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ABSTRACT 

 
Optimizing CO₂ injection in offshore Enhanced Oil Recovery (EOR) operations aims to increase 

oil production while capturing CO₂, aligning with global carbon capture and storage (CCS) goals. 

CO₂ dissolves in oil, reducing its viscosity and making it more extractable, but offshore sites face 

unique challenges, such as limited CO₂ supply, high storage costs, and technical constraints. 

Various EOR methods can address these limitations: Carbonated Water Injection (CWI) dissolves 

CO₂ in water, reducing the total CO₂ required and enhancing oil recovery while maximizing carbon 

retention. Another approach, targeted CO₂ flooding in specific reservoir blocks, concentrates CO₂ 

where it's most effective, making efficient use of limited supplies. Water-Alternating-Gas (WAG) 

injection alternates CO₂ and water to manage gas mobility and improve the efficiency of oil 

displacement, allowing for strategic use of CO₂ without full-field application. This study analyzes 

the optimization of constrained volumes of varying CO2 concentrations and impurities considering 

different oil types and reservoir conditions. It examines how impurities impact CO₂ injection and 

retention, and how different oil types and reservoir characteristics respond to specific injection 

strategies. This approach enables offshore EOR to balance enhanced oil recovery with carbon 

storage objectives, optimizing both CO₂ usage efficiency and emission reductions to support 

sustainable energy goals. 

Current carbon capture technologies are imperfect, resulting in impurities within the CO₂ stream 

that affect the Minimum Miscibility Pressure (MMP) needed for effective oil recovery. This study 

investigates how these impurities influence the MMP in oil and gas mixtures using slimtube 

simulations across a range of CO₂ sources and capture technologies. While prior studies often focus 

on pure or low (<5 %) CO₂ concentrations, this research explores a broader range, examining CO₂ 

concentrations from 0 % to 100 % to fill an existing gap in the literature. The study reveals that 
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impurities depend on the CO₂ source: for example, CH₄ is common in CO₂ from natural gas 

streams, while O₂ and N₂ are prevalent in CO₂ from flue gas. The results indicate that CO₂ mixed 

with natural gas effectively lowers MMP, enhancing miscibility, whereas impurities in flue gas 

(like O₂ and N₂) raise the MMP more significantly, as N₂ requires particularly high pressures to 

reach miscibility compared to CO₂. This work deepens understanding of the impacts of different 

CO₂ sources and impurity levels on MMP, contributing valuable insights for optimizing CO₂-based 

enhanced oil recovery processes.  

Understanding the Minimum Miscibility Pressure (MMP) between oil and gas mixtures is essential 

for accurately predicting reservoir performance, particularly in enhanced oil recovery (EOR) 

processes. However, no single Equation of State (EOS) consistently predicts fluid properties across 

all conditions. Machine Learning (ML) has become a valuable tool for estimating MMP, yet prior 

studies have often faced limitations due to small data sets and restricted ranges of CO₂ mole 

percentages. This study develops a Machine Learning model using Deep Learning and k-fold Cross 

Validation techniques, improving the size, accuracy, and range of the data, particularly for CO₂ 

concentrations. Additionally, a sensitivity analysis is performed to assess the influence of various 

input parameters, such as reservoir characteristics and oil and gas properties, on MMP. The study 

finds that key factors impacting MMP include reservoir temperature and the concentrations of CO₂ 

and methane (C₁) in the gas phase. Higher temperatures, heavier oils, a greater proportion of 

volatile and intermediate components in the oil, and higher concentrations of C₁ and N₂ in the gas 

phase all lead to higher MMP. In contrast, the presence of CO₂ and H₂S, especially CO₂, 

significantly lowers the MMP, aiding oil recovery. The study emphasizes how Deep Learning 

approaches can enhance the accuracy and range of MMP predictions, improving the optimization 

of EOR strategies by providing better insights into fluid dynamics. 



 iii 

Previous studies in Enhanced Oil Recovery (EOR) and Carbon Capture, Utilization, and Storage 

(CCUS) have largely operated under the assumption of unlimited CO₂ supply, failing to adequately 

address the constraints associated with CO₂ availability, especially in offshore reservoirs. This 

oversight is significant, as the capacity for CO₂ storage and the ability to conduct effective EOR 

can be severely limited by the volume of CO₂ that can be feasibly captured and injected. Moreover, 

most EOR research tends to emphasize incremental oil recovery metrics while neglecting the 

financial impacts of carbon emissions, which can significantly influence project feasibility and 

sustainability. This study investigates the joint optimization of oil recovery and carbon storage by 

considering both the economic value of produced oil and the benefits of CO₂ tax credits, assigning 

equal weight to each factor with a 50:50 ratio. It examines various oil types (light, medium, and 

heavy) and reservoir conditions, including CO₂-EOR methods such as Water-Alternating-Gas 

(WAG), Carbonated Water Injection (CWI), and enriched-WAG, under different CO₂ constraints, 

impurities, and reservoir characteristics like stratification, crossflow, temperature, pressure, and 

permeability. The simulations use GMG, and optimization is performed using Multi-Objective 

Particle Swarm Optimization (MOPSO). The results show that CWI is the most effective method 

under CO₂ constraints for stratified reservoirs, whether crossflow is present or not. However, CO₂ 

storage is significantly lower in the CWI case. Among the factors influencing optimization, 

reservoir pressure has the most significant effect on the overall objectives, while permeability is 

the key factor in determining the oil recovery factor across all three CO₂-EOR methods.  

EOR studies typically focus on incremental oil recovery (without considering carbon pricing), 

whereas Carbon Capture, Utilisation and Storage (CCUS) prioritizes maximizing CO2 storage 

(assuming an infinite CO2 supply). The joint optimization of oil recovery factor and CO2 storage 

varies based on phase behavior related to different oil types and conditions (EOR methods, the 

available amount and characteristics of injected gas, and reservoir properties), but also on economic 
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factors such as the price of produced oil and the value of CO2 tax credits. By incorporating all these 

factors into simulations and applying modern machine learning techniques, we can better optimize 

the balance between enhancing oil recovery and reducing carbon intensity during the energy 

transition era. Machine learning models can simulate and predict outcomes for various reservoir 

conditions and economic scenarios, enabling more informed decisions on the selection of the most 

appropriate EOR technique, the optimal amount of CO2 to inject and also the precise conditions 

under which oil recovery and CO2 storage can be balanced most effectively for a specific reservoir. 
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Chapter 1 : INTRODUCTION 

1. Background  

Climate change, driven by the increased concentration of greenhouse gases (GHGs) in the 

atmosphere, poses a significant environmental threat to humanity. In Canada, emissions rose by 

16.5 % (approximately 100 Mt CO₂ equivalent) between 1990 and 2022. This growth is primarily 

attributed to increased emissions from oil and gas extraction activities and the transportation sector, 

both of which have expanded over the past decades (Greenhouse Gas Emissions, 2024). In 2022, 

emissions from the oil and gas sector in Canada, which includes conventional oil as well as other 

categories like downstream oil, accounted for 217 Mt CO₂ equivalent, representing 31 % of 

Canada's total emissions (Greenhouse Gas Emissions, 2024). In Newfoundland and Labrador, 

emissions per capita stood at 16.2 tonnes CO₂ equivalent, which is 11 % below the Canadian 

average of 18.2 tonnes per capita (Provincial and Territorial Energy Profiles – Newfoundland and 

Labrador, 2024). Transportation, industry and manufacturing,  and the oil and gas sector are the 

largest emitting sectors in the province, with 34 % of emissions, 17 % of emissions, and 15 % of 

emission, respectively . In 2022, the total GHG emissions from the oil and gas sector were 1.29 

MT CO2 equivalent, of which offshore oil production accounted for 1.26 MT CO2 equivalent and 

petroleum refining accounted for 0.03 MT CO2 equivalent (Provincial and Territorial Energy 

Profiles – Newfoundland and Labrador 2024).  

The Canadian federal government recently announced an increase of 467 % of the carbon tax from 

its current $30 per tonne of GHG emissions to $170 per tonne by 2030 (Harvie 2020). To reduce 

emissions and fight against climate change, in 2016, Canada released the first-ever national climate 

plan with a goal of a 30 % reduction below 2005 levels in 2030 (Progress towards Canada’s 

greenhouse gas emissions reduction target 2021). Recently, the Government of Canada indicated 



 2 

a goal to reduce emissions to 40 to 45 % below 2005 levels by 2030, which constitutes a further 

reduction from that agreed to under the Paris Agreement in 2015 (Tasker 2021). In 2019, 

Newfoundland and Labrador introduced a new climate action plan targeting a 30% reduction in 

greenhouse gas (GHG) emissions below 2005 levels by 2030. The province also committed to the 

regional goal of the Conference of New England Governors and Eastern Canadian Provinces, 

which aims for a 35–45 % reduction below 1990 levels by 2030 (The Way Forward on Climate 

Change in Newfoundland and Labrador, 2022). Achieving these targets requires innovative 

solutions to make oil and gas platforms either CO₂-neutral or CO₂-negative, highlighting the 

importance of integrating carbon capture, utilization, and storage (CCUS) technologies and 

adopting renewable energy strategies.  

CO₂ is a widely recognized and extensively used solvent in Enhanced Oil Recovery (EOR) 

operations. By injecting CO₂ into reservoirs, the process reduces the interfacial tension between oil 

and reservoir rock while lowering oil viscosity, making the oil more mobile and easier to extract. 

In addition to enhancing oil recovery, CO₂-EOR also facilitates CO₂ storage, contributing to carbon 

sequestration efforts. This technique has been applied onshore for over four decades, particularly 

in North America, where it has evolved into a mature and reliable technology (Enick, 2015). Its 

long-term use has provided valuable insights into the optimization of injection strategies and 

reservoir management, paving the way for its adaptation in offshore applications despite the added 

challenges. One of the most successful post combustion CO2-EOR projects, which is also the 

largest Canadian CO2-EOR project, is located at Weyburn, Saskatchewan, which began in 2000 

and was the first project to inject anthropogenic CO2 for EOR (Carbon Capture & Sequestration 

Technologies @ MIT, Weyburn-Midale Carbon Dioxide Project 2019). The operation currently 

injects 1.8 M ton of CO2 each year (A Responsible Energy Story: Weyburn Unit 2022).  
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However, the story is different offshore where facilities are more costly and often weight 

constrained, CO2 transportation would be over longer distances if a nearby source exists, regulatory 

issues, and uncertainties around the revenues as the oil price and the cost of CO2 are involved. 

Considering the need to fully develop all aspects of CCUS – carbon capture, utilization, and 

storage, CO2-EOR can first be utilized to recover incremental oil then the same, proven reservoir 

can provide already de-risked geological storage. CO2 capture and storage projects are not new. 

Offshore, Norway has been storing CO2 stripped from high concentration natural gas for 20+ years 

at the Snøhvit and Sleipner fields (Norway’s Sleipner and Snøhvit CCS: Industry models or 

cautionary tales? 2023). The Northern Lights project started in 2020 and will capture CO2 from an 

onshore cement and waste facility, transport it via ship and pipeline to inject and store the CO2 in 

the Aurora field, offshore Norway (Historic investment decision for transport and storage of CO2  

2020). Some pilots for offshore CO2-EOR have been conducted such as Quarantine Bay (Hsie 

1988), Timbalier Bay (Moore 1985), Bay St. Elaine (Nute 1983), Weeks Island (Johnston 1988), 

and Paradis (Bears 1984). In these projects, the source of CO2 used was not specified except for 

Paradis project where the CO2 was captured from Monsanto Co. ammonia plants near Luling. 

These pilot-scale projects showed technical promise, however, the full-scale implementation failed 

offshore because of high project costs (Godec 2021).  

The Lula project, located in the Santos Basin Pre-Salt Cluster (SBPSC) off the coast of southeast 

Brazil, is notable for being the world’s first offshore CO₂-EOR (Enhanced Oil Recovery) project. 

Initiated in 2011 with the Lula-pilot and followed by the Lula-NE pilot in 2013 (Eide 1945), this 

project represents a significant step in the integration of CO₂ sequestration with oil recovery. The 

CO₂ used in the Lula project is sourced from two abundant resources: seawater and produced or 

imported gas, providing a sustainable supply of CO₂ for the enhanced recovery processes. Since its 

initiation, the project has successfully increased the oil recovery factor while also contributing to a 
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12% reduction in greenhouse gas (GHG) emissions, which highlights the dual benefits of CO₂-

EOR in both improving oil production and mitigating environmental impact (Petrobras Santos 

Basin, 2023). On the other hand, similar CO₂-EOR initiatives have faced more challenges in other 

regions, such as Norway. Projects at the Gullfaks, Ekofisk, Draugen, and Heidrun fields have 

explored CO₂-EOR, but have struggled economically due to unfavorable conditions related to CO₂ 

pricing, carbon credits, and fluctuating oil prices. These economic challenges underscore the 

importance of favorable market conditions and supportive policy frameworks for the financial 

viability of CO₂-EOR projects (Augustsson, 2004; Hustard, 2004; CO2 for EOR off Norway under 

study, 2007). While the Lula project demonstrates the potential for CO₂-EOR in offshore 

reservoirs, the experience from Norway’s projects highlights the importance of balancing 

technological potential with economic factors to ensure the long-term success of CO₂-EOR and 

carbon capture utilization and storage (CCUS) initiatives.  

There is stranded, uneconomic, sweet natural gas in offshore Newfoundland, Canada. In 2023, 

offshore crude oil facilities in Newfoundland produced around 410 million cubic feet per day 

(MMcf/d) of natural gas (Provincial and Territorial Energy Profiles – Newfoundland and Labrador 

2024). The Canada-Newfoundland and Labrador Offshore Petroleum Board (C-NLOPB) estimates 

Newfoundland and Labrador's natural gas resources at approximately 10.7 trillion cubic feet 

(Provincial and Territorial Energy Profiles – Newfoundland and Labrador 2024). Currently, there 

are no pipelines or infrastructure to transport or commercialize the substantial natural gas resources 

in Newfoundland and Labrador. Instead, the produced natural gas is either used to power offshore 

facilities, reinjected into reservoirs to maintain pressure, or flared, contributing to emissions 

(Provincial and Territorial Energy Profiles – Newfoundland and Labrador, 2024). Offshore power 

generation primarily depends on diesel or natural gas combustion turbines, which produce post-

combustion CO₂. The Net Zero project explored the feasibility of implementing Carbon Capture, 
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Utilization, and Storage (CCUS) as an integrated solution to mitigate emissions from four active 

offshore fields and one proposed field. The project proposes capturing CO₂ emissions from 

offshore gas and diesel generators, as well as from flaring activities, to support decarbonization 

efforts in line with climate goals (A Net Zero Project White Paper, 2023). 

The Hibernia EOR Research Group is exploring the integration of post-combustion CO₂ capture 

and injection for Enhanced Oil Recovery (EOR) applications. A critical challenge in this effort is 

the constrained CO₂ supply available for offshore Newfoundland reservoirs. Using the Hibernia 

field as a case study, calculations based on production data (C-NLOPB) determined the maximum 

CO₂ capture capacity using membrane technology with a 90 % capture efficiency. An example 

calculation is detailed in ANNEX A, and Figure 1-1 illustrates the annual gas injection and CO₂ 

capture volumes. The findings reveal that while the available CO₂ is insufficient for large-scale 

CO₂ flooding, it can support other EOR methods such as carbonated water injection (CWI), 

localized block CO₂ flooding, water-alternating gas (WAG), or CO₂-enriched natural gas WAG. 

This highlights the importance of considering CO₂ supply limitations when designing EOR 

strategies for offshore reservoirs, where full-field applications may not be viable due to resource 

constraints. This study analyzes the optimization of constrained volumes of varying CO2 

concentrations and impurities considering different oil types and reservoir conditions. It examines 

how impurities impact CO₂ injection and retention, and how different oil types and reservoir 

characteristics respond to specific injection strategies. This approach enables offshore EOR to 

balance enhanced oil recovery with carbon storage objectives, optimizing both CO₂ usage 

efficiency and emission reductions to support sustainable energy goals. 
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FIGURE 1-1: Gas injected amount vs post-combustion CO2 produced annually for Hibernia Field (C-

NLOPB) 

2. Objectives, Motivation, and Contributions 

The overall objective of this study is to develop and optimize enhanced oil recovery (EOR) 

strategies for offshore reservoirs, specifically the Hibernia field, that maximize the use of limited 

post-combustion CO₂ supplies. Due to insufficient CO₂ volumes for conventional CO₂ flooding, 

the study aims to evaluate alternative injection techniques—including carbonated water injection 

(CWI), individual block CO₂ flooding, water-alternating gas (WAG), and CO₂-enriched natural gas 

WAG—that can effectively increase oil recovery within these constraints. Additionally, to align 

with environmental goals of zero atmospheric CO₂ venting, this research will design a closed-loop 

system that purifies and reinjects the CO₂-rich gas stream, ensuring efficient CO₂ utilization and 

storage. By addressing CO₂ limitations and refining offshore EOR methods, this research seeks to 

establish sustainable, economically viable solutions for offshore carbon management and oil 

recovery. The key aspects of objectives and contribution are outlined as follows: 
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2.1. Objective one – Evaluate the influence of CO2-natural gas mixtures and 

CO2 stream impurities, based on source and capture techniques, on minimum 

miscibility pressure (MMP) 

Research gap: The existing literature has explored the influence of various impurities on CO₂ 

minimum miscibility pressure (MMP), with findings that different impurities, such as CH₄, N₂, 

C₂H₆, and H₂S, impact MMP in unique ways. However, these studies typically examine individual 

impurities in isolation without connecting their presence to specific CO₂ capture methods, which 

significantly influence impurity profiles. Additionally, most studies focus on pure or low (<5%) 

CO₂ concentrations, leaving a gap in understanding the MMP behavior across a full range of CO₂ 

concentrations (0-100%). 

Contribution/novelty: This study investigates the influence of these impurities on the MMP of oil 

and gas mixtures using slimtube simulation, based on various CO2 sources and capture 

technologies. This work offers a review of various CO2 capture technologies, the resulting 

impurities and their respective concentrations, and the impact on MMP across a wide range of CO2 

concentrations (from 0 % to 100 %), addressing a gap in the existing literature. 

Peer reviewed conference paper (1) – Chapter 3: Pham, Q.C and James, L.A. 2021. Considering 

the CO2 Source and Capture Technique to Reduce Minimum Miscibility Pressure (MMP) for 

Enriched Water Alternating Gas (WAG) Injection. Presented at the 40th International Conference 

on Ocean, Offshore and Arctic Engineering. Virtual, June 21-30. 

https://doi.org/10.1115/OMAE2021-62643 

2.2. Objective two - Develop a Machine Learning model to accurately 

predict MMP using Deep Learning 

Research gap: The literature review identifies critical gaps in the understanding and measurement 

of minimum miscibility pressure (MMP) for gas injection in reservoirs. While several experimental 

https://doi.org/10.1115/OMAE2021-62643
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methods exist for determining MMP, such as falling drop, rising bubble, Vanishing Interfacial 

Tension (VIT), and slimtube tests, each has its drawbacks. For instance, while slimtube tests are 

the most reliable, they are also labor-intensive and time-consuming. Current mathematical 

correlations and simulation methods are primarily based on limited experimental data, which often 

focus on pure or slightly contaminated CO₂ and N₂ streams, making them less effective for a variety 

of gas compositions. Machine Learning (ML) has gained popularity for estimating MMP, showing 

efficiency in this regard. Nevertheless, previous studies have faced challenges due to limited data 

points and constrained CO2 mole percentages that do not drop below 40 %, which limits the 

applicability of machine learning models in predicting MMP under varying reservoir conditions.  

Contribution/novelty: In this study, a robust Machine Learning model was developed using 

advanced Deep Learning techniques and k-fold Cross Validation to accurately predict the minimum 

miscibility pressure (MMP) for oil and gas mixtures. This innovative model not only expands the 

dataset size but also enhances prediction accuracy and significantly broadens the range of 

applicable CO₂ concentrations. Additionally, a comprehensive sensitivity analysis was conducted 

to rigorously evaluate the influence of various input parameters, including reservoir characteristics 

and the specific properties of oil and gas, on MMP, providing deeper insights into the factors 

affecting oil recovery efficiency. 

Peer reviewed conference paper (2) – Chapter 4: Pham, Q.C., Trinh, Q.T., and James, L.A. 2021 

Data Driven Prediction of the MMP between Mixtures of Oil and Gas using Deep Learning. 

Presented at the 40th International Conference on Ocean, Offshore and Arctic Engineering. Virtual, 

June 21-30. https://doi.org/10.1115/OMAE2021-63018 

https://doi.org/10.1115/OMAE2021-63018
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2.3. Objective three - Optimize CCS and CO2 - EOR for offshore reservoirs 

under limited CO₂ supply, considering diverse reservoir and oil characteristics. 

Research gap: Previous studies in Enhanced Oil Recovery (EOR) and Carbon Capture, Utilization, 

and Storage (CCUS) have largely operated under the assumption of unlimited CO₂ supply, failing 

to adequately address the constraints associated with CO₂ availability, especially in offshore 

reservoirs. This oversight is significant, as the capacity for CO₂ storage and the ability to conduct 

effective EOR can be severely limited by the volume of CO₂ that can be feasibly captured and 

injected. Moreover, most EOR research tends to emphasize incremental oil recovery metrics while 

neglecting the financial impacts of carbon emissions, which can significantly influence project 

feasibility and sustainability. 

Contribution/novelty: The objective of this study is to investigate the joint optimization of oil 

recovery and carbon storage by incorporating both the price of produced oil and the value of CO₂ 

tax credits, utilizing a 50:50 ratio to emphasize their equal importance. The research examines a 

variety of oil types—light, medium, and heavy—under diverse conditions, including CO₂-EOR 

methods such as Water-Alternating Gas (WAG), Carbonated Water Injection (CWI), and enriched 

WAG. Additionally, the study addresses constraints related to CO₂ availability, the impact of 

impurities, and reservoir characteristics such as stratification, crossflow, temperature, pressure, and 

permeability. Simulations are conducted using the CMG framework, with optimization achieved 

through Multi-Objective Particle Swarm Optimization (MOPSO) techniques. This comprehensive 

approach aims to enhance both oil recovery and CO₂ storage efficiencies in offshore reservoirs, 

providing valuable insights for sustainable energy practices. 

Peer reviewed conference paper (3) – Chapter 5: Pham, Q.C., Esene, C.E. and James, L.A. 2023. 

Investigating CO2-EOR Types with Constrained CO2 Volumes and Impurities for a High-Quality 

Sandstone, Stratified Offshore Newfoundland Reservoirs. Presented at the SPE Canadian Energy 
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Technology Conference and Exhibition. Calgary, Alberta, Canada, March 15 - 16. 

https://doi.org/10.2118/212811-MS  

Presentation (4) – Chapter 6: Pham, Q.C and James, L.A. Dirty Carbon – Impact of CO2 

Volume and Impurities on Carbon Utilization and Carbon Neutral Oil Production. 2024. 

Presented at Latin America Carbon Capture, Utilization, and storage. Rio de Janeiro, Brazil, 22-

23 May. 

Draft paper – Chapter 6: The draft paper is intended for journal submission 

The overall workflow is shown in Figure 1-2, which illustrates the required steps to achieve each 

objective.

https://doi.org/10.2118/212811-MS
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FIGURE 1-2: Overall and detailed objectives for the thesis 
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3. Thesis Structure 

Chapter 2 reviews CO₂ capture technologies and their impurities relevant to Enhanced Oil 

Recovery (EOR), examining their impact on Minimum Miscibility Pressure (MMP), a key factor 

in CO₂ injection efficiency. It also covers methods for measuring MMP, including experiments, 

models, and simulations. The chapter explores the joint optimization of EOR and Carbon Capture 

and Storage (CCS), highlighting how integrating these processes can enhance both oil recovery 

and CO₂ sequestration, while identifying gaps in current research.  

Chapter 3 examines the influence of impurities in the CO₂ stream on the Minimum Miscibility 

Pressure (MMP) of oil and gas mixtures, focusing on different CO₂ sources and capture 

technologies. It investigates how impurities like methane, nitrogen, and oxygen, which vary by 

CO₂ source (e.g., natural gas or flue gas), impact MMP and CO₂-EOR efficiency. The chapter 

highlights the role of CO₂ capture technologies in shaping the impurity content and how this affects 

miscibility pressure, offering insights to optimize CO₂ injection strategies for enhanced oil 

recovery. 

Chapter 4 presents a model for predicting Minimum Miscibility Pressure (MMP) between oil and 

gas mixtures using a Deep Learning approach, specifically employing multiple fully connected 

networks. The model is optimized using early stopping and k-fold cross-validation techniques to 

improve accuracy and prevent overfitting. This methodology enhances the predictive capability for 

MMP, contributing to more effective strategies for CO₂ injection in Enhanced Oil Recovery (EOR). 

Chapter 5 presents a study on CO₂ Enhanced Oil Recovery (EOR) methods applied to a high-

quality sandstone, stratified offshore reservoir in Newfoundland. The study focuses on the impact 

of constrained CO₂ volumes and impurities on the effectiveness of various CO₂-EOR techniques. 

By considering factors like reservoir stratification, CO₂ availability, and impurity levels, the study 
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evaluates how these variables influence oil recovery efficiency in offshore Newfoundland 

reservoirs. The results aim to optimize CO₂ injection strategies, ensuring effective oil recovery 

while adhering to CO₂ sequestration constraints. 

Chapter 6 focuses on the optimization of coupling Enhanced Oil Recovery (EOR) and Carbon 

Capture and Storage (CCS) for offshore reservoirs, including stratified reservoirs with and without 

crossflow. The study considers CO₂ constraints, the impact of impurities in the CO₂ stream, and 

the economic factors such as oil prices and CO₂ tax credits. By integrating these factors, the chapter 

aims to identify the most effective strategies for optimizing both oil recovery and CO₂ 

sequestration. The analysis incorporates the complexities of varying reservoir conditions and 

economic incentives to maximize both environmental and financial outcomes. 

Chapter 7 summarizes the key findings, conclusions, and recommendations of the thesis, focusing 

on optimizing CO₂-EOR and CCS integration. It highlights the impact of CO₂ constraints, 

impurities, and economic factors, offering suggestions for future research and practical applications 

to enhance oil recovery and carbon sequestration in offshore reservoirs. 
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Chapter 2 : LITERATURE REVIEW 

1. CO2 Capture Technologies and Impurities Related to Enhanced Oil 

Recovery (EOR) Purposes:  

(A part of this section has been published in peer reviewed conference paper:  Pham, Q.C and 

James, L.A. 2021. Considering the CO2 Source and Capture Technique to Reduce Minimum 

Miscibility Pressure (MMP) for Enriched Water Alternating Gas (WAG) Injection. Presented at 

the 40th International Conference on Ocean, Offshore and Arctic Engineering. Virtual, June 21-

30. https://doi.org/10.1115/OMAE2021-62643) 

The CO₂ concentration in gas is highly dependent on the source of the CO₂. For example, post-

combustion CO₂ streams, such as those captured from flue gas after the combustion of fossil fuels, 

show varying concentrations of CO₂ based on the type of fuel burned. For flue gas from gas 

turbines, CO₂ concentrations typically range between 4% and 5%, while flue gas from coal 

combustion can have CO₂ content ranging from 8% to 15% (CO2 Capture Technologies, Post-

Combustion Capture (PCC), 2012). In contrast, natural gas, particularly from offshore sources like 

Norway, is predominantly composed of methane (CH₄), with smaller amounts of water (H₂O) and 

other constituents. The CO₂ concentration in the gas phase can vary significantly, ranging from 0% 

to 44% depending on the field and processing conditions (Marit, 2014). A typical composition for 

natural gas from a sweet-gas field (which is free of hydrogen sulfide or CO₂) is assumed to be 10% 

CO₂, 83.6% CH₄, and 6.4% H₂O (Marit, 2014). Table 2-1, which is referenced but not provided 

here, likely shows the specific compositions of flue gas from both coal and gas-fired power plants 

as well as a representative natural gas composition from a generic field, highlighting the differences 

in CO₂ content and the implications of these variations for CO₂-EOR projects. These differences 

https://doi.org/10.1115/OMAE2021-62643
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in CO₂ concentration are crucial when considering CO₂-EOR strategies, as they can influence the 

efficiency of CO₂ injection, miscibility, and the overall effectiveness of enhanced oil recovery and 

CO₂ storage processes. 

TABLE 2-1: Typical compositions of flue gases from coal-and gas- fired power plants (CO2 Capture 

Technologies, Post-Combustion Capture (PCC) 2012, Marit 2014) 

Gas constituent Flue Gas 

from coal 

Flue Gas from 

gas turbine 

Natural Gas from 

a generic field 

N2 70-75 % 73-76 % 0 

CO2 10-15 % 4-5 % 10 % 

H2O vapor 8-15 % 8-10 % 0 

O2 3-4 % 1-15 % 6.3 % 

Trace Gases (SOx, NOx, others) <1 % <1 % 0 

 CH4   83.6 % 

 

Some studies provide recommendations on limits to CO2 impurities for CO2 utilization and storage 

purposes. The removal of water, oxygen and sulfur oxides is required for pipeline transport systems 

to prevent corrosion and other defects in pipelines (Abbas 2013). It is recommended that the total 

concentration of air-derived, non-condensable species (N2, O2 and Ar) do not exceed 4 % as they 

impact compression and transport costs (Wood, 2012, Visser 2008). In enhanced oil recovery 

(EOR) applications, it is recommended that O2 content should not exceed 100 ppm, due to the 

promotion of microbial growth, which can cause unknown effects on oil production. Furthermore, 

exceeding this oxygen limit may cause a reaction with hydrocarbons in the oil field, which can lead 

to overheating at the injection point or oxidation in reservoirs with high oil viscosity (Abbas 2013, 

Pipitone 2009). Water concentration is limited under 50 ppmv to prevent corrosion Wood (2012) 

and sulfur species (e.g. H2S, Cos SO2, SO3) should be maintained at a certain level to avoid 

corrosion risk in the presence of water. Based on the IDLH (Immediately Dangerous to Life or 

Health) limit defined by the US National Institute for Occupational Safety and Health, the target 

for SO2 is 100 ppmv Visser (2008) and the same limit is posted for NOx as NOx species can form 



 16 

nitric acid, which induces corrosion (Sim 2013). Figure 2-1 shows a schematic diagram of CO2 

capture system. 

 

FIGURE 2-1: Schematic diagram of CO2 capture system 

The main technologies for CO2 capture are absorption, adsorption, and membrane separation. 

Besides, other novel technologies have been investigated such as supersonic, hydrate-based 

separation, cryogenic distillation, etc. These technologies each result in different types and 

concentrations of impurities, which may include H2S, NOx, CH4, N2, and SO2 (Visser 2008). 

Absorption, specifically chemical absorption, is widely used in industry because of its mature 

development, its ability to achieve a CO2 purity of 99 % and high selectivity between CO2/N2 (as 

high as 100) by using amine-based solvents (Wand 2017). Waste heat can be recovered; however, 

the overall process is energy intensive. SOx and NOx need to be removed by a caustic scrubber 

before entering the absorber as they can react with the amine to form stable, non-regenerable salts, 

resulting in a loss of amine (Rashid 2014, Adams 2007). Since the amount of other impurities is 

small or negligible, this work assumes that the primary impurities from the absorption technique 

are N₂ for flue gas sources and CH₄ for natural gas sources, both at a concentration of 1%.  

Adsorption involves the retention of a fluid on a solid surface, called sorbent. This technology can 

provide a CO2 purity of 99 %, though the selectivity for CO2 is relatively low compared to that of 

absorption (CO2/N2: 80) (Wang 2017). The energy consumption can be reduced through waste heat 

recovery. To avoid the complexity of the CO2 separation process, a pre-treatment stage is applied 
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to eliminate some impurities, such as SOx, NOx, H2O (Songolzadeh 2014). N2 with 1 % 

concentration is assumed to be the primary impurity from the flue gas stream and CH4 with 1% 

concentration for natural gas source.  

A third post-combustion CO2 capture technology is membrane separation, which separates mainly 

between CO2 and N2/O2. The degree of separation and CO2 purity are determined by the 

permeability and selectivity of a membrane material (Robeson 1991, Low 2013). This process can 

be used for higher flow rates due to its high area to volume ratio. Another advantage of this 

technology is that the maintenance requirements are reportedly low, which implies a longer 

expected lifetime of the system. Membrane technology is less harmful to the environment than the 

two above technologies. A purity of 95% and a capture degree of 90 % can be achieved by using a 

two-stage membrane separation system (Merkel 2010, Zhao 2010), which is widely used. A study 

was completed to optimize a two-stage membrane system based on the purity and flow rate in the 

permeate stream for flue gas from offshore Newfoundland (Barrett 2019). It concluded that the 

optimum CO2 purity was 90 % with 10 % impurities (2 % of O2 and 8 % of N2) if considering a 

post combustion flue gas. If considering a natural gas source, 10 % CH4 and 90 % CO2 can be 

assumed.  

Supersonic separation has been used recently to remove water vapor from natural gas. The 

condensable gas components are condensed to the liquid phase. The condensed liquids are then 

removed from the gas-liquid mixture due to the high centrifugal force generated through the 

cyclone (Yang 2017). The main advantage of this technique is that it is friendly with environment 

since no chemical is required for this process (Yang 2017). Vladimir (2017) stated in their report 

that the CO2 capture efficiency of this technique, which depends on temperature of the mixture of 

the air and injected liquid CO2, varied in the wide range from 11.3 % and 97.8 %. 



 18 

Table 2-2 summarizes the CO2 purities achieved and the impurity composition for each separation 

technology studied in this thesis for EOR purpose. 

TABLE 2-2: CO2 possible purity by separation technology and CO2 source for EOR purpose 

CO2 Separation Process CO2 Impurities 

Flue Gas Natural Gas 

Adsorption 99 % CO2, 1 % N2 99 % CO2, 1 % CH4 

Absorption 99 % CO2, 1 % N2 99 % CO2, 1 % CH4 

Membrane 90 % CO2, 2 % O2, 8 % N2 90 % CO2, 10 % CH4 

 

2. Influence of Impurities and Gas Composition on Minimum 

Miscibility Pressure (MMP) 

(A part of this section has been published in peer reviewed conference paper:  Pham, Q.C and 

James, L.A. 2021. Considering the CO2 Source and Capture Technique to Reduce Minimum 

Miscibility Pressure (MMP) for Enriched Water Alternating Gas (WAG) Injection. Presented at 

the 40th International Conference on Ocean, Offshore and Arctic Engineering. Virtual, June 21-

30. https://doi.org/10.1115/OMAE2021-62643) 

MMP is defined as the pressure at which oil and gas achieve miscibility. Many researchers have 

investigated the influence of impurities on the MMP of CO2 in oil, some impurities increase MMP, 

and others decrease MMP. It is reported that CH4 increases the MMP and lowers the oil recovery 

efficiency when present in the CO2 stream source (Emera 2005, Yuan 2005, Alston 1985, Yellig 

1980, Johnannes 2009). C2H6 and intermediate hydrocarbons such as propane C3H8, butane C4H10, 

and pentane C5H12 mix better with reservoir fluids than CO2 and therefore reduce MMP (Alston 

1985, James 1981). Zhang (2004) conducted laboratory studies on the effect of CO2 impurities on 

MMP in two Saskatchewan light oils. It was observed that the MMP of pure CO2 (16.5 MPa) 

decreased 18 % (13.6 MPa) by adding 40 mol% C2H6 to the CO2 stream, nearly 25 % by adding 

approximately 16 mol% C3H8, and by approximately 45 % by increasing the amount of C3H8 to 37 

https://doi.org/10.1115/OMAE2021-62643
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mol%. N2 is a common impurity in a post combustion CO2 stream, and it increases the MMP of 

CO2 (Emera 2005, Alston 1985, Zhang 2004). However, N2 was found to lower CO2 MMP when 

temperature increased for volatile oils at high temperatures (Christian 1981, Firoozabadi 1986). 

H2S is another impurity that can be found in CO2 streams that is said to have little effect on CO2 

MMP, as its thermodynamic properties are close to those of CO2 (Emera 2005). Some researchers, 

however, showed that H2S can reduce CO2 MMP (Vladimir 2017). Metcalfe (1982) performed 

experiments to investigate the influence of H2S on CO2 MMP. The result showed that with a 3:1 

mole ratio of CO2/H2S and 18.5 % reduction in MMP (from 8.3 MPa to 6.8 MPa) was observed. 

MMP was reduced by 30 % when the mole ratio of CO2/H2S was lowered to 1:1. O2 can increase 

the MMP of pure CO2 significantly (Jiang 2012, Yin 2014, Wilkinson 2010, Rupp 1984). Jiang 

(2012) conducted slimtube experiments with different concentrations of O2 varying from 0 to 10% 

in CO2 stream. The results showed that the presence of 5% O2 increased MMP by 20.88% from 

2466 psi to 2981 psi), while 61.92% MMP (to 3993 psi) increase was observed with 10% O2. 

Only a few studies have evaluated the change in the MMP of gas in oil by using a combination of 

CO2 and other gases, specially produced gas. In a project for Prudhoe Bay Field on Alaska's North 

Slope, 17 slimtube tests were conducted at 93.3 °C using methane, CO2, and enriched CO2 to 

displace crude oil of 25.5 °API at 4800, 3950, and 3350 psig (Rupp 1984). The results showed that 

the mixture with 40% CH4 resulted in the lowest MMP of 3615 psig. Ning (2011) performed a 

study using both laboratory experiments and reservoir simulation to examine the influence of CO2-

oil phase behavior on oil recovery for Alaska North Slope viscous oils. The mixture of 85 % CO2 

and 15 % natural gas liquid resulted in a viscosity reduction from 122 cP to 6 cP in comparison 

with 17 cP of pure CO2 injection, which led to 5% more oil recovery for the mixture than pure 

CO2. Abbasi (2010) experimentally studied the MMP variation for different CO2 proportions in a 

mixture with natural gas for an Iranian reservoir by adding 6 % CO2 to the natural gas and injecting 
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it at 1500 psi and 80 oC. The MMP simulations were performed using WinProp module of CMG 

by varying the percentage of CO2 in five steps: 0 %, 6 %, 28 %, 48 %, and 78 %. The result showed 

that the higher the CO2 concentration added to the natural gas, the lower the MMP and the more 

quickly miscibility could be achieved. Further work has been carried out to investigate the effect 

of mixtures of CO2 with other gases such as CH4, C2H6, C3H8, and flue gas on oil recovery 

performance (Shokoya 2005, Hamouda 2018, Yengo 2014). 

Conclusion: The effect of impurities in the CO2 stream on MMP has been investigated as 

individual components and for specific sources. No previous studies relate the different capture 

techniques to the impurities (and their respective concentrations) and their impact on MMP, despite 

the importance of the capture technology in determining the composition of CO2 stream source. 

Only a few studies have evaluated the change in the MMP of gas in oil by using a combination of 

CO2 and other gases, especially produced gas. This study investigates the influence of these 

impurities on the MMP of oil and gas mixtures using slimtube simulation, based on various CO2 

sources and capture technologies. Unlike most previous studies, which focused on CO2 

concentrations below 5% or pure CO2, this research explores a broader range of CO2 concentration. 

This work offers an in-depth examination of the relationship between various CO2 capture 

technologies, the resulting impurities and their respective concentrations, and the impact on 

Minimum Miscibility Pressure (MMP) across a wide range of CO2 concentrations (from 0% to 

100%), addressing a gap in the existing literature. The methods to determine MMP are also 

analyzed in order to identify the uncertainty related to each method. 
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3. MMP Measurement Methods: Experiments, Mathematical 

(Analytical, Simulation, Machine Learning) 

(A part of this section has been published in peer reviewed conference paper:  Pham, Q.C., Trinh, 

Q.T. and James, L.A. 2021. Data Driven Prediction of the MMP between Mixtures of Oil and Gas 

using Deep Learning. Presented at the 40th International Conference on Ocean, Offshore and 

Arctic Engineering. Virtual, June 21-30.  

https://doi.org/10.1115/OMAE2021-63018) 

MMP can be estimated by either mathematical or experimental techniques. Some non-experimental 

methods frequently used are mathematical correlations, mixing cell simulation, or analytically. 

Using mathematical correlations is the fastest and least expensive method to estimate MMP and 

many correlations for MMP determination are proposed in the literature (Eakin 1988, Glaso 1985, 

James 1981, Sebastian 1992, Sebastian 1985). These correlations, however, were built from limited 

experimental data and are primarily for pure (100 %) or slightly contaminated CO2 and N2 streams 

(less than 5%). Consequently, MMP predictions may only be reliable when the characteristics of 

the studied system are close to the reference data from which the correlation is produced. Mixing 

cell simulation is another approach used to predict MMP, by mimicking the repeated contacts 

between oil and gas (Jensen 1990, Neau 1996). This technique is separated into forward contacts 

that can be used only for purely vaporizing miscibility mechanism, and backward contacts for 

purely condensing mechanism. Jessen (1998) proposed a more efficient technique to resolve this 

problem, however, the set of equations used is strongly nonlinear since fugacity coefficients are 

functions of liquid and vapor compositions. An analytical method to estimate MMP in gas injection 

systems was described by James (2018) by finding the pressure at which one of the key tie-lines 

becomes zero length. This technique experiences numerical difficulties as very large positive or 

https://doi.org/10.1115/OMAE2021-63018
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negative values of oil and gas saturations can be obtained for the intersection of tie-lines lying 

outside the two-phase region.  

Experimental methods to measure MMP include falling drop, rising bubble, Vanishing Interfacial 

Tension (VIT), and slimtube tests. The falling drop technique, developed by Christiansen (1986), 

determines the minimum level of enrichment. This technique is inexpensive and fast; however, the 

result is only reliable when the miscibility mechanism is pure condensing. Mihcakan (1996) 

designed the rising bubble apparatus, in which the contact of some intermediate hydrocarbons 

vaporized from the oil phase to the gas phase and the gas bubble is used to estimate MMP. The 

MMP calculated through this method is only accurate for a pure vaporizing gas drive mechanism. 

The VIT method is based on the interfacial tension between the injected gas and the reservoir oil 

at fixed temperature (Rao 1997). The drawback of this method is that it strongly depends on the 

overall composition of the gas/oil mixture (Orr Jr 2007), and it is reliable only when the miscibility 

mechanism is strictly condensing or vaporizing.  

The most used technique in industry is the slimtube test, in which the oil recovery is used as a 

criterion to determine MMP. Elsharkawy (1992) conducted 12 slimtube tests for different oils with 

gravities varying from 34 to 51o API and completed a literature review on this method. They 

concluded that there is no standard design, standard operating procedure, or standard criteria that 

can be used to estimate MMP through the slimtube method. The design of a slimtube system 

(including slimtube length, diameter, type of packing, and the permeability and porosity of the 

packing) were reported to vary significantly in industry. Various oil recovery criteria have been 

applied to estimate MMP, such as 80% at gas breakthrough (Holm 1982), or 90-95 % ultimate 

recovery at 1.2 pore volumes of gas injected (Jacobson 1972, Graue 1981). The slimtube test is the 

only method that considers the combination of condensing and vaporizing miscibility mechanisms 

at the pore scale through mobility of gas and oil in the tube. A combined condensing/vaporizing 
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gas drive mechanism is often responsible for miscibility development (Zick 1986, Wu 1990). For 

this reason, the slimtube test is recognized as the most reliable method for the determination of 

MMP in the oil industry.  

Flock (1984) studied the effect of slimtube length and injection rate on recovery factor. They found 

that when the slimtube length increased, the recovery factor increased and the recovery versus 

pressure curve shifted upward. They further concluded that increasing the slimtube length had a 

stabilizing effect on the displacement and that a slimtube of at least 12.2 m length was required for 

a good estimation of MMP. The injection rate was reported to have no effect on the recovery factor 

and its effect on the displacement was found to be negligible. In the work of Elsharkawy (1992), a 

long slimtube was used to minimize the effect of the transition zone length, and the use of smaller 

diameter tubing was justified to prevent viscous fingering. Ekundayo (2013) investigated the 

influence of slimtube length, injection rate and inner diameter on the MMP. They confirmed the 

conclusions of Flock (1984). They also suggested using the intersection of two straight lines on the 

recovery-versus-pressure curve as the miscibility indicator. Kanatbayev (2015) completed a 

literature review and noted that the uncertainty in determining MMP using slimtube tests is often 

reported on the order of magnitude 5 %. 

MMP estimation is said to be affected by the selection of EOS (Equation of State) types, the 

limitations for the variation change in critical temperature (Tc) and pressure (Pc) during tuning and 

the scheme for lumping to fewer pseudo components. Firoozabadi (1986) compared the value of 

MMP predicted from Peng-Robinson EOS (PREOS) with available experimental data. The results 

showed that the EOS generally overestimated the MMP. Stalkup (2005) stated that if two EOSs 

possessed different parameters could lead to different values of MMP and oil recovery. A given 

EOS is adequate to predict MMP of oil and gas system only when its results are history matched 

with MMP measured from slimtube measurements. 
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With the development of Artificial Intelligence (AI) and a high number of successful applications 

in the oil and gas industry, many researchers have used Machine Learning (ML) algorithms to 

predict MMP. Hassan (2018) applied different AI techniques including Artificial Neural Network 

(ANN), Radial Basis Function (RBF), generalized neural network (GRNN) and Adaptive Neuro-

Fuzzy Inference System (ANFIS) to predict MMP for pure CO2 stream through 140 data points. 

With the original data including reservoir temperature and oil characteristics such as the molecular 

weight of C7+ and mole fraction of C2-C6, significant average absolute percentage errors (AAPEs) 

were observed for all AI techniques: 41.39% for ANN, 18.27% for RBF, 26.14% for GRNN and 

17.77% for ANFIS. Data processing was applied by filtering the input data using power model 

with power value of -1 and -0.5 for the molecular weight and the mole fraction, which improved 

the AAPE to 6.6%. Hamdi (2019) employed ANFIS to estimate MMP for pure CO2 stream using 

48 data points. The results showed that a higher accuracy and wider application range was observed 

with the proposed model compared with traditional correlation approaches. In addition, among four 

ANFIS models, the hybrid algorithm optimized ANFIS with a Gaussian member function was the 

most accurate model with Root Mean Square Error (RMSE) of 1.44. Dong (2019) proposed a new 

method to predict MMP of a pure CO2 stream based using Deep Learning. A fully connected neural 

network was developed using the multiple mixing cell method. The model was then improved by 

adopting L2 regularization and Dropout methods to limit the over-fitting problem. A comparison 

between six sets of slimtube experiments and the results from this model had a generalized error 

rate of 6.99%, which validated the model.  

Huang (2003) developed an ANN model to predict MMP for both pure and impure CO2 with the 

percentage of CO2 from 45-100 % in gas stream.  At first, a trained ANN model was built for pure 

CO2 with reservoir temperature and molecular weight of C5+ for oil as inputs.  Secondly, the model 

was developed for impure CO2 stream using the correlations between the impure CO2 MMP factor 
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(Fimp) and the contaminant concentrations. The model effectiveness was then evaluated by 

comparing their results with the measured MMP as well as the MMP predicted from other statistical 

models. A higher accuracy was observed with the ANN model. However, the verification for 

impure CO2 MMP factor (Fimp) was not carried out because of data unavailability. Khan (2019) 

used ANN, SVM, and Functional Network to predict MMP for pure and impure CO2 stream with 

very limited data points (51) and the percentage of impurity in CO2 stream was not mentioned. The 

inputs were reservoir temperature, molecular weight of C5+ and mole fraction of C1, C2-C6 in oil, 

mole fraction and molecular weight of C2+ in injected gas.  The results showed an acceptable 

average absolute error for all models and among them, ANN provided the best correlation to predict 

MMP. Amar (2018) combined Support Vector Regression (SVR) with Artificial Bee Colony, 

which was used to find the best SVR hyper-parameters. The input parameters were reservoir 

temperature, molecular weight of C5+ and the ratio of volatile to intermediate in oil, and the critical 

temperature of gas. A low mean absolute percentage error (3.24 %), RMSE (0.79) and a high 

coefficient of determination (0.9868) was found with the proposed model. ANFIS model was built 

and optimized by five different approaches: including Back Propagation (BP), Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Differential 

Evolution (DE) to estimate MMP for both pure and impure CO2 stream (Karkevandi 2017). All the 

models developed through this study were shown to be more accurate than existing models 

(Karkevandi 2017). In addition, the ANFIS model optimized by PSO had the highest accuracy with 

an average absolute percent relative error of only 7.53 %. Bian (2016) employed SVR with GA, 

which has advantage of overcoming the local minima or over-fitting problems. The SVR model 

was optimized by GA methods. The input parameters were reservoir temperature, oil molecular 

weight, the mole fraction of volatile and intermediate in oil, and the critical temperature of gas. 

The range of CO2 in gas stream was 40-100 %. The model was then compared with commonly 
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used correlations to estimate the MMP. Their model presented much lower deviations on the MMP 

values than examined correlations: average absolute relative deviation (AARD) of 4.75 % and 7.69 

% was found for pure CO2 impure CO2 stream, respectively. Karkevandi (2018) used radial basis 

function neural network (RBF) optimized with five evolutionary algorithms namely GA, PSO, 

imperialist competitive algorithm (ICA), ant colony optimization (ACO), and differential evolution 

(DE) to predict MMP for both pure and impure CO2 stream. It was found that the ICA-RBF model 

is the most accurate method with statistical values of RMSE = 1.16 and average absolute percent 

relative error (AAPRE) = 6.01 %. Dargahi (2020) implemented three intelligent models named 

group method of data handling (GMDH), adaptive boosting support vector regression (AdaBoost 

SVR) and multi-layer perceptron (MLP). Based on the results, among the proposed models, 

AdaBoost SVR obtained the highest accuracy with an AAPRE of 3.09 % and RMSE of 0.9 MPa. 

However, in none of these studies CO2 and other impurities of the injected gas were included in 

the input parameter, which lead to the lack of visual relation between MMP and injected gas 

composition while each gas composition was proven to have significant effect on MMP of oil and 

gas stream. Some research integrated the injected gas composition in input parameters to enhance 

the model accuracy for predicting MMP. Edalat (2007) developed a new ANN model using a two-

layer perceptron and neural nets software, that was then compared with other common correlations 

and showed a higher accuracy. The inputs were reservoir temperature, oil molecular weight, mole 

fraction of C1, C2-C6 and CO2 in oil, mole fraction of C1, C2-C5 and molecular weight of C2-C5 

in gas. However, only 52 data points were used, which could limit accuracy in application range 

for this model. ANN model was optimized by using the PSO algorithm, which helped to find the 

best initial weights and biases of the neural network (Sayyad 2014). This model though had the 

same problem of limited datasets of 39. Although the datasets were improved in further studies, 

the mole percentage of CO2 in the input parameters did not go below 40 % (Shokrollahi 2013, 
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Mollaiy 2016, Chen 2014, Tatar 2013, Zhong 2016), which may cause inaccuracy when applying 

to other ranges of concentration. Table 2-3 shows advantage and disadvantage of each MMP 

measurement methods. 

TABLE 2-3: Advantages and disadvantages of MMP determination methods 

Techniques Advantage Disadvantage 

Experimental 

methods 

Rising 

bubble 

Fast and inexpensive Only accurate for a pure vaporizing gas drive 

mechanism 

Falling drop Fast and inexpensive Only reliable when the miscibility 

mechanism is pure condensing 

VIT Fast and inexpensive Strongly depends on the overall composition 

of the gas/oil mixture 

Slimtube Reliable  Expensive and time consuming 

Mathematical 

methods 

Correlations Fast and inexpensive Built from limited experimental data, 

primarily for pure or slightly contaminated 

CO2 and N2 streams 

Analytical 

method 

Fast and inexpensive Numerical difficulties: very large positive or 

negative values of oil and gas saturations can 

be obtained for the intersection of tie-lines 

lying outside the two-phase region 

Mixing cell 

simulation 

Fast and inexpensive Separated into forward contacts that can be 

used only for purely vaporizing miscibility 

mechanism, and backward contacts for 

purely condensing mechanism 

Slimtube 

simulation 

Fast and inexpensive Prone to dispersion 

Machine 

learning 

Fast and inexpensive 

Reliable 

Big data collection required to enhance the 

accuracy 

 
TABLE 2-4: Literature review of Machine Learning used to predict MMP 

Ref Algorithm Input 

parameters 

% CO2 

in gas 

Number of data 

points 

Remarks 

(Hassan 

2018) 

ANN, 

ANFIS, 

GRNN and 

RBF 

Reservoir 

temperature 

Oil: MW of C7+, 

mole fraction of 

C2-C6,  

100 % 140  

(Hamdi 

2019) 

ANFIS Reservoir 

temperature  

Oil: MW of C5+, 

mole fraction of 

volatile and 

intermediate  

100 % 48  

(Dong 2019) FCNN  Formation 

temperature  

100 % 128 The model is 

developed 

following 
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Oil sample 

components 

multiple mixing 

cell methods to 

estimate MMP 

(Huang 

2003) 

ANN Reservoir 

temperature 

Oil: MW of C5+ 

Gas: mole 

fraction of CO2, 

N2, CH4, H2S, 

and SO2 

45–100 

% 

NA The model 

wasn’t evaluated 

with impure CO2 

streams because 

of data 

unavailability. 

(Khan 2019) ANN, SVM, 

Functional 

network (FN) 

 

Reservoir 

temperature 

Oil: MW of C7+, 

mole fraction of 

C1, C2-C6 

Gas: mole 

fraction and MW 

of C2+ 

N/A 51  

(Amar 2018) SVR artificial 

bee colony 

 

Reservoir 

temperature 

Oil: MW of C5+, 

the ratio of 

volatile (C1 and 

N2) to 

intermediate 

(C2–C4, H2S, 

and CO2) 

Gas: Critical 

temperature 

N/A 201  

(Karkevandi 

2017) 

ANFIS 

optimized 

with 

evolutionary 

algorithms 

 

Reservoir 

temperature 

Oil: MW of C5+, 

mole fraction of 

volatile (C1 and 

N2), intermediate 

(C2–C4, H2S, 

and CO2) 

Gas: Critical 

temperature 

N/A 270  

(Bian 2016) SVR with 

GA 

Reservoir 

temperature 

Oil: MW of C5+, 

mole fraction of 

volatile (C1 and 

N2), intermediate 

(C2–C4, H2S, 

and CO2) 

Gas: Critical 

temperature 

40-100 

% 

150  
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(Karkevandi 

2018) 

RBF and 

evolutionary 

techniques 

 

Reservoir 

temperature 

Oil: MW of C5+, 

mole fraction 

volatile (C1 and 

N2), intermediate 

(C2–C4, H2S, 

and CO2) 

Gas: Critical 

temperature 

N/A 270  

(Dargahi 

2020) 

AdaBoost 

SVR and 

MLP 

 

Reservoir 

temperature 

Oil: MW of C5+, 

the ratio of 

volatile 

components to 

intermediate 

components 

Gas: Critical 

temperature 

N/A N/A  

(Edalat 

2007) 

 

MLP and 

neural nets 

software 

 

Reservoir 

temperature 

Oil: MW of C2-

C5 and C7+, 

Mole fraction of 

C1, C2-C6 and 

CO2,  

Gas: Mole 

fraction of C1, 

C2-C5, MW of 

C2-C5  

NA 52  

(Sayyad 

2014) 

ANN 

optimized by 

PSO 

Reservoir 

temperature 

Oil: MW C5+  

Gas: Mole 

fraction of CO2, 

H2S, C1, C2-C4, 

N2 

45-100 

% 

39  

(Shokrollahi 

2013) 

 LSSVM 

 

Reservoir 

temperature 

Oil: MW of C5+, 

the ratio of 

volatile (C1 and 

N2) to 

intermediate 

(C2–C4, H2S, 

and CO2) 

Gas: Mole 

fraction of CO2, 

H2S, N2, and 

C1–C5  

40-100 

% 

147  
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(Mollaiy 

2016) 

ANFIS 

optimized 

with PSO  

 

Reservoir 

temperature 

Oil: MW of C5+, 

mole fraction of 

volatile (C1 and 

N2), intermediate 

(C2–C4, H2S, 

and CO2) 

Gas: mole 

fraction of CO2, 

C1, N2, H2S, C2–

C4  

40-100 

% 

N/A  

(Chen 2014) GA-BPNN  

 

Reservoir 

temperature 

Oil:  MW of 

C7+, mole 

fraction of 

volatile oil 

components, 

intermediate 

components, C5–

C6 

Gas: mole 

fraction of CO2, 

C1, N2, H2S, 

C2–C4  

30-100 

% 

85  

(Tatar 2013) RBFN 

 

Reservoir 

temperature 

Oil: MW of C5+, 

the ratio of 

volatile (C1 and 

N2) to 

intermediate 

(C2–C4, H2S, 

and CO2) 

Gas: Mole 

fraction of CO2, 

H2S, N2, C1, C2-

C5 

40-100 

% 

147  

(Zhong 

2016) 

Mixed 

kernels 

function 

based SVR  

 

Reservoir 

temperature 

Oil: MW of C5+, 

the ratio of 

volatile 

components to 

intermediate 

components 

Gas: Critical 

temperature  

40-100 

% 

147  
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Conclusion: In some studies, CO2 and other impurities in the injected gas were not included as 

input parameters, resulting in a lack of visual correlation between MMP and injected gas 

composition. This omission is significant, as gas composition has been proven to substantially 

affect the MMP of oil and gas mixtures. Moreover, the limited data points and restricted CO2 

concentration range (with the mole percentage of CO2 not falling below 40%) in previous models 

may have reduced accuracy and hindered their applicability to other concentration ranges. 

In this work, for the first time, a deep learning algorithm, utilizing multiple fully connected 

networks, was implemented to predict MMP for oil and gas mixtures using 250 data points. These 

data points span a wide range of CO2 concentrations, from 0 % to 100 % in the injected gas. This 

broad range covers various modes of gas injection, from pure CO2 flooding to scenarios where CO2 

is negligibly present in sweet gas injection. Additionally, this study introduced the concept of a 

"stopping point," employing Early Stopping and K-fold Cross Validation techniques to enhance 

the overall performance and general applicability of the model.  

4. Enhanced Oil Recovery (EOR) and Carbon Capture and 

Sequestration (CCS) 

CO2 is a well-known and commonly used solvent for enhanced oil recovery (EOR). CO2-EOR has 

been used onshore for over 40 years, especially in North America, and has become a mature 

technology (Enick 2015). However, the story is different of offshore where facilities are more 

costly and often weight constrained, CO2 transportation over longer distances if a nearby source 

exists, regulatory issues, and uncertainties around the revenues as the oil price and the cost of CO2 

are involved. Considering the need to fully develop all aspects of CCUS – carbon capture, 

utilization, and storage, CO2-EOR can first be utilized to recover incremental oil then the same, 

proven can provide already de-risked geological storage. 
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CO2-EOR has been used successfully onshore since the early 1980s with one of the most successful 

post combustion CO2-EOR projects being Weyburn, Saskatchewan (Carbon Capture & 

Sequestration Technologies @ MIT). Offshore, some pilots have been conducted such as 

Quarantine Bay (Hsie 1988), Timbalier Bay (Moore 1985), Bay St. Elaine (Nute 1983), Weeks 

Island (Johnston 1988), and Paradis (Bears 1984). The source of CO2 used in these pilot-scale 

projects was not specified except for Paradis project where the CO2 was captured from Monsanto 

Co. ammonia plants near Luling. These pilot-scale projects showed technical promise however it 

failed to implement CO2-EOR in full-scale offshore caused by high project costs (Godec 2021). 

The Gulf Coast, USA, is rich in oil and gas resources. Denbury has developed CO2-EOR projects 

at the Hastings and Oyster Bayou fields in Texas, as well as the Heidelberg and Tinsley fields in 

Mississippi. The main CO2 source was an almost pure (98 %) natural source from Jackson Dome. 

Denbury is working to replace the natural CO2 source with CO2 captured from industrial sources 

along the Gulf Coast to lower CO2 emissions (Extensive Experience in the Gulf Coast 2023). These 

projects provide significant oil production today and are in progress. 

Lula is the World’s first offshore CO2-EOR project, situated in Santos Basin Pre-Salt Cluster 

(SBPSC), southeast Brazil, approximately 300 km offshore from the coast with a first pilot in 2011 

(Lula-pilot) and a second one in 2013 (Lula-NE) (Eide 1945). The oil is a good quality (28-30 API) 

and contains a significant amount of associated gas, which carries around 11% of CO2. The EOR 

chemical processes were unfeasible because of limitation of logistics and plants for fluid injections. 

Thus, EOR was considered taken from two abundant resources available: Seawater and the 

Produced or imported gas. A substantial incremental oil recovery while applying CO2 or CO2/HC 

EOR was proved by preliminary numerical simulation. Water- Alternating-Gas (WAG) injection 

strategy with CO2 from produced gas was adopted due to the relatively low global amount of CO2 

available. Floating Production Storage and Offloading (FPSO) were chosen to develop Lula field. 
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The facilities were designed with a CO2 separation membrane system that was able to provide two 

streams: a stream with very high CO2 content (up to 90 %v/v) and a treated gas with low percentage 

in CO2 (5 % v/v). This project faced no major operational or reservoir issues and demonstrated the 

feasibility of offshore CO₂-EOR, particularly when considering economic benefits and strategic 

incentives. The project has been reported as successful, increasing the recovery factor and reducing 

GHG emissions by 12% since 2015 (Petrobras Santos Basin, 2023). 

Some projects have been carried out in Norway such as Gullfaks Field (Augustsson 2004). 

Different CO2 supply options were evaluated since a single geographical source was insufficient 

for the need of the project. Incremental oil recovery factor was estimated to be 4.1 % of oil in place. 

However, the economic conditions were found to be unfavourable considering the CO2 prices and 

credits as well as the oil price. Income from the additional produced oil couldn’t cover the cost for 

CO2 capture and transport. The CO2 source for Ekofisk field project came from Sleipner gas field. 

This project showed the possibility to develop large-scale CO2 injection for EOR offshore 

technically, however the feasibility stage failed due to economic factors (Hustad 2004). Draugen 

and Heidrun Oil Fields projects started in 2006 by Shell and Statoil. CO2 was captured from a new 

gas-fired power plant at Tjeldbergodden and was transported to the field via pipeline with distance 

of 120 km (CO2 for EOR not commercially viable 2007). The estimated additional oil recovery 

form CO2 injection in Draugen field was modest (2-5 %), which could not justify the cost of CO2 

storage (CO2 for EOR off Norway under study 2007). Feasibility of these projects is being assessed. 

2Co Energy is working on the Don Valley project, which captures CO2 from the Don Valley IGCC 

power plant and transports it to two mature oil fields in the Central North Sea to improve oil 

recovery. Economic feasibility is currently in progress (Offshore CO2 enhanced oil recovery with 

CCS programs 2023). Miller Oil Field project planned to capture CO2 from the Peter head gas-

fired power station for CO2-EOR in the Miller offshore oilfield. This project was abandoned to due 
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lack of government support (Offshore CO2 enhanced oil recovery with CCS programs 2023). Two 

other projects currently on hold in North Sea region are Danish Oil fields, which captures CO2 

from an oil refinery to inject in oil fields in the Danish sector of the North Sea, and Tees Valley, 

which captures CO2 from a new IGCC power station to inject to Central North Sea oil fields 

(Offshore CO2 enhanced oil recovery with CCS programs 2023).  

In Asia, the four-year Dulang CO2-EOR pilot was successfully completed by Petronas, offshore  

Malaysia. As the field’s produced gas contain a high concentration of CO2 (more than 50 %) ,the 

CO2-rich produced gas was re-injected back into the reservoir, which resulted in significant 

increased oil production, and reduced the water cut (Offshore CO2 enhanced oil recovery with CCS 

programs 2023). The implementation for field scale was recommended, however it has not yet 

started. Another CO2-EOR pilot test, conducted on the Rang Dong Field offshore Vietnam in 2011, 

gained success with 10-15 % increase in oil production without any operational or HSE issues 

(Ueda 2013). However, CO2 transportation cost from possible CO2 sources (fertilizer plant and/or 

CO2-rich gas field) were economically detrimental, resulting in project termination.  

In offshore Newfoundland and Labrador, Canada, the Net Zero Project explored the feasibility of 

Carbon Capture, Utilization, and Storage (CCUS) as a comprehensive approach to reducing carbon 

emissions from four active oilfields and one proposed development site. The project considers 

capturing CO₂ emissions generated from offshore electrification facilities, including gas and diesel-

powered generators, as well as flaring operations. This initiative aligns with global efforts to 

mitigate greenhouse gas emissions and adapt to stricter environmental regulations by leveraging 

innovative CCUS technologies to reduce the carbon footprint of offshore oil and gas operations (A 

Net Zero Project White Paper 2023). The project reflects a broader movement toward integrating 

CCUS into existing infrastructure to achieve net-zero emissions in oil and gas production, 

especially in challenging offshore environments. 
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Offshore CO₂-EOR projects demonstrate technical feasibility, but many have failed due to the high 

costs associated with sourcing CO₂, especially in regions lacking accessible or nearby CO₂ sources. 

To address this challenge, small-scale CO₂ capture technologies like membrane systems and 

compact amine units are being developed. These technologies not only support efforts to achieve 

net-zero emissions but also help secure CO₂ resources for offshore operations. Successful examples 

include the Lula Project in Brazil and the Dulang Project in Malaysia, which highlight the potential 

of innovative capture solutions to overcome logistical and economic barriers. This research 

examines scenarios involving constrained CO₂ volumes and the implications of different capture 

techniques, which can yield CO₂ streams with less than 100 % purity. These efforts aim to address 

supply limitations while optimizing EOR performance. Table 2-5 provides a detailed summary of 

CO₂ utilization and storage projects in offshore oilfields, offering insights into diverse approaches 

and outcomes for managing CO₂ resources effectively. 
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TABLE 2-5: Offshore CO2 utilization and storage projects 

Offshore 

Project 

Name 

Location CO2 source Results Ref 

Quarantine 

Bay 
US N/A 

Successful pilot scale.  

Failed to implement at field scale due 

to high project costs. 

(Hsie 1988) 

Timbalier 

Bay 
US N/A 

Successful pilot scale.  

Failed to implement at field scale due 

to high project costs. 

(Moore 1985) 

Bay St. 

Elaine 
US N/A 

Successful pilot scale.  

Failed to implement at field scale due 

to high project costs. 

(Nute 1983) 

Weeks 

Island 
US N/A 

Successful pilot scale.  

Failed to implement at field scale due 

to high project costs. 

(Johnston 1988) 

Paradis US 

Monsanto Co. 

ammonia 

plants 

Successful pilot scale.  

Failed to implement at field scale due 

to high project costs. 

(Bears 1984) 

Denbury’s 

Gulf Coast 
US 

Jackson Dome, 

two existing 

facilities along 

the Gulf Coast 

In progress, including Hastings and 

Oyster Bayou fields in Texas, the 

Heidelberg and Tinsley fields in 

Mississippi. 

(Extensive Experience in the Gulf Coast 2003) 

Lula Brazil 

Seawater and 

the produced or 

imported gas 

In progress. The project was reported 

to be successful in increasing the 

recovery factor and reducing 12% in 

GHG emissions since 2015  

(Petrobras Santos Basin 2023) 

Gullfaks  Norway 

Several options 

from different 

sources 

Increase of 4.1% of oil in place but the 

economics were unfavorable for CO2-

EOR. 

(Augustsson 2004) 

 

Ekofisk  Norway 
Sleipner gas 

field 

Demonstrated technical feasibility but 

have not progressed past the feasibility 

stage.  

(Hustad 2004) 
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Offshore 

Project 

Name 

Location CO2 source Results Ref 

Heidrun  Norway 

New gas-fired 

power plant at 

Tjeldbergodden 

Demonstration the technical feasibility, 

still under study. 

 

(CO2 for EOR not commercially viable 2007, CO2 for EOR off Norway 

under study 2007) 

Draugen Norway 

New gas-fired 

power plant at 

Tjeldbergodden 

Terminated due to the poor 

profitability of the power plant and the 

need for substantial support for carbon 

capture and storage 

(Reuters: Statoil, Shell shelve Draugen field CO2 injection 2007) 

Don Valley North Sea 

Don Valley 

IGCC power 

plant 

Offshore EOR/Storage feasibility study 

was completed. However, this project 

was not received financial support 

from UK government.  

2Co Energy is studying the economic 

feasibility without government 

funding. 

(Offshore CO2 enhanced oil recovery with CCS programs 2023) 

Miller North Sea 

Peter head gas- 

fired power 

station 

Failed to receive government support. 

Abandoned. 
(Offshore CO2 enhanced oil recovery with CCS programs 2023) 

Danish North Sea Oil refinery 

Maersk Oil submitted a proposal to the 

EU for capturing of CO2. This project 

is currently on hold. 

(Offshore CO2 enhanced oil recovery with CCS programs 2023) 

Tees Valley North Sea 
New IGCC 

power station 

Progressive Energy submitted a plan to 

the EU for capturing of CO2. This 

project is currently on hold. 

(Offshore CO2 enhanced oil recovery with CCS programs 2023) 

Dulang Malaysia 
CO2-rich 

produced gas 

IWAG EOR pilot was successful. Field 

wide application was recommended but 

has not been implemented yet. 

(Offshore CO2 enhanced oil recovery with CCS programs 2023) 

Rang Dong Vietnam 

Fertilizer plant 

and CO2-rich 

gas field 

A small-scale pilot test with 10-15% 

increase in oil production  

Detrimental operational cost  

Termination of the project 

(Ueda 2013) 

A Net Zero 

Project 

Newfoundland 

& Labrador, 

Canada 

Gas fired 

turbines, 

flaring 

emissions 

Study phase, investigating technical 

and economic viability of integrating 

CCUS for 4 producing oil and 1 

proposed oil project (Bay du Nord) 

(A Net Zero Project White Paper 2023) 
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The phase behavior of pure CO₂ is significantly influenced by reservoir temperature and pressure. 

CO₂ transitions to a supercritical state when the pressure and temperature exceed its critical point 

(31.1°C and 7.38 MPa, respectively). In this state, CO₂ combines properties of both gas and liquid, 

behaving as a compressible fluid with gas-like viscosity and liquid-like density. Supercritical CO₂ 

is characterized by unique properties such as low viscosity, low surface tension, high diffusion 

coefficients, and strong solubility in hydrocarbons, which are advantageous for enhanced oil 

recovery (EOR). These properties facilitate efficient mixing and displacement of oil within 

reservoirs. For instance, studies have shown that supercritical CO₂ improves oil recovery in tight 

reservoirs by enhancing its ability to diffuse and dissolve in hydrocarbons, reducing viscosity, and 

enabling better mobility within the reservoir matrix (Ding 2013, Zhou 2019). The implications of 

supercritical CO₂'s behavior are critical for designing EOR strategies, especially in reservoirs with 

tight formations where maximizing oil recovery requires effective miscibility and efficient 

displacement mechanisms. A number of researchers have studied the influence of supercritical CO2 

for CO2 application in oilfield. Supercritical CO2 was demonstrated to be able to alter the properties 

of crude oil such as oil expansion, reduction in viscosity, reduction in interfacial tension, etc.…, 

which could result in improvement of oil recovery (Li 2012). Gao (2021) carried out experimental 

study on supercritical CO2 in tight conglomerate reservoirs under reservoir conditions (formation 

pressure 37 MPa, temperature 89 °C). The results found that supercritical CO2 could improve the 

oil recovery 4.02 % higher than non-supercritical CO2. Wei (2020) conducted an experimental 

study on the effectiveness of supercritical CO₂ injection in an asphaltenic tight sandstone 

formation. The results indicated that CO₂ injection improved oil recovery; however, it also led to 

a reduction in rock permeability and porosity due to accelerated precipitation of asphaltenes. This 

phenomenon can potentially limit the long-term effectiveness of CO₂-EOR in certain reservoir 

conditions. Zhang (2018) concluded that the interaction among supercritical CO2-brine-rock 
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altered the wettability of the rock surface to be more water-wet, as well as could improve the 

connectivity of the tight reservoir rocks, which was favorable for both CO2-EOR and geological 

storage. Current carbon capture technologies are not 100 % efficient, resulting in impurities in the 

CO2 stream. The impurities and their concentrations vary with separation technology. Some studies 

provide recommendations on limits to CO2 impurities for CO2 utilization and storage purposes. For 

EOR purpose, 1 % impurities for absorption and adsorption (Wang 2017), 10% impurities for 

membrane (Barrett 2019), and about 3 % impurities for Direct Air Capture (DAC) (Keith 2018) 

were considered. These impurities are shown to have significant impact on the minimum 

miscibility pressure (MMP). It is reported that CH4 and N2 increases MMP and others, like C2H6 

and intermediate hydrocarbons such as propane C3H8, butane C4H10, pentane C5H12, and CO2 

reduce MMP (Alston 1985, Yellig 1980, Johnannes 2009, Stringht 2009). Developing miscibility 

(reaching MMP) generally increases oil recovery as capillary pressure is overcome. 

When CO₂ contacts oil in a reservoir, the miscibility—whether the two phases can mix—is 

influenced by the composition of both the CO₂ and the oil, as well as the reservoir’s pressure and 

temperature. If the reservoir pressure is below the Minimum Miscible Pressure (MMP), an 

immiscible process occurs. In this scenario, the oil is saturated with CO₂, leading to oil phase 

swelling, where the oil's viscosity is reduced, and lighter hydrocarbons in the oil are extracted into 

the CO₂ phase. This results in better fluid displacement but does not achieve full miscibility (James 

ENGI 9113). Typically, first-contact miscibility (where CO₂ and oil immediately mix without 

needing additional interactions) is not reached in most CO₂-EOR operations. Instead, miscibility 

forms through a multi-contact process, where CO₂ and oil interact multiple times, allowing the 

lighter oil fractions to vaporize into the injected CO₂ phase, while CO₂ condenses into the oil. This 

back-and-forth reduces the viscosity and interfacial tension between the oil and gas, facilitating 

more efficient oil extraction (Hadlow 1992). Thus, the process of CO₂ injection for enhanced oil 
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recovery is largely dependent on achieving a balance of pressure and temperature that supports the 

miscibility of CO₂ with oil, improving oil recovery over time. Figure 2-2 shows the principle of 

miscible CO2-EOR. 

 
FIGURE 2-2: Principle of miscible CO2-EOR 

Operating an offshore CO2-EOR at any scale is always associated with some challenges. The 

availability of CO2 is always the main concern when considering CO2-EOR offshore as there are 

not many developed sources of CO2 close to offshore fields. CO2 from several sources is collected 

and transported to a number of oil fields (Holt 2009, Kemp 2013, Malone 2014). Thus, investment 

is required to build infrastructure for transportation adding to the project cost. It is worth 

mentioning uncertainties around regulations regarding monitoring injected CO2, during and 

especially after closure. The price of oil and CO2 emission taxes add to the project economic 

uncertainties. Technically, in the presence of water, CO2 will react and form carbonic acid, which 

can react with certain minerals and clays. For example, carbonic acid can dissolve calcium 

carbonate which may re-precipitate and deposit elsewhere in the reservoir, changing the 

permeability or porosity, altering fracture properties, changing the wettability, and flow behaviour 

temporally. Carbonic acid can also cause pipeline corrosion. Thus, materials selection is the key 

parameter in the practical design and operation of CCS system. The complete stream compositions 

and the full range of operating conditions need to be determined in order to select the material. 
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Some materials were considered for specific CCS application areas such as carbon steels, duplex 

stainless steels, Nickel alloys were recommended for the locations where wet CO2 would encounter 

(Corrosion and materials selection in CCS system 2010). However, carbon steel was not an 

adequate material in the upstream of absorbers in post combustion plant because of the presence 

of sulphur, nitrogen oxides and chlorides in the water phase (Corrosion and materials selection in 

CCS system 2010). CO2 injection has low volumetric sweep efficiency due to the high CO2 

mobility (Patel 1987). This can lead to fingering, gravity segregation, and early breakthrough in 

the production well, especially challenging in fractured reservoirs. 

Different techniques such as Water-Alternating-Gas (WAG) injection and carbonated water 

injection (CWI) can mitigate some of these challenges such as sweep, constrained volumes, etc. In 

WAG process, CO2 and water are injected alternatively, thus enhance oil recovery has poor sweep 

efficiency. This can be improved by using a WAG process; the oil recovery factor can be increased 

by enhancing the microscopic efficiency of gas injection together with the macroscopic efficiency 

of water flooding. Ghomian (2008) integrated hysteresis effect when coupling CO2-EOR and 

storage. The models were built with three different relative permeability and capillary pressure 

models for three different rock types. Sixteen runs were performed varying WAG ratio, CO2 slug 

size, and reservoir heterogeneity characteristics such as Dykstra-Parson coefficient for a cross-

sectional model of a sandstone reservoir. The NPV value, which took in account of oil price as well 

as CO2 price, tax rate, tax credit, was calculated for each scenario. The simulation results showed 

that oil recovery increased with applying a hysteresis model. Hysteresis was proved to have a 

significant effect on CO2 storage and oil recovery factor as it managed trapping the CO2 in the 

reservoir as residual gas as well as it affected the relative permeabilities leading to improvement in 

the sweep efficiency. They also found that Dykstra-Parsons coefficient, combination of WAG 

ration and slug size, and slug size by itself were reported the most to least influential factors for oil 
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recovery factor. Related to CO2 storage objective, WAG ratio was announced to have the most 

influence, followed by combination of WAG ratio and hysteresis, then hysteresis by itself. CO2 

storage was greater for oil reservoirs with low heterogeneity and low WAG ratio and CO2 slug 

sizes. In contrast, the NPV expected for oil reservoirs is better with high WAG ratio, large CO2 

slug sizes, and low heterogeneity. Jahangiri (2012) used ensemble-based optimization (EnOpt) 

algorithm to co-optimize CO2 storage and EOR. The net present value (NPV) of the project was 

set as the optimization objective function, whereas the well injection patterns and rates were placed 

as the controlling variables. The results showed that pulse-shaped injection profiles provided better 

efficiency for CO2 flooding. Additionally, different economic conditions, such as oil price and CO2 

tax credit, had influence on the NPV as well as optimized injection profile. Wei (2021) carried out 

experimental and simulation studies on associated CCS and EOR in a low permeability (1.16 mD) 

reservoir. The comparison was carried out for water flooding, CO2 flooding, WAG, surfactant-

alternating-gas (SAG) and surfactant-assisted water flooding through core drainage experiments as 

well as nuclear magnetic resonance spectroscopy (NMR) equipment. ECLIPSE 300 was used for 

field simulation. SAG was found to give the highest oil recovery among studied EOR methods 

since it showed capacity to displace the oil inside the smaller pores as well as larger pores in a 

higher proportion. The optimal WAG and SAG ratios obtained from core experiments were lower 

than ones in the realistic reservoir. Kovscek (2005) used an objective function combining 

dimensionless oil recovery and CO2 storage, which were considered as equal in importance by 

using equal weightings in the equation. The objective was to find injection scenarios that lead to 

maximum oil recovery and maximum emplacement of CO2 in the reservoir by performing 

simulations for variety of injection schemes. CO2 stored within the reservoir didn’t reach the 

maximum for CO2 injection, WAG, and gas after water (GAW). The most successful strategy for 
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co-optimization was well control process with producing gas-oil ratio (GOR) and the injection 

pressure as control parameters. 

Lee (2021) conducted a 2D compositional simulation of WAG injection to analyze the effect of 

impure CO2 on EOR and CCS performance. The composition of the gas obtained from the oxy-

fuel scenario with the lowest CO2 purity level was used in their study. Two injection cases were 

analyzed: 100% CO2 and 85 % CO2 + 15 % impurities (including O2, N2, Ar, H2O, NOx, SO2, SO3 

and CO). The results showed that impurities in CO2 reduced oil recovery by 9.2 % and total CCS 

performance by 4.3 %.  Cho (2021) investigated the effects of CO2-CH4 WAG on performance of 

coupled EOR and CO2 storage considering asphaltene deposition. In order to evaluate formation 

damage by asphaltene deposition, this study investigated absolute permeability reduction, porosity 

reduction, and wettability alteration. The results revealed that in comparison with using 100 % 

CO2, addition of CH4 would lower asphaltene deposition and increase gas mobility. Thus CO2-CH4 

WAG achieved 118 % overall carbon sequestration higher than for CO2-WAG. Additionally, 

pressure maintenance could be improved by injecting more water, which then improved both EOR 

and CSS. Wang (2015) studied the impact of impurities (N2, O2, Ar and SO2) on the storage 

capacity of CO2 in geological formations through density changes experimentally and analytically. 

Three mixtures were employed: CO2 with 6.03 mol% O2 , 5 mol% Ar and 4.5 mol% N2, CO2 with 

15 mol% Ar, CO2 with 2.5 mol% SO2. The results indicated that the storage capacity for CO2 could 

reduce by over 65 % for mixture of CO2 and 15 mol% N2, O2 and Ar. Additionally, the reduction 

in storage capacity decreases with increasing temperature. Membrane separation process was 

chosen in this study as explained further in Methodology session. CH4 was the mainly impurity 

found in natural gas source (Pham 2021). Based on these results, enriched CO2-WAG (CH4/CO2-

WAG) was chosen to be investigated in this study. 
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Carbonated water injection (CWI) was first introduced in the late 1940s as an improved EOR 

method as well as a safe storage strategy to reduce the level of greenhouse gases in the atmosphere. 

CWI is considered as a potential CO2-EOR method that can be used for cases with limited CO2 

supply, i.e. CO2 captured from offshore platforms or other small point sources. CWI involves 

dissolving CO2 into the water and injecting the carbonated water into the reservoir. The dissolved 

CO2 easily comes in contact with the trapped residual oil, which reduces the oil viscosity, lowers 

the oil water IFT, and causes oil swelling, hence results in higher incremental oil recovery in 

comparison with conventional water injection. Esene (2019) performed a simulation study to 

investigate the oil recovery amount, fluid distribution, and effects of operational parameters and 

well placement on the performance of CWI. A 3-D heterogenous reservoir model was developed 

using the experimental data from literature. The results showed that CWI achieved a higher 

recovery factor then plain water flooding since the mass transfer associated with CWI would cause 

oil swelling, thus improve the mobility ratio and sweep efficiency. Also, an optimum injector rate 

would ensure an effective mass transfer across phases, and an optimum well orientation would 

enhance recovery performance during CWI. Esene (2020) carried out other study to examine the 

effects of operational parameters/conditions and rock dissolution during CWI in core scale. The 

simulation results showed that increasing the injection rate from 0.2 cm³/min to 0.8 cm³/min led to 

an additional 6% oil recovery. Furthermore, increasing the injection pressure from 1,500 psi to 

3,500 psi improved the oil recovery factor by 16 %, as more CO₂ dissolved into the resident fluid, 

enhancing miscibility and oil extraction efficiency. Sohrabi (2011) conducted carbonated water 

flooding experiments and found that CWI achieved higher oil recovery factor compared to 

conventional water injection. Grogan (1987) through simulation concluded that by allowing 

sufficient time, the oil production can increase due to the increase of mobility of the diffusion of 

CO2 into oil. Mosavat (2014) conducted sand back flooding experiments to investigate the CO2 
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storage capacity of CWI. The results showed that no more CO2 could be stored after 1 PV injection 

since the porous medium reached its maximum capacity at working conditions. In other hand, the 

CO2 storage capacity increased with increased pressure due to increased solubility of CO2 in water. 

Mosavat (2016) performed experimental work on the wettability alteration during CWI process. It 

found that CWI recovered additional 7.3 % in comparison with water flooding operation. It was 

reported that CWI modified the wettability of the formation from oil-wet to mixed or water-wet 

condition, which improved the oil recovery. 

Combining CCS and EOR involves nonlinear equations as well as many known and unknown 

interactions between different parameters, such as the injected gas, reservoir characteristics, wells 

patterns, etc. Permeability heterogeneity and reservoir stratification influence flow characteristics 

and oil recovery, especially when a reservoir is produced through gas injection or WAG 

displacement process related to stability of flood front (Figuera 2014). Stratified reservoirs may 

have communication across layers (crossflow) or not (without crossflow), depending on the 

geology. Ngo (2023) optimized the well completion strategy for double displacement process and 

WAG injection in a dipping stratified reservoir. The results indicated that bottom-up was effective 

completion strategy for WAG up-dip in stratified reservoirs without zonal communication and top-

down was a successful completion strategy for communicating stratified reservoirs. Claridge 

(1982)’s work showed that the extent of crossflow can cause a substantial reduction in oil recovery. 

Kulkarni (2003) indicated that the crossflow could adversely affect the recovery performance, 

however the crossflow may also improve the vertical sweep efficiency. Thus, the communication 

among layers plays an important role in the performance, which needs to be considered when 

studying stratified reservoirs 

Conclusion: In all the studies mentioned above, the volume of CO₂ is typically not constrained. 

However, when considering offshore reservoirs, limitations on CO₂ supply must be addressed, as 
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the available volume may not be sufficient for full-field application. Additionally, to meet 

sustainability goals and avoid venting CO₂ into the atmosphere, solutions like gas purification and 

the reinjection of CO₂-rich streams are proposed. Unlike previous research, which does not account 

for permeability heterogeneity or reservoir stratification, this study focuses on optimizing the joint 

application of Carbon Capture and Storage (CCS) and CO₂-EOR (including CO₂-WAG, enriched 

CO₂-WAG, and CWI) in stratified reservoirs, considering both crossflow and no-crossflow 

scenarios with limited CO₂. The CO₂ is assumed to be captured from post-combustion emissions 

from offshore power generation using membrane separation technology. This study aims to 

generalize findings for offshore reservoirs, encompassing a wide range of reservoir characteristics 

(e.g., temperature, pressure, permeability), oil types, and injected gas compositions and volumes.  
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Chapter 3 : CONSIDERING THE CO2 SOURCE AND 

CAPTURE TECHNIQUE TO REDUCE MMP FOR 

ENRICHED WAG INJECTION 

Preface 

A version of this chapter has been published in peer reviewed conference paper: Pham, Q.C and 

James, L.A. 2021. Considering the CO2 Source and Capture Technique to Reduce Minimum 

Miscibility Pressure (MMP) for Enriched Water Alternating Gas (WAG) Injection. Presented at 

the 40th International Conference on Ocean, Offshore and Arctic Engineering. Virtual, June 21-

30. https://doi.org/10.1115/OMAE2021-62643. I am the primary author. Co-author Dr. Lesley 

James is senior supervisor. Dr. James reviewed, provided technical assistance and valuable insights 

to improve the paper concept.  

1. Introduction 

The oil and gas industry are both a major source of CO2 emissions but can play a role in carbon 

capture and storage (CCS) as well. CO2 can be stored in depleted reservoirs and/or CO2 can be 

used to enhance oil recovery recuing the carbon footprint of upstream operations. CO2 injection 

can drive the isolated oil from the reservoir by reducing the interfacial tension between the oil and 

the reservoir rock, and by lowering the oil viscosity. Thus, CO2 injection can increase oil 

production in addition to storing CO2. CO2 can be extracted either from flue gas or natural gas by 

different methods. Current CO2 capture technologies are not 100% efficient and achieving a high 

CO2 purity is costly and time-consuming; hence, impurities are often found in the CO2 stream 

source.   

https://doi.org/10.1115/OMAE2021-62643
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The CO2 capture storage projects are not new. Some projects of interest are reviewed below. 

Norway has been storing CO2 stripped from high concentration natural gas for 20+ years at the 

Snøhvit and Sleipner fields. The Northern Lights project started in 2020 will capture CO2 from an 

onshore cement and waste facility, transport it via ship and pipeline to inject, and store the CO2 in 

the Aurora field (Equinor ASA). Norway has become the second largest exporter of natural gas in 

the world, but 25 fields have a CO2 concentration above 5%, and eight of these fields have CO2 

concentration higher than 10% requiring that the natural gas be stripped of CO2 to not exceed 2.5 

% CO2 for pipeline quality standards (Marit 2014). However, to the best of our knowledge CO2 

has not been used for EOR offshore Norway.  

Gulf of Mexico (GoM) is the major source of oil and natural gas in the United States. The use of 

CO2-EOR has become a priority for many mature GoM oil fields to extend production and store 

CO2. Electric power and industrial plants along the Gulf Coast are estimated to produce enough 

CO2 for 40 years of CO2-EOR (Riestenberg 2019). The West Hasting field injects CO2 captured 

from a hydrogen production facility in Port Arthur. CO2 captured from NRG’s Parish Power Plant 

is injected into the West Ranch oil field (Lopez 2019) . The main CO2 source employed in Weyburn 

and Midale oil fields, Canada, come from post-combustion capture from synthetic natural gas 

produced by a coal gasification process (Weyburn -Midale Carbone Dioxide Project).  

Post-combustion CO2 can be separated from other gases using absorption, adsorption, membrane 

separation, and other novel techniques with varying CO2 capture selectivity and efficiency. 

Impurities in the resulting CO2 stream significantly affect the Minimum Miscibility Pressure 

(MMP); for example, SO2 and H2S can reduce the CO2 MMP, whereas N2 and O2 can have the 

opposite effect (Zhang 2004). MMP is the pressure at which gas and oil are miscible, and oil 

recovery can be substantially enhanced if MMP is reached. Miscibility helps increase incremental 

oil recovery by theoretically reducing interfacial tension to zero, reducing the capillary pressure to 
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zero, and enabling the possibility of recovering oil from all pores. Therefore, a combination of CO2 

and produced natural gas is considered a favorable candidate for increasing oil production in 

offshore Newfoundland. In recent work, mixtures of CO2 and other gases (e.g., CH4, C2H6, C3H8, 

N2, O2) have been investigated to determine their effect on MMP. A few studies considered a 

mixture of CO2 and natural gas, but most did not evaluate the effect of impurities from the CO2 

stream, which may undermine the success of CO2 projects. Furthermore, most slimtube 

experiments focus on CO2 concentration less than 5 % or pure CO2. This current work investigates 

the influence of mixing produced gas with CO2 on MMP over a wide range of CO2 concentrations 

(from 0 to 100 %) and considers impurities from different CO2 sources and capture techniques for 

crude oil representative of the Hibernia Field, offshore Newfoundland, Canada using slimtube 

simulation. The methods to determine MMP are also analyzed in order to identify the uncertainty 

related to each method. The workflow is shown in Figure 3-1. The two first steps are adopted from 

literature and the simulation through PVT-sim software is used to complete the study. 

 

FIGURE 3-1: Workflow for evaluating CO2 source and capture techniques to reduce MMP 
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2. Literature review 

The literature review is presented and updated in the Chapter 2 part 1 and part 2.  

3. Slimtube simulation 

The slimtube simulation is a critical technique for determining the Minimum Miscibility Pressure 

(MMP) in gas injection enhanced oil recovery (EOR) processes. It is based on a simplified yet 

powerful representation of fluid dynamics and phase behavior in a reservoir. Below is an overview 

of the governing equations and methodology for slimtube simulations, typically implemented 

under the following assumptions: 

• Homogeneous Porous Medium: The slimtube is modeled as a uniform porous medium with 

consistent porosity and permeability. 

• Isothermal Conditions: The simulation assumes constant temperature unless thermal effects 

are explicitly included. 

• Negligible Capillary and Gravity Effects: These are considered negligible due to the small 

diameter and orientation of the slimtube. 

Governing equations for Multiphase Flow in Slimtube simulation (Orr 2007, Soave 1972) 

• Mass Conservation: The mass of each component i in each phase α is conserved: 

𝜕(∅𝜌𝛼𝑆𝛼)

𝜕𝑡
+ ∇ . (𝜌𝛼𝑆𝛼𝑣𝛼) =  𝑞𝛼 

: porosity of the slimtube 

α : density of phase α 

Sα : saturation of phase α 

vα : velocity of phase α 

qα : source/sink term of phase α 
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• Darcy’s Law: Describes fluid flow through porous media: 

𝑣𝛼 =  −
𝑘𝑘𝑟𝛼

𝜇𝛼
 (∇𝑃 −  𝜌𝛼𝑔∇𝑧) 

k: absolute permeability of the porous medium 

krα : relative permeability of phase α 

α : viscosity of phase α 

Pα : pressure of phase α 

g : gravitational acceleration  

z: depth or vertical position 

• Phase Equilibrium: Components partition between gas and liquid phases based on 

equilibrium constants: 

𝐾𝑖 =
𝑦𝑖

𝑥𝑖
 

Ki : Equilibrium constant of component i 

yi : mole fraction of component i in the gas phase 

xi : mole fraction of component i in the liquid phase 

• Equation of State (EOS): SPK-Peneloux EOS Equation is used in this study 

𝑃 =
𝑅𝑇

(𝑣 − 𝑏) − 𝑐
−

𝑎

(𝑣 − 𝑐)(𝑣 + 𝑏 − 𝑐)
 

P: pressure 

T: temperature 

 : molar volume 

R: universal gas constant 

a: attraction parameter 

b: repulsion (co-volume) parameter 
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c: Peneloux volume correction term  

Parameters in the SPK-Peneloux EOS: 

Attraction parameter: 

𝑎 = 0.42748
𝑅2𝑇𝑐

2

𝑃𝐶
(1 + 𝑚(1 − √𝑇𝑟))

2

 

Tc : critical temperature of the component 

Pc : critical pressure of the component 

Tr : reduced temperature 

m : acentric factor correction term 

Repulsion parameter: 

𝑏 = 0.08664
𝑅𝑇𝑐

𝑃𝑐
 

Peneloux volume correction 

𝑐 =
𝑍𝑐𝑅𝑇𝑐

𝑃𝑐
 (1 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟) 

Zc : critical compressibility factor 

The density correction factor is derived from experimental data to improve liquid density 

predictions. 

• Component Transport: The transport of each component iii in the reservoir is governed by: 

𝜕(∅𝐶𝑖)

𝜕𝑡
+ ∇ . (𝑣𝐶𝑖) =  𝑅𝑖 

Ci: molar concentration of component i 

Ri: reaction or mass transfer rate 

The slimtube simulation methodology involves fluid characterization, where fluid compositions 

and thermodynamic properties are input into software like PVTsim, with experimental PVT data 
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used to calibrate the Equation of State (EOS). The simulation initializes by saturating the slimtube 

with oil and setting boundary conditions, reservoir properties (e.g., porosity, permeability), and gas 

injection parameters. Gas is incrementally injected at increasing pressures, and phase behavior is 

evaluated at each step to plot recovery factors against pressure for Minimum Miscibility Pressure 

(MMP) determination. Numerical solvers compute phase compositions, saturations, and recovery 

factors, while flash calculations identify equilibrium states at each grid block. The MMP is 

determined as the pressure at which miscibility is achieved, indicated by a sharp increase in 

recovery or complete phase blending. 

Prior to performing the slimtube simulation, the range of MMP for each mixture was predicted 

using the Multiple Contact Miscibility (MCM) module. Consequently, at least three points above 

and below the MMP are estimated, to obtain more accurate lines and a more accurate intersection 

point. MCM simulation provides results quickly compared to slimtube simulation. This step 

reduces time in simulating the wrong pressure points. Knowing the MMP range for each mixture, 

the MMP for various CO2 concentrations from different capture methods and different CO2 stream 

sources were then determined through slimtube simulation. The oil recovery was measured at eight 

different pressures. The MMP is defined as the point where the curve of oil recovery versus 

pressure changes direction. For each gas/oil system, the MMP was evaluated three times by varying 

the points in two lines. The mean value and the standard deviation were calculated.   

The slimtube simulation, using PVTsim - a reservoir simulation software developed by Calsep, 

was first completed with various gas and oil compositions from the literature to test its validity. 

The MMP from slimtube measurements reported for three gas/oil systems in the literature used are: 

466 bar at 138.9 oC, 274 bar at 121.1 oC, and 326 bar at 91.1 oC (Firoozabadi 1986). The simulation 

utilized the Soave–Redlich–Kwong Peneloux (SRK Peneloux) EOS, injecting 1.2 pore volumes of 

gas to assess phase behavior and miscibility pressure. The SRK Peneloux EOS is widely recognized 
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for its advantages in reservoir simulations and PVT studies. Its density correction effectively 

addresses the liquid density inaccuracies inherent in the standard SRK EOS, which is critical in 

simulations like slimtube tests, where accurate density calculations influence phase behavior and 

miscibility (Amao 2014). Additionally, it maintains the robust thermodynamic framework of SRK 

while improving liquid and gas phase accuracy, as supported by recent findings (Sun 2022). The 

model ensures consistency in phase equilibrium across diverse conditions. The SRK-Peneloux 

EOS is particularly effective in systems where accurate liquid density is crucial, such as in reservoir 

simulation and phase behavior modeling of oil reservoirs. It has been shown to perform better than 

PR EOS for certain hydrocarbon mixtures, where liquid phase behavior predictions are challenging 

(Pedersen, 2006). Unlike the Peng-Robinson EOS (PR EOS), which often underestimates liquid 

densities, the SRK-Peneloux EOS incorporates a volume correction term, ensuring better accuracy 

in predicting liquid phase densities for both pure components and mixtures. This volume 

consistency reduces errors in phase equilibrium calculations, making it highly reliable for both 

single-component and multi-component systems (Peneloux, 1982). Additionally, the SRK-

Peneloux EOS retains the computational simplicity of the original SRK EOS while significantly 

enhancing its precision. This combination of efficiency and accuracy makes it particularly suitable 

for reservoir simulation tools like PVTsim, where computational performance and model reliability 

are critical. Figure 5 shows how MMP is determined through slimtube simulation and Table 3-1 

presents the literature value, simulated value, and relative error. The results from the slimtube 

simulation have a relative error less than 8% compared to the experimental values, demonstrating 

a close match between the experimental and simulated MMP measurements. 
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FIGURE 3-2: Comparison of MMP determination through slimtube simulation (our work) and 

experiments (Savage 2004) 

TABLE 3-1: Experimental (Savage 2004) and simulated MMP 

Gas/Oil 

System  

Simulated 

MMP (bar) 

Mean 

MMP (bar) 

Standard 

deviation (bar) 

Experimental 

MMP (bar) 

Absolute Relative 

error (%) 

1 432 433 1.91 466 7.15 

437 

429 

2 278 278 1.19 274 1.58 

281 

276 

3 350 347 1.41 326 6.44 

347 

344 

 

Crude oil and produced gas from the Hibernia Field, offshore Newfoundland, Canada was 

employed at reservoir temperature of 99 oC. The gas mixture composition was calculated based on 

each capture method before simulating. The amount of CO2 added to the natural gas varied from 0 

to 100 %, with and without impurities. The oil was first tuned to match with critical temperature 

and critical pressure. It was then simulated with the different gas mixtures to determine MMP. SRK 

Peneloux EOS, 2000 number of cells, and 4000 number of time steps were used in the simulations. 

1.2 pore volumes of gas were injected. Five gas mixtures were simulated. Mixtures were the 

combination of natural gas produced from Hibernia with: i) pure CO2; ii) CO2 captured by 

adsorption and absorption capture from natural gas (1 % CH4 impurity); iii) CO2 captured by 
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adsorption and absorption capture from flue gas (1 % N2 impurity); iv) CO2 captured by membrane 

technology from a natural gas source (10 % CH4), and v) CO2 captured by membrane technology 

from a flue gas source (8 % N2 and 2 % O2). Each MMP was evaluated three times to obtain the 

standard deviation value. Simulation details are shown in Table 3-2. 

TABLE 3-2: Slimtube simulation parameters 

Simulation Parameter Fluids used 

• 2000 cells 

• 4000 timesteps 

• SPK Peneloux 

EOS 

• 1.2 pore volumes 

injected 

• Reservoir 

temperature 99oC 

• Hibernia crude oil 

• Gas mixture: Hibernia produced gas mix with: 

i. Pure CO2 

ii. CO2 captured by adsorption and absorption capture from 

natural gas 

iii. CO2 captured by adsorption and absorption capture from 

flue gas 

iv. CO2 captured by membrane technology from natural gas  

v. CO2 captured by membrane technology from flue gas 

 

4. Results and Discussion 

The standard deviation value for MMP is calculated around 45 psia. Figure 5 presents the results 

for mixtures of natural gas with pure CO2, and with CO2 sourced from adsorption and absorption. 

The CO2 captured by adsorption/absorption technology from a natural gas source contains 1 % 

CH4, and the CO2 captured from a flue gas source has 1 % N2. This figure presents the MMP 

calculated by the slimtube simulations and the decrease in MMP compared to simple natural gas 

injection. The MMP reduction was calculated based on the MMP estimated for natural gas only, 

using the equation (1): 

 𝑀𝑀𝑃𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = [
𝑀𝑀𝑃 (𝑁𝐺) − 𝑀𝑀𝑃(𝑁𝐺 𝑤𝑖𝑡ℎ 𝐶𝑂2)

𝑀𝑀𝑃 (𝑁𝐺)
] 100% (1) 
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The MMP variation was calculated based on the MMP estimated for mixture of natural gas and 

pure CO2 with oil, using the equation (2): 

𝑀𝑀𝑃𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = [
𝑀𝑀𝑃 (𝑁𝐺 𝑤𝑖𝑡ℎ 𝐶𝑂2) − 𝑀𝑀𝑃(𝑁𝐺 𝑤𝑖𝑡ℎ 𝑖𝑚𝑝𝑢𝑟𝑒 𝐶𝑂2)

𝑀𝑀𝑃 (𝑁𝐺 𝑤𝑖𝑡ℎ 𝐶𝑂2)
] 100% (2) 

As shown in Figure 3-3, the addition of 10% CO₂ to the gas mixture does not significantly impact 

the MMP compared to natural gas injection. This is because the proportion of CO₂ is relatively 

low, and at such a low concentration, its effect on the miscibility of the gas mixture with the oil is 

minimal. The results become more pronounced as the percentage of CO₂ in the gas mixture 

increases. This behavior is expected, as CO₂ plays a critical role in enhancing the miscibility of the 

injected gas with the oil. Since CO₂ requires a much lower pressure to achieve miscibility compared 

to natural gas, its addition reduces the MMP, thereby making it easier for the CO₂ to mix with the 

oil and improve oil recovery. Moreover, the presence of CO₂ also impacts sweep efficiency, which 

is the ability of the injected fluid to displace oil from the reservoir. CO₂, especially in higher 

concentrations, enhances sweep efficiency by promoting gravity segregation. This is more effective 

in the water saturation zone than in the oil saturation zone, as CO₂ tends to migrate upwards due to 

its lower density compared to the oil, thus improving the displacement of oil and reducing the 

MMP. The significance of CO₂ in improving oil recovery is evident from the reduction in MMP: a 

30% reduction when the gas mixture contains 50% CO₂, a 40% reduction when the mixture is 70% 

CO₂, and a 50% reduction with pure CO₂ injection. The impact of impurities in CO₂ on MMP is 

also an interesting finding. Although numerical results show a slight increase (about 1%) in MMP 

with the presence of impurities (e.g., CH₄ or N₂) in the CO₂ stream, this difference is not easily 

discernible in the graph. This suggests that, while impurities do affect the MMP, their influence is 

minimal compared to the effect of increasing CO₂ concentration. It highlights that even with 

impurities in the CO₂, the ability of CO₂ to enhance miscibility and oil recovery remains significant. 
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Finally, under the reservoir conditions of 4503.7 psia at 99°C, at least 70% CO₂ is required in the 

gas mixture to achieve miscibility with Hibernia oil, whether the CO₂ is pure or sourced from 

adsorption and absorption technologies. This threshold is important for designing CO₂ injection 

strategies, as it indicates the minimum concentration of CO₂ necessary for effective miscibility and, 

by extension, enhanced oil recovery. The study also points to the viability of CO₂ captured from 

various sources, including natural gas, flue gas, and post-combustion sources, even if these gases 

contain minor impurities, without significantly compromising the MMP and the overall efficiency 

of CO₂-EOR methods.  

 

FIGURE 3-3: Simulated MMP of CO2-natural gas mixture (pure CO2 and CO2 from adsorption/absorption 

capture) 

Figures 3-4 and 3-5 provide detailed insights into the effect of impurities in CO₂ on the minimum 

miscibility pressure (MMP) for various gas mixtures, highlighting the differences between CO₂ 

captured from natural gas and flue gas sources. These results are crucial for understanding how 

impurities, particularly methane (CH₄), nitrogen (N₂), and oxygen (O₂), influence the performance 

of CO₂-enhanced oil recovery (EOR) processes. In both figures, the relationship between CO₂ 
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concentration in the mixture and MMP reduction is observed. The figure shows that, when 10% 

CO₂ is added to the gas mixture, there is little to no noticeable change in MMP, indicating that such 

a small proportion of CO₂ does not significantly affect the miscibility of the mixture. This confirms 

that the amount of CO₂ injected needs to be substantial for it to meaningfully reduce MMP and 

achieve miscibility with oil. 

When CO₂ captured from natural gas, which contains 10% CH₄ impurity, is used in the mixture, 

the MMP increases only slightly, by around 1-7%, as the CO₂ concentration rises from 10% to 

100%. This steady, but gradual change in MMP can be attributed to the fact that CH₄, while a 

relatively minor impurity in the mixture, still reduces the efficiency of CO₂ in achieving miscibility, 

though not drastically. CH₄ has a lower solubility in oil compared to CO₂, which slightly affects 

the CO₂'s ability to mix with the oil, but the overall impact is minimal until higher concentrations 

of CO₂ are used. The graph also shows a change in the slope of MMP reduction around the 70% 

CO₂ mark, which signifies the optimal concentration for achieving the best miscibility and oil 

recovery efficiency. 

In stark contrast, when CO₂ captured from flue gas, containing 8% N₂ and 2% O₂, is used in the 

mixture, the MMP shows a more pronounced change, varying between 6% and 30%. This dramatic 

difference is primarily due to the higher impurity levels in the CO₂, especially N₂, which 

significantly alters the behavior of the gas mixture. N₂, which is less miscible with oil than CO₂, 

increases the required pressure for miscibility and reduces the solubility and diffusivity of CO₂ in 

the oil. This leads to a higher MMP and ultimately makes it more difficult for CO₂ to mix with oil 

at lower concentrations. As shown in the figures, when the CO₂ content reaches 60%, the MMP 

reduction becomes more rapid, and at 100% CO₂, the reduction reaches a maximum of 35%. 

However, the MMP reduction slows down significantly after this point, highlighting that higher 

CO₂ concentrations yield diminishing returns in terms of reducing MMP. The optimum 
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concentration for CO₂ from flue gas sources appears to be around 60%, after which increasing the 

CO₂ concentration further does not drastically improve the miscibility conditions. 

The presence of methane (CH₄) in CO₂ captured from natural gas has a minimal impact on 

minimum miscibility pressure (MMP), with a slight increase in MMP as CO₂ concentration rises, 

indicating that CH₄'s effect on CO₂ miscibility is relatively minor at low concentrations. In contrast, 

nitrogen (N₂) and oxygen (O₂) impurities in CO₂ captured from flue gas significantly affect MMP 

by increasing the required pressure for CO₂ miscibility, as N₂ has a lower solubility in oil, reducing 

CO₂ injection efficiency and making it more challenging to achieve miscibility at lower CO₂ 

concentrations. This means that CO₂ from natural gas, even with some CH₄ impurity, can be used 

effectively for enhanced oil recovery (EOR) with minimal adjustments, while CO₂ from flue gas 

requires higher concentrations (80-100%) to reach the same level of miscibility, limiting flexibility 

in EOR operations. 

 

FIGURE 3-4: Simulated MMP of CO2-natural gas mixture (pure CO2 and CO2 from membrane capture) 
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FIGURE 3-5: Variation in MMP comparing 10% CH4 and 10% N2+O2 (natural gas vs flue gas for 

membrane technology) 

 

This study provides a comprehensive analysis of how CO₂ source and capture techniques influence 

Minimum Miscibility Pressure (MMP) in Enriched Water-Alternating-Gas (WAG) injection 

processes, particularly in the context of CO₂ supply limitations and their potential impacts on 

offshore Newfoundland reservoirs, such as Hibernia. A key aspect of this research is its focus on 

how varying CO₂ concentrations and impurity levels in the injected gas affect the MMP, which is 

crucial for optimizing enhanced oil recovery (EOR) processes. The results reveal that CO₂ 

concentrations below 10 % have negligible impacts on MMP, which aligns with expectations as 

the small amount of CO₂ in the mixture is insufficient to alter the miscibility pressure significantly. 

However, as CO₂ concentrations increase, the reduction in MMP becomes more pronounced due 

to CO₂’s inherently lower miscibility pressure compared to natural gas, which requires higher 

pressures for miscibility with crude oil. The study shows that pure CO₂ injection can lead to a 

substantial reduction in MMP, up to 50 %, highlighting CO₂’s effectiveness in lowering pressure 

requirements for achieving miscibility. 
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When impurities are introduced into the CO₂ mixture, the impact on MMP becomes more complex. 

For example, CO₂ captured from natural gas, containing 10 % CH₄, has minimal impact on MMP, 

with variations of only 1–7 %. This small variation can be attributed to the similar miscibility 

characteristics of CO₂ and CH₄, which do not significantly alter the pressure needed for miscibility. 

In contrast, CO₂ sourced from flue gas, with 8% N₂ and 2 % O₂ impurities, leads to a notable 

increase in MMP, up to 30 %. The higher miscibility pressure of N₂, coupled with its detrimental 

effects on CO₂ solubility and diffusivity in oil, drives this increase. N₂ reduces the ability of CO₂ 

to dissolve in the oil phase, thereby hindering the miscibility process. These findings underscore 

the importance of carefully considering the composition of CO₂ streams, particularly in offshore 

operations such as Hibernia, where post-combustion CO₂ streams, typically rich in N₂, will be a 

significant source of CO₂ for EOR applications. Understanding the effects of impurities, especially 

N₂, is crucial for designing effective CO₂ injection strategies and ensuring that miscibility 

conditions are met for optimal oil recovery. 

The study's identification of critical thresholds for achieving miscibility in Enriched Water-

Alternating-Gas (WAG) injection processes offers key insights into the feasibility of CO₂-

enhanced oil recovery (EOR) in various scenarios. Specifically, the research indicates that pure 

CO₂ and CO₂ from adsorption or absorption processes require a minimum of 70 % CO₂ in the 

mixture to achieve miscibility under reservoir conditions. This contrasts with CO₂ mixtures 

containing 80% CO₂ from natural gas with CH₄ impurities, which still show a viable path to 

miscibility, but with less efficiency. Importantly, CO₂ sourced from flue gas, even at high 

concentrations, fails to achieve miscibility under typical reservoir conditions. This highlights a 

significant limitation for using CO₂ from flue gas for EOR, particularly in offshore applications 

like Newfoundland, where CO₂ capture will likely involve post-combustion emissions with 

significant levels of N₂ impurities. The threshold findings emphasize the critical role of CO₂ purity 
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in achieving optimal miscibility conditions and underline the necessity of incorporating CO₂ 

composition into planning and strategy for offshore EOR projects. 

The research also reveals important patterns in MMP reduction, particularly with the slope changes 

in the reduction curves. At around 70 % CO₂ for pure CO₂ injections and 60 % for flue gas-derived 

CO₂, these slope changes act as key indicators for optimizing CO₂ mixtures to reach miscibility 

efficiently. These thresholds are not only of technical significance but offer practical guidance for 

operators when adjusting injection strategies, thus improving the overall efficiency of EOR 

operations. The novelty of this study lies in addressing the challenge of limited CO₂ supply, a 

significant constraint for many EOR projects. The research builds on lessons from previous 

unsuccessful CO₂-EOR projects, such as those in Denmark and Norway, where insufficient CO₂ 

availability prevented successful implementation ( Carbon capture, utilization and storage: We’re 

sending carbon back where it came from 2021). By introducing the concept of Enriched WAG 

injection, where CO₂ is combined with natural gas to meet miscibility requirements, the study 

proposes a solution to the resource constraint issue. This combination allows for more flexible and 

sustainable CO₂ management, particularly in regions where CO₂ sources are limited or expensive. 

This research underscores the critical role that CO₂ purity plays in enhancing the efficiency of 

enhanced oil recovery (EOR) strategies, particularly in regions like Newfoundland, where offshore 

facilities typically rely on CO₂ from post-combustion sources. As CO₂-EOR becomes a more viable 

strategy, it is essential to account for the impact of CO₂ impurities on miscibility dynamics, which 

can significantly affect recovery outcomes. The study provides valuable insights into managing 

CO₂ mixtures effectively, offering guidelines for optimizing injection strategies and maximizing 

recovery potential while minimizing the challenges posed by CO₂ impurities. Specifically, it 

highlights how CO₂ from different sources (natural gas, flue gas, and post-combustion) affects 

miscibility and EOR efficiency. These findings offer actionable insights for immediate application 
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in projects like Hibernia, while also contributing to broader efforts to advance carbon utilization as 

part of the global energy transition. By reducing the reliance on pure CO₂ and optimizing CO₂-

EOR methods, this research presents a pathway for improving oil recovery and advancing carbon 

management, even under constrained CO₂ availability. Ultimately, this study represents a 

significant step forward in enabling more efficient use of CO₂ in offshore reservoirs and contributes 

to the goal of reducing carbon emissions through improved carbon capture, utilization, and storage 

(CCUS) strategies. 

5. Conclusion 

A comprehensive literature review was conducted to examine CO₂ capture technologies and their 

impact on CO₂ mixtures and Minimum Miscibility Pressure (MMP). A slimtube simulation was 

performed using PVTsim software, utilizing crude oil and produced gas samples from the Hibernia 

Field offshore Newfoundland, Canada, and varying CO₂ concentrations ranging from 0 to 100 

mol%. The key findings from the simulation and analysis are as follows: 

• Adsorption and absorption technologies were found to capture CO₂ with higher purity than 

membrane technology. 

• The impurities in CO₂ depend on the source: methane (CH₄) is typically present in CO₂ 

from natural gas streams, while oxygen (O₂) and nitrogen (N₂) are common in CO₂ from 

flue gas streams. 

• Mixtures of CO₂ and natural gas were shown to be effective in reducing MMP, enhancing 

the potential for miscibility. 

• No significant change in MMP was observed when CO₂ concentrations were less than 10%. 

• Under reservoir conditions, miscibility could be achieved with 70 % CO₂ in the gas mixture 

for both pure CO₂ and CO₂ sourced from adsorption and absorption technologies. However, 
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80 % CO₂ was required for CO₂ from membrane technology sourced from natural gas, and 

miscibility could not be achieved with CO₂ from flue gas when using membrane 

technology. 

• Even small concentrations of impurities (as low as 1 % CH₄ and 1 % N₂) were found to 

significantly increase MMP. 

• The impurities present in flue gas streams (O₂ and N₂) had a more substantial impact on 

increasing MMP compared to the CH₄ impurity found in natural gas streams. 

These findings underscore the importance of carefully considering CO₂ source and purity when 

designing CO₂-EOR projects, particularly in offshore environments where impurity levels can 

significantly impact the miscibility and efficiency of enhanced oil recovery processes. 
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Chapter 4 : DATA DRIVEN PREDICTION OF THE 

MMP BETWEEN MIXTURES OF OIL AND GAS 

USING DEEP LEARNING 

Preface 

A version of this chapter has been published in peer reviewed conference paper: Pham, Q.C., Trinh, 

Q.T and James, L.A . 2021 Data driven prediction of the MMP between mixtures of oil and gas 

using Deep Learning. Presented at the 40th International Conference on Ocean, Offshore and Arctic 

Engineering. Virtual, June 21-30. https://doi.org/10.1115/OMAE2021-63018. I am the primary 

author. Co-author Dr. Trung Trinh provided technical assistance for data analysis and reviewed the 

first draft. Co-author Dr. Lesley James is senior supervisor. Dr. James reviewed, provided technical 

assistance, and valuable insights to improve the paper concept. 

1. Literature review 

1.1. Machine Learning (ML) used for thermodynamic properties 

Detailed knowledge of a fluid’s physical properties is required for all reservoir computations 

playing an important role in predicting reservoir performance. Consequently, these properties are 

crucial factors in process design and project success. Bubble point pressure (Pb) and oil formation 

volume factor (Bo) are the most frequently studied properties, as they are the key parameters in 

most petroleum engineering calculations (Farasat 2013). Bubble point pressure is defined as the 

pressure at which the first bubble of a gas will come out of the liquid oil solution (Danesh 2003). 

Oil formation volume factor is interpreted as the ratio of the volume of oil (plus the gas in solution) 

at the prevailing reservoir temperature and pressure to the volume of oil at standard conditions. 

Their values can be obtained through experimental approach; however, the experimental 

https://doi.org/10.1115/OMAE2021-63018
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procedures are generally time-consuming and costly (Danesh 2003). Moreover, in some cases, 

reservoir fluid samples are not available or not good quality enough to conduct the measurement. 

Pb and Bo can also be estimated by modelling using the thermodynamics Equations of State (EOS); 

however, this methodology requires the experimental data to tune the model. In addition, no EOS 

has been proven to be reliable EOS for predicting all fluid properties at all conditions. Artificial 

Intelligence (AI) modelling has been used recently to predict Pb and Bo, since this method can 

provide accurate results. Thirty-eight papers applying ML to estimate Pb, and Bo were reviewed 

(Ramirez 2017, Ikiensikimama 2012, Seyyedattar 2020, Elkatatny 2017, Numbere 2013, Yang 

2020, Alakbari 2016, Al-Marhoun 2002, Gharbi 1999, Osman 2001, Alimadadi 2011, 

Onwuchekwa 2018, Sola-Aremu 2019, Salehiniaa 2016, Shojaei 2014, Gharb 1997, Elsharkawy 

1998, Gharbi 1999, Boukadi 1999, Abdel-Aal 2002, Goda 2003, Malallah 2006, El-Sebakhy 2009, 

El-Sebakhy 2007, Dutta 2010, Moghadam 2011, Asadisaghandi 2011, Seifi 2012, Khoukhi 2012, 

Farasat 2013, Rafiee-T 2013, Kazemi 2013, Al-Marhoun 2014, Karimnezhad 2014, Ahmadi 2014, 

Afshar 2014, Ahmadi 2015, Moussa 2018). Prior to 2000, little research using ML was completed 

(5 over 38 papers); from 2001 to 2010, the use of ML increases steadily. A sharp increase in the 

number of articles is observed from 2011 to present (25 over 38 papers), which represents the 

explosion in ML application for Pb and Bo estimation. ANN (Artificial Neural Network), which is 

the most powerful statistical tool for classifying complex systems and is constructed based on the 

human brain’s data analysis pattern, is the most employed algorithm (23 over 38 papers). An ANN 

model comprises multilayered, interconnected networks including the input layer, hidden layers, 

and output layer. The learning process can be adjusted through the connection weights between 

layers based on a specific objective function. The drawback of this algorithm is over-fitting training 

datasets, poor reproducibility of the results, requirement of a good guess, and satisfying adjustment 

architectural parameters of the networks from the user (Curilem 2011, Eslamimanesh 2012). 
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Another algorithm used is SVM (Support Vector Machine) (6 over 38 papers), which is a 

supervised learning mode proposed by Vapnik (1995). This algorithm is based on the kernel neuron 

function, which is able to solve complex, highly nonlinear problems. It allows projection to higher 

planes and can determine the degree of overlap between the different parameters (Trontl 2007). 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is also used by many researchers (6 over 38 

papers). This algorithm uses Sugeno fuzzy inference system and is the combination of neural 

network and fuzzy logic. Thus, it has the capability to extract the benefits of both mentioned in a 

single platform (Tahmasebi 2012). Fuzzy logic is a series of conversion processes: input parameters 

to input membership functions, then to set of fuzzy rules, later to output characteristics, and next 

to output membership functions, finally to one valued output or any classification based on output 

(Klir 1995). Other ML algorithms (11 over 38 papers) are used to estimate Pb, and Bo included 

Random Forest Repressor, Radial Basis Function (RBF), Alternating Conditional Expectation, 

Elastic Net Regression, Adaptive Boosting and Collaborative Filtering, Multilayer Perceptron 

Networks, etc. Some researchers combine Machine Learning algorithms with an Optimized 

Algorithm (5 over 38 papers), such as Genetic Algorithm (GA) or, Particle Swarm Optimization 

(PSO) to achieve a better Pb and Bo prediction. 

1.2. Machine Learning (ML) used for MMP 

The literature review for Machine Learning used for MMP is presented and updated in the Chapter 

2 part 3. 

2. Methodology 

2.1 Data preparation 

The validity and comprehensiveness of the used datasets has a significant effect on the accuracy 

and reliability of developed model (Rafiee 2013, Gharagheizi  2008, Gharagheizi  2011). In this 
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work, 250 datasets were collected from different sources (Aleidan 2011, Nekouie 2018, Jaubert 

2002, Kanatbayev 2015, Alshuaibi 2019, Alshuaibi 2018, Firoozabadi 1986, Yuan 2005, Yellig 

1980, Eakin 1988, Metcalfe 1982).. Data set in this study consists of reservoir temperature, oil 

characteristics (molecular weight MW=∑MWi*xi, ratio of volatile components C1, N2 and 

intermediate components C2-C6, CO2, H2S), and gas characteristics (mole percentage of CO2, C1, 

N2, H2S, C2
+). The ranges of the input and output data including the minimum and maximum values 

are presented in the Table 4-1. 

TABLE 4-1: Range of input/output used in this study 

Parameter Minimum Maximum  

Reservoir temperature (K) 304.26 444.26 

C
h

a
ra

ct
er

is
ti

c O
il

 

Oil molecular weight 

(g/mol) 

41.05 249.91 

Ratio of volatile 

components and 

intermediate 

components 

0 1.33 

G
as

 

CO2 mol% 0 100 

C1 mol% 0 100 

N2 mol% 0 80.1 

H2S mol% 0 100 

C2
+ mol% 0 58.47 

MMP (psia) 933 6758.86 

 

After constructing the datasets, the data must be normalized, which can be done through several 

equations. In this work, data were scaled between [0.1, 0.9] following the equation (1):  

𝑥𝑛 =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
∗ 0.8 + 0.1 (1)                             

The data were then split into training and test datasets, with 80% of the samples used for training 

and 20% for testing. This is considered a good proportion for modeling nonlinear functions 

(Granger 1993).  Figure 4-1 shows the process used to construct the ML model in this study. The 

performance and accuracy of the proposed model was evaluated using the coefficient of 

determination (R2) RMSE, and RMSE (%) which are defined by equations (2), (3), and (4), 
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respectively. The ideal model is expected to have an R2 value close to one and RMSE value as 

small as possible. 

𝑅2 = 1 −
∑ (𝐶𝑎𝑙𝑐. (𝑖) − 𝐸𝑥𝑝. (𝑖))

2𝑁
𝑖

∑ (𝐶𝑎𝑙𝑐. (𝑖) − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐸𝑥𝑝. (𝑖)))
2

𝑁
𝑖

(2) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ |𝐶𝑎𝑙𝑐. (𝑖) − 𝐸𝑥𝑝. (𝑖)|2𝑁

𝑖 (3)                           

𝑅𝑀𝑆𝐸(%) =
𝑅𝑀𝑆𝐸

𝑀𝑀𝑃 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
(4) 

 

FIGURE 4-1: Flow chart for constructing ML algorithm                   
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2.2 Deep Learning: multiple fully connected networks 

A fully connected network (FCN) consists of a series of fully connected layers, as shown in Figure 

4-2, and its basic unit is a neuron. Each fully connected layer affects a transformation of the feature 

space in which the problem resides. This technique is capable of solving complex problems thanks 

to the inherent flexibility of the learned representations.  

 

FIGURE 4-2: Deep Learning algorithm 

Consider a neural network with L hidden layers. Let l ∈ {1…L} index the hidden layers of the 

network. Let z(l) denote the vector of inputs into layer l, y(l) denotes the vector of outputs from 

layer l (y (0) = x is the input). W(l) and b(l) are the weights and biases at layer l. The feed-forward 

operation of a standard neural network can be described as (for l ∈ {0…L − 1} and any hidden unit 

I, where f is any activation function: 

𝑧𝑖
(𝑙+1)

= 𝑤𝑖
(𝑙+1)

𝑦𝑙 + 𝑏𝑖
(𝑙+1) (5)                                      

𝑦𝑖
(𝑙+1)

= 𝑓(𝑧𝑖
(𝑙+1)

) (6) 

FCN tends to memorize training data entirely and will keep training and learning as long as the 

user wants. When training a large network of relatively small datasets, the model could learn the 
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statistical noise in the training data, which results in poor performance when the model is evaluated 

with new data. The overfitting problem can be improved through regularization algorithms. 

Early Stopping 

One approach to lower the overfitting is to determine a point during training, called Early Stopping, 

when the model stops generalizing and starts learning the statistical noise in the training dataset. 

The model is trained once for a large number of training epochs. During training, the model is 

evaluated after each epoch. The training process is stopped only when the performance of the model 

on the validation dataset starts to degrade, which means the accuracy begins to decrease, as 

illustrated in Figure 4-3. There are three factors to be considered while applying early stopping: 

monitoring model performance, trigger to stop training, and the choice of model to use. In order to 

monitor model performance, it is necessary to choose a dataset and a metric to evaluate the model 

during training. It is common to use 30 % of the training datasets, called subset, as the validation 

dataset and the loss on a validation dataset as the metric to monitor the model. To reduce the 

computational cost, the model is evaluated less frequently, such as every, for example 2, 5, or 10 

training epochs (Prechelt 2012). A trigger stopping is then chosen. In the simplest case, when the 

performance on the validation dataset decreases compared with the previous training epoch, the 

training process is stopped. However, since the training of a neural network is stochastic and can 

be noisy, the first sign of overfitting may not be the best point to stop the training. The choice of 

model, especially the weight, depends strongly on the trigger chosen to stop the training process. 
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FIGURE 4-3: Model accuracy on training and test sets ( Orr Jr 2007) 

K-fold Cross Validation 

Training and testing on the same dataset can lead to overfitting, where the model performs well on 

the training data but poorly on new, unseen. data. To address this, the k-fold Cross Validation 

(KCV) technique is employed. As illustrated in Figure 4-4, this method divides the dataset into k 

equally sized subsets (folds). The model is trained on k-1 folds and tested on the remaining fold, 

ensuring that every data point is used for both training and validation exactly once. For example, 

in a 5-Fold Cross Validation, the dataset is split into five parts. The model is trained on four subsets 

(80 % of the data) and validated on the fifth subset (20 %). This process is repeated five times, 

each time using a different subset for validation. The prediction performance is then averaged over 

these k iterations, as shown in Figure 4-5, to provide a more reliable evaluation of the model’s 

generalization ability. By systematically rotating the training and validation sets, KCV reduces bias 

in performance evaluation, minimizes overfitting risks, and ensures robust testing across various 

data configurations. It is particularly useful for datasets of limited size, as it maximizes the use of 

available data for both training and validation while maintaining model reliability. The use of this 
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technique is essential in reservoir engineering problems, where prediction accuracy on unseen data 

directly impacts decision-making and optimization processes. 

 

FIGURE 4-4: Flowchart of a typical cross validation workflow 

 
FIGURE 4-5: K-fold cross validation technique 

3. Results and Discussion 

The Pearson correlation coefficient, ranging from -1 to 1, is a statistical measure that quantifies the 

linear relationship between two variables. A coefficient value closer to 1 or -1 indicates a strong 

linear relationship, while values closer to 0 suggest a weak or no linear relationship. In the context 

of oil-gas Minimum Miscibility Pressure (MMP), a higher absolute value of the Pearson coefficient 
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between input and output variables signifies that the input has a stronger influence on the output. 

This reflects how consistently and predictably the MMP responds to changes in a single input 

variable in a linear manner. This approach was employed as a sensitivity analysis tool to assess the 

effect of various input factors on MMP, enabling a deeper understanding of the variables that most 

significantly impact miscibility.  

As shown in Figure 4-6, the sensitivity analysis revealed that the most influential factors on MMP 

are reservoir temperature, and the amounts of CO₂ and methane (C₁) in the gas phase, as evidenced 

by their high Pearson coefficient values. This suggests that changes in these variables exert a 

considerable impact on MMP, highlighting their importance in optimizing enhanced oil recovery 

(EOR) strategies. Additionally, the analysis indicated that several variables have a negative 

influence on MMP, such as reservoir temperature, molecular weight, the ratio of volatile to 

intermediate components in the oil phase, and the amounts of methane (C₁) and nitrogen (N₂) in 

the gas phase. These parameters were found to have positive Pearson coefficients, meaning that as 

the values of these factors increase, the MMP also increases. While temperature generally lowers 

the viscosity of the oil and enhances CO₂ solubility, higher reservoir temperatures can sometimes 

have a paradoxical effect depending on the oil composition and gas mixture. The presence of higher 

molecular weight hydrocarbons or the evolution of phase behavior at high temperatures may 

increase the pressure needed for miscibility. The molecular weight of the oil is another significant 

factor in MMP behavior. Heavier oil components (i.e., higher molecular weight) tend to have lower 

diffusivity and solubility for gases like CO₂. As the molecular weight of oil increases, the ability 

of the injected gas to mix with the oil decreases, leading to higher pressures required to achieve 

miscibility. Methane is a light hydrocarbon that is typically present in natural gas and often used 

in enhanced oil recovery (EOR) processes. Although methane can improve the overall volumetric 

efficiency of the injected gas, its presence can increase the MMP. This is because methane, despite 
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being miscible with crude oil at lower pressures than heavier gases, still requires higher pressures 

compared to CO₂. The presence of methane reduces the concentration of CO₂ in the gas phase, 

meaning the injection gas may not be as effective at reducing MMP as pure CO₂. Nitrogen, an inert 

gas commonly found in CO₂ captured from flue gas or natural gas streams, plays a significant role 

in increasing MMP. Nitrogen has a much higher miscibility pressure than CO₂ and does not 

dissolve easily in crude oil. Therefore, its presence in a CO₂-based gas mixture reduces the overall 

solubility of CO₂ in the oil phase, thus requiring a higher injection pressure to achieve miscibility. 

In contrast, the presence of CO₂ and H₂S in the gas phase, especially CO₂, was found to lower 

MMP, which is consistent with findings from previous studies (Abbasi, 2010; Zhang, 2004). CO₂ 

is highly effective in improving oil miscibility, a key factor for successful EOR. Its ability to reduce 

MMP stems from its high solubility in crude oil, which lowers interfacial tension and allows the 

gas to mix with oil at lower pressures. CO₂’s favorable phase behavior with crude oil enables the 

formation of a single-phase mixture, enhancing miscibility. Additionally, CO₂ injection reduces oil 

viscosity, improving flow and displacement efficiency, which further lowers MMP and enhances 

oil recovery in the reservoir. This result supports the idea that CO₂ is a key driver in enhancing 

miscibility, as it facilitates the lowering of MMP, promoting more efficient oil recovery. These 

findings align with the broader literature that emphasizes CO₂'s role in reducing miscibility 

pressure in EOR processes, thereby improving oil recovery efficiency. Hydrogen sulfide (H₂S) can 

reduce MMP by altering oil solubility, similar to CO₂, but is less favorable for EOR due to its 

toxicity and environmental risks. Typically used in combination with CO₂ or other gases, H₂S can 

enhance miscibility but requires careful management to avoid corrosion and safety issues. 



 79 

 

FIGURE 4-6: Importance degree of each parameter on gas-oil MMP 

The Deep Learning model used for predicting MMP was optimized by testing different 

configurations of hidden layers and epochs. After evaluating various setups, the best performance 

was achieved with 5 hidden layers and 1500 epochs. To prevent overfitting and reduce training 

time, Early Stopping was employed. This technique halts the training process when the model's 

performance stops improving, ensuring that it doesn't overfit the data. Even with just 7 epochs, the 

model achieved strong results with an R² value of 0.96 and an RMSE of 5.4 %, close to the 

performance observed with 1500 epochs, which was R² = 0.97 and RMSE = 4.7 %. However, it is 

important to note that the training and test sets were randomly selected, which may make the results 

specific to the chosen data. To improve generalization and assess the model’s robustness, k-fold 

Cross Validation was used. This technique splits the data into five subsets (folds), rotating the 

training and test sets for each fold. The performance is averaged over all folds to reduce bias and 

improve the model's generalizability. The Deep Learning model with k-fold Cross Validation 

yielded an R² of 0.954 and RMSE of 5.8 %, indicating solid predictive performance. For further 

comparison, the Deep Learning model was evaluated against other machine learning techniques 
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like Decision Tree and Random Forest Regression. The results, shown in Table 4-2, demonstrate 

that the Deep Learning model outperforms both Decision Tree and Random Forest models, which 

had R² values below 0.9 and RMSE values greater than 10 %. This highlights the superiority of 

Deep Learning in predicting MMP, particularly in handling complex relationships and large 

datasets. Additionally, the proposed Deep Learning model was compared with well-known 

correlations (e.g., Alston et al. and Sebastian et al. correlations), but it was noted that these 

correlations have limitations. They are only applicable to CO₂ streams with a restricted range of 

impurities, which makes them less versatile than the Deep Learning model, capable of handling 

more varied CO₂ mixtures and impurity levels. This further demonstrates the value of the Deep 

Learning approach for generalizing MMP prediction across diverse scenarios, including those with 

high impurity concentrations. 

TABLE 4-2: Simulation results for different ML techniques 

Algorithm R2 RMSE (%) 

Decision Tree 0.86 13.1 

Random Forest 0.87 12.4 

Deep Learning 0.96 5.4 

Early Stopping 0.97 4.7 

K-fold Cross validation Fold 1: 0.98 Fold 1: 3.9 

Fold 2: 0.92 Fold 2: 8.8 

Fold 3: 0.96 Fold 3: 5.4 

Fold 4: 0.97 Fold 4: 4.7 

Fold 5: 0.95 Fold 5: 6.2 

Average: 0.954 Average: 5.8 

 

Figures 4-7 to 4-11 compare the MMP values predicted by various models with experimental data 

from the test set. These figures illustrate how well each model predicts MMP, with the vertical axis 

representing the predicted MMP value and the horizontal axis showing the actual test set point. 

The R² and RMSE values are consistent with these plots, indicating model performance. The results 
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show that the Deep Learning models outperform both the Decision Tree and Random Forest models 

in predicting oil-gas MMP. 

The superior performance of Deep Learning models can be attributed to their ability to handle 

complex relationships and patterns in the data. In contrast, the Decision Tree algorithm often 

struggles with overfitting, meaning it may perform exceptionally well on training data but fail to 

generalize to unseen data. This overfitting is a common issue for Decision Trees, where small 

changes in data can significantly impact the model's structure, leading to instability and inaccurate 

predictions. 

The Random Forest algorithm mitigates some of the Decision Tree’s overfitting problems by 

constructing multiple trees and combining their outputs. However, Random Forest models are 

computationally intensive and require more training time. While Random Forest performs well for 

classification tasks, it is less suited for regression problems like MMP prediction because it may 

not extrapolate effectively beyond the training data range, especially in the case of noisy datasets, 

leading to potential overfitting. This explains why the Deep Learning models, which can better 

handle large datasets and complex regressions, provide more accurate and stable MMP predictions 

compared to Decision Tree and Random Forest models. 
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FIGURE 4-7: Deep Learning model R2= 0.96, RMSE=5.4 % 

 
FIGURE 4-8: Deep Learning with Early Stopping model R2= 0.97, RMSE=4.7 % 
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FIGURE 4-9: Deep Learning with k-fold Validation Cross model R2= 0.954, RMSE=5.8 % 

 
FIGURE 4-10: Decision Tree model R2= 0.86, RMSE=13.1 % 
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FIGURE 4-11: Random Forest model R2= 0.87, RMSE=12.4 % 

4. Conclusions 

The literature review focused on the application of machine learning (ML) for predicting key 

physical properties, such as Pb, Bo, and Minimum Miscibility Pressure (MMP), using various 

algorithms, with a specific emphasis on Fully Connected Neural Networks (FCN). This model was 

optimized with Early Stopping and k-fold Cross Validation techniques. Below are the key 

conclusions drawn from the reviewed studies: 

• ML Success: Machine learning has been proven effective in predicting fluid physical 

properties, particularly Pb and Bo. Among the algorithms, Artificial Neural Networks 

(ANN) are the most widely used, appearing in 23 out of 38 studies. 

• Dataset Limitations: A major limitation in recent studies is the lack of comprehensive 

datasets, especially regarding the CO₂ concentration range in gas sources, which hinders 

the accuracy of MMP predictions. 

• Influential Factors on MMP: The reservoir temperature and the amounts of CO₂ and 

methane (C₁) in the gas source were identified as the most influential factors affecting oil-

gas MMP. 
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• MMP Sensitivity: Increasing reservoir temperature, molecular weight of the oil, the ratio 

of volatile to intermediate components in the oil phase, or the amounts of C₁ and nitrogen 

(N₂) in the gas phase tend to increase MMP, indicating a higher-pressure requirement for 

miscibility. 

• Effect of CO₂ and H₂S: The presence of CO₂ and H₂S in the gas phase, especially CO₂, 

reduces MMP, making the oil and gas more miscible and improving oil recovery. 

• Deep Learning Performance: The Deep Learning model outperformed other machine 

learning techniques, achieving an R² value of 0.96 and an RMSE of 5.4 %, indicating strong 

predictive accuracy for MMP. 

• Early Stopping Optimization: The Early Stopping technique proved effective in optimizing 

training time, with a good result obtained after only 7 epochs. 

• K-fold Cross Validation: The application of k-fold Cross Validation, using five folds, 

resulted in an R² value of 0.954, demonstrating the model's robustness and ability to 

generalize well across different data subsets. 

• Comparison with Other Models: The Deep Learning model outperformed traditional 

models such as Decision Tree and Random Forest Regression, with the latter two showing 

lower accuracy (R² values below 0.9 and RMSE values exceeding 10 %). 

This review highlights the strengths of ML, particularly deep learning, in predicting MMP and 

fluid properties, and underscores the importance of dataset quality and model optimization 

techniques in enhancing the predictive power of ML models in petroleum engineering. 
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FIGURE 4-12: Comparison between Deep Learning model and slimtube simulation 
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Chapter 5 : INVESTIGATION CO2 EOR TYPES 

WITH CONSTRAINED CO2 VOLUME AND 

IMPURITIES FOR A HIGH-QUALITY 

SANDSTONE, STRATIFIED OFFSHORE 

NEWFOUNDLAND RESERVOIR. 

Preface 

A version of this chapter has been published in peer reviewed conference paper:  Pham, Q.C., 

Esene, C.E. and James, L.A. 2023. Investigating CO2-EOR Types with Constrained CO2 Volumes 

and Impurities for a High-Quality Sandstone, Stratified Offshore Newfoundland Reservoirs. 

Presented at the SPE Canadian Energy Technology Conference and Exhibition. Calgary, Alberta, 

Canada, March 15 - 16. https://doi.org/10.2118/212811-MS. I am the primary author. Co-author 

Dr. Ebeagbor Cleverson Esene provided technical assistance for reservoir simulation and reviewed 

the first draft. Co-author Dr. Lesley James is senior supervisor. Dr. James set the conceptual 

objectives, reviewed, provided technical assistance and valuable insights to improve the paper 

concept. 

1. Introduction 

The literature review is presented and updated in the Chapter 2 part 4. 

2. Methodology 

Figure 5-1 outlines the methodology employed in this study. The workflow begins with a 

quantitative analysis to determine the constrained CO₂ volume for the offshore reservoir. Using the 

WINPROP module, the compositional fluid was generated and subsequently integrated into the 

geological model constructed in the GEM module of the CMG simulator. The constrained CO₂ 

https://doi.org/10.2118/212811-MS
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volume was incorporated as the daily injection rate during the simulation. Three injection scenarios 

were examined: CO₂ WAG, enriched CO₂ WAG, and Carbonated Water Injection (CWI). The 

simulations assessed the performance of these scenarios under various conditions. A sensitivity 

analysis was then conducted through the CMOST AI module, utilizing the Response Surface 

Methodology (RSM) to evaluate the influence of reservoir characteristics such as temperature and 

pressure on overall performance. To enhance predictive capabilities, proxy models were developed 

using the multi-layer Artificial Neural Network (ANN) option in the CMOST AI module. These 

proxy models enable quick and accurate predictions of the oil recovery factor and the potential CO₂ 

storage capacity for stratified reservoirs, considering both crossflow and non-crossflow conditions. 

This comprehensive approach ensures a robust evaluation of CO₂-EOR techniques tailored for 

offshore reservoirs.  
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FIGURE 5-1: Workflow for investigating CO2 EOR types with constrained CO2 volume and Impurities  

2.1 Estimation of available CO2 volume 

The gas produced from offshore reservoirs, mainly CH4, is combusted following equations 1, 2 and 

3.  

𝐶𝐻4 + 2𝑂2 → 𝐶𝑂2 + 2𝐻2𝑂 (1) 

𝐶2𝐻6 +
7

2
𝑂2 → 2𝐶𝑂2 + 3𝐻2𝑂 (2) 

𝐶3𝐻8 + 5𝑂2 → 3𝐶𝑂2 + 4𝐻2𝑂 (3) 

After the post-combustion process, carbon capture technologies are employed to isolate CO₂ for 

injection. The primary technologies for CO₂ capture include absorption, adsorption, and membrane 
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separation, along with emerging techniques like direct air capture, supersonic separation, hydrate-

based separation, and cryogenic distillation. In this study, membrane technology was chosen due 

to its environmentally friendly nature, compact design, and lower maintenance requirements 

(Pham, 2021). Membrane systems, particularly two-stage setups, are well-established, achieving a 

CO₂ capture efficiency of 90% (Merkel, 2010, Zhao, 2010). Studies indicate that upgrading to a 

three-stage system provides no significant additional benefit (Zhao, 2012). For this research, a 

high-quality sandstone reservoir in offshore Newfoundland serves as the case study. The maximum 

amount of CO₂ that can be injected, based on pore volume (PV), is estimated to be approximately 

0.25 PV, providing critical constraints for simulating enhanced oil recovery (EOR) and carbon 

storage performance. 

The phase behavior of pure CO2 is strongly dependent on reservoir characteristics such as 

temperature and pressure. Table 5-1 shows the characteristics of Newfoundland’s reservoirs 

(Canada-Newfoundland and Labrador Offshore Petroleum Board 2010)  as well as the range used 

for this study. Figure 5-2 shows the phase diagram of pure CO2 and the range of typical reservoir 

conditions. Figure 5-3 illustrates CO2 density as a function of pressure and temperature (Van der 

Meer 2005). Our working range for this study is also indicated on both figures. As the critical 

temperature of CO2 is 31.1 °C and its critical pressure is 7.38 MPa, CO2 is in its supercritical state 

for the range of working conditions used in this study. This means that CO2 acts as a gas-like 

compressible fluid but has a liquid-like density (Budisa 2014). Supercritical CO₂ is non-polar and 

serves as an effective solvent for non-polar and slightly polar organic compounds. Its high density 

and gas-like compressibility allow it to dissolve hydrocarbons, oils, and certain pesticides 

efficiently. This makes it highly valuable in various industries, such as in supercritical fluid 

extraction, cleaning processes, and enhanced oil recovery (EOR). 
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TABLE 5-1: Reservoir characteristics, NL offshore (Canada-Newfoundland and Labrador Offshore 

Petroleum Board 2010) 

Reservoir 

characteristics 

Hibernia 

Field 

Terra Nova 

Field 

Hebron 

Field 

Whiterose 

Field 

Range 

studied 

Pressure (MPa) 26.7-68.4 34.4-34.6 19.4-47.4 30.6-71.3 20-70 

Temperature (oC) 66-107 94-96 49-117 110-125 50-130 

 

 

FIGURE 5-2: Phase behavior of CO2 (Van der Meer 2005) and study range 
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FIGURE 5-3: CO2 density as function of pressure and temperature (Van der Meer 2005) and study range 

2.2 Simulation 

2.2.1 Fluid modelling (compositional simulation) 

The fluid was modelled using the Peng-Robinson equation of state (EOS), which was then tuned 

using laboratory experiments of constant composition expansion and viscosity to obtain a match. 

Table 5-2 shows the comparison between the measured and model fluid parameters. Figures 5-4 

and 5-5 compare the experimental and modelled relative oil volume (ROV) and viscosity, 

respectively. A satisfactory match was reached after 500 regression iterations by the EOS on key 

experimental parameters, such as saturation pressure (Ps), formation volume factor (FVF), gas oil 

ratio (GOR) and API. The EOS model made acceptable predictions for ROV and viscosity 

experiments.  

TABLE 5-2: Measured and modelled properties of oil 

Parameter Measured Before 

Regression 

After Regression Percentage Error 

Reduction 

Ps       (MPa) 37,3 50 36,9 1.1 % 

FVF   (sm3/m3) 1.76 3.45 1.74 3.4 % 

GOR  (sm3/m3) 253 200  236 6.7 % 
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FIGURE 5-4: Comparison between experimental and modelled for ROV 

 
FIGURE 5-5: Comparison between experimental and modelled viscosity 

 

API         (-) 41.7 50.4 41.3 0.72 % 
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2.2.2 Block modelling  

A reservoir block model with dimensions of 1200 m × 500 m × 80 m was constructed, divided into 

five main reservoir zones in the z-direction, all with equal thickness. The zones are separated by 

thin shale beds, which are considered negligible in thickness compared to the sandstone layers, 

allowing control over transmissibility between the layers. In Figure 5-6(a), the vertical 

transmissibility was set to 1 to enable cross-flow and communication between all layers, while in 

Figure 5-6(b), it was set to 0 to prevent cross-flow. The model assumes uniform vertical 

transmissibility, homogeneous reservoir zones with uniform properties, and negligible shale layer 

thickness that does not affect flow. The boundary conditions are assumed to be no-flow, and the 

geometry is simplified with one injector on one side and one producer on the opposite side. The 

reservoir properties are provided in Table 5-3.  

 

Vertical Transmissibility T = 1 in all layers 

 

Vertical Transmissibility T = 0 in all layers 

 
a)Reservoir model geometry with cross flow 

FIGURE 5-6: Reservoir model geometry a) with 

crossflow b) without crossflow 

 
b)Reservoir model geometry without crossflow 

 

 



 101 

TABLE 5-3: Reservoir properties 

Parameter Value 

Reservoir pressure 42,6 MPa 

Length of block model 1200 m 

Width of block model 500 m 

Temperature of reservoir  102 o C 

Well type Vertical 

Well spacing 1200 m 

Layer Permeability Layer 1: 100 mD 

Layer 2: 200 mD 

Layer 3: 250 mD 

Layer 4: 300 mD 

Layer 5: 300 mD 

Average Porosity Layer 1: 0.15 

Layer 2: 0.18 

Layer 3: 0.17 

Layer 4: 0.2 

Layer 5: 0.1 

 

2.2.3 Numerical set-up for different CO2EOR types 

The block model was initialized at 31MPa at a depth of 3500 m below mean sea level. The 

simulation for each CO2 EOR type was run after approximately one year of primary depletion. 

Figure 5-7 shows the detailed steps and respective values to set up the simulation for each injection 

scenario. The amount of CO2, the bottom hole pressure and the water cut are set up for each case. 

For enriched CO2 WAG, the gas composition needs to be specified since the CO2 is mixed with 

natural gas containing mainly CH4. The WAG ratio is also defined for CO2 WAG and enriched 

CO2 WAG scenarios. 

Voidage displacement is the process where oil, gas and water in the reservoir are replaced by the 

injected fluid. It plays as decisive element for maintaining reservoir pressure as well as mitigating 

surface subsidence in certain fields. The Voidage Replacement Ratio (VRR), which is the ratio 

between the injected fluid volume and the produced fluid volume of the reservoir, is employed as 

the key parameter to set up the constrained volume of CO2.  
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FIGURE 5-7: Simulation flowchart for investigating different CO2-EOR techniques under constrained 

CO2  

a. CO2 WAG 

Given the constrained availability of CO₂, the simulation incorporates a strategy where water is 

injected alongside CO₂ to maintain the desired voidage replacement ratio (VRR). This approach 

ensures that the reservoir pressure is sustained while optimizing the utilization of the limited CO₂ 

supply. The maximum allowable CO₂ injection rate acts as a critical constraint, guiding the 

simulation to achieve an effective balance between CO₂ injection and water alternation. The 

operational parameters, including injection rates, WAG ratio, VRR, and other key input variables 

for the CO₂ WAG simulation, are outlined in Table 5-4, providing a comprehensive framework for 

implementing this enhanced recovery strategy. 

TABLE 5-4: Simulation parameters for CO2 WAG 

Parameter  Value 

Gas injection flow rate 300,000 Sm3/day 

WAG ratio 3:1 

Voidage replacement ratio (VRR) limit 1  

Minimum bottom hole pressure 13.8 MPa 

Maximum water-cut 98 % 
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b. Enriched CO2 WAG 

Our prior research on Minimum Miscibility Pressure (MMP) in relation to various carbon capture 

techniques (Pham 2021) highlighted that achieving miscibility for the studied reservoir fluid under 

specific conditions requires a minimum of 80 % CO₂ in the injection mixture. This study utilizes 

CO₂ mixed with natural gas, predominantly composed of CH₄, in a 4:1 ratio to ensure miscible 

displacement. The Water-Alternating-Gas (WAG) ratio is optimized to maintain the voidage 

replacement ratio, which balances fluid injection and production rates to prevent reservoir pressure 

decline. The key parameters used for the enriched CO₂ WAG simulation are provided in Table 5-

5. 

TABLE 5-5: Simulation parameters for enriched CO2-WAG 

Parameter  Value 

Gas injection flow rate 300,000 Sm3/day 

WAG ratio 3:1 

Voidage replacement ratio (VRR) limit 1 

Minimum bottom hole pressure 13.8 MPa 

Maximum water-cut 98 % 

CO2 mole composition 80 % 

CH4 mole composition 20 % 

 

c. CWI 

For Carbonated Water Injection (CWI), pure CO₂ is dissolved into the water phase prior to injection 

into the reservoir. The dissolution process typically requires 2-5 % CO₂ by weight, a concentration 

sufficient to ensure the stability and flow of a single-phase carbonated water (CW) through the 

porous medium. This concentration prevents phase separation during injection, ensuring that the 

injected water remains in a homogenous state while maximizing the efficiency of CO₂ transfer to 

the oil phase. The preparation of CW involves maintaining specific pressure and temperature 

conditions to facilitate CO₂ solubility in water, which is highly dependent on reservoir conditions 

such as reservoir pressure, temperature, and salinity levels. The dissolved CO₂ in CW can 
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significantly enhance oil recovery by reducing interfacial tension between oil and water, swelling 

the oil, and altering rock wettability. These mechanisms promote better oil displacement efficiency. 

The parameters used for CWI simulation, as outlined in Table 5-6. 

TABLE 5-6: Simulation parameters for CWI 

Parameter  Value 

Gas injection flow rate 48,000 Sm3/day 

Voidage replacement ratio (VRR) limit 1 

Minimum bottom hole pressure 13.8 MPa 

Maximum water-cut 98 % 

 

2.3 Sensitivity analysis 

Response Surface Methodology (RSM) was applied using the CMOST AI module in CMG 

software to optimize the process. RSM is a mathematical and statistical approach designed to model 

and analyze the relationships between multiple explanatory variables (independent factors) and one 

or more response variables (dependent variables). In this study, the dependent variables, or 

responses, are cumulative oil production and the amount of CO₂ stored during each simulation 

process. The independent variables, or factors, include reservoir temperature and pressure, with 

ranges chosen to represent the typical conditions documented for Newfoundland offshore 

reservoirs. This approach facilitates understanding the interactions between variables and helps 

identify optimal operating conditions for maximizing oil recovery and CO₂ storage efficiency. 

2.4 Proxy model 

Simulation results were divided into training and testing datasets to develop a proxy model. This 

model was created using a three-layer neural network within the CMOST AI module, as illustrated 

in Figure 5-8. The neural network structure includes one input layer, one hidden layer, and one 

output layer. Input data are transmitted to the hidden layer via weighted connections, where they 

are processed using an activation function that captures complex nonlinear relationships. The 
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processed information is then transferred to the output layer, with outputs regulated by weight 

vectors. This architecture enables the proxy model to predict key performance metrics, such as oil 

recovery and CO₂ storage, with high accuracy.  

 

FIGURE 5-8: Three-layer neural-network model 

The proxy model was evaluated using the coefficient of determination (R2) following equation 4: 

𝑅2 = 1 −
∑ (𝐶𝑎𝑙𝑐. (𝑖) − 𝐸𝑥𝑝. (𝑖))

2𝑁
𝑖

∑ (𝐶𝑎𝑙𝑐. (𝑖) − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐸𝑥𝑝. (𝑖)))
2

𝑁
𝑖

 (4) 

3.Results and Discussion 

This section presents an analysis of various CO₂ EOR methods, focusing on their performance and 

efficiency in terms of oil recovery and water cut under CO₂ supply constraints. The CO₂ WAG and 

CWI injection schemes used pure CO₂, while the enriched CO₂ WAG scenario consisted of 80 % 

CO₂ and 20 % CH₄. A comparative study of CO₂ EOR types was conducted for stratified reservoirs, 

considering both crossflow and no crossflow cases. Additionally, sensitivity analyses were 

performed for each CO₂ EOR type by varying key reservoir characteristics, such as temperature 

and pressure. To facilitate the predictions of cumulative oil recovery and recovery factor, a proxy 

model was developed based on the investigated parameters. 
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Table 5-7 summarizes the simulation results for the three CO2 EOR methods for a stratified 

reservoir with and without crossflow. 

TABLE 5-7: Summary of simulation results for the three CO2 EOR methods for a stratified reservoir with 

and without crossflow 

Reservoir 

communication 

Transmissibility Recovery Factor 

CO2-WAG Enriched CO2-WAG CWI 

Crossflow 1 73.0 % 75.2 % 84.4 % 

Without 

crossflow 

0 71.3 % 72.2 % 78.8 % 

CO2 stored 

(Mtonnes) 

 5.19 4.96 2.5 

CO2 tax credit 

(M$) 

 181.65 173.6 87.5 

 

3.1 Comparison between CO2-EOR methods 

3.1.1 Stratified reservoir with crossflow 

Figures 5-9 and 5-10 illustrate key simulation results for oil recovery factor and water cut over five 

years for a stratified reservoir with crossflow under three enhanced oil recovery (EOR) methods: 

CO₂ Water-Alternating-Gas (CO₂-WAG), enriched CO₂-WAG (80 % CO₂ – 20 % CH₄), and 

Continuous Water Injection (CWI). The trends observed provide insights into the performance and 

dynamics of these methods under realistic reservoir conditions. During the initial phase of primary 

depletion, the oil recovery factor stabilizes at 25 % after approximately 180 days and remains 

unchanged until the end of this mechanism. This plateau highlights the limited recovery potential 

of primary mechanisms in stratified reservoirs. When CO₂-WAG is applied as a secondary recovery 

method, the oil recovery factor increases sharply, reaching approximately 60 % within 500 days of 

injection. This significant improvement reflects CO₂'s efficiency in reducing oil viscosity and 

improving miscibility, allowing for better displacement of oil. There is minimal difference in 

recovery performance between CO₂-WAG and enriched CO₂-WAG during the early injection 

period (up to day 600). However, toward the end of the injection period, a slight decrease in oil 
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recovery efficiency is observed for enriched CO₂-WAG compared to pure CO₂-WAG. This aligns 

with prior findings (Alston 1985, Yellig 1980, Johannes 2009, Stringht 2009) indicating that the 

presence of CH₄ in the CO₂ stream raises the Minimum Miscibility Pressure (MMP), thereby 

reducing miscibility and oil recovery efficiency. In this study, however, the limited CO₂ supply 

minimizes the impact of CH₄ impurities, which is why the performance difference between pure 

and enriched CO₂-WAG remains relatively small. CWI achieves the highest recovery factor, 

reaching 84 % by the end of the simulation, compared to 73 % for pure CO₂-WAG and 75.2 % for 

enriched CO₂-WAG. This superior performance is attributed to the continuous displacement 

mechanism, which maintains consistent reservoir pressure and ensures effective oil displacement 

across the reservoir layers. 

All EOR methods exhibit a sharp increase in water cut after 500 days of injection, exceeding 90 %. 

This increase corresponds to the breakthrough of injected fluids into production wells, a common 

occurrence in stratified reservoirs with crossflow. For CO₂-WAG and enriched CO₂-WAG, water 

cut shows slight fluctuations and a marginal decrease in later stages, likely due to gas injection 

cycles temporarily reducing water production. However, in CWI, the water cut remains constant 

post-breakthrough, as the injection is uninterrupted and dominated by water displacement. 

The results underline the trade-offs between recovery efficiency and operational constraints. While 

CWI achieves the highest recovery factor, the consistently high water cut suggests potential 

challenges with water handling and disposal, especially in offshore or environmentally sensitive 

operations. CO₂-WAG and enriched CO₂-WAG show promising recovery factors with manageable 

water cuts, making them attractive options when CO₂ availability is limited. The small performance 

difference between pure and enriched CO₂-WAG emphasizes that impurity effects are less critical 

in cases of constrained CO₂ supply, but this could vary in scenarios with higher CH₄ concentrations. 
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FIGURE 5-9: Recovery factor for CO2-WAG, enriched CO2-WAG and CWI with crossflow 

 

 
FIGURE 5-10: Water cut  for CO2-WAG, enriched CO2-WAG and CWI with crossflow 

3.1.2 Stratified reservoir without crossflow 

Figures 5-11 and 5-12 illustrate the simulation outcomes for oil recovery factor and water cut over 

a five-year period in a stratified reservoir without crossflow, comparing three EOR methods: CO₂-

WAG, enriched CO₂-WAG (80 % CO₂ – 20 % CH₄), and Continuous Water Injection (CWI). These 
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results provide a nuanced understanding of recovery dynamics in reservoirs where fluid exchange 

between layers is limited. The results indicate negligible differences between pure CO₂-WAG and 

enriched CO₂-WAG in this scenario. The minor impact of CH₄ as an impurity suggests that the 

absence of crossflow reduces the role of miscibility differences between layers, thus diminishing 

the influence of MMP on recovery dynamics. During initial injection period (460 to 650 Days), 

CO₂-WAG and enriched CO₂-WAG outperform CWI in terms of oil recovery. This can be 

attributed to the early miscibility effects of CO₂, which enhance oil mobilization and displacement 

efficiency. After 650 days, CWI overtakes CO₂-WAG and enriched CO₂-WAG in recovery 

efficiency, achieving the highest oil recovery at 78.8%, compared to 71.3% for CO₂-WAG and 

72.2% for enriched CO₂-WAG. The superior performance of CWI in later stages is likely due to 

the effective dissolution of CO₂ in water, which enhances its contact with trapped residual oil. This 

reduces oil viscosity and lowers interfacial tension (IFT) between oil and water, resulting in 

improved recovery. The water cut variations in the non-crossflow reservoir are consistent with 

those observed in the crossflow case. All methods exhibit a sharp increase in water cut post-

breakthrough, followed by stabilization. The similar trends highlight that water production 

dynamics are primarily governed by injection volume and reservoir properties, rather than 

crossflow effects or injection strategy. CWI’s consistently high water cut in later stages might 

require additional water handling and treatment efforts, which could offset its economic and 

operational advantages. 



 110 

 

FIGURE 5-11: Recovery factor for CO2-WAG, enriched CO2-WAG and CWI without crossflow 

 

 

 
FIGURE 5-12: Water cut  for CO2-WAG, enriched CO2-WAG and CWI without crossflow 

This conclusion underscores the critical trade-offs between maximizing oil recovery and 

minimizing emissions intensity, a key consideration during the energy transition. CWI achieved 

the highest oil recovery factor, outperforming CO₂-WAG and enriched CO₂-WAG by 7–10 %. This 

superior performance can be attributed to its ability to mobilize trapped residual oil through 

viscosity reduction and lowered IFT. However, its limited CO₂ storage capacity reduces its 
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contribution to carbon management efforts. CO₂-WAG and enriched CO₂-WAG, while slightly less 

effective in oil recovery, store approximately double the amount of CO₂ compared to CWI. This 

makes these methods more attractive in the context of emissions reduction goals. Defined as the 

ratio of greenhouse gas emissions produced to gross domestic product (GDP) (Emission Intensity 

2022), emissions intensity is becoming a critical metric for the oil and gas sector. The ability to 

reduce emissions while maintaining or growing production is essential for achieving global 

sustainability targets. Lower emissions intensity methods, such as CO₂-WAG and enriched CO₂-

WAG, align with the oil and gas industry's transition policies, which aim to reduce carbon 

footprints while sustaining economic growth (Insight & Analysis 2021). Under frameworks like 

the $35/tonne tax credit for CO₂ stored during EOR (Waltzer 2017), methods with higher CO₂ 

storage, such as CO₂-WAG and enriched CO₂-WAG, yield nearly double the tax credit value of 

CWI. This financial incentive partially offsets their slightly lower recovery factors, making these 

methods economically viable. By storing more CO₂, these methods offer a path to reduce emissions 

intensity while achieving incremental oil recovery, addressing both economic and environmental 

goals. As carbon pricing and emissions regulations intensify globally, operators are likely to favor 

CO₂-intensive methods like CO₂-WAG, even at the expense of slightly lower recovery factors, to 

leverage tax credits and align with environmental policies. Integrating carbon capture and storage 

technologies with EOR processes can enhance CO₂ storage capacities, further reducing emissions 

intensity and improving overall project sustainability. In both cases of stratified reservoirs with and 

without crossflow, CWI achieved the highest oil recovery factor but at the cost of lower CO₂ 

storage. CO₂-WAG and enriched CO₂-WAG, on the other hand, offer nearly double the CO₂ storage 

capacity, resulting in significantly lower emissions intensity. These methods also benefit from 

favorable tax credits, with values nearly double that of CWI (Waltzer 2017). As emissions intensity 

becomes a vital metric for balancing production with environmental responsibility, CO₂-WAG 
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methods emerge as strong candidates for achieving both economic and sustainability goals during 

the energy transition. 

3.2 Comparison between stratified reservoir with, and without, 

crossflow 

The comparison between stratified reservoirs with and without crossflow highlights the significant 

impact of reservoir characteristics and fluid behavior on oil recovery and water breakthrough 

dynamics. In reservoirs with crossflow, all injection types—CO₂-WAG, enriched CO₂-WAG, and 

CWI—achieved higher recovery factors compared to reservoirs without crossflow. Specifically, 

recovery factors for CO₂-WAG, enriched CO₂-WAG, and CWI were 73%, 75.2%, and 84.4%, 

respectively, in the presence of crossflow, compared to 71.2%, 72.2%, and 78.8% without 

crossflow. This enhancement can be attributed to the fluid communication between layers, which 

allows for better pressure redistribution and improved sweep efficiency. Crossflow also facilitates 

gravity drainage in deeper reservoirs, where the density difference between fluids aids in the 

upward displacement of oil, particularly for lighter oils like the one modeled in this study (API 

41.7°). This effect minimizes oil bypassing in low-permeability layers and enhances overall 

recovery.  

In contrast, in the absence of crossflow, each layer behaves more independently, resulting in 

uneven displacement fronts and earlier water breakthrough. The lack of pressure communication 

leads to poor sweep efficiency in lower-permeability zones, where oil may remain trapped, thereby 

reducing overall recovery. The permeability stratification in the simulated reservoir, which ranges 

from 100 mD in the first layer to 300 mD in the fourth and fifth layers, further contributes to these 

challenges. While the contrast in permeability is moderate, it still impacts recovery efficiency, with 

high-permeability layers experiencing faster fluid movement and earlier water breakthrough, while 
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lower-permeability layers suffer from inadequate sweep. This aligns with Sanchez's (1999) 

findings that WAG efficiency depends on permeability variation, as well as Christensen (2001) and 

Masalmeh (2010), who noted that greater permeability contrast exacerbates bypassing and reduces 

recovery. 

The WAG ratio also plays a critical role in managing the effects of stratification and crossflow 

absence. In this study, a 3:1 gas-to-water injection ratio was used, which effectively balances oil 

recovery penalties associated with stratification. This ratio ensures sufficient gas mobility to drive 

oil displacement while maintaining pressure support to prevent early gas breakthrough. Claridge 

(1982) emphasized that higher WAG ratios help mitigate crossflow's influence and improve 

recovery by balancing miscibility benefits and fluid sweep efficiency. 

Another important factor is the role of gravity segregation in improving recovery in reservoirs with 

crossflow. The depth of the reservoir amplifies the benefits of gravity, as water moves downward 

and displaces oil upward, improving recovery in deeper layers. This effect is particularly 

advantageous when lighter oils are present, as they are more easily displaced by water and gas 

movement. In contrast, the absence of crossflow diminishes these benefits, resulting in lower 

recovery factors and earlier water breakthrough. 

Overall, these findings underscore the importance of understanding reservoir stratification, 

crossflow dynamics, and permeability contrasts when designing enhanced oil recovery strategies. 

While reservoirs with crossflow consistently achieve higher recovery, optimizing injection profiles 

and WAG ratios can mitigate the challenges posed by stratification in no-crossflow reservoirs. The 

results highlight the need to balance technical efficiency with economic and environmental goals, 

particularly as CO₂-EOR methods increasingly prioritize sustainability and emissions reduction 

alongside oil recovery. 
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3.3 Sensitivity analysis 

The sensitivity analysis using Response Surface Methodology (RSM) provides valuable insights 

into the effects of reservoir temperature and pressure on oil recovery factor and CO₂ storage 

capacity, covering a range applicable to Newfoundland reservoirs. The analysis uniformly 

demonstrated across all six cases: stratified reservoirs with and without crossflow for three CO₂-

EOR methods, that reservoir temperature negatively impacts both recovery and CO₂ storage, while 

reservoir pressure exerts a positive influence. These trends are consistent with the physical behavior 

of CO₂ in its supercritical state, where it combines gas-like compressibility with liquid-like density, 

enhancing its utility as an injection fluid for EOR operations. The negative influence of temperature 

on recovery factor and CO₂ storage can be attributed to the reduced solubility of CO₂ in crude oil 

and water at elevated temperatures. Supercritical CO₂ becomes less miscible with oil as 

temperature rises, decreasing its effectiveness in reducing oil viscosity and interfacial tension. 

Additionally, higher temperatures can impair the stability of the CO₂-oil miscible zone, resulting 

in poorer displacement efficiency. These observations align with findings by Comberiati (1982), 

who demonstrated that oil recovery decreases with increasing temperature when operating above 

critical conditions. Furthermore, lower temperatures enhance CO₂ solubility in water and oil, which 

is beneficial for both recovery efficiency and CO₂ storage capacity. Conversely, reservoir pressure 

has a positive impact, as higher pressures improve CO₂ miscibility with oil and its solubility in 

water. This results in more efficient oil displacement and increased CO₂ retention in the reservoir. 

Elevated pressures enhance the density of supercritical CO₂, thereby improving its ability to 

mobilize and displace trapped oil while simultaneously increasing the amount of CO₂ that can be 

stored in pore spaces. This observation aligns with Mosavat (2010) and Fathollahi (2015), who 

highlighted the positive role of high operating pressures in improving oil recovery and CO₂ storage 
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performance, particularly in Carbonated Water Injection (CWI) scenarios. The trends observed in 

this study are illustrated in Figures 5-13 and 5-14, where the black curves represent the base case 

scenario, and the turquoise curves show variations in reservoir temperature and pressure. The 

results clearly show that lower temperatures and higher pressures optimize both recovery factors 

and CO₂ storage capacity, with notable improvements as these parameters deviate from the base 

case. The implications of these findings are significant for CO₂-EOR applications in Newfoundland 

reservoirs and similar geological settings. Reservoirs with lower temperatures and higher pressures 

offer favorable conditions for maximizing both recovery and storage, enabling operators to meet 

dual objectives of enhanced hydrocarbon production and effective carbon sequestration. However, 

these operational insights must be balanced with practical considerations, such as the economic 

feasibility of achieving high pressures and the potential challenges of injecting CO₂ into colder 

reservoirs, which may require additional thermal management. Furthermore, while the results are 

consistent with existing literature, they underscore the importance of tailoring EOR strategies to 

specific reservoir conditions. For example, reservoirs with lower initial pressures may require 

extensive pressure build-up to achieve optimal results, whereas naturally high-pressure reservoirs 

could capitalize on these inherent advantages. Similarly, in temperature-sensitive reservoirs, 

operational adjustments like optimizing injection schedules or using alternative fluids may help 

mitigate the negative impacts of elevated temperatures on CO₂ performance. 

Overall, this sensitivity analysis reinforces the critical role of reservoir temperature and pressure in 

CO₂-EOR design, offering actionable insights to maximize both oil recovery and CO₂ storage. 

These results contribute to the growing body of research that supports the adoption of CO₂-EOR 

as a dual-purpose technology for sustainable hydrocarbon production and greenhouse gas 

mitigation. 
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FIGURE 5-13: Sensitivity analysis for oil recovery factor for CO2-WAG for stratified reservoir with cross 

flow 

 

FIGURE 5-14: Sensitivity analysis for CO2 storage for CO2-WAG for stratified reservoir with cross flow 

3.4 Proxy models 

The development of proxy models using a three-layer neural network demonstrates an efficient and 

accurate approach to predicting the oil recovery factor and the amount of CO₂ storage as a function 
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of reservoir pressure and temperature. These proxy models were built for six distinct cases, 

covering stratified reservoirs with and without crossflow for three types of CO₂-EOR (CO₂-WAG, 

enriched CO₂-WAG, and CWI). Proxy models are particularly valuable for rapidly estimating key 

reservoir performance metrics, enabling optimization and decision-making without the 

computational overhead of running full reservoir simulations repeatedly. Figures 5-15 and 5-16 

illustrate the effectiveness of the proxy model for the CO₂-WAG case in a stratified reservoir with 

crossflow. The alignment of training (blue points) and validation (green points) datasets along the 

45-degree line indicates a high level of accuracy in predicting both oil recovery factor and CO₂ 

storage. The determination coefficients (R² values) between 0.93 and 0.99 across all cases further 

validate the reliability of these models. Such high R² values signify that the proxy models 

effectively capture the complex nonlinear relationships between reservoir conditions (pressure and 

temperature) and the performance outcomes of interest. The success of these proxy models 

highlights the capability of neural networks to handle multivariable systems with nonlinear 

interactions. In this context, a three-layer neural network was chosen as it offers sufficient 

complexity to model the intricate dependencies between reservoir parameters and performance 

metrics without the risk of overfitting associated with deeper networks in small to medium-sized 

datasets. This balance is critical in reservoir engineering applications, where data availability is 

often limited, and the inclusion of extraneous layers can lead to diminished model generalization. 

The use of proxy models also has practical implications for field operations and strategic planning. 

Operators can utilize these models to perform sensitivity analyses, optimize injection strategies, or 

assess the feasibility of CO₂-EOR methods under various reservoir conditions more rapidly. For 

instance, quick evaluations of the impact of reservoir pressure and temperature changes on recovery 

and CO₂ storage allow for more adaptive management of reservoir performance. This is particularly 

advantageous for real-time decision-making during field development or operational adjustments. 
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In conclusion, the use of three-layer neural-network proxy models for predicting oil recovery and 

CO₂ storage offers a significant advancement in the application of machine learning to reservoir 

engineering. These models not only streamline the prediction process but also enable more 

effective reservoir management, operational optimization, and strategic planning, aligning with the 

industry's goals of enhancing hydrocarbon recovery and managing CO₂ emissions. The high 

accuracy and reliability of these models across all six cases underscore their potential as valuable 

tools for accelerating decision-making and improving EOR project outcomes. 

 

FIGURE 5-15: Proxy model for CO2 storage for CO2-WAG for stratified reservoir with cross flow 
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FIGURE 5-16: Sensitivity analysis for oil recovery factor for CO2-WAG for stratified reservoir with cross 

flow 

4 Conclusions 

This study addresses the challenges of utilizing CO₂-EOR methods in offshore reservoirs, 

particularly in scenarios where CO₂ availability is limited, and there is a growing emphasis on 

reducing emissions from oil production. By focusing on the applicability of CO₂-EOR methods 

using post-combustion CO₂ captured through membrane technology, the work evaluates the effects 

of CO₂ impurities, reservoir stratification, and inter-layer communication under varying reservoir 

pressure and temperature conditions. The key findings are summarized as follows: 

• Limited CO₂ Availability: Offshore reservoirs often have limited CO₂ supply due to their 

distance from CO₂ sources, making CO₂ flooding challenging. However, methods like 

CWI, CO₂-WAG, and enriched CO₂-WAG can still be effective for individual blocks in 

such reservoirs. 
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• Effect of CO₂ Impurities: At the studied levels of CO₂ impurities and gas volumes, their 

effect on oil recovery factor is minimal. However, higher impurity concentrations or larger 

CO₂ injection volumes could significantly affect EOR performance, requiring careful 

consideration. 

• CWI Performance: CWI produces the highest oil recovery for both stratified reservoirs with 

and without crossflow. However, the amount of CO₂ stored using CWI is only half of what 

can be achieved with CO₂-WAG or enriched CO₂-WAG, making CWI less efficient for 

CO₂ storage. Consequently, CO₂-WAG and enriched CO₂-WAG methods have much lower 

emissions intensity and higher tax credit values for CO₂ storage. 

• Stratified Reservoirs Without Crossflow: All injection scenarios in stratified reservoirs 

without crossflow resulted in lower recovery factors and earlier water breakthrough. A 

higher WAG ratio (3:1) helped mitigate some of these issues by balancing the oil yield 

penalty and improving recovery. 

• Impact of Reservoir Temperature and Pressure: Recovery factors and CO₂ storage increase 

with lower temperatures and higher pressures, as CO₂ is in its supercritical state in the 

studied range, which enhances its density and solubility, leading to better oil recovery and 

CO₂ storage. 

• Proxy Model Performance: The proxy models built to predict oil recovery and CO₂ storage 

performed well, with high R² values ranging from 0.93 to 0.99, demonstrating their 

effectiveness in quickly estimating outcomes for varying reservoir temperature and 

pressure conditions. 
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Chapter 6 : DIRTY CARBON – IMPACT OF CO2 

VOLUME AND IMPURITIES ON CARBON 

UTILIZATION FOR EOR AND CARBON NEUTRAL 

OIL PRODUCTION 

Preface 

It is a presentation: Pham, Q.C and James, L.A. Dirty Carbon – Impact of CO2 Volume and 

Impurities on Carbon Utilization and Carbon Neutral Oil Production. 2024. Presented at Carbon 

Capture, Utilization, and Storage Latin America. Rio de Janeiro, Brazil, 22-23. I am the primary 

author. Co-author Dr. Lesley James is senior supervisor. Dr. James reviewed, provided technical 

assistance and valuable insights to improve the paper concept. This draft paper will be submitted 

to a journal. 

1. Introduction 

The literature review is presented and updated in the Chapter 2 part 4. 

2. Methodology 

Figure 6-1 illustrates the workflow for this study. The research began by defining the CO₂ 

constraints in terms of pore volume. Variables and their ranges, including reservoir characteristics 

(e.g., temperature, pressure, permeability), oil properties (e.g., viscosity), and gas properties (e.g., 

composition and CO₂ impurities), were identified as shown in Table 6-1. A geological model was 

built using the Builder module in CMG and subsequently simulated with the provided fluid 

properties using the GEM module (CMG 2023). The overall objective function was determined by 

evaluating process performance and CO₂ storage potential, integrating economic factors such as 

oil prices and tax credits for CO₂ storage per tonne. Optimization, sensitivity analysis, and proxy 
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modeling were carried out using CMOST, a CMG tool that automates workflows to deliver precise 

forecasts. CMOST also utilized cloud-based simulations, enhancing project delivery and decision-

making (CMG 2023; Intelligent Optimization & Analysis Tool 2021). Different CO₂-EOR 

scenarios for a stratified compositional reservoir model (with and without crossflow) were 

optimized using Multi-Objective Particle Swarm Optimization (MOPSO). Sensitivity analyses 

were conducted using Sobol’s method to evaluate the influence of variable parameters on the 

overall objective. Finally, proxy models were developed using artificial neural networks (ANNs) 

for each CO₂-EOR scenario. These models enable rapid and accurate estimations of the overall 

objective, oil recovery factor, and CO₂ storage potential for reservoirs within the studied range, 

offering a valuable tool for initial feasibility assessments. 
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FIGURE 6-1: Workflow for investigating the impact of CO2 volume and impurities on carbon utilization 

for EOR and carbon neutral oil production 

TABLE 6-1: Variable parameters and their ranges/values 

Parameters Range/Value 

Reservoir Temperature (oC) 50 – 130 

Reservoir Pressure (MPa) 20 – 70 

Reservoir Permeability (mD) 1 – 3000 

Oil Types Light (API 35-45) 

 Medium (API 25-35) 

 Heavy (API 15-25) 

CO2 Constrained (pore volume basic) 0.25 – 1 
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CO2 Impurities (%) 10 – 50 

 

2.1 Estimation of available CO2 volume 

Table 6-2 presents the gas composition used in this study, closely resembling the gas analyzed for 

the Hibernia well (Core Laboratories Canada Ltd., 2005). 

TABLE 6-2: Gas composition used in this study 

 Component Mol % 
Carbon Dioxide 0.0087 
Nitrogen 0.0004 
Methane 0.8506 
Ethane 0.0605 
Propane 0.0312 
Iso-Butane 0.0005 
n-Butane 0.0135 
Pentane Plus 0.0346 
Total 1.0000 

 

After the combustion process, carbon capture technologies are employed to capture CO₂. The 

primary methods used for CO₂ capture include absorption, adsorption, and membrane separation. 

Absorption typically uses solvents to capture CO₂, while adsorption relies on solid materials to trap 

the gas. Membrane separation, on the other hand, utilizes selective permeability to separate CO₂ 

from other gases. Other emerging and novel technologies for CO₂ capture have also been 

investigated, including Direct Air Capture (DAC), which extracts CO₂ directly from the 

atmosphere, as well as methods like supersonic separation, hydrate-based separation, and 

cryogenic distillation.  

In this study, membrane technology is selected due to its compact size and low maintenance 

requirements (Pham, 2021). The membrane process offers advantages in that it requires minimal 

gas pre-treatment while maintaining high efficiency. A novel hollow-fiber membrane technology, 

known for its high resistance to chemical deterioration, has been developed, making it suitable for 
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CO₂ capture in offshore EOR applications (CSLF Offshore CO₂-EOR Task Force, 2017). For this 

study, CO₂ impurities are primarily considered to be methane, which is commonly present in 

produced gas for EOR purposes (Pham, 2021). The volume of CO₂ injected is calculated based on 

the pore volume (PV) constraint. The Voidage Replacement Ratio (VRR) - the ratio of injected 

fluid volume to produced fluid volume - was set to 1 and used as the key parameter to establish the 

CO₂ injection constraints. 

2.2 Simulation 

The simulation was performed using CMG software. First, a geological model was constructed in 

the Builder module to prepare for the simulation. Next, the GEM module, which is a leading 

reservoir simulator for compositional, chemical, and unconventional Equation of State (EOS) 

modeling, was employed to simulate the provided fluid properties. The GEM module is particularly 

useful for complex reservoir simulations, as it allows for accurate modeling of multi-phase flow 

and chemical reactions in the reservoir (CMG, 2023). The specific simulation details and 

parameters used in this study are outlined in the section below, including fluid composition, 

reservoir characteristics, and boundary conditions, which are crucial for accurately representing 

the behavior of the reservoir and the fluid interactions. 

2.2.1 Block modelling 

A reservoir block model was constructed with dimensions of 1200 m × 500 m × 80 m, divided into 

five main reservoir zones along the z-direction, each with equal thickness. The permeability values 

for these zones were 100, 200, 250, 300, and 300 mD, respectively, while the average porosity for 

each layer was 0.15, 0.18, 0.17, 0.2, and 0.1, respectively. During the optimization process, the 

stratification level remained unchanged, maintaining the ratio of 1:2:2.5:3:3 between the layers. 

Thin shale beds separated the reservoir zones, which, although negligible in thickness, controlled 
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the transmissibility between the layers. The model assumes uniform vertical transmissibility, with 

vertical transmissibility set to 1 in Figure 6-2(a) to allow cross-flow and communication between 

all layers, while in Figure 6-2(b), it was set to zero to prevent cross-flow and isolate the layers. 

Additionally, the reservoir is modeled with homogeneous zones having uniform properties, 

negligible impact from the shale layers on flow, and no-flow boundary conditions. The geometry 

assumes a simplified setup with one injector on one side and one producer on the opposite side of 

the reservoir. This setup helps to model different flow dynamics based on whether or not crossflow 

between the layers is permitted.  

 
a) Crossflow with transmissibility, T = 1 

FIGURE 6-2: Stratified reservoir model with five 

layers with a) crossflow and b) no crossflow 

 
b) No crossflow with transmissibility, T = 0 

 

2.2.2 Numerical set-up for different CO2EOR types 

The block model was initialized at 31 MPa at a depth of 3500 m below mean sea level subsea. The 

simulation for each CO2 EOR type was run for four years after approximately one year of primary 

depletion. Figure 6-3 shows the detailed steps and respective values to set up the simulation for 

each injection scenario. Multi-Objective Particle Swarm Optimization was applied to optimize the 

cumulative oil production and CO2 storage considering the price of oil and the value of the tax 

credit, which is presented in Equation(1). The proxy models were generated by using a Multi-Layer 
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Neural Network, which can be used to quickly predict either the cumulative oil production, or CO2 

storage or both without rebuilding the geological model. 

Voidage displacement refers to the process where injected fluids, such as CO₂, replace the oil, gas, 

and water in a reservoir, helping to maintain reservoir pressure and mitigate surface subsidence, 

which can occur in certain fields. The Voidage Replacement Ratio (VRR) is a critical parameter in 

this process, defined as the ratio between the volume of injected fluid and the volume of produced 

fluid. When VRR is set to 1, it indicates that the injected fluid volume matches the produced fluid 

volume, maintaining the pressure balance in the reservoir. This ratio is commonly used to 

determine the constrained volume of CO₂ for enhanced oil recovery (EOR) and carbon 

sequestration (CCS) projects, ensuring efficient displacement and maximizing both oil recovery 

and CO₂ storage.  
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FIGURE 6-3: Simulation methodology and design of experiments 

 

2.3 Optimization 

The overall objective function of optimization in this study, showed in equation 1, considers the 

cumulative oil production and amount of CO2 storage. 

𝐹 = 𝑎1 ∗ 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑜𝑖𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑎2 ∗ 𝐶𝑂2 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (1)  

where F is the overall objective function of optimization, a1 and a2 are the weight of cumulative 

oil production and CO2 storage, respectively. In this study, the values of weight are the price of oil 

(Crude Oil Prices Today 2022) and the value of the tax credit (Waltzer 2017), which takes account 

the important degree of each sub-objective. The 50:50 weighting between oil recovery and carbon 

storage objectives in the optimization function is chosen to reflect a balanced approach that equally 

prioritizes economic and environmental goals. Oil recovery is a key economic factor, as it directly 
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contributes to profitability through increased crude oil production. On the other hand, carbon 

storage is essential for mitigating the environmental impact of CO₂ emissions, aligning with global 

sustainability efforts and climate change mitigation strategies. This balance between oil recovery 

and carbon storage objectives ensures that the optimization process does not solely focus on 

financial gains but also contributes to the long-term environmental benefits of carbon sequestration. 

In real-world applications, the 50:50 balance between oil recovery and carbon storage objectives 

can be adjusted based on external factors, such as market conditions, policy changes, and 

environmental incentives. For instance, when oil prices are high, the weighting could be shifted to 

prioritize oil recovery to maximize economic returns. Conversely, during periods when carbon 

taxation is more stringent or when there are substantial tax credits for CO₂ storage, the model could 

place more emphasis on carbon sequestration. This flexible approach allows the optimization 

function to adapt to different economic and regulatory environments. The initial 50:50 weighting 

serves as a balanced starting point, reflecting the dual importance of enhanced oil recovery (EOR) 

and carbon storage in achieving both energy production and environmental sustainability goals, 

especially as the energy sector transitions toward more sustainable practices. 

Particle Swarm Optimization (PSO) is a heuristic, population-based optimization algorithm 

introduced by Eberhart and Kennedy in 1995. PSO stands out for being straightforward to 

implement and highly effective at addressing complex optimization challenges. It has been 

successfully applied to production optimization tasks (Humphries, 2014; Wang, 2016). The 

algorithm mimics the behavior of a swarm of particles (representing potential solutions) moving 

through the search space to find the optimal solution. Each particle in the swarm has a position that 

corresponds to a potential solution, and it adjusts its position based on two key factors: its personal 

best position (pbest), which is the best solution it has encountered, and the global best position 

(gbest), which is the best solution found by any particle in the swarm. The movement of each 
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particle is influenced by both its own experience and the experiences of its neighbors, incorporating 

a concept of social interaction to guide the search for the global optimum. This cooperative search 

mechanism enables PSO to efficiently explore the solution space and find the best possible outcome 

for a given problem.  

Assuming we have P particles, Xi(t) and Vi(t) are the position and velocity of particle I at iteration 

t. In the next iteration, the position is updated as equation 2: 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (2) 

The velocity is updated following equation 3: 

𝑉𝑖(𝑡 + 1) = 𝑤𝑉𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑡)) + 𝑐2𝑟2(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑡)) (3) 

where r1 and r2 are random numbers between 0 and 1, w, c1 and c2 are the inertia weight, the 

cognitive and social learning coefficients, respectively. c1 and c2 are the learning parameters or 

acceleration constants, which can be typically taken. w is equivalent to introducing a virtual mass 

to stabilize the motion of the particles, can be taken as a constant, which helps the algorithm to 

converge more quickly. The velocity relates to the lower and upper boundaries of the search space 

so depends on the input parameters and their ranges. Figure 6-4 shows the velocity vector of 

particle i. 

 

FIGURE 6-4: Velocity vector diagram Particle Swarm Optimization 
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PSO is guaranteed to converge to a stable equilibrium point if the two conditions below are satisfied 

(Perez 2007):  

0 < 𝑐1 + 𝑐2 < 4 (4) 

𝑐1 + 𝑐2

2
 − 1 < 𝑤 < 1 (5) 

Multi-Objective Particle Swarm Optimization (MOPSO), introduced by Coello in 2004, is an 

extension of the traditional PSO algorithm designed to address multi-objective optimization 

problems. MOPSO adapts the standard PSO framework to optimize multiple conflicting objectives 

simultaneously, offering a set of solutions, known as the Pareto front, that represents the trade-offs 

between different objectives. In this study, MOPSO was applied to solve multi-objective problems, 

with its flowchart and parameter settings detailed in Figure 6-5 and Table 6-3. The parameters used 

in the MOPSO algorithm include the inertia weight (w), and the acceleration coefficients (c1 and 

c2), which control the influence of the particle's personal best and the global best positions on its 

movement. These specific values of w, c1, and c2 were selected based on previous studies that 

demonstrated good convergence results, such as those by Bansal (2011) and Cai (2009), ensuring 

efficient exploration and exploitation of the search space for optimal multi-objective solutions. 
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FIGURE 6-5: Multi-objective Particle Swarm Optimization flowchart 

TABLE 6-3: Multi-objective Particle Swarm Optimization setups 

Parameters Value 

Total number of experiments 500 

Inertia Weight (w) 0.7 

Cognition Component (c1) 0.5 

Social Component (c2) 1.25 

Population Size 20 

 

2.4 Sensitivity analysis 

The sensitivity analyses were conducted using Sobol's method, a variance-based sensitivity 

analysis technique (Variance-based sensitivity analysis, 2022). This global sensitivity analysis 

approach evaluates the contribution of each input parameter to the output by calculating Sobol 
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indices. Parameters with sensitivity indices greater than 5 % are considered significant. In this 

study, the variable parameters, listed in Table 1, include reservoir characteristics (temperature, 

pressure, permeability), oil types, CO₂ constraints, and CO₂ impurities. These factors were assessed 

for their impact on the overall objective function (F), oil recovery factor, and the amount of CO₂ 

stored. This method helps identify the most influential variables, guiding decisions for optimizing 

Enhanced Oil Recovery (EOR) and Carbon Capture and Storage (CCS) strategies. 

2.5 Proxy model 

Rather than using a full numerical simulation model, a proxy model was chosen to save 

computational time. Proxy models have become a common practice in the oil and gas industry, 

particularly for reservoir simulation. These models simplify complex reservoir dynamics by 

approximating the results of more computationally expensive simulations. As a result, they allow 

for faster assessments of subsurface conditions and uncertainties, which is crucial for making 

timely field development decisions (Bahrami, 2022; Sanz, 2021). By capturing the essential 

behaviors of the reservoir, proxy models provide valuable insights without the need for time-

intensive simulations. Their application is particularly beneficial when multiple iterations are 

required, such as in optimization processes or scenario analysis, where time constraints are 

significant. The use of proxy models enables more efficient and flexible reservoir management, 

reducing the time and cost associated with traditional simulation methods. In this study, the proxy 

model was generated using a multi-layer neural network, as depicted in Figure 6-6. The training 

and test datasets were derived from simulation experiments, with a total of 500 data points used. 
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FIGURE 6-6: Neural Network Proxy model workflow 

In this study, a three-layer neural network was utilized, consisting of one input layer, one hidden 

layer, and one output layer, as shown in Figure 6-7. Initially, a five-layer neural network model 

was also tested. However, the results indicated that the three-layer model provided better prediction 

performance, as evidenced by a higher coefficient of determination (R²). The neural network 

operates by transferring the input data to the hidden layer through weighted connections. Within 

the hidden layer, the input is processed using an activation function, which introduces non-linearity 

and enables the model to capture complex relationships within the data. The processed information 

is then passed to the output layer, where it is further controlled by weight vectors, which determine 

the final output prediction. The structure of the three-layer network offers a balanced trade-off 

between model complexity and prediction accuracy, making it more suitable for the task at hand.  
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FIGURE 6-7: Three-layer neural-network model 

 

The performance and accuracy of the proposed model were evaluated using several metrics: 

the coefficient of determination (R²), Root Mean Square Error (RMSE), and RMSE percentage 

(RMSE (%)). These metrics provide insight into the model’s predictive power and its error 

levels. R² measures the proportion of variance in the dependent variable that is predictable from 

the independent variables. An R² value close to 1 indicates a high level of predictive accuracy, 

meaning the model explains most of the variance in the data. RMSE is a measure of the average 

magnitude of the error between predicted and actual values. It is expressed as the square root 

of the mean squared error (MSE). Lower RMSE values indicate better model performance. 

RMSE percentage is the RMSE normalized by the range of the observed data, expressed as a 

percentage. It allows for a relative comparison of the error magnitude across different datasets. 

For an ideal model, the R² value should be as close to 1 as possible, indicating that the model 

explains most of the variance in the data. The RMSE should be as low as possible, indicating 

minimal error in the predictions. The RMSE (%) should also be small, indicating that the 

model's prediction error is minimal relative to the scale of the data. 
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𝑅2 = 1 −
∑ (𝐶𝑎𝑙𝑐. (𝑖) − 𝐸𝑥𝑝. (𝑖))

2𝑁
𝑖

∑ (𝐶𝑎𝑙𝑐. (𝑖) − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐸𝑥𝑝. (𝑖)))
2

𝑁
𝑖

 (6) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑|𝐶𝑎𝑙𝑐. (𝑖) − 𝐸𝑥𝑝. (𝑖)|2

𝑁

𝑖

(7) 

                             

𝑅𝑀𝑆𝐸(%) =
𝑅𝑀𝑆𝐸

𝑀𝑀𝑃 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
(8) 

3. Results and Discussion 

The optimization process was carried out for two types of reservoirs: a stratified reservoir with, 

and without, crossflow. For each reservoir, three injection scenarios were investigated including 

CO2-WAG, enriched CO2-WAG and CWI, hence a total of six cases were evaluated. Multi-

objective PSO was applied to optimize CO2 EOR types regarding reservoir temperature, pressure, 

temperature, oil types, CO2 constraints, and CO2 impurities. The sensitivity analysis study was 

performed for each case to determine the influence of input parameters on the overall objective, 

which is the combination of produced oil value and CO2 tax credit value, as well as oil recovery 

factor and amount of CO2 storage. Finally, proxy models based three layer-neural-network were 

built, which can be used to predict the overall objective as well as oil recovery factor and amount 

of CO2 storage for offshore reservoirs. 

Table 6-4 shows the optimal solution for each case including reservoir type (transmissibility Tr), 

CO2 EOR type, temperature (T), pressure (P), permeability of the first layer(K), oil viscosity (oil), 

CO2 constraint, CO2 impurities (Imp), recovery factor (RF), corresponding amount of CO2 storage 

and overall objective (F).  
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TABLE 6-4: Summary of optimal solutions for different cases 

Reservoi

r types 

T

r 

CO2 EOR 

types 

T 

(oC) 

P 

(mPa

) 

K 

(mD) 
oil 

(cP) 

CO2 

constraint 

(PV) 

Imp 

(%) 

RF 

(%) 

CO2 stored 

(Mtonnes) 

F 

(M$) 

Stratifie

d with 

crossflow 

1 CO2-

WAG 

50 20.0 167 0.89 0.94 0 75.2 12.4 567 

1 Enriched 

CO2-

WAG 

50 20.0 112 1.30 0.94 10 74.7 11.6 530 

1 CWI 100 64.4 334 1.05 N/A 0 80.4 4.8 321 

Stratifie

d 

without 

crossflow 

0 CO2-

WAG 

50 20.0 100 1.16 0.90 0 79.8 10.8 497 

0 Enriched 

CO2-

WAG 

50 20.0 100 0.93 0.90 10 71.7 7.1 355 

0 CWI 100 60.0 200 1.00 N/A 0 77.0 3.3 240 

 

Figures 6-8 to 6-10 show the optimization results from Multi-objective Particle Swarm. The 

optimization of CO₂-WAG, enriched CO₂-WAG, and CWI methods for both reservoirs are shown 

in two cases: (a) with crossflow (left) and (b) without crossflow (right). In the optimization process, 

various parameters were considered, including reservoir characteristics (temperature, pressure, 

permeability), oil characteristics (viscosity), fluid compositions (impurities), and the amount of 

injected CO₂ (CO₂ constraint). The optimum point is marked in orange, while the other simulated 

points are represented in blue. This approach allows for the identification of the most efficient CO₂ 

injection strategy under different reservoir conditions and constraints. 

 

 

 

 

 

 

 

 



 142 

 

 
FIGURE 6-8: Optimization simulation for CO2-WAG a) with 

crossflow and b) without crossflow 

 
 
 

 
FIGURE 6-9: Optimization simulation for enriched CO2-WAG 

a) with crossflow and b) without crossflow 

 
 

 
FIGURE 6-10: Optimization simulation for CWI a) with 

crossflow and b) without crossflow 
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3.1 Comparison among CO2-EOR methods 

The findings from the simulation and optimization study highlight several key insights into the 

effectiveness of different CO₂ - enhanced oil recovery (CO₂-EOR) strategies, CO₂-WAG, enriched 

CO₂-WAG, and CWI, across varying reservoir conditions. The optimum conditions for CO₂-WAG 

and enriched CO₂-WAG were found at low reservoir temperature (50° C) and pressure (20 MPa), 

regardless of whether the reservoir had crossflow or not. These conditions suggest that for these 

injection methods, a lower-temperature and lower-pressure environment is more favorable, likely 

because the CO₂ remains in a supercritical state in such conditions, which improves its miscibility 

with oil and enhances displacement efficiency. This result is consistent with previous studies that 

suggest CO₂-EOR methods, especially WAG processes, are most effective when the CO₂ is injected 

under conditions that favor its supercritical state - allowing for better mixing and greater 

displacement of oil from the reservoir. In contrast, CWI (Continuous Water Injection) achieved its 

optimum performance at higher temperature (100 °C) and pressure (around 60 MPa). These 

conditions promote better CO₂ dissolution in water, which is essential for the CWI process. The 

higher temperature and pressure improve the solubility of CO₂ in water, making it more effective 

at contacting the residual oil, reducing its viscosity, and thereby enhancing oil recovery. As a result, 

CWI produced the highest oil recovery factor compared to the other two methods, reaching an 

average of 68 % in reservoirs with crossflow, and 60 % in those without crossflow. The 

improvement is attributed to the interaction between CO₂ and the trapped oil, where CO₂ dissolves 

into the water phase, reducing the oil’s viscosity, lowering the interfacial tension (IFT) between oil 

and water, and causing the oil to swell, which all contribute to incremental oil recovery. However, 

this enhanced recovery came at the cost of CO₂ storage. In comparison with CO₂-WAG and 

enriched CO₂-WAG, CWI stored only 40 % of the CO₂ that could be injected and stored by the 
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other two methods. This discrepancy occurs because, in CWI, CO₂ is dissolved in the water phase, 

which inherently limits the amount of CO₂ that can be injected into the reservoir compared to the 

direct CO₂ injection methods used in CO₂-WAG and enriched CO₂-WAG. These latter methods 

inject CO₂ directly into the oil-bearing zone, where it can be stored in both its supercritical form 

and in solution with the oil. Despite CWI’s superior recovery factor, the overall objective, which 

includes both oil recovery and CO₂ tax credits, was higher for CO₂-WAG. This is because CO₂-

WAG not only produced a high recovery factor but also allowed for more CO₂ storage, making it 

the more effective method when considering both economic and environmental aspects (i.e., the 

CO₂ tax credit). In other words, CO₂-WAG maximizes the combination of oil production and CO₂ 

storage, providing a better overall performance in terms of the economic benefits derived from the 

CO₂ tax credits associated with the amount of CO₂ stored. The findings also suggest that the 

impurities in the injected CO₂ (e.g., CH₄) have a minor effect on the oil recovery factor when 

present at low concentrations (10 %). However, as the impurity concentration increases, especially 

in larger volumes of injected gas, the impact on Minimum Miscibility Pressure (MMP) and overall 

recovery efficiency becomes more significant. CH₄, in particular, has been shown in previous 

studies to increase MMP, which can negatively impact the efficiency of CO₂ injection and 

ultimately lower the recovery factor (Alston 1985, Yellig 1980, Johannes 2009; Strydom 2009). 

Thus, the results align with past findings, emphasizing the importance of minimizing impurities in 

the injected CO₂ for optimal recovery performance. 

In conclusion, while CWI provides the highest oil recovery due to the favorable interaction of CO₂ 

with the trapped oil, CO₂-WAG remains the most balanced and promising approach when 

considering both recovery efficiency and CO₂ storage capacity. The ability to store more CO₂, 

along with potential tax credit benefits, makes CO₂-WAG a more advantageous strategy for 
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offshore reservoirs, especially those with limited CO₂ availability and a focus on reducing 

emissions. 

3.2 Comparison between stratified reservoir with and without crossflow 

The findings from this study underscore the complex interplay between reservoir stratification, 

fluid properties, and the dynamics of various CO₂-EOR techniques. Stratified reservoirs, 

particularly those with multiple layers of varying permeability, present unique challenges and 

opportunities for improving oil recovery through optimized injection strategies. Reservoir 

stratification significantly impacts the displacement efficiency of CO₂-EOR processes. Sanchez 

(1999) highlighted the strong influence of stratification on the WAG displacement process, 

emphasizing that the displacement fronts depend heavily on the permeability contrast between 

layers. In our study, the permeability ratios across the five-layer model were modest, with ratios of 

1:2:2.5:3:3, indicating a relatively low contrast compared to cases with more extreme variability. 

This moderate stratification facilitated better sweep efficiency compared to reservoirs with more 

pronounced contrasts, but performance was still inferior to reservoirs with crossflow. The presence 

of crossflow—fluid communication between layers—proved critical in enhancing both oil 

recovery and CO₂ storage across all injection methods. Crossflow enables interlayer fluid 

movement, allowing injected CO₂ or water to redistribute effectively, improving sweep efficiency. 

Without crossflow, as observed in the non-communicating stratified reservoir cases, displacement 

efficiency was compromised due to trapped oil in lower-permeability zones and unstable 

displacements caused by the low viscosity of CO₂ (Sanchez, 1999). The WAG process partially 

mitigated this by improving displacement efficiency through alternating gas and water injection, 

which reduced viscous fingering and enhanced oil sweep. 
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The WAG ratio played a critical role in balancing the oil yield penalty and optimizing recovery. 

Claridge (1982) found that higher WAG ratios reduce the impact of crossflow, enabling a more 

uniform sweep of the reservoir. This study corroborates Claridge's findings, showing that a WAG 

ratio as high as 4:1 was effective in overcoming the adverse effects of stratification in non-

communicating reservoirs. The alternating injection of water and gas stabilized the displacement 

front, mitigating inefficiencies associated with stratification and improving the overall recovery 

factor. For reservoirs with crossflow, gravity segregation provided an additional mechanism to 

enhance recovery. Due to the significant depth of the modeled reservoirs, the density differences 

between water, oil, and CO₂ contributed to natural fluid separation. Water tended to move 

downward into lower layers, while CO₂, being less dense, migrated upwards, displacing oil from 

deeper zones toward higher layers. This gravity-driven redistribution significantly boosted 

recovery in reservoirs with crossflow by maximizing contact between the injected CO₂ and the 

trapped oil. Such dynamics were absent in reservoirs without crossflow, which explains their 

consistently lower recovery factors. 

The economic analysis integrated into the optimization framework highlights the critical 

importance of coupling technical performance with economic feasibility. Fluctuating oil prices and 

CO₂ tax credits are decisive factors in the viability of offshore CO₂-EOR projects. Techniques like 

WAG or CWI may be prioritized depending on the economic environment. For example, in 

scenarios with high oil prices and robust carbon tax incentives, CO₂-WAG may be favored due to 

its dual benefits of high recovery and substantial CO₂ storage. Conversely, in low-carbon credit 

scenarios or markets with lower oil prices, CWI may become more appealing due to its higher oil 

recovery potential, even if its CO₂ storage capacity is lower. 

The inclusion of economic variables adds a critical layer of insight, showing that the choice of 

injection strategy is not merely a technical decision but also an economic one. This integrated 



 147 

approach ensures that the most viable strategy is selected for a given set of market conditions. 

Future work will focus on refining this economic-technical optimization, including a more detailed 

analysis of sensitivity to economic cycles, such as fluctuating carbon tax rates and oil prices. 

Testing various tax structures and market conditions will enable a more robust understanding of 

which strategies yield the highest combined technical and economic benefits. Additionally, further 

refinements in modeling will capture dynamic reservoir behavior and enhance the accuracy of 

predictions, paving the way for better decision-making in offshore CO₂-EOR projects. 

3.3 Sensitivity analysis 

The sensitivity analysis results using the Sobol method are displayed in Figures 6-11 to 6-13 for 

three CO₂-EOR types across two reservoir scenarios: (a) with crossflow and (b) without crossflow. 

By identifying the most impactful parameters, the findings guide targeted optimization efforts, 

emphasizing the interplay between reservoir properties, fluid characteristics, and CO₂ injection 

strategies. In the Sobol method, parameters with sensitivity indices greater than 5 % are considered 

significant. For the overall objective, reservoir pressure emerged as the most influential parameter, 

with sensitivity indices exceeding 50 % for all three CO₂-EOR types. This finding underscores the 

pivotal role of pressure in determining both recovery efficiency and CO₂ storage. The strong 

influence of pressure aligns with studies such as Comberiati (1982), which showed that oil recovery 

increases with pressure in supercritical CO₂ conditions. Higher pressures enhance CO₂ solubility 

in oil and water, reducing oil viscosity, increasing swelling, and improving displacement 

efficiency. These mechanisms are particularly relevant for CO₂-WAG and enriched CO₂-WAG, 

where CO₂’s phase behavior is critical to miscibility and sweep efficiency. Temperature had a 

complex but secondary influence across the studied CO₂-EOR types. While lower temperatures 

increase CO₂ solubility, as noted by Mosavat (2010) and Fathollahi (2015), they can also negatively 
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impact oil viscosity and fluid mobility under certain conditions. This duality is especially apparent 

in enriched CO₂-WAG, where both temperature and impurities (CH4) interact to affect miscibility 

and displacement efficiency. The finding that temperature plays a secondary role to pressure in 

CO₂-WAG and enriched CO₂-WAG suggests that operators should prioritize maintaining optimal 

reservoir pressures when designing injection schemes. Permeability consistently ranked as one of 

the most influential factors for both oil recovery and CO₂ storage across all injection types, 

particularly for CWI. The results align with Sun (2021), which demonstrated that higher 

permeability accelerates oil mobilization and improves sweep efficiency. In this study, the stratified 

reservoir model highlighted that layers with higher permeability facilitate better CO₂ distribution 

and contact with the oil phase, enhancing recovery. For CWI, permeability determines the 

efficiency of water-CO₂ mixing and subsequent oil displacement, making it the dominant factor 

after pressure. These results reinforce the necessity of accurately characterizing permeability 

distributions in stratified reservoirs to predict performance reliably. Methane (CH₄) impurities, 

relevant only for enriched CO₂-WAG, showed limited impact on oil recovery but significantly 

affected CO₂ storage. Methane’s role in raising the Minimum Miscibility Pressure (MMP), as 

highlighted by Pham (2021), explains its minimal effect on recovery at the low impurity levels 

studied (10 %). However, Blanco (2012) found that methane reduces the efficiency of CO₂ 

solubility and residual trapping mechanisms during storage, highlighting its adverse effect on CO₂ 

sequestration. Methane increases CO₂ buoyancy, complicating injectivity and long-term storage 

stability. These findings suggest that minimizing impurities in CO₂ streams can significantly 

enhance storage efficiency without greatly affecting recovery. 

The analysis identified pressure as the most critical parameter, followed by temperature and 

permeability. The alternating injection of CO₂ and water effectively stabilizes the displacement 

front, mitigating adverse effects of reservoir stratification. However, this strategy is highly 
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dependent on maintaining pressures above the Minimum Miscibility Pressure (MMP) to ensure 

effective miscibility. Temperature plays a secondary but notable role by influencing CO₂ solubility 

and density differences, which affect gravity segregation and sweep efficiency. Pressure emerged 

as the most influential factor, followed by impurities, temperature, and permeability. Methane 

impurities, while having a negligible effect on oil recovery, significantly reduce CO₂ storage 

capacity. This highlights the importance of impurity management when sequestration is a primary 

objective. The enriched CO₂ stream’s effectiveness in enhancing recovery emphasizes the balance 

required between optimizing recovery and maximizing storage. In the CWI process, pressure was 

again the dominant factor, followed by permeability and oil viscosity. The direct dissolution of 

CO₂ in water aids oil recovery by reducing viscosity and interfacial tension, enhancing 

displacement efficiency. Permeability plays a critical role in controlling the distribution of CO₂-

laden water within the reservoir, making it a key factor in optimizing the process. 

The findings emphasize several critical considerations for optimizing CO₂-EOR strategies. 

Maintaining reservoir pressures above the Minimum Miscibility Pressure (MMP) is vital for 

maximizing miscibility and displacement efficiency, particularly in CO₂-WAG and enriched CO₂-

WAG processes. Effective management of methane and other impurities in CO₂ streams is essential 

for storage-focused projects, as reducing impurities enhances CO₂ storage capacity and ensures 

long-term sequestration stability. Accurate permeability profiling is equally crucial for designing 

injection strategies that optimize sweep efficiency and recovery, especially in stratified reservoirs 

where permeability contrasts significantly influence performance. Additionally, the interplay 

between recovery efficiency and storage capacity, most notable in enriched CO₂-WAG and CWI, 

highlights the need for integrated optimization frameworks that balance technical outcomes with 

economic considerations, such as carbon credits and fluctuating oil market conditions. 
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Future research should focus on advancing the understanding and application of CO₂-EOR 

strategies by addressing several key areas. Developing advanced impurity management techniques 

will be crucial for better balancing recovery and storage goals, particularly in projects aiming to 

maximize sequestration potential. Investigating the dynamic interactions between temperature, 

pressure, and other reservoir properties in more complex geological formations can provide deeper 

insights into optimizing injection strategies. Field-scale validation of these findings is also essential 

to evaluate the scalability and practicality of optimized injection techniques under real-world 

conditions. By identifying the dominant factors influencing oil recovery and CO₂ storage, this study 

establishes a robust foundation for improving injection strategies in stratified offshore reservoirs. 

These insights can drive the development of methods that achieve technical efficiency while 

meeting economic and environmental objectives. By identifying the dominant factors affecting 

both oil recovery and CO₂ storage, this study lays a solid foundation for enhancing injection 

strategies in stratified offshore reservoirs. These insights can guide the development of techniques 

that ensure technical efficacy while addressing economic and environmental objectives. 
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FIGURE 6-11: Sensitivity analysis for overall objective for 

CO2-WAG, enriched CO2-WAG and CWI a) with crossflow b) 

without crossflow 

 
 

 
FIGURE 6-12: Sensitivity analysis for recovery factor for CO2-

WAG, enriched CO2-WAG and CWI a) with crossflow b) 

without crossflow 

 
 

 
FIGURE 6-13: Sensitivity analysis for CO2 storage for CO2-

WAG, enriched CO2-WAG and CWI a) with crossflow b) 

without crossflow 
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3.4 Proxy model 

The development of proxy models using three-layer neural networks represents a significant 

advancement in the predictive capabilities for CO₂-EOR strategies. These models were 

specifically designed to forecast the overall objective, oil recovery factor, and amount of CO₂ 

storage across various scenarios, including CO₂-WAG, enriched CO₂-WAG, and CWI for both 

stratified reservoirs with and without crossflow. Figures 6-14, 6-15, and 6-16 highlight the 

effectiveness of these models for CO₂-WAG in stratified reservoirs with crossflow. The close 

clustering of both training datasets (blue points) and test datasets (green points) near the 45-

degree line underscores the high predictive accuracy of the proxy models. This accuracy is 

further validated by the coefficient of determination (R²) values, which ranged from 0.93 to 

0.99, and Root Mean Square Error (RMSE) values of less than 10%. The strength of these 

proxy models lies in their ability to accurately emulate simulation outputs without the need for 

additional computationally expensive simulations. This capability is particularly useful in 

optimizing reservoir performance, as it enables rapid assessments of the impacts of various 

parameters on oil recovery and CO₂ storage. For instance, operators can use these models to 

evaluate the influence of changes in reservoir pressure, temperature, permeability, etc… on the 

overall objective, thereby streamlining decision-making processes. Additionally, the high 

predictive performance of these models reflects the robustness of the three-layer neural network 

architecture. This architecture effectively captures the nonlinear relationships between input 

parameters and outputs, such as oil recovery and CO₂ storage, which are critical for the success 

of CO₂-EOR projects. The generalizability of the proxy models across different scenarios and 

reservoir conditions demonstrates their utility as a reliable tool for reservoir management. In 

conclusion, the proxy models developed in this study offer a powerful means of optimizing 

CO₂-EOR strategies by providing precise, efficient, and adaptable predictions. They bridge the 
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gap between simulation and implementation, offering a pathway to improved oil recovery and 

CO₂ storage while aligning with economic and environmental goals. Future research could 

focus on refining these models to incorporate even more complex reservoir conditions and 

extending their application to a broader range of geological formations. 

 
FIGURE 6-14: CO2-WAG Proxy Models for Overall Objective R=0.97, RMSE = 4.7 %  for stratified 

reservoir with crossflow 
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FIGURE 6-15: CO2-WAG Proxy Models for Recovery Factor R=0.99, RMSE = 3.2 % for stratified 

reservoir with crossflow 

 

 
FIGURE 6-16: CO2-WAG Proxy Models for CO2 Stored R=0.95, RMSE = 6.2 % for stratified reservoir 

with crossflow 
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4. Conclusions 

This study comprehensively evaluated the potential of CO₂ sequestration coupled with enhanced 

oil recovery (EOR) to reduce the carbon intensity of incremental oil production using different 

CO₂-EOR techniques. A compositional stratified reservoir model, with and without crossflow, was 

employed to examine the performance of CO₂-WAG, enriched CO₂-WAG, and carbonated water 

injection (CWI) under limited CO₂ availability, a common offshore constraint. Optimization using 

multi-objective Particle Swarm Optimization (PSO) was conducted to assess the effects of 

reservoir temperature, pressure, permeability, oil viscosity, CO₂ availability, and impurities. 

Sensitivity analyses were performed to identify key parameters influencing the overall objective, 

oil recovery factor, and CO₂ storage, while proxy models based on three-layer neural networks 

were developed to predict outcomes efficiently. The following key conclusions were drawn: 

• Offshore reservoirs with limited CO₂ availability often lack sufficient volume for CO₂ 

flooding but can accommodate CWI, CO₂-WAG, or enriched CO₂-WAG for individual 

reservoir blocks. 

• Optimum conditions for CO₂-WAG and enriched CO₂-WAG occurred at a reservoir 

temperature of 50 °C and pressure of 20 MPa, while CWI reached its optimum at higher 

conditions of 100 °C and approximately 60 MPa.  

• The best performance was associated with high-quality reservoirs, high oil viscosity, a large 

volume of injected CO₂, and minimal impurity (CH₄). 

• CWI demonstrated a higher average oil recovery factor compared to CO₂-WAG and 

enriched CO₂-WAG. However, the amount of CO₂ stored in CWI was significantly lower, 

at approximately 40% of the storage achieved with CO₂-WAG or enriched CO₂-WAG, 

resulting in a reduced overall objective value (approximately 50% of the other methods). 
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• Reservoir pressure had the most significant influence on the overall objective across all 

CO₂-EOR methods, while permeability was the dominant factor affecting the oil recovery 

factor. 

• For CO₂ storage, the most influential parameters varied by case, with CO₂ impurities, 

particularly methane, having the greatest impact in enriched CO₂-WAG scenarios. 

• Proxy models exhibited strong predictive performance, with R² values ranging from 0.93 

to 0.99, and can be applied to forecast the overall objective, oil recovery factor, and CO₂ 

storage for other reservoirs without the need for additional simulations. 

• The overall objective integrated both oil price and CO₂ tax credits, reflecting the economic 

variability in project viability. Future work will explore how fluctuating economic factors 

affect the feasibility and optimization of different CO₂ injection methods under varied 

scenarios. 

These findings provide a robust framework for improving CO₂-EOR strategies, highlighting the 

interplay between technical, environmental, and economic factors. 
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Chapter 7 : SUMMARY, CONCLUSIONS, AND 

RECOMMENDATIONS 

This study comprehensively analyzes the optimization of CO₂ sequestration coupled with oil 

recovery to reduce the carbon intensity of incremental oil recovery, considering different CO₂-EOR 

methods, reservoir conditions, and CO₂ impurities. The research delves into how impurities affect 

CO₂ injection and retention, as well as the response of various oil types and reservoir characteristics 

to specific injection strategies. This approach is crucial for balancing enhanced oil recovery with 

carbon storage objectives, enabling offshore EOR projects to maximize CO₂ usage efficiency and 

emission reductions, contributing to sustainable energy goals. 

An in-depth analysis of the relationship between different CO2 capture technologies and the 

resulting impurities, their respective concentrations, and the impact on Minimum Miscibility 

Pressure (MMP) - covering a wide range of CO2 concentrations (from 0 % to 100 %) - was 

investigated in Chapter 3, addressing a gap in the existing literature. Adsorption and absorption 

technologies are found to capture CO2 with a higher purity than membrane technology. However, 

membrane technology has advantages of compact size, low maintenance requirements and 

allowance for less pre-treatment of the gas without having any significant impact on the efficiency. 

Impurities presented depend on the source of CO2; CH4 is found in CO2 from the natural gas stream 

and O2 and N2 are presented in CO2 from flue gas stream. A mixture of CO2 and natural gas is 

effective at decreasing MMP. The impurities found in flue gas stream (O2 and N2) have a greater 

effect on increasing MMP of the mixture than the impurity found on natural gas stream (CH4) as 

N2 requires a much higher pressure to achieve miscibility condition than CO2.  

The limited range of CO2 concentrations in gas sources and the lack of sufficient data points have 

been key challenges in recent studies using Machine Learning to predict Minimum Miscibility 
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Pressure (MMP). This study addresses these issues by developing a more accurate model using a 

Deep Learning algorithm and k-fold Cross Validation, as presented in Chapter 4. Reservoir 

temperature and the amount of CO2 and C1 in the gas source have the most influence on oil-gas 

MMP. Increasing the reservoir temperature, molecular weight of the oil, ratio of volatile 

components and intermediate components of the oil phase, or the amount of C1, N2 in the gas phase 

increases MMP. The presence of CO2 and H2S in the gas phase will lower the MMP, especially 

CO2. The  comparison between Deep Learning model and the slimtube simulation for MMP values 

is carried out. The relative errors are no more than 7 %, which demonstrates a good agreement 

between two models. In future work, a series of slimtube tests can be conducted experimentally to 

validate the accuracy and reliability of both simulation models. 

EOR studies typically focus on incremental oil recover (without considering carbon pricing), 

whereas Carbon Capture, Utilisation and Storage (CCUS) prioritizes maximizing CO2 storage 

(assuming an infinite CO2 supply). The joint optimization of oil recovery and carbon storage, 

presented in Chapter 5 and 6, considers both the price of produced oil and the value of CO2 tax 

credit, using a 50:50 ratio to emphasize their equal importance. This study examines various oil 

types (light, medium, heavy) and conditions, including CO2-EOR methods (WAG, CWI, enriched-

WAG), CO2 constraints, impurities, and reservoir characteristics (stratification, crossflow, 

temperature, pressure, permeability) through simulations using GMG. Optimization was performed 

using Multi-Objective Particle Swarm Optimization (MOPSO).The results indicate that CWI is the 

most effective method under CO2 constraints for stratified reservoirs, both with and without 

crossflow. However, the amount of CO2 stored is significantly lower in the CWI case. Reservoir 

pressure has the greatest influence on overall objectives, while permeability has the most impact 

on the oil recovery factor across all three CO2-EOR methods. 
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The optimization of oil recovery and CO2 storage is a complex challenge influenced by a multitude 

of factors such as phase behaviour, EOR techniques, reservoir characteristics, gas availability and 

characteristics, also economics factors including price of oil, CO2 tax credits and carbon pricing. 

Field-scale simulation, which enables the modeling of large, real-world reservoirs, is crucial for 

evaluating the performance of Enhanced Oil Recovery (EOR) and Carbon Capture, Utilization, and 

Storage (CCUS) techniques. Future work can concentrate on detailed field-scale simulations for 

the Hibernia reservoir, considering various boundary conditions. The Hibernia reservoir features 

complex geological structures, including faults, stratification, aquifer support, and a 

compartmentalized nature, which can function as closed or semi-closed boundaries. Additionally, 

stratification creates internal boundary conditions between different layers, with some acting as 

high-permeability flow channels (open boundaries) while others serve as barriers to fluid flow 

(closed or semi-closed boundaries). In real-world applications, the 50:50 balance between oil 

recovery and carbon storage objectives can be dynamically adjusted based on external factors, such 

as market conditions, regulatory changes, and environmental incentives. For example, when oil 

prices are high, the weighting could be adjusted to prioritize oil recovery, maximizing economic 

returns. On the other hand, during periods of stricter carbon taxation or when there are significant 

tax credits for CO₂ storage, the model could emphasize carbon sequestration. This flexibility allows 

the optimization model to adapt to varying economic and regulatory environments. Given the 

variability in oil prices and CO2 tax incentives, it would be valuable for future work to explore 

different scenarios, optimizing recovery strategies under diverse conditions. 
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Appendix 

Appendix A 

Hibernia Field Production Statistics Cumulative to March 31, 2020 

Gas Production (Bscf) Flared (Bscf) Fuel (Bscf) Injected (Bscf) Lift (Bscf) 

1925.58 99.47 117.61 1708.40 18.89 

  Flared + Fuel (Bscf)     

  217.08     

Material balance  
CO2 produced = CO2 injected + CO2 from combusted gas (power 

generation combustion + flaring) + CO2 from fugitive emissions 

CO2 produced (Bscf) 
CO2 from combusted gas 

(Bscf) 

CO2 injected 

(Bscf) 

CO2 from 

Fugitive 

Emission 

(Bscf) 

236.12 220.57 15.38 0.17 

 

Produced gas composition (other gases neglectable) (mol %) (Hibernia 

report) 
  

CO2 CH4 C2H6 C3H8   

0.90 86.00 7.00 4.00   

Amount in Flared + Fuel (Bscf)   

1.95 186.69 15.20 8.68   

Amount CO2 produced after combustion (Bscf) 
Total 

(Bscf) 

1.95 186.69 30.39 26.05 245.08 

Amount CO2 after membrane capture (Bscf) (capture degree 90%) 220.57 

Combustion equations 

 

  

  

  

 

 

 

 


