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Abstract

Paper thickness, known as caliper, is a critical feature in producing newsprint.
The traditional newsprint made at Corner Brook Pulp and Paper Mill (CBPPL) undergoes a
calendering (‘flattening’) process at the end of the line, where the sheet caliper is controlled to
meet a specific outcome. A potential market for CBPPL involves paper that does not go through
the calendering process. This necessitates a better understanding of the relationship between the
paper caliper and other variables present in the manufacturing process so that CBPPL can
diversify its production line. This thesis is an observational study examining the relationship
between the caliper and other process variables. This is done using baseline statistical
techniques, including covariance/correlation analysis, regression, principal component analysis,
and a neural network. These techniques show that variables such as species, basis weight, CD
tear and KSI have a statistically significant relationship with the caliper. This understanding of
variables within the papermaking process is beneficial to CBPPL and the paper-making industry
as a whole; further research could be done to explore the effect of tighter control of wood species

mix and the interactions of variables within the process.



General Summary

When reading a newspaper, one may notice that the thickness of the paper is consistent
among the different pages. This is thanks to a process called calendaring, which occurs at the end
of the papermaking process and creates a smooth, consistent paper thickness. Other paper types
do not necessarily go through this calendaring process but still require consistent paper thickness
and quality. Imagine reading a book where every page has a different thickness. We seek to
explore factors in the papermaking process that may influence this thickness. In paper making,
this thickness is referred to as caliper. We explore variables in the process that may influence
caliper through traditional statistics such as covariance/correlation analysis, regression, and
principal component analysis, as well as using a neural network. These techniques show that
variables such as species, basis weight, CD tear and KSI have a statistically significant impact on

the caliper.
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Chapter 1: INTRODUCTION

1.1 Background of Study

1.1.1 Corner Brook Pulp and Paper

Corner Brook Pulp and Paper Limited (CBPPL) is located in Corner Brook,
Newfoundland and Labrador. With a population of 19,333 in 2021 (Statistics Canada, 2021),
Corner Brook relies heavily on the mill and its residual effect as a driving force of the economy.
The mill in Corner Brook has traditionally focused its production efforts on newsprint, but
product diversification is highly interesting. Other paper types do not necessarily undergo a
calendering process, which helps ‘press’ the paper into desired caliper ranges (Ritt6 & Rigdahl,
1998). As such, how the paper caliper varies during manufacturing is of significant interest to

CBPPL.

1.1.2 The Papermaking Process

Paper is a spatial network of fibres, fines, and possibly fillers, with tiny voids in
between, and many of the properties of the paper are influenced by this structure (Holmstad et
al., 2001). Paper production turns fibrous material into pulp, which is then converted to paper
(Bajpai, 2018). An 8 4" x 11" sheet comprises millions of fibers bound by hydrogen bonds
(Koivo, 2009). Koivo (2009) discusses the history of papermaking, which was invented around
105 A.D. by Chinese Emperor Tsai Lun, with the first continuous paper-making machine being
constructed in France in 1798.

Drost et al. (2003) contend that geographic location and growth conditions are
important in determining fibre composition. The age of the trees being harvested is also
essential to the process. It has been shown that juvenile wood can have a lower fibre yield

than mature wood, by anywhere from 0.4% to 4.4% (Drost et al., 2003).

Along with age, wood species also play a crucial role in the quality of the paper. The
1



CBPPL woodyard is primarily filled with black spruce (Picea mariana (Mill.) B.S.P.) and
Balsam Fir (4bies balsamea (L.) Mill), the primary feedstocks for papermaking in the province
(Norcliffe & Bates,1997). Although recommendations are provided to woodyard workers on the
amount of spruce and fir to put into the hopper for pulp at any given time, this is a complex
variable to control.

From the woodyard, the wood goes through a debarking and chipping process before
becoming pulp. Joutsimo (2004) discusses the next steps where pulping separates cellulose from
other materials in the wood, as cellulose is the fibrous material needed to create paper. Several
pulping methods exist, including mechanical, chemical, and semi-mechanical methods.
Mechanical pulping uses disks and water to grind the wood into pulp while relying on heat and
friction (Biermann, 1996). Whereas chemical pulping uses chemicals to break up the wood.
Mechanical pulping usually yields more than 90%, whereas chemical pulping converts about
half of the dry mass of the wood into fibers (Hakansson, 2014). However, mechanical pulping
usually requires much more energy than chemical pulping.

Mechanical pulping leaves the presence of lignin, a dark-colored organic material that
binds cellulose fibers; this causes the mechanically pulped paper to be more opaque, weak and
easily discoloured (Ververis et al., 2004). Smook (1992) argues that mechanical pulping is more
suitable for paper with low brightness but may not be as appropriate for printing, copying, and
packaging paper. CBPPL uses a thermomechanical pulp (TMP) where the wood is chipped and
squeezed between steel disks in a steam-heated process. The resulting slurry is diluted, and the
fibrous mix is pumped to storage tanks before finally being pumped to the paper machine.
Mertens et al. (2017) found that TMP is advantageous compared to chemical or mechanical, as
it provides higher strength, yields and can have a lower environmental impact.

The paper machine turns this pulp into a sheet of paper, moving the material at speeds of



around 2,000 metres a minute (Pikulik, 2011). The pulp will go through three main sections on
the machine: forming, pressing, and drying. After that, the paper may be calendered before
being rolled onto a reel. Figure 1 shows the paper machine with different sections of the process
outlined. Some steps in the process are not shown, such as the flow of TMP. “A modern paper
mill alone has several thousands of basic control loops controlling different flows, temperatures,

tank levels, pH of stock, consistencies, etc.” (Koivo, 2009).

Machine Direction
Fourdrinier Table g Y
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Scanning Sensor

Slice Lip

Headbox

Dilution Actuators Water Spray Induction Heating  Reel
| ] 3l I 1 J | . J

1 | I
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Figure 1 Paper-Making Machine (Source: Chu, Forbes, Backstrom, Gheorghe & Chu, 2011)

In the forming section, the headbox distributes the pulp mixture across the forming
fabric/wire (Hakansson, 2014). The headbox needs to produce uniform quality and velocity
across the width of the machine to ensure a constant basis weight. Pikulik (2011) outlines the next
steps where the mixture will go from 1% solids to 13%-25% by draining water to create a strong
fibre sheet. After this, the pressing section brings the product to 38%-50% solids content
(Pikulik, 2011). The pressing section is essential for water removal and sheet compaction,
considerably increasing the wet sheet's strength from the forming section (Bajapi, 2018). This
strength is vital to ensure no sheet breaks, which limits productivity and is costly to the
operation. Then comes the drying section, where the final moisture content would be about 2%-
10% (Pikulik, 2011). This section removes moisture through evaporation. From here, the
newsprint goes through the calendering section before going onto the reels. This process results

in a jumbo of paper and sludge or biosolids. Not all types of paper go through the calendering

3



process, so it is vital to understand the impact of the calendering process on the paper. During
the calendering process, the paper goes through a combination of heated rolls before being
wound onto a reel. Li (1994) articulates that the calendering process creates a smooth surface for
printing, reduces thickness, and corrects irregularities in the paper. There are many types of
calendering, such as hard-nip, soft-nip, multi-nip, and long-tip. The final caliper of the paper is
controlled by the calendering process, using the temperature of the calendered rolls to manipulate
it (Pikulik, 2011).

In addition to the caliper, the strength of the output paper is important to consider.
Marklund et al.(1998) summarize two commonly used strength indicators, tensile and tear
indexes. Strength parameters can be influenced as early as the wood-cutting phase; fibre
dimensions, single-fibre strength, fibre flexibility, and fibre collapsibility are critical factors in
the final paper’s strength (Marklund et al., 1998). Variation in tree species has also been found
to influence strength parameters, with balsam fir having the highest tensile strength, followed by

spruce and trailed by jack pine and others (Drost et al., 2003).

1.2 Objectives and Significance of Study

The paper-making process is a riddle of variables that change over time and involve
many physical and operational components of the paper machine and process. The Corner Brook
Pulp and Paper mill is outfitted with numerous sensors that monitor the papermaking process
discussed in the previous section. This research centers on data obtained from CBPPL,
capturing paper production sensor data during three periods of interest. We analyze this data
using standard statistical methods as well as a neural network-based approach. We interpret the
findings with the aim of better understanding how the caliper changes during the paper-making

process and what process variables may influence the end caliper of the paper.



Chapter 2: DATA AND METHODS

2.1 Data Collection

Three datasets were provided by CBPPL, each containing process variable data from
three periods. The principal data set was taken during a nominal papermaking period and is
referred to as the baseline dataset. The two other datasets correspond to periods of operational
interest to CBPPL, wherein the species mix of wood used to produce the paper was at two
possible extremes — one period where only fir is used and another where only spruce is used.
Each dataset consists of 52 sensor measurements, each one minute apart. More information
about these 52 variables is outlined in Appendix A. The paper runs were completed on paper
machine 2, which is why the variables have the abbreviation PM2; this prefix is sometimes left
out when discussing the variables.

The baseline data included measurements for every minute from 8 AM on Feb 1, 2019, to
8 AM on March 12, 2019, thus providing 56099 samples. The second dataset, where only spruce
wood was used, included measurements for every minute from 7 PM on March 20, 2019, to 11
PM on March 21, 2019, thus providing 1680 samples. The final dataset, where only fir wood was
used, includes measurements for every minute from 3 PM on June 15, 2019, to 3 PM on June 17,
2019, thus providing 1464 samples. These different datasets were chosen to investigate how the
individual wood species, compared to the mixture of species used by CBPPL, impact the paper

created, with the variation in dataset size due to the trial sizes run by CBPPL.

2.2 Experimental Design and Factor Effects
For the investigation, the machine caliper or actual caliper (PM2 Mx_Caliper) was used
as the response (or ‘dependent’) variable, with the remaining variables as the predictor

variables. When a mill operator wants to run a jumbo of a new caliper, the paper machine
5



operator changes settings, resulting in the paper machine transitioning to a new operating state.
This results in changes to the paper machine's various components and sensor readings. The
term independent regarding predictor variables is avoided as it may suggest these values are
arbitrarily independent, which is certainly not true. For example, Drost et al. (2003) have
shown that basis weight is known to be correlated with the caliper for certain paper types.

The variables outlined in Appendix A are labelled as either continuous, discrete or appear
to be discrete. The continuous variables can take on an infinite number of values. The discrete
variables only take on a finite number of possible values. The variables labelled “Appears to be
discrete” take on a value for a period of measurements and then proceed to change to another
value, where it stays constant for a certain number of measurements before repeating this

process.

2.3 Missing Data and Error Data Points

Some samples within the CBPPL datasets contained missing values, which appeared as
“No good Data” within the datasets. We cannot always infer or determine why the data is
missing. Such missing data is to be expected when monitoring a complicated process. Sensors
can be temporarily knocked offline by transient events or abnormal process states, resulting in
missing or invalid data that should be treated as outliers.
How one deals with missing data depends mainly on the study design, analysis goals, and pattern
and type of missing data (Soley-Bori, 2013). Missing data can be categorized into three different
categories. Sainani (2015) outlines that missing completely at random data has no systemic
pattern in how the data is missing. Missing at random refers to data that may be missing within a
specific subgroup (Sainani, 2015). Finally, data that is missing not at random is missing due to

factors not measured (Sainani, 2015).



One way to deal with the missing data is to remove all observations where data is
missing, referred to as complete case analysis (Bennett, 2001). The next group of methods is
called single imputation methods, which use an estimate to replace the missing data. Bennett
(2001) goes on to discuss the “last value carried forward” method, which replaces the missing
data with a value from the last recorded measurement. The “mean Substitution” method replaces
the missing value with the mean of all the other measurements of that variable; this can lead to
underestimating the variance (Bennett, 2001). “Regression methods” replace the missing data
with the outcome of a regression model where the missing data is the outcome variable (Bennett,
2001). Hot-deck imputation replaces the missing value with values with a matching covariate;
Cold-deck imputation is similar but depends on knowledge from external information (Bennett,
2001). Sainani (2015) argues that these methods could underestimate the variance because they
impute the same value for each missing data point. Rather than imputing one value, multiple
imputation methods generate various values for the missing data and combine the results into a
single estimate (Sainani, 2015). Statistical algorithms can be used as an alternative to imputation
methods. There are many methods for this, including Markov-chain imputation, expectation-
maximization approach, and Raw Maximum Likelihood methods, to name a few. There are
many ways to deal with missing data points; one solution does not work for all.

Within the mill datasets, the variables representing wet and dry end breaks were removed
because these variables were riddled with many “No good data tags” values or were binary
variables that jumped between zero and one. To deal with missing or erroneous data points, our
datasets were limited to only those jumbos of paper with 30 to 90 observations per jumbo; any
fewer or greater number of observations was taken as a sign that the machine was not working
correctly, as, on average, there were 60 observations per jumbo. The jumbos with the highest

and lowest 5% of the variance were then removed to ensure the data was not influenced by
7



instances where the machine state was irregular.

2.4 Correlation Analysis

Variance describes the variability in a single variable, while covariance describes how
multiple variables vary together (Schober et al. 2018). In contrast, correlation measures how one
variable changes in response to another. One measure of the correlation between two variables, X
and Y, is the sample correlation coefficient or Pearson correlation coefficient. This coefficient is
represented by ryxy and is found by dividing the sample covariance by the product of the sample
standard deviations; see equation 1 below. In this formula, 1y is the Pearson correlation
coefficient between x and y, two variables with n numbers of observations; x; is the value of x for
the ith observation, and y; is the value of y for the ith observation, x is the mean of the x variable

and y is the mean of the y variable.

F1(x—%) (vi—¥)
(Eq 1.)

Txy = 7=
[EE 02 S 09

For any two random variables, X and Y, the value of ryy is always between -1 and 1 and can
be described using strength and direction (Lee Rodgers & Nicewander, 1988). Strength is defined
as strong, moderate or weak, while direction is positive or negative. While the definition of
strong, moderate or weak largely depends on the user and field, if rxy is near 1, the value of X and
Y will increase or decrease proportionally and strongly. Similarly, when rxy 1s near -1, the values
increase/decrease oppositely but still proportionally. When ryy is near zero, the increases and
decreases in X and Y do not match linearly. If variables X and Y are truly independent, then
rxy=0, though the converse does not hold.

Shiina (2016) explores how correlation has remained relatively unchanged since its inception.

Some of the earliest work that contributed to the idea includes Analyse Mathématique sur les



Probabilités des Erreurs de Situation d 'un Point by Bravais from 1846, in which Bravais was trying to
determine errors in the determination of the coordinate points in space, but was not aware of its implications on
correlation and is thus not credited with contributing (Piovani, 2008). Also, in the early 1800s, Gauss theorized
“the normal surface of n-correlated variates” but did not dive into the concept of correlation (Rodgers &
Nicewander, 1988). In 1888, Galton used the term “Co-re-lation” when measuring closeness. Finally, in the
mid-1890s, Pearson finalized the concept and developed today's formula (Asuero, Sayago & Gonzalez, 20006).
Correlation shows that one variable is thought to increase or decrease to a certain extent
with another variable, but not that the change in one variable is caused by another (Samuel &
Okey, 2015). If two random variables are statistically independent, their correlation coefficient is
zero. However, the converse is invalid, i.e., if » =0, this does not necessarily imply that x and y
are statistically independent. For example, they could be non-linearly related. Gogtay and Thatte
(2017) argue that the judgment of cause and effect requires more knowledge of the data set from
the investigator as well as further analysis of the data.
Seel (2015) reminds the reader that significance does not mean relevance when
interpreting results. There will be a mathematical correlation if two variables increase (or
decrease) simultaneously over time. For example, one could compare an increase in traffic lights
with an increase in popsicle sales and find they have a strong correlation. This analysis may be
true, but it is most likely conceptually irrelevant to data like that. In this example, it would be

helpful to examine other variables, such as the increase in population.

2.5 Regression Analysis
Correlation is mainly used to study interdependence, whereas regression is often used to
research dependence (Asuero et al., 2006). Poole and O’Farrell (1971) investigate how regression can

be used for various analyses, such as descriptive analysis, parameter estimation, predictive capacities



and process control purposes. There are many types of regression, including linear, simple, multiple,
ordinal, and many others. The type of regression used depends mainly on the data type being analyzed
and the outcome being pursued.

Linear regression models how various predictor variables can estimate a response
variable using a linear relationship. When there is one response variable y, and n predictor
variables x1, X2, ..., Xn, the linear regression predictor has the form yp, = wix; + waxz + ... + WnXa
+ b, where the coefficients w; are chosen to minimize the error between the predicted value of the
response variable y, and the actual value of the response variable y. In the case of a single
predictor and single response variable, this prediction can be thought of as the line that best fits
through the data. In this work, y, is an estimate of the caliper, and w; to wy are the weights
associated with the process variables. There are various ways to define the error between y and
yp. The most common method is least squares, where the values w; and b are chosen to minimize
the sum of squares of y-y, over the sample values of the response and predictor variables. The
error term y-yp 1s sometimes called the ‘residual error’ or simply a ‘residual.” When analyzing a
linear regression output, the coefficients w; can be thought of as a measure of the size of the
effect of each predictor variable on the response variable, as well as whether the influence is
positive or negative. The value b (the ‘intercept’) represents what the dependent variable would
be if all other influences (independent variables) were eliminated.

Gauss is generally given credit for providing the foundation for regression, but it is
believed that Legendre published first on the method (Kumari & Yadav, 2018). In the early
1800s, Gauss and Legendre were interested in objects orbiting the sun, leading to methods
similar to the least squares method. Stanton (2001) writes that the term regression was first
introduced after this and came about through Sir Francis Galton’s inquiry into pea plant genetics.

His version of regression slightly differed from today's concept because he used the median for
10



measuring central tendency and the semi-interquartile range to estimate variability, as these
values were easy to obtain (Barnes, 1998). Even though his estimates were not the most
mathematically sound, Galton pursued the idea that differences amongst the variability
contributed to the differences in regression slope (Barnes, 1998). Galton was more interested in
the deviations around the mean than the mean itself, which leaves room for further advancement.
Pearson further developed the regression concept into a more general statistical model similar to
the modern formulation of regression, which he published in Philosophical Transactions of the
Royal Society of London and later proved that the optimum regression slope values were from
the product-moment (Stanton, 2001).

Whenever we attempt to predict or approximate a dataset, there is the question of how
good the approximation is. How accurately and adequately the prediction model represents the
actual data is called the goodness of fit. Common measures of fit are the mean square error
(MSE) and the square root of the MSE, called the standard error. The standard error is measured
in the units of the response variable and measures the absolute distance data points lie from the
regression line. Finally, the so-called coefficient of determination, denoted R?, represents the
percentage of the variance in the dependent variable that the model explains.

A concept similar to model adequacy is model validation, which is used to gain assurance
about the reliability and robustness of a model. Montgomery et al. (2012) investigate a common
way to perform model validation, which is to split the sample data into training(estimation) and
testing(prediction) subsets. The training data is seen by the model and used to determine its
parameters (the values wi and b). The resulting prediction model is then applied to the testing
data. Because the testing data has not influenced the model, the model’s performance on the
testing data is more indicative of its predictive power on unseen data from the population.

Figure 2 shows Anscombe’s quartet, four datasets with nearly the same summary
11



statistics and regression line. In three of the four graphs, the line of best fit provided by linear

regression may not be the best suited for modelling the data.

Anscombe’s Quartet

10 15 20

Figure 2 Anscombe’s Quartet

One may be using a linear regression simply as a convenient linear predictor. However,
further assumptions allow one to infer broader population statistics using the regression. This
section will describe the most common assumptions associated with linear regression, the
reasons behind them, and the limitations caused by not meeting these assumptions.

One of linear regression analysis's most natural assumptions is that the variables are
(roughly) linearly related. Some simple ways to check for linearity in the data are through a
scatterplot, examining the residuals or examining the least square error for high accuracy. When

reviewing the residual plots, studying the predicted values vs. standardized residuals, and

observed values against each predictor is necessary to ensure the data is linear (Osborne &
Waters, 2002). This assumption is inherent when examining the equation that linear regression is
trying to fit the data; it is the equation of a line. If this assumption is not met, the model may be a

poor fit and not capture authentic relationships or provide misleading coefficient estimates.
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Another underlying assumption of linear regression is that the outcome variable is
continuous. If the outcome variable is categorical/discrete, this becomes a classification
problem, and one would be better off using logistic regression, a binary classification method
(Tripepi et al., 2011). Casson and Farmer (2014) show that a linear regression model with a
single categorical outcome variable that can take 1 of 2 values is equivalent to a simple t-test.
Similarly, if the categorical predictor variable has more than two values, the linear regression
model is comparable to an ANOVA.

Another common assumption is that the data is drawn from a normal distribution.
Osborne and Waters (2002) discuss how this can be checked by a normality test or a histogram
of the data that would look like a bell-shaped curve for normal data. This assumption is mainly
used for making statistical inferences about the regression model, for example, confidence
intervals or showing that the estimator from the regression is the maximum likelihood estimator.
Not meeting the normality assumption may not be a problem due to the central limit theorem,
which states that large sample sizes will be approximately normal. Still, smaller datasets may be
able to be transformed.

Ideally, predictor variables in a linear regression should be linearly independent. This is
called a multicollinearity assumption and is essential because correlated (non-independent)
predictor variables will make it hard to determine the specific contributions of each variable
(Tripepi et al., 2011). This assumption can be checked with a correlation matrix of the variables
or via tolerance tests; the most common measure of tolerance is simply 1-R2, where R? is the
coefficient of determination obtained from the regression model. Tabachnick and Fidell (2001)
argue that a higher value for 1-R? is desirable, with a minimum being .10. If one's data shows
multicollinearity, the highly correlated variables could be removed or combined into one

variable.
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Another assumption is that the error terms, sometimes referred to as residuals, are
normally distributed. Checking the normality of the error term can be done through a histogram
of the residuals, a Q-Q plot or other formal statistical tests. This assumption allows one to make
inferences from the model or estimate the probability that a given error will exceed some
threshold, such as a confidence interval. A violation of this assumption means a skewed error
distribution that can disproportionately influence parameter estimates. (Osborne & Waters,
2002).

Another property the error terms may satisfy is that they are uncorrelated with a mean of
zero. This can be checked by examining the mean of the residuals, examining residual plots, or
using tests such as the Durbin-Watson test. An average error value of zero shows the error is
unbiased; if the mean is not zero, the model would constantly be under/overpredicting the values.
If this assumption is unmet, one can use tools such as Newey-West estimators, also known as
Heteroskedasticity and autocorrelation consistent (HAC) standard errors (Montgomery et al.,
2021).

One final assumption involving the error term is homoscedasticity, which refers to equal
variance of the error terms. The error term represents the distance between each data point and
the fitted regression equation; since each point is supposed to contribute to the regression
equation equally, this variance should also be equal, thus making the predictive capability the
same for each data point (Casson & Farmer, 2014). The easiest way to check this is by plotting
the standardized residuals vs. the predicted values. Poole and O’Farrell (1971) write that this
assumption can also be checked through tests such as Hartley’s Fmax test or Bartlett’s test; it
should be noted that these tests are susceptible to non-normality in the data. Not meeting this

assumption can increase Type 1 errors (Osborne & Waters, 2002).
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2.6 Principal Component Analysis

Principal component analysis (PCA) is a linear dimensionality reduction method that can
be applied to a dataset with many variables to aid in visualizing complex, high-dimensional data
(Mishra et al., 2017). Many terms are used more or less interchangeably for PCA, such as factor
analysis, eigenvector analysis, or latent vector analysis (Jolliffe, 2002). “Principal component
analysis seeks to reduce the dimensionality of the data along what are called principal
components; these components are ordered by the amount of variation from the original data set
they retain” (Ringnér, 2008). PCA projects high-dimensional data onto a smaller dimensional
subspace — the principal components are an orthogonal basis for this subspace (Mishra et al.,

2017). Ringnér (2008) investigates different applications of PCA, such as classification,
compressing images and facial recognition.

To understand the basic idea of PCA, suppose there is a dataset of n samples, each consisting
of p values. Perhaps these values represent the readings of p different sensors at a given moment.
When the relative magnitudes of the variables are different, it is common to standardize the data
values by centering and scaling the data. Replacing the matrix product with the correlation matrix of
the variables has the same effect as standardizing the data first.

Therefore, it is important to center the data so that the mean of each of the p-values is zero. The
data can then be represented using an n x p matrix X, where the n rows of X can be thought of as the n
samples and the columns as the values for each sensor. The dataset can then be linearly reduced by
choosing any unit basis of R¥. Then a matrix, W, of form p x k can be created where the columns are
the basis vectors. The n x k matrix XW can then be thought of as linearly projecting each point in the
data X to a k-dimensional space. There are many ways to choose the basis vectors W. PCA uses a
basis W that is orthogonal and has the property that the variances of the projections onto the basis
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vectors W are maximized. For example, if w is the first basis vector (and so the first column of W),
then the matrix product (Xw)' (Xw) represents the variance of the transformed data when projected
onto the first basis vector (because the transformed data is still centered). To maximize this variance,
the unit vector w that maximizes the value (Xw)' (Xw) is desired; the vector solving this optimization
problem is the first basis vector in W. The next basis vector of W is chosen to maximize a similar
matrix product, but it must now be orthogonal to w. Continuing in this manner, one can iteratively
find each k basis vector in W. These k vectors are the ‘principal components’ of the transformed
space.

Although both had different motivations, Mishra et al. (2017) credit Pearson and
Hotelling with inventing PCA. Pearson was interested in fitting lines and planes to points in P-
dimensions. In contrast, Hotelling was interested in finding a smaller set of independent
variables that determine the values of the original variables (Bro & Smilde, 2014).
Others credited with the advancement of PCA include Girshick and his alternative derivations of
principal components, as well as Rao, who provided other interpretations and extensions of PCA
(Jolliffe, 2002). It was only with the advent of computers that PCA became widely used due to

the high computational needs of the technique (Jolliffe, 2002).

Shlens (2003) examines how principal components (PCs) are closely related to matrix
eigenvectors and eigenvalues and can be computed through many algorithms, including factor
analysis, singular value decomposition (SVD), and eigenvector analysis. Principal components
are arranged in order of highest eigenvalue to lowest, which gives the order of principal
components with the most variation to least. Once the principal components have been
computed, one can decide how many principal components to keep for further analysis. This
choice reflects a trade-off between reducing the data dimensionality and retaining as much data

variation as possible. Jolliffe (2002) discusses how one can use a scree plot, which shows the
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variation along each principal component, to subjectively decide where the plotted points go
from ‘steep’ to ‘not steep’ and retain the components before the change. An alternative method to
decide if the number of PCs included provides an accurate representation is to use cross-
validation of the data by splitting the data into testing and training sets and then predicting the
test set (Bro & Smilde, 2014).

Rodionova et al. (2021) state that the most common outputs from PCA are scores,
loadings, and the associated plots. The scores represent where the original observations are
projected onto each component. Thus, they can be thought of as the coordinates on the plane
created by the new principal components. Because the matrix in PCA is orthonormal, the
relationships from the untransformed data are held. Thus, a score plot allows one to examine
clusters, outliers and relationships between individual measurements (Bro & Smilde, 2014). The
next significant output is loadings. Bro and Smilde (2014) define loadings as the weight of each
variable on the respective principal component. Therefore, each principal component has a
loading vector that shows how a coordinate on that principal component axis combines the
values from each of the original variable axes. Thus, loading plots show the relationship between

each principal component and the original variables.

2.7 Neural Networks

The advancement of technology has made techniques like those described earlier easier
and has also created new data analysis fields such as machine learning. As a field within artificial
intelligence, machine learning has been evolving since as early as 1949 when Donald Hebb
published “The Organization of Behaviour” about neurons and their interactions (Tarca et al.,
2007). Fradkov (2020) reports that the term machine learning was coined by Arthur Samuel,

who programmed a computer to play chess and record all previous positions. Frank Rosenblatt
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used similar ideas to create the perceptron, which recognized the letters of the alphabet and was
the predecessor of neural networks. Since then, and especially in the last decade, new techniques
and more robust computing power have led to a surge in machine learning applications.
Artificial neural networks are a specific type of machine learning tool. Warner and Misra
(1996) propose that these networks are based on the model of a biological neuron created by
Warren McCulloch and Walter Pitts in 1943. The purpose of neural networks is to exploit
unknown structures in a dataset by making the higher-level representation of the data more
abstract while making the data features more invariant to variations in training distribution and
preserving as much information about the input as possible (Bengio, 2012). Neural networks can
be used for many data exploration techniques, such as dimensionality reduction, regularization,
clustering, anomaly detection, and recommender systems (Cunningham & Ghahramani, 2015).
In general, neural networks can be thought of as a specific type of function from R" to R¥
that is constructed using multiple layers. The input is a vector xo in R" and can be thought of as
‘layer 0’ of the network. The neural network transforms xo into a vector x1, where x;=f (Wx +
bi), W1 is an h x n matrix of ‘weights,” and by in R" is called a ‘bias’ vector. The function f is
called the ‘activation’ function and is typically a simple nonlinear function such as ReLU(x): =
x if x>0 and 0 otherwise. This layer is meant to model the action of h neurons receiving an input
of n numbers, each of the h neurons weighting the importance of the n inputs, and then each
neuron ‘summing’ their total (weighted) inputs and finally ‘firing’ (creating an output) if the
input signal is strong enough. Subsequent layers behave the same way, transforming an input
vector into an output vector via a matrix multiplication and activation function (Voulodimos, et
al., 2018). The collection of weight matrices and bias vectors for the entire network is called the

‘learnable parameters’ of the model. The example transforms the input layer xoin R" to a vector

x1in R The output sizes of each layer can vary, though it is common to have many layers with
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the same size of input and output vector. Figure 3 is a representation of a neural network with
an input layer of length 4, which is transformed to a vector of length 3 in layer 1, which is
transformed to a vector of length 4 in layer 2, which is finally transformed to a vector of length

2, which is the final output of the neural network.

Input Hidden Output
layer layers layer

Figure 3 Feedforward neural network (Source: https://www.knime.com/blog/a-friendly-introduction-to-deep-neural- networks )

A neural network N is ‘trained’ to ‘learn’ a function during the training process. In this
case, the data is a list of input and output pairs (Xi, yi). The network is given an input x;, and the
output N(x;) is computed and compared to the ‘desired’ output y;. The difference in the desired
output y;i and the actual output N(x;) can be thought of as an error signal that can be used to
modify the weight matrices W and bias vectors b for each layer in such a way that the function N
with revised weights has N(xi) closer to y; (Bebis & Georgiopoulos, 1994). This is done
repeatedly for each point in the dataset, and over time, this learning process results in a trained
network N where the differences between N(xi) and y; are minimized. Mathematically, this
happens by iteratively applying a gradient descent algorithm to find parameters that minimize a
loss function, such as the mean square error MSE between the desired output y and the network

output N(x).
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What makes neural networks interesting is that they have shown, as a class of functions,

to have a good ability to approximate many complicated functions encountered in practice. It is

not well understood whether there is something special about neural networks that affords them
this approximative ability. Indeed, part of their success now, compared to earlier decades, is
simply due to the availability in the last few decades of massive data sets and vast computational
power now available to train such networks and the increased flexibility in approximation
possible for large networks with many (billions, in some cases) weights that can be tweaked
during the learning process. Ironically, sometimes a network can learn the training data ‘too
well,” which means the network will continue to tweak weights to decrease the error between
N(x;) and y; for the test data but at the expense of making the prediction error worse on unseen
data from the same population as the original data. This phenomenon is called overfitting and
can be a problem when training neural networks with data sets that are too small compared to the
number of learnable weight parameters of the model. Monitoring the neural network's
performance on a validation set during training on a test set (just as in model validation,

discussed earlier) allows one to detect overfitting and halt training.
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Chapter 3: RESULTS AND DISCUSSION

3.1 Caliper Variance

Each roll of paper (referred to as a jumbo) has a desired caliper set by the mill to meet a
standard specification, represented by the variable PM2 Caliper. This variable is manipulated by
the person running the paper machine and may change by jumbo depending on the paper's
specification. Since the machine does not always meet the exact value of the caliper, we also
have the variable PM2 Mx_Caliper, which measures the actual caliper of paper on the machine at
each observation.

The graphs below explore the difference between the jumbos' desired and actual calipers
for the three datasets. The horizontal axis outlines where each jumbo of paper changes; thus,
jumbos with fewer observations are closer together, and jumbos with more observations are
spread further apart. The vertical axis lists caliper measurements. Due to the large amount of
data, the baseline data was split into two graphs for easier viewing. The second part of the
baseline data has the suffix MAR after the jumbo number to indicate those jumbos were from

March and to not mix them up with jumbos of the same number from the previous month.
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Figure 4 The desired caliper (PM2 Caliper) and the actual caliper (PM2 Mx Caliper) for the jumbos of paper in the baseline dataset,
split into two figures due to the size of the dataset
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Fir Desired Caliper vs Actual Caliper
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Figure 5 The desired caliper (PM2 Caliper) and the actual caliper (PM2 Mx Caliper) for the jumbos of paper in the fir dataset

Spruce Desired Caliper vs Actual Caliper

Caliper (um)

Paper Jumbo Number
== PM2 Mx Caliper === PM 2 Caliper

Figure 6 The desired caliper (PM2 Caliper) and the actual caliper (PM2 Mx Caliper ) for the jumbos of paper in the spruce
dataset

The following conclusions can be drawn by examining the above graphs. Figure 5 shows
that the actual measured caliper (PM2 Mx_Caliper) was consistently higher than the desired
caliper (PM2_Caliper) during the fir-only trial. Of the three datasets, the machine caliper and
desired caliper appear closest to each other in the spruce dataset.

The average, standard deviation and variance were calculated further to explore the

difference between PM2_Caliper and PM2 Mx_Caliper. The following formulas were used for
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the i" observations within the j jumbo, with nj number of observations within each jumbo and N

number of jumbos within each dataset. Let X;;=PM2 Mx_Caliperu) — PM2_Caliper g

Table 1 Mathematical equations for traditional exploratory statistics

Variable Mathematical Equations
Average caliper difference v (2i=1(Xij)
for each data set Z ( n )
, N
Jj=1
Average standard . = .
Deviation in the caliper N Yicy (X — Xij)
difference for each dataset Z n
, N
j=1
Average variance in the
caliper difference for each N 2 (X — Xij)Z
dataset z n
, N
j=1

Table 2 Traditional exploratory statistic results for the three datasets

Species Average Standard Deviation Variance
Baseline 1.64 0.48 0.28
Fir 3.39 0.29 0.09
Spruce 0.61 0.43 0.20

The results in Table 2 show that the dataset with only fir provided a smaller variance in
the difference X between the measured and desired calipers than the other datasets. The largest
variance of X occurred in the baseline dataset when both species were mixed, although the
variance was not much more than for the spruce dataset. The lower variance for the fir dataset is
interesting as it means the difference between the desired and actual caliper varied less
throughout the dataset, suggesting a more consistent effect on the caliper with fir. The larger
average value for X for the fir confirms what was seen in the graphs, which shows that the
difference between the measured and desired caliper was consistently larger for the fir sample.
Similarly, the spruce has the smallest average for X, confirming what was suggested by Figure 6.

To test if the average difference in the desired and actual caliper may statistically be
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attributed to the species mix, an Analysis of Variance (ANOVA) was run on the data. Leven’s test
was used to analyze whether the group samples were drawn from populations with the same
variance to test the homogeneity of variances. The results in Table 3 below show p=0.005, so we
reject the null hypothesis for alpha=0.05 and conclude that the assumption of homogeneity of

variances was violated.

Table 3 Test of homogeneity of variances of caliper difference amongst the three datasets

Levene Statistic dfl df2 Sig.
Based on Mean 5.24 2 825 .005
Based on Median 5.33 2 825 .005
Based on Median and with 5.33 2 788.59 .005
adjusted df
Based on trimmed mean 5.23 2 825 .005

The normality tests in Table 4 show that X is not necessarily drawn from a normal
distribution. Due to the Central Limit Theorem, the ANOV A can still be completed because of the

large sample sizes.

Table 4 Normality tests for the caliper difference

Kolmogorov-Smirnov Shapiro-Wilk
Species Statistic df Sig. Statistic df Sig.
Baseline .097 771 <.001 .878 771 <.001
Fir 172 33 014 .887 33 .003
Spruce 124 24 200 947 24 230

Since the assumption of homogeneity of variances was not met, a Welch ANOVA was
used. The main difference is that Welch’s ANOV A modifies the F-statistic and degrees of
freedom to account for different variances and sample sizes. The ANOVA’s null hypothesis (Ho)
is: There is no statistically significant difference in mean caliper difference (X) between species.
The alternative hypothesis (Ha) for the ANOVA is that the mean caliper difference (X) of at least

one species differs significantly from the overall mean.
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Table 5 ANOVA results for caliper difference amongst datasets

Sum of Squares df Mean Square F Sig.
Between Species  [123.51 2 61.75 11.08 <.001
Within Species ~ 4597.17 825 5.57
Total 4720.67 827

Table 6 Welch's robust test of equality of means for caliper difference

Statistic  |dfl df2 Sig.
Welch 42.26 2 45.92 <.001

Since the P value in Welch’s test is less than 0.05, we reject the null hypothesis and
accept the alternative hypothesis. Therefore, there is a statistically significant difference in the
value of X between species. To investigate this difference further, a Games-Howell post hoc test

was completed.

Table 7 Games-Howell multiple comparison test results for species effect on caliper difference

Mean 95% Confidence Interval

Difference |Std. Error| Sig. |Lower Bound | Upper Bound
Baseline Fir  -1.75 .23 <.001 |-2.30 -1.20
Spruce .99 24 <.001 .39 1.59
Fir Baseline |1.75 23 <.001 {1.20 2.30
Spruce 2.74 31 <.001 [2.00 3.49
Spruce Baseline -.99 24 <.001 -1.59 -.39
Fir -2.74 31 <.001 -3.49 -1.99

As seen in Table 7, the p-value is less than 0.05 for the mean difference between all three
datasets. Therefore, the difference between the desired and measured caliper was statistically
significant between the datasets. Thus, the species may impact how the desired and actual

calipers differ.

3.2 Correlation Analysis of Variables
Correlation analysis was completed on all three datasets to understand what variables
may have a relationship with the measured caliper. The correlation rxy between variables x and y

is calculated using the observations x; and y; from the samples in the respective dataset and the
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formula outlined in Chapter 2. These correlations were then plotted on a heatmap in Figures 7,8,
and 9. Each square represents the correlation between the variables in the corresponding row and
column, with the strength and direction of the relationship indicated by the colour intensity and
hue; the lighter the colour, the stronger the positive correlation, and the darker the colour, the

stronger the negative correlation.
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Figure 7 Correlation heatmap for the baseline dataset
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Figure 7 shows the caliper heatmap for the baseline dataset. When examining the row for
PM2 Mx_Caliper, there appear to be many colours around the middle of the colour spectrum,
suggesting the variables have a low correlation with the caliper. Compare this to the row for PM2
Mx_Caliper in the fir heatmap in Figure 8, and one will see more darker and lighter colours,

suggesting stronger correlations amongst variables with PM2 Mx_ Caliper in the fir dataset.
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Figure 8 Correlation heatmap for the fir dataset
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Figure 9 Correlation heatmap for the spruce dataset
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Comparing Figures 7,8, and 9, there appear to be more variables that were positive,
albeit not strongly correlated to the machine caliper for the baseline dataset, than the other two
datasets. It also appears that variables in the baseline and fir datasets have stronger correlations
to the machine caliper than the spruce dataset. The table below shows the correlation value
between the machine caliper and each other variable for the three datasets to understand better

the variables correlating with the caliper.

Table 8 Correlations between PM2 Mx_Caliper and other variables

Variable Baseline Fir Spruce
PM2 Stock flow (Ipm) 0.21 0.45 0.17
PM2 Basis Weight 0.84 0.12 0.34
PM2 Sheet Width -0.01 -0.78 0.05
PM2 Speed 0.05 0.86 0.23
PM2 Headbox Temp 0.19 0.49 -0.03
PM 2 Headbox pH -0.18 -0.44 -0.42
PM2 Main Steam Pressure 0.51 0.69 0.18
PM2 Steam Box Pressure (Kpa) -0.05 0.00 0.02
PM2 Steam Box Flow (Klb/hr) 0.17 0.08 -0.16
PM2 Mx Caliper 1 1 1
PM2 Mx Moist 0.09 0.04 0.22
PM2 Caliper spread (CD) 0.18 0.23 0.26
PM2 Moisture spread (CD) 0.24 -0.24 0.38
PM2 Dry Weight spread (CD) 0.27 0.52 0.19
PM?2 Basis Weight spread (CD) 0.18 0.48 0.33
PM2 Stuff Pump Consistency -0.04 -0.41 -0.33
PM2 Thick Stock flow (BDMT per Day) | 0.21 0.45 0.17
PM2 %Broke 0.12 0.52 0.09
PM2 Broke Flow(lpm) 0.19 0.59 0.13
PM2 TMP flow (Ipm) 0.21 0.45 0.17
PM2 Trim -0.02 -0.66 -0.15
PM2 Caliper 0.78 0.74 0.21
PM2 Porosity -0.10 0.80 0.33
PM2 MD Tensile 0.52 -0.47 -0.32
PM2 MD Tear 0.51 -0.63 -0.09
PM2 CD Tear 0.51 -0.58 -0.14
PM2 Tear Ratio 0.19 -0.48 0.03
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PM2 MD Elongation 0.23 -0.75 -0.13
PM?2 Burst 0.46 -0.79 -0.11
PM2 KSI 0.53 -0.81 -0.14
PM2 Opacity 0.45 0.24 0.06
PM?2 Brightness -0.01 0.18 0.27
PM2 a* -0.14 -0.58 -0.36
PM2 b* 0.25 -0.25 -0.03
PM2 PPS Top 0.38 -0.11 -0.27
PM2 PPS Bottom 0.16 0.66 -0.01
PM2 MD TEA 0.41 -0.72 -0.29
PM2 MD TSI 0.12 0.16 -0.34
PM2 CD TSI 0.22 -0.81 -0.46
PM2 TSI Ratio -0.14 0.74 0.30
PM2 TSO 0.01 -0.05 -0.03
Jet to Wire -0.02 -0.20 0.18

Of interest in Table 8 above are the variables with a correlation coefficient above or
below .5 and -.5. In the baseline dataset, these variables are basis weight, main steam pressure,
PM2_Caliper, MD tensile, MD tear, CD tear, and KSI. The fir dataset shows sheet width, speed,
main steam pressure, dry weight spread (CD), % broke, broke flow, trim, caliper, porosity, MD
tear, CD tear, MD elongation, burst, KSI, a*, PPS Bottom, MD Tea, CD TSI, and TSI ratio as
strongly correlated. No variables were shown to be highly correlated to the machine caliper in

the spruce dataset according to the outlined specifications.

3.3 Regression Analysis of Variables

To perform linear regression on the mill datasets, PM2 Mx_Caliper is treated as the
response (dependent) variable, with the rest as the predictor (independent) variables. PM2 CD
Tensile, PM2 Tensile Ratio, PM2 CD Elongation, and PM2 CD TEA were removed from the
analysis because they are constants; thus, there is no variation for the regression to explain. TMP

Flow was also excluded from the analysis as it shows multicollinearity with other variables in all
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three datasets, meaning its contributions to the model cannot be distinguished from those of
different variables. Within the fir dataset, CD TSI was removed for multicollinearity. Within the
spruce dataset, Stock flow, basis weight spread, CD Tear, KSI, Opacity, brightness and TSI Ratio
were all excluded from the analysis due to multicollinearity. The variables were standardized to
ensure they evenly contributed, and variable units did not impact the model.
Baseline Dataset

The first regression model was run on the baseline dataset. Figure 10 below plots the
residuals vs. predicted values, where the residuals are the vertical distance from the observed
data to the regression line. The residuals are located randomly around the zero line, suggesting a
linear relationship. Also, the points are generally in a horizontal band, constantly spread across

the fitted values, suggesting homoscedasticity of the residuals.

Scatterplot
Dependent Variable: PM2 Mx Caliper
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5.0

25

0.0

-2.5

Regression Standardized Residual

-5.0

Regression Standardized Predicted Value

Figure 10 Scatterplot of the residual vs. predicted values for the baseline dataset

34



Figure 11 shows a histogram of standardized residuals with a normal curve imposed on it.
Figure 12 is a normal probability plot of the residuals. Both figures show that the residuals are

normally distributed with a mean close to 0 and a standard deviation close to 1.

Histogram
Dependent Variable: PM2 Mx Caliper

Mean = -0.14
4,000 Std. Dev. = 0.999
N =34 838

v

3,000

2,000

Frequency

1,000 |-

Regression Standardized Residual

Figure 11 Histogram of the standardized residuals imposed with a normal curve for the baseline
dataset

35



Normal P-P Plot of Regression Standardized Residual
Dependent Variable: PM2 Mx Caliper
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Figure 12 Normal probability plot of the residuals for the baseline dataset

Table 9 below shows the coefficients for the regression model. The most significant
regression coefficients were basis weight and 1* with coefficients of .73 and -.58, respectively.

Table 9 Standardized regression coefficients for a model on the baseline data

Variables Standardized
Coefticients
PM2 Stock flow (Ipm) 49
PM2 Basis Weight 73
PM2 Sheet Width .00
PM2 Speed -.02
PM2 Headbox Temp .03
PM 2 Headbox pH -.05
PM2 Main Steam Pressure .07
PM2 Steam Box Temp .01

PM2 Steam Box Pressure (Kpa) .07
PM2 Steam Box Flow (Klb/hr) |05

PM2 Mx Moist -.07
PM2 Caliper spread (CD) -.03
PM2 Moisture spread (CD) A8

PM2 Dry Weight spread (CD) -.04
PM2 Basis Weight spread (CD) |-.12
PM2 Stuff Pump Consistency .07

PM2 Thick Stock flow (BDMT |-.33
per Day)
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PM2 %Broke 28
PM2 Broke Flow(lpm) -.02
PM2 Trim .01
PM2 Caliper A1
PM2 Porosity 27
PM2 MD Tensile .03
PM2 MD Tear 35
PM2 CD Tear -.14
PM2 Tear Ratio -.09
PM2 MD Elongation -.08
PM2 Burst -.02
PM2 KSI -.08
PM2 Opacity 14
PM2 Brightness A7
PM2 a* -.14
PM2 b* 46
PM2 PPS Top .07
PM2 PPS Bottom .03
PM2 MD TEA -.01
PM2 MD TSI -.05
PM2 CD TSI -.08
PM2 TSI Ratio -.00
PM2 TSO -.04
Jet to Wire -.07
1* -.58

Table 10 shows the R and R? values for the model. As the R-value is close to 1, there is a

strong linear association between the PM2 Mx_Caliper and the caliper predicted by the

regression model. The high R-squared value also indicates that the model is a strong fit, as this

expresses the proportion of variation accounted for by the regression model over and above the

mean model. Adding the predictor variables into the regression model, compared to the mean

model, explains 92.4 % of the variability of the response variable.

Table 10 Model summary for the baseline regression model

Adjusted R |Std. Error of the
R R Square Square Estimate
.96 92 92 7
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Lastly, an ANOV A was run for the regression model. The null hypothesis for the ANOVA

is that the regression model results are not statistically significantly different from the mean of

the dependent variable. Thus, the alternative hypothesis is that the regression model results

statistically differ from the mean model. The ANOVA results in Table 11 show a significance

level of less than 0.05; therefore, the null hypothesis is rejected, so the regression model predicts

that the machine caliper is statistically different (and better) from the mean model.

Table 11 ANOVA results for the baseline regression model

Sum of Squares |df Mean Square F Sig.
Regression  249103.06 42 5931.03 10062.03 <.001
Residual 20509.78 34795 .59
Total 269612.84 34837

The baseline dataset was then randomly split into two groups to ensure the above model

does not overfit the data. The first group is a random sample of 70% of the baseline data for

training a regression model. The other 30% is then used as a validation dataset on the regression

model. The training dataset has created the model outlined in Table 12. The model looks similar

to that in Table 9 and has an R? value of .93.

Table 12 Standardized regression coefficients for a model on the baseline training data

Variables Standardized

Coefficients

PM2 Stock flow (Ipm) 0.53

PM2 Basis Weight 0.74

PM2 Sheet Width 0.00

PM2 Speed -0.02

PM?2 Headbox Temp 0.03

PM 2 Headbox pH -0.05

PM?2 Main Steam Pressure [0.07

PM2 Steam Box Temp 0.00

PM2 Steam Box Pressure
-0.06

(Kpa)

PM2 Steam Box Flow 0.05

(Klb/hr) :

PM2 Mx Moist -0.07

PM2 Caliper spread (CD)  -0.03
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PM2 Moisture spread (CD) 0.18
PM2 Dry Weight spread 10,05
(CD) '
PM2 Basis Weight spread 011
(CD) '
PM2 Stuff Pump 0.08
Consistency

PM2 Thick Stock flow 038
(BDMT per Day) )
PM2 %Broke 0.27
PM2 Broke Flow(lpm) 0.00
PM2 Trim 0.01
PM2 Caliper 0.11
PM2 Porosity 0.28
PM2 MD Tensile 0.01
PM2 MD Tear 0.35
PM2 CD Tear -0.14
PM2 Tear Ratio -0.09
PM2 MD Elongation -0.07
PM2 Burst 0.00
PM2 KSI -0.09
PM2 Opacity 0.14
PM?2 Brightness 0.50
PM2 a* -0.14
PM2 b* 0.48
PM?2 PPS Top 0.07
PM2 PPS Bottom 0.03
PM2 MD TEA -0.01
PM2 MD TSI -0.05
PM2 CD TSI -0.08
PM2 TSI Ratio 0.00
PM2 TSO -0.04
Jet to Wire -0.07
I* -0.60

Table 13 Model summary for the baseline training data regression model

Adjusted R Std. Error of the
R R Square [Square Estimate

.96 93 93 17

The above model was then used on the samples within the validation dataset to predict a

value for the caliper. The predicted value of the caliper was then compared to the actual value of
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PM2 Mx_Caliper for each sample. This comparison provided the below model summary in Table

14 with an R? value of .92. The R? value and the graph in Figure 13 show that the regression

model created with the training dataset is proficient with the validation dataset and, thus, the

model does not significantly overfit the data.

Table 14 Model summary for the baseline training regression model on the baseline validation data

Adjusted R Std. Error of the
R R Square Square Estimate
.96 92 92 .79

Scatter Plot of Caliper Predicted Using Regression Line on Validation Dataset by PM2 Mx Caliper

50.00

85.00

80.00

Validation Data

75.00

Caliper Predicted Using Regression Model on

R? Linear = 0.921

70.00
70.00 75.00

&0.00

PM2 Mx Caliper
Figure 13 Scatterplot of the caliper predicted using the validation dataset vs. the actual caliper

Fir Dataset:

&85.00 90.00

Next, regression analysis was run on the fir dataset. Figures 14-16 show a linear

relationship, homoscedasticity of the residuals, and the residuals being drawn from a normal

distribution with a mean close to zero and a standard deviation close to 1.
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Figure 14 Scatterplot of the residual vs. predicted values for the fir dataset
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Figure 15 Histogram of the standardized residuals imposed with a normal curve for the fir
dataset
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Normal P-P Plot of Regression Standardized Residual
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Figure 16 Normal probability plot of the residuals for the fir dataset

Table 15 below outlines the regression model coefficients that fit the fir dataset. Unlike
the baseline dataset, the fir dataset has more variables with larger coefficients; these include PM2
KSI (-2.26), PM2 Burst (1.97), PM2 Basis Weight spread (CD) (-1.41), 1* (-1.34), PM2
Brightness (.97), PM2 Dry Weight spread (CD) (.89). Table 16 shows that the model has an R-

value close to 1 and an R? value of .98.

Table 15 Standardized regression coefficients for a model on the fir data

Variables Standardized
Coefficients
PM2 Stock flow (Ipm) -0.31
PM2 Basis Weight 0.08
PM2 Sheet Width -0.11
PM2 Speed 0.79
PM2 Headbox Temp -0.30
PM 2 Headbox pH 0.02
PM2 Main Steam Pressure 0.22
PM2 Steam Box Temp -0.09
PM2 Steam Box Pressure (Kpa)  |0.01
PM2 Steam Box Flow (Klb/hr) 0.01
PM2 Mx Moist 0.00
PM2 Caliper spread (CD) -0.06
PM2 Moisture spread (CD) 0.74
PM2 Dry Weight spread (CD) 0.89
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PM2 Basis Weight spread (CD)  |-1.41
PM2 Stuff Pump Consistency -0.02
PM2 Thick Stock flow (BDMT per

Day) 0.29
PM2 %Broke 0.49
PM2 Broke Flow(lpm) -0.31
PM2 Trim -0.28
PM2 Caliper 0.21
PM2 Porosity 0.36
PM2 MD Tensile 0.16
PM2 MD Tear -0.77
PM2 CD Tear 0.79
PM2 Tear Ratio 0.58
PM2 MD Elongation -0.10
PM2 Burst 1.97
PM2 KSI -2.26
PM2 Opacity -0.12
PM2 Brightness 0.97
PM2 a* 0.08
PM2 b* 0.82
PM?2 PPS Top 0.18
PM2 PPS Bottom -0.13
PM2 MD TEA -0.09
PM2 MD TSI -0.59
PM2 TSI Ratio 0.14
PM2 TSO 0.41
Jet to Wire -0.03
I* -1.34

Table 16 Model summary for the fir regression model

)Adjusted R Std. Error of the
R R Square Square Estimate

.99 .98 98 22

The ANOVA in Table 17 for the regression line has a significance level of less than .05,
with the same hypothesis as the ANOVA for the baseline dataset. Thus, we reject the null
hypothesis and conclude that the regression model predicts the caliper significantly differently

from the mean model.

43



Table 17 ANOVA results for the fir regression model

Sum of Squares df Mean Square [F Sig.
Regression 2884.98 41 70.38 1508.07 <.001
Residual 51.58 1097 .05
Total 2936.56 1138

Spruce:

Finally, the same analysis was run using the spruce dataset. Figures 17-19 show a linear

relationship, homoscedasticity of the residuals, and the residuals being drawn from a normal

distribution with a mean close to zero and a standard deviation close to 1.

Regression Standardized Residual

Scatterplot
Dependent Variable: PM2 Mx Caliper
4
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Regression Standardized Predicted Value
Figure 17 Scatterplot of the residual vs. predicted values for the spruce dataset
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Histogram
Dependent Variable: PM2 Mx Caliper
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Figure 18 Histogram of the standardized residuals imposed with a normal curve for the spruce
dataset

Normal P-P Plot of Regression Standardized Residual
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Figure 19 Normal probability plot of the residuals for the spruce dataset

The regression model coefficients are shown in Table 18 below. The following variables

had large coefficients: PM2 Moisture spread (CD) (-2.87), PM2 Caliper spread (CD) (1.93), PM2
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Dry Weight spread (CD) (1.86), PM2_Caliper (1.79), PM2 CD TSI (-1.77), PM2 a* (1.39), PM2
MD TSI (-1.20), PM2 Porosity (-1.13). The model summary in Table 19 indicates an R-value

close to one and an R? value of .85.

Table 18 Standardized regression coefficients for a model on the spruce data

Variables Standardized

Coefficients

PM2 Basis Weight 0.34

PM?2 Sheet Width -0.07

PM2 Speed 0.40

PM2 Headbox Temp -0.09

PM 2 Headbox pH -0.01

PM2 Main Steam 0.29

Pressure

PM2 Steam Box Pressure
-0.01

(Kpa)

PM2 Steam Box Flow

(KIb/hr) 0.04

PM2 Mx Moist -0.03

PM2 Caliper spread

(MD) -0.67

PM2 Caliper spread (CD)|1.93
PM2 Moisture spread

(CD) -2.87
PM2 Dry Weight spread 186
(CD) '
IC’M2 .Stuff Pump -0.09
onsistency

PM2 Thick Stock flow 0.07
(BDMT per Day) '
PM?2 %Broke -0.09

PM2 Broke Flow(lpm) 0.27
PM2 TMP flow (Ipm) 0.14

PM?2 Trim -0.89
PM2 Caliper 1.79
PM2 Porosity -1.13
PM2 MD Tensile 0.82
PM2 MD Tear -0.32
PM2 Tear Ratio -0.11
PM2 MD Elongation 0.02
PM2 Burst 0.21
PM2 a* 1.39
PM2 b* 0.62
PM?2 PPS Top -0.67
PM2 PPS Bottom 0.16
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PM2 MD TEA -0.90
PM2 MD TSI -1.20
PM2 CD TSI -1.77
PM2 TSO -0.71
Jet to Wire 0.06

1* -0.67

Table 19 Model summary for the spruce regression model

Adjusted R Std. Error of the
R R Square Square Estimate
92 .85 .84 30

The ANOV A was run with the same hypothesis as the other analysis, with the results in

Table 20 below showing that the regression model statistically predicts the caliper differently

from the mean model.

Table 20 ANOVA results for the spruce regression model

Sum of Squares df Mean Square |F Sig.
Regression  664.99 36 18.47 198.65 <.001
Residual 120.23 1293 .09
Total 785.22 1329

The regression model for the spruce dataset had the most variables with large coefficients

compared to the other two datasets. The magnitude of the prominent coefficients in the spruce

and fir datasets was more significant than those in the baseline dataset. No coefficients were

identified as having a large magnitude in all three regression models. However, I* was close as it

was identified in the models in the baseline and fir datasets and was the 12! largest in the spruce

model. The regression models for the spruce and fir datasets had more variables arising as having

large coefficients than the baseline dataset. In the regression models for the fir and spruce

datasets, the only variable that arose as prominent in both was PM2 Dry Weight spread (CD).

3.4 Principal Component Analysis of Variables

PCA was run on all three datasets using a correlation matrix. The PCA results underwent
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a varimax rotation to make interpreting the results easier. The varimax rotation maximizes the
variance of the squared loading for each factor across the variables.
Baseline

Table 21 below shows that the first principal component accounts for 24.86% of the
variance within the dataset. The second accounts for another 12.68%, and the third another

10.23%, for a total of 47.76% of the variance.

Table 21 Total variance explained for the baseline dataset

% of Cumulative

Component [Eigenvalues Variance %

1 10.94 24.86 24.86
2 5.58 12.68 37.53
3 4.50 10.23 47.76
4 3.25 7.38 55.14
5 2.43 5.52 60.66
6 2.04 4.64 65.30
7 1.63 3.70 69.00
8 1.42 3.23 72.23
9 1.21 2.74 74.97
10 1.11 2.52 77.49
11 1.01 2.30 79.80
12 0.99 2.24 82.04
13 0.89 2.02 84.06
14 0.77 1.75 85.81
15 0.68 1.53 87.34
16 0.66 1.51 88.85
17 0.59 1.33 90.18
18 0.55 1.25 9143
19 0.52 1.17 92.60
20 0.41 0.94 93.54
21 0.38 0.86 94.40
22 0.35 0.80 95.20
23 0.32 0.73 95.93
24 0.30 0.68 96.61
25 0.24 0.55 97.15
26 0.22 0.51 97.66
27 0.16 0.37 98.03
28 0.16 0.36 98.39
29 0.15 0.33 98.72
30 0.13 0.30 99.01
31 0.11 0.25 99.27
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32 0.08 0.18 99.45
33 0.07 0.16 99.61
34 0.05 0.11 99.73
35 0.04 0.09 99.82
36 0.03 0.08 99.90
37 0.01 0.03 99.93
38 0.01 0.03 99.96
39 0.01 0.02 99.98
40 0.01 0.02 99.99
41 0.00 0.01 100.00
42 0.00 0.00 100.00
43 6.86E-5 .00 100.00
44 -8.14E-17  |-1.85E-16 [100.00

The eigenvalues from the principal components were then plotted on a scree plot. The
scree plot in Figure 20 shows a change in elevation between 3-5 components. Using the results
from Table 21 and Figure 20, plus the interest in visualizing the data, it was decided to keep three

components for further analysis.

Scree Plot

10

Eigenvalue

0 2 . ] o

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Component Number
Figure 20 Scree plot depicting the eigenvalues of the principal components for the baseline dataset

Table 22 below shows each variable's loading scores on each component and rotated

component, as well as the commonalities percentage of each variable when using the first three
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components. With the first component explaining almost a quarter of the variance (24.86%), the
variables with the highest loading on this component are of interest. As evident in the table
below, the first ten variables weigh heavily on the first component and thus on the variation in
the data. These variables include MD Tensile, MD Tea, Burst, KSI, MD Elongation, Basis
Weight, Opacity, CD Tear, Porosity, and MD TSI. By examining the communalities column,

using the first three components explains 58.9% of the variance in the PM2 Mx_Caliper variable.

Table 22 PCA loadings and communalities for the baseline dataset

Component Rotated Components
Variables 1 2 3 1 2 3 Communalities

PM2 MD Tensile 094, 0.11, 0.05] 0.87 0.22 -0.32 0.90
PM2 MD TEA 091 0.10, -0.03}] 0.81, 0.19 -0.38 0.84
PM2 Burst 091 0.19, 0.02] 0.86, 0.12 -0.33 0.86
PM2 KSI 090/ 026 0.13] 0.92| 0.08 -0.22 0.90
PM2 MD Elongation 0.79/ 0.07, -0.17}) 0.65| 0.15 -0.47 0.66
PM2 Basis Weight 0.78 023, 025] 0.85| 0.11 -0.06 0.73
PM2 Opacity 0.74) -0.07 -0.23] 0.53 0.24 -0.51 0.60
PM2 CD Tear 069 037 026] 0.83|-0.05 -0.01 0.68
PM2 Porosity -0.68| 0.19| 0.09]1-0.48| -0.37 0.37 0.50
PM2 MD TSI 0.61| -0.12, 0.13] 0.52]| 034 -0.14 0.40
PM2 MD Tear 0.57) 052, 0.24] 0.77 -0.24 0.04 0.65
PM?2 Main Steam Pressure 0.55/ -0.07| 0.16] 0.50| 0.28 -0.08 0.34
PM2 PPS Top 0.53/ 0.19, 0.29] 0.62, 0.07 0.07 0.40
PM2 Caliper 0.52| 029 0.34] 0.68| -0.02 0.13 0.47
PM2 Mx Caliper 052/ 034, 045] 0.73 -0.04 0.24 0.59
PM 2 Headbox pH -0.46| 0.05| 0.33]-0.26| -0.11 0.48 0.32
PM2 Steam Box Temp -045| 0.27| 042]1-0.14| -0.30 0.59 0.46
PM2 Mx Moist 0.06/ 0.02/ 0.03}] 0.07| 0.01 0.00 0.00
PM2 %Broke -0.38| 0.79| -0.16]-0.07| -0.88 0.08 0.78
PM2 Broke Flow(lpm) -0.32| 0.77| -0.111-0.02| -0.83 0.10 0.70
PM2 TMP flow (Ipm) 0.511 -0.67, 035] 0.29, 0.86 0.05 0.83
PM2 Stock flow (Ipm) 0.511 -0.67, 035] 0.29, 0.86 0.05 0.83
PM2 Thick Stock flow

(BDMT per Day) 0.511 -0.67, 035] 0.29, 0.86 0.05 0.83
PM2 Tear Ratio 0.05| 055 0.04] 0.27|-0.48 0.07 0.31
PM2 CD TSI 049 054 -0.02] 0.63 -0.34 -0.16 0.54
PM2 TSI Ratio -0.10| -0.53| 0.10]-0.26| 0.47 0.08 0.30
EM2 Stuff Bump 046 -050 -0.11| 0.16] 058  -0.33 0.47

onsistency

PM2 Headbox Temp 041/ -041, -0.02] 0.19| 0.51 -0.22 0.34
5(12\1/1)2) Basis Weightspread |61 040 0.02] 030 0311 0.00 0.19
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fggmywe‘ght spread 026/ 040 002] 039 -028  -0.05 0.23
PM2 Caliper spread (CD) 025/ 035 -0.03] 0.34 -0.24 -0.09 0.18
PM2 Speed 004 -033| 0.09]-007 033 0.04 0.12
PM2 Moisture spread (CD) | 0.15] 032 029| 036 -0.18 0.24 021
PM2 Trim 2001 014 -0.08] 002]-0.15| -0.06 0.02
PM2 a* 041 -002 -077] 0.08 -0.03] -087 0.76
PM2 Steam Box Flow

(Klb/hn) 2024 000 076] 005 010  0.79 0.64
PM2 PPS Bottom 2027 020 062] 006 -0.13 0.69 0.50
ggi)s"eamBOXPressure 058 -0.05 0.62]-030! 001 0.79 0.72
I 20.15] 003 060[ 008 007 0.6l 038
Jet to Wire 2020 -0.06] 049[-003| 0.10] 052 0.28
PM2 b* 009 -008| 046 020 021 038 023
PM2 Brightness 2030 013 036]-0.08] -0.13 0.46 023
PM2 Sheet Width 006 014 -024] 002 -0.16,  -0.23 0.08
PM2 TSO 20.10 -0.04| 0.13]-006 0.03 0.15 0.03

Since three components were retained, a 3-D visualization can be created for the new
space formed by the components as the axis, albeit hard to express on 2-D paper. Figure 21
below shows how the variables relate to the components. From the image below, it is interesting
to see the variables clustered around PM2 Mx_Caliper, as they would have similar loading
patterns that may exhibit variables with related patterns. However, by examining the figure and
rotated loading scores from the table above, variables that appear to have similar loadings to

PM2 Mx_Caliper in the rotated space include MD Tear and PM2_Caliper.

51



1.0

PMZSteamBoxFlo
~
e

n.5 § PM2T

V2 MDTensile
112KK51 PM2 BasisWeight

Figure 21 Component plot in the rotated space for the baseline dataset

Fir

PCA was then run on the fir dataset. Table 23 shows the eigenvalues, the percent of

variance each component explains and the cumulative variance.

Table 23 Total variance explained for the fir dataset

% of Cumulative
Component Eigenvalues | Variance %
1 17.51 39.79 39.79
2 7.29 16.56 56.35
3 441 10.02 66.36
4 2.16 4.92 71.28
5 1.95 443 75.71
6 1.77 4.03 79.74
7 1.50 3.40 83.14
8 1.07 243 85.57
9 1.04 2.35 87.93
10 091 2.07 89.99
11 0.68 1.55 91.54
12 0.54 1.24 92.77
13 0.51 1.16 93.93
14 0.45 1.03 94.96
15 0.39 0.88 95.84
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16 0.33 0.75 96.59
17 0.32 0.72 97.31
18 0.22 0.50 97.81
19 0.19 0.43 98.24
20 0.15 0.35 98.59
21 0.13 0.30 98.89
22 0.11 0.26 99.14
23 0.09 0.19 99.33
24 0.06 0.13 99.47
25 0.05 0.10 99.57
26 0.04 0.09 99.66
27 0.04 0.08 99.74
28 0.03 0.06 99.80
29 0.02 0.05 99.85
30 0.02 0.04 99.89
31 0.01 0.03 99.92
32 0.01 0.03 99.95
33 0.01 0.02 99.97
34 0.01 0.01 99.98
35 0.00 0.01 99.99
36 0.00 0.00 99.99
37 0.00 0.00 100.00
38 0.00 0.00 100.00
39 0.00 0.00 100.00
40 0.00 0.00 100.00
41 0.00 0.00 100.00
42 6.60E-5 .00 100.00
43 9.58E-6| 2.18E-5 100.00
44 1.20E-16| 2.72E-16 100.00
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Figure 22 Scree plot depicting the eigenvalues of the principal components for the fir dataset

Using Table 23 and Figure 22 it is sufficient to represent the data with three principal

components, which also allows for visualization in 3-D. The three components explain 66.35%

of the total variance. The first component explains 39.79% of the variance and has many more

variables than the baseline dataset that weigh heavily on this component. The first component

also includes more variables with a heavy negative weight than the baseline data. 86.9% of PM2

Mx_Caliper’s variance can be explained in the fir dataset, compared to only 58.9% in the

baseline dataset.

Table 24 PCA loadings and communalities for the fir dataset

Component Rotated Components
Variables 1 2 3 1 2 3 Communalities
PM2 Speed 097| -0.12, 0.08] 090| -0.37| -0.01 0.95
PM2 CD TSI -096| 0.14| -0.12| -0.92| 0.34 0.05 0.96
PM2 TSI Ratio 095| -0.01| 0211 095 -0.21 0.03 0.95
PM2 Sheet Width -094| 0.06| -0.22| -094| 0.22 0.03 0.94
PM2 Trim -090| -0.07| -0.36] -0.97, 0.04| -0.03 0.95
PM2 MD Tear -0.89| -0.13| -0.12] -0.87, 0.21| -0.18 0.83
PM?2 Headbox Temp 0.87) 032 0.18] 0.88| -0.06 0.33 0.90
PM2 Main Steam Pressure 0.86| 0.07| 0.05] 0.81| -0.27 0.16 0.75

54



PM2 KSI -0.85| 0.22] 0.38] -0.61| 0.74| -0.07 0.92
PM2 MD Elongation -0.84| 0.18) 0.29] -0.63| 0.65| -0.06 0.83
PM2 Thick Stock flow (BDMT | 63 048 -0.04| 076 -0.16 0.6 0.92
per Day)

PM2 TMP flow (Ipm) 0.83] 048 -0.04] 0.76 -0.16 0.56 0.92
PM2 Stock flow (Ipm) 0.83 | 0.48]| -0.04] 0.76| -0.16 0.56 0.92
PM2 Burst -0.82| 026] 0.35] -0.59| 0.72) -0.01 0.87
PM2 Mx Caliper 0.80| -0.48| -0.08] 0.66| -0.58 -0.30 0.87
PM2 Tear Ratio -0.75| -0.17] -045] -0.88| -0.14| -0.07 0.80
PM2 Basis Weight spread (CD) | 0.75| 0.11| 0.39] 0.85| 0.06 0.03 0.73
PM2 CD Tear -0.74| -0.03 | 0.38] -0.52 0.59| -0.28 0.69
PM2 Dry Weight spread (CD) | 0.72| -0.02| 043| 0.83| 0.05| -0.10 0.70
PM2 MD TEA -0.71| 030, 0.50| -042, 0.82| -0.03 0.83
PM2 Caliper 0.71] -0.45| -0.01] 0.61| -048| -0.31 0.70
PM2 Porosity 0.70 | -0.53| -0.33] 047| -0.77, -0.26 0.88
PM2 PPS Bottom 0.68 | -0.28 | -0.38] 0.44| -0.70| -0.01 0.69
PM2 MD TSI 0.57| 0.52| 043] 0.73| 0.34 0.37 0.78
PM2 a* -0.53| 0.39| 0.09]| -042| 045 0.25 0.43
PM 2 Headbox pH -047| 025, 0.03] -040| 0.32 0.16 0.29
PM2 Caliper spread (CD) 0.23| 0.10] -0.10] 0.17| -0.14 0.16 0.07
PM?2 Basis Weight 0.03| -0.02| 0.01] 0.03| -0.01, -0.02 0.00
PM2 %Broke 0.06| -0.93| 0.16] 0.07| -0.29| -0.90 0.89
PM2 Broke Flow(lpm) 0.16| -091| 0.19] 0.17| -030| -0.88 0.89
PM2 b* 0.08| 0.80| -0.32] -0.01| 0.05 0.86 0.75
PM2 Stuff Pump Consistency -0.03| 0.79 -0.31] -0.11| 0.09 0.84 0.72
I* 041 0.76| -031] 0.29| -0.10 0.87 0.85
PM2 Moisture spread (CD) 0.16| 0.62| 048] 038 0.59 0.39 0.64
PM2 Brightness 0.54, 055 -023| 043| -0.17 0.66 0.65
PM2 TSO -0.22| -0.37| 0.12} -0.17| 0.02| -0.41 0.20
PM2 Steam Box Flow (Klb/hr) 021 0.31]-0.27] 0.10| -0.17 0.41 0.21
PM2 MD Tensile -0.32| 041| 0.75] 0.05, 0.91 0.02 0.84
PM2 Opacity 0.18 -0.27| 0.71] 0.44| 039, -0.51 0.61
Jet to Wire -0.02| 0.12, 0.52] 021| 048 -0.11 0.29
PM2 Steam Box Temp -0.38 | 0.24| -0.38] -0.49| -0.06 0.33 0.35
PM2 PPS Top -0.08| 0.33] -0.36} -0.20| -0.13 0.43 0.25
PM2 Mx Moist 0.00| 0.00| -0.11] -0.04 -0.09 0.05 0.01
PM2 Steam Box Pressure (Kpa) | -0.03| -0.01| 0.07] 0.00| 0.06| -0.04 0.01

Figure 23 below shows the variable loadings plotted in the rotated component space. Like

the baseline data, PM2 Caliper appears to be the variable most clustered by PM2 Mx_Caliper.
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Figure 23 Component plot in the rotated space for the fir dataset

Spruce

Lastly, principal component analysis was run on the spruce dataset. Table 25 shows the
total variance explained by each component. With the eigenvalues then being plotted on the
scree plot. Three components are sufficient for the analysis, as they can be visualized and explain

52.58% of the total variance.

Table 25 Total variance explained for the spruce dataset

Component Eigenvalues % of Variance Cumulative %
1 9.59 2231 22.31
2 7.67 17.84 40.15
3 5.35 12.43 52.58
4 3.23 7.50 60.08
5 3.05 7.08 67.17
6 2.15 4.99 72.16
7 2.08 4.83 76.99
8 1.89 4.39 81.38
9 1.39 3.23 84.61
10 1.15 2.67 87.28
11 1.01 2.35 89.63
12 0.77 1.80 91.43
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13 0.67 1.55 92.98
14 0.50 1.16 94.14
15 0.41 0.96 95.10
16 0.38 0.87 95.97
17 0.30 0.69 96.66
18 0.27 0.64 97.29
19 0.22 0.51 97.80
20 0.17 0.40 98.20
21 0.16 0.37 98.57
22 0.13 0.31 98.89
23 0.11 0.25 99.13
24 0.09 0.20 99.33
25 0.09 0.20 99.53
26 0.06 0.15 99.68
27 0.05 0.11 99.79
28 0.03 0.08 99.87
29 0.02 0.06 99.92
30 0.02 0.04 99.96
31 0.01 0.02 99.99
32 0.00 0.01 99.99
33 0.00 0.00 100.00
34 0.00 0.00 100.00
35 0.00 0.00 100.00
36 .000 .001 100.00
37 1.35E-14 3.14E-14 100.00
38 5.60E-15 1.30E-14 100.00
39 1.16E-15 2.69E-15 100.00
40 3.64E-16 8.47E-16 100.00
41 6.31E-17 1.47E-16 100.00
42 -3.93E-16 -9.13E-16 100.00
43 -9.27E-16 -2.16E-15 100.00
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Figure 24 Scree plot depicting the eigenvalues of the principal components for the spruce dataset

In the spruce dataset, the first component explains 22.31% of the total variance. Similar
to the baseline dataset, 11 variables heavily influence the first component. Of interest is that the

top weightings of the first four variables are negative. These three components account for

46.7% of the variance in the PM2 Mx_Caliper variable.

Table 26 PCA loadings and communalities for the spruce dataset

Component JRotated Components
Variables 1 2 3 1 2 3  Communalities

PM2 Brightness -0.9210.15 0.15 [-0.90 0.10 -0.25 |0.89
PM2 %Broke -0.8810.34 -0.17 |-0.95 0.11 10.13 0.92
1* -0.8810.23 0.14 |-0.87 0.16 -0.19 |0.84
PM2 Broke Flow(lpm) -0.8710.38 -0.14 |-0.94 0.15 0.12 0.91
PM2 Thick Stock flow

(BDMT per Day) 0.82 0.01 0.35 |0.84 0.27 |-0.12  0.80
PM2 Stock flow (Ipm) 0.82 |0.01 0.35 |0.84 0.27 |-0.12 0.80
PM2 TMP flow (lpm) 0.82 10.01 0.35 |0.84 0.27 |-0.12  0.80
PM2 CD Tear 0.76 -0.09-0.20 0.73 -0.09 |0.29 0.62
PM2 MD TEA 0.68 10.30 -0.30 J0.56 0.18 |0.54 0.64
PM2 Stuff Pump Consistency 0.67 -0.17]-0.05 {0.69 -0.09 (0.10 0.48
PM2 MD Elongation 0.66 [0.35 -0.08 [0.56 0.34 0.37 0.56
PM2 MD Tensile 0.53 10.29 -0.50 J0.39 0.05 |0.68 0.62
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PM2 KSI 0.53 |-0.41-0.27 10.56 -0.43 0.15 0.52
PM2 Trim 0.49 10.29 -0.03 0.40 0.29 0.26 0.33
PM2 TSO 0.48 10.27 |-0.16 J0.39 10.20 |0.37 0.33
PM?2 Dry Weight spread (CD) 0.40 0.30 |0.29 [0.35 0.45 |-0.03 0.33

PM2 Steam Box Flow 030 -028-026 032 034 015 023

(Klb/hr)

PM2 Basis Weight -0.11 -0.04|0.08 1-0.09 |-0.01 -0.11 |0.02
PM2 Mx Moist -0.07 -0.0210.06 [-0.06 0.00 [-0.08 0.01
PM2 PPS Bottom -0.21 -0.85|0.22 1-0.01 |-0.65 -0.64 |0.82
PM2 Opacity 0.22 10.85 |-0.03 10.04 0.74 047 0.77
PM2 Tear Ratio -0.28 10.82 |-0.11 J-0.45 0.62 10.43 0.77
PM2 Speed -0.1210.78 10.22 1-0.24 0.76 |0.16 0.66
PM?2 TSI Ratio 0.15 |-0.66|0.54 10.35 |-0.28 -0.75 |0.76
PM?2 Main Steam Pressure -0.09 10.65 -0.05 J-0.22 0.53 10.33 0.44
PM2 PPS Top -0.23 1-0.62-0.11 |-0.12 -0.61 -0.25 |0.45
PM2 Headbox Temp 0.43 10.59 0.16 10.32 0.64 |0.23 0.56
PM2 MD Tear 0.36 |0.59 |-0.26 10.20 0.42 |0.58 0.55
PM2 Burst 0.34 -0.51-0.25 10.41 -0.53 |0.04 0.44

PM2 Caliper spread (CD) -0.160.41 0.24 |-0.20 0.46 -0.05 0.25
PM2 Caliper spread (MD) -0.3510.37 0.11 [-0.40 0.33 |0.01 0.27

PM2 b* 20.01(0.25 -0.04 |]-0.05 0.19 0.15  0.06
PM2 CD TSI £0.17(0.41 -0.81 |-0.36 -0.08 0.86  0.86
PM 2 Headbox pH 0.03 -0.13-0.73 |-0.03 -048 0.57  0.55
PM2 Moisture spread (CD)  0.33 0.49 0.66 ]0.30 0.79 -0.27 0.78
PM2 Mx Caliper [0.14(0.12 0.66 |-0.08 042 -0.54 0.47
PM2 Porosity [0.07 -0.48/0.64 [0.11 -0.10 -0.79 |0.65
PM2 MD TSI 10.04 -0.51 -0.57 |-0.01 -0.72 023 [0.58
PM2 a* 031 0.12 -0.53 [020 -0.13 057  [0.39
?(1:\;[)2) Basis Weight spread 1) 1, 16 45 1050 l027 l0.67 015 0.55
PM2 Caliper 20.15 -0.06/0.44 |-0.08 0.15 -0.44 022
PM2 Sheet Width 0.05 024 026 [0.03 034 -0.10 0.3

PM?2 Steam Box Pressure

-0.02 -0.0210.04 [-0.01 0.00 -0.05 0.00
(Kpa)

Figure 25 below shows the variable loadings in the rotated component space for the

spruce trial. Like the other two datasets, PM2 Caliper clusters are nearest to PM2 Mx_ Caliper.
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Figure 25 Component plot in the rotated space for the spruce dataset

The results can be easily compared since three components were retained in each
analysis. Firstly, keeping three components in the fir dataset explained 20-40% more of the
variance in the caliper than in the other two datasets. Also, in the fir dataset, the first component
accounted for the most variance compared to the other two. While comparing the first component
of the three datasets, the PM2 Mx_Caliper had the largest loading factor in the fir dataset. MD

Tea and CD Tear appeared significant among all three datasets in the first components.

3.5Neural Network Analysis of Variables
The final analysis tool used on the three datasets was neural networks. Several neural
networks were trained to predict the machine caliper (response) based on the other variables
(predictor), just as with linear regression. The network shape was chosen to allow visualization

of how the neural network transforms the input space to obtain the prediction.

The number of predictor variables used was restricted to variables that appeared as easily

controlled or arose as interesting in the other analysis, which include the following: 'PM2
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Caliper', 'PM2 Stock flow (Ipm)', 'PM2 Basis Weight', 'PM2 Sheet Width', 'PM2 Speed',' PM2
Headbox Temp', 'PM 2 Headbox pH', 'PM2 Main Steam Pressure', 'PM2 Steam Box Temp',
'PM2 Steam Box Pressure (Kpa)', PM2 Steam Box Flow (Klb/hr)',' PM2 Thick Stock flow
(BDMT per Day)', 'PM2 Broke Flow(lpm)', 'PM2 MD Tensile', 'PM2 CD Tear', 'PM2 KSI',' PM2
Dry Weight spread (CD)',' PM2 Burst'.

The three datasets (Fir, Spruce, and Baseline) were randomly pooled and partitioned into
training/validation sets. Four neural networks, N6, Ng, N4 and N>, were trained to predict the
PM2 Mx_Caliper from the remaining variables. The four networks have different shapes and
parameter complexity: network Ni has k+3 layers, with an input layer of size 19 (the number of
variables), then k layers each of size k, followed by a layer of size 2, then an output layer of size
1. For example, the sequence of layer sizes for Ni¢ is (19,16,16,16,16, 16,16,16,16, 16,16,16,16,
16,16,16,16, 2, 1). A layer of size two was used for the second-to-last layer to visualize how
the network transforms the input space before making the final prediction. All networks used
rectified linear units (ReLU) as the activation function. The loss function used was the mean
squared error between y and yp. Like in the regression section, the validation data was used to
ensure the model trained was not overfitting.

In all four network models, Nis, Ng, N4 and N>, the second last layer outputs a vector X.»
of dimension 2. Therefore, for each of these network models, N, the second last step in
computing y=N(X) for any input point X in the input can be derived. The point X., results from
transforming the original point X in an n-dimensional space down to a point in 2-space.
Because X2 is a vector with two coordinates, it can be visualized as a point in the plane. The
collection of all such points X> for each point in the training sample is a visualization of how the
neural network has transformed the original points X in R™ to points X.» in the plane as part of

the learned process for predicting y. Each point in this visualization is colour-coded to incorporate
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additional information. The results for Ni¢ are shown and discussed below. The visualizations

relating to the smaller networks (Ns, N4 and N2) are included in Appendix B for comparison.
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Figure 26 Neural Network transformation of the actual machine caliper in the given state for the A) Baseline, B) Fir, and C) Spruce

datasets

Figure 26 above is a visualization of the points X.,, resulting from transforming each
point X in the input. Each point in the visualization is coloured according to PM2 Mx_Caliper
for the three datasets, Baseline (Figure 26A), Fir (Figure 26B), and Spruce (Figure 26C). The
almost perfectly smooth transition of colours indicates that the model has transformed the
original space X down to R? so that states with the same output caliper are grouped along

parallel lines.
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Figure 27 Neural network visualization of the predicted caliper for A) Baseline, B) Fir, and C) Spruce

Next, consider Figure 27, where the colour of each point X_; is the caliper predicted by
the network ypred =N(X) for the three datasets. These images show a perfect gradient transition
from dark red in the bottom right corner to dark blue in the upper right. This is because the
following (and final) network layer outputs the prediction ypred using an affine transformation.
The level curves of this affine transformation are parallel lines. Notice that Figure 27 looks very

similar to Figure 26, which indicates that the model’s prediction y, for the caliper will be very

close to the actual value PM2 Mx_Caliper. This is consistent with the model R? value being very

close to 1.
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Figure 28 Visualization of how well the machine caliper matches the desired caliper for the A) Baseline, B) Fir, and Spruce

Figure 28 shows the data as in the previous examples, but now points are coloured using

the value of the difference PM2_Caliper-PM2 Mx_Caliper. Dark red means the desired caliper

was two standard deviations larger than the actual, and dark blue means the desired caliper was

two standard deviations less. Darker colours indicate sample points where the output paper

caliper did not align closely with the desired caliper. Observe that, as a rule, the PM2 _Caliper is

always smaller than the PM2 Mx_Caliper, as seen by Figure 28(A), being predominantly blue in

colour, and that is especially true in the Fir dataset. This aligns with what was seen earlier in this
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thesis. Also note Figure 28C, representing the spruce dataset, is a lighter blue colour compared to
the fir, which is consistent with the findings of the regression analysis earlier.

Appendix B contains the diagrams above for the remaining three neural networks. It is
worth mentioning that the training of a neural network results in a local minimum of an error
function, and there is no unique local minimum. A different training session on the same dataset
might result in a different local minimum which would result in different diagrams for the same
dataset. This is also why the direction of gradient change for the different networks is not always
the same. However, there is a smooth gradient of parallel lines in all cases because the final
mapping is an affine map from R? to R.

The final layer of the neural network takes a point in layer X .; to the final prediction.
For N6, the MSE of this prediction was 0.0182, indicating less than a 2 percent error in
predicting the (normalized, squared) PM2 Mx_Caliper from the machine state. Table 27 below
shows the MSE of the residuals for the other three neural networks. The lowering of the MSE by
using larger networks (more training parameters) on the same data indicates there are beneficial

nonlinear relationships between the predictor and predicted variables.

Table 27 Mean squared error values for the remaining neural networks

Networks MSE of the residuals
Ns 0.002
Ny 0.004
N> 0.005

In conclusion, feed-forward neural networks proved an effective tool for predicting machine
calipers from the array of variables used. They provided an effective tool for visualizing the

high-dimensional dataset.
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Chapter 4: CONCLUSIONS

Given three datasets from Corner Brook Pulp and Paper, the above analysis was
completed to better understand relationships between variables within the paper-making process
using various analytical and predictive tools.

The analyses showed that the difference between desired and measured caliper in the fir
dataset varied less than in the other two datasets, but the actual machine caliper was consistently
different from the desired caliper. An ANOV A showed a statistically significant effect of species
on the caliper difference. These statistics showed that the spruce dataset had the lowest average
difference between the desired and actual caliper. Of all three datasets, the fir dataset had the
most variables throughout all the analyses that showed significance relative to the caliper. When
looking solely at this analysis, using only fir wood would be advantageous to paper makers if the
machine caliper could be controlled to be more in line with the desired caliper; otherwise, the
spruce dataset appears beneficial, as the machine caliper was closest to the desired caliper more
than the other datasets. These findings agree with other literature, such as Drost et al. (2003), that
species influences paper quality.

With more control over the variables than the species mixture, it can be seen that certain
variables may influence the process. In the baseline dataset, basis weight was the only variable
that showed an influence on the caliper in correlation, regression, and principal component
analysis (PCA). MD tensile and CD tear showed an impact in correlation and PCA. Neither
correlation nor PCA had any variables that arose in common with the regression analysis. In the
fir dataset, KSI, dry weight spread, and burst were variables recurring in all three analyses. The
following variables arose in the fir dataset's correlation and principal component analysis: Sheet
width, speed, main steam pressure, trim, porosity, MD tear, CD tear, MD elongation, PPS

bottom, MD
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tea, CD TSI, and TSI ratio. The only variable that arose in both PCA and regression for the fir
dataset was the basis weight spread. In the spruce dataset, no variables appeared in the
correlation analysis, and there were no variables that arose in common among any of the
analyses. Throughout all three datasets, basis weight, CD tear, and KSI repeatedly arose as
influential variables in the analysis.

This study also investigated how neural networks could supplement traditional statistical
methods. The neural networks provided a more flexible way to explore patterns and relationships
within the data. As seen in this thesis, traditional statistics often require predefined assumptions
about the data and relationships, such as linearity or independence, compared to the neural
networks section, which captures natural patterns in the data without the researcher's influence.
Similar to correlation analysis’s investigation of simple linear associations, neural networks
identified more intricate patterns between the variables. Neural networks adaptively learned
relationships amongst the variables with no prior assumptions, including no knowledge of the
underlying relationships, compared to linear regression, which required meeting an array of
assumptions. Lastly, PCA provided a useful linear dimension reduction, whereas neural networks
found an alternative latent space. Researchers can enhance their analytical analysis by combining
neural networks with traditional statistics, achieving both interpretability from traditional
statistics and predictive power from neural networks.

Due to the conciseness of this thesis, much further and alternative research could be done.
With any mechanical process, there are many influences on the outcome. As for the papermaking
process, it has been seen that many factors, some human-controlled and some natural, influence
the final caliper of the paper. Further research could investigate a tighter control on wood fibre

by creating an experimental design for wood selection, including things other than species, such

as age, geographic origin, wood density, part of a tree, etc. Other variables within the process that
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the mill did not provide could also be investigated. Future investigations could also explore the
relationship among variables, including factors like the time delay of some variables’ influence
on the caliper and the interactions of variables.

Overall, this study adds to the literature of influences on sheet caliper in the papermaking
industry. There is a need to consider species in the process and the impact of machine variables
on the desired outcome. The study also adds to the use of neural networks as an investigative tool

during research.
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Appendix A: Chart of Variables

Number Variable Variable Variable type | Variable type
type in in Fir Dataset | in the Spruce
Baseline Dataset
Data
L. Stock flow (Ipm) Continuous Continuous Continuous
2. Wet End Break Appears Constant at Constant at
Binary zero or “No zero or “No
between zero | Good Data” Good Data”
and 1
3. Dry End Break Appears Constant at Constant at
Binary zero or “No zero or “No
between zero | Good Data” Good Data”
and 1
4. Basis Weight Continuous Continuous Continuous
5. Spec. # Discrete Discrete Discrete
6. Sheet Width Continuous Continuous Continuous
7. Speed Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
8. Headbox Temp Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
0. Headbox pH Continuous Continuous Appears to
change
Discretely
10. Main Steam Pressure Continuous Continuous Continuous
11. Steam Box Temp Continuous Continuous Constant at
115.7519531
12. Steam Box Pressure (Kpa) Continuous Continuous Continuous
13. Steam Box Flow (Klb/hr) Continuous Continuous Continuous
14. Mx Moist Continuous Continuous Continuous
15. Caliper spread (CD) Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
16. Moisture spread (CD) Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
17. Dry Weight spread (CD) Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
18. Basis Weight spread (CD) Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
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19. Stuff Pump Consistency Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
20. Thick Stock flow (BDMT per | Continuous Continuous Continuous
Day)
21. %Broke Appears to Continuous Appears to
change change
Discretely Discretely
22. Broke Flow(Ipm) Continuous Continuous Continuous
23. TMP flow (Ipm) Continuous Continuous Continuous
24, Trim Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
25. Porosity Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
26. MD Tensile Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
27. CD Tensile Stays Stays Constant | Stays constant
Constant at at at
2.62 2.619999886 | 2.619999886
28. Tensile Ratio Stays Stays constant | Stays constant
Constant at at at
0.88 0.879999995 | 0.879999995
29. MD Tear Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
30. CD Tear Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
31. Tear Ratio Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
32. MD Elongation Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
33. CD Elongation Stays Stays constant | Stays constant
constant at at at
0.21 0.209999993 | 0.209999993
34, Burst Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
35. KSI Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
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36. Opacity Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
37. Brightness Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
38. a* Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
39. b* Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
40. PPS Top Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
41. PPS Bottom Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
42. MD TEA Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
43. CD TEA Stays Stays constant | Stays constant
constant at at at
10.01 10.01000023 10.01000023
44, MD TSI Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
45. CD TSI Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
46. TSI Ratio Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
47. TSO Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
48. Jumbo Discrete, Discrete, Discrete,
reference reference reference
number number number
49. Jet to Wire Continuous Continuous Continuous
50. I* Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
S1. Mx Caliper Continuous Continuous Continuous
52. Caliper Appears to Appears to Appears to
change change change
Discretely Discretely Discretely
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Appendix B: Images pertaining to Ns, N4, and N2 Neural Networks
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Caliper predicted by the neural network for N8
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PM2_ Caliper-MX_Caliper for N8
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Difference in predicted value of y and y for N8
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Regression summary statistics for N8
R2 0.83
MSE of residuals 0.007
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N4

Transformed points of the original space for N4
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Caliper predicted by the neural network for N4
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PM2_ Caliper-MX_Caliper for N4
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Difference in predicted value of y and y for N4
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Regression summary statistics for N4
R2 0.83
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N2

Transformed points of the original space for N2
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Caliper predicted by the neural network for N2
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PM2_ Caliper-MX_Caliper for N2
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Difference in predicted value of y and y for N2

baseline++ color=y_pred-y
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Regression summary statistics for N2
R2 0.83
MSE of residuals 0.008
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