
Automated Dialogue Order Processing using Small
Large Language Models

1st Adithya Sudhan
Faculty of Computer Science

Memorial University of Newfoundland
St. Johns, Canada
asudhan@mun.ca

2nd Dr. Reza Shahidi
Faculty of Engineering

Memorial University of Newfoundland
St. Johns, Canada

3rd Dr. Adrian Fiech
Faculty of Computer Science

Memorial University of Newfoundland
St. Johns, Canada

Abstract—This paper addresses the underexplored intersection
of prompt engineering techniques and system design in the
context of small Large Language Models (LLMs) aimed at
generating structured outputs. While prior studies have largely
focused on larger LLMs, the potential of smaller models, which
operate with significantly fewer parameters, remains largely
untapped, particularly concerning entity extraction in real-
world task-oriented dialogues. We propose a framework for
deploying small LLMs in private, resource-efficient environments
to enhance task-oriented workflows. Utilizing the TaskMaster-1
(TM-1-2019) dataset, our research demonstrates how structured
outputs can be generated effectively in the absence of any fine-
tuning. We evaluate various small LLMs and analyze critical
metrics such as validity to identify the key factors and compo-
nents necessary for transforming dialogue into actionable entities
within programming environments.

Index Terms—Large Language Models, small-scale LLMs,
automated dialogue processing, order placement, prompt engi-
neering

I. INTRODUCTION

While several studies have explored the use of prompt
engineering techniques with Large Language Models (LLMs),
few, if any, have focused on how prompt engineering and
system design can best be used to create structured outputs
with small LLMs, which use far fewer parameters. Moreover,
entity extraction has not been explored within the context of
real world task oriented dialogues using such small LLMs.
This paper tries to address this gap and outlines an ap-
proach that could lead to private, small-scale, resource-wise
deployments of small LLMs to augment task-oriented order
taking workflows in a real world setting. This study, using the
TaskMaster-1 (TM-1-2019) dataset, focuses on pizza-ordering
as a domain as a proxy for all such order taking workflows
where there is somewhat predictable structure to the contents
of the conversation. This is typical of the dialogue that occurs
at drivethroughs, for example. Through the use of various
small LLMs, we walk through metrics like validity to point
out the limiting factors and essential components of a system
that converts dialogue into entities (represented by objects in
any programming language).

II. DATA PREPARATION

The dataset used in the study is the TaskMaster-1 (TM-
1-2019) [2] dataset that contains real-world 2-person spoken

dialogue collected using the Wizard of Oz (WoZ) methodology
in various domains. Of this large collection, only the subset
pertaining to pizza food orders was used. Once acquired, the
dialogues are concatenated into a single string block so that
the LLM may act on it in the appropriate stage. The following
is an portion of a processed dialogue:

ASSISTANT: hi, how can i help you?
USER: I want to order pizza.
ASSISTANT: ok, from where?
USER: Bella Luna.
ASSISTANT: what would you like to order?
USER: chicken barbecue.
ASSISTANT: ok, 1 pizza?

III. SYSTEM DESIGN

The proposed approach follows a three-stage process for
converting natural language input into structured data. It is de-
signed to handle dialogue-based input across various domains
by summarizing the relevant information, converting it into
function calls, and generating structured outputs. To illustrate
this process, we use the example of pizza ordering, but the
approach can be generalized to other applications.

A. Summarization

The first stage involves summarizing the dialogue to extract
relevant information. This step focuses on identifying key
details from the dialogue that are necessary for fulfilling the
user’s request while filtering out irrelevant parts. For instance,
in the pizza-ordering example, the goal is to capture details
such as the number of pizzas, sizes, crust types, toppings, and
any special instructions. The summarization is performed by
generating a prompt for a language model that instructs it to
provide a concise representation of the essential elements of
the conversation. This summary forms the basis for subsequent
stages and can be easily adapted to other domains by modi-
fying the prompt to focus on different kinds of information.

B. Function Calling

The second stage translates the summarized information into
function calls that represent the user’s request in a structured
format. This involves using the output from the summarization
step to generate specific function calls. For example, the pizza

order summary can be used to create a string presentation of
a function call like create_pizza(quantity, size,
crust, toppings, special_instructions). This
structured representation facilitates automation by mapping
natural language input to pre-defined functions. In other do-
mains, the function calls can be adapted to suit different types
of actions or entities, making this stage highly flexible.

C. Structured Output Generation

In the final stage, the generated function calls are used to
create structured objects based on pre-defined classes. This
is a crucial stage because the somewhat structured response
of the LLM needs to be parsed using regular expressions to
make it possible to capture the requisite parameters. Naturally,
the efficacy of the regular expression can be a huge factor in
correctly producing objects.
The regular expression used in this study is

c r e a t e p i z z a (\ s * q u a n t i t y =(\ d +) ,\ s * s i z e
= [’ ”] ([\w\ s \ −]+) [’ ”] , \ s * c r u s t = [’ ”] ([\w
\ s \ −]+) [’ ”] , \ s * t o p p i n g s = \ [([ˆ \]] *) \] ,\
s * s p e c i a l i n s t r u c t i o n s =\ s * (? : \ [\ s
* [’ ”] ? ([ˆ ’ ”] *) [’ ”] ? \ s * \] | [’ ”] ([ˆ ’ ”] *)
[’ ”]) \ s *\)

.Once parsed, for the pizza example, each order is represented
as an instance of a Pizza class, encapsulating attributes such
as quantity, size, crust type, toppings, and special instructions.
This allows for further validation, post-processing, or integra-
tion with other systems.

IV. RESULTS

4 models, as mentioned in Table I, were tested across
3 different few-shot prompts, and therefore their results are
presented in Fig. 1 for the purpose of comparison. Only
100 dialogues were used for testing for the sake of lowering
run times on the GPU, and the metrics focused on were all
centered around validity.

V. LLMS TESTED

TABLE I
MODELS USED WITH ANNOTATIONS

Model Annotation
mlx-community/Meta-Llama-3.1-8B-Instruct-4bit L8
mlx-community/Mistral-7B-Instruct-v0.3-4bit M7
mlx-community/Llama-3.2-3B-Instruct-4bit L3
mlx-community/Qwen2-7B-Instruct-4bit Q7

A. Criteria for validity

• Size Validation: A pizza size is considered valid if it
matches any of the following predefined sizes: small,
medium, or large. The validation uses a fuzzy matching
algorithm that requires at least 80% similarity, based on
Levenshtein distance, between the provided size and the
valid options.

• Crust Validation: A pizza crust type is deemed valid if
it is one of the following: thin, thick, gluten-free, deep,

or stuffed. If the provided crust type does not exactly
match any valid options, it is further evaluated by splitting
the crust string into components (replacing hyphens with
spaces) and checking each component for at least 80%
similarity, based on Levenshtein distance, against the
valid crust types.

• Quantity Validation: The quantity of pizzas ordered
must be a positive integer. This ensures that the order
is valid only if the quantity is greater than zero.

• Toppings Validation: The toppings must be provided as
a list. The list is valid if it is either empty (represented
as [’’]) or contains only non-empty strings. This cri-
terion ensures that each topping must be a valid string
representation.

• Special Instructions Validation: Special instructions for
the pizza order may be provided as either a string or a
list. This flexibility allows customers to include additional
requests or details regarding their order.

Accuracy measurements, which would cater to whether the
well formed pizza objects actually conform to the correspond-
ing spoken dialogue, were not taken since this would either
require truth values from either manual annotation or a high
parameter-LLM.

VI. CONCLUSIONS

This study shows that small LLMs can reliably act on highly
unstructured spoken dialogue and turn them into structured,
actionable and deterministic software entities that can be
consumed by another software system. This opens up the
possibilities of using private small LLMs for sites that have
limited or no access to the internet, and workflows where
sending data off site is not acceptable. It must be noted
however, that the hybrid-probabilistic system described in this
paper, must be thoroughly tested and validated before using
it on sensitive applications where behavior is required to
be deterministic. LLMs are leaky abstractions and excel at
summarization and following guidance, as demonstrated via
function calling, but they still must be treated as systems that
create probabilistic outputs whose integrity must be questioned
perpetually. Such hybrid software systems therefore must be
designed to be fault-tolerant and a greater emphasis must be
placed on which failure scenarios since these failures may stem
from imbalances in the training data that the base LLM was
trained on.

VII. LIMITATIONS AND NEXT STEPS

The test dataset in this study only covers 100 pizza ordering
dialogues. This could be expanded to cover many more do-
mains as well as a greater number of dialogues to gain a better
understanding of whether the validity holds for large amounts
of data. Furthermore, a greater number of small LLMs maybe
tested to understand the strengths and weaknesses of each
model and perhaps conclude upon a recommended small LLM
that works best across various task-domains. Lastly, there
is ongoing work on structured generation using context-free
grammars and regex-structured generation via the Outlines

library [1] which is worth exploring for small LLMs. These
work by constraining the probability distribution of the next
token to predetermined regular expressions or known patterns,
so as to guarantee that the LLM always produces predictable
structured output. The core idea in this approach is that instead
of using regular expressions after an LLM generates output,
as is explained in this paper, regex could be used to guide the
generation of tokens themselves. This study could be enhanced
by exploring these techniques, especially in the context of
checking accuracy of such regex guided LLM generation.

Fig. 1. Validity metrics are high across models

REFERENCES

[1] Willard, Brandon T and Louf, “Efficient Guided Generation for LLMs,”
arXiv preprint arXiv:2307.09702, 2023.

[2] Byrne, Bill and Krishnamoorthi, Karthik and Sankar, Chinnadhurai and
Neelakantan, Arvind and Duckworth, Daniel and Yavuz, Semih and
Goodrich, Ben and Dubey, Amit and Kim, Kyu-Young and Cedilnik,
Andy, “Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset,”
Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, 2019.

