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Obtaining unique oligos from an EST database is a problem of great importance in bioinformatics, particularly in the discovery of
new genes and the mapping of the human genome. Many algorithms have been developed to find unique oligos, many of which are
much less time consuming than the traditional brute force approach. An algorithmwas presented by Zheng et al. (2004) which finds
the solution of the unique oligos search problem efficiently. We implement this algorithm as well as several new algorithms based
on some theorems included in this paper.We demonstrate how, with these new algorithms, we can obtain unique oligosmuch faster
than with previous ones. We parallelize these new algorithms to further improve the time of finding unique oligos. All algorithms
are run on ESTs obtained from a Barley EST database.

1. Introduction

Expressed Sequence Tags (or ESTs) are fragments of DNA
that are about 200–800 bases long generated from the
sequencing of complementary DNA. ESTs have many appli-
cations.They were used in the HumanGenome Project in the
discovery of new genes and are often used in the mapping
of genomic libraries. They can be used to infer functions of
newly discovered genes based on comparison to known genes
[1].

An oligonucleotide (or oligo) is a subsequence of an EST.
Oligos are short, since they are typically no longer than 50
nucleotide bases. Oligos are often referred to in the context
of their length by adding the suffix “mer”. For example,
an oligo of length 9 would be referred to as a 9-mer. The
importance of oligos in relation to EST databases is quite
significant. An oligo that is unique in an EST database serves
as a representative of its EST sequence. The oligonucleotides
(or simply oligos) contained in these EST databases have
applications in many areas such as PCR primer design,
microarrays, and probing genomic libraries [2–4].

In this paper we will improve on the algorithms presented
in [2] to solve the unique oligos search problem.This problem

requires us to determine all oligos that appear in one EST
sequence but not in any of the others. In addition, we will
consider two oligos to be virtually identical if they fall within
a certain number of mismatches from each other. In the
appendix we include all the algorithms used and developed
in this paper.

2. The Unique Oligos Search Problem

In this paper we use the notation HD(𝑥, 𝑦) to denote the
Hamming Distance between the strings 𝑥 and 𝑦. Given an
EST database 𝐷 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
}, where 𝑥

𝑖
is a string over

the alphabet {A,C,G,G}, integers 𝑑 and 𝑙, and 𝑙-mer 𝑦, we say
that 𝑦 occurs approximately in 𝐷 if there exists a substring 𝑧
of some EST 𝑥

𝑖
such that HD(𝑦, 𝑧) ≤ 𝑑. We also say that an

𝑚-mutant list of a string 𝑠 is a list of all possible strings, 𝑠∗, of
length |𝑠| over the alphabet {A,C,G,T} such that HD(𝑠, 𝑠∗) ≤
𝑚. Such a string 𝑠∗ is referred to as an𝑚-mutant of 𝑠. A unique
oligo of𝐷 is defined as an 𝑙-mer𝑢 such that𝑢 occurs exactly in
one EST and does not occur approximately in any other EST.
The unique oligos search problem is the problem of finding
all unique oligos in an EST database.
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Require: EST database𝐷 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
}, integer 𝑙 (length of unique oligos) and integer 𝑑

(maximum number of mismatches between non-unique oligos)
Ensure: All unique 𝑙-mers in𝐷
(1) 𝑞 ← 𝑙/(⌊𝑑/2⌋ + 1)

(2) 𝑝𝑜𝑠𝑖 ← findqmers(𝑞) (hashtable of positions of all qmers in𝐷)
(3) for 𝑖 ← 1 to 4𝑞 {split loop iterations among processors} do
(4) 𝑥 ← 𝑖 as a base 4 integer of length 𝑞
(5)𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑙𝑖𝑠𝑡 ← list of base 4 integers of length 𝑞mismatching 𝑥 by 1 digit
(6)𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑙𝑖𝑠𝑡 ← the numbers in𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑙𝑖𝑠𝑡 in base 10
(7)𝑚𝑢𝑡 ← list of each ℎ𝑎𝑠ℎ𝑡𝑎𝑏𝑙𝑒[𝑖] for all 𝑖 ∈ 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑙𝑖𝑠𝑡
(8) goo2(𝑞, 𝑙, 𝑑, 𝑝𝑜𝑠𝑖[𝑖], 𝑚𝑢𝑡)
(9) end for

Algorithm 1: Algorithm for the unique oligos problem.

Many algorithms have been presented to solve this prob-
lem [5, 6]. The algorithm presented in [2] relies on an obser-
vation that if two 𝑙-mers agree within a specific Hamming
Distance, then they must share a certain substring. These
observations are presented in this paper as theorems.

Theorem 1. Suppose one has two 𝑙-mers 𝑙
1
and 𝑙
2
such that

𝐻𝐷(𝑙
1
, 𝑙
2
) ≤ 𝑑. If one divides them both into ⌊𝑑/2⌋ + 1 sub-

strings, 𝑙1
1
𝑙2
1
⋅ ⋅ ⋅ 𝑙
⌊𝑑/2⌋+1

1
and 𝑙1
2
𝑙2
2
⋅ ⋅ ⋅ 𝑙
⌊𝑑/2⌋+1

2
, and each 𝑙𝑖

𝑗
, except

possibly 𝑙⌊𝑑/2⌋+1
𝑗

, has length ⌈𝑙/(⌊𝑑/2⌋ + 1)⌉, then there exists at
least one 𝑖

0
∈ {1, 2, . . . , ⌊𝑑/2⌋ + 1}, such that HD(𝑙𝑖0

1
, 𝑙
𝑖0

2
) ≤ 1.

Proof. Suppose by contradiction that for any 𝑖 ∈ {1, 2, . . . ,

⌊𝑑/2⌋ + 1}, 𝑙𝑖
1
and 𝑙

𝑖

2
have at least 2 mismatches. Then

HD(𝑙
1
, 𝑙
2
) ≥ 𝑑 + 2 which is a contradiction to the fact that

HD(𝑙
1
, 𝑙
2
) ≤ 𝑑.

Using this observation, an algorithm was presented in
[2] which solves the unique oligos search problem in time
𝑂((𝑙 − 𝑞)𝑞𝑟24𝑞). The algorithm can be thought of as a two-
phase method. In the first phase we record the position of
each 𝑞-mer in the database into a hash table of size 4𝑞. We
do so in such a way that for each 𝑞-mer 𝑥 over the alphabet
{A,C,G,T} we have that ℎ𝑎𝑠ℎ𝑡𝑎𝑏𝑙𝑒[ℎ𝑎𝑠ℎ𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛[𝑥]] =

{{𝑠
1
, 𝑝
1
}, {𝑠
2
, 𝑝
2
}, . . . , {𝑠

𝑛
, 𝑝
𝑛
}} whereby 𝑠

𝑖
is an EST sequence,

𝑝
𝑖
is the position of 𝑥 within that sequence, and 𝑛 is the

number of occurrences of 𝑥 in the database. In the second
phase, we extend every pair of identical 𝑞-mers into 𝑙-mers
and compare these 𝑙-mers for nonuniqueness. We also do the
same for pairs that have a Hamming Distance of 1. If they are
nonunique, wemark themaccordingly.Theorem 1 guarantees
that if an 𝑙-mer is nonunique, then it must share a 𝑞-mer
substring that differs by at most one character with another
𝑞-mer substring from another 𝑙-mer. Hence, if an 𝑙-mer is
nonunique, it will be marked during phase two.

Assuming there are 𝑛 symbols in our EST database, the
filing of the 𝑞-mers into the hash table takes time Θ(𝑞𝑛). In
phase two, we assume that the distribution of 𝑞-mers in the
database is uniform; in other words, that each table contains
𝑟 ≈ 𝑛/4

𝑞 entries. Thus we have 𝑂(𝑟2) comparisons within
each table entry. Each 𝑞-mer also has a 1-mutant list of size 3𝑞,

so, we have 𝑂(𝑞𝑟2) comparisons for each entry in the table.
Also, the time required to extend each pair of 𝑞-mers to 𝑙-
mers is 2(𝑙 − 𝑞 + 1). Given that we have 4𝑞 entries in the hash
table, we have a total time complexity of

𝑂((𝑙 − 𝑞) 𝑞𝑟
2
4
𝑞
) = 𝑂((𝑙 − 𝑞) 𝑞(

𝑛

4𝑞
)
2

4
𝑞
)

= 𝑂(
(𝑙 − 𝑞) 𝑞𝑛

2

4𝑞
) ,

(1)

where

𝑞 =
𝑙

⌊𝑑/2⌋ + 1
. (2)

In [7], several variations of Theorem 1 are presented. We
can use these theorems to generate similar algorithms with
slightly different time complexities.

Theorem 2. Suppose one has two 𝑙-mers 𝑙
1
and 𝑙
2
such that

HD(𝑙
1
, 𝑙
2
) ≤ 𝑑. If one divides them both into 𝑑 + 1 substrings,

𝑙1
1
𝑙2
1
⋅ ⋅ ⋅ 𝑙𝑑+1
1

and 𝑙1
2
𝑙2
2
⋅ ⋅ ⋅ 𝑙𝑑+1
2

, and each 𝑙𝑖
𝑗
, except possibly 𝑙𝑑+1

𝑗
, has

length ⌈𝑙/(𝑑+1)⌉, then there exists at least one 𝑖
0
∈ {1, 2, . . . , 𝑑+

1}, such that 𝑙𝑖0
1
= 𝑙
𝑖0

2
.

Proof. Suppose by contradiction that we cannot find any 𝑖
0
∈

{1, 2, . . . , 𝑑 + 1} such that 𝑙𝑖0
1
= 𝑙
𝑖0

2
. Then there exists at least

one mismatch between 𝑙𝑖
1
and 𝑙𝑖
2
for each 𝑖 ∈ {1, 2, . . . , 𝑑 + 1},

and thus we have at least 𝑑+ 1mismatches which contradicts
the fact that HD(𝑙

1
, 𝑙
2
) ≤ 𝑑.

Based on Theorem 2 we can design a second algorithm
that works in a similar way to Algorithm 1. The major differ-
ence between these algorithms is that in Algorithm 2 we are
not required to do comparisons with each hash table entries
mutant list. This means we have 𝑂(𝑟2) comparisons within
each table entry which yields a total time complexity of

𝑂((𝑙 − 𝑞) 𝑟
2
4
𝑞
) = 𝑂((𝑙 − 𝑞) (

𝑛

4𝑞
)
2

4
𝑞
)

= 𝑂(
(𝑙 − 𝑞) 𝑛

2

4𝑞
) ,

(3)
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Require: EST database𝐷 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
}, integer 𝑙 (length of unique oligos) and integer 𝑑

(maximum number of mismatches between non-unique oligos)
Ensure: All unique 𝑙-mers in𝐷
(1) 𝑞 ← 𝑙/(𝑑 + 1)

(2) 𝑝𝑜𝑠𝑖 ← findqmers(𝑞) (hashtable of positions of all qmers in𝐷)
(3) for 𝑖 ← 1 to 4𝑞 {split loop iterations among processors} do
(4) goo(𝑞, 𝑙, 𝑑, 𝑝𝑜𝑠𝑖[𝑖])
(5) end for

Algorithm 2: Algorithm for the unique oligos problem.

Require: EST database𝐷 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
}, integer 𝑙 (length of unique oligos) and integer 𝑑

(maximum number of mismatches between non-unique oligos)
Ensure: All unique 𝑙-mers in𝐷
(1) 𝑞 ← 𝑙/(⌊𝑑/3⌋ + 1)

(2) 𝑝𝑜𝑠𝑖 ← findqmers(𝑞) (hashtable of positions of all qmers in𝐷)
(3) for 𝑖 ← 1 to 4𝑞 {split loop iterations among processors} do
(4) 𝑥 ← 𝑖 as a base 4 integer of length 𝑞
(5)𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑙𝑖𝑠𝑡 ← list of base 4 integers of length 𝑞mismatching 𝑥 by at most 2 digits
(6)𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑙𝑖𝑠𝑡 ← the numbers in𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑙𝑖𝑠𝑡 in base 10
(7)𝑚𝑢𝑡 ← list of each ℎ𝑎𝑠ℎ𝑡𝑎𝑏𝑙𝑒[𝑖] for all 𝑖 ∈ 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑙𝑖𝑠𝑡
(8) goo2(𝑞, 𝑙, 𝑑, 𝑝𝑜𝑠𝑖[𝑖], 𝑚𝑢𝑡)
(9) end for

Algorithm 3: Algorithm for the unique oligos problem.

Require: EST database𝐷 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
}, integer 𝑞

Ensure: A hashtable of all 𝑞𝑚𝑒𝑟 positions.
(1) ℎ𝑎𝑠ℎ𝑡𝑎𝑏𝑙𝑒 ← a hashtable of all 𝑞𝑚𝑒𝑟 positions in𝐷
(2) for 𝑖 ← 1 to 𝑘 do
(3) for 𝑗 ← 1 to length(𝐷[𝑖]) − 𝑞 + 1 do
(4) ℎ𝑎𝑠ℎ𝑒𝑑𝑞𝑚𝑒𝑟 ←map(𝐷[𝑖], 𝑗, 𝑗 + 𝑞 − 1)
(5) ℎ𝑎𝑠ℎ𝑡𝑎𝑏𝑙𝑒[ℎ𝑎𝑠ℎ𝑒𝑑𝑞𝑚𝑒𝑟]← Append(hashtable[ℎ𝑎𝑠ℎ𝑒𝑑𝑞𝑚𝑒𝑟], {𝑖, 𝑗})
(6) end for
(7) end for

Algorithm 4: Findqmers (𝑞).

(1) 𝑟 ← substring(𝑠, 𝑖, 𝑗)
(2) 𝑡 ← 𝑟 under the transformation {A,C,G,T} → {0, 1, 2, 3}

(3) return 𝑡

Algorithm 5: Map (string 𝑠, 𝑖, 𝑗).

(1) 𝑟 ← substring of 𝑠 from character 𝑖 to character 𝑗
(2) return 𝑟

Algorithm 6: Substring (string 𝑠, 𝑖, 𝑗).
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(1) posi← a list of positions of a specified qmer in D
(𝑝𝑜𝑠𝑖 = {{𝑥

1
, 𝑦
1
}, {𝑥
2
, 𝑦
2
}, . . .} where {𝑥, 𝑦} corresponds to position 𝑦 of sequence 𝑥)

(2)mut← a list of positions of qmers in D that mismatch this qmer by either 1 or 2 characters
(depending on the filtration algorithm using this function)

(3) for 𝑖 ← 1 to length(𝑝𝑜𝑠𝑖) do
(4) for 𝑗 ← 𝑖 + 1 to length(𝑝𝑜𝑠𝑖) do
(5) if 𝑝𝑜𝑠𝑖[𝑖][1] ̸= 𝑝𝑜𝑠𝑖[𝑗][1] then
(6) 𝑙𝑞1 ← list of 𝑙-mers generated from the extension of the 𝑞𝑚𝑒𝑟 in position 𝑝𝑜𝑠𝑖[𝑖]
(7) 𝑙𝑞2 ← list of 𝑙-mers generated from the extension of the 𝑞𝑚𝑒𝑟 in position 𝑝𝑜𝑠𝑖[𝑗]
(8) for 𝑥 ← 1 to length(𝑙𝑞1) do
(9) for 𝑦 ← 1 to length(𝑙𝑞2) do
(10) if HD(𝑙𝑞1[𝑥], 𝑙𝑞2[𝑦]) ≤ 𝑑 then
(11) mark the 𝑙𝑚𝑒𝑟𝑠 as non-unique
(12) end if
(13) end for
(14) end for
(15) end if
(16) end for
(17) for 𝑘 ← 1 to length(𝑚𝑢𝑡) do
(18) if 𝑝𝑜𝑠𝑖[𝑖][1] ̸=𝑚𝑢𝑡[𝑘][1] then
(19) 𝑙𝑞1 ← list of 𝑙-mers generated from the extension of the 𝑞𝑚𝑒𝑟 in position 𝑝𝑜𝑠𝑖[𝑖]
(20) 𝑙𝑞2 ← list of 𝑙-mers generated from the extension of the 𝑞𝑚𝑒𝑟 in position𝑚𝑢𝑡[𝑘]
(21) for 𝑥 ← 1 to length(𝑙𝑞1) do
(22) for 𝑦 ← 1 to length(𝑙𝑞2) do
(23) if HD(𝑙𝑞1[𝑥], 𝑙𝑞2[𝑦]) ≤ 𝑑 then
(24) mark the 𝑙𝑚𝑒𝑟𝑠 as non-unique
(25) end if
(26) end for
(27) end for
(28) end if
(29) end for
(30) end for

Algorithm 7: goo2(𝑞, 𝑙, 𝑑, 𝑝𝑜𝑠𝑖, 𝑚𝑢𝑡).

(1) posi← a list of positions of qmer in D
(𝑝𝑜𝑠𝑖 = {{𝑥

1
, 𝑦
1
}, {𝑥
2
, 𝑦
2
}, . . .} where {𝑥, 𝑦} corresponds to position 𝑦 of sequence 𝑥)

(2) for 𝑖 ← 1 to length(𝑝𝑜𝑠𝑖) do
(3) for 𝑗 ← 𝑖 + 1 to length(𝑝𝑜𝑠𝑖) do
(4) if 𝑝𝑜𝑠𝑖[𝑖][1] ̸= 𝑝𝑜𝑠𝑖[𝑗][1] then
(5) 𝑙𝑞1 ← list of 𝑙-mers generated from the extension of the 𝑞𝑚𝑒𝑟 in position 𝑝𝑜𝑠𝑖[𝑖]
(6) 𝑙𝑞2 ← list of 𝑙-mers generated from the extension of the 𝑞𝑚𝑒𝑟 in position 𝑝𝑜𝑠𝑖[𝑗]
(7) for 𝑥 ← 1 to length(𝑙𝑞1) do
(8) for 𝑦 ← 1 to length(𝑙𝑞2) do
(9) if HD(𝑙𝑞1[𝑥], 𝑙𝑞2[𝑦]) ≤ 𝑑 then
(10) mark the 𝑙𝑚𝑒𝑟𝑠 as non-unique
(11) end if
(12) end for
(13) end for
(14) end if
(15) end for
(16) end for

Algorithm 8: goo(𝑞, 𝑙, 𝑑, 𝑝𝑜𝑠𝑖).
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Table 1: Results of serial algorithms.

Algorithm 𝑙 𝑑 𝑞 Dataset Time taken (secs) Non-unique oligos
Algorithm 2 28 6 4 1 (78 ESTs) 163 46,469
Algorithm 1 28 6 7 1 (78 ESTs) 131 46,469
Algorithm 3 27 6 9 1 (78 ESTs) 231 46,564
Algorithm 2 28 6 4 2 (2838 ESTs) 197, 500 1,611,241
Algorithm 1 28 6 7 2 (2838 ESTs) 117, 714 1,611,241
Algorithm 3 27 6 9 2 (2838 ESTs) 94, 317 1,614,235

Table 2: Results of parallel algorithms on 12 processors.

Algorithm 𝑙 𝑑 𝑞 Dataset Time taken (secs) Non-unique oligos
Algorithm 2 28 6 4 1 (78 ESTs) 33 46,469
Algorithm 1 28 6 7 1 (78 ESTs) 29 46,469
Algorithm 3 27 6 9 1 (78 ESTs) 66 46,564
Algorithm 2 28 6 4 2 (2838 ESTs) 40, 420 1,611,241
Algorithm 1 28 6 7 2 (2838 ESTs) 22, 848 1,611,241
Algorithm 1 27 6 9 2 (2838 ESTs) 18, 375 1,614,235

where

𝑞 =
𝑙

𝑑 + 1
. (4)

A third theorem was also briefly mentioned [7]; however,
it was not implemented in an algorithm.We use this theorem
to create a third algorithm to solve the unique oligos search
problem.

Theorem 3. Suppose one has two 𝑙-mers 𝑙
1
and 𝑙
2
such that

HD(𝑙
1
, 𝑙
2
) ≤ 𝑑. If one divides them both into ⌊𝑑/3⌋ + 1 sub-

strings, 𝑙1
1
𝑙2
1
⋅ ⋅ ⋅ 𝑙
⌊𝑑/3⌋+1

1
and 𝑙1
2
𝑙2
2
⋅ ⋅ ⋅ 𝑙
⌊𝑑/3⌋+1

2
, and each 𝑙𝑖

𝑗
, except

possibly 𝑙⌊𝑑/3⌋+1
𝑗

, has length ⌈𝑙/(⌊𝑑/3⌋ + 1)⌉, then there exists at
least one 𝑖

0
∈ {1, 2, . . . , ⌊𝑑/3⌋ + 1}, such that HD(𝑙𝑖0

1
, 𝑙
𝑖0

2
) ≤ 2.

Proof. Suppose by contradiction that for any 𝑖 ∈ {1, 2, . . . ,

⌊𝑑/3⌋ + 1}, 𝑙𝑖
1
and 𝑙𝑖

2
have at least 3 mismatches. Then

HD(𝑙
1
, 𝑙
2
) ≥ 𝑑 + 3 which is a contradiction to the fact that

HD(𝑙
1
, 𝑙
2
) ≤ 2.

The algorithm is somewhat similar to Algorithm 1. The
main difference is that we compare every 𝑞-mer to 𝑞-mers in
its corresponding 2-mutant list, rather than its 1-mutant list.
Each 𝑞-mer has 9 ( 𝑞

2
) + 3𝑞 = 9𝑞(𝑞 − 1)/2 + 3𝑞 2-mutants, so

we have𝑂(𝑞2𝑟2) comparisons for each entry in the hash table
yielding a total time complexity of

𝑂((𝑙 − 𝑞) 𝑞
2
𝑟
2
4
𝑞
) = 𝑂((𝑙 − 𝑞) 𝑞

2
(
𝑛

4𝑞
)
2

4
𝑞
)

= 𝑂(
(𝑙 − 𝑞) 𝑞2𝑛2

4𝑞
) ,

(5)

where

𝑞 =
𝑙

⌊𝑑/3⌋ + 1
. (6)

It is important to note the 4𝑞 term in the denominator
of our time complexity expressions. Since this term is expo-
nential, it will have the largest impact on the time taken to
run our algorithms. Based on this observation, we expect
Algorithm 3 to run the fastest, followed by Algorithm 1 and
then Algorithm 2.

3. Implementation

We implement these algorithms using C on a machine with
12 Intel Core i7 CPU 80 @ 3.33GHz processors and 12GB
of memory. The datasets we use in this implementation are
Barley ESTs taken from the genetic software HarvEST by
Steve Wanamaker and Timothy Close of the University of
California, Riverside (http://harvest.ucr.edu/). We use two
different EST databases, one with 78 ESTs and another with
2838. In our experiments we search for oligos of lengths
27 and 28 since they are common lengths for oligonu-
cleotides. As we increase the size of the database, we see that
Algorithm 3 is the most efficient as anticipated (data shown
in Tables 1 and 2).

One important thing to note about all of these algorithms
is the fact that the main portion of them is a for loop
which iterates through each index of the hash table. It is also
obvious that loop iterations are independent of each other.
These two factors make the algorithms perfect candidates for
parallelism. Rather than process the hash table one index
at a time, our parallel algorithms process groups of indices
simultaneously. Ignoring the communication between pro-
cessors, our algorithms optimally parallelize our three serial
algorithms.

There aremany APIs in different programming languages
that aid in the task of parallel programming. Some examples
of this in the C programming language are OpenMP and
POSIX Pthreads. OpenMP allows one to easily parallelize
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a C program amongst multiple cores of a multicore machine
[8]. OpenMP also has an extension called Cluster OpenMP
which allows one to parallelize across multiple machines in a
computing cluster.

A new trend in parallel programming is in the use of
GPUs.GPUs are the processing units inside computers graph-
ics card. C has several APIs which allow one to carry out GPU
programming. The two such APIs are OpenCL and CUDA
[9, 10].

In the second implementation of our algorithms we use
OpenMP to parallelize our algorithms throughout the 12
cores of our machine. We can easily see that we achieve near
optimal parallelization with our parallel algorithms; that is,
the time taken by the parallel algorithms is approximately that
of the serial algorithms divided by the number of processors.

4. Conclusion

In this paper we used three algorithms to solve the unique
oligos search problem which are extensions of the algo-
rithm presented in [2]. We observed that we can achieve
a significant performance improvement by parallelizing our
algorithms. We can also see that Algorithm 3 yields the best
results for larger databases. For smaller databases, however,
the time difference between each pair of algorithms is
negligible, but results in Algorithm 3 being the slowest, and
this is due to the time required to compute the mismatches of
each 𝑞-mer. Other algorithms can be obtained by setting 𝑞 to
different values. See Algorithms 1, 2, 3, 4, 5, 6, 7, and 8.
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