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Abstract 

 
Brain-computer interfaces (BCIs) based on motor imagery (MI) hold significant potential for 

restoring autonomy to individuals with severe motor disabilities. While decoding of short, discrete 

MI tasks has been extensively studied, the reliability of sustained MI decoding for continuous 

control paradigms remains under-explored. This study evaluates the feasibility of classifying four 

MI tasks (Hand, Feet, Tongue, Singing) versus rest over extended intervals (8–20 seconds) using 

EEG.  

Fifteen participants performed cued MI tasks in a simulated continuous control paradigm. A 

machine learning pipeline—optimized for real-time compatibility—was systematically assessed, 

focusing on training data volume, epoching strategies, feature selection, and classifiers. Under the 

optimal configuration (four training blocks, 4-second epochs with 75% overlap, 10 features, 

SVM), comparable decoding accuracies were obtained on average across participants for the four 

tasks (Hand: 78.4% ± 9.5, Feet: 74.0% ± 10.0, Tongue: 74.5% ± 6.4, Singing: 74% ± 5.6), with no 

significant inter-task differences (Friedman test, p = 0.41). Within participants, however, there was 

considerable variability in decoding accuracy among the tasks. Comparative analysis against a 

shorter-interval MI dataset revealed a significant reduction in accuracy under the continuous 

paradigm only for Singing MI (Mann-Whitney U, U = 44, p = 0.01). Subjective feedback 
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highlighted Singing MI as the participants’ most preferred task (53.3% of participants selected it 

as their favorite), while Tongue MI was the least preferred (33.3% of participants selected it as 

their least favorite).  

These results underscore the viability of continuous MI-based control while emphasizing 

the need to balance technical performance with user-centric design. The novel task of singing MI 

emerged as a promising candidate for intuitive BCI applications, warranting further exploration of 

hybrid paradigms and ecological validation to enhance real-world usability. 
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Chapter 1 

 

Introduction 

 

1.1 Problem Statement 

The goal of brain-computer interfaces (BCIs) is to establish a direct connection between the human 

brain and a computer. These systems monitor the user’s brain activity and from it derive 

meaningful information to use as input to an external device. In active BCI, the brain activity is 

intentionally generated by the user for the explicit purpose of directly controlling the external 

device [1] (e.g., wheelchair navigation), while in passive BCI, spontaneous brain activity is used 

to gain insights into the cognitive state of the user in order to modify or adapt their ongoing 

interaction with the device (e.g., adapting video game difficulty based on player engagement) [2].  

Active BCIs must be able to identify and distinguish a set of distinct, reproducible brain activity 

patterns that are linked to specific output commands. Users intentionally generate these patterns 

for the explicit purpose of directly controlling the connected device [1]. The BCI records brain 

activity using electroencephalography (EEG) [3] or another functional neuroimaging method, 

analyzes the signals using machine learning algorithms to predict the user's intended command, 

and sends the command to the device. Typically, users generate the distinct brain activity patterns 
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through performing mental tasks, the most common of which are motor imagery (MI) tasks [4]. 

Different MI tasks involve imagining the movement of specific body parts, such as the hands, feet, 

or tongue, which generate distinct neural patterns in the brain [5].  For example, in a BCI used to 

control a computer, the user may perform imagery of the right hand to move the cursor right, 

imagery of the left hand to move the cursor left, and imagery of the feet to click the mouse. Figure 

1.1 illustrates the block diagram of how an active BCI operates. 

 

Figure 1.1: Block diagram illustrating the operational flow of an active BCI from the 

pattern generation stage to the command stage. 

 

BCI systems can be categorized as either “synchronous (system-paced)” or “asynchronous (self-

paced)”. In a synchronous BCI, the system provides external cues and allows the user to issue 

commands only at specific, predefined intervals determined by the system (e.g., [6], [7]). On the 

other hand, an asynchronous BCI enables the user to issue commands at any time, without being 

restricted by external timing cues (e.g.,[8], [9]). The terms synchronous and asynchronous describe 

BCI control paradigms in terms of how the BCI controls the external device: in the former, the 

BCI reads and decodes the user’s brain activity and issues commands only at specific times (e.g., 

[6], [7], [10], [11]), whereas in the latter, the BCI reads and decodes the brain activity and issues 

commands continuously (e.g., [8], [9], [12], [13]). BCI systems can also be categorized based on 

how the user controls the device: switch control and continuous control [14]. Switch control 

involves the user performing distinct mental tasks for short durations to issue discrete commands. 

This approach works well for tasks requiring brief, separate actions, such as selecting an item on 
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a screen or turning a device on and off (e.g., [15], [16]). Continuous control, in contrast, allows 

the user to sustain an action by maintaining a mental task for as long as the command needs to be 

executed. For example, a user could perform an MI task to keep a video game avatar moving in a 

particular and stop performing the task when they wish to stop the avatar’s movement (e.g., [17]). 

While switch control can be implemented in both synchronous and asynchronous BCIs, continuous 

control is more suited to asynchronous systems due to the need for constant, real-time monitoring 

and interpretation of brain signals. 

Many studies over decades of BCI research have shown that MI tasks can be detected from EEG 

signals. A recent review of 89 studies showed that reported classification accuracies vary across 

different cases. For binary classification, performance in the upper quartile falls within the 85%–

100% range, while for multi-class classification, the upper quartile ranges from 83% to 93% [18].  

However, a vast majority of MI-BCI studies have focused on short, discrete trials where users 

perform MI for just a few seconds before resting (e.g., [9], [19], [20]). Indeed, another review of 

25 public MI datasets found that the average trial length used in these datasets is only 4.26 seconds, 

with most lasting between 1 and 10 seconds [21]. This is very different from continuous control, 

where users must sustain detectable mental states for longer periods, and the system must 

accurately decode these states continually, at regular intervals. Studies investigating continuous 

control BCIs typically test system performance online in real-world applications (e.g., control of 

wheelchair (see [22] for a recent review), drone (see [23] for a recent review), or avatar (e.g., [24], 

[25]), and thus report only task-based performance metrics like completion time or error rates 

rather than directly assessing how well the system decodes the mental states (e.g., [26], [27]). This 

of course makes sense since in real-world applications, the actual mental states of the user are 

unknown. However, without studies directly assessing decoding accuracy over longer intervals, it 
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is unclear whether performance issues in continuous control BCIs come from the user’s ability to 

sustain MI, the system’s ability to decode it, or other aspects of the control strategy (e.g., 

compensatory mechanisms, shared control, etc.).  

 

1.2 Research Objectives 

This research sought to fill this gap in the existing MI-BCI literature by evaluating the decoding 

of multiple MI tasks vs Rest over longer trials with extended durations (8–20 seconds) of both 

conditions, which reflect a continuous control scenario. It investigated both traditional MI tasks, 

such as hand, foot, and tongue imagery, along with a novel singing motor imagery task proposed 

in [28]. The evaluation focused on two key aspects: mental state decoding accuracy, and subjective 

measures of user difficulty rating and general task preference. A comprehensive analysis was 

performed, exploring multiple analysis methods to maximize decoding accuracy. Furthermore, 

classification outcomes from the longer-duration trials were compared with those obtained from 

shorter-duration trials using a previously collected dataset reported in [28].  

Specifically, the research objectives of this thesis were to: 

1) Assess the continuous classification of different MI tasks versus a rest state over longer 

trials with extended durations (8–20 seconds) of each condition, simulating real-world 

continuous control conditions. 

2) Compare different MI tasks—hand, foot, tongue, and singing motor imagery—in terms of 

mental state decoding accuracy and user preference in a continuous control-like scenario. 
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3) Compare MI decoding accuracy in a continuous control-like scenario with results obtained 

from a previously reported switch control-like dataset [28]. 

The aim of this thesis was to better understand how reliably mental states can be generated and 

decoded over longer intervals than are typically studied in BCI research, which is important for 

the design and evaluation of BCIs for continuous-control scenarios. 

 

1.3 Thesis Organization 

The remainder of this thesis is organized as follows: 

Chapter 2 provides a comprehensive background on BCI systems, covering all necessary concepts 

to understand the methods and objectives of this study. It includes a review of relevant literature, 

discussing previous research on MI-BCI and continuous control paradigms. Building on this 

foundation, Chapter 3 describes the experimental and analytical methods used in this study, 

detailing data collection, preprocessing, classification techniques, and the evaluation of different 

MI tasks. The results of these analyses are presented in Chapter 4, where key findings are outlined. 

These findings are then discussed in Chapter 5. Finally, Chapter 6 summarizes the thesis 

contributions, addressing its limitations, and providing recommendations for future research. 

Please note that portions of Chapters 1, 2, and 6, and the entirety of Chapters 3 to 5, are taken 

directly from a manuscript titled " Investigating EEG-Based Motor Imagery Decoding in the Continuous 

Control BCI Paradigm", by M. Moeini and S. D. Power, which will be submitted to IEEE Access. 
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Chapter 2 

 

Literature Review 

 

2.1 Brain-Computer Interfaces (BCI) 

Brain-computer interface (BCI) systems establish a direct communication pathway between the 

human brain and a computer, enabling interaction without physical movement. They work by 

deriving useful information from the user’s brain activity that can then be used as input to control 

an external device. The potential applications of BCI technology have significantly expanded in 

recent years. BCIs are now being explored in a wide range of fields, including external device 

control (e.g., [29], [30]), neurorehabilitation (e.g., [31], [32]), brain-controlled gaming (e.g., [33], 

[34]), and cognitive state analysis, such as fatigue monitoring (e.g., [35], [36]) and sleep pattern 

assessment (e.g., [37], [38]). 

2.1.1 Active vs. Passive BCI 

BCI systems can be categorized into active and passive BCIs based on whether the user’s control 

over the device is direct or indirect. Active BCI systems use brain activity generated intentionally 

by the user for the specific purpose of directly controlling an external device or system [1]. For 

example, a user may generate specific patterns of brain activity in order to control a robotic arm 
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(e.g., [27]) or wheelchair (e.g., [39]). In contrast, passive BCI systems monitor spontaneously 

occurring brain activity to gain insights into the user's cognitive or emotional state - without any 

intentionality on their part - and adjust an ongoing human-computer interaction accordingly [2]. 

For example, a passive BCI system could monitor a user's brain activity to detect signs of fatigue 

during a driving simulation (e.g., [40]) and provide real-time adjustments, such as reducing the 

complexity of tasks or triggering alerts to maintain safety.  

   

2.2 Active BCI Paradigm 

The structure of a typical active BCI is shown in Figure 2.1. It begins with the command generation 

stage, where the user generates the specific brain activity patterns that are associated with the 

different commands they may want to send to the device. Next is data acquisition, where the user’s 

brain activity is measured and recorded using some functional imaging technology, and data pre-

processing, where artifacts are removed from the collected data, and it is otherwise prepared for 

analysis. Feature extraction and feature selection involve calculating a pool of potentially 

meaningful measures from the data and choosing a subset of the most informative ones. In 

classification, machine learning algorithms are used to determine the participant’s intended 

command based on the selected features of the data. Finally, based on the classification result, a 

corresponding command is issued to the device. The user then observes if their command was 

decoded correctly or not. This final step constitutes the feedback, closing the loop of the BCI 

system. Each of these stages will be discussed in more detail in the following sections. 
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Figure 2.1: Active BCI Paradigm Overview. 

 

 2.2.1 Command Generation  

There are several well-established methods used to generate distinct brain activity patterns in 

active BCIs. One popular method is based on event-related potentials (ERPs), which are 

involuntary time-locked neuroelectric responses to specific sensory, cognitive, or motor events 

[41]. The most common ERPs used in BCIs are the steady-state visually evoked potential (SSVEP) 

and the P300 response [41]. The SSVEP occurs when focusing on a flickering visual stimulus, 

which generates rhythmic brain activity in the visual cortex corresponding to the frequency of the 

stimulus. SSVEP-based BCIs take advantage of this by presenting multiple flickering targets, each 

associated with a distinct frequency, allowing users to select commands by directing their visual 

attention to a specific target (e.g., [42], [43]). The P300 response, on the other hand, is elicited by 

sudden, attention-capturing stimuli and is often used in tasks requiring target detection. P300-

based BCIs utilize this mechanism in applications such as speller systems, where a user identifies 

a desired letter or symbol among a series of flashing options, and the system detects the P300 

response to determine the selection (see [44] for a recent review). Because ERP-based BCIs rely 
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on brain activity generated as an unconscious reaction to a stimulus, they are actually more 

precisely classified as “reactive BCIs” [45]. However, since the user intentionally controls their 

focus on the stimuli, these systems still involve direct, intentional control over the device, much 

like active BCIs (see [46]). 

Another popular method is using mental tasks (see a recent review [47]). The goal is to use 

different mental tasks that produce unique brain activity patterns and develop decoding algorithms 

that can distinguish the tasks from one another based on EEG. The different tasks are then 

associated with different output commands to send to the external device. While many tasks have 

been explored, such as arithmetic calculations (e.g., [48], [49], [50]) and mental rotation (e.g., [51], 

[52], [53]), the most widely used are motor imagery (MI) tasks (e.g., [6], [13], [34], [54]). MI 

involves participants imagining the movement of body parts, such as hand or foot movements, 

without physically executing the movement [55]. This mental simulation leads to detectable 

changes in the sensorimotor cortex [55]. MI can be further divided into visual MI and kinesthetic 

MI [56]. Visual MI involves the user imagining seeing themselves perform a movement, while 

kinesthetic MI involves mentally simulating the sensation of performing the movement [56]. 

Kinesthetic MI often results in stronger and more distinguishable brain activity patterns due to 

increased activation of the motor cortex, which leads to more reliable BCI systems [57]. 

In BCI systems based on mental tasks, the more distinct and reliable patterns a user can generate—

and the BCI can detect—the greater the number of distinct commands the BCI can send, which 

leads to increased functionality, speed, and precision in BCI systems [28]. For example, if a BCI 

can only decode MI vs. Rest, it can issue just one command (e.g., "activate" or "do nothing"). 

However, if the BCI can distinguish between left hand (LH), right hand (RH), foot (F), tongue (T), 
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and Rest, it can achieve four commands, enabling more complex control. For instance, a BCI could 

be designed so that RH-MI corresponds to moving a cursor or wheelchair to the right, LH-

MI moves it to the left, F-MI moves it down/backward, and T-MI moves it up/forward, and Rest 

is “do nothing”. This would allow the user to control the device with high precision, enabling more 

sophisticated interactions with external devices (see [58], [59]).  

 

2.2.2 Data Acquisition 

2.2.2.1 Functional Imaging Modalities in BCI  

Brain activity can be recorded using various functional neuroimaging techniques, each with unique 

underlying principles of operation, advantages, and limitations. Different methods capture brain 

activity by measuring different physiological responses related to neural activity, such as electrical 

signals, magnetic fields, or changes in blood flow and oxygenation levels. In order for a functional 

imaging technology to be practical for use in real-world BCI systems, it must be portable, easy to 

use, and relatively inexpensive. This eliminates techniques like positron emission tomography 

(PET) [60] and functional magnetic resonance imaging (fMRI) [61], despite their good signal 

quality. In BCIs, brain activity can be recorded non-invasively, from outside the scalp without 

penetrating the skull, or invasively, which requires the placement of electrodes directly on/in the 

brain's cortical surface. Invasive methods offer superior signal quality and much better BCI control 

is possible with such methods, however, they also pose significantly greater medical risks [62].  

The techniques most often explored in BCI research include: 

• Electrocorticography (ECoG): An invasive neuroimaging technique that records brain 

activity through electrodes placed directly on the surface of the cerebral cortex. It measures 
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the summed electrical potential generated by the population of neurons directly beneath 

each electrode [63]. ECoG provides excellent spatial and temporal resolution, making it 

highly effective for identifying specific brain regions involved in various tasks. However, 

it requires surgical implantation of electrodes, which limits its use to clinical or research 

settings and poses risks associated with invasive procedures (see [64] for a recent review).  

• Intracortical Electrode Arrays: An invasive technique that involves inserting 

microelectrodes directly into the cortical tissue to measure the electrical activity of 

individual neurons or small groups of neurons [65]. This method provides extremely high 

spatial and temporal resolution, enabling detailed analysis of neural circuits and single-cell 

activity [65]. However, like ECoG, it is invasive, requiring surgical implantation, and it 

carries surgical risks [66].   

• Electroencephalography (EEG) A non-invasive neuroimaging technique that records 

electrical activity generated by neurons in the brain using electrodes placed on the scalp 

[67]. EEG offers excellent temporal resolution, making it ideal for real-time applications 

[68]. However, its spatial resolution is relatively low due to the difficulty in localizing the 

exact source of brain activity [69]. The effect is that EEG-based BCIs cannot achieve the 

same precise control over external devices that those based on invasive methods can. 

However, since EEG does not carry the same risks as invasive methods, EEG-BCIs are 

suitable for a wider range of applications and user populations.  

Functional Near-Infrared Spectroscopy (fNIRS): An optical imaging technique that 

measures brain activity based on changes in blood oxygenation that result from the 

increased metabolic demand of active neural tissue [70]. It works by emitting near-infrared 

light into the scalp and detecting how it scatters as it interacts with brain tissue. Some 
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advantages of fNIRS are that it is non-invasive, portable, suitable for long-term monitoring, 

and relatively inexpensive. A significant limitation is its relatively low temporal resolution 

[71].  

EEG is used in this study due to its non-invasiveness, high temporal resolution, and cost-

effectiveness. 

 

2.2.2.2 Electroencephalography (EEG) 

EEG captures voltage fluctuations produced by synchronized neural firing in the cerebral cortex 

using specialized electrodes placed on the scalp [68]. These signals primarily reflect the 

postsynaptic potentials of pyramidal neurons in the neocortex, which are aligned perpendicularly 

to the cortical surface [72]. This alignment allows their collective electrical activity to summate, 

making it detectable at the scalp. Due to volume conduction, electrical signals spread through the 

scalp and surrounding tissues, causing each electrode to capture activity from a broad region of 

the underlying cortex rather than a localized source [73]. Because EEG measures the aggregate 

activity of large populations of neurons rather than individual neurons, its spatial resolution is 

relatively low. 

The analog signals detected at the EEG electrodes, which are extremely weak, are amplified and 

passed to an Analog-to-Digital Converter (ADC). The ADC samples these signals at a specific 

sampling frequency, typically ranging from 256 Hz to 1024 Hz, to ensure adequate resolution for 

capturing the rapid fluctuations in brain activity. The resulting digital signals are stored for offline 

analysis and/or processed online in real time. EEG signals can be collected using either wet or dry 

electrode systems. Wet electrode systems require the application of a conductive gel or paste on 
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the scalp to reduce impedance and improve signal quality. By lowering impedance, which is often 

kept below 5 kΩ, the signal-to-noise ratio (SNR) improves, resulting in cleaner data acquisition  

[74]. However, wet electrodes can be time-consuming to set up and may dry out during long 

recording sessions, reducing signal quality. Dry electrode systems do not require a conductive 

medium; instead, they rely on specialized materials that can detect brain activity directly from the 

scalp. While dry electrodes simplify setup and improve user comfort, they generally exhibit higher 

impedance and lower signal quality compared to wet electrodes, making them less suitable for 

high-precision recordings [75].The number of electrodes used during EEG acquisition can vary 

significantly depending on the system and application, typically ranging from just a few in basic 

setups to 32, 64, 128, or even 256 channels in advanced systems, where higher channel counts 

offer better spatial resolution but also increase data complexity. In BCI applications, minimizing 

the number of electrodes while maintaining the ability to accurately detect the mental states of 

interest is desirable for reasons of practicality and cost. 

Electrode placement plays a critical role in EEG acquisition as it determines which brain regions 

are being monitored. The 10-20 International System is the most widely adopted standard for 

positioning electrodes [76]. It ensures consistent electrode placement based on the measured 

distances between key anatomical landmarks on the scalp, specifically the nasion, inion, and 

preauricular points. The system divides the scalp into 10% and 20% intervals for electrode 

placement, providing a balance between spatial coverage and signal quality [77].  

Electrode positions in the 10-20 system are labeled with a combination of letters and numbers, 

where the letters (F, T, C, P, O) represent the brain regions (Frontal, Temporal, Central, Parietal, 

Occipital), and the numbers indicate the relative position on the left (odd numbers) and right (even 
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numbers) hemispheres [77]. While the 10-20 system allows for the placement of 32 EEG 

electrodes, extensions of this system allow for higher density arrangements (e.g., the 10-10 or 10-

5 systems) [78]. Figure 2.2 illustrates the standard electrode placement map based on the 10-10 

system for 64 electrodes, showing how electrodes are positioned across the scalp for optimal brain 

activity recording. 

 

Figure 2.2: Electrode placement diagrams based on the 10-10 system for EEG recording, illustrating standardized 

scalp positions and corresponding brain regions. 

 

2.2.3 Data Windowing/Epoching  

As the EEG data is acquired, short windows (known as “epochs”) are isolated and input to the 

analysis pipeline (preprocessing, feature extraction/selection, classification) [80] sequentially, in 

a “sliding window” approach. Epochs typically range from 1 to 4 seconds in length, and adjacent 

epochs can be either overlapping or non-overlapping [81]. The choice of epoch length and amount 
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of overlap can significantly impact decoding accuracy [81]. Longer epochs provide more data, 

potentially allowing the model to better capture the underlying brain activity patterns, but they 

may also introduce delays in real-time applications. Shorter epochs offer faster processing but may 

contain insufficient information for robust classification.  

 

2.2.4 Data Preprocessing  

In EEG-based BCI research, data preprocessing is an essential step to prepare the data for further 

analysis by machine learning models. Since EEG has a low SNR, this stage can be very important 

[82]. However, the decision to apply artifact removal techniques depends on the specific 

application. In some cases, aggressive artifact removal may eliminate useful EEG signals along 

with noise, potentially impacting the quality of the data [83].  

Some common potential sources of EEG artifacts include: 

• Electrode Noise: Electrode noise occurs when the conductive gel applied to the electrodes 

dries out, leading to an increase in impedance between the electrodes and the scalp. This 

elevated impedance reduces signal quality and increases noise interference, making it 

harder to accurately capture brain activity data [84]. Instead of artifact removal, this issue 

is best mitigated through artifact prevention, such as ensuring proper electrode placement 

and maintaining good conductivity with conductive gel. Regular monitoring of impedance 

levels during experiments can help maintain signal quality.  

• 60 Hz Electrical Interference: This noise originates from electrical devices in the 

surroundings of the recording setup, and occurs at the frequency of the standard power 
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supply, which is 60 Hz in Canada [85]. If frequencies above 60 Hz are relevant for a 

particular application, a sharp notch filter [86] is commonly applied to remove this specific 

interference while preserving other frequency components [87]. Alternatively, if higher 

frequencies are not of interest, a low-pass filter can be used to eliminate all frequencies 

beyond the required range [82], [88].  

• Participant-Generated Artifacts: These artifacts arise from involuntary physiological 

activities such as eye blinks, swallowing, or by minor body movements during data 

recording [88]. One common method for removing such artifacts is by Independent 

Component Analysis (ICA), a statistical technique that decomposes EEG signals into 

independent components representing different sources of brain activity and noise [89]. 

Artifacts like eye blink and muscle movement can be isolated as separate components and 

removed, while brain-related components are preserved, ensuring a cleaner EEG signal for 

analysis [88]. ICA is popular due to its ability to separate signals without relying on 

predefined patterns, making it useful for EEG artifact correction. However, as mentioned 

above, there is a risk of eliminating the essential components of the data and potentially 

affecting the integrity of the signal.  

 

2.2.5 Feature Extraction 

Raw EEG data is typically represented as a 2D matrix, where the columns represent the different 

electrodes, and the rows correspond to samples from each electrode channel at specific time points. 

Feeding this high-dimensional, complex data directly into a machine-learning model can lead to 

poor performance due to the complex nature of the signals [90] and the substantial computational 

resources required for processing this volume of data [91]. Feature extraction addresses these 
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challenges by distilling the essential information from the raw EEG signals into a set of 

meaningful, lower-dimensional features. This process not only simplifies the data, making it more 

interpretable for machine learning algorithms but also reduces the computational burden, thereby 

conserving hardware and software resources [90]. 

Features commonly used in EEG analysis include: 

• Time-domain Features are extracted directly from the EEG signal by analyzing the 

amplitude variations over time. These features describe the statistical properties of the 

signal and are often helpful for initial data exploration. For instance, the mean represents 

the average amplitude of the EEG signal, providing a measure of central tendency, and the 

z-score standardizes the signal by measuring how many standard deviations a data point 

deviates from the mean, aiding in normalization and outlier detection [90]. 

• Frequency-domain Features describe the signal's frequency content, providing insights 

into the oscillatory activity in the brain [92]. For example, power spectral density (PSD) 

describes the distribution of power across different frequency bands, indicating the brain's 

rhythmic activity [93]. Band power measures the signal's power in specific frequency 

ranges, such as delta (0.5–4 Hz; deep sleep and unconscious states [94]), theta (4–8 Hz; 

memory and light meditation [95]), alpha (8–13 Hz; relaxation and calmness [74]), beta 

(13–30 Hz; active thinking and problem-solving [74]), and gamma (>30 Hz; higher 

cognitive functions and perception [96]), each associated with different cognitive or 

physiological states.  

• Entropy-based Features measure the complexity and unpredictability of the EEG signal, 

providing insight into the non-linear dynamics of brain activity [97]. For example, 



18 

 

approximate entropy (ApEn) estimates the regularity and complexity of a time series, with 

lower ApEn values indicating a more regular signal and higher values indicating more 

complexity [98]. Sample entropy (SampEn) is similar to ApEn but with a reduced bias for 

smaller datasets, making it more reliable for EEG data analysis [97].  

• Statistical Features summarize the distribution and shape of the EEG signal. These 

features are often useful for capturing patterns and variations in the signal [92]. For 

example, skewness measures the asymmetry of the signal distribution around the mean, 

with positive skewness indicating a longer right tail and negative skewness indicating a 

longer left tail [99]. Kurtosis measures how extreme the peaks and tails of the signal 

distribution are, with higher values indicating more extreme deviations from the mean [99]. 

See [92] for a recent review of feature extraction methods for EEG-based BCI. 

 

2.2.5.1 Filter Bank Common Spatial Pattern (FBCSP) 

The Common Spatial Pattern (CSP) algorithm is a widely used feature extraction technique in BCI 

studies, particularly for MI-BCI [100]. CSP enhances class discrimination in binary classification 

problems by extracting spatial features from EEG signals that maximize variance for one class 

while minimizing it for the other. Essentially, it finds optimal spatial filters that project EEG 

signals into a new space where classes are more separable [101]. The power of the 

projected/filtered EEG signals is calculated and used as features for classification. 

The performance of CSP heavily depends on the frequency range of the input EEG data. If the 

EEG data fed into CSP is either unfiltered or filtered within an inappropriate frequency band, the 
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extracted features may not be useful for MI task discrimination, leading to poor classification 

accuracy [102]. To address this limitation, Ang et al. [103] introduced Filter Bank Common Spatial 

Pattern (FBCSP), an enhanced version of CSP that incorporates frequency decomposition. 

FBCSP first decomposes the EEG signal into multiple frequency sub-bands using a filter bank, 

ensuring that relevant frequency components are retained. CSP is then applied separately to each 

sub-band, extracting spatial features for each [103]. Finally, the extracted features from all sub-

bands are concatenated, creating a comprehensive feature set that captures both spatial and 

frequency-specific information. This enriched representation significantly improves the 

classification performance of EEG-based BCI systems [103].  

 

2.2.6 Feature Selection 

Feature selection occurs after feature extraction. This phase is not always required, as sometimes 

the full extracted feature matrix can be directly fed into the machine learning model. However, 

feature selection is commonly used to identify the most relevant features and reducing data 

dimensionality. This reduction helps the ML algorithms perform better due to the reduction of 

noise and irrelevant patterns, which may add bias to the classifier [104]. Feature selection is done 

during the training phase based on the training data, and in the testing or “use” phase only the 

identified subset of features is used as input to the classification stage. 

The Minimum Redundancy Maximum Relevance (mRMR) algorithm is a feature selection 

technique that identifies the most relevant features for distinguishing between classes while 

minimizing redundancy among them. It achieves this by using mutual information as a measure of 

both relevance and redundancy [105]. Relevance is assessed by evaluating how strongly a feature 
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correlates with the target variable, ensuring that only the most informative features are selected. 

Redundancy is minimized by measuring the dependency between features, ensuring that selected 

features provide complementary rather than overlapping information [105]. Due to its ability to 

balance these two criteria, mRMR enables the selection of highly discriminative features, making 

it particularly effective for MI-BCI applications (e.g., [106], [107], [108]). 

 

2.2.7 Classification 

In machine learning, classification is the task of predicting the label or category of a given sample 

of input data based on patterns learned from training data with known labels. For instance, a 

classifier may be trained to predict whether a new image belongs to the category of "dog" or "cat". 

This is an example of binary, or “2-class”, classification. Multi-class classification involves the 

classification of three or more classes. 

In MI-BCI research, classification algorithms are used to predict which of a predefined set of MI 

tasks the user is performing at any given time (and thus what command they wish to send to the 

external device) based on the features extracted from short segments of EEG data. To do this, the 

classifier must first be trained on data with known class labels. For practical BCI systems, the 

training data must be collected in a “calibration session” before the BCI can actually be used for 

real-time control of the device. In some BCI studies where the goal is to explore the decoding of 

novel mental states, or develop and validate new signal processing or machine learning algorithms, 

it is more efficient to collect a full dataset and subsequently perform analysis offline (e.g., [109], 

[110]). In these cases, a portion of the data is used to train the model, while the remainder is used 

as a “test set” to evaluate the classifier's performance on unseen data. 
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Many different machine learning algorithms have been explored for use in MI-BCIs (see a recent 

review [111]). Among them, linear classifiers like linear discriminant analysis (LDA) and support 

vector machines (SVM) have proven particularly effective and have become very popular in MI-

BCI studies [112]. Extreme gradient boosting (XGBoost or XGB) is a non-linear classifier that has 

also been effective in many studies (e.g., [113], [114], [115]). These classifiers are discussed in 

more detail in the following sections. 

 

2.2.7.1 Linear Discriminant Analysis (LDA) 

LDA is a linear classifier widely used for both dimensionality reduction and classification tasks 

[116]. It works by projecting data onto a lower-dimensional space while maximizing the separation 

between multiple classes. LDA minimizes intra-class variance while maximizing inter-class 

variance, making it effective for classification tasks where classes are linearly separable [117]. 

LDA has demonstrated effectiveness in EEG-based BCI studies (e.g., [118], [119], [120]), and has 

become a widely used technique due to its simplicity, interpretability, and computational 

efficiency. 

 

2.2.7.2 Support Vector Machines (SVM) 

SVM is a powerful machine learning algorithm commonly used for both classification and 

regression tasks [121]. It is particularly effective in high-dimensional spaces and for datasets where 

a clear margin of separation exists between classes [122]. SVM works by finding the best possible 

boundary, called a hyperplane, that separates data points belonging to different classes. The goal 
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is to create a boundary where the gap (or margin) between the two classes is as wide as possible 

[123]. The data points that are closest to this boundary are called support vectors. These support 

vectors define the position of the hyperplane and directly influence how the boundary is drawn 

[123]. SVM aims to maximize the margin between the support vectors of each class. A wider 

margin helps the model make better predictions on new, unseen data, improving its ability to 

generalize [124]. Since EEG data typically has high-dimensional features, SVM is a powerful tool 

as it effectively handles complex datasets [125]. 

 

2.2.7.3 Extreme Gradient Boosting (XGBoost) 

XGBoost is a powerful and efficient machine learning algorithm based on gradient boosting, used 

for both classification and regression tasks [126]. It works by building multiple decision trees 

sequentially, where each tree attempts to correct the errors made by the previous ones. This 

iterative process improves the model's accuracy over time [127]. It uses gradient descent to reduce 

errors in its predictions by adjusting how the decision trees split the data based on mistakes made 

earlier [127]. Since XGBoost has built-in regularization (which penalizes model complexity to 

prevent overfitting) and can handle noisy, complex datasets effectively [127], it makes an excellent 

choice for EEG classification. This effectiveness has been demonstrated in numerous research 

studies, highlighting its reliability in MI-BCI tasks (e.g., [113], [114], [115]). 
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2.2.8 Feedback 

Once an EEG data epoch is classified as one of the predefined set of MI tasks, the BCI sends the 

corresponding command to the connected device. The user observes whether or not their intended 

command was decoded correctly, and this feedback allows them to adjust their mental strategies 

in real time to adapt to the BCI algorithm, effectively “learning to use” the BCI. Ideally, the BCI 

algorithm would also adapt to the user over time, as it is well known that EEG signals are highly 

non-stationary [128]. 

As mentioned, since it is an efficient way to develop and validate new signal processing or machine 

learning algorithms, BCI studies often involve offline data classification. Of course, feedback is 

not possible in offline analysis. Since the feedback can have a significant effect on mental state 

generation and decoding, it is very important to validate the results of the offline analysis in online 

scenarios, where real-time classification is performed, and feedback is provided to the participant. 

 

2.3 Control Paradigms in Active BCI 

BCIs can be classified as either “synchronous/system-paced” or “asynchronous/self-paced”. In 

synchronous BCIs, users must follow external cues and issue commands (i.e., generate defined 

brain activity patterns/perform mental tasks) only at pre-defined intervals dictated by the system 

[129], whereas in asynchronous BCIs users can issue commands whenever they choose [130]. 

Asynchronous control is, of course, more natural and user-friendly but also more technically 

challenging to implement since the periods of intentional control need to be identified from the 

highly variable “no-control” or baseline state [54]. The terms synchronous and asynchronous 
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describe BCI control paradigms in terms of how the BCI controls the external device: in the 

former, the BCI reads and decodes the user’s brain activity and issues commands only at specific 

times (e.g., [6], [7], [10], [11]), whereas in the latter, the BCI reads and decodes the brain activity 

and issues commands continuously (e.g., [8], [9], [12], [13]).  

BCI control can also be categorized based on how the user controls the BCI, as either “switch” or 

“continuous” control [14]. In the switch control paradigm, users perform different tasks for short 

durations (typically a few seconds) to issue discrete commands (e.g., [15], [16]). This paradigm is 

very well-suited to control scenarios where the resulting action of the device is inherently discrete, 

like selecting options on a computer screen or turning the device on or off. Some common BCI 

control scenarios are inherently continuous, however, like navigating a wheelchair (see [22] for a 

recent review), drone (see [23] for a recent review), or video game avatar (e.g., [25],[24]). In these 

cases, the action of the device (i.e., movement) must be maintained for longer periods of time. 

Switch control can certainly be useful even in these scenarios. For example, discrete start/stop/turn 

left/turn right commands could be issued through the brief performance of different associated 

mental tasks, with the continuous movement of the device occurring automatically in between 

(termed low-level control) (e.g., [58]). Alternatively, the different mental tasks could be mapped 

to different routes/destinations rather than different directions, with the device autonomously 

navigating a full pre-defined path based on the single discrete command issued (termed high-level 

control) (e.g., [131], [132]). While these strategies can be very effective in many situations, they 

may not always be the best solution, for instance, in applications where the start and stop 

commands would have to be issued frequently or in quick succession (e.g., cursor control, scrolling 

through a webpage or document), or when continuous control simply feels more natural to the 

user. 
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In the continuous control paradigm, on the other hand, the user can issue prolonged commands by 

performing the MI task for as long as they wish the action to be maintained. For example, they 

could perform an MI task to start moving an avatar in a particular direction and continue to do so 

until they wish to stop it. This paradigm allows continuous, fluid control and may be more natural 

in some applications (e.g., [14], [17], [133], [134]). To illustrate the difference between discrete 

and continuous control, Figure 2.3 depicts how a user would send commands to move a video 

game avatar in one direction in each of these paradigms. Note that switch control can be 

implemented in either synchronous or asynchronous systems, but continuous control is better 

suited to asynchronous systems due to the need for constant, real-time monitoring and 

interpretation of the brain activity. 
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Figure 2.3: Example of how a user would control the one-directional movement of a video game avatar using 

MI tasks under the switch and continuous control paradigms. In the switch paradigm (top), the user performs 

MI at the start position to initiate movement of the avatar, remains at rest as the avatar moves automatically 

forward, and performs MI to stop movement of the avatar at the desired stop position.  In the continuous 

paradigm (bottom), the user performs MI to initiate movement at the start position and maintains the MI 

continuously until the avatar reaches the desired stop position, at which point the user stops performing MI 

to stop the avatar. 
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While the use of the discrete control paradigm is more prevalent in BCI research, studies in many 

different application areas have used the continuous control paradigm, with the control either based 

entirely on the user’s neural activity (e.g., [12], [14], [135]) or incorporating a complementary 

control strategy (termed “shared control”), for example using environmental sensors to detect 

obstacles or assist with navigation (e.g., [39], [136], [17]). For example, Velasco-Álvarez et al. 

[135] implemented continuous control for navigating a virtual wheelchair. Using a graphical 

interface, users could select among three possible commands (turn left, turn right, move forward) 

by performing a single MI task (right-hand motor imagery). Once initiated, the wheelchair 

continued the selected action until the MI task ceased, allowing participants to sustain fluid 

movement. In LaFleur et al. [137], a continuous control paradigm was used to control a quadcopter 

in 3D space, with MI of the left hand, right hand, both hands, and an idle state used to turn left, 

turn right, ascend, and descend, respectively. Forward motion was automatically controlled by the 

system, reducing the cognitive load on participants and allowing them to focus solely on 

directional and altitude adjustments. Using a similar paradigm, An et al. [138] developed a BCI-

controlled Unmanned Aerial Vehicle (UAV) for navigating a 2D indoor space. Participants used 

MI tasks and an idle state for directional and altitude adjustments (left-hand MI to move upward 

or turn left, right-hand MI to move downward or turn right, and idle to maintain current direction), 

while forward motion was automatically controlled. More recently, Zhang et al. [17] utilized a 

continuous control paradigm for robotic arm operation, where left-hand, right-hand and tongue MI 

tasks corresponded to directional commands for guiding the arm in real time. When no MI 

commands were detected, the system relied on autonomous grasping control, which used vision 

feedback for path and grasp planning. Further supporting the practical application of continuous 

control in rehabilitation, Choi et al. [12] applied continuous control to lower-limb exoskeletons. 
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Users maintained the continued forward movement of the exoskeleton by performing sustained 

“gait MI” (mental imagery of walking). The system halted when the user stopped performing MI, 

employing a decision buffer for reliability in a “shared control” paradigm. Some studies have even 

combined the continuous control paradigm with switch control to harness the unique strengths of 

each. For example, Shi et al. [139] used a hybrid control paradigm for UAV navigation, combining 

switch control for decision-making with continuous control for manual navigation. During the 

decision-making phase, participants used MI tasks such as left-hand MI to select "Yes" (accepting 

a suggested direction) or right-hand MI to select "No" (rejecting the suggested direction). These 

binary choices were presented by the semi-autonomous navigation system, which provided 

feasible directions while ensuring obstacle avoidance. If the user did not choose "Yes" or "No" 

within the allotted time, the UAV hovered momentarily, and the participants were required to take 

control manually. In manual control mode, participants guided the UAV continuously using MI 

tasks: left-hand MI directed the UAV to turn left, right-hand MI to turn right, and idle imagination 

maintained forward motion. Similarly, He et al. [140] developed an asynchronous BCI system for 

human-computer interaction where switch control was used for discrete actions like button 

selection while continuous control allowed smooth, real-time cursor movement using MI tasks. 

This hybrid approach balanced precision and adaptability, making it effective for complex tasks 

like web browsing, text input, and file management.  Fernandez-Rodríguez et al. [14] integrated 

continuous and switch control paradigms in a comparative study to examine the effectiveness, 

efficiency, and user satisfaction of each for wheelchair control. Their findings showed that while 

switch control generally required fewer commands and was simpler for users when moving the 

wheelchair, continuous control was generally more effective when the user needed to maintain the 

https://scholar.google.com/citations?user=LpQRAtEAAAAJ&hl=en&oi=sra
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stop position. Neither paradigm was superior overall in terms of perceived mental workload or 

user satisfaction, with the best choice being highly user-dependent. 

 

2.4 Motivation and Research Objectives 

Key to the effectiveness of continuous BCI control is the ability of users to reliably generate the 

distinct patterns of brain activity required to issue a command over prolonged intervals (i.e., longer 

than just a few seconds) and the ability for the BCI to continuously (or near-continuously, for 

example, every 1 second) decode this activity. While there is abundant evidence over decades of 

BCI research that MI tasks can be decoded from EEG signals, a vast majority of these studies use 

or mimic the discrete control paradigm. That is, the user performs the MI task(s) over brief 

intervals (typically 3-5 seconds) which are both preceded and followed by rest. Indeed, a recent 

review of 25 publicly available MI datasets spanning the past 13 years [21] highlights this 

prevalence: the average MI duration during trials was just 4.26 seconds, with durations ranging 

from 1 to 10 seconds. This is very different from having to maintain task performance and, 

importantly, the stability of the associated neural activity patterns that the BCI recognizes, for 

longer periods of time. Of course, studies using the continuous control paradigm, like those cited 

above, do perform decoding over longer intervals of task performance. However, in terms of 

system evaluation, most such studies report only task-specific performance metrics like task 

completion time, error rate, success/failure rate, etc. rather than reporting the accuracy of mental 

state decoding itself (i.e., the accuracy with which the user successfully generates the desired 

command and the BCI correctly predicts it) (e.g., [26], [27], [135], [137]). The few such studies 

that do report mental state decoding accuracy during continuous control scenarios tend not to 

provide sufficient details regarding how the accuracies were obtained to allow reliable 
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interpretation of the results (e.g., [12], [17]). This is not a criticism of these continuous control 

BCI studies - the focus on performance metrics over mental state decoding accuracy in such studies 

is necessary given that the “true labels” for the mental states are inherently unavailable during 

realistic operation scenarios designed to evaluate the real-world usability of the developed systems. 

Furthermore, these performance metrics provide a valuable measure of overall system usability, 

incorporating the effect of both the mental state decoding and any complementary control 

mechanisms in the system. That said, understanding the reliability of mental state decoding in 

continuous control scenarios and its potential contribution to system performance is crucial for 

researchers to effectively identify the source of performance deficiencies and improve the overall 

design.  

Since it has not been specifically investigated, it is unclear how well MI tasks can be decoded 

when users must perform them for extended intervals, as required in the continuous control 

paradigm. It is important to understand whether users can sustain task performance over extended 

periods and, if so, whether the brain activity patterns associated with the tasks remain stable 

enough for accurate decoding. Furthermore, no studies have systematically compared different MI 

tasks to determine which ones are most intuitive, and can be most reliably decoded, in continuous 

control scenarios. 

This study aimed to address these gaps by examining the continuous and asynchronous 

classification of different MI tasks versus a rest state over longer trials including multiple extended 

intervals (8–20 seconds) of each condition, simulating conditions typically encountered during the 

continuous control of external devices. Different MI tasks – the conventional tasks of hand, foot 

and tongue imagery, as well as a novel singing motor imagery task proposed in [28]– were 
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compared in terms of both mental state decoding accuracy, and user preference. For mental state 

decoding, different analysis approaches were considered. Furthermore, the MI decoding accuracies 

obtained in the experimental continuous control-like scenario were compared to those achieved 

with the same tasks in a switch control-like scenario using the dataset from [28]. To allow 

comparison of different analysis methods, mental state decoding was performed offline. However, 

an online BCI system was simulated using methods entirely compatible with online 

implementation.  
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Chapter 3 

 

Methods 

 

3.1 Participants 

Seventeen healthy participants (mean age 29.3 ± 3.9 years; 16 right-handed; 10 male, 7 Female) 

volunteered based on the inclusion criteria stated in the recruitment documents. The inclusion 

criteria required that participants be between 18 and 65 years old, have normal or corrected-to-

normal vision and hearing, and have no history of neurological disease, disorder, or injury, as well 

as no cognitive impairment. Four of the participants had prior experience volunteering for BCI 

studies. Participants were asked to avoid smoking, drinking alcohol, consuming caffeine, and 

exercising for at least four hours before the experiment. They were also asked to wash their hair 

and avoid using hair products before the session in order to maximize EEG signal quality. 

Participation was entirely voluntary, and all participants provided written informed consent before 

the experiment. The Interdisciplinary Committee on Ethics in Human Research (ICEHR) at 

Memorial University of Newfoundland, NL, Canada, approved the experimental protocol (ICEHR 

#20240813-EN). Data from one male participant were excluded as it was discovered at the end of 
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the session that he did not meet the inclusion criteria (had a diagnosis of ADHD). Data from 

another male participant was corrupted and also excluded from the analysis due to excessive noise.  

 

3.2 Data Acquisition 

A 64-channel ActiCHamp EEG system (Brain Products, GmbH), with active electrodes placed 

according to the International 10-10 System via a flexible cap, was used for data acquisition. Data 

were recorded using BrainVision Recorder at a sampling rate of 500 Hz. Electrode impedances 

were reduced through the injection of electrolyte gel, monitored, and kept below 10 KΩ throughout 

the session to maintain signal quality.  

3.3 Experimental Protocol 

Participants were asked to complete a single experimental session. The experimental protocol is 

described in detail below and summarized in Figure 3.1. 

  

Figure 3.1: Summary of the experimental protocol, including an example trial. 
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The participant was seated comfortably in a quiet room, positioned approximately 40 cm in front 

of a computer screen. Following the informed consent process, the participant completed the 

Kinesthetic and Visual Imagery Questionnaire (KVIQ-10) [141], which is commonly used in BCI 

studies to familiarize participants with the concepts of visual and kinesthetic motor imagery and 

to assess their ability to perform these tasks. The participant was then fitted with the EEG cap, and 

electrolyte gel was applied to reduce electrode impedances below 10 KΩ. Next, they were given a 

tutorial outlining the experimental protocol and explaining the tasks they would be asked to 

perform. These tasks are described below. Note that each of the four MI tasks involved kinesthetic 

motor imagery, meaning that participants were specifically instructed to try to imagine the 

sensation associated with the specific movement rather than just visualizing the performance of 

the movement [55]. 

 

• Motor Imagery of Hand (H): Imagine tapping the dominant hand, bending at the wrist, 

at a rate of approximately once per second. 

• Motor Imagery of Feet (F): Imagine tapping both feet on the ground, bending at the ankle, 

at a rate of approximately once per second. 

• Motor Imagery of Tongue (T): Imagine sticking the tongue out of the mouth and pulling 

it back, at the rate of approximately once per second. 

• Motor Imagery of Singing (S): Imagine singing a song, including the associated jaw, 

tongue, and lip movements. Participants were asked to choose four different songs that they 

were very familiar with from the following list of 10 widely known English songs with 

lyrics: 
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o “Happy Birthday to You” 

o “The Alphabet Song” 

o “Jingle Bells”  

o “We Wish You a Merry Christmas” 

o “The Wheels on the Bus”  

o “Barbie Girl” by Aqua 

o “I’ll be There for You (“Friends” theme song)” by The Rembrandts 

o “We Will Rock You” by Queen 

o “Wellerman (Sea Shanty)” by Nathan Evans 

o “Who Let the Dogs Out” by Baha Men 

The name of the song that the participant was to imagine for a particular trial was randomly 

selected from their chosen list and displayed on the screen prior to the start of the trial. 

• Rest (R): Do not think about anything in particular; let your mind wander normally, but 

try not to perform the other motor imagery tasks; focus the gaze on the screen with eyes 

open, blinking normally. 

 

The code was developed using PsychToolbox in MATLAB to present the tutorial and the cues for 

the experimental trials on the screen. As an example, Figure 3.2 depicts the section of the tutorial 

explaining the feet MI task and its associated cue. During the tutorial, the experimenter also 

verbally explained the task and answered any questions the participant had. 

 



36 

 

 

Figure 3.2: Tutorial screen explaining the motor imagery of the feet task. 

 

Next, the participants completed the main part of the experiment, the MI trials. There was a total 

of 28 trials (seven trials per MI task), divided into seven blocks of four trials (one trial for each MI 

task per block). The task order was randomized for each block. 

Figure 3.1 d shows the timing structure of each trial. Initially, the imagery task to be performed in 

the upcoming trial was indicated on the screen. When the participant was ready, they pressed the 

space bar to start the trial, and the words “Ready” and “GO!” appeared for 0.5 seconds each. This 

was followed by the active task period in which the participant alternated between intervals of MI 

task performance and rest, following visual cues shown on the screen.  

Each trial had eight intervals: four for both the MI task and Rest conditions. The four intervals of 

each condition were of lengths 8, 12, 16, and 20 seconds, for a total trial duration of 112 seconds 

(i.e., (8+12+16+20) x 2 = 112). The order of the interval durations was randomized for each trial. 

All trials began with the MI task and ended with Rest. The paradigm was meant to simulate a 

continuous-control scenario where the user would control the BCI output by performing the MI 

task for relatively long intervals, interspersed with relatively long intervals of the rest condition. 
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Having the participants switch between the conditions based on cues rather than at their own 

discretion allowed us to know the true label of each EEG segment (either MI or Rest), which was 

necessary to accurately determine the decoding accuracy. Figure 3.1e shows the timing for the task 

period for an example trial. 

After each trial, participants were asked to rate the difficulty of the imagery task on a scale of 1 to 

5 (from least to most difficult). This scale is shown in Figure 3.3. 

 

 

Figure 3.3: The 5-point difficulty rating scale used by participants to evaluate the imagery tasks after each 

trial. 

 

After all seven blocks of MI trials were completed, participants were asked the following three 

questions regarding their preference for the tasks:  

1. What was your favorite task? 

a. Hand MI 

b. Feet MI 

c. Tongue MI 

d. Singing MI 
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2. What was your least favorite task? 

a. Hand MI 

b. Feet MI 

c. Tongue MI 

d. Singing MI 

 

3. Which task did you prefer to do? 

a. Tongue MI 

b. Singing MI 

The third question was included because Tongue MI and Singing MI involve similar motor 

imagery processes related to movements of the mouth and tongue. The aim was to directly compare 

participants' preferences between these two tasks to determine which they found more intuitive, 

engaging, or easier to perform.  

 

3.4 Motor Imagery Classification via EEG 

3.4.1 Continuous MI Task Decoding 

The primary objective of this study was to determine how accurately different MI tasks can be 

continuously classified from the rest state over longer intervals of these conditions than are 

typically investigated in BCI studies. Binary classifiers (MI vs Rest) were trained individually for 

each of the four MI tasks (i.e., H, F, T, S).  

To simulate an online BCI scenario, the first n blocks of trials were used for training, while the 

final two blocks were used for testing. To investigate the effect of different amounts of training 
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data on decoding accuracy, values of n=1, 2, 3, 4, and 5 (which corresponded to 56 s, 112 s, 168 

s, 224 s, and 280 s of EEG data per condition, respectively) were considered. So that the 

classification results for all values of n training blocks could be directly compared, the final two 

blocks were used for testing in all cases. The amount of training data is an important factor to 

explore because, in real-world scenarios, collecting training data presents a burden for the BCI 

user. Minimizing the amount of training data needed while achieving acceptable performance is 

crucial for maximizing the practicality of the BCI. 

The EEG data analysis pipeline is described in the following subsections. Data pre-processing was 

done using the EEGLAB toolbox in MATLAB, while the remainder of the analysis was done in 

Python using NumPy, Pandas, and Scikit-Learn. Different approaches were explored for several 

parts of the analysis, specifically data epoching, number of EEG features, and classification 

algorithm. The effects of these factors on the classification accuracy of MI tasks vs. Rest were 

investigated by statistical analysis. Though data was pre-recorded and the analysis was performed 

offline, real-time mental state decoding was simulated by ensuring all steps in the pipeline were 

entirely compatible with online implementation.  

 

3.4.1.1 EEG Data Preprocessing 

First, the EEG trial data were re-referenced from the FCz electrode to the average of all channels. 

Next, the data was down-sampled from 500 Hz to 250 Hz. 

Short EEG epochs were extracted from each trial for classification into MI or Rest. Five different 

data windowing approaches were investigated: 
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1. Epochs of 4 s with no overlap (prediction every 4 seconds) 

2. Epochs of 2 s with no overlap (prediction every 2 seconds) 

3. Epochs of 4 s with 75% overlap (prediction every 1 second) 

4. Epochs of 2 s with 50% overlap (prediction every 1 second) 

5. Epochs of 1 s with no overlap (prediction every 1 second) 

Each approach represented a different balance among (i) length of EEG data used to model the MI 

and Rest patterns, (ii) prediction frequency, and (iii) number of samples (epochs) available for 

classification. In all five scenarios, epochs were extracted in the same way for both the training 

and test trials. 

 

3.4.1.2 Feature Extraction and Selection 

Filter Bank Common Spatial Pattern (FBCSP) [103] is a widely used feature extraction method in 

MI-BCIs. In this study, FBCSP was employed across all classification scenarios. The process 

began with using linear-phase FIR bandpass filters to filter the 64-channel EEG signals into nine 

non-overlapping frequency bands between 4 Hz and 40 Hz, each with a 4 Hz bandwidth. The 

Common Spatial Pattern (CSP) algorithm was then applied to the signals within each frequency 

band. CSP enhances the discriminative power of EEG signals by linearly transforming them from 

the original channel space into spatially-filtered signals. The spatial filters used are optimized, 

based on the training data, to maximize variance for one class while minimizing it for another. The 

power of each of the spatially filtered signals was then computed to serve as features for 

classification. For this study, CSP was configured to produce 10 spatial filters (5 pairs) per 
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frequency band, resulting in a total of 90 features (9 frequency bands × 10 spatially filtered signals 

per frequency band).  

The Maximum Relevance Minimum Redundancy (mRMR) algorithm [105] was then applied to 

select an optimal subset of 10 features. The number of CSP components and selected features were 

chosen based on preliminary analysis of the data, as well as prior work reported in [28]. 

Both the full feature set of 90 features and the reduced 10-dimensional feature set were investigated 

for classification.  

 

3.4.1.3 Classification Algorithms 

Three different traditional machine learning algorithms were used for classification: linear 

discriminant analysis (LDA), linear support vector machines (SVM), and extreme gradient 

boosting (XGBoost or XGB). LDA and SVM are simple but powerful linear classifiers that have 

been shown to be effective for EEG-based MI classification [112]. XGBoost is a tree-based method 

that uses the ensemble technique to increase the classification accuracy and shows higher accuracy 

compared to other classifiers in many studies (e.g., [113], [114], [115]).  

 

While deep learning methods are being increasingly explored in EEG-based BCI research [142], 

they were not considered in this work due to insufficient data volume. 
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3.4.1.4 Statistical Comparison of Four MI Tasks 

For each of the four MI tasks, a total of 150 classification scenarios (5 training set sizes x 5 

epoching approaches x 2 feature set sizes x 3 classifiers) were investigated per participant. Rather 

than base the comparison among the four MI tasks on a single scenario, to improve 

generalizability, they were compared based on the average accuracy across all 150 scenarios for 

each of the 15 participants. When the (non-parametric) Friedman test indicated that a significant 

difference existed among the four tasks, the Nemenyi post-hoc test was used to identify specific 

differences between pairs of tasks. 

 

3.4.1.5 Statistical Comparison of Different Analysis Approaches 

Friedman test and post-hoc Nemenyi test were similarly used to determine the effects of i) training 

set size, ii) epoching approach, iii) classification algorithm on MI classification accuracy. 

Wilcoxon test were used to determine the effect of number of features. For each factor, the different 

levels of that factor were compared based on the average accuracy across all scenarios (all 

combinations of the other factors) for each of the 15 participants.  

 

3.4.2 Comparison of MI Decoding Over Longer and Shorter Task 

Intervals 

To gain insight into how the classification of MI tasks from Rest compares when individuals must 

maintain these conditions over longer intervals vs. the more typical short intervals, the results 

obtained in this experiment were compared to a previously collected dataset, originally described 

in [28]. In that dataset, a separate group of 14 participants completed 70 trials each of the same 
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four motor imagery tasks as in this experiment (i.e., H, F, T S), as well as a Rest condition. The 

overall experimental procedure (e.g., KVIQ and tutorial followed by MI trials, recording of task 

difficulty rating after each trial, posing of task preference questions at end of session), the visual 

cues provided to participants, and the task instructions were the same as for this experiment. The 

major difference compared to this experiment was the trial structure: the trials had just a single 4-

second MI period that was both preceded and followed by rest, which is very typical in the EEG-

based MI-BCI literature [81]. Also, two additional tasks were included in the previous experiment, 

which were not analyzed in the present analysis. This dataset will henceforth be referred to as the 

MIshort dataset. 

As before, the classification of MI vs. Rest was done for each of the four tasks individually. The 

analysis pipeline for the current dataset followed the same steps as described in section 3.4.1 but 

with only one option explored for each factor, specifically: 

• Train/test split: Trained on first four blocks (i.e., 224 sec of data per condition), tested on 

remaining three blocks (i.e., 168 sec of data per condition) 

• Epoching approach: 4-second epochs with 0% overlap, resulting in 56 training samples 

per condition (note that this was chosen to match the 4-second imagery intervals of the 

previous dataset) 

• Number of Features: 10  

• Classifier: SVM 

To be comparable to the new dataset, the MIshort dataset was pre-processed and analyzed in exactly 

the same way. The first 56 trials for each of the MI tasks and the Rest were used for training, and 

the remaining samples were used for testing. 
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The classification accuracies were compared between the longer interval data (the current dataset) 

and the short interval data (the MIshort dataset [28]) using the (non-parametric) Mann-Whitney U 

test. Comparisons were done separately for each MI task. 

 

3.4.3 Subjective Data Analysis 

For each MI task, the average task difficulty ratings (across participants) were calculated per block, 

and overall.  For each of the three task preference questions posed at the end of the experiment, 

the percentage of participants who selected each possible response was calculated. 

The Pearson correlation coefficient between the average participant rating for each block and the 

block number was calculated to determine if participants' perceptions of difficulty for each task 

changed throughout the experimental session. Also, the overall average task difficulty ratings 

(across all blocks) for the four MI tasks were compared using the Friedman test. 
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Chapter 4 

 

Results 

 

4.1 Continuous MI Task Decoding 

Figure 4.1 depicts the classification accuracies obtained for the different MI tasks (Hand, Feet, 

Tongue, Singing) versus Rest from the current study data (i.e., in the continuous control-like 

paradigm). The plot depicts the distribution, over the 15 participants, of the overall average 

classification accuracy across all 150 classification scenarios for each task. The Friedman test 

indicated that there was no significant difference in classification accuracy among the four MI 

tasks (𝜒2=2.28, p = 0.52). 
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Figure 4.1: Box plot showing the MI task vs. Rest 

classification accuracies for the four different motor 

imagery tasks (Hand, Feet, Tongue, Singing) in the 

continuous control paradigm. There were no significant 

differences among the different tasks. The average 

classification accuracy across participants is indicated by 

a blue square. 

 

Figure 4.2 depicts the distribution over participants of the overall average classification accuracies 

achieved (across all classification scenarios, including all four MI tasks) for the different training 

set sizes. An increase in accuracy is seen for each increase in training set size. The Friedman test 

indicated significant differences in classification accuracy among the five different training set 

sizes (𝜒2=58.6; p<0.001). A post-hoc Nemenyi test revealed that training on five blocks produced 

significantly higher accuracies than training on one (p=0.001), two (p=0.001), or three (p=0.01) 

blocks, but there was no significant increase over using four training blocks (p=0.68). The 

significance of results of all pairwise comparisons, determined by post-hoc Nemenyi tests, are 

indicated in Figure 4.2. 
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Figure 4.2: Box plot showing classification accuracy for 

different training set sizes. Significant differences (at 𝛼 =
0.05) between pairs of training set sizes are represented by lines 

connecting them. The average classification accuracy across 

participants is indicated by a blue square. 

 

Figure 4.3 depicts the distribution over the 15 participants of the overall average classification 

accuracies achieved for the different a) epoching approaches, b) classification algorithms, and c) 

feature set sizes across all classification scenarios explored for each. Friedman tests indicated 

significant differences among the different epoching approaches (𝜒2=41.23; p<0.001) and 

classifiers (𝜒2=25.20; p<0.001); significance results for all pairwise comparisons, determined by 

post-hoc Nemenyi tests, are indicated in Figures 4.3a and 4.3b. A Wilcoxon test indicated a 

significant difference for the two feature set sizes as well, with the reduced 10-dimensional feature 

set producing better accuracies than the full 90-dimensional feature set (W=0; p<0.001).  
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Figure 4.3: Box plots showing classification accuracies for a) different epoching approaches, b) classification 

algorithms, and c) feature set sizes. Significant differences between pairs, as determined by post-hoc Nemenyi tests, are 

indicated in Figures 4.3a and 4.3b. The average classification accuracy across participants is represented by a blue 

square. 

 

The results from the analysis of each factor were used to select the best analysis pipeline with 

which to implement a real, online MI-BCI, considering a balance between classification accuracy 

and practicality in terms of the amount of time needed for classifier training, computational 

complexity, and prediction frequency.  The selected pipeline was: four training blocks, 4-second 

epochs with 75% overlap, 10 features, and an SVM classifier. Figure 4.4 shows the per-participant 

MI task vs. Rest classification accuracies for the four MI tasks corresponding to this pipeline, as 

well as the overall average accuracies (Hand: 78.4% ± 9.5, Feet: 74.0% ± 10.0, Tongue: 74.5% ± 

6.4, Singing: 74% ± 5.6). A Friedman test was conducted for this specific scenario, and no 

significant differences in decoding accuracy were found among the MI tasks (𝜒2=2.90; p=0.41).  
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Figure 4.4: MI task vs. Rest classification accuracies for the four MI tasks (Hand, Feet, Tongue, Singing) for 

each participant, and on average across participants. The classification was based on using four training blocks, 

4-second epochs with 75% overlap, 10 selected features, and an SVM classifier. Across participants, the 

Friedman test revealed no significant differences in MI task vs. Rest classification accuracies among the four 

MI tasks (p=0.41). 

 

Figure 4.5 shows the confusion matrices for the classification of each of the four MI tasks vs. 

Rest, using the selected analysis pipeline of four training blocks, 4-second epochs with 75% 

overlap, 10 selected features, and an SVM classifier. Each confusion matrix provides a detailed 

breakdown of the classifier’s performance, with diagonal elements indicating correct 

classifications and off-diagonal elements representing misclassifications. The classification 

and misclassification counts are summed across all 15 participants, providing an aggregated 

view of task performance. 
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Figure 4.5: Confusion matrices for the classification of each MI task vs. Rest for a) Hand, b) Feet, c) 

Tongue, d) Singing. The classification was based on the selected EEG pipeline of four training blocks, 4-

second epochs with 75% overlap, 10 selected features, and the SVM classifier. Diagonal elements 

represent correct classifications, while off-diagonal elements indicate misclassifications. These matrices 

summarize classification results across 15 participants, with classification and misclassification counts 

summed over all participants. 

 

To understand the distribution of misclassifications over time across the task and rest intervals, the 

number of misclassifications, summed over the 15 participants, were plotted for each second of 

the two test trials (see Figure 4.6). This plot is again based on the selected analysis pipeline of four 

training blocks, 4-second epochs with 75% overlap, 10 selected features, and the SVM classifier.  
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Figure 4.6: Total number of misclassifications per second across 15 participants for the four 

MI tasks: (a) Hand, (b) Feet, (c) Tongue, and (d) Singing. For each task, the predictions for the 

two 112-second test trials have been concatenated for a total of 224 seconds per plot. The 

analysis was performed using the selected analysis pipeline (four training blocks, 4-second 

epochs with 75% overlap, 10 selected features, and the SVM classifier). The red background 

represents active MI intervals, while yellow indicates Rest intervals. 

 

4.2 Comparison of MI Decoding Over Longer and Shorter Task 

Intervals 

Figure 4.7 shows the average MI task vs. Rest decoding accuracies across participants for each of 

the four MI tasks in the current dataset (with 8 to 20-second intervals) and the MIshort dataset (with 

4-second intervals). While the accuracies for the short intervals are higher for all four tasks, the 

Mann-Whitney U tests indicated that the difference is significant only for the singing motor 

imagery task (U = 44; p=0.01).  

 

 

Figure 4.7: Decoding accuracies for each MI task vs. Rest, averaged across 

participants, for the current dataset (8-20-second intervals) and the MIshort 

dataset (4-second intervals). 
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4.3 Subjective Data Analysis 

Figure 4.8 presents, for each MI task, the average difficulty ratings across participants for each of 

the seven blocks of the experiment, as well as the overall average across all blocks. The Pearson 

correlation analysis revealed no statistically significant correlations between block number and 

difficulty ratings for any of the tasks (p>0.12), indicating that participants’ perception of task 

difficulty did not change throughout the experimental session.  

 

The overall average participant ratings across all seven blocks for Hand, Feet, Tongue and Singing 

(shown in Figure 4.8) were 2.18 ± 1.05, 2.29 ± 0.90, 2.46 ± 0.85, and 2.51 ± 1.07, respectively. 

The Friedman test revealed no significant differences among the four tasks (𝜒2=3.76, p=0.29). 

 

 

Figure 4.8: Average participant ratings of task difficulty for the four MI tasks for the seven experimental blocks, 

as well as the overall average across the seven blocks. Pearson correlation analysis revealed no statistically 

significant correlation between block number and difficulty ratings for any of the tasks (p>0.12). The Friedman 

test showed no significant differences among the four tasks (p = 0.29). 
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Figure 4.9 summarizes the participants’ responses to the three task preference questions posed at 

the end of the experimental session. Notably, motor imagery of singing was rated most often as 

the favorite task (53.3% of participants) while tongue imagery was rated most often as the least 

favorite task (33.3% of participants). Also, 80% of participants preferred singing imagery over 

tongue imagery.  

 

Figure 4.9: Summary of participants' responses to task preference questions posed at the end of the experimental 

session.  

 

Figure 4.10 illustrates each participant's highest classification accuracy among the 4 MI tasks 

(top row) and their most preferred MI task (bottom row) based on subjective feedback. 

 

Figure 4.10: Participants' highest classification accuracy among the four MI tasks, and their favorite task. 
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Chapter 5 

 

Discussion 

 

This study explored the use of motor imagery tasks for continuous control BCI applications, 

focusing on the decoding accuracy of MI tasks vs. Rest over longer intervals than are typically 

investigated in the BCI literature, using a traditional machine learning pipeline. For different 

parameters (specifically, EEG window size/overlap, amount of training data, feature set size, and 

classifier type), different values were explored to identify the “best” configuration to balance 

decoding ability and practical considerations.  Based on the chosen configuration, four MI tasks—

Hand, Feet, Tongue, and Singing—were compared in terms of decoding accuracy and user 

preference. Decoding accuracy when tasks are performed over longer intervals vs. shorter intervals 

was compared using a previously collected dataset. 

 

5.1 Continuous MI Task Classification 

A key component of MI-BCI system design is the amount of training data required to achieve 

reliable classification. Unsurprisingly, in general across all classification scenarios investigated, 

increasing the amount of training data led to improved classification accuracy, with a marked 
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improvement between one (112 seconds of training data) and four (448 seconds of training data) 

blocks (see Figure 4.2). Beyond four blocks, the accuracy gains were minimal as compared to the 

additional training time that would be required in a real system. This suggests that, for this study, 

using four blocks strikes an optimal balance between performance and practical constraints such 

as participant fatigue and training time. However, it is important to note that in general, other 

factors—such as the specific application, participant characteristics, or system complexity—may 

influence the ideal amount of training data. These factors should be carefully considered in 

different scenarios.    

Figure 4.3 shows the effects on decoding accuracy of the different epoching approaches, feature 

set sizes, and classifiers explored. In terms of epoching, while in general the highest accuracies 

were achieved via a 4 second window with 0% overlap, there was no significant difference between 

this configuration and either a 4 second window with 75% overlap (p=0.28) or a 2 second window 

with 0% overlap (p=0.23). Ultimately, a 4 second window with 75% overlap was chosen as optimal 

for this dataset, as it provides a balance between accuracy and prediction frequency - predictions 

could be made every second as opposed to every 4 seconds or every 2 seconds in the other 

scenarios, respectively.  

In terms of the feature set sizes explored, using 10 optimal features resulted in higher accuracy 

compared to using the full 90-dimensional feature set. This improvement is likely due to the 

reduction in noise and decreased likelihood of overfitting, emphasizing the importance of selecting 

a well-optimized subset of features for BCI applications. In terms of classifiers, SVM significantly 

outperformed both LDA (p=0.001) and XGBoost (p=0.003), possibly due to its robustness with 

small datasets and ability to handle high-dimensional data. Based on these findings, an optimal 
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configuration comprising four training blocks, 4-second epochs with 75% overlap, 10 features, 

and an SVM classifier was selected and used for the remaining analysis. 

Figure 4.4 shows that, using the selected analysis pipeline, comparable classification accuracies 

were achieved on average for the four different MI tasks versus Rest. While Hand MI had the 

highest average accuracy at 78.4% ± 9.5%, this result was not significantly different (𝜒2=2.90, 

p=0.41) from that of the Feet, Tongue, and Singing tasks, which all yielded average accuracies of 

approximately 74-75%. The per participant results, however, show substantial inter-subject 

variability, in terms of accuracies for a given task. For instance, Participants 6 and 8 had the highest 

accuracies for the Hand and Feet tasks and the lowest for the Tongue and Singing tasks while both 

Participants 12 and 14 had the opposite results, achieving the highest accuracies for the Singing 

and Tongue tasks with the lowest for the Hand and Feet tasks. While the averages across 

participants suggest no statistical differences among the four tasks, these examples illustrate how 

factors  (e.g., participant-specific neural patterns, task difficulty/preference) can significantly 

influence performance, even when the group averages appear comparable. From the confusion 

matrices (Figure 4.5), more misclassifications occurred within task states than rest states, except 

for Tongue MI where errors were more frequent in the rest state. This suggests that the Tongue MI 

task may be less distinct from the rest state, potentially due to weaker neural activity, overlapping 

features, or inconsistencies in user performance during motor imagery. Interestingly, reported 

participant preferences aligned with these observations—Tongue MI was selected most often as 

participants’ least favorite task (33.3%) and least often as the most favorite task (6.7%) (Figure 

4.9). Despite its overall average classification accuracy being comparable to other tasks, these 

findings highlight the importance of considering both objective performance metrics and 

subjective user feedback in task evaluation. 
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Singing MI emerged as a promising task overall with an average decoding accuracy of 74%, and 

with 53.3% of participants identifying it as their favorite task. Participants preferred it 4:1 to 

Tongue MI. The Hand MI task, which is perhaps the most commonly used task in BCI research, 

achieved the highest average classification accuracy (78.4%), was the most preferred task for 26% 

of participants, and the least preferred for only 20%. Among all participants, only three individuals 

who achieved particularly high accuracy in a specific task identified that task as their favorite (see 

Figure 4.10), which underscores the need to balance technical performance with user satisfaction.  

The overall average participant difficulty ratings across all seven blocks for Hand, Feet, Tongue, 

and Singing tasks were 2.18 ± 1.05, 2.29 ± 0.90, 2.46 ± 0.85, and 2.51 ± 1.07, respectively, with 

Singing and Tongue tasks receiving the highest ratings (see Figure 4.8). The Feet and Tongue tasks 

had the lowest standard deviations, reflecting higher consistency in difficulty ratings across 

participants. Despite these differences in ratings and variability, the Friedman test revealed no 

significant differences in overall task difficulty ratings across tasks (p=0.29), indicating that on 

average participants did not perceive any task as significantly harder or easier than others. 

Additionally, Pearson correlation analysis showed no significant trends in difficulty ratings across 

experimental blocks (p>0.12), suggesting that perceptions of task difficulty remained stable 

throughout the experiment. 

 A closer examination of classification errors across the course of the MI trials provides additional 

insights. Figure 4.6 shows that errors were predominantly concentrated near transitions between 

task and rest states. This is unsurprising given the use of a 4-second window with a 75% overlap, 

where predictions during the first three seconds after a change of interval are based on data that 

still includes information from the previous condition. To address this issue, a majority voting 
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approach was implemented, where predictions for a 4-second window (with 75% overlap) were 

based on votes from the past two prediction points and the current point. However, this approach 

did not result in any improvement in classification performance. This suggests the need for robust 

algorithms such as adaptive filtering methods or dynamic windowing techniques to handle 

transitional phases in continuous control scenarios, as these boundary areas are particularly prone 

to misclassification. On the other hand, this effect could be amplified due to the experimental 

conditions in which participants were following task cues, and there would be a slight delay 

between the cue changing and the participant actually switching from task to rest, or vice versa. 

Because the classification accuracy was calculated using true labels based on the task cues rather 

than what the participant was actually doing at each second during this transition period, this could 

contribute to some points being counted as misclassified when they actually weren’t, but this issue 

would not exist in real, online BCI operation. Interestingly, the temporal distribution of errors did 

not show any notable imbalance across longer intervals, such as the 20-second durations, 

indicating that task-specific brain activity patterns remained stable over extended periods. This 

stability reinforces the feasibility of using MI tasks for sustained control in real-world BCI 

applications. 

 

5.2 Comparison of MI Decoding Over Longer and Shorter Task 

Intervals 

Figure 4.7 shows that overall, comparable decoding accuracies were achieved over longer trials 

(112 seconds) with alternating 8 to 20 seconds MI and rest intervals, as were achieved with short 

trials with discrete, 4-second intervals. Mann-Whitney U tests revealed no significant differences 

between the two conditions for Hand, Feet and Tongue MI, however, decoding of Singing MI vs. 
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Rest was significantly higher (U=44; p=0.01) for the MIshort dataset (84.8% ± 11.5) as compared 

to the current dataset (77.0% ± 6.5).  The fact that the results are so close between the two datasets 

is encouraging for the use of continuous control in BCIs. One might have expected the accuracies 

to be lower in the current dataset due to several factors. Firstly, longer intervals of MI performance 

can lead to fatigue, which may negatively impact participants' focus and the quality of their MI 

signals. Additionally, longer trials, in general, introduce greater opportunities for movement 

artifacts and eye blinks, which can interfere with signal quality. Furthermore, extended trial 

durations increase the likelihood of external distractions or lapses in concentration, which can 

further degrade performance. In addition, trials in the MIShort dataset contained a single interval of 

a single condition (MI or rest), meaning classification was not performed sequentially. This key 

difference eliminated the potential for transitional misclassifications, which are more prominent 

in our dataset due to the continuous analysis approach. Despite these additional challenges, the 

comparable accuracy levels observed in our dataset are particularly encouraging. They reinforce 

the robustness of the system and its ability to decode MI tasks versus rest effectively, even in 

continuous control-like scenarios.  

Note that the differences in results reported in Figure 4.7 as compared to Figure 4.4 are attributable 

to slight variations in the analysis pipelines used. The results in Figure 4.4 were obtained through 

training and testing on the first four and last two blocks of trials, respectively, using a 4-second 

window with 75% overlap. The results in Figure 4.7 were obtained through training and testing on 

the first four and last three blocks, respectively, using a 4-second window with 0% overlap. In both 

cases, an SVM classifier and an optimized 10-dimensional feature set were used. The results in 

Figure 4.4 were based on the “optimal” pipeline selected after preliminary analysis of the factors 
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of amount of training data, epoching approach, number of features, and classifier, while for the 

Figure 4.7 results the analysis was chosen to align with the MIshort dataset for a fair comparison. 

 

5.3 Study Limitations and Future Work 

While this study provides valuable insights into MI task vs Rest decoding accuracy and user 

experience over longer intervals of both conditions, several limitations must be acknowledged. 

EEG signals, which form the basis of classification, are inherently prone to artifacts such as muscle 

movements, eye blinks, and electrical interference. These factors can negatively affect 

classification accuracy, and the limited spatial resolution of EEG further constrains the precision 

of decoding brain activity. Exploring complementary modalities or advanced artifact removal 

techniques could improve the robustness of these systems. 

Although the results across the two datasets are encouraging, it is important to note that they were 

derived from different experimental protocols. While the key aspects of the protocols were 

consistent, differences such as the involvement of different experimenters and the inclusion of 

additional tasks in the MIShort dataset may have introduced subtle variations that limit direct 

comparability. 

This study focused solely on the binary classification of MI task versus Rest. While this approach 

is practical and effective for many applications, it’s not clear how the results would translate to 

binary scenarios involving two MI tasks (e.g., Hand MI vs. Foot MI), or to multi-class scenarios 

involving three or more conditions. Multi-class systems offer greater degrees of freedom and 
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enable more complex and versatile BCI applications. Future studies should explore these scenarios 

to extend our understanding of continuous mental state decoding. 

Another limitation is the offline nature of the study. Although online conditions were simulated 

by using algorithms entirely suitable for online implementation, participants did not receive real-

time feedback. Feedback mechanisms could significantly impact brain activity, either enhancing 

or impairing the ability to decode MI versus Rest. This effect remains unexplored and should be 

further investigated in a true online setting to better understand the interaction between feedback, 

brain activity, and classification performance. Given the real-time, continuous control goal of this 

study, an important next step would be testing the system in a real-world application, such as actual 

wheelchair control or interaction with other assistive devices, with the user in the loop. 

Furthermore, the controlled laboratory setting of this study minimized distractions such as 

environmental noise and the multitasking demands that are typically present in real-world BCI 

control scenarios. While this helped isolate and focus on MI tasks, it does not fully replicate the 

challenges faced in practical applications. Real-world conditions may introduce additional factors 

that affect brain activity, user concentration, and performance, emphasizing the need for future 

studies in more ecologically valid settings. 

Additionally, the study relied on single-session data collection, which limits insights into inter-

session variability and long-term task performance. Prolonged exposure to MI tasks may reveal 

changes in user preferences, learning effects, or adaptation, which were not captured here. 

Longitudinal studies would help address these gaps and provide a more comprehensive 

understanding of MI-BCI usability over time. 
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A further direction for future research is inter-subject classification. While this study focused on 

intra-subject decoding for personalized modeling, inter-subject testing—where models are trained 

on data from multiple users and evaluated on new, unseen subjects—could support the 

development of subject-independent MI-BCI systems 

Finally, intervals of 8–20 seconds were examined to simulate the sustained task durations most 

likely required for real-world applications. It is unclear how the results would translate to longer 

interval durations, and this should be explored in future research to better understand the durability 

of mental state generation and decoding for continuous BCI control. 
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Chapter 6 

 

Conclusion 

 

6.1 Primary Conclusion 

This study demonstrated that all MI tasks investigated —Hand, Feet, Tongue, and Singing—could 

be effectively distinguished from Rest over longer intervals (8–20 seconds) than are typically 

investigated in BCI research studies (about 4 seconds). Under the identified optimal configuration 

identified for this dataset —four training blocks, 4-second epochs with 75% overlap, 10 selected 

features, and an SVM classifier—all tasks achieved classification accuracies in the range of 74-

78%, which were comparable to those obtained in the MIShort dataset. Importantly, there were no 

statistically significant differences among the tasks in terms of classification accuracy or task 

difficulty ratings, indicating that all tasks are viable options for MI-BCI systems from both 

technical and usability perspectives, however there is significant variability in terms of user 

preference. Singing MI emerged as a particularly promising task, favored by a majority of 

participants for its intuitiveness and ease of use.  

This finding is particularly encouraging for continuous control applications, as it suggests that 

reliable mental state generation and decoding is possible over durations suitable for real-world 
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scenarios. Future research should focus on exploring multi-class classification scenarios, 

incorporating real-time feedback mechanisms, and testing these systems in ecologically valid 

environments to further enhance their usability and robustness. 
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