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Abstract 

This thesis explores the integration of spatial modelling and surplus production models (SPMs) for 

fisheries stock assessment. Typically, SPMs disregard the spatial dynamics of populations. To 

address this limitation, we propose a novel approach that utilizes the Gaussian random field to 

capture spatial heterogeneity. This method enhances spatial representation without explicitly 

parameterizing movement dynamics, offering a more robust framework. The methodology (i.e., 

the random field model) builds upon existing surplus production models by adapting a triangular 

grid and employing stochastic process errors to capture spatial variation. Simulations and case 

studies demonstrate the model’s effectiveness in estimating stock biomass dynamics, 

outperforming non-spatial and movement models. The random field model offers a simplified but 

robust alternative to the explicit spatial movement model. Applied to the 3LN Redfish stock, the 

random field model highlights significant spatial heterogeneity and a decline in biomass between 

2012-2019. Furthermore, the approach was extended to Yellowtail Flounder in 3LNO Divisions, 

demonstrating stable biomass distributions with spatial preferences for shallower waters. The 

findings underscore the importance of spatially explicit models in fisheries stock assessment when 

sufficient spatial data are available. This study contributes to advancing fisheries stock assessment 

by providing a scalable and adaptable framework for spatial stock assessment. 
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Chapter 1. Introduction 

1. A brief introduction to stock assessment methods 

In science-based fisheries management, fisheries science provides decision-makers with 

recommendations on the alternative management strategies derived from scientific studies. Most 

recommendations are based on quantitative analyses and predictions on how fish stocks respond to 

alternating management objectives. The process of data collection, investigation, and presentation 

addressing these objectives is termed “stock assessment” – the backbone of sustainable fisheries 

management (see Punt and Hilborn, 1997, King, 2007, Haddon, 2011). 

The history of fisheries modeling begin with the foundation of Baranov's catch equation (Baranov, 

1918), and Russell (1931) introduced the simplest concept of describing the dynamics of fish stock 

considering four major forces on changes in the stock biomass 𝐵𝑡. The four forces consist of the 

growth of individuals 𝐺𝑡, population recruitments 𝑅𝑡, the removals due to fishing 𝐶𝑡, and other 

reasons 𝐷𝑡 (e.g., discards) with t representing time usually measured in yearly steps: 

𝐵𝑡+1 = 𝐵𝑡 + (𝐺𝑡 +  𝑅𝑡) − (𝐶𝑡 + 𝐷𝑡). 

There are two main types of stock assessment frameworks regarding model structures: 1) the 

age/size-structured and 2) the age/size-aggregated models (i.e., surplus production framework). 

The former describes the yearly dynamics for different age/size groups (e.g., Cadigan, 2016, 

Perreault et al., 2020a, Kumar et al., 2020), while the latter aggregates age/size information using 

a single production function to describe stock dynamics (e.g., Schaefer, 1954, Beverton and Holt, 

1957, Pella and Tomlinson, 1969, Fox, 1970). 
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The early modeling practices in the stock assessment were deterministic with the assumption of 

negligible errors in observations. Thus, these deterministic (i.e., non-state-space) methods did not 

consider any measurement of the uncertainty (i.e., errors). In consideration of parameter estimation 

in deterministic SPMs, there have been multiple techniques employed, such as ordinary least 

squares (Uhler, 1980, Jensen, 1984, Prager, 1994), maximum likelihood (Gould and Pollock, 1997, 

Prager, 2016), and Bayesian inference (Hoenig et al., 1994, Walters and Ludwig, 1994). 

Practically, noisy fisheries data are not uncommon. There are two sources of noise in any time-

series data of population dynamics termed process and observation errors. As the name suggested, 

the observation error results from variation in sampling (i.e., observing), while the process error is 

typically considered variation in the true population processes (Ahrestani et al., 2013). 

The state-space framework, originally introduced by Kalman (1960) and Kalman and Bucy (1961) 

for engineering purposes, was adopted to fisheries modeling (see Sullivan, 1992, Gudmundsson, 

1994) to capture the uncertainty. In principle, state-space fisheries models are built upon the same 

equations as the previous fisheries modeling framework; however, they include the stochasticity 

of unobserved errors. In other words, state-space models incorporate process and observation errors. 

Two components define a state-space stock assessment model: 1) the process; and 2) the 

observation models. The process model is referred to how unobserved states of the system under 

study (e.g., stock dynamics) depend upon preceding states. The observation model describes how 

observed states (e.g., commercial catch, survey indices) depend on unobserved states (Aeberhard 

et al., 2018). An estimation algorithm is applied to compute parameter estimates and other 

statistical components of interest (e.g., residuals). It is assumed that each data source is independent 

of the others. Parameter estimation methods consist of maximum likelihood estimation (i.e., 

frequentist approach) and Bayesian approach. It is critical to determine an appropriate likelihood 
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function (i.e., objective function) for each information component in the analysis. In the frequentist 

approach, the objective function is based on the joint likelihood function (i.e., the product of 

component likelihoods – in practice, often using the sum of negative log-likelihoods). Modelers 

then use an optimizer [e.g., nlminb (R-Core-Team, 2022)] to minimize the negative log-likelihood 

objective function for parameter estimation. From the Bayesian perspective, the objective function 

is based on prior distributions. 

2. Spatial models are important in stock assessment 

Since the dawn of animal ecology, the spatial structure has been the fundamental characteristic of 

organisms’ distribution (Elton, 1927). The simplifying assumptions of traditional non-spatial 

models possibly leads to oversimplified assessments and management advice. These conventional 

models typically rely on the "unit stock" assumption, treating a fish population as a single, 

homogenous entity where biological processes and fishing impacts are uniform across its entire 

range (Cadrin et al., 2004, Kerr et al., 2017). However, this assumption is frequently violated. Fish 

populations exhibit significant spatial structure driven by habitat preferences, environmental 

gradients, and critical life history functions (e.g., spawning and nursery areas), leading to varied 

distributions rather than uniform mixing (Perry and Smith, 1994, Ciannelli et al., 2007). 

Furthermore, biological parameters like growth and mortality can vary substantially across 

different regions occupied by the stock (Lorenzen, 2016), and fishing fleets rarely distribute effort 

randomly, instead targeting specific locations and creating highly uneven fishing mortality patterns 

(Walters et al., 1998, Branch et al., 2006, Bastardie et al., 2010).  

Ignoring this underlying heterogeneity, as non-spatial models do, can lead to significant issues. For 

example, it can result in biased perceptions of stock status and productivity, potentially masking 
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serious issues like localized depletion even when the overall stock assessment appears positive 

(Berkeley et al., 2004, Frank et al., 2006). Non-spatial models, which average fishing mortality, 

fail to capture this dynamic and can be susceptible to the "hyperstability" problem, where catch-

per-unit-effort (CPUE) indices remain high by targeting remaining aggregations, thus masking true 

declines in overall abundance until a collapse is potentially imminent (Hilborn and Walters, 1992a). 

Furthermore, the dynamic nature of fish populations, involving movement through migration, 

larval dispersal, and ontogenetic shifts, creates complex patterns of connectivity between different 

areas, influencing recruitment and population resilience in ways that non-spatial models cannot 

adequately represent (Cowen et al., 2006, Fogarty and Botsford, 2007). 

Adopting spatial stock assessment models offers clear advantages by directly addressing these 

limitations. Primarily, they provide a more realistic representation of fish stock and fishery 

dynamics by explicitly incorporating spatial heterogeneity in population distribution, movement, 

biological rates, and fishing pressure (Goethel et al., 2011). This enhanced realism can translate 

into improved and potentially less biased estimates of model outputs, such as overall biomass, 

abundance trends, and fishing mortality reference points. Crucially, beyond single stock-wide 

estimates, spatial models can provide spatially explicit outputs, mapping variations in fish density, 

productivity, and fishing impact across different areas, offering a much richer understanding of the 

system's status. 

A practical benefit of spatial models lies in their ability to directly inform and evaluate spatial 

management strategies. As fisheries management increasingly employs spatial tools such as 

Marine Protected Areas (MPAs), time/area closures, and spatially zoned effort regulations. Spatial 

assessment models provide the necessary framework to simulate the ecological and socio-

economic consequences of these actions that non-spatial models simply cannot do (Pelletier and 
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Mahévas, 2005, Goethel et al., 2011, Costello et al., 2012). By tracking stock status and fishing 

pressure at finer spatial scales, these models can detect localized depletion, providing early 

warnings (Walters, 2003), leading to more nuanced, spatially explicit management advice tailored 

to local conditions (Apostolaki et al., 2002). 

Furthermore, spatial models excel at integrating diverse, spatially referenced data streams that are 

often underutilized or aggregated in traditional assessments. Data from VMS, detailed logbooks, 

spatially stratified surveys, tagging experiments, habitat mapping, and environmental monitoring 

can be synergistically combined within a single analytical framework, leading to more robust and 

comprehensive assessments (Hintzen et al., 2012, Thorson et al., 2015a, Thorson, 2019). Spatial 

models provide a powerful platform for investigating the impacts of large-scale environmental 

changes, particularly climate change, which often manifest spatially through shifts in species 

distributions, changes in habitat suitability, and altered productivity gradients across a stock’s 

range (Cheung et al., 2010, Hollowed et al., 2013). Ultimately, there is a strong desire and practical 

need to develop and utilize assessment tools capable of fully integrating spatial information to 

produce more realistic and reliable analyses ( Thorson, 2019, Maunder and Punt, 2013). 

3. Aspects of considerations in spatial stock assessments 

Data availability 

Explicitly modeling spatial stock assessments requires high-resolution spatial data. This typically 

includes commercial catch data, survey data, and/or tagging data, all of which need to include 

precise fishing locations (i.e., longitude and latitude) and span multiple years. However, in real-

world fisheries management, such spatial data are not always available. This can be due to various 

factors, such as management systems in certain fisheries that do not require spatial information or 
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do not have sufficient capacity to collect spatial data over years, or limited budgets that constrain 

fisheries research efforts. 

Spatial stock structure assumptions 

In principle, it is essential to define target species, biological and spatial stock structure, as well as 

management units in implementing stock assessment and fisheries management (Cadrin and Secor, 

2009, Cadrin, 2020). However, in practice, the situation can sometimes be messy, for example, 

Redfish fisheries in the Northwest Atlantic. Their assessment and management are often based 

upon combined-species data [i.e., S. mentella and S. fasciatus (Gascon, 2003)]; their biological 

stock structures are very complex [e.g., compelling evidence of overlapping distribution (Gascon, 

2003, Grant, 2004),  hybridization, and introgression (Roques et al., 2001)]; there is evidence of 

mismatching between management and biological units [e.g., movement crossing management 

units (Gascon, 2003, Benestan et al., 2021)]. 

Selection of model structure 

Modeling fish stock dynamics often begins with choosing either age-structured or age-aggregated 

(i.e., surplus production) frameworks. Punt (2019) described a general form of the spatially age-

structured model as follows: 

𝑁𝑦,𝑎
𝑠,𝐴 = {

𝑅𝑦
𝑠,𝐴

∑ ∑ 𝑋𝑦−1,𝑎−1
𝑠′𝑠,𝐴 𝑁𝑦−1,𝑎−1

𝑠′,𝐴

𝐴′𝑠′

𝑒−𝑍𝑦−1,𝑎−1
𝑠′,𝐴′  if a = 0 otherwise    

Where 𝑁𝑦,𝑎
𝑠,𝐴

 represents the abundance of fish of age a and stock s in area A at year y; 𝑅𝑦
𝑠,𝐴

 denotes 

the recruitment (often assumed at age 0) to stock s and area A at year y; 𝑍𝑦−1,𝑎−1
𝑠′,𝐴′

 is the total 
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mortality of age a and stock s in area A in year y; and 𝑋𝑦−1,𝑎−1
𝑠′𝑠,𝐴

 is the proportion of fish of age a 

and stock s’ in area A’ that move to stock s and area A in year y (after mortality in year y). 

A general form of the age-aggregated framework can be referred to Thorson et al. (2017): 

𝐵𝑡+1 = 𝑔[𝑚(𝐵𝑡𝑒(−𝑢𝑡𝐹𝑡))] 𝑒𝜀𝑡          

Where 𝐹𝑡 is a function of fishing mortality in year t, 𝐵𝑡𝑒(−𝑢𝑡𝐹𝑡) describes the product of survival 

rate 𝑒(−𝑢𝑡𝐹𝑡) and density 𝐵𝑡 in year t; m represents a function describing the movement of the net 

effect of advective and diffusive movements; g is a function approximating the local density in the 

stock dynamics. The error term is defined by 𝑒𝜀𝑡. 

Spatial estimation methods 

There are different ways to discretise space and approximate movement. The choice of tools for 

space discretization has varied in the literature, such as using the sf package to generate a set of 

polygons in the Northern shrimp assessment (Pedersen et al., 2022), the R-INLA package to create 

a grid of triangles in a study on the big skate (Thorson et al., 2017), snow crab (Olmos et al., 2023), 

and scallop (McDonald et al., 2021), as well as using a grid of squared cells for Antarctic toothfish 

(Mormede et al., 2017), and snow crab (Cadigan et al., 2017). The proportion of fish density 

moving from one spatial cell to another at annual time steps can be computed using a Euler 

approximation (Thorson et al., 2017) or using probability density functions based on environmental 

variables and the distance from their previous location (Mormede et al., 2017). Instead of explicitly 

modelling movement rates, spatial variation parameters can be approximated using a Markov 

Random Field smoother. For example, Pedersen et al. (2022) modeled Northern Shrimp movement 

using an explicit advection-diffusion framework, incorporating parameters for directed movement 

(advection velocities) and random dispersal (diffusion coefficient). A key assumption in their 
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implementation, common in many such models, is that these movement parameters are constant 

across space and time. 

4. Surplus production models 

Surplus production models (SPMs) were introduced by Graham (1935) and later developed by 

multiple quantitative scientists (e.g., Schaefer, 1954, Beverton and Holt, 1957, Pella and Tomlinson, 

1969, Fox, 1970). The underlying concept is to use a single production function to describe stock 

dynamics disregarding the age and length compositions of the population. Accordingly, SPMs are 

often thought of their simplicities in analytical study; and applicable with only commercial catch 

and survey index information (Jensen, 1984, Yoshimoto and Clarke, 1993). Thus, SPMs are usually 

the foundation of developing more complex models (Thorson et al., 2017). 

There are three density-independent SPMs commonly studied in fisheries science, including 

Schaefer (i.e., logistic) (Schaefer, 1954), Pella and Tomlinson (i.e., generalized production) (Pella 

and Tomlinson, 1969, Fletcher, 1978), and Fox models (Fox, 1970). Of the three, Schaefer SPM is 

thought of as the most frequently used form (Zhang, 2013, Karim et al., 2020). The model describes 

the growth of the population size based on a logistic production function, where r represents the 

stock's intrinsic growth rate, and K represents the carrying capacity as follows: 

𝑑𝐵𝑡

𝑑𝑡
= 𝑟𝐵𝑡 −  

𝑟

𝐾
𝐵𝑡

2. 

A study by Pella and Tomlinson (1969), and later restructured by Fletcher (1978), added a shape 

parameter to the production function governing the skewness of the surplus production curve: 



9 

 

𝑑𝐵𝑡

𝑑𝑡
= 𝛾𝜇

𝐵𝑡

𝐾
− 𝛾𝜇 (

𝐵𝑡

𝐾
)

𝑛

. 

Where 𝜇 is maximum sustainable yield, and 𝛾 is a function of n (i.e., 𝛾 = 𝑛
𝑛

(𝑛−1)⁄

𝑛 − 1
⁄ ). In the 

case of Schaefer SPM, n = 2. This model is widely recognized as the generalized form of SPMs 

(i.e., Pella and Tomlinson SPM) and thought of sometimes more adaptable to the fishing realities 

(Pella and Tomlinson, 1969, Quinn and Deriso, 1999). However, some studies found that 

estimating the shape parameter is challenging (Fletcher, 1978, Rivard and Bledsoei, 1978, Hilborn 

and Walters, 1992a), furthermore the generalized SPM is sensitive to outliers; and thus more likely 

to generate less precise estimates than the Schaefer model (Prager, 2002, Panhwar et al., 2012). 

A study by Fox (1970) presented a modified SPM using the Gompertz function to model the 

production function, which led to an asymmetrical production curve as follows: 

𝑑𝐵𝑡

𝑑𝑡
= 𝑟𝐵𝑡(log(𝐾) − log(𝐵𝑡)).  

In an example on lobster fisheries, it was documented that the Fox model provided more realistic 

estimates of biological parameters than the Schaefer model (Yoshimoto and Clarke, 1993). 

Besides the density-independent models, attention has also been drawn to density-dependent 

models. Although density-dependent analysis is a very attractive topic in quantitative ecology, 

spatial modeling in fisheries science has not been thoroughly studied due to the complexity of 

spatial models. There were studies of applying spatial SPMs to rockfish data (Sebastes spp.) 

(Thorson et al., 2015b) and big skate (Raja binoculata) (Thorson et al., 2017). The two examples 

were developed from the production function derived from the Gompertz equation documented in 

(Dennis and Taper, 1994): 
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𝑑𝐵𝑡

𝑑𝑡
=  𝐵𝑡(∝  + 𝛽𝑙𝑜𝑔(𝐵𝑡)).   

Where ∝ governs the population density and 𝛽 represents the degree of the density dependence. 

There were also attempts to extend the usage of SPMs, such as incorporating environmental 

variables into the applications of SPMs (Jensen, 2005, Thiaw et al., 2009, Wang et al., 2018), 

developing SPMs for multi-species assessments (Mueter and Megrey, 2006, Johnson and Cox, 

2021), testing SPMs in the continuous-time functions (Pedersen and Berg, 2017), and using 

Bayesian statistics for SPMs (Woods and Jonasson, 2017). More importantly, SPMs have been 

widely applied in formal stock assessments (Ávila de Melo et al., 2020, ABARES, 2021). Pauly et 

al. (1989) reviewed and stated that SPMs are more realistically applicable to managing tropical 

fisheries in developing countries where age and length data might not be generally available. 

5. Research motivation and objectives 

Given the broader need to incorporate spatial modeling into stock assessments, along with our 

observations of the challenges in the current movement model proposed by Thorson et al. (2017), 

we are strongly motivated to develop a new method to overcome the challenges in computing 

spatial heterogeneity. The simplicity of SPM further motivated its use, as it provides an ideal 

framework for building more advanced spatial stock assessment models, where spatial modeling 

often presents significant complexity. 

The primary objective of this study is to develop a methodology — specifically, the random field 

model — to effectively account for spatial heterogeneity in the assessment of fish population 

dynamics using a scalable triangular grid on a defined spatial domain. In Chapter Two, I provide a 

comprehensive description of the model’s development and evaluate its performance through 
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rigorous simulation testing. This chapter also includes an application of the random field model to 

the 3LN Redfish dataset, demonstrating its practical utility. In Chapter Three, I apply the analysis 

by refining the understanding of the relationship between expected and observed survey catches 

through the integration of a quadratic function within the random field framework. Furthermore, I 

compare the model's output with predicted catches and stock biomass estimates reported in the 

2023 Assessment of Yellowtail Flounder in NAFO Divisions 3LNO. Finally, I present a final 

thoughts and conclusion chapter (i.e., Chapter Four) to summarize the work and my thoughts on 

the limitations, potential applicability, and considerations for future developments of the proposed 

methodology. 
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Chapter 2. Accounting for Movement in Spatial Surplus 

Production Models: A Case Study of Redfish on the Eastern 

Grand Banks of Newfoundland 

1. Introduction 

Fisheries stock assessment relies on quantitative models to provide estimates of population size, 

evaluate stock status (biomass and harvest rate relative to sustainable reference points)  and provide 

management advice. Although many advanced models exist, the choice of models largely depend 

on data availability specific to each fish stock. SPMs provide a simple approach to describe stock 

dynamics and generate benchmarks under the maximum sustainable yield (MSY) framework. 

These models combine net contributions from growth, recruitment, natural mortality and associated 

density-dependent processes into a single production function to approximate population dynamics. 

Punt and Szuwalski (2012) showed that ignoring transient age and size dynamics led to poor 

estimates of some  benchmarks (i.e., EMSY and BMSY) when using empirical measures of surplus 

production; however,  for data limited stocks where there are not enough age or length frequency 

data to conduct a fully age- or length-structured stock assessment, surplus production models 

remain widely used (e.g., Berg et al., 2021, Kimoto et al., 2023, González Herraiz et al., 2023). 

Spatial stock management is becoming more important as Canada committed to designate 30% of 

Canadian oceans as marine protected areas by 2030 (DFO, 2024). Such area-based management 

tools, including Marine Protected Areas (MPAs), inherently create spatial heterogeneity in fishing 

mortality and potentially affect ecological processes differently inside versus outside the protected 

zone, challenging traditional assessment models that assume uniformity across the entire stock area 
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(Berger et al., 2017). Effectively evaluating the impacts of these protected areas requires spatially 

explicit assessment models. Beyond addressing specific spatial management tools like MPAs, these 

models offer broader fundamental benefits. They allow for a more detailed understanding and 

tracking of ecological processes such as population structure, connectivity, and spatial variations 

in productivity (Cadrin, 2020). Spatial models also provide a framework to explicitly evaluate and 

relax the often-violated assumptions of non-spatial models, like spatial homogeneity in population 

dynamics and fishing impacts (Berger et al., 2017, Cadrin, 2020). Furthermore, they enable 

assessments to align more closely with the spatial realities of both fish populations and fisheries 

management strategies. Consequently, detailed management advice from spatial stock assessment 

models can assist when evaluating the impacts on proposed protected areas. Spatial models can 

better accommodate survey and catch data with different spatial domains compared (e.g., inshore 

and offshore surveys or fisheries fleets) to space-aggregated models (Goethel et al., 2011, see 

Berger et al., 2017). 

Spatially explicit models assign distinct quantities to different spatial locations and typically 

incorporate correlation structures among these locations to enhance statistical inference. Such 

spatially explicit approaches can track the abundance or density of the population (by age, size, 

and sex if possible) at points in space and time (see Cadigan et al., 2017, Thorson et al., 2017). 

Some stocks lack age and length information while high-resolution spatial catch and effort data 

exist, making them particularly suitable for spatial surplus production models (SSPMs). For 

example, SSPMs have been developed for a shrimp stock (Pandalus borealis) (Pedersen et al., 

2022, Lucet and Pedersen, 2023), big skate Raja binoculata (Thorson et al., 2017) and Antarctic 

toothfish (Mormede et al., 2017). An understanding of heterogeneous population distributions has 
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been recognized as critical for effective fisheries management, highlighting the necessity of 

developing spatially explicit stock assessment models. 

However, in general, explicitly incorporating spatial structure into stock assessment models 

remains challenging (see Cadrin and Secor, 2009, Cadrin et al., 2020), often because of insufficient 

spatial information regarding commercial catches and effort in addition to computational 

challenges. Also, movement parameter estimation has remained challenging and model 

convergence likely depends on both the life history characteristics of the fish species and the data 

quality (Punt, 2019, Punt et al., 2020). 

The Eastern Grand Banks of Newfoundland (NAFO [Northwest Atlantic Fisheries Organization] 

Divisions 3L and 3N [3LN]) historically sustained an important commercial fishery targeting 

Redfish (Sebastes spp., Sebastidae) but experienced a significant decline in landings in 1994 and a 

fishing moratorium was established in 1998. There have been signs of recovery in recent years and 

commercial harvesting resumed in 2011 (Rogers et al., 2022).   

Redfish are long-lived and very slow-growing. As adults, Redfish are often considered relatively 

sedentary compared to highly migratory species, typically exhibiting strong associations with 

specific bathymetric features like slopes and canyons (Gascon, 2003). While large-scale annual 

migrations are not generally characteristic of adult Redfish, ontogenetic migrations are known to 

occur, with smaller/younger individuals often inhabiting shallower nursery areas before moving to 

deeper waters as they (Kenchington, 1991). Connectivity across broader areas likely relies more 

heavily on the pelagic larval stage, where dispersal is influenced by ocean currents, rather than 

extensive adult movement (Roques et al., 2001, Benestan et al., 2021). Therefore, while adults may 

exhibit some localized movement related to feeding or environmental conditions, their dynamics 
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within a specific area over an annual time step might be less dominated by long-distance directed 

migration compared to other species. 

Due to the challenges in accurately determining their age, ageing data are not available. Therefore, 

an ASPIC (i.e., A Stock–Production Model Incorporating Covariates) logistic surplus production 

model (SPM) (Prager, 1994, Prager, 2016) was used to provide management advice by the NAFO 

during 2008 to 2020; however, this model was rejected during the 2022 assessment because of 1) 

mismatch between recent observed survey indices and the model biomass estimates and, 2) the use 

of a fixed MSY approach that resulted in a value of r that was considered too high for this species 

(Rogers et al., 2022). There has been no development of a spatial assessment model for this stock.  

In this study, we investigate the feasibility of incorporating movement into a SSPM using a spatial 

random field. Our novel methodology significantly reduces the modelling and computational 

complexity associated with movement while incorporating spatial heterogeneity in fish stock 

dynamics. It addresses both natural productivity and human harvesting activities, with a focus on 

the spatial distribution of the 3LN Redfish stock. We validate our approach through simulations. 

We then apply the model to survey and commercial catches of Redfish to evaluate the advantages 

of SSPMs. 

2. Materials and methods 

We begin by summarizing a typical spatial surplus production model introduced by Thorson et al. 

(2017), highlight its associated issues, and subsequently propose our method to address these 

challenges. A table of mathematical notations is included in the Appendix for reference. 

A general form of an age-aggregated surplus production model for fisheries stock assessment uses 

a single production function to describe stock dynamics: 
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𝑏𝑡+1 = 𝑔(𝑏𝑡𝑒(−𝑢𝑡𝐹𝑡))𝑒𝜀𝑡 , (1) 

where population abundance (or biomass, as used below) in year t + 1, denoted 𝑏𝑡+1, is a nonlinear 

function 𝑔() of the product of population biomass 𝑏𝑡 and survival rate 𝑒(−𝑢𝑡𝐹𝑡) in year t, with the 

instantaneous fishing mortality rate given by the product of the fishing effort data 𝐹𝑡  and a 

parameter 𝑢𝑡. The production function g() incorporates the effects of natural mortality, recruitment, 

and individual growth rates. The process error term 𝑒𝜀𝑡  is used to capture the uncertainty in 

population dynamics not explained by the production or fishing mortality. Eq. (1) assumes a 

sequential progression of various effects from fishing mortality to production and then to process 

error 𝜀𝑡. 

Spatial modeling of the surplus production process proposed by Thorson et al. (2017) 

To extend the above surplus model to accommodate spatial population dynamics, the spatial 

domain of interest is first divided into a large set of 𝑛𝑟 triangles. As the triangles are sufficiently 

small, the spatial variation within each triangle can be neglected so that every location within a 

triangle is homogeneous in terms of fish densities, harvest rates, population growth rates, mortality 

rates, process errors, etc. Each observation can be classified into one and only one triangle 

according to its latitude and longitude. The abundance or biomass of fish in a triangle r at time t is 

represented as 𝑏𝑟,𝑡, with 𝒃𝑡 being the vector of these abundance values for all triangles at time t. 

Thorson et al. (2017) proposed a spatial population dynamics modeling framework that integrates 

fish movement and migration, encompassing both random diffusion and directional advection 

processes: 

𝒃𝑡+1 = 𝑔(𝑚(𝒃𝑡 ∗ exp (−𝑢𝑡𝑭𝑡))) ∗ exp (𝜺𝑡).    (2) 
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Here, the function g() is applied elementwise to its vector argument. The function m() symbolizes 

a movement operation, 𝑭𝑡 is a vector of fishing effort per unit area for all triangles in year t, and 

𝜺𝑡 represents a vector of process errors for all spatial triangles. Throughout this paper, the symbol 

‘*’ denotes elementwise multiplication for matrices. If there is no ‘*’ symbol between two matrices, 

it indicates a standard matrix multiplication. Additionally, 𝑒𝑸 denotes the matrix exponential of 

matrix Q, while exp(Q) signifies the elementwise exponential. In Eq. (2), the sequence of effects 

is ordered as fishing mortality, movement, production, and process error. Defining 𝒑𝑡 =

𝑚(𝒃𝑡 ∗ exp (−𝑢𝑡𝑭𝑡)), Thorson et al. (2017) applied the Gompertz's production function: 

𝑔(𝑝𝑟,𝑡) = 𝑝𝑟,𝑡𝑒
(𝛼+𝜔𝑟−𝛽 𝑙𝑜𝑔(

𝑝𝑟,𝑡
𝑎𝑟

))
    (3) 

which ensures the positivity of abundance. Here 𝛼  signifies the change in average population 

abundance on a logarithmic scale, 𝛽 denotes the logarithmic decline in productivity as population 

density increases, 𝜔𝑟 captures the difference in productivity between triangles (i.e., spatial variance) 

and 𝑎𝑟 represents the area of the 𝑟𝑡ℎ triangle. a is a vector of all triangle areas. 

The form of Gompertz’s production function, introduced by Reddingius (1971) (as cited in Dennis 

and Taper, 1994), describes the relationship between population abundance or biomass at time  

𝑡 (𝑁𝑡) and at time t + 1 (𝑁𝑡+1). The relationship is expressed as: 𝑁𝑡𝑒(𝑎 + 𝑏 𝑙𝑜𝑔(𝑁𝑡)+ 𝜎𝑍𝑡), where a 

and b are constants, and 𝜎𝑍𝑡 represents a random shock to the population growth. This form was 

later utilized to develop the Gompertz production model for fish population dynamics (see Thorson 

et al., 2015b, Thorson et al., 2017). 
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In Eq. (3), the process error 𝜺𝑡 and the spatial variation 𝝎, a vector of all the 𝜔𝑟’s, are both assumed 

to follow a Gaussian field with a mean of zero and a Matérn covariance structure. For example, the 

Matérn covariance between two components of 𝜺𝑡 at 𝑠1 and 𝑠2 is given by 

𝐶𝑜𝑣(𝜺𝑡(𝑠1), 𝜺𝑡(𝑠2)) =
𝜏𝜀

−2

2𝑣−1Г(𝑣)
(𝜅𝜀|𝑠1 − 𝑠2|)𝑣𝐾𝑣(𝜅𝜀|𝑠1 − 𝑠2|).   (4) 

Here Г(𝑣) is the Gamma function of the smoothness parameter 𝑣, 𝐾𝑣() is the modified Bessel 

function of the second kind with order 𝑣, and |𝑠1 − 𝑠2| represents the distance between two spatial 

points. The parameter 𝜏𝜀  accounts for the pointwise variance of 𝜺𝑡 , and 𝜅𝜀  represents the 

geographical range of correlations (Babyn et al., 2021). The same concept is applied to 𝝎. 𝑣 is 

poorly identified in typical applications (Lindgren et al., 2011), so it is commonly set at 1 (Thorson 

et al., 2017). 

A Gaussian field possesses a dense covariance matrix, whose factorization cost is 𝑂(𝑛3), where n 

denotes the matrix size. This renders the approach impractical for dealing with large-scale problems. 

Lindgren et al. (2011) developed an effective methodology to approximate a Gaussian Matérn field 

using a Gaussian Markov random field (GMRF) based on a triangular spatial grid. This 

approximation provides the advantages of modelling as a Gaussian field while maintaining the 

computational efficiency of a GMRF. Thorson et al. (2017) provides R code, based on the R-INLA 

package (Lindgren and Rue, 2015b), to create the set of spatial triangles with data points positioned 

near the triangle centers. With R-INLA, users can specify lower bounds for triangle angles and 

edges, thereby regulating the size and shape of the triangles within the grid design. R-INLA also 

provides the corresponding design matrices required to construct the precision matrix for the 

GMRF approximation of the Gaussian field. 
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Thorson et al. (2017) specified the initial abundance as a deviation from the equilibrium abundance, 

accounting for spatial fishing mortalities equal to those in the first year and movement, 

𝒃0 = 𝑚 (𝒂 ∗ exp (µ0 +
𝝎

𝛽
) ∗ exp (−𝑢1𝑭1)),  (5) 

Where µ0 is a model parameter to estimate, representing the average logarithm of the equilibrium 

biomass density across all spatial locations. It establishes the baseline level for the initial biomass 

distribution (𝒃0), which is then modified by spatial productivity variations (𝝎), estimated fishing 

mortality in the first year (𝑭1), and movement effects (𝑚()). 

Difficulties with the spatial surplus production model 

The primary challenges with the spatial surplus production model outlined above lie in the 

modeling and implementation of movement. 

Modeling Challenges: Developing a detailed model for diffusion and advection (i.e. m() in Eq. 2) 

with manageable computation costs poses a significant challenge. To address this, Thorson et al. 

(2017) adopted a simplified approach,  assuming fish movement follows a first-order homogeneous 

differential equation, 

𝜕𝒃

𝜕𝑡
= 𝑵𝒃  (6) 

with the solution 𝒃𝑡+1 = 𝑒𝑵𝒃𝑡 = 𝑴𝒃𝑡. N is a matrix of instantaneous movement rates; employing 

the Metzler matrix, i.e., matrix with nonnegative off-diagonal elements (Kemp and Kimura, 1978), 

for N ensures that M is nonnegative, thereby guaranteeing 𝒃𝑡+1  remains nonnegative if 𝒃𝑡  is 

nonnegative. For this formulation, 𝒑𝑡 = 𝑴(𝒃𝑡 ∗ exp (−𝑢𝑡𝑭𝑡)) in Eq. (3). Because the spatial 

domain is discretised into triangles, Thorson et al. (2017) further simplified the instantaneous 

movement matrix N by restricting it to traverse only neighbouring triangles. This movement is 
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governed by four estimated velocity parameters representing constant rates along the cardinal 

directions: east (e), south (s), west (w) and north (n). The overall matrix N is constructed as the 

sum 𝑵 = 𝑣𝑒𝑁𝑒 + 𝑣𝑠𝑁𝑠 + 𝑣𝑤𝑁𝑤 + 𝑣𝑛𝑁𝑛 , where 𝑁𝑒 , 𝑁𝑠 , 𝑁𝑤  and 𝑁𝑛  are metrices  defining the 

structure of movement in each respective direction with corresponding velocity parameters 

𝑣𝑒 , 𝑣𝑠 , 𝑣𝑤, 𝑣𝑛. 

Despite all these simplifications, this approach still results in a complex formulation and coding. 

Furthermore, fully capturing the intricate dynamics of fish diffusion and advection remains a 

challenge for current methods, although future developments may better account for these 

dynamics than is currently feasible. 

Implementation Challenges: Although N is a Metzler matrix involving only neighbouring 

movement, the yearly movement matrix 𝑴 = 𝑒𝑵  is not sparse unless N is an identity matrix, 

resulting in impractical computational costs for spatiotemporal modelling. Thorson et al. (2017) 

addressed this issue by employing the Euler approximation (𝐼 + 𝑵/𝑛𝑡𝑖𝑚𝑒−𝑠𝑡𝑒𝑝)
𝑛𝑡𝑖𝑚𝑒−𝑠𝑡𝑒𝑝

≈ 𝑒𝑵, 

where 𝑛𝑡𝑖𝑚𝑒−𝑠𝑡𝑒𝑝 represents the number of time-steps in the approximation. This approach presents 

a dilemma: ensuring sparsity in M via the Euler approximation requires 𝑛𝑡𝑖𝑚𝑒−𝑠𝑡𝑒𝑝  to be 

sufficiently small, but a low 𝑛𝑡𝑖𝑚𝑒−𝑠𝑡𝑒𝑝 can compromise the accuracy of the movement matrix 

approximation.  

Parameter Estimation Challenges: Preliminary simulation analyses conducted for this study 

reveal challenges in accurately estimating the four velocity parameters governing movement along 

the four 2D directions. This estimation also impacts the identifiability of other parameters. For 

instance, both Thorson et al. (2017) and our simulations demonstrate that, in the presence of 

movement parameters, the spatial correlation range parameter 𝜅 cannot be separately estimated for 
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𝜺𝑡 and 𝝎 due to model convergence issues, requiring the same 𝜅 for both Gaussian fields. This is 

functionally important because 𝜅 determines the spatial scale of correlation, and forcing the scale 

of persistent productivity patterns (ω) to match the scale of annual process errors (εₜ) is a restrictive 

assumption that limits the model's ability to capture potentially different spatial dynamics for these 

different processes. 

Similarly, when utilizing the Tweedie distribution for survey catch data, the Tweedie power 

parameter p becomes unidentifiable in the presence of movement parameters. This parameter is 

critically important because it fundamentally defines the statistical relationship between the 

expected survey catch and the variance of those catches, a relationship formally expressed as 

𝑉𝑎𝑟(𝑌) =  𝜎2 ∗ 𝜇𝑝. This parameter is crucial as it defines the variance structure in the survey catch 

distribution. The failure to identify these crucial parameters, alongside the movement parameters, 

significantly hampers the practical application of this approach. 

Accounting for movement by Gaussian random fields 

In the spatial surplus production model (Eq. 2), the spatial variation in fish abundance arises from 

both the movement function, m(), and the process error , 𝜺𝑡 . This coexistence can lead to 

confounding, posing challenges in simultaneously estimating both factors and resulting in the 

inability to identify certain parameters. To address this issue, we propose an alternative approach 

by not explicitly modelling movement. Instead, we accommodate movements using a more flexible 

process error with a distinct correlation range from 𝝎. While this approach does not directly 

compute fish movements, our primary focus is on the spatial distribution of fish, considering 

movement as nuisance effects. We refer to this approach as the random field model, distinguishing 

it from Eq. (2), which we term the movement model. 
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The random field model is defined for an individual triangle r as  

𝑏𝑟,𝑡+1 = 𝑔(𝑏𝑟,𝑡𝑒(−𝑢𝑡𝐹𝑟,𝑡))𝑒𝜀𝑟,𝑡 , (7) 

where the production function 𝑔( ) retains its definition from Eq. (3), despite a modified argument. 

𝜺𝑡 and 𝝎 also maintain their previous definitions and distributional assumptions, but now have 

distinct distributional parameters for estimation, a modification facilitated by the exclusion of 

movement from the model, as previously explained. For the initial abundance, we continue to 

utilize the equilibrium abundance with deviations (Eq. 5), albeit without any subsequent movement, 

𝒃0 = 𝒂 ∗ exp (µ0 +
𝝎

𝛽
) ∗ exp(−𝑢1𝑭1).  (8) 

We generate data with the movement model and fit it using both the movement model and the 

random field model. If the random field model accurately estimates fish density and production 

parameters, demonstrating comparable or superior performance to the movement model, then it 

will be considered as an effective spatiotemporal surplus production model that is adept at 

accounting for complex fish movements. 

Connecting the spatial surplus production model to harvest and stock index components.  

Estimation of surplus production model parameters needs to integrate models of fishery harvest 

and an index of relative stock abundance (typically derived from scientific surveys or fishery catch-

per-unit-effort): 

𝐻𝑟,𝑡 = 𝑏𝑟,𝑡(1 − 𝑒(−𝑢𝑡𝐹𝑟,𝑡))  (9) 

𝐻𝑡 = 𝑒𝛿𝑡 ∑ 𝐻𝑟,𝑡
𝑛𝑟
𝑟=1        (10)               

µ𝑟,𝑡 = 𝑞𝑤 (
𝑏𝑟,𝑡

𝑎𝑟
)  (11) 
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where the commercial harvest 𝐻𝑟,𝑡 in the rth triangle and year t is a product of triangular stock 

abundance (or biomass) and  fishing mortality rate (i.e.,  1 − 𝑒(−𝑢𝑡𝐹𝑟,𝑡)), Eq. (9), 𝐻𝑡 is the total 

commercial harvest in year t, 𝑒𝛿𝑡  represents the measurement error in the harvest data, Eq. (10), w 

is the area swept for a given tow, µ𝑟,𝑡 is the expected catch of this sample in triangle r and year t, 

and 𝑏𝑟,𝑡/𝑎𝑟  is the population density for triangle r in year t, and 𝑞  represents the catchability 

coefficient Eq. (11). Of these equations, Eq. 9 and 10 relate to commercial catches while Eq. 11 

relate to survey catches. 

Our investigations suggest that the Tweedie distribution is robust to the heavy zero-inflations 

observed in the survey indices of some species such as Redfish in NAFO Divisions 3LN. The 

Tweedie distribution can also naturally include a multiplicative structure on its mean (Foster and 

Bravington, 2013). In ecological applications, a multiplicative structure for the expected value is 

often appropriate, where the expected response variable is proportional to the product of the 

covariate effects, reflecting a multiplicative rather than an additive relationship (see Foster and 

Bravington, 2013). In fisheries studies, a multiplicative structure on the expected value 

appropriately reflects the proportional increase in catches with an increase in sampling effort such 

as a trawl’s swept-area and sampling duration. Therefore, we model the survey catches 𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

using the Tweedie distribution with mean µ𝑟,𝑡 defined by Eq. (11), power parameter p ranging from 

1 to 2 for zero-inflated nonnegative continuous data, and positive dispersion parameter φ (i.e., 

𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑~𝑇𝑤𝑒𝑒𝑑𝑖𝑒(µ, 𝑝, 𝜑)).  The variance of a Tweedie distribution follows the power law 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝜑𝜇𝑝 (Jørgensen, 1997). 

Parameter estimation 
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The joint likelihood of the data and random effects, which is conditional on the fixed-effect 

parameters θ defining the model structure, can be written as 

𝐿𝑗𝑜𝑖𝑛𝑡(𝜽, Ɗ, 𝜳) = 𝑝𝜽(Ɗ|𝜳)𝑝𝜽(𝜳)        (12) 

where Ɗ represents the observed data (i.e., commercial catch, survey indices), Ψ is the vector of 

random effects, and θ is the vector of fixed-effect parameters. We compute the negative log-

marginal likelihood and its gradients using the Template Model Builder (TMB) package in R (R-

Core-Team, 2022), which assess the integration over Ψ using Laplace approximation (Kristensen 

et al., 2016). Based on these TMB outputs, we obtain the maximum marginal likelihood estimates 

for θ by minimizing the negative log-marginal likelihood through the nlminb() function in R. 

Simulation study 

In this simulation study, we employ sampling sites and production parameters closely aligned with 

3LN Redfish data and corresponding analyses presented in the next section, ensuring a close 

resemblance to real-world fisheries sampling and dynamics. The spatial mesh, consisting of 168 

triangles, is optimally determined based on the 3LN Redfish sampling sites using the R-INLA 

package. Following Thorson et al. (2017), the triangular mesh facilitates decomposing 

instantaneous movements among adjacent triangles into directional components 𝑁 = 𝑣𝑒𝑁𝑒 +

𝑣𝑠𝑁𝑠 + 𝑣𝑤𝑁𝑤 + 𝑣𝑛𝑁𝑛, where 𝑁𝑒 , 𝑁𝑠, 𝑁𝑤, 𝑁𝑛 are movement matrices for east (e), south (s), west (w) 

and north (n) directions, respectively, with corresponding velocity parameters 𝑣𝑒 , 𝑣𝑠, 𝑣𝑤 , 𝑣𝑛 set to 

1. The net movement entering or leaving a triangle edge is calculated as the sum of the projections 

of the four cardinal movements (i.e., east, south, west, and north) along the direction perpendicular 

to that edge , as described in Thorson et al. (2017). The yearly movement matrix is 𝑴 = 𝑒𝑵. 

Starting with the initial abundance modeled using Eq. (5), we apply a spatial surplus production 

model Eq. (3) to simulate 68 years of population dynamics. This extended simulation period allows 
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the modeled population dynamics to stabilize and move beyond potentially arbitrary initial 

conditions, ensuring the system reaches a state more representative of its long-term behavior under 

the specified parameters and stochastic processes (Thorson et al., 2017). Following this 

stabilization period, we use the simulated data from only the final 8 years to approximate natural 

abundance distributions in the final 8 years. 

The production parameters in model Eq. (3) are set to 𝛽 = 0.89 and 𝛼 = 1.19 that are based on 

fitting the 3LN Redfish data. Likewise, the correlation range parameters κ of Gaussian random 

fields are derived from this fitting. We define that the spatial variation across triangles in 

productivity is characterized by a standard deviation (i.e., 𝜎𝜔) of 1 and the standard deviation of 

spatiotemporal process errors (i.e., 𝜎𝜀) also takes the value of 1. Fishing efforts 𝑭𝑡 for the 168 

spatial triangles over this period are determined by the outer product of a spatial vector (168 

elements) and a temporal vector (68 elements). The spatial vector is generated using the geoR 

package (Ribeiro and Diggle, 2001) as the exponential of a Gaussian random field with a mean of 

1 and Matérn covariance (standard deviation: 0.5, range parameter: 𝜅𝐹 = 1), while the temporal 

vector is generated elementwise from a lognormal distribution with a mean of 0.2 and a standard 

deviation of its logarithm set to 0.5. The spatial variation 𝝎 is generated as a Gaussian random 

field with a mean of -0.5 and Matérn covariance (marginal standard deviation: 1, range parameter: 

𝜅𝐹 = 1). The mean of -0.5 is chosen to maintain an exponential mean of 1. The process errors 𝜺𝑡 

are independently generated for each year as Gaussian random fields with a mean of 0 and Matérn 

covariance (marginal standard deviation: 1, range parameter: 𝜅𝐹 = 1). 

The spatial abundances over the last 8 years are subsequently used to generate commercial harvest 

data and survey catch data using Eqs. (9)-(11), with a consistent yearly sample size of 388, 

mirroring the average sample size of 3LN Redfish survey data. The errors 𝛿𝑡 in harvest data follow 
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an independent normal distribution with a mean of 0 and a standard deviation of 0.2, which is close 

to the fitted value for the Redfish data. Of the 168 triangles, we implemented random selection 

with replacement to distribute simulated survey data to the triangles. The mean survey catch is 

calculated using Eq. (11), where q=1 and w=1. The survey catches follow a Tweedie distribution 

with dispersion parameter 𝜑 = 3 and power parameter p=1.5 and 1.7. Both movement and random 

field models are fitted to the harvest and catch data. As the movement model cannot estimate the 

power parameter, p is set to 1.7 during fitting. When fitting the random field model, p is estimated 

alongside other model parameters. This simulation is iterated 100 times to obtain sampling 

distributions for the estimators. 

To demonstrate the necessity of spatial modeling, we also fitted the simulated spatiotemporal data 

using a non-spatial SPM (i.e., not account for spatial variation among triangles) (1), using the 

Gompertz's production function 𝑔(𝑏𝑡) = 𝑏𝑡 exp(𝛼 − 𝛽 𝑙𝑜𝑔(𝑏𝑡)); that is, we assumed that fish 

density is uniform across the 3LN region to fit the spatial individual survey catches, as was done 

for SSPMs using variable spatial distributions. Note that non-spatial SPMs are typically fitted to 

annual aggregated observations. However, this approach requires a long time series to reveal 

production contrasts, including time-periods of higher catches that cause the stock to decline and 

time-periods of lower catches that allow the stock to grow. Also, our purpose here was to 

investigate the improvements in fit provided by our spatial model and we cannot directly compare 

spatial and non-spatial model fits to spatial and aggregated data respectively using Akaike 

Information Criterion (AIC) (Akaike, 1981) and Bayesian Information Criterion (BIC) (Gideon, 

1978). In contrast, our method accommodates spatial data over fewer years due to its larger sample 

size and spatial contrast in harvest rates and stock production that provide enough information to 
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estimate the model parameters. Also, our approach uses the same data as the other methods in this 

paper, ensuring that  AIC and BIC are comparable for these models. 

To compare the performances of random field, movement and non-spatial models, we computed 

the difference in AIC (Akaike, 1981) and BIC between the two methods in a pair. We also compare 

the methods based on the correlation between the true (i.e., simulated) and the estimated population 

densities to investigate which method can better reconstruct the stock density, which is the primary 

focus of the modeling efforts. The Pearson correlation coefficient was calculated to compare the 

true and estimated values. We generated histograms of the parameter estimates to examine 

parameter estimates to their true values. 

Case study application 

We applied the model to assess the spatiotemporal dynamics of 3LN Redfish. The available data 

include annual commercial landings from 1959 – 2019, commercial fishing effort information from 

2012 – 2022, and spatiotemporal survey catches between 1983 – 2019, which include Canadian 

Spring and Fall survey data. In this study, we combined the information from both surveys for the 

analysis. We only selected information from 2012 – 2019 in our analysis for consistency regarding 

time intervals among different data sources. 

Commercial catches sourced from NAFO Data and Statistics (www.nafo.int/Data) exhibit an 

overall increase in landings since 2012 (Fig. 1). Survey catch information consists of 3098 records 

between 2012 and 2019, obtained through bottom trawl surveys in the 3LN Divisions by Fisheries 

and Oceans Canada (DFO). Each record contains catch year, location (i.e., longitude and latitude) 

and the total number and weight of Redfish caught per tow. In this study, we utilized survey catch 

http://www.nafo.int/Data
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data that had been pre-standardized to a uniform swept area per tow across all catches. The survey 

catch dataset is highly zero-inflated (Fig. 2), particularly in shallow areas. 

Commercial fishing effort information was extracted from an open-source Application 

Programming Interface (API) published by Global Fishing Watch (GFW, globalfishingwatch.org). 

GFW's API provides a comprehensive view of the world's fishing efforts, tracking vessels' 

movement, identity, and activities. By utilizing advanced satellite technology and machine learning 

algorithms, the platform takes into account both the automatic identification system (AIS) and 

vessel monitoring systems (VMS), which combine global positioning with a transmitter to 

regularly broadcast vessel locations. Furthermore, GFW integrates data from over 30 public vessel 

registries and various satellite imagery sources to create its open-source API. Fisheries scientists 

have been using data from GFW's platform for their publications since 2016 (e.g., White et al., 

2017, Sala et al., 2021, Carneiro et al., 2022) (for a list of publications, see 

globalfishingwatch.org/publications/). 

We obtained fishing effort by commercial trawler operations using the gfwr package published by 

GFW for the R environment (see github.com/GlobalFishingWatch/gfwr). Each record contains the 

fishing location (i.e., longitude and latitude) and fishing effort measured in fishing hours (Fig. 3). 

We then converted the data to a matrix of 𝑛𝑟  rows (i.e., 𝑛𝑟  triangles) and 𝑛𝑡  columns (i.e., 𝑛𝑡 

years). Each matrix element results from dividing the sum of fishing effort by the area of the 

corresponding triangle for the given year t and triangle r. The matrix elements serve as the fishing 

effort per unit area 𝐹𝑟,𝑡 in the movement model Eq. (3) and random field model Eq. (7) to fit the 

data. 

https://globalfishingwatch.org/
https://globalfishingwatch.org/publications/
https://github.com/GlobalFishingWatch/gfwr
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In a preliminary study, the movement model (Eqs. 3 and 5) was applied to the 3LN Redfish data 

to inform the setup of the simulation studies. However, only results from the random field model 

are presented in the results section due to its superior performance observed in the simulations. 

To demonstrate the goodness of fit, we evaluated the randomized quantile residual (Dunn and 

Smyth, 1996) for each observed survey catch, a suitable model validation device for non-normal 

observations. Following this, we generated a Q-Q plot using the qqnorm() function in R to examine 

the fit of the random field model to the Redfish data. We also compared the estimated and observed 

survey catches. The conventional "plug-in" estimators are biased, as explained by Thorson and 

Kristensen (2016). To address this issue, we applied the bias correction feature in TMB, which 

utilizes the "epsilon" estimator proposed by Thorson and Kristensen (2016) to obtain bias-corrected 

estimates of survey catches. 

 
 

Figure 1. Recorded landings of Redfish in 3LN from 1959 to 2019 with the corresponding total 

allowable catch (TAC). Dots represent TAC and solid line represents commercial catches. 
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Figure 2. Maps of the spatial survey catches in log scale of Redfish biomass (Kg) in the 3LN 

Divisions from 2012 to 2019. Bubbles represent survey catches and crosses show survey locations 

with zero catch. 
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Figure 3. Maps of commercial fishing effort in log scale of fishing hour by trawlers in the 3LN 

Divisions from 2012 to 2019. Bubbles represent commercial fishing data. 

3. Results 

Simulation testing 

Simulation testing with p=1.5 

Our inspection of parameter estimation revealed that, in the simulation setup with 𝑝 = 1.5, the 

parameters 𝛼 , 𝛽 , 𝜎𝜔  and 𝜎𝜀  are estimated reasonably well using movement and random field 

models (Fig. 4). The random field model clearly outperformed the movement model in estimating 

𝛼  and 𝜎𝜔 . The random field model slightly overestimates 𝜎𝜀  due to the incorporation of fish 



32 

 

movement by 𝜺𝑡. Quantitative summaries of estimator performance, including relative bias and 

coefficient of variation, are provided in Appendix Tables S1 and S2. 

The correlation between the simulated and estimated population abundance across triangles and 

years is generally high for both spatial modeling methods with the means of correlation at 0.78 and 

0.76 for random field and movement models, respectively, suggesting accurate estimation of the 

spatiotemporal distribution of population density through each approach (Fig. 5, panel 1 and 2). In 

contrast, the non-spatial model presents a much greater degree of discrepancy in the correlation 

between simulated and estimated population abundance with a mean of correlation coefficient at 

0.54. In some cases, its estimates are opposite to the simulated data trend (with negative correlation 

between simulated and estimated population abundance) (Fig. 5, panel 3). This outcome is expected, 

as the non-spatial model assumes negligible spatial variation in population dynamics, a condition 

that does not hold for the simulated data. 

The random field model results in better estimates with 56% higher correlations (Fig. 6, panel 3) 

and 54% lower AIC and BIC, scores compared with those of the movement model (Fig. 6, panels 

1 and 2). Similarly, the random field model outperforms the non-spatial method with 74% higher 

correlations and 65% lower AIC and BIC scores (Fig. 7). 

Both the random field model and the non-spatial model yield unbiased estimates of the total 

population biomass (Fig. 8, panel 1 and 3). However, the standard error of the random field model 

estimator is significantly smaller than that of the non-spatial model. In contrast, the total population 

biomass estimate derived from the movement model shows a slight bias and exhibits a larger 

standard error compared to the random field model (Fig. 8, panel 2). 
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Simulation testing with p=1.7 

In the alternative simulation, we raised the Tweedie power parameter 𝑝 to 1.7 and estimated it in 

the random field and non-spatial model approaches, while setting 𝑝 to 1.5 in the movement model 

approach due to challenges in parameter identification. The simulation results reveal significant 

positive biases in 𝛼 estimation with the movement model approach, whereas the random field 

model yields more accurate estimates of 𝛼 (Fig. 9, panels A1 and B1). Similarly, the random field 

model outperforms the movement model in 𝜎𝜔 estimation (Fig. 9, panels A3 and B3). While the 

random field model still overestimates 𝜎𝜀 to accommodate movement as previously explained, the 

movement model completely missed the true value of 𝜎𝜀 (Fig. 9, panels A4 and B4), contrasting 

starkly with its previously decent estimation of 𝜎𝜀 in Fig. 4, panel B4. This discrepancy suggests 

that this parameter is highly sensitive to the inaccurate observational model used in the movement 

model approach. 

When comparing the correlation between simulation and estimates of population abundance, the 

random field model performs at least as well as the movement model. Means of correlation 

estimates are 0.70 and 0.68 for random field and movement models respectively (Fig. 10). 

Conversely, the non-spatial method exhibits the poorest performance (0.52), with its estimates 

occasionally deviating significantly from the simulated abundance (Fig. 10).  

In 57% and 61% of simulations, the random field model achieves lower AIC and BIC scores 

compared to the movement model, respectively (Fig. 11). 55% of the correlations between 

simulated and estimated population abundances are higher for the random field model compared 

to the movement model (Fig. 11). 
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In 67% of the simulations, the random field achieved lower AIC and BIC scores compared to the 

non-spatial model (Fig. 12). Additionally, the correlation between simulated and estimated 

population abundance is higher in 74% of the simulations for the random field model compared to 

the non-spatial model (Fig. 12), indicating that the random field model can reconstruct the 

population abundance better than the non-spatial model. 

Both the random field model and the non-spatial model provide unbiased estimates of total 

population biomass (or abundance); however, the random field model achieves a significantly 

smaller standard error (Fig. 13, panel 1 and 3). In contrast, the movement model produces a biased 

estimate with a larger standard error compared to the random field model (Fig. 13, panel 2). 

Our simulations demonstrated that the movement model method frequently encountered 

convergence issues. In contrast, the random field model approach had no issues with model 

convergence regardless of different simulation settings. 
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Figure 4. Simulation results for (A) random field, (B) movement and (C) non-spatial models 

including parameter estimator distributions of (1) the average density 𝛼, (2) the density dependence 

𝛽, (3) the standard deviation of spatial variation in productivity 𝜎𝜔, and (4) the standard deviation 

of spatiotemporal process error 𝜎𝜀. The simulation used Tweedie power parameter 𝑝 = 1.5. Red 

lines are the true values of the parameters and blue lines are means of parameter estimates. 
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Figure 5. Simulation results of correlation between true abundance (i.e., simulated) and estimated 

abundance for (1) random field, (2) movement and (3) non-spatial models. The simulation used 

Tweedie power parameter 𝑝 = 1.5. Blue lines are means of correlation estimates. 

 

   

Figure 6. Boxplots of differences in statistical metrics including AIC, BIC, and correlation 

between random field and movement models. The simulation used Tweedie power parameter 𝑝 =

1.5. The differences are: 𝐴𝐼𝐶𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐴𝐼𝐶𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑖𝑒𝑙𝑑 − 𝐴𝐼𝐶𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡; 𝐵𝐼𝐶𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

𝐵𝐼𝐶𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑖𝑒𝑙𝑑 − 𝐵𝐼𝐶𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡; and 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑖𝑒𝑙𝑑 −

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡. 
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Figure 7. Boxplots of differences in statistical metrics including AIC, BIC, and correlation 

between random field and non-spatial models. The simulation used Tweedie power parameter 

𝑝 = 1.5. The differences are: 𝐴𝐼𝐶𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐴𝐼𝐶𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑖𝑒𝑙𝑑 − 𝐴𝐼𝐶𝑛𝑜𝑛−𝑠𝑝𝑎𝑡𝑖𝑎𝑙; 

𝐵𝐼𝐶𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐵𝐼𝐶𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑖𝑒𝑙𝑑 − 𝐵𝐼𝐶𝑛𝑜𝑛−𝑠𝑝𝑎𝑡𝑖𝑎𝑙; and 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑖𝑒𝑙𝑑 − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑛−𝑠𝑝𝑎𝑡𝑖𝑎𝑙. 

 

Figure 8. Mean of differences between predicted versus generated annual biomasses of 1) random 

field model; 2) movement model; and 3) nonspatial model. The simulation used Tweedie power 

parameter 𝑝 = 1.5.  The difference is 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 −

𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑. The shading areas show 95% confidence intervals. 
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Figure 9. Simulation results for (A) random field, (B) movement and (C) non-spatial models, 

including parameter estimator distributions of (1) the average density 𝛼, (2) the density dependence 

𝛽, (3) the standard deviation of spatial variation in productivity 𝜎𝜔, and (4) the standard deviation 

of spatiotemporal process error 𝜎𝜀. The simulation used Tweedie power parameter 𝑝 = 1.7. Red 

lines are the true values of the parameters and blue lines are means of parameter estimates. In the 

movement model, p is fixed, whereas, in the random field and non-spatial models, p is estimated. 
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Figure 10. Simulation results of correlation between true abundance (i.e., simulated) and estimated 

abundance for (1) random field model, (2) movement model and (3) non-spatial model methods. 

The simulation used Tweedie power parameter 𝑝 = 1.7 . Blue lines are means of correlation 

estimates. In the movement model, p is fixed, whereas, in the random field and non-spatial models, 

p is estimated. 

   

Figure 11. Boxplots of differences in statistical metrics including AIC, BIC, and correlation 

between random field and movement models. The simulation used Tweedie power parameter 𝑝 =

1.7. The differences are: 𝐴𝐼𝐶𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐴𝐼𝐶𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑖𝑒𝑙𝑑 − 𝐴𝐼𝐶𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡; 𝐵𝐼𝐶𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

𝐵𝐼𝐶𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑖𝑒𝑙𝑑 − 𝐵𝐼𝐶𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡; and 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑖𝑒𝑙𝑑 −
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𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡. In the movement model, p is fixed, whereas, in the random field model, p 

is estimated. 

   

Figure 12. Boxplots of differences in statistical metrics including AIC, BIC, and correlation 

between random field and non-spatial models. The simulation used Tweedie power parameter 

𝑝 = 1.7. The differences are: 𝐴𝐼𝐶𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐴𝐼𝐶𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑖𝑒𝑙𝑑 − 𝐴𝐼𝐶𝑛𝑜𝑛−𝑠𝑝𝑎𝑡𝑖𝑎𝑙; 

𝐵𝐼𝐶𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐵𝐼𝐶𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑖𝑒𝑙𝑑 − 𝐵𝐼𝐶𝑛𝑜𝑛−𝑠𝑝𝑎𝑡𝑖𝑎𝑙; and 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑖𝑒𝑙𝑑 − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑛−𝑠𝑝𝑎𝑡𝑖𝑎𝑙. 
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Figure 13. Mean of differences between predicted versus generated annual biomasses of 1) 

random field model; 2) movement model; and 3) nonspatial model. The simulation used Tweedie 

power parameter 𝑝 = 1.7. The difference is 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 −

𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑. The shading area shows 95% confidence intervals. In the movement model, p 

is fixed, whereas, in the random field and non-spatial models, p is estimated. 

 

Case study application 

The estimated spatial distribution of Redfish biomass within the 3LN Division, as shown in Fig. 

14, exhibits heterogeneity. A peak in estimated biomass occurs at the southern part of Division 3N. 

Redfish populations predominantly aggregate in deepwater zones, specifically within the 

bathymetric range of 200 to 500 meters. Conversely, in the shallower littoral and nearshore 

environments, Redfish biomass is much lower, with some areas exhibiting negligible or non-

existent populations. In the areas of high concentration, fluctuations in Redfish biomass are evident 

from 2012 to 2019. The estimated spatiotemporal distribution of biomass (Fig. 14) demonstrates a 

high agreement with the predicted survey catch data (Fig. 15) over the period extending from 2012 

to 2019. 

In addition, the alignment between model-estimated and observed catches (Fig. 16, panel A), along 

with the straight-line pattern in the normal Q-Q plot, indicates that the model fits the survey data 

very well (Fig. 16, panel B). The parameter estimates and their corresponding standard errors are 

presented in Table 1. The large difference between 𝐾𝜀 and 𝐾𝜔 highlights the advantage of the 

random field model, as the movement model is constrained to treat these parameters as 



42 

 

equal. In addition, the Tweedie power parameter p takes on a value (1.77) that is not easily 

anticipated and is best estimated, which is also beyond the movement model. 

 

 

Figure 14. Maps of population biomass estimates for Redfish in the 3LN Divisions, displayed on a 

logarithmic scale as log (1 + biomass estimate). The color legend is presented at the bottom of the 

plot. 
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Figure 15. Model predicted spatial survey indices (i.e., the estimated spatial distribution) of Redfish 

in the 3LN Divisions, shown on a logarithmic scale as log (1 + survey index). The color legend is 

presented at the bottom of the plot. 

 

Table 1. Parameter estimates and standard errors for the random field model fit to the 

3LN Redfish data. 

Parameters Estimates Standard Error 

𝛽 0.43 0.31 
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𝛼 0.97 2.08 

𝐾𝜀 0.53 0.30 

𝐾𝜔 7.76 0.36 

𝜎𝜀 1.43 0.24 

𝜎𝜔 3.32 0.39 

𝜇0 15.54 4.73 

𝑞 0.95 6.42 

𝜑 9.19 0.031 

𝑝 1.77 1.15 

𝜎𝑐𝑎𝑡𝑐ℎ 0.25 0.75 

(A) 
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Figure 16. Plots of (A) estimated versus observed survey catches for each year and (B) QQ Plots 

of the randomized quantile residuals for survey catches. In panel (A), the x axis represents the 

estimated survey catches, the y axis represents the observed survey catches, and the red line has a 

slope of one through the origin. The bias correction feature in TMB was applied to predict survey 

catches. 

4. Discussion 

Non-spatial SPM vs. spatial SPM 

In our simulation testing, we applied non-homogeneous distributions for catches and survey indices 

across the spatial area (i.e., the triangles) to closely mimic a real-world fisheries scenario. Our 

simulation study revealed that the non-spatial model struggled to accurately estimate the parameter 

(B) 
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𝛼, exhibiting substantial bias and large standard errors, in the presence of spatial variation (Figs. 4 

and 9), as observed in the Redfish distribution. Separately, previous research has shown that 

conventional (non-spatial) Gompertz models can also yield biased estimates of density dependence 

(𝛽) when spatial density variations are present (Thorson et al., 2015b). Together, these findings 

highlight that ignoring spatial structure can lead to mischaracterizations of multiple key population 

dynamic parameters. The non-spatial model also produced significantly wider confidence intervals 

for total population biomass compared to the random field model (Figs. 8 and 13), indicating its 

lower estimation precision. Therefore, we suggest applying spatial surplus production models 

(SSPMs), when possible, in data limited fish stock assessments such as our case study, where the 

time-series was short (only 8 years), age data were not available, and only total annual catches for 

the entire area were available. It will usually not be possible to fit an aggregated SPM to such 

limited data, but we could fit a spatial SPM because of the increase in spatial sample size and 

associated information on how spatial variations in fishing effort and harvest rates affect stock 

production. 

Analysis of case study for the 3LN Redfish 

  

(A) (B) 
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Figure 17. The 3LN Redfish plots of A) observed survey data; B) observed and predicted 

commercial landings; C) estimates of stock biomass using ASPIC software; D) estimates of stock 

biomass using the random field model. The shading areas in panel B and D show 95% confidence 

intervals. 

From 2008 to 2020, the assessment of 3LN Redfish utilized a logistic surplus production model 

(SPM) executed through a non-spatial ASPIC software suite  (Prager, 1994, Prager, 2016). There 

is a clear discrepancy between the observed survey biomass and the biomass estimates from the 

ASPIC model (Fig. 17, panels A and C). Moreover, Rogers et al. (2022) reported that Redfish in 

the size range of 15 to 20 cm have consistently been lower than the long-term mean since the mid-

2010s, as observed in both Spring and Autumn Canadian 3LN surveys and the EU-Spain 3L and 

3N survey series. These signals indicate issues with a reduction in the stock biomass. This potential 

decline, coupled with the trend of increasing fishing pressures recently (Fig. 17, panel B), raises 

significant concerns about the sustainability of the population over the long term. Conversely, the 

random field model indicated that stock biomass declined almost 50% between 2012 and 2019 (Fig. 

17, panel D). This trend corresponds with the patterns seen in the available survey indices (Rogers 

et al., 2022) and correlates with rising fishing pressures (Fig. 17, panel B). 

(C) (D) 
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SSPMs offer the significant benefit of depicting the stock’s spatial structure. Although spatial 

survey data alone can map population distribution across space, incorporating spatially explicit 

commercial data, as described in our method, i.e., Eq. (7), allows the estimation of “absolute” stock 

abundance. This integration makes the random field model particularly robust by enhancing its 

ability to reconstruct stock structure accurately. In addition to that, the normal QQ-plot confirms 

the goodness of fit when applying the model to the 3LN Redfish survey data. 

Factors considered in spatial stock assessment models 

To extend a non-spatial model to explicitly handle spatial population dynamics, it is essential for 

modelers to conduct space discretization. In this study, we utilized the R-INLA package (Lindgren 

and Rue, 2015a, Roger et al., 2015) to discretize the spatial domain of interest into a set of triangles. 

This technique was also utilized to implement spatial division in earlier studies on spatial fisheries 

models (e.g., Thorson et al., 2017, Thorson, 2022, Olmos et al., 2023). A noticeable benefit of the 

technique is that it provides adjustable spatial resolution, enabling the precise modeling of spatial 

variation with a customizable number of triangles to match the biologically relevant scales. It also 

can accommodate irregular boundaries, often found in marine environments, through the strategic 

use of triangles, making it particularly suited for areas with complex coastlines. However, in 

practice, modelers are required to consider trade-offs between spatial resolution and computational 

costs, as higher resolution increases the costs. 

Spatial discretization could also be done using a grid of squared cells (see Cadigan et al., 2017). 

The grid cell approach can provide a solution to handle high-resolution data and provide flexibility 

in scenario testing. An alternative technique involves employing Voronoi Tessellations, as 

described in (Pedersen et al., 2022), where a random selection of locations from previous trawl 

surveys within the study areas was used to calculate a Voronoi Tessellation. Each polygon 
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encompasses all points nearer to its generating point than any other. This ensures that each polygon 

represents an area of the sea floor closest to its corresponding trawl survey location. This approach 

was defined to satisfy specific criteria prioritized for Northern shrimp assessment. Cadigan et al. 

(2022) developed a method to implement GMRFs using DFO strata as spatial grid units, which are 

irregular in size and shape. Since DFO strata are designed based on ocean floor depth, an important 

environmental factor for groundfish like Redfish, this approach inherently incorporates depth 

information, making it well-suited for modeling groundfish. However, the irregular grid shapes 

complicate movement modeling, as this requires estimating velocities perpendicular to grid edges. 

In contrast, our random field approach is better suited for spatial modeling on irregular grids. As 

future work, we will implement an SSPM using DFO strata as spatial grids, incorporating the 

GMRF methodology proposed by Cadigan et al. (2022). 

An essential consideration is addressing spatial variation in the modeling process. Generally, 

modelers establish a mechanism to compute the variation between a spatial unit (i.e., a square cell 

or a triangle) and its neighboring units across a temporal step (e.g., yearly). The computation often 

accounts for spatiotemporal variations in process errors (i.e., model uncertainties) and biological 

processes, such as abundance, biomass, and recruitment dynamics, with the integration of age or 

size classes when applicable (Punt, 2019). One approach involves directly modeling movements 

using movement matrices and estimating movement parameters, as demonstrated for big skate by 

(Thorson et al., 2017). Another approach employs GMRF to estimate spatiotemporal variation in 

process error and biological functions such as our random field model for Redfish, studies on snow 

crab (Chionoecetes opilio) (Olmos et al., 2023), and scallop in the Bay of Fundy (McDonald et al., 

2021). Within the scope of this study, we further discuss the advantages of employing the random 
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field model compared to using the movement model approach when tackling spatiotemporal 

variation. 

The advantages of random field model 

First, both SSPMs, the random field and movement models, can apply production contrasts across 

space to fit the SPMs to a relatively short time series of data (i.e., eight years), which can be beyond 

the conventional approach of using aggregated spatial data. 

In comparing the two spatial models tested in this study (i.e., the random field and the movement 

models), our simulation study shows that employing the movement model does not provide a 

reliable estimation of movement rate parameters, which is consistent with a finding presented by 

Thorson et al. (2017). Attempts to apply the explicit movement model to the 3LN Redfish dataset 

encountered challenges (e.g., convergence issues, unreliable parameter estimates), reaffirming the 

limitations previously observed in simulations regarding its ability to accurately compute 

movement rate parameters in this context. In the context of SSPMs (Eq. 2), the spatial heterogeneity 

is attributed to the confluence of the movement function, (m ()), and the stochastic process error 

(𝜺𝑡). We suspect this simultaneous occurrence to have a confounding effect, thereby hindering the 

accurate identification and differentiation of those parameters. Another dimension of the 

challenges in parameter estimation involves the use of the Euler approximation (i.e., 

(1 + 𝑵/𝑛)𝑛 ≈ 𝑒𝑵 ) where a sufficiently small value of n is chosen to ensure sparsity in the 

movement matrix M (i.e., 𝑴 = 𝑒𝑵 as the solution of Eq. 6). In this context, the parameter n is 

instrumental in modelling the annual movement of fish across adjacent triangles. Employing a 

small value for n might not be justifiable for species characterized by active swimming behaviours, 

potentially leading to unreliable estimation of the movement parameters. Note that these difficulties 
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pertain only to the simplified movement model. Incorporating more realistic modeling of fish 

movements, such as diffusion and advection, can introduce significantly more complex challenges. 

Also, we note that spatial heterogeneity is a fundamental aspect of marine ecosystems and is 

expected to manifest in both the underlying productivity potential and the annual process errors 

within fish stock dynamics. Spatial heterogeneity in productivity (i.e., 𝝎𝒓 ) arises from 

environmental features and biological interactions. Factors such as depth, substrate type, bottom 

temperature gradients, oceanographic features (e.g., fronts), localized food availability, or spatially 

varying predator fields can create regions with consistently higher or lower potential for growth, 

survival, and recruitment, leading to spatial structure in average productivity. Both process error 

and spatial productivity differences are assumed in this modeling framework to follow a Gaussian 

random field, thereby being influenced by the geographical range of correlations (i.e., 𝜅) and 

pointwise variance (i.e., 𝜏). 

Our investigation uncovered an additional limitation of the movement model approach: its inability 

to estimate the geographical range of correlations for process error (i.e., 𝜅𝜀) and spatial productivity 

variance (i.e., 𝜅𝜔 ). Functionally, this constraint means the model must assume that the 

characteristic spatial difference of productivity is identical to the spatial difference of year-to-year 

random variations. However, this forced equivalence is unlikely to reflect ecological reality, as 

baseline productivity patterns and annual stochastic deviations represent distinct processes often 

driven by factors operating at different spatial extents. To address this problem, we assumed the 

geographical range of correlations for these two parameters was equal (i.e., 𝜅𝜀 =  𝜅𝜔). In contrast, 

the random field model is capable of separately and effectively estimating the geographical 

correlation ranges for each of these processes (i.e., 𝜅𝜀 ≠  𝜅𝜔). By circumventing the challenges of 

explicitly modeling movements, our approach introduces flexibility and simplifies the parameter 
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estimation process. This strategy effectively concentrates on addressing the spatial heterogeneity 

of the fish stock dynamics. 

Our study faced convergence challenges with the movement model, similar to those reported by 

Thorson et al. (2017). Previously identified computational challenges are likely contributing to the 

observed convergence issues. Additionally, even though setting the instantaneous movement rate 

N in Eq. (6) as a Metzler matrix ensures positive population abundances after movements, Euler 

approximation of the movement matrix often results in negative abundances. Consequently, the 

movement model has to frequently call the ‘posfun’ function (Fournier et al., 2012) to maintain 

non-negative population abundances. While essential, this approach may result in slower 

computational performance and potentially exacerbate model convergence problems. In contrast, 

the random field model does not encounter these issues and shows no convergence problems when 

fitting either simulated or empirical Redfish data. This indicates its superiority in terms of 

convergence and robustness. Simulation testing revealed that the random field model achieves 

significantly higher rates of convergence (p=1.5 convergence rate = 97%, and p=1.7 convergence 

rate = 95%) compared to the movement model (p=1.5 convergence rate = 51%, and p=1.7 

convergence rate = 49%). These findings have been included in the Appendix (Fig. S3). 

The simulation results consistently favored the random field model across multiple metrics. The 

higher correlations between estimated and true abundance achieved by this model (Figs. 5 and 10) 

are indicative of better estimates regarding the reproduction of relative spatio-temporal patterns. 

Concurrently, the lower AIC and BIC scores consistently obtained for the random field model (Figs. 

6, 7, 11, 12) are indicative that this model would likely be chosen over the movement and non-

spatial alternatives in practice based on these standard model selection criteria assessing relative 

fit to the observation data. Furthermore, direct comparisons confirmed the random field model 
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produced unbiased or less biased estimates of total annual biomass with higher precision than the 

alternatives (Figs. 8 and 13). 

Limitations for implementing spatial stock assessment models 

The unavailability of detailed spatial information is a major constraint when applying spatial stock 

assessment models. While spatial survey data is usually available, commercial catches often lack 

sufficient or accurate information regarding harvesting locations. Although some fisheries require 

reporting fishing locations in logbooks, for some fisheries it is rare to have catches distinguished 

by species and their corresponding harvesting locations for each haul. Typically, commercial 

logbooks include spatial information, the total catch and the gear type used. It is noted that even 

when detailed spatial locations are recorded in logbooks, confidentiality regulations often restrict 

access to this data for research purposes. 

 In certain fisheries, such as Northern Shrimp, the catch predominantly consists of a single target 

species, making bycatch species negligible (Pedersen et al., 2022). In these situations, using SSPMs 

that incorporate commercial catches could yield much more accurate estimates. Another 

consideration is the availability of supporting information such as age, size, and environmental 

indicators. In fisheries where such data are available, explicit spatial models can uncover spatial 

recruitment and natural dynamics (McDonald et al., 2023), investigate recruitment and maturity, 

and suggest a connection between environmental conditions (e.g., cold pool) and size class 

abundance (Olmos et al., 2023). 

A limitation associated with this GFW dataset is that it represents the effort of commercial trawlers 

within the specified area and timeframe and could not be filtered to isolate effort specifically 

targeting Redfish. Consequently, the fishing effort used in this analysis likely includes effort 
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directed at other species. In addition, the data might include operations from vessels of varying 

sizes and efficiencies, yet a 'fishing hour' is treated uniformly in this analysis regardless of vessel 

characteristics (e.g., size, horsepower, gear configuration). It is also based on AIS/VMS signals 

indicating fishing behaviour inferred by GFW algorithms, which may not perfectly capture all 

fishing operations or misclassify some activity. We acknowledge this data constraint, and 

incorporating more refined, species-specific effort data, potentially from logbooks or other sources 

if they become available, represents an important area for improvement in future research. 

The simulation testing conducted in this study incorporated spatial heterogeneity through Gaussian 

random fields for productivity and process errors, this generated random spatial structure according 

to the specified correlation range. A valuable area for future research would be to explicitly test the 

model's performance under scenarios with more deterministic or persistent spatial structures. For 

example, simulating populations where large areas consistently have near-zero density (due to 

unsuitable habitat) or where specific locations consistently exhibit high densities (e.g., predictable 

aggregation sites), reflecting patterns observed for species like Redfish which associate strongly 

with specific bathymetric features, was not explicitly part of this study's simulation design. 

Assessing how well the random field model captures biomass trends and avoids bias when 

confronted with such strong, persistent spatial structuring, potentially driven by underlying habitat 

covariates not explicitly included in the current model formulation, would further clarify the 

model's robustness and limitations for species with highly defined spatial distributions. 

In our study, the random field model demonstrated good performance in simulation studies, 

suggesting its high potential for applications in fish stock assessments, particularly when sufficient 

spatial data are available. With the advantages mentioned above, our random field model approach 
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along with multiple environmental predictors (e.g., predator and prey densities) may produce a 

more comprehensive understanding of the ecosystem dynamics. 
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Chapter 3. Applying random field model on Yellowtail 

Flounder Stock Assessment in the Eastern Grand Banks of 

Newfoundland 

1. Introduction 

Yellowtail Flounder (Limanda ferruginea, Storer, 1839), a flatfish species native to the eastern 

North American coast, inhabits the waters from Newfoundland and Labrador, Canada to 

Chesapeake Bay, USA. There are American stocks (NOAA, 2024) and the NAFO Grand Bank 

stock (NAFO, 2024). Their distribution has remained relatively stable since the mid-80s, with a 

significant portion of the population concentrated north of 45 degrees latitude (Dwyer et al., 2003, 

Maddock Parsons et al., 2023). 

The species transitions from a pelagic larval stage to a benthic juvenile and adult phase (Murua and 

Saborido-Rey, 2003). Yellowtail Flounder are batch spawners, with peak spawning occurring from 

April to June on the Southeast Shoal of the Grand Bank, a region abundant in juveniles (Ollerhead 

et al., 2009). The species is characterized by its flat, ovate shape, upturned mouth, and distinctive 

yellow tail fin. The fish are adept at camouflage, adjusting their coloration to match the ocean floor. 

They mature at about 4–5 years and they usually grow to 38 – 40 centimeters in length and 0.5 – 

0.6 kilograms in weight. Some individuals can reach up to 12 years of age, though most do not live 

past 10 years (Bowering and Brodie, 1991, Walsh, 1992). Yellowtail Flounder feed on 

invertebrates such as polychaete worms and crustaceans and are preyed upon by predators like cod 

and hake (NOAA, 2024). 



57 

 

The Yellowtail Flounder stock in NAFO Divisions 3LNO has been managed under Total 

Allowable Catch (TAC) regulations since 1973 (Maddock Parsons et al., 2023). Catches have 

fluctuated greatly since the 1960s, with a peak of 39,000 tons in 1972 and recent catches ranging 

from 3,100 to 14,800 tons. Catches exceeded quotas in the late 1980s and early 2000s but have 

generally been below quotas since then. Industry factors and difficulty locating fish due to 

potentially changing water temperatures are thought to be behind recent lower catches. Most 

catches are from Division 3N and are taken using otter trawls. From 2000 to 2015, stock 

assessments were conducted using ASPIC (Prager, 1994), a surplus production model, 

incorporating covariance  catch and survey indices (Maddock Parsons et al., 2018). Concerns were 

raised about the ASPIC model's lack of sensitivity; therefore, a Bayesian model was adopted for 

3LNO Yellowtail Flounder, replacing the previous ASPIC-based model since 2018 (Maddock 

Parsons et al., 2018). The model employs the Schaefer equation, characterized by two key 

parameters: r (the intrinsic rate of population growth) and K (the carrying capacity). Stochasticity 

in population dynamics is integrated into the model by accounting for process error. The 

unobserved stock biomass is modeled through an equation that establishes a relationship between 

the research survey indices and the catchability parameter (q), incorporating observation error 

(Maddock Parsons et al., 2023). Ocean Choice International (OCI), the primary fishing company 

in this region, records Yellowtail Flounder catches in onboard logbooks, including discards at sea, 

as well as on landing tickets (Knapman et al., 2020). 

Several studies have attempted to incorporate spatially explicit analyses into stock assessment 

models for Yellowtail Flounder. Goethel et al. (2014) conducted a simulation analysis using tag-

recapture data to evaluate the performance of a spatially explicit, tag-integrated model. Building 

on this, Goethel et al. (2015) expanded the work by applying the model to assess three 
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interconnected Yellowtail Flounder stocks in New England. Robertson et al. (2021) applied the 

Vector Autoregressive Spatiotemporal (VAST) model to survey data collected by DFO to analyze 

spatial distributions of Yellowtail Flounder in Grand Banks off Newfoundland. Commercial 

fishing information has not been utilized to investigate the spatiotemporal dynamics of Yellowtail 

Flounder, particularly for the 3LNO stock. 

Fisheries surveys employing trawling are a fundamental tool for collecting data essential to the 

evaluation and management of fish stocks across global marine ecosystems (Gunderson, 1993). 

However, these surveys are subject to measurement errors due to uncertainties in the efficiency of 

the trawl at each tow. Furthermore, variability in the swept area/volume arises from differences in 

trawl wing spread, current speed and direction, herding, and other operational factors. Addressing 

these discrepancies between observed and expected survey catches is vital for enhancing the 

precision and reliability of stock assessments. In this context, considerable research has focused on 

improving the standardization of survey methodologies. Nonetheless, measurement error still 

exists in survey catches as indices of local population size at a tow site. Cadigan and Chen (2011) 

found that the variance of the measurement error was a quadratic function of the mean local stock 

density. He used this relationship to refine confidence intervals for the average population survey 

catch. Building on these results, we were motivated to further investigate the relationship between 

expected and observed survey catches when using the random field model developed in the 

previous chapter and applying this approach to a new case study: Yellowtail Flounder in the Eastern 

Grand Banks of Newfoundland. 

In this study, we aim to 1) investigate the application of the random field model to assess the 

Yellowtail Flounder stock in the 3LNO Divisions of the Northwest Atlantic; and 2) refine the 

understanding of the relationship between expected and observed survey catches using the 
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quadratic function, building on previous methodologies to improve the accuracy of stock 

assessments. In addition, we compare our results using the random field model with predicted 

catches and stock biomass estimates presented in the 2023 Assessment of Yellowtail Flounder in 

NAFO Divisions 3LNO by Maddock Parsons et al. (2023) using the Bayesian SPM model. 

2. Materials and methods 

We applied the random field model described in Chapter 2 to the assessment data ofr Yellowtail 

Flounder (Limanda ferruginea) stock in NAFO Divisions 3L, 3N and 3O (3LNO, the Eastern 

Grand Bank of Newfoundland). In Chapter 2, we applied a Tweedie distribution to model the 

survey catches with mean µ𝑟,𝑡  defined in Eq. 11 .  While the Tweedie distribution has proven 

effective, advancing its application to zero-inflated data may benefit from extending its dispersion 

relationship. Cadigan and Chen (2011) found that a quadratic dispersion relationship was 

appropriate for fisheries trawl survey catches. Therefore, when using the Tweedie distribution to 

model the survey catches (i.e., 𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑~𝑇𝑤𝑒𝑒𝑑𝑖𝑒(µ, 𝑝, 𝜑)) , we were motivated to utilize a 

quadratic function to account for the parameter 𝜑 as follows 

𝜑̂ =
𝑎 ∗  µ̂𝑟,𝑡 + 𝑏 ∗ µ̂𝑟,𝑡

2

µ̂𝑟,𝑡
𝑝  ,    (12) 

where a and b are quadratic variance parameters, µ̂𝑟,𝑡 is the expected survey catch in triangle r and 

time t, p is the power parameter of the Tweedie distribution ranging from 1 to 2. In Eq. 12, 𝜑 is the 

positive dispersion parameter which is a function of 𝜇𝑟,𝑡. 

We compared model performance between using the quadratic dispersion relationship and not 

using this relationship in calculating the parameter 𝜑 when modelling the survey catches as a 
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Tweedie distribution. We computed AIC (Akaike, 1983) and BIC (Gideon, 1978) scores to 

examine the goodness of fit between the two approaches. 

The spatial random field surplus production model (SSPM) was used to investigate the 

spatiotemporal dynamics of Yellowtail Flounder in 3LNO. The data consisted of annual 

commercial landings, spatiotemporal survey catches and commercial fishing effort data between 

2012–2019. 

Commercial landings data, sourced from NAFO Data and Statistics (www.nafo.int/Data), contains 

8 records between 2012 to 2019. The catch increases sharply from 2012 to 2013 but then declined 

until 2015. After 2015 landings increased steadily and then substantially increased in 2019, 

reaching a high of about 12,000 tons (Fig. 18, panel A). 

Survey catch dataset comprises 4,217 records, combining Spring and Fall surveys, collected from 

bottom trawl surveys conducted by DFO in the 3LNO Divisions between 2012 and 2019. Each 

record includes details such as the year, geographic location (i.e., latitude and longitude), and the 

total weight of Yellowtail Flounder. The 2014 Fall and 2015 Spring did not cover the entire stock 

area, resulting in their estimates not being considered representative. There are Spring and Fall 

Canadian surveys. 

For the purpose of this analysis, which focuses on demonstrating the application of the random 

field model to estimate overall annual biomass trends and surplus production parameters consistent 

with previous applications, the data from both the Spring and Fall surveys were pooled annually. 

Operationally, this means that all survey observations from a given year (Fall and Spring), were 

used collectively. This approach leverages the increased spatial coverage and data density. Treating 

the Spring and Fall surveys as separate indices with potentially different catchability coefficients 

http://www.nafo.int/Data
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(i.e., 𝑞 ) might provide a more nuanced understanding of seasonal dynamics, such a detailed 

seasonal model was considered beyond the scope of this specific application (Fig. 18, panel B).  

The spatial distribution of observed survey catches from 2012 to 2019 reveals a significant 

concentration of fish in the central and southern regions of the spatial domain (Fig. 19).  All survey 

catches have been standardized to a common swept area calculated as the product of the mean 

distance tow (0.8 nautical miles, equivalent to 1.4816 km) and the standard wing spread of the 

trawl door (55.25 feet, equivalent to 0.1685 km). 

Commercial fishing effort data for the spatial domain of the 3LNO divisions were obtained via the 

GFW API, as detailed in Chapter 2. Each record contains the information of fishing time (year) 

geographic coordinates (longitude and latitude) representing the fishing location, and associated 

fishing effort quantified in fishing hours (Fig. 20). 

To assess the goodness of fit, we calculated the randomized quantile residual (Dunn and Smyth, 

1996). Subsequently, we created a Q-Q plot using the qqnorm() function in R to evaluate how well 

the random field model fits the Yellowtail Flounder dataset. 
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Figure 18. Plots of (A) recorded landings of Yellowtail Flounder (ton) in the 3LNO Divisions; and 

(B) total catches of observed survey data recorded for Yellowtail Flounder (ton) in the 3LNO 

Divisions. 

 

 

Figure 19. Spatial survey catches in log scale of Yellowtail Flounder (Kg) in the 3LNO Divisions 

from 2012 to 2019. Bubbles represent survey catches, and crosses show locations with zero catch. 
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Figure 20. Spatial commercial fishing effort in log scale of fishing hour by trawlers in the 3LN 

Divisions from 2012 to 2019. Bubbles represent commercial fishing data. 

3. Results 

Table 2. AIC and BIC estimates for using quadratic and not using quadratic 

dispersion relationship approaches. 

Approach AIC BIC 

Quadratic dispersion relationship 17321.30 17435.55 

Non-quadratic dispersion relationship 17669.77 17777.67 
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I find that the quadratic dispersion relationship outperforms the alternative non-quadratic one based 

upon AIC and BIC score (Table 2). From this line onward, only results from the quadratic 

dispersion relationship approach are presented. 

Over the eight years between 2012 – 2019, Yellowtail Flounder’s spatial biomass distributions 

appear to remain concentrated in the central and southeastern portions of the 3LNO region. These 

regions consistently show greater biomass estimates. Slight interannual variations are evident, with 

some shifts in the intensity and extent of these high-biomass locations from year to year (Fig. 21). 

Spatial distributions of observed survey data align with that of estimated stock biomass from 2012 

to 2019. While the DFO scientific surveys cover the entire 3LNO area, positive catches of 

Yellowtail Flounder primarily occurred in the central and southern areas (Divisions 3N and 3O) of 

the spatial domain (Fig. 22). Additionally, the alignment between the model-estimated and 

observed catches (Fig. 23 panel A), combined with the linear pattern observed in the normal Q-Q 

plot (Fig. 23 panel B), demonstrates a strong fit of the model to the survey catch data. 
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Figure 21. Maps of population biomass estimates for Yellowtail Flounder in 3LNO divisions, 

displayed on a logarithmic scale as log (1 + biomass estimate). The biomass was estimated in Kg. 

The color legend is presented at the bottom of the plot. 
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Figure 22. Observed spatial survey catches of Yellowtail Flounder in 3LNO Divisions, shown on 

a logarithmic scale as log (1 + survey index). The color legend is presented at the bottom of the 

plot. 
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Figure 23. Plot of (A) estimated over observed survey catches for each year and (B) QQ Plots of 

the randomized quantile residuals for survey catches. In panel (A), the x axis represents the 

estimated survey catches, and the y axis represents the observed survey catches with a 45-degree 

(B) 

(A) 
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line of equality (the red line). The bias correction feature in TMB was applied to evaluate the 

estimated survey catches (Thorson and Kristensen, 2016). 

Table 3. Parameter estimates and standard errors when fitting the model to the 3LNO Yellowtail 

Flounder dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

Spatial dynamics of 3LNO Yellowtail Flounder 

Parameters Estimates Standard Error 

𝛽 0.31 0.67 

𝛼 0.88 2.03 

𝐾𝜀 0.23 0.44 

𝐾𝜔 0.70 0.49 

𝜎𝜀 0.19 0.24 

𝜎𝜔 1.53 0.80 

𝜇0 1.24 6.52 

𝑞 0.95 1.10 

𝑎 72.26 0.07 

𝑏 0.0055 12.26 

𝑝 3.43 0.048 

𝜎𝑐𝑎𝑡𝑐ℎ 0.25 0.70 
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A strong agreement between biomass estimates and observed survey catches can be seen between 

2012 and 2019. While the core biomass regions are stable, subtle shifts in the intensity of biomass 

concentration are slightly noticeable between years (Fig. 21 and 22). Considering the depth 

contours (i.e., -500 m and -200 m), the concentration of high-density regions in shallower areas 

suggests that Yellowtail Flounder may prefer shallower waters (Fig. 21). This preference is 

reinforced in the distribution map of observed survey catches (Fig. 22) and in agreement with 

findings by earlier studies (see Walsh, 1992, Pereira et al., 2012). In fisheries assessment, survey 

catches are often considered as the proportional representation of the true stock dynamics; therefore, 

the results demonstrate that the random field model can effectively reconstruct the spatial dynamics 

of the stock. 

The DFO’s 2023 assessment reveals that predicted annual commercial catches consistently exceed 

observed catches during 2012 – 2019 (Fig. 24 panel B). This discrepancy suggests potential 

underreporting in commercial landings data, a common challenge in fisheries management (e.g., 

Bousquet et al., 2010, Cadigan and Marshall, 2016, Van Beveren et al., 2017). 

Additionally, the pattern could indicate that the assessment model, which assumes constant natural 

mortality, may be underestimating the true natural mortality rate (M) for Yellowtail Flounder. 

Time-varying natural mortality, potentially linked to environmental conditions or predation as 

observed in other regional groundfish stocks like American Plaice (Robertson et al., 2025) and 

Atlantic Cod (Regular et al., 2022, Cadigan et al., 2024), would lead to lower actual biomass 

available for catching than predicted by a model assuming lower, constant M. 

Addressing potential underreporting remains a valid avenue for model refinement; future research 

could explore treating reported landings as lower bounds using a censored likelihood approach 

(Perreault et al., 2020b). Simultaneously, investigating potential time-varying natural mortality for 
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Yellowtail Flounder, perhaps linked to environmental covariates or condition indices similar to the 

approach used for plaice and cod, also warrants consideration. 

Biomass estimates from the random field model and reported results from  DFO in 2023 (Maddock 

Parsons et al., 2023) both indicate a general decline in biomass over the eight years from 2012 to 

2019. However, they differ in the magnitude of the decline subsequent recovery patterns, and the 

confidence intervals produced by the random field model are narrower overall than that of the 

DFO’s assessment (Fig. 25, panels A and B). The differences may stem from variations in modeling 

approaches and discrepancies in the data inputs used for the two computations. It is noted that the 

DFO assessment incorporated data from two sources, Canadian and Spanish surveys, while the 

random field model used only Canadian survey information. Observed survey catches align with 

this decline trend (Fig. 18 panel B). Decline trends can also be observed from estimates of biomass 

for Spring and Fall DFO surveys. Additionally, stock biomass estimates from the random field 

model (Fig. 25, panel B) more closely match the biomass calculated for Spring and Fall surveys 

(Fig. 26, panel A and B) than those estimated by SPM in the DFO assessment report (Fig. 25, panel 

A). 
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Figure 24. Plot showing (A) observed and predicted commercial catches estimated by the random 

field model and (B) observed and predicted commercial catches from DFO’s 2023 assessment (data 

source: Maddock Parsons et al. (2023)). 

 

  

Figure 25. Plot of (A) stock biomass estimates by DFO stock assessment report (data source: 

Maddock Parsons et al. (2023)); (B) stock biomass estimates using the random field model. 

(A) (B) 

(A) (B) 
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Figure 26. Plot of (A) estimates of biomass for Spring surveys and (B) estimates of biomass for 

Fall surveys of Yellowtail Flounder in 3LNO Divisions. Red dots depict data point when surveys 

did not cover the entire the stock area, resulting in unrepresentative estimates (data source: 

Maddock Parsons et al. (2023)).  

Suitability of the random field model for different life history strategies 

SPMs, in general, provide a framework for stock assessment by aggregating age and size structures 

into a single biomass dynamic. They model the net outcome of recruitment, growth, and natural 

mortality. The practical application of SPMs generally requires a time series of total catches and a 

corresponding index of relative abundance, often derived from scientific surveys or fishery catch-

per-unit-effort (CPUE). The effectiveness of traditional, non-spatial SPMs relies on the presence 

of sufficient contrast in the time series data – ideally showing periods where fishing pressure has 

reduced the stock and periods of subsequent recovery. This contrast is necessary to reliably 

estimate the stock's productivity parameters (Hilborn and Walters, 1992b). This requirement can 

pose challenges for species with slow dynamics (e.g., long-lived species) if the available time series 

is short or lacks significant biomass fluctuations, as the "surplus" produced each year is small 

(A) (B) 
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relative to the total biomass. For short-lived species with high productivity and potentially large 

biomass fluctuations, contrast might be achievable more quickly. 

SSPMs extend the traditional framework by explicitly incorporating a spatial dimension, tracking 

biomass density and associated processes across discrete geographical locations (e.g., grid cells or 

polygons or triangles). This requires spatially explicit input data, such as geo-referenced survey 

catches and spatially resolved fishing effort or catch data (i.e., logbooks). A fundamental advantage 

of SSPMs, demonstrated in this thesis, is their ability to utilize spatial contrast in addition to 

temporal contrast. By analyzing how density changes differently in areas experiencing different 

levels of fishing mortality and productivity, SSPMs can gain information about population 

dynamics even when the temporal fluctuation is limited. 

The spatial random field model appears particularly well-suited for longer-lived, slower-growing 

species that exhibit significant spatial structure either in their own distribution (e.g., due to habitat 

preferences) or in the fishery targeting them. For species, like the Redfish, Yellowtail Flounder 

analyzed here or the Big Skate in (Thorson et al., 2017), the lack of strong temporal contrast over 

assessment periods often hinders traditional SPMs. SSPMs can overcome this by extracting 

information from spatial contrasts in density and fishing pressure. The handling of movement in 

the random field model may also be appropriate if movement is relatively localized or diffusive 

over the annual time step, rather than involving large-scale directed migrations that significantly 

redistribute biomass across the entire assessed area annually. It is important to clarify that 

'movement' in this modeling context refers not to the tracking of individual fish paths, but rather to 

the net change in the spatial distribution of biomass density across the model grid (i.e., among 

triangles) between time steps (annually, in this study). 
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For short-lived species with highly variable dynamics often driven by recruitment pulses, SSPMs 

could potentially track spatial aspects of large fluctuations (e.g., shifting distributions, localized 

blooms/depletions). However, high recruitment variability might be difficult to capture solely with 

the process error term (Myers, 2001). Very rapid or large-scale directed movement (if present) 

might challenge the random field model. 

Other aspects 

Commercial fishing effort data for the 3LNO Divisions were obtained via the GFW API, as detailed 

previously (Chapter 2). It is important to acknowledge that this dataset represents the total effort 

of commercial trawlers operating in the area and could not be filtered to isolate effort specifically 

targeting Yellowtail Flounder. Incorporating species-specific effort data, should it become 

available, would be a valuable improvement for future assessments. 

Goethel et al. (2015) developed a tag-integrated model as an approach for Yellowtail Flounder 

spatial stock assessment. Models based on tag-recapture data are often limited by the low recapture 

rates, such as only 7% of tagged releases being recaptured. While such data can validate mortality 

estimates, it offers minimal improvements in estimating movement rates (Goethel et al., 2015). In 

contrast, the random field model demonstrates its superior capability in reconstructing the spatial 

dynamics of fish stocks over time. 

Robertson et al. (2021) utilized VAST model to reveal that Yellowtail Flounder’s spatial 

distribution recovered as water temperatures exceeded previous levels. In addition, it is evident that 

this species spatial dynamics are strongly correlated with temperature changes by Miller et al. 

(2016). These findings, combined with the robustness of the random field model, present a 

compelling case for future research to apply this model to Yellowtail Flounder by integrating 
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environmental indicators such as bottom temperature, predator and prey densities. A potential 

approach can be using logbook data (Knapman et al., 2020) and modeling a linear relationship 

between biomass and environmental factors as presented by Pedersen et al. (2022), such research 

could provide deeper insights into the species’ stock dynamics and enhance understanding of 

environmental influences on spatial patterns.  

A key advantage of integrating such covariates within this spatial random field framework is the 

potential to model their influence not just temporally, but also spatially, allowing for the 

investigation of how factors like temperature might exert different effects across various parts of 

the stock's range, representing a significant advance over traditional non-spatial approaches. 

Furthermore, future refinements could also involve treating the Spring and Fall surveys as distinct 

indices within the model; separating these surveys would allow for a more explicit investigation of 

seasonal dynamics and how they might interact with spatially and temporally varying 

environmental factors. 
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Chapter 4. Conclusion and future research 

1. Performance of the random field model 

This study presents a novel development of spatial surplus production models using a random field 

approach to account for spatial heterogeneity in fisheries stock assessments. The methodologies 

and findings represent advancements in spatial modeling, particularly in addressing the challenges 

inherent in movement models. By incorporating the Gaussian random field framework, the study 

overcomes computational and parameter estimation complexities, offering a robust alternative for 

assessing the spatiotemporal dynamics of fish populations. 

The innovation lies in replacing explicit movement modeling with a flexible random field approach. 

This method simplifies the modeling of spatial fish stock dynamics by treating the spatial 

movement as part of the stochastic process error. The random field model estimates spatial 

variations in productivity and process errors with distinct correlation parameters, reducing the 

heavy confounding effects observed in the movement model. The movement model often faces 

convergence issues due to computational demands and parameter identifiability, which arise from 

the need for matrix exponentiation (or approximations like Euler's method) and the potential for 

confounding between movement and process error parameters. The random field model exhibited 

reliable parameter estimation and high convergence rates across all tested scenarios. 

The method of using triangular spatial grids by employing the R-INLA package optimally balances 

spatial resolution and computational cost, providing a scalable framework adaptable to various 

fisheries contexts. Simulation results demonstrate the superiority of the random field model over 

both non-spatial and movement models. The model consistently produces higher correlations 

between simulated and estimated population densities, alongside improved AIC and BIC scores. 
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These outcomes validate the random field model’s ability to reconstruct spatial fish population 

distributions accurately. 

2. Insights from case studies and broader applicability 

Redfish in NAFO 3LN divisions 

The model confirmed significant spatial heterogeneity, with biomass concentrated in deeper waters 

(200-500m). Crucially, it revealed a concerning decline in estimated biomass between 2012 and 

2019, aligning with survey trends and increasing fishing pressure reported elsewhere. This finding 

contrasts with previous non-spatial assessments (ASPIC) which failed to capture this decline, 

underscoring the management need for spatially explicit assessments for this stock complex. The 

results suggest that management might consider monitoring spatial fishing patterns. 

Yellowtail Flounder in NAFO 3LNO divisions 

The assessment indicated relatively stable spatial biomass distributions from 2012-2019, primarily 

concentrated in the central and southeastern regions, consistent with the species' known preference 

for shallower waters (<200m). The model effectively captured these dynamics, aligning well with 

survey indices. Refining the model using a quadratic dispersion relationship for survey catches 

improved the fit, demonstrating the model's flexibility. While the overall biomass showed a slight 

decline, spatial stability suggests management can continue focusing on important areas, but 

incorporating environmental factors known to influence Yellowtail distribution (like temperature) 

could further enhance assessment accuracy. 

Applicability to other stocks 
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The random field approach holds strong potential for application to other regional fish stocks, 

particularly where spatially resolved data—such as survey or commercial effort and catch data—

are available, and where spatial structure is evident. This is especially relevant for species known 

to exhibit aggregation behavior or distinct habitat preferences, such as Greenland Halibut and 

Atlantic Cod, where spatial dynamics are well documented. 

3. Considerations for Application 

Data Availability: The model requires, at a minimum, spatially explicit survey and commercial 

catch or effort data (ideally from fishing logbooks). When logbook data are unavailable, alternative 

sources such as Global Fishing Watch data, as used in this study, can be effective substitutes. The 

quality, spatial resolution, and time-series length of these datasets are critical to the model’s 

performance. Spatial contrast makes it possible to apply surplus production models to shorter time 

series than previously expected in spatially aggregated surplus production models. 

Population Biology: The model used in this study accounts for spatial heterogeneity in population 

dynamics on an annual time step. This may present limitations for species exhibiting highly 

directed, large-scale migrations or distinct seasonal movement patterns.  

4. Relevance to spatial management 

Mapping hotspots: The spatially explicit biomass estimates (e.g., Fig. 14 and 21) directly identify 

areas of high density, potential refugia, or areas experiencing decline, guiding spatial conservation 

and management efforts. 

Evaluating spatial closures: The framework can be used in a simulation capacity to evaluate the 

potential consequences of closing specific areas to fishing.  
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Informing effort allocation: Understanding the spatial distribution of biomass and productivity can 

help inform decisions about spatially varying quotas or effort controls, potentially directing effort 

away from vulnerable components of the stock. 

5. Challenges and future directions 

Commercial catch data: The reliance on publicly available GFW effort data, while innovative, is 

less precise compared to detailed, haul-by-haul spatial data from commercial logbooks. Access to 

and incorporation of such data, where possible, would significantly improve accuracy. 

Underreported catches: The discrepancy noted for Yellowtail Flounder between model-predicted 

and observed landings highlights the challenge of underreporting. Future work could implement 

censored likelihood approaches, treating reported landings as lower bounds, to estimate true 

removals more reliably. 

Environmental drivers: While the current model captures spatial heterogeneity, explicitly 

incorporating key environmental covariates (e.g., bottom temperature, depth, habitat type, 

prey/predator fields) known to influence fish distribution and productivity could further enhance 

realism and explanatory power. 

Concluding Statement: This thesis contributes a valuable advancement in spatial stock assessment 

by providing a robust, scalable, and reliable model framework. It effectively addresses key 

limitations associated with explicit movement modeling, particularly parameter identifiability and 

computational burden. The successful applications to Redfish and Yellowtail Flounder demonstrate 

potential to generate spatially explicit insights relevant to sustainable management. 
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Appendix 

List of mathematical notations 

 

 

 

 

Parameters Description   

𝛽 The density dependence Fixed effect 

𝛼 The average density Fixed effect 

𝐾𝜀 The geographical range of correlations for process error Fixed effect 

𝐾𝜔 The geographical range of correlations for spatial 

productivity 

Fixed effect 

𝛿𝜀 The standard deviation of spatiotemporal process errors  Fixed effect 

𝛿𝜔 The standard deviation of spatial productivity Fixed effect 

𝜇0 The initial stock biomass Fixed effect 

𝑞 The catchability coefficient Fixed effect 

𝜑 The positive dispersion parameter of the Tweedie 

distribution 

Fixed effect 

𝑝 The power parameter of the Tweedie distribution Fixed effect 

𝜎𝑐𝑎𝑡𝑐ℎ The standard deviation of catch Fixed effect 

𝑏𝑟,𝑡 Matrix of population biomass at spatial triangle  

𝑟𝑡ℎ  in time t 

Random effect 

𝜔𝑔 Represents the spatial variation in productivity Random effect 
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Figure S1. Simulation results for (A) random field, (B) non-spatial models including parameter 

estimator distributions of the Tweedie power parameter using (1) 𝑝 = 1.5 and (2) 𝑝 = 1.7. Red 

lines are the true values of the parameters and blue lines are means of parameter estimates. 
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Figure S2. Plot of estimated versus observed survey catches for each year (in log scale). The x axis 

represents the estimated survey catches, the y axis represents the observed survey catches, and the 

red line has a slope of one through the origin. The bias correction feature in TMB was applied to 

predict survey catches. 
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Figure S3. Plot of convergence rate comparison between the simulation of random field and 

movement models using Tweedie power parameter: (1) p=1.5 and (2) p=1.7. The convergence rate 

for random field and movement models are 97% and 51% for p=1.5; 95% and 49% for p=1.7, 

respectively. 

Table S1. Simulation results for parameter estimation performance (𝑝 = 1.5) 

 Random field Movement Non-spatial 

    Metrics  

 

Parameter 

Relative 

Bias 

Coefficient 

of 

Variation 

Relative 

Bias 

Coefficient 

of 

Variation 

Relative 

Bias 

Coefficient 

of 

Variation 

𝛼 2.42% 0.17 12.64% 0.18 23.44% 0.56 

𝛽 0.5% 0.14 1.96% 0.21 23.19% 0.49 

𝜎𝜔 2.72% 0.19 7.80% 0.21   

𝜎𝜀 12.05% 0.09 19.12% 0.12   
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Table S2. Simulation results for parameter estimation performance (𝑝 = 1.7) 

 Random field Movement Non-spatial 

    Metrics  

 

Parameter 

Relative 

Bias 

Coefficient 

of 

Variation 

Relative 

Bias 

Coefficient 

of 

Variation 

Relative 

Bias 

Coefficient 

of 

Variation 

𝛼 4.25% 0.18 10.51% 0.26 6.56% 0.68 

𝛽 1.68% 0.16 2.67% 0.21 6.88% 0.54 

𝜎𝜔 3.18% 0.21 8.91% 0.19   

𝜎𝜀 14.14% 0.11 35.05% 0.08   

  

The metrics calculation methods 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑎𝑠 =
𝑀𝑒𝑎𝑛(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠) −  𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒
 

 

Coefficient of Variation =
SD(Parameter estimate)

𝑀𝑒𝑎𝑛(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒)
 

 

 


