible
finite sample breakdown point (m — p + 1)/2m. However,
both of these estimators have very low asymptotic efficiency
under normality. But the reweighted versions of MCD and
MVE estimators have better efficiency without compromising
on the breakdown point and rate of convergence compared
to MCD and MVE. In the next two subsections, we discuss
in detail about the MCD and MVE estimators and their
reweighted versions.

2.1. MCD and RMCD Estimators. The MCD estimators of
location and scatter parameters of the distribution are deter-
mined by a two-step procedure. In step 1, all possible subsets
of observations of size h = (m * y), where 0.5 < y < 1
are obtained. In step 2, the subset whose covariance matrix
has the smallest possible determinant is selected. The MCD
location estimator Xy;cp is defined as the average of this
selected subset of h points, and the MCD scatter estimator
is given by Syicp = a,,, * by, * Cycp, Where Cycp is the

covariance matrix of the selected subset, the constant a,, is

the multiplication factor for consistency [11], and b;flp is the
finite sample correction factor [12]. Here (1 — y) represents
the breakdown point of the MCD estimators. The MCD
estimator has its highest possible finite sample breakdown
point when & = (m + p + 1)/2 and has an m™ 2 rate of
convergence but has a very low asymptotic efficiency under
normality. Computing the exact MCD estimators (Xycp»
Sycep) is computationally expensive or even impossible for
large sample sizes in high dimensions [13], and hence various
algorithms have been suggested for approximating the MCD.
Hawkins and Olive [14] and Rousseeuw and van Driessen [15]
independently proposed a fast algorithm for approximating
MCD. The FAST-MCD algorithm of Rousseeuw and van
Driessen finds the exact MCD for small datasets and gives a
good approximation for larger datasets, which is available in
the standard statistical software SPLUS, R, SAS, and Matlab.
MCD estimators are highly robust, carry equivariance
properties, and can be calculated in a reasonable time using
the FAST-MCD algorithm; however, they are statistically not
efficient. The reweighted procedure will help to carry both
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TaBLE 1: Estimates of the model parameters a,(,4), @y(p.a)> @3 (py fOT Trvicen/ Tanye control charts.
p a=0.05 a=0.01 a =0.001
a a, as a a, as a a, as
TéMCD
2 17.223 41102 2.647 21.134 38170 2.329 27.051 192909 2.508
3 20.134 35844 2.209 24.287 128924 2.344 31.350 1144947 2.718
4 23.152 269357 2.548 28.181 1272773 2.773 35.575 5989325 2.973
5 24.685 467949 2.524 28.437 1417059 2.632 31.013 2666196 2.593
6 26.962 1762051 2.746 29.654 3061216 2.711 31.662 5414248 2.669
7 24.892 1099128 2.493 22.882 1585224 2.416 19.058 3465278 2.444
8 27.236 2908821 2.667 27.245 4922576 2.644 28.326 12134778 2.710
9 23.974 2447649 2.534 21.420 4726835 2.554 18.772 14096595 2.676
10 31.894 12572909 2.914 37.085 34375654 3.033 56.573 172176786 3.301
T;MVE

2 17.442 29553 2.494 21.365 31571 2.244 27.594 148747 2.434
3 20.286 22497 2.066 24.387 59096 2.13 31.326 338665 2.402
4 23.095 108855 2.286 27.549 291064 2.372 35.109 1255429 2.576
5 24.796 238966 2.334 28.302 508097 2.367 32.008 1063783 2.377
6 27.585 1041090 2.606 3L126 1882888 2.601 37136 4714353 2.671
7 28.151 1541634 2.598 30.936 3183762 2.635 39.357 12199414 2.827
8 34.917 14798692 3.127 45.767 75616029 3.419 70.875 840512379 3.904
9 39.191 59094377 3.415 50.271 275604839 3.679 72.768 1960966919 4.039
10 50.733 950607720 4.099 68.154 4696452032 4.379 110.587 56398461817 4.881
robustness and efficiency. That is, first a highly robust but ~ where ~ the  robust  distance = RD(x;) =

perhaps an ineflicient estimator is computed, which is used as
a starting point to find a local solution for detecting outliers
and computing the sample mean and covariance of the
cleaned data set as in Rousseeuw and van Zomeren [16]. This
consists of discarding those observations whose Mahalanobis
distances exceed a certain fixed threshold value. MCD is the
current best choice for the initial estimator of a two-step
procedure as it contains the robustness, equivariance, and
computational efficiency properties along with its /2 rate
of convergence. Hence RMCD estimators are the weighted
mean vector

(57 0)
= _ \&j=1 T )
XRMCD = Tom N\ )
(X7 w))
and the weighted covariance matrix
— m,p
Srmcp = Cap * dy,tx
m — — ! 3
j=1 Wj (Xj - XRMCD) (Xj - XRMCD) )
m >
Z]‘:l w;
where ¢, , is the multiplication factors for consistency [11],

d;i’&p is the finite sample correction factor [12], and the weights

w; are defined as

(4)

wj:{1 if RD(X;) < v/

0 otherwise,

\/(xj—)_(MCD)'S;,}CD(XJ-—iMCD) and ¢, is (1 — «)100%
quantile of the chi-square distribution with p degrees of
freedom.

This reweighting technique improves the efficiency of
the initial MCD estimator while retaining (most of) its
robustness. Hence the RMCD estimator inherits the affine
equivariance, robustness, and asymptotic normality proper-
ties of the MCD estimators with an improved efficiency.

2.2. MVE and RMVE Estimators. Determining the MVE
estimators of location and scatter parameters of the distri-
bution is almost in line with that of the MCD estimator. As
in the case of MCD, all the possible subsets of data points
with size h = (m % y) (where 0.5 < y < 1) is obtained
first. Then the ellipsoid of minimum volume that covers
the subsets are obtained to determine the MVE estimators.
The MVE location estimator is the geometrical center of
the ellipsoid, and the MVE scatter estimator is the matrix
defining the ellipsoid itself, multiplied by an appropriate
constant to ensure consistency [13, 16]. Thus MVE estimator
does not correspond to the sample mean vector and the
sample covariance matrix as in the case of the MCD estimator.
Here (1 — y) represents the breakdown point of the MVE
estimators, as in the case of MCD, and it has the highest
possible finite sample breakdown point when h = (m +
p + 1)/2m [8, 17]. The MVE estimator has an m/® rate of
convergence and a nonnormal asymptotic distribution [17].
As in the case for MCD estimators, MVE estimators are
also not efficient. Hence, a reweighted version similar to that
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FIGURE I: Scatter plot of Ty yscp/Tayyy control limits and the fitted curve for p = 2.

for MCD has been proposed by Rousseeuw and van Zomeren
[16]. Note that it has been shown more recently that the
RMVE estimators do not improve on the convergence rate
(and thus the 0% asymptotic efficiency) of the initial MVE
estimator [8, 12]. Therefore, as an alternative, a one-step M-
estimator can be calculated with the MVE estimators as the
initial solution [13, 18] which results in an estimator with
the standard m™'/? convergence rate to a normal asymptotic
distribution. For more details on MCD/MVE estimators
one may refer to Chenouri et al. [6] or Jensen et al. [5].
The algorithm to determine the MVE/RMVE estimators
is available in the statistical software SPLUS, R, SAS, and
Matlab.

3. Robust Control Charts

We propose to use T? charts with robust estimators of
location and dispersion parameters based on RMCD/RMVE

for monitoring the process mean of Phase-I multivariate
individual observations. RMCD/RMVE estimators inherit
the nice properties of initial MCD estimators such as affine
equivariance, robustness, and asymptotic normality while
achieving a higher efficiency. We now define a robust T2
control chart with RMCD and RMVE estimators for ith
multivariate observation as

— I — —
Tl%MCD (XI) = (Xz - XRMCD) SRII\/ICD (Xz - XRMCD)’ )

_ J o _
TIZIMVE (Xi) = (Xi - XRMVE) SRII\/IVE (Xi - XRMVE) >

where Xpyeps Xpmve are the mean vectors and Spyieps
Srmve are the dispersion matrices under the RMCD/RMVE
methods based on m multivariate observations.

The exact distribution of Tayop/Tayye €stimators not
available, hence the control limits for Phase-I data are
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FIGURE 2: Scatter plot of Tay,p,/Tayve control limits and the fitted curve for p = 6.

obtained empirically. In the next subsection we apply Monte
Carlo simulation to estimate quantiles of the distribution of
TﬁMCD and TﬁMVE for several combinations of sample sizes
and dimensions. For each dimension, we further introduce a
method to fit a smooth nonlinear model to arrive, the control
limits for any given sample size.

3.1. Computation of Control Limits. We performed a large
number of Monte Carlo simulations to obtain the control
limits. We generated n = 200,000 samples of size m from
a standard multivariate normal distribution MVN(O0, Ip)

with dimension p. Due to the invariance of the Tgycp and

Tayve Statistics, these limits will be applicable for any values
of p and X. Using the reweighted MCD/MVE estimators
XrMceD> Srmcns Xrmves and Spyyp With a breakdown value

of y = 0.50, Tayep/Tayye Statistics for each observation
in the data set were calculated using (5), and the maximum
value attained for each data set of size m was recorded. The
empirical distribution of maximum of Ty, and Tpyyp Was
inverted to determine the (1 — «)100% quantiles. We used
the R-function “CovMcd()” in the “rrcov” package written by
Torodov [19] to ascertain the RMCD/RMVE estimators.

We have constructed the empirical distribution of
T;MCD/T}%MVE as above for m = [30(1)50,55(5)100,
110(10)200], p = (2,3,...10) when y = 0.50 and arrived
at the control limits for o« = (0.05, 0.01, and 0.001). The
scatter plots of the quantiles and sample sizes for different
dimensions suggest a family of nonlinear models of the form

az(

_ »(p.sy)
f poys;m — al,(p,oc,y) + M par) (6)
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FIGURE 3: Scatter plot of Tay,p,/Tayyg control limits and the fitted curve for p = 10.

where ay(,41)> Ba(pay)> and d3(p, ) are the model parame-
ters. For clarity, the scatter plot of the actual and the fitted
values of the quantiles of Ty, and Tgypyg for p = 2, 6,and
10 are given in Figures 1, 2, and 3; other plots are omitted to
save space.

From Figures 1, 2, and 3, we can see that the nonlinear fit
is very well supported by the high R* values, which help us to
determine the Ty, and Tgyyy control limits for any given
sample size. The least square estimates of the parameters
A (pa) Ha(pay AN A3 o) When y = 0.50 for dimensions p =
(2,3,...,10) and « = (0.05, 0.01 and 0.001) for TéMCD/TéMCD
control charts are given in Table 1. Using these estimates, the

control limits for Ty;cp and Tgyyg can be found using (6)
for any sample size.
For the implementation of a robust control chart, first

collect a sample of m multivariate individual observations
with dimension p. Compute robust estimates of mean and
covariance matrix using R or any other software with y =
0.50, and determine TﬁMCD /TéMVE. Outliers can be deter-
mined by comparing the Taycp/Tayve Values with control
limits obtained using (6) for specific values of «, m, p, and the
constants given in Table 1. The outlier free data can be used
to construct the standard T* control chart for monitoring the
Phase-II observations.
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FIGURE 4: Probability of signal for T control chart with different estimation methods for p = 2, m = 50.

4. Performance Analysis

We assess the performance of the proposed charts when
outliers are present due to the shift in the process mean. In
their study, Jensen et al. [5] concluded that the Ty cp/Tave
control charts had better performance in terms of probability
of signal. Hence, we compare the performance of our pro-
posed method with Ty, /Typyy charts as well as the standard

T? charts based on classical estimators. Our study compares
more combinations of dimension p, sample size m, and 7.
For a particular combination of p, m, and 7, a number of
datasets are generated. Out of the m observations generated,
m * 7 of them are random data points generated from the
out-of-control distribution, and the remaining m * (1 — )
observations are generated from the in-control distribution
so that the sample of m data points may contain some

outliers. We set 7 = 0.10 and 0.20 to ensure that the sample
contains few outliers. Without loss of generality, we consider
the in-control distribution as N(0,1,). The out-of-control
distribution is a multivariate normal with a small shift in the
mean vector with same covariance matrix. The amount of
mean shift is defined through a noncentrality parameter (5),
which is given by

8= -w)=" (1 - ), (7)

where (y; — u) is the shift in the mean vector. The larger
the value of § is, the more extreme the outliers are. The
proportion of datasets that had at least one T}%MCD or TﬁMVE
statistic greater than the control limit was calculated, and this
proportion becomes the estimated probability of signal. We
compared the performance of these charts with standard T2
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FIGURE 5: Probability of signal for T control chart with different estimation methods for p = 2, m = 100.

charts, Tocp» and Ty charts. The standard 77 chart was
included in our performance study as a reference because of
its common usage.

The probability of a signal for different values of § =
(0, 5, 10, 15, 20, 25, 30) and for some of the values of m =
(30, 50, 100, 150), p = (2, 6, 10) and 7 = (10%, 20%) was
considered in our study. Fifty thousand datasets of size m
were generated for each combination of p, 7, and §, and the
probability of signal was estimated for « = 0.05,0.01, and
0.001. We considered various combinations of 4, y4,, and p
which determine § as per (7) and found that the probability of
signal is the same irrespective of the combination of y,, y, and
p. Hence we have considered y; = y, and p = 0 for various

values of §. We have presented only a selected set of plots to
save space. The plots of probability of signal for &« = 0.05 and
0.01, p = 2and 6,and m = 50 and 100 are given in Figures 4, 5,
6, and 7 for easier understanding. For dimension p = 10, we
used m = 100 and 150, and the plots of probability of signal
are given in Figures 8 and 9.

From Figures 4-9, we can see that when the value of
the noncentrality parameter is zero or close to zero, the
probability of signal is close to « which is expected for an in-
control process. As the value of the noncentrality parameter
increases the probability of signals also increases. Using
this criterion, we select the best method for identifying the
outliers. If the probability of signal does not increase for
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FIGURE 6: Probability of signal for T? control chart with different estimation methods for p = 6, m = 50.

increase in noncentrality parameter, then it is clear that the
estimator has broken down and is not capable of detecting
the outliers.

A careful examination of these plots of probability of
signals corresponding to various values of p, m, and 7
indicates that for small values of p and m, Tg,yy performs
well. As m and p increase, Taycp chart is superior. For
example, from Figures 4 and 5 we see that Ty, has slight
advantage over Tq,,cp- But compared to To;p/Tagy charts,
Tanen!/Tayvye charts are performing well which is evident
from all the plots presented here. When p is large (see Figures
8 and 9), the TéMCD has clear advantage compared to TéMVE.
From these figures, we see that standard T* control chart

possesses little ability to detect the outliers and the Ty;y > and
Tyyg stands below the Taycn/Tayys charts throughout all
the values of 6.

As p increases for a fixed value of m, the breakdown
points of RMCD and RMVE get smaller as the breakdown
value is given by (m — p + 1)/2m. This suggests that the
larger p is, the larger m will need to be in order to maintain
the breakdown point, which is very well demonstrated in
Figures 8 and 9. In general, there was always one estimator,
RMCD or RMVE, that was found to be superior across all
the values of the noncentrality parameter as long as the
proportion of outliers was not so big as to cause the estimators
to break down. This greatly simplifies the conclusions that



10

a=0.05,7=10%

Journal of Quality and Reliability Engineering

a=0.01,7=10%

0.8 0.8
0.6 0.6
0.4 @ 0.4 //é
// g S
02 R Q/ 0.2 7
/Q _— P 6 . a
PN ‘/%’/__.-.———.-. /Q//,,Q
—_— = -
0 - o_‘—‘——-"’é%—o—o'o
T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Noncentrality parameter Noncentrality parameter
(a) (b)
o =0.05m=20% a=0.01,7=20%
0.8 0.8 -
<&
0.6 - 0.6 -
& X
0.4 /// 0.4
/ RN o
x X
o L7 A4 © /
0.2 4 / 7 -7 0.2 4 L
X~ 0 X
AN .
.=———0 -7 JaX
== KT~ - —
o — 4 —0== o— oo _@——///Q/@
0 ] —s—8—8=0" ¢ o
T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Noncentrality parameter Noncentrality parameter
—o— Std ~e- MVE —o— Std -e- MVE
—-A— MCD -x- RMVE —-A— MCD -%x- RMVE
—— RMCD —— RMCD

(c)

(d)

FIGURE 7: Probability of signal for for T> control chart with different estimation methods for p = 6, m = 100.

can be made about when the RMCD or RMVE estimators are
preferred to the MCD and MVE estimators.

Nevertheless, Tpy;cp and Tpycp charts are preferred for
the various combinations of m, p, and 7, and some broad
recommendations can be made on the selection among these
two charts. When m < 100, the Ta,;y Will be the best for
small dimension. When m > 100, the TﬁMCD is preferred.
As p increases, then the percentage of outliers that can be
detected by the Ty chart decreases. It is true for both
the charts that when p is higher, the number of outliers
that can be detected decreases for smaller sample sizes. Thus

for Phase-I applications where the number of outliers is
unknown, TéMVE should be used only for smaller sample
sizes, and it is also computationally feasible. Tq,;cp, should be
used for larger sample sizes or when it is believed that there
is a large number of outliers. When the dimension is large,
larger sample sizes are needed to ensure that the estimator
does not break down and lose its ability to detect outliers.
Hence for larger dimension cases, Taycp is preferred with
large sample sizes. For very small samples (m < 30), one may
opt for higher values of y, for which control limits need to be
developed.
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FIGURE 8: Probability of signal for T* control chart with different estimation methods for p = 10, m = 100.

5. Case Example

To illustrate the applicability of the proposed control chart
method, we discuss a real case example taken from an
electronic industry. The data gives 105 measurements of 3
axial components of acceleration measured by accelerometer
on a e-compass unit fixed on the objects. The mean vector and
covariance matrix under the classical, RMCD, and RMVE
methods of the sample data considered are given by

6.3143
X = (5.7339),
5.7527
3.4022 -1.1524 —1.0746
s:<—1.1524 1.9249  1.1209 >
-1.0746 1.1209 2.2004

B 5.7125
Xpaep = | 62643 |,

6.0837

0.1901

2.8549 0.1901 -0.2926
1.1175 0.4433 |,

SRMCD = <
—-0.2926 0.4433 2.3115

B 5.7790
Xewve = | 61379 |,

5.9894

2.7837
SRMVE = _0.2642 1.2778

—-0.2642 -0.5745
0.6080 |.

-0.5745 0.6080 2.2909

(8)
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FIGURE 9: Probability of signal for T* control chart with different estimation methods for p = 10, m = 150.

A simple comparison of these estimators indicates that there
are outliers in the Phase-I data. The plots of T, Tgycp» and
Tayve Values along with the respective control limits at 99%
confidence level for the sample data are given in Figure 10.

The control limits for T? are arrived at based on beta
distribution, and Tf{MCD /TéMVE are calculated using (6) for
p = 3 and m = 105. From Figure 10, it is very clear that both
Tanep and Tayyg control chart alarms signal for 3 outliers
whereas the standard T? control chart alarm signals for none
even though all the charts are having the same pattern. This
indicates the effectiveness of the proposed robust control
charts in identifying the outliers.

6. Conclusions

Use of robust control chart in Phase-I monitoring is very
important to assess the performance of the process as well
as detecting outliers. We propose Tayiep/Tayye control
charts for Phase-I monitoring of multivariate individual
observations. The control limits for these charts are arrived
empirically and a non-linear regression model is used for
arriving control limits for any sample size. The performance
of the proposed charts were compared under various data
scenarios using large number of Monte Carlo simulations.
Our simulation studies indicate that Tg,,yy control charts
are performing well for smaller sample sizes and smaller
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FIGURE 10: T2, T?

dimension where as Ty, control charts are performing
well for larger sample sizes and larger dimensions. We
illustrated our proposed robust control chart methodology
using a case study from the electronic industry.
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