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Abstract

Black holes are one of the most important predictions of the general theory of relativ-

ity. Thus, mathematicians are always looking for ways to better study and understand

them. An important step towards our goal is to define what exactly a black hole is.

The causal mathematical definition is not very useful for many calculations and appli-

cations. As a result, we will define the concept of marginally outer trapped surfaces.

Marginally outer trapped surfaces or MOTS are closed, spacelike, two-surfaces for

which the outgoing null expansion θ(`) = 0 [6].

In this thesis, we will review both historic and recent developments regarding

MOTS. To this end, we begin with the general ideas, concepts, and strategies. Then

the necessary tools to construct and analyze the MOTS are recalled. The various

specific constructions and their properties (both successes and defects) are discussed.

Finally, some of the (actual and potential) applications of MOTS and specific con-

structions are briefly mentioned.
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Lay summary

The modern theory of gravity was introduced by Albert Einstein in 1915. In General

Relativity there is a one-to-one relationship between geometry and gravity. Black holes

are one of the most interesting predictions of general relativity. The Schwarzschild

solution or Schwarzschild black hole is named in honor of Karl Schwarzschild, who

found this exact solution in 1915 and published it in January 1916. It was the first

exact solution of the Einstein field equations other than the trivial flat space solution.

Since then black holes have become an important as well as interesting part of GR.

In the early days of general relativity, nobody believed that black holes actually exist.

However observational evidence of their existence is now overwhelming [13, 1].

One definition of black holes which is very common is that a black hole is a region

of spacetime from which even light cannot escape. But this global definition is not

very useful for understanding the dynamics of black holes. In this thesis, we want to

answer these questions: how can we define a black hole locally? And how can that

definition be used to better understand things like black hole mergers? We begin with

the definition of a marginal outer trapped surface (MOTS) and then we will discuss

what we know about them and what is our goal for the future.
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Chapter 1

Introduction

This thesis is a review of marginally outer trapped surfaces, so our goal in this chapter

is to explain why we are interested in these. To do this, we first need to introduce the

theory of general relativity which was proposed by Albert Einstein in 1915.

Before general relativity, Newton’s gravity was the best theory of gravity. This

theory changed the history of science and our understanding of gravity forever. How-

ever, we all know his theory had some flaws: the most famous one is its failure to

predict the perihelion shift of Mercury. General relativity (GR), as summarized by

John Wheeler, says “matter tells space how to curve, and space tells matter how to

move”[33]. From this quote we know that geometry plays an important role in general

relativity. We will show what exactly is general relativity and how gravity is related

to the geometry of spacetime. Einstein’s famous equation for gravity is

Rab −
1

2
Rgab = 8πTab. (1.1)

The right-hand side of this equation has the energy-momentum tensor Tab and the

left-hand side contains the geometry of spacetime: Rab is the Ricci curvature and R

is the Ricci scalar. The right-hand side describes the energy-momentum of matter

and contains information like the energy of fields and their flux. The left-hand side

describes the geometry of spacetime. If we want to solve this equation we should put

some restrictions on either the energy-momentum tensor or the geometry of space-

time. In Newtonian gravity, the background space is R3. However in Einstein’s gravity

our spacetime is a 4-dimensional Lorentzian manifold (M, g). We are using the usual
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convention (−+++) for the metric g. The Einstein field equations (1.1) are second-

order non-linear partial differential equations for the metric. Because both sides of

the equation are symmetric two-index tensors, we have ten coupled equations. The

Ricci tensor and Ricci scalar contain Christoffel symbols, their derivatives, and the

inverse of the metric. Solving these equations is extremely hard. To make progress,

we restrict our attention to particular classes of solutions. For example, as a trivial

vacuum solution with energy-momentum tensor Tab = 0, we have the flat Minkowski

spacetime solution

ηabdx
adxb = −dt2 + dx2 + dy2 + dz2. (1.2)

Non-trivial exact vacuum solutions are much harder to find. To make this task easier

we can put symmetry conditions on our metric. We will consider several symmetries,

including spherical symmetry, axisymmetric symmetry and also stationary spacetime,

which has a time symmetry.

Now we will examine some well-known solutions of GR. The most famous one is

the Schwarzchild solution [30]. Karl Schwarzschild discovered this black hole solution

in 1915 a very short period of time after GR was published. Schwarzschild considered

a static and spherical spacetime. In static, spherical coordinates, the solution is

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (1.3)

where

dΩ2 = dθ2 + sin2 θdφ2 (1.4)

and M is the mass of the object. Also 0 ≤ θ ≤ π, 0 ≤ φ < 2π and r > 0

The next solution is the Kerr black hole, which was published in 1963 [26]. This

solution is a rotating generalization of the Schwarzschild black hole:

ds2 =−
(
∆− a2 sin2 θ

Σ

)
dt2 − 2a sin2 θ (r2 + a2 −∆)

Σ
dtdφ

+

[
(r2 + a2)

2 −∆a2 sin2 θ

Σ

]
sin2 θdφ2 +

Σ

∆
dr2 + Σdθ2,

(1.5)

where a = J/M is angular momentum per unit mass,

Σ = r2 + a2 cos2 θ (1.6)
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and

∆ = r2 + a2 − 2Mr. (1.7)

Black holes are the most famous and definitely craziest prediction of General Rela-

tivity. In the beginning BHs (much like gravitational waves) were regarded as mathe-

matical objects or even science-fiction, even Einstein didn’t believe in them as physical

objects [15]. But we now know they are physical objects for which clear evidence ex-

ists [1, 13]. So we are now even more curious about their properties. In studying their

properties it’s important to have a proper mathematical definition. The causal defi-

nition of black holes, as discussed in [23], is not local. Instead, it is a global property

of the causal structure of an entire spacetime; one cannot properly identify a black

hole region without that global knowledge [6]. So now our mission is to look for an

alternative definition to describe the black holes.

We are doing so by introducing the concept of marginally outer trapped surfaces.

The goal of this thesis is to write a review on marginally outer trapped surfaces or

simply MOTS. The structure of this thesis is as follows. We introduce in Chapter

2 the background material we need for defining MOTS. In Chapter 3 we introduce

the concept of MOTS and we will find MOTS in a spherical spacetime. In Chapter

4 we will study the stability operator for MOTS; we want to see whether they are

stable or not. In Chapter 5 we will introduce a recently developed method [10] to

find MOTS in axisymmetric spacetime. Finally, in Chapter 6 we will study MOTS in

higher dimensions and then the relationship between the stability of a MOTS and its

topology.



Chapter 2

Background

In this chapter, we introduce definitions which set the background for the general

theory of relativity. Before general relativity, Newtonian gravity was the way to

go. There the gravitational force was an instantaneous force which affects objects

no matter how much distance there is between them. But when Einstein published

his paper in 1915 [14], he changed our understanding of gravity. His earlier 1905

work on special relativity [16] also changed our view about space and time when

he introduced the concept of spacetime. In this section, we will briefly go through

Einstein’s equations which describe gravity in a geometric way. As mentioned earlier,

general relativity basically uses the geometry of spacetime to describe gravity and

so we need to understand the geometry of our spacetime. In simple terms, gravity

is just the curvature of spacetime. As such, in this chapter, we will heavily rely on

geometric definitions. Marginally outer trapped surfaces, or just simply MOTS, are

closely related to geodesics or minimal surfaces.

2.1 Geometric definitions

In this section, we give the geometric definitions that we need in future sections.

Definition 2.1.1 (Isometry [34]). If φ : M → M is a diffeomorphism and we have

metric tensor gab we say φ is an isometry if and only if φ∗gab = gab.

Definition 2.1.2 (Conformal Isometry [34]). A conformal isometry, φ, on a mani-

fold M with metric gab, is defined to be a diffeomorphism φ :M →M for which there
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is a positive function Ω such that φ∗gab = Ω2gab.

Definition 2.1.3 (Orbit [34]). Let G be a Lie group, let B be a manifold, and consider

a C∞ map φ : G×B → B. We write φ(g, p) as φg(p). The map φ is a left action of G

on B if (i) for each fixed g ∈ G, the map φg : B → B is a diffeomorphism and (ii) for

all g1, g2 ∈ G, we have φg1 ◦ φg2 = φg1g2 . For each p ∈ B the set O = {φg(p) | g ∈ G}
of p is called the orbit of p under G.

Definition 2.1.4 (Local Frames [27]). A local frame is a choice of smooth vector

fields v1,...,vi...,vN defined on an open set U ⊂ M such that at each point p ∈ U ,

v1,...,vi...,vN forms a basis of the tangent space TpM .

Definition 2.1.5 (Volume [27]). Given M and Riemannian metric gab we define

dvolM := (
√

det g)v1 ∧ · · · ∧ vN , (2.1)

where v1,...,vN denote the local coframe dual to v1,...,vN frame and det g = det (g (vi, vj)).

2.2 Spacetime

Though in the realm of GR, we usually work in four dimensions, this is not always the

case. So we define spacetime as a D-dimensional manifold (M, g) with a Lorentzian

metric. Then we have three distinct groups of vectors in the tangent space of our

manifold M . Suppose we have p ∈ M and X ∈ TpM then we can have one of these

cases.

1) If g(X,X) < 0 we say that X is timelike. Curves with timelike tangent vectors

are traveling with speed slower than light.

2) If g(X,X) > 0 we say that X is spacelike. Curves with spacelike tangent

vectors would be travelling faster than the speed of light.

3) If g(X,X) = 0 we say that X is lightlike or null. Curves with null tangent

vectors are traveling at the speed of light.

Definition 2.2.1 (Causal curve). A curve is a casual curve if the tangent vector is

timelike or null at all points on the curve.

Definition 2.2.2 (Strongly Causal [34]). A spacetime (M, gab) is said to be strongly

causal if for all p ∈ M and every neighborhood O of p, there exists a neighborhood
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V of p contained in O such that no causal curve intersects V more than once. The

motivation behind this definition is to prevent the existence of closed, timelike curves,

which are viewed as unphysical since they correspond to time travel.

2.2.1 Geometry of Spacetime

Definition 2.2.3 (Isometry Group [34]). If we have Riemannian manifold (M, gab)

the isometry group is the group of Riemannian isometries F : (M, g) → (M, g) with

the function composition as group operation.

Definition 2.2.4 (Spherical symmetry [34]). A spacetime is spherically symmetric

if its isometry group contains a subgroup isomorphic to the group SO(3), and the

orbits of this subgroup are two-dimensional spheres. From the physics point of view,

these spherically symmetric spacetimes are invariant under all rotations around the

same point.

Definition 2.2.5 (Stationary spacetime [34]). A spacetime is said to be stationary if

there exists a one-parameter group of isometries, φt, whose orbits are timelike curves.

This group of isometries expresses the time translation symmetry of the spacetime.

Equivalently, a stationary space-time is one which possesses a timelike Killing vector

field, ξa. A spacetime is said to be static if it is stationary and if, in addition, there

exists a (spacelike) hypersurface Σ which is orthogonal to the orbits of the isometry.

Definition 2.2.6 (Axisymmetric spacetime [34]). A spacetime is said to be axisym-

metric if there exists a one-parameter group of isometries χφ whose orbits are closed

spacelike curves. This implies the existence of a spacelike Killing field ψa whose

integral curves are closed.

2.2.2 Asymptotically flat spacetime

In general relativity sometimes we want to study an isolated system and its behavior.

For example, if we’re going to study a black hole, we want to ignore the effect of distant

matter and study the black hole in an otherwise empty universe. Asymptotically

flat spacetimes represent ideally isolated systems in general relativity [34] for which

spacetime far from the centre approaches flat (Minkowski) space. Intuitively by null
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infinity we mean where all null geodesics end up and for spacelike infinity this is end

of all outward traveling spacelike geodesics.

Definition 2.2.7 (Asymptotically Flat Spacetime [34]). A vacuum spacetime (M, gab)

is said to be asymptotically flat at null and spatial infinity if there exists a spacetime(
M̃, g̃ab

)
-with g̃ab C

∞ everywhere except possibly at a point i0 where it is C>0(i.e.

meaning g̃ab will be continuous) and a conformal isometry ψ : M → ψ[M ] ⊂ M̃ with

conformal factor Ω satisfying the following conditions :

(1) J+ (i0) ∪ J− (i0) = M̃ −M where J+ (i0) is the closure of the causal future,

J+ (i0) .

(2) There exists an open neighborhood,V , of Ṁ = i0 ∪ I + ∪ I − such that the

spacetime (V, g̃ab) is strongly causal. Ṁ is the boundary of M .

(3) Ω can be extended to a function on all of M̃ which is C2 at i0 and C∞ elsewhere.

2.3 General Relativity

In this section, we will briefly go through Einstein’s equations. As we mentioned ear-

lier, gravity is caused by the curvature of spacetime. Suppose (M, g) is our spacetime.

In general relativity, continuous matter distributions and fields are again described by

a stress-energy tensor Tab [34] and we have Riemannian curvature tensor Rabcd. Then

the Einstein field equations are

Rab −
1

2
Rgab = 8πTab. (2.2)

2.3.1 Riemann Tensor

Before defining the Riemann tensor we need to define the Lie bracket which is used

in the definition of Riemann tensor.

Definition 2.3.1 (Lie Bracket [25]). Suppose we have a manifold M . For vector

fields X, Y on M , the Lie bracket is

[X, Y ] := Xb∂Y
a

∂xb
∂

∂xa
− Y b∂X

a

∂xb
∂

∂xa
(2.3)
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As we know, curvature of spacetime plays a crucial role in GR, so we need to give

the proper definitions of the curvatures we are using for spacetime.

Definition 2.3.2 (Riemann tensor [25]). Given a covariant derivative ∇, where is a

Levi-Civita connection associated with the metric, if we have three vector fields X,Y

and Z we can define the curvature tensor

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (2.4)

If we write in local coordinates we will get

R

(
∂

∂xa
,
∂

∂xb

)
∂

∂xc
= Rd

cab

∂

∂xd
. (2.5)

Now we have

Rabcd = gaeR
e
bcd. (2.6)

We define the Ricci tensor

Rab = gcdRacbd (2.7)

and the Ricci scalar is

R = gabRab. (2.8)

Next we define the Gauss curvature.

Definition 2.3.3 (Gauss Curvature [27]). If we have a two-dimensional manifold M ,

we will define the Gauss curvature based on the Riemann tensor,

Rabcd = K (gacgbd − gabgcd) , (2.9)

where the function K = K(x) is called Gauss curvature. Contracting both sides by

gacgbd we can see K = R/2.

Definition 2.3.4 (Extrinsic Curvature). If we have Σ as a hypersurface in M we can

define the extrinsic curvature Kij of Σ as follow:

Kij = eai e
b
j∇aub, (2.10)

where eai =
∂xa

∂yi
and yi(i = 1, 2, 3) are coordinates intrinsic to the hypersurface Σ. in a

local coordinate system xa forM,Σ is described locally by the immerision xa = xa (yi).
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Definition 2.3.5 (Gauss-Codazzi equations). The Gauss-Codazzi equations re-

late the induced metric and extrinsic curvature of a hypersurface to the geometry of

the ambient Lorentzian manifold surface:

Rabcde
a
i e
b
je
c
ke
d
l = Rijkl − (KilKjk −KikKjl) (2.11)

Rcabdu
ceai e

b
je
d
k = DkKij −DjKik (2.12)

Here uc is the future-oriented unit normal to Σ.

2.4 Dominant energy condition

If Tab is the energy-momentum tensor, we will say Tab satisfies the dominant energy

condition if for all future-directed causal vectors X and Y we have

TabX
aY b ≥ 0. (2.13)

In particular this implies the weak (null) energy condition which says that if X is

timelike (null) then TabX
aXb ≥ 0 which, from the physics point of view, says that

the energy density of matter, as measured by an observer whose four-velocity is Xa,

is non-negative. Physicists believe that for all classical matter the energy density

of matter for every timelike Xa is nonnegative. The dominant energy condition is

interpreted as saying that the speed of energy flow of matter is always less than the

speed of light [34] .

2.5 Gauss-Bonnet Theorem

In this part we will quickly review the Gauss-Bonnet theorem. The importance of

this theorem is that it relates the topology of a manifold to its geometry. First we

will introduce the Euler characteristic χ. This is a topological invariant which means

it will not change if we continuously deform our manifold. For example χ for a sphere

is two, while for a torus it is zero.
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Theorem 1 (Gauss-Bonnet Theorem [32]). Let M be a compact, oriented, two-

dimensional Riemannian manifold with Gaussian curvature K. Then we have the

following relationship:

χ(M) =
1

2π

∫

M

KdVolM. (2.14)

2.6 Geodesics

People including myself often use the term of “the shortest curve between two points”

as a casual definition for geodesics. However, geodesics are not necessarily minimizing

but they are critical points of the length functional.

Definition 2.6.1 (Geodesics). Suppose we have a Riemannian manifold (M, g) with

a connection ∇. A curve γ : I →M is a geodesic if

∇γ′γ
′ = 0. (2.15)

As an example, the most famous geodesics are straight lines in Euclidean space.

If our curve is arc length parameterized then the geodesic equations will take the

coordinate form
dT a

ds
+ ΓabcT

bT c = 0, (2.16)

where T a = dγa/ds is the unit tangent vector. For example, for a two-dimensional

sphere we have

ds2 = R2dΘ2 +R2 sin2 ΘdΦ2, (2.17)

and these two equations will give us the following equation for the geodesics:

Θ̈− (sinΘ cosΘ)Φ̇2 = 0 (2.18)

and

Φ̈ + 2(cotΘ)Θ̇Φ̇ = 0. (2.19)

Solutions to these two equations are great circles on the sphere.
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Figure 2.1: The red arc is the shortest curve between p and q, however the dotted
path is not but both of them are geodesics [35]

Figure 2.2: A congruence of geodesics [7]
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2.6.1 First Variation Of Length

As we mentioned earlier and as is demonstrated in Figure (2.1), geodesics are not

necessarily the shortest curve between two points. So we need some sort of a test

for determining whether the geodesic is locally minimal or some kind of saddle point.

Similarly to a multi-variable function, we will use the first and the second derivative

test for the length functional. As you can see in Figure 2.2 we consider a congruence

of geodesics. So we want to see what will happen if we deform a geodesic to a nearby

curve which is not necessarily geodesic. χ labels which curve we are on and λ is an

affine parameter on the geodesic. These two λ and χ form a coordinate system for

the congruence of geodesics. The tangent vectors to these curves are

Λ =
∂

∂λ
(2.20)

and

X =
∂

∂χ
. (2.21)

Because they are coordinate vectors we have

[X ,Λ] = 0. (2.22)

Let T be the unit tangent vector to curves of constant χ and N be the unit tangent

vector to curves of constant λ. Then

Λ = αT and X = ϕN (2.23)

for some functions α and ϕ. By construction X is perpendicular to Λ on Γ and we

can choose α|Γ = 1. The overdot and δ are shorthand for derivative operators:

˙ = Λa∇a =
∂

∂λ
, δ = χa∇a =

∂

∂χ
. (2.24)

So

Ṫ b = Λa∇aT
b (2.25)

but Λ = αT so we have

Ṫ b = αT a∇aT
b. (2.26)
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Before starting our calculations we should mention a few important results. We will

start with calculating T a∇aT
b which we can write it with respect to the basis N and

T :

T a∇aT
b = AN b +BT b (2.27)

for some coefficents A and B. We know T bNb = 0 so

TbT
a∇aT

b = Tb(AN
b +BT b). (2.28)

The left-hand side TbT
a∇aT

b = 0 and we know T bNb = 0 so we will have

0 = AN bTb +BT bTb = B. (2.29)

Hence

T a∇aT
b = κN b (2.30)

for some function which we call curvature κ. Similarly for the T a∇aN
b we can show

T a∇aN
b = −κT b. (2.31)

For the Na∇aT
b we can write the same way for Na∇aT

b

Na∇aT
b = ÃT b + B̃N b, (2.32)

for some Ã and B̃. Then by the same methods we have

Na∇aT
b = −µN b (2.33)

and

Na∇aN
b = µT b, (2.34)

for some µ. Therefore

Ṫ = ακN and Ṅ = −ακT (2.35)

and

δN = ϕµT and δT = −ϕµN. (2.36)
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We calculate the Lie bracket as

0 = [X ,Λ]a = X c∇cΛ
a − Λc∇cX a. (2.37)

However X c∇cΛ
a = δΛa and Λ = αT so Λb∇bX a = d

dλ
(ϕNa) . Then by the product

rule, we have

[X ,Λ]a = (δα)T a + αδT a − ϕ̇Na − ϕṄa

= (δα)T a − αϕµNa − ϕ̇Na + αϕκT a

= (δα + αϕκ)T a − (ϕ̇+ αµϕ)Na = 0.

However T and N are linearly independent so the coefficients must individually

vanish:

δα + αϕκ = 0 (2.38)

and

ϕ̇+ αµϕ = 0. (2.39)

Therefore

δα = −αϕκ, ϕ̇ = −αϕµ. (2.40)

Next, let us define the length functional. The length of a curve in Riemannian

geometry is:

`(χ) =

∫ λ2

λ1

dλ
√
gabΛaΛb =

∫ λ2

λ1

dλα. (2.41)

Letting δ = ∂/∂χ and using overdots for derivatives with respect to λ, we want to

calculate the first variation. We have:

δ` =

∫

Γ

dλδα = −
∫

Γ

dλαϕκ. (2.42)

ds = αdλ so we have

δ` = −
∫

Γ

dsκϕ. (2.43)

We want an extremal length so should have

δ`|Γ = 0 for all ϕ. (2.44)
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Hence we have for κ = 0 for X = 0. That is, κ = 0 for a geodesic.

2.6.2 Second Variation Of Length

We assume the first variation of length is zero. Now we calculate the second variation,

δ2` = −
∫

Γ

dλδ (ακϕ) . (2.45)

Because of the product rule, we will have

δ2` =

∫

Γ

dλ[δ(αϕ)κ+ α2ϕδκ]. (2.46)

Then

ϕ̇ = −αµϕ (2.47)

and

δα = −ακ2. (2.48)

From earlier (2.35):

T a∇aX b =
1

α
Λa∇a

(
ϕN b

)
(2.49)

so

T a∇aX b =
1

α

(
ϕ̇N b − ακϕT a

)
(2.50)

and therefore

T a∇aX b =
ϕ̇

α
N b − κϕT a. (2.51)

We first calculate

δκ = δ
(
N bT a∇aT

b
)
. (2.52)

With the product rule we will get

δκ = δN b(T a∇aTb) + δT a(N b∇aT
b) + δ(∇aT

b)(N bT a) (2.53)

so we can rewrite

δκ =
(
δN bT a +N bδT a

)
∇aTb +N bT aχc∇c∇aTb (2.54)
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but we have δT a = ϕ
α
Na and δNa = − ϕ̇

α
T a and also by the definition of the Riemann

tensor

RcabdT
d +∇a∇cTb = ∇c∇aTb. (2.55)

Therefore

δκ =
ϕ̇

α

(
−T bT a +N bNa

)
∇aTb +N bT aXc

[
RcabdT

d +∇a∇cTb
]
. (2.56)

We can change the order of χ and Λ (2.22). Therefore

N bNa∇aTb = N bT a∇aNb.

We also have X = ϕN , so if we replace them and use the previous result we have

δκ = − ϕ̇
α

(
TbN

a∇aN
b
)
+ ϕRcabdN

cT aN bT d +N bT aχc∇a∇cTb. (2.57)

In our case we are interested in curves on 2D manifolds so we can rewrite our Rie-

mannian curvature tensor in terms of Gauss curvature (2.9). Then

ϕRcabdN
cT aN bT d = ϕKqcbqadN cT aN bT d − ϕKqcdqabN cT aN bT d (2.58)

and we have

ϕKqcbqadN cT aN bT d = ϕKN cNcT
aTa. (2.59)

But N cNc = 1 and T aTa = 1 so we obtain

ϕKqcbqadN cT aN bT d = ϕK. (2.60)

For the second part, we have

ϕKqadqbcN cT aN bT d = 0 (2.61)

and so

δκ = − ϕ̇
α
µ+Kϕ+N bT a∇a (X c∇cTb)−N b (T a∇aX c)∇cTb (2.62)

=
ϕ̇

α

(
ϕ̇

αϕ

)
+Kϕ+N bT a∇a

(
ϕ̇

α
Nb

)
+N b(

ϕ̇

α
N c − κϕT c)∇cTb (2.63)
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=
1

ϕ

(
ϕ̇

α

)2

+Kϕ+
1

α
Λa∇a

(
ϕ̇

α

)
+
ϕ̇

α
TbN

c∇cN
b + κϕN bT c∇cTb (2.64)

=
1

ϕ

(
ϕ̇

α

)2

+Kϕ+
1

α
Λa∇a

(
ϕ̇

α

)
+
ϕ̇

α
µ+ κ2ϕ (2.65)

=
1

ϕ

(
ϕ̇

α

)2

+Kϕ+
1

α
Λa∇a

(
ϕ̇

α

)
+
ϕ̇

α

(
− ϕ̇

ϕα

)
+ κ2ϕ (2.66)

= T a∇a

(
T b∇bϕ

)
+
(
K + κ2

)
ϕ. (2.67)

Then we have

δ2` = −
∫

Γ

dλ
(
δ(αϕ)κ+ αϕ

[
ϕTT +

(
K + κ2

)
ϕ
])

(2.68)

= −
∫

Γ

dλ
(
αKδϕ+ κϕδα + αϕϕTT + αϕ

[
K + κ2

]
ϕ
)

(2.69)

= −
∫

Γ

dλ
(
αKδϕ+ κϕ [−ακϕ] + αϕϕTT + αϕKϕ+ ακ2ϕ2

)
(2.70)

= −
∫

Γ

dλ
(
α2ϕ [ϕTT +Kϕ] + ακδϕ

)
. (2.71)

Therefore

δ2` =

∫

Γ

ds(ϕJϕ+ κδϕ) (2.72)

where Jϕ := −ϕTT−Kϕ is called the Jacobi operator. Note that for a geodesic κ = 0.

We can rewrite the eigenvalue problem for the Jacobi operator as
(
d2

ds2
+K

)
ϕ = −ξϕ

where ξ is an eigenvalue and ϕ the corresponding eigenfunction. The Jacobi operator

can be understood via Sturm-Liouville theory. Then it has real eigenvalues and we can

set them in order ξ0 < ξ1 < ξ2 · · · < ξn < · · · → ∞. We call the smallest eigenvalue

the principal eigenvalue. So if the principal eigenvalue ξ0 > 0, then we have minimum

length. If ξ0 < 0, the curve is not a minimum. If ξ0 = 0, the test is inconclusive, and

we need to go to the third variation of length functional.

2.6.3 Third Variation

In this section [8], we assume the first and second variations are zero in the ϕ direction.

For the third variation first we will calculate δ(ακ) with the product rule, we have

δ(ακ) = αδκ+ κδα (2.73)
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= α(ϕTT +
[
K + κ2

]
ϕ)− ακ2ϕ (2.74)

= α (ϕTT + κϕ) . (2.75)

For a general function H, we want to calculate δHT . With our notation, HT is equal

to T a∇aH. We can replace T with Λ and with our notation and using the product

rule we will get

δHT = δ

(
1

α
Ḣ

)
= −δα

α2
Ḣ +

1

α
δḢ. (2.76)

But we have δα = −αϕκ so we get

=
1

α
κ2ϕḢ +

d

ds
(δH) =

d

ds
(δH) + κ2ϕ

dH

ds
. (2.77)

If we replace H by ϕT we will have

δϕTT =
d

ds
(δϕT ) + κϕϕTT . (2.78)

So the final form of the third variation will be

ϕδϕTT = ϕ

(
d

ds
(δϕT ) + κϕϕTT

)
(2.79)

=
d

ds
(ϕδϕT )− ϕT δϕT + κϕ2ϕTT (2.80)

=
d

ds
(ϕδϕT )− ϕT

(
d

ds
δϕ+ κϕϕT

)
+ κϕ2ϕTT (2.81)

=
d

ds
(ϕδϕT )− ϕT

(
d

ds
δϕ+ κϕϕT

)
+ κϕ2ϕTT (2.82)

=
d

ds
(ϕδϕT )−

d

ds
(ϕT δϕ) + ϕTT δϕ− κϕϕ2

T + κϕϕTT (2.83)

=
d

ds
(ϕδϕT − ϕT δϕ) + ϕTT δϕ+ κϕ

(
ϕϕTT − ϕ2

T

)
. (2.84)

Therefore we will have

ϕδ(Jϕ) = ϕδϕTT + ϕ2δK +Kϕδϕ (2.85)

d

ds
(ϕδϕT − ϕT δϕ) + (ϕTT + κϕ) δϕ+ ϕ3KN + κϕ

(
ϕϕTT − ϕ2

T

)
(2.86)
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Therefore

δ3` = −
∫

Γ

dλδ(αϕJϕ+ ακδ2ϕ) (2.87)

δ3` = −
∫

Γ

dλ
[
(−ακϕ) (ϕJϕ+ κδ2ϕ) + αδϕJϕ+ αϕδ(Jϕ) + δ(ακ)δϕ+ ακδ2ϕ

]

(2.88)

= −
∫

Γ

dλα(κϕ2Jϕ− κ2ϕδϕ+ (Jϕ) δϕ+ (Jϕ)δϕ+ κδ2ϕ+ (Jϕ)δϕ (2.89)

+ ϕ3KN + κϕ
(
ϕ2ϕTT − ϕ2

T

)
(2.90)

= −
∫

Γ

ds(κδ2ϕ+
(
3Jϕ− κ2ϕ

)
δϕ+ ϕ2 (ϕKN − κJϕ) + κϕ(ϕϕTT − ϕ2

T ) (2.91)

=

∫

Γ

ds(κδ2ϕ+ 3Jϕ− κ2
)
)δϕ+ ϕ2 (ϕKN − κJϕ) + κϕ

(
ϕϕ2

TT − ϕ2
T

)
(2.92)

but most of the terms are zero because the first and second variation vanish so we get

δ3` = −
∫

Γ

dsKNϕ
3. (2.93)

2.7 Minimal surfaces

We now consider minimal surfaces: the surface generalization of a geodesic. For

geodesics, we considered a one-parameter family of curves between two fixed points.

Here we will consider the analogous case for the area functional. Suppose we have Σ

as our D dimensional Riemannian manifold and we have a hypersurface S in Σ. We

want to know how the surface area of S changes when we deform that surface in the

direction of a normal vector. We start with the definition of area functional:

Area(S) =
∫

S

1dA. (2.94)

Let the normal vector to S in Σ be n and ϕ be a smooth function. We now

calculate how the area of S changes if deform it in the direction of nϕ. Suppose

q = det (qAB) where qAB is the induced metric on surface S. Then (2.94) becomes

A =

∫

S

√
qdD−1x. (2.95)
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We now consider a congruence of curves which pass through S and which may be

parameterized as X
(
λ, xA

)
such that: 1) X

(
0, xA

)
parametrizes S itself and 2)

∂
∂λ

∣∣
λ=0

= nϕ. We can then use this to evolve S into a family of surfaces Sλ, then
the first variation of the area is:

∂A

∂λ
=

∫

S

1

2
√
q
L ∂

∂λ

qdD−1x. (2.96)

So we will get

∂A

∂λ
=

∫

S

1√
q
qqABL ∂

∂λ

qABd
D−1x (2.97)

=

∫

S

1

2
√
q
qqAB (2ϕKAB) d

D−1x. (2.98)

The trace of extrinsic curvature is

K = qABKAB (2.99)

Therefore we will get
∂A

∂λ
=

∫

S

√
qϕKdD−1x. (2.100)

So minimal surfaces are the surfaces with K = 0.

Now we want to see how our minimal surface will change if we deform it in the

direction normal to the surface. We want to derive the second variation of area based

on the information which we have about our surface, not with the respect to the

ambient space, so we will first derive some relationships and formulas which will be

useful in our future calculations.

We know
(
∂
∂λ

)i
= ϕni ⇒ (dλ)i =

1
ϕ
ni. Then we have

niDinj = niDi (ϕ[dλ]j) . (2.101)

Applying the product rule for the covariant derivative, we obtain

niDinj = (niDiϕ)[dλ]j + ϕniDiDjλ (2.102)

=

[
1

ϕ
niDiϕ

]
nj + ϕniDjDiλ (2.103)
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=

[
1

ϕ
niDiϕ

]
nj + ϕniDj

[
1

ϕ
ni

]
(2.104)

=

[
1

ϕ
niDiϕ

]
nj −

1

ϕ
Djϕ (2.105)

so we will get

niDinj =
1

ϕ

(
ninj − hij

)
Diϕ = − 1

ϕ
Djϕ. (2.106)

For the covariant derivative of extrinsic curvature, we have:

∂

∂λ
K = DΛK (2.107)

= ΛkDkK. (2.108)

We have Λ = ϕn so we will have

ϕnkDkK = ϕnkDk

[
qijDinj

]
(2.109)

= ϕnkDk

[
qijDinj

]
. (2.110)

We have hij = qij + ninj so we will have

ϕnkDkK = ϕnkDk

[(
hij − ninj

)
Dinj

]
. (2.111)

We have

nini = 1 (2.112)

so we have

ninjDinj = 0. (2.113)

Therefore we have

nkDk[−ninjDinj] = 0. (2.114)

Again with the help of the product rule, we have

ϕnk∇k[h
ijDinj] = ϕnkDk(h

ij)(Dinj) + ϕnkDk(Dinj)(h
ij). (2.115)
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But Dkh
ij = 0 so we will get

ϕnkDk[h
ijDinj] = ϕhijnkDkDinj. (2.116)

With the definition of the Riemann tensor we have

ϕnkDk[h
ijDinj] = ϕhijnk

(
Rkij

lnl +DiDknj
)

(2.117)

= ϕ
(
−hijRikjln

knl + hijnkDiDknj
)

(2.118)

= −ϕRkln
knl + ϕhijnkDiDknj. (2.119)

We can rewrite the Ricci tensor by

R =
(
hik + nink

) (
hjl + njnl

)
Rijkl (2.120)

= qikqjlRijkl + qiknjnlRijkl + qjlninkRijkl + ninjnknlRijkl. (2.121)

We can relabel b to a and d to c and use the following Riemannian tensor symmetries:

Rjikl = −Rijkl (2.122)

and also we have

Rijkl = −Rijlk (2.123)

so

qjlninkRijkl = −qjlninkRjikl. (2.124)

Using the skew symmetry we will get

−qjlninkRjikl = −(−qjlninkRjilk) (2.125)

so we can rewrite

qjlninkRijkl = qjlninkRjilk

with the help of skew symmetries for the first two indices and two last indices. Rela-

beling

qjlninkRijkl = qiknjnlRijkl. (2.126)
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We want to show the last term of (2.121) is zero,

ninjnknlRijkl = 0.

We know

Rijkl = −Rjikl. (2.127)

Relabeling i to j, the term should be the same so

ninjnknlRijkl = ninjnknlRjikl. (2.128)

But with the use of skew symmetry property of Riemannian tensor

ninjnknlRijkl = −ninjnknlRijkl (2.129)

so

ninjnknlRijkl = 0. (2.130)

Therefore we will have

R = qikhjlRijkl + 2qiknjnlRijkl. (2.131)

So

R = qACqBD (RABCD +KACKBD −KADKBC) + 2hiknjnlRijlk (2.132)

= qACqBD (RABCD +KACKBD −KADKBC) + 2hiknjnlRijkl. (2.133)

As a result, we obtain

Rjln
jnl =

1

2

(
R−R +K2 −KABK

AB
)
. (2.134)

Now we expand the second term. With the use of the inverse of the product rule,

we get

hijnkDiDknj = hij[Da

(
nKDknj

)
−
(
Dan

k
)
(Dknj)

]
. (2.135)
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We want to calculate the term hij(Din
k)(Dknj)]. First we have

hij = qij + ninj

and also can write

Din
k = Dinlh

lk. (2.136)

The covariant derivative of the metric is zero and so we can write this as

Din
k = hlkDinl. (2.137)

Then

hij(Din
c)(Dknj) = (qij + ninj)(Dink)(q

kl + nknl)(Dlnj) (2.138)

but we have ninkDink and njnlDlnj are both zero so we will have

hij(Din
k)(Djnj) = qijqklDinkDlnj (2.139)

= hijDa

(−1

ϕ
djϕ

)
− (qij)(Dink)(q

kl)(Dlnj). (2.140)

Applying the product rule for covariant derivative, we have

−1

ϕ
djϕ = − 1

ϕ
Didjϕ+

1

ϕ2
[Diϕ][djϕ] (2.141)

so

=
(
qij + ninj

)(
− 1

ϕ
Didjϕ+

1

ϕ2
[Diϕ] [djϕ]

)
−KikK

ik. (2.142)

The induced covariant derivative on S is defined as follows

diAj ≡ qi
kqj

lDkAl. (2.143)

Then

qij
1

ϕ
Didjϕ =

1

ϕ
qijDidjϕ (2.144)

= qijqi
kqj

lDkAl (2.145)

= didjϕ. (2.146)
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We have

ninj
1

ϕ2
[Diϕ][djϕ] = 0 (2.147)

and

niDinj = − 1

ϕ
djϕ (2.148)

so we can rewrite

= − 1

ϕ
didiϕ− 1

ϕ
ninjDi [djϕ] +

1

ϕ2
(diϕ)

(
diϕ
)
−KikK

ik (2.149)

= − 1

ϕ
d2ϕ+

1

ϕ
djϕn

iDin
j +

1

ϕ2
(diϕ)

(
diϕ
)
−KABK

AB (2.150)

= − 1

ϕ
d2ϕ− 1

ϕ2
(djϕ)

(
djϕ
)
+

1

ϕ2
(diϕ)

(
diϕ
)
−KABk

AB (2.151)

= −1

2
d2ϕ−KABK

AB. (2.152)

Hence we obtain

∂

∂λ
K = −1

2
ϕ
(
R−R +K2 −KABK

AB
)
− d2ϕ− ϕKABK

AB (2.153)

= −d2ϕ− 1

2
ϕ
(
R−R +K2 +KABK

AB
)
. (2.154)

For a minimal surface K = 0 and so

∂

∂λ
(
√
qϕK) =

√
qϕ
∂K

∂λ
+K

∂

∂λ
(
√
qϕ). (2.155)

As a result, the second term is zero, so we will get

∂

∂λ
(
√
qϕK) =

√
qϕ
∂K

∂λ
+K

∂

∂λ
(
√
qϕ) = −√

qϕ

(
d2ϕ+

1

2

[
R−R +KABK

AB
]
2ϕ

)
.

(2.156)

We define the trace-free part of KAB as

σAB = KAB − 1

n− 1
KqAB. (2.157)
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Then the second variation for the area is:

δ2A
∣∣
K=0

= −
∫

S

√
qϕ

(
d2 +

1

2

[
R−R +KABK

AB
])

ϕdn−1x (2.158)

Now L = d2 + 1
2
[R−R+ σABσ

AB] is a self-adjoint elliptic operator on S. It is called
the stability operator.

S is compact and so the following properties are true [27]:

(1) The eigenvalues ξ are real, and there is a smallest one: ξ0 the principal eigen-

value.

(2) The eigenfunctions form a basis for the deformations.

(3) If the principal eigenvalue ξ0 ≥ 0 we say that the surface is stable so in this

case no smooth deformations can make the area smaller.

If the principal eigenvalue is ξ0 > 0 we say that the surface is strictly stable.

If the principal eigenvalue is ξ0 < 0 we say that the surface is unstable so there

are deformations that make the area smaller.

We didn’t calculate the third variation for minimal surface because it’s very com-

plicated.



Chapter 3

MOTS

In this chapter, we will begin with a brief history of trapped surfaces and their im-

portance, and then give some definitions which are necessary for defining marginally

outer trapped surfaces (MOTS). We explain the importance of understanding MOTS

and our interest in them.

Our ultimate goal is to define what a black hole really is. How can we mathemat-

ically define them without any ambiguity? If we use the standard causal definition of

a black hole, we need to have a global knowledge of spacetime: A causal black hole

is a region of spacetime from which light can never escape and its boundary is the

event horizon. Because of this definition, such a black hole is impossible to observe.

Moreover, from a numerical relativity point of view, event horizon, the boundaries of

causal finding black holes, is very costly [24]. So these are some of the reasons we

are interested in a quasi-local definition of black holes. By introducing MOTS we can

think about them as a generalization of minimal surfaces. As a result, we can use the

same mathematical tools and methods to study them.

As noted above, the definition of an event horizon depends on the whole future

evolution of the spacetime.

Definition 3.0.1 (Event Horizon [34]). Let (M, gab) be an asymptotically flat space-

time with associated unphysical spacetime
(
M̃, g̃ab

)
. We say that (M, gab) is strongly

asymptotically predictable if in the unphysical spacetime, there is an open region

Ṽ ⊂ M̃ with M ∩ J− (I +) ⊂ Ṽ such that
(
Ṽ , g̃ab

)
is globally hyperbolic, where
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J−(I +) is the causal past of future null infinity. A strongly asymptotically pre-

dictable spacetime is said to contain a black hole if M is not contained in J− (I +).

The black hole region B of such a spacetime is defined to be B = M − J− (S +)

and the boundary of B in M , H = ˙J− (I +) ∩M , is called the event horizon.

An alternative definition of a black hole was proposed by Penrose. This is based

on the idea of a trapped surface [28]. To understand what a trapped surface is,

first picture a two-sphere in Minkowski space, taken as a set of points some fixed

radial distance from the origin, embedded in a constant-time slice. If we follow null

rays emanating into spacetime from this spatial sphere, one set (pointed inward) will

describe a shrinking set of spheres, while the other (pointed outward) will describe a

growing set of spheres. But this would not be the case for a sphere of fixed radius

r < 2GM in the Schwarzschild geometry; inside the event horizon, both sets of null

rays emanating from such a sphere would evolve to smaller values of r (since r is a

timelike coordinate), and thus to smaller areas. This is what is meant by a trapped

surface: a compact, spacelike, two-dimensional submanifold with the property that

outgoing future directed light rays converge in both directions everywhere on the

submanifold [12].

Definition 3.0.2 (Trapped Surface [34]). A compact, two-dimensional, spacelike sub-

manifold S has both inward and outward directed null expansions that are negative

is called a trapped surface.

Definition 3.0.3 (MOTS). If we have a closed surface S with θ+ = 0 and no restric-

tion on θ−, then S is called a marginally outer trapped surface (MOTS).

First, we will set our notation. The notation we using here is based on the paper

[11].

Suppose (M, gab,∇a) is a smooth four-dimensional spacetime with signature (−+

++). In the case of three-dimensional spacelike surface in spacetime, we will use

(Σ, qij, Di). Let (S, qAB, dA) be a smooth two-dimensional spacelike surface in that

spacetime.

The metric on S is the pullback of the full four-metric

qAB = eaAe
b
Bgab. (3.1)
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Figure 3.1: A surface with expansion θ+ = 0

Figure 3.2: A surface with expansion θ+ > 0

Figure 3.3: A surface with expansion θ+ < 0
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If we consider coordinates on theM as {xa} and we parameterize S with xα = xa
(
yA
)

then eaA = ∂xa

∂yA
. We will take two future pointing null normals to S such that `+ · `− =

−1. We can write extrinsic curvatures with respect to these two normals and divide

them into trace and trace-free parts. We call the trace part the expansion θ± and the

trace-free part the shear σ±

AB. This then is the form of the extrinsic curvature

k±AB := eaAe
b
B∇a`

±

b =
1

2
θ±qAB + σ±

AB (3.2)

where θ± = qab∇a`
±

b , and

qab = eaAe
b
Bq

AB = gab + `a+`
b
−
+ `a

−
`b+. (3.3)

If our surface S is closed and orientable we will call `+ and `− the outgoing

and ingoing null normals, respectively and they will give us outgoing and ingoing

expansions θ± respectively.

As in [19], we shall call an open surface S with one of the expansions vanish-

ing a marginally outer trapped open surface (MOTOS) and, by convention, call the

vanishing expansion θ+.



Chapter 4

MOTS stability operator

In this section, we will derive the stability operator for MOTS. We are interested

in the MOTS stability operator because it plays an important role in understanding

these surfaces. For close to four decades, versions of it have been used to characterize

whether a particular MOTS (locally) separates outer trapped from untrapped regions

and hence can be thought of as a black hole boundary [9]. Further, a strictly stable

MOTS in a slice Σ forms a boundary between trapped and untrapped regions in that

slice, in the sense that there is a two-sided neighbourhood that contains no complete

outer trapped surfaces outside S and no complete outer untrapped surfaces inside.

Thus, it can usefully be thought of as a generalization of the apparent horizon in Σ

[9]. Minimal surfaces are a special case of MOTS so after deriving the MOTS stability

operator, we recover the stability operator for minimal surfaces. After deriving the

MOTS stability operator we will discuss some applications that relate the stability to

the symmetry of the background space. The second part will be based on [9].

4.1 Stability operator

For a given initial MOTS S, consider a smooth deformation to a one parameter family

of surfaces Sρ such that S0 = S. Then the unit normal vector ra to S naturally extends

to a field ra over the region covered by Sρ and we can write the tangent vector to the
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curves that generate this family of deformations as

∂

∂ρ
= ψr.

The stability operator on S is defined as

LSψ := δψraθ(`) :=
∂

∂ρ

∣∣∣∣
ρ=0

θ(`).

Figure 4.1: Deformation of a surface generated by a covariant vector field ∂
∂ρ
[2]

Definition 4.1.1 (Stable MOTS). S is said to be strictly stable or marginally

stable, respectively, if there exists a not everywhere vanishing, non-negative ψ such

that LSψ > 0 or LSψ = 0 respectively. It is unstable if no such ψ exists.

4.2 Derivation of stability operator

The extrinsic geometry of S can be understood by considering how the null normals

vary along the surface. We have null normals `+ and `−, which we defined by

`+ =
(
uα + rβ

)
(4.1)
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and

`− =
1

2

(
uα − rβ

)
. (4.2)

If we take ra as our unit spacelike normal to our surface S then the trace of our

extrinsic curvature would be

k(r) = qABk
(r)
AB.

Also if we write the trace of extrinsic curvature with respect of the unit timelike

normal ua we will get

k(u) = qijK
(u)
ij .

We can choose rj to be perpendicular for surfaces with ρ constant. As a result we will

have

eiALψrri = 0

where L is Lie derivative. For the variation of k(r) we have

∂

∂ρ

(
k(r)
)
= ψrkDk

(
qijDirj

)

∂

∂ρ

(
k(r)
)
= ψrkDk

([
hij − rirj

]
Dirj

)

and from the rules for covariant derivative we have

∂

∂ρ

(
k(r)
)
= ψrkDk(h

ijDirj)− ψrkDk(r
irjDirj).

Now with the product rule we will get

∂

∂ρ

(
k(r)
)
= ψrk

(
Dk(h

ij)Dirj +Dk(Dirj)h
ij −Dk(r

i)(rjDirj)−Dk(r
j)(riDirj)

−DkDirj(r
irj)
)

so we should simplify some of the terms. First we have Dk(h
ij) = 0. Also we have

rjrj = 1, therefore

Di(r
jrj) = 0

Dk(r
i)(rjDirj)−Dk(r

j)(riDirj)−DkDirj(r
irj)) = 0.
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Further, because the covariant derivative of the metric is zero we have

ψrkDk(h
ij)Dirj = 0 (4.3)

so
∂

∂ρ

(
k(r)
)
= ψhijrkDkDirj.

According to the definition of the Riemann tensor, we have

Rkijlr
l = DkDirj −DiDkrj

which we can combine with the two previous lines to find

∂

∂ρ

(
k(r)
)
= ψhijrk

(
Rkijlr

l +DiDkrj
)
,

so the variation of k(r) will be

∂

∂ρ

(
k(r)
)
= ψhijrk

(
Rkijlr

d +DaDcrb
)
.

We have

ψhijrkRkijlr
l = −ψhikrjrlRijkl. (4.4)

Also

R = hikhjlRijkl.

So we will get

R =
(
qik + rirk

) (
qjk + rjrl

)
Rijkl

= qikqjlRijkl + 2qikrjrlRijkl

= qikqjlRijkl + 2hikrjrkRijkl.

Therefore we have

hikrjrlRijkl =
1

2

(
R− qikqjlRijkl

)
. (4.5)

However with the Gauss–Codazzi equations (2.3.5) we can get

hikrjrlRijkl =
1

2

(
R− (2)R− k

(r)
ij k

ij
(r) + k2

)
, (4.6)
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so

ψhijrkRkijlr
d = −1

2
ψ
(
R− (2)R− k

(r)
ij k

ij
(r) + k2

)
(4.7)

Next,

ψhijrkDiDkrj = ψqijrkDiDkrj + ψrirjrkDiDkrj, (4.8)

so we have

ψhijrkDiDkrj = ψqijDi

(
rkDkrj

)
− ψqij

(
Dir

k
)
(Dkrj) + ψrirkDi

(
rjDkrj

)

− ψrirk
(
Dir

j
)
(Dkrj)

= ψqijdi

(
− 1

ψ
diψ

)
− ψk

(r)
ij k

ij
(r) − ψ

(
riDir

j
) (
rkDkrj

)
.

Therefore we will get

ψhijrkDiDkrj = −d2ψ − ψk
(r)
ABk

AB
(r) ,

and so
∂

∂ρ

(
k(r)
)
= −d2ψ − 1

2
ψk

(r)
ABk

AB
(r) − 1

2
ψ
(
R− (2)R + k2(r)

)
. (4.9)

Next we will have the extrinsic curvature of S based on unit timelike normal u so

∂

∂ρ

(
k(u)
)
= ψrkDk

(
qijKij

)
. (4.10)

Then

∂

∂ρ

(
k(u)
)
= ψrkDk

(
K −Kijr

irj
)

(4.11)

= ψ
(
rkDkK − rirjrkDkKij −Kijr

irkDkr
j −Kijr

jrkDkr
i
)

(4.12)

= ψ
(
rkDkK − ri

[
hjk − qjk

]
DkKij − 2ψKijr

i
[
rkDkr

j
])
. (4.13)

We have

∂

∂ρ

(
k(u)
)
= ψrk

(
DkK −DjK

j
c

)
+ ψriqjkDkKij − 2ψKijr

i

(
− 1

ψ
djψ

)
. (4.14)
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Therefore we obtain

∂

∂ρ

(
k(u)
)
= −ψGabu

arb + ψqjkDk

(
Kijr

i
)
− ψqjkKijDk

(
ri
)
+ 2

[
qjiKjku

k
]
diψ

(4.15)

= −ψGabu
arb + ψqjkDk

(
qljKlir

i + rj
[
Klir

lri
])

(4.16)

− ψqjkKji

[
qil + rlr

i
]
Dkr

l + 2ω̃AdAψ (4.17)

which gives us

∂

∂ρ

(
k(u)
)
= −ψGabu

arb + ψdCω̃
C + ψ

(
Kabr

arb
)
k(r) − ψk

(u)
ABk

AB
(r) + 2ω̃AdAψ (4.18)

where

ω̃A = eaA`
−

b ∇a(`
+b) (4.19)

= −1

2
eaA (ub − rb)∇a

(
ub + rb

)
(4.20)

= eaAr
b∇aub. (4.21)

In terms of the extrinsic curvature, we can write

ω̃A = eaAKabr
b. (4.22)

For Σ as a hypersurface we have

1

2
R = Gabu

aub − 1

2

(
K2 −KijK

ij
)
. (4.23)

And we have

Kij = k
(u)
ij + ω̃irj + ω̃jri +Krrrirj (4.24)

so

K = k(u) +Krr (4.25)

and

KijK
ij = k

(u)
ij k

ij
(u) + 2ω̃Aω̃A +K2

rr. (4.26)
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Therefore we can get

K2 −KijK
ij = k2(u) + 2Krrk

(u) − k
(u)
ABk

AB
(u) − 2‖ω̃‖2. (4.27)

With the help of the two previous equations we have

1

2
R = Gabu

aub − 1

2

(
k2(u) + 2Krrk

(u) − k
(u)
ABk

AB
(u) − 2‖ω̃‖2

)
(4.28)

and so

∂

∂ρ
(k(r)) = −d2ψ +

ψ

2

(
(2)R− k2(r) − k

(r)
ABk

AB
(r)

)
− ψ(Gabu

aub +
1

2
[kAB(u) k

(u)
AB − k2(u)]

−Krrk
(u) + ‖ω̃‖2).

We have ` = u+ r and θ(`) = k(u) + k(r) so the variation of θ(`) will be

∂

∂ρ

(
θ(`)
)
=

∂

∂ρ

(
k(u)
)
+

∂

∂ρ

(
k(r)
)
. (4.29)

Combining our equations we obtain

∂
∂ρ

(
θ(`)
)
= −ψGabu

arb + ψdCω̃
C + ψ (Kijr

irj) k(r) − ψk
(u)
ABk

AB
(r) + 2ω̃AdAψ − d2ψ

+ψ
2

(
(2)R− k2(r) − k

(r)
ABk

AB
(r)

)
− ψ

(
Gabu

aub + 1
2

[
kAB(u) k

(u)
AB − k2(u)

]

−Krrk
(u) + ‖ω̃‖2

)
,

(4.30)

so

∂
∂ρ

(
θ(`)
)
= −d2ψ + 2ω̃AdAψ + ψ

(
1
2
(2)R− ‖ω̃‖2 + dAω̃

A −Gabu
a`b
)

+ψKrr

(
k(u) + k(r)

)
+ ψ

(
−k(u)ABk

AB
(r) − 1

2
k2(r) − 1

2
k
(r)
ABk

AB
(r)

+1
2
k2u − 1

2
kAB(u) k

(u)
AB

)
.

(4.31)

Again because of θ(`) = k(u) + k(r) we get

∂

∂ρ

(
θ(`)
)
= −d2ψ + 2ω̃AdAψ + ψ

(
1

2

(2)

R− ‖ω̃‖2 + dAω̃
A −Gabu

a`b
)
+ ψKrrθ(`)

+ ψ

(
1

2

(
k2(u) − k2(r)

)
−
[
k
(u)
AB + k

(r)
AB

] [
kAB(u) + kAB(r)

])
,

(4.32)
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and so the final expression

∂

∂ρ

(
θ(`)
)
= −d2ψ + 2ω̃AdAψ + ψ

(
1

2
(2)R− ‖ω̃‖2 +dAω̃

A −Gαβu
α`β
)
+ ψKrrθ(`)

+ ψ

(
θ(`)θ(r) −

1

2
θ2(`) − σAB(`) σ

(`)
AB

)
.

(4.33)

Now for MOTS θ(`) = 0 we will have

∂

∂ρ

(
θ(`)
)
= −d2ψ + 2ω̃AdAψ + ψ

(
1

2
(2)R− ‖ω̃‖2 + dAω̃

A −Gαβu
α`β − σAB(`) σ

(`)
AB

)
.

(4.34)

We call (4.2) the MOTS stability operator.

4.3 Applications

This subsection is based on [9] and provides some examples of unstable MOTS. As we

can see in Figure 4.2, MOTS can have very complicated self-intersecting geometries.

Such exotic surfaces have also been shown to play a key role in black hole mergers, with

a complicated series of MOTS pair creations and annihilations ultimately destroying

the original pair of apparent horizons and resulting in a single final apparent horizon

[10, 29, 9]. All exotic MOTSs so far observed in either exact or numerical solutions

have been found to be unstable [9]. So our goal in this section is to provide some

theorem to show why most MOTS are unstable in spacelike slices of highly symmetric

spacetimes. First, we need to give some definitions.

Definition 4.3.1. A non-trivial vector field X on Σ is a symmetry of (Σ, h,K) if

LXg = LXK = 0. It is a symmetry of a surface S if, in addition, it is everywhere

tangent to S.

Theorem 2. Suppose S is a MOTS and X is a symmetry of (Σ, h,K) but not of S.
Then 0 is an eigenvalue of LS . Moreover,

1) S is marginally stable if and only if X is nowhere tangent to S,

2) S is unstable if and only if X is tangent to S at some point.

As a result of this theorem, we can say that any non-spherical MOTS in a spheri-

cally symmetric slice of Schwarzschild is unstable [9]. As a result the MOTS appearing
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in figure (4.2) are unstable.

Theorem 3. Suppose S is an embedded MOTS and X is a symmetry of (Σ, h,K).

If S bounds a compact region A ⊂ Σ then it is unstable under any of the following

conditions:

1) X is not a symmetry of S,

2) X is a coordinate vector field, on A

3) χ(S) 6= 0 and X has no zeros in A.

So for any initial data set with translational symmetry, all MOTSs are unstable

and therefore the boundary of the trapped region is not a MOTS [9]. A typical

example of such initial data would be that for a cosmological spacetime in which all

points lie in the trapped region and so there is no boundry.

Theorem 4. Let X be a symmetry of a three-dimensional initial data set (Σ, h,K).

If S is a stable MOTS that bounds a compact region in Σ and has χ(S) 6= 0, then it

must intersect the zero set of X.

Therefore, if (Σ, h,K) satisfies the dominant energy condition (2.4), then any

MOTS that bounds a compact region and is strictly stable must intersect the zero set

of X.

Figure 4.2: Some exotic MOTS in the Schwarzchild spacetime. These are found in
constant time Painlevé-Gullstand slices and are all inside usual r = 2M horizon [9]



Chapter 5

MOTS finder

In this chapter, we want to go through how we can find MOTS in axisymmetric

spacetimes. The basic idea of the method is to rewrite the θ(`) = 0 condition for an

axisymmetric surface in three-dimensional space into a pair of coupled ODEs for the

generating curve. We will rotate our curve to make a surface like figure (5.1). Because

of the close relationship between these equations and those of geodesic curves this

method is called MOTSodesics.

Consider a spacelike half plane
{
Σ̄, h̄ab, D̄a

}
where a and b range over the Cartesian

coordiante (ρ, z) where {ρ > 0,−∞ < z < ∞}. We will rotate Σ̄ to get a three

manifold which is axisymmetric {Σ, hij, Di} . If we use the coordinate we will have

the metric on Σ as

h
(ρ,φ,z)
ij =



h̄ρρ 0 h̄ρz

0 R2 0

h̄ρz 0 h̄zz


 , (5.1)

where R(ρ, z) is the circumferential radius and where φ is the coordinate along the

orbits of the Killing field φ which preserves the induced 2-metric qAB on S and which

vanishes precisely at the two poles.

Now we consider start with a curve

γ : (ρ, z) = (P (s), Z(s))

which is in Σ̄ and arc length parametrized with parameter s. We will denote the
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derivative with respect to s with a dot. For the curve γ we have tangent vector

T = Ṗ
∂

∂ρ
+ Ż

∂

∂z
(5.2)

with

habT
aT b = 1. (5.3)

The unit normal one-form to the curve is

Ñ =
√
h̄(−Ż dρ+ Ṗ dz) (5.4)

or as a vector

N =
1√
h

(
−
(
h21Ṗ + h22Ż

) ∂

∂ρ
+
(
h11Ṗ + h12Ż

) ∂

∂z

)
(5.5)

where h̄ = det
(
h̄ab
)
we have

T aD̄aT
b = κN b. (5.6)

Equivalently

NbT
aD̄aT

b = κNbN
b. (5.7)

We have NbN
b = 1 and so

κ = NbT
aD̄aT

b. (5.8)

Now we will rotate the curve γ into a two surface

{S, qAB, DA} (5.9)

where indices A and B range over (s, φ). The induced metric will be

qAB =

[
1 0

0 R2

]

where R is the circumferential radius of (ρ, z).

The trace of the extrinsic curvature of S relative to the timelike normal u to Σ is

ku = qijKij = kuabT
aT b + kφφ (5.10)



42

Figure 5.1: Making a surface by rotating a curve[10]

where

qij = T iT j + φ̂iφ̂j

and φ̂i = 1
R

∂
∂φ
.

The expansions based on `± null normals are

2θ+ = ku +
(
−Nb

(
T aD̄aT

b
)
+NaD̄a(lnR)

)
(5.11)

we want to have θ+ = 0 and so we should have

κ = Nb

(
T aD̄aT

b
)
= NaD̄a(lnR) + ku. (5.12)

From this we will get two differential equation with P (s) and Z(s).

[
P̈

Z̈

]a
= Ṫ a = −Γ̄abcT

bT c + κNa (5.13)
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5.1 Example

In this section, we want to see one example of using this method in action.

Example 5.1.1. We want to find MOTSs for the Schwarzschild black hole in Painlevé-

Gullstrand coordinates [24]. We have

ds2 = −
(
1− 2M√

ρ2 + z2

)
dT 2 + 2

√
2M√
ρ2 + z2

ρdρ+ zdz√
ρ2 + z2

dT

+

(
1− 2M√

ρ2 + z2

)−1
ρ2dρ2 + z2dz2

ρ2 + z2
+ ρ2dφ2

So for the induced metric on T= constant we will have

hijdx
idxj = dρ2 + dz2 + ρ2dφ2. (5.14)

And for the extrinsic curvature

Kijdx
idxj =

√
M

2

(
ρ2 − 2z2

r7/2
dρ2 +

6ρz

r7/2
dρdz +

z2 − 2ρ2

r7/2
dz2 − 2ρ2

r3/2
dφ2

)
(5.15)

where r =
√
ρ2 + z2. So now for R = ρ we have

N = −Ż d

dρ
+ Ṗ

d

dz
, (5.16)

as normal vector so we will get

ku = −
√
M

2

(
3(ZṖ − PŻ)2

r7/2
+

1

r3/2

)
. (5.17)

Therefore the MOTSodesics equations will be

P̈ =
Ż2

P
± kuŻ

Z̈ = − Ṗ Ż
P

∓ kuṖ .

(5.18)
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We can see r = 2M is a solution for these equations but this system also straightfor-

ward to solve numerically. Curves in Figure (4.2) were found in this way. See [24] for

more details.



Chapter 6

MOTS in higher dimensions

In the case of minimal surfaces and geodesics, we are using the Jacobi operator and

stability operator to study their behavior. We use them to determine whether the

critical points of the length functional and area functional, respectively, are minima

or saddle points. A relatively recent interpretation of MOTS stability has proven

very successful in proving higher dimensional results for the topology of black holes,

which relies on showing that under certain assumptions on either the initial data set

containing the MOTS or the spacetime, the MOTS is of positive Yamabe type, i.e.,

admits a metric of constant positive scalar curvature [21].

We are interested in the topology of black holes and how they will look, so the

question is can black holes have different topology? For example is there any black

hole in dimension 3+1 with the topology of a torus? Is that even possible? Or do we

have some restrictions? To answer these kinds of questions, the first important step

is Hawking’s Theorem [23, 22]. It states that the event horizon of a 4-dimensional

asymptotically flat stationary black hole spacetime that satisfies the dominant energy

condition will have the topology of a sphere. In proving this theorem Hawking used

the Gauss-Bonnet theorem, so we cannot directly generalize it to higher dimensions.

Gauss-Bonnet relates the geometry of a manifold to its topology. For more details,

see Chapter 2, definition (2.5).

Nowadays there is more interest in higher dimensional black holes so we want to

know which properties they share. Galloway, in his paper [20], studies the topology of

black holes in higher dimensions. We start with a short review on Hawking’s theorem

and then go to the Galloway generalization. The counter-example to the notion that
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all black holes should be spherical is a great discovery by Emparan and Reall of a

black ring with the S1 × S2 horizon topology [17].

Now we will start with a review on Hawking’s theorem [22].

6.1 Hawking’s Theorem

Before starting to state Hawking’s theorem we will introduce two definitions.

Definition 6.1.1 (locally outermost MOTS [3]). A marginally outer trapped surface

S is called locally outermost in Σ, if and only if there exists a two-sided neigh-

borhood of S such that its exterior part does not contain any weakly outer trapped

surface.

Definition 6.1.2 (Outermost MOTS [5]). A MOTS S is outermost in Σ if there is

no other MOTS in the complement of the region which bounds with a possibly empty

inner boundary.

Remark: Being the outermost MOTS is stronger than being stable but weaker

than being strictly stable [3].

Theorem 5. (Hawking’s Theorem [20]) Let M4 be a four-dimensional asymptotically

flat stationary black hole spacetime obeying the dominant energy condition. Then

cross sections of the event horizon are topologically 2-spheres.

By a cross-section, we mean a smooth compact (without boundary) 2-surface that

is obtained by intersecting H = ∂I− (I +) with a spacelike hypersurface.

As we can see in the caption of Figure (6.1) cross-sections of a Schwarzchild event

horizon are outermost MOTS. We know from paper [4] that outermost MOTS are

stable. So instead of proving Hawking’s theorem for outermost MOTS we will only

prove it for strictly stable MOTS.

Hawking assumes that S is not spherical. His idea was to deform S to an outer

trapped surface S ′

. If S is not a 2-sphere, and hence has genus (i.e., number of

handles) g ≥ 1, the Gauss-Bonnet theorem and dominant energy condition are then

used to show that ∂θ
∂t

∣∣
t=0

< 0 . It follows that for sufficiently small t > 0, θ(t) < 0

which implies that S ′

t is outer trapped. Hence, S must be a 2-sphere.
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Proof. S is a strictly stable MOTS so we can use the stability operator (4.33). In

our case for the event horizon we have ∂
∂ρ

(
θ(`)
)
> 0 for every non-negative function

ψ because our horizon is stable, so we can use ψ = 1 so d2ψ, 2 ω̃AdA are zero. So we

will be left with

0 <
1

2
R(2) − ‖ω̃‖2 + dAω̃

A −Gαβu
α`β. (6.1)

Now if we rewrite it we have

1

2
R(2) > ‖ω̃‖2 − dAω̃

A +Gαβu
α`β. (6.2)

Now we will take integral of both sides

∫

S

1

2
R(2)dVolS >

∫

S

(‖ω̃‖2 − dAω̃
A +Gαβu

α`β)dVolS. (6.3)

In our case, S is a 2-dimensional surface, and the Ricci scalar is just Gaussian cur-

vature up to a factor of 2. On the right hand sight of the integral we have ‖ω̃‖2 ≥ 0

and also because of dominant energy conditions Gαβu
α`β ≥ 0 and also

∫
S
dAω̃

A = 0.

So now we have ∫

S

1

2
R(2)dVolS > 0.

With the use of Gauss-Bonnet theorem we have χ > 0 so S must have topology of a

2-sphere.

Note that there is no restriction on the topology of unstable MOTS. For example

of toroidal unstable MOTS in Schwarzschild spacetimes. In particular see [31].

6.2 Galloway’s Theorem

First, we need to give some definitions.

Definition 6.2.1 (Positive Yamabe Type Manifold). A smooth compact manifold is

said to be of positive Yamabe type if it admits a Riemannian metric of positive

scalar curvature.

Definition 6.2.2 (Connected sum). Given connected n-manifolds M1 and M2 and

regular coordinate balls Bi ⊆ Mi, the subspaces M ′

i = Mi\Bi are n-manifolds with
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boundary whose boundaries are homeomorphic to S
n−1 If f : ∂M ′

2 → ∂M ′

1 the ad-

junction space M ′

1 ∪f M ′

2, denoted by M1#M2 is the connected sum of M1 and

M2.

Figure 6.1: Cross sections of the event horizon in asymptotically flat stationary black
hole spacetimes obeying the DEC are outermost MOTSs [20].

Galloway’s theorem works for outermost MOTSs.

Figure 6.2: Connected sum of two manifolds [35].

Theorem 6 (Galloway-Schoen’s Theorem [20]). Let Σn, n ≥ 3 be a spacelike hyper-

surface in a spacetime that satisfies the dominant energy condition. If Sn−1 is an

outermost MOTS in Σn then Sn−1 is of positive Yamabe type, unless S is Ricci flat

(flat if n = 3, 4).

Now we will consider two special cases.
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Case 1: If S is two dimensional, being a positive Yamabe manifold means having

a metric with positive Gaussian curvature. As a result, with the help of the Gauss-

Bonnet theorem, S must be a topological 2-sphere.

Case 2: If S is three-dimensional we have different possibilities which are stated

in the theorem below.

Theorem 7. If S is a compact orientable 3-manifold of positive Yamabe type then S
must be diffeomorphic to (i) a spherical space (e.g. a 3-sphere S3), (ii) S1 × S2, or

(iii) a connected sum of the previous two types.

6.3 Black holes in higher dimensions

In this section, we want to give an example of black holes in more than four dimensions.

We give an example showing that Hawking’s theorem does not hold in five dimensions.

Instead, we will show that the result is consistent with Galloway’s theorem.

Example 6.3.1. Take a neutral black string in five dimensions, constructed as the

direct product of the Schwarzschild solution and a line, so the geometry of the horizon

is R×S2. Imagine bending this string to form a circle, so the topology is now S1×S2.

In principle this circular string tends to contract, decreasing the radius of the S1 due

to its tension and gravitational self-attraction. However, we can make the string rotate

along the S1 and balance these forces against the centrifugal repulsion. Then we end

up with a neutral rotating black ring: a black hole with an event horizon of topology

S1 × S2 [18] . This solution is a rotating black ring in vacuum and was discovered by

Roberto Emparan and Harvey S. Reall [19]

ds2 = −F (y)
F (x)

(
dt− CR

1 + y

F (y)
dψ

)2

+
R2

(x− y)2
F (x)[−G(y)

F (y)
dψ2 − dy2

G(y)
+

dx2

G(x)

+
G(x)

F (x)
dφ2]

where

F (ξ) = 1 + λξ, G(ξ) =
(
1− ξ2

)
(1 + νξ) (6.4)
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and

C =

√
λ(λ− ν)

1 + λ

1− λ
. (6.5)

The dimensionless parameters λ and ν must lie in the range

0 < ν ≤ λ < 1. (6.6)

λ and ν are parameters that characterize the shape and rotation velocity of the ring.

The coordinates vary in the ranges −∞ ≤ y ≤ −1, −1 ≤ x ≤ 1 and −∞ < t < +∞,

and angles 0 < φ, ψ < 2π. Because this is a solution in the vacuum spacetime

Tab = 0, so our solution totally satisfies the dominant energy condition so we have

some restrictions on the topology of black ring according to (7). From the example

we can see the black rings will have their horizons at constant values of y, or r so the

topology of black ring will be S1 × S2 .



Chapter 7

Discussion and Conclusion

In this chapter, we summarize our intention for this thesis and explain its structure.

The goal of this thesis is to review the topology and geometry of MOTS. So, we

started the thesis with an introduction to black hole and the problem of identifying

them. We mentioned that using event horizon is not very practical for calculation. So

that is the reason we will try to use the concept of marginally outer trapped surfaces

or MOTS. But first, we needed to define some background concepts and definitions

to achieve of our goal.

Therefore we introduced asymptotically flat spacetime. We used this to define the

event horizon. After that, we defined different curvatures such as Gauss curvature.

Gauss curvature plays and important role in the topology of MOTS. After that we

defined geodesics and minimal surfaces and their stability operator. MOTS are closely

related to minimal surfaces. Therefore it’s essential to know about minimal surfaces

and their stability operator.

In chapter three we discussed about event horizon and we defined MOTS. The prob-

lem with event horizon is we need to know the whole spacetime. So this will cause

computational problems.

After defining MOTS in chapter three we discussed the MOTS stability operator.

Similar to minimal surfaces we can discuss about stability operator for MOTS. How-

ever for MOTS its extremely difficult to calculate higher-order of stability operators.

So one of tasks that can be done in a future thesis is to do those calculations. Also in

chapter four, we saw that in highly symmetric spacetimes we have unstable MOTS. As
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a result we checked the relation between the symmetries of spacetimes and unstability

of MOTS.

In chapter five our main goal is to find MOTS in axisymmetric spacetime using a

method known as the MOTSodesic.

Finally, in chapter six we discussed the Hawking and Galloway theorem. These theo-

rems restrict the allowed topologies of black holes in four dimensional spacetime and

higher. In the case of four-dimensional asymptotically flat spacetime with a black

hole that satisfies the dominant energy condition the topology of black hole should

be a topological two-sphere.
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