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Abstract

An analysis of the electromagnetic scattering from deterministic targets embedded

in time-varying random rough surfaces is presented. The approach combines and

extends previous works addressing high frequency (HF) electromagnetic scattering

from the ocean and stationary surface targets separately. The analysis begins with

first- and second-order expressions for the normal component of the scattered electric

field from a conducting surface that is small in height and slope and described by a

time-varying Fourier series. A vertical pulsed-dipole transmitting source is assumed

while the observation point of the scattered field remains general. These expressions

are modified to introduce a finite, deterministic target with arbitrary motion via a

Fourier transform of the surface target’s profile. The Fourier integrals in the resulting

expressions are evaluated through asymptotic methods.

The analysis produces two bistatic scattered field expressions involving the surface

target. These are attributed to (1) first- and second-order scatters solely from the

target and (2) a double scatter involving the target and nearby surrounding ocean.

The two components are added to existing expressions for the first- and second-order

scattered fields from the ocean surface to model the total scattered field from an ocean

patch containing a surface target. It is shown that the HF Doppler cross section of

the ocean patch and target may be found as the sum of the cross sections obtained in

treating each field component independently. The target-only and target-ocean cross

sections are formally evaluated, while the ocean-only components are obtained from

existing models. The target-only component is shown to agree with existing monos-

tatic, zero-velocity results when appropriate substitutions are made. The target-ocean
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cross section represents a new expression not seen in previous work, but its general

form is seen to agree with existing bistatic ocean cross section models. Both cross

section components involving target scatter contain a motion-related Fourier factor

similar to one that arises in ocean cross section models for a radar installed on a

floating platform.

The HF Doppler cross sections are simplified for the case of a surface target mov-

ing with constant velocity. It is shown that the target-only cross section contains

a Dirac delta function with an argument restricting the response to an impulse at

the bistatic Doppler frequency shift predicted for uniform linear motion. The ocean-

target component also contains a Dirac delta function with an argument containing

the constant-velocity bistatic Doppler shift in addition to terms related to ocean dis-

persion and the change in target location between radar acquisitions. A system model

of an HF radar suitable for predicting the received Doppler power spectral density

from an ocean patch containing a surface target is presented. The system model is

used to predict the received signal strength for a variety of target, environmental,

and radar operating parameters. The results of the computations show, that under

certain conditions, a constant velocity target whose first-order cross section is masked

by ocean clutter may be detected through a secondary scatter from the ocean surface.

The models derived in this work enable the establishment of suitable design spec-

ifications and operating parameters when developing new or utilizing existing HF

surface wave radar systems for the purposes of monitoring targets on the ocean sur-

face. In addition, the physical interpretation of the scattering process and simple

computation provided by the models should prove relevant in developing and testing

novel signal processing techniques for both target identification and clutter rejection.
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Chapter 1

Introduction

1.1 Motivation

With the ever-growing importance of Canada’s ocean economy comes a need to mon-

itor marine vessels and other hard targets in real-time. This is of particular concern

in the Exclusive Economic Zone (EEZ), a region established in 1982 that extends 200

nautical miles (nmi) beyond a nation’s coast where it maintains sovereign rights over

renewable and non-renewable resources [2]. The ability to locate, track, and uniquely

identify surface targets in this region provides a significant benefit to a wide variety

of Canadian interests. High Frequency (HF) radars are able to provide these capa-

bilities, and unlike alternative sensors, can provide persistent long-range coverage.

Observations from HF radars are valuable to commercial industries such as shipping,

fisheries, and petroleum extraction, as well as security and defence for military and

search and rescue operations.

HF radars operate in the 3-30 MHz band and exhibit a number of unique char-

acteristics when compared to microwave radars due to their longer wavelengths and
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limited bandwidths. This includes the ability to utilize both skywave and surface

wave modes of propagation to monitor ocean targets beyond the line-of-sight. Sky-

wave radars exploit the reflection of HF radio waves from the Ionosphere to achieve

detection ranges beyond the horizon. This work addresses the surface wave mode,

where the radio wave is guided along the conducting ocean surface. Using this mode,

detection ranges exceeding 220 nmi [3] have been achieved at the lower end of the HF

band. The electromagnetic wavelength of HF radiation ranges from 10 to 100 m and

is of the same order of magnitude as the dimensions of many practical targets such

as marine vessels, icebergs, and aircraft. For these targets, HF radars are not well

suited for observing detailed characteristics, but in many cases the scattered signals

are proportional to the overall size and orientation of a target. When considering the

size of a radar cell imposed by the radar’s range resolution and receiving antenna’s

beamwidth, HF radars face considerable constraints due to practical limits of avail-

able bandwidths and antenna array lengths. As a result, radar cell resolutions are

often limited to areas of hundreds of square meters to a few square kilometers.

Perhaps the most significant limitation to the monitoring of surface targets is

the return from the ocean surface itself. For frequencies in the HF band, the elec-

tromagnetic wavelengths correspond to those of gravity waves, where most of the

ocean’s energy is carried. Furthermore, as the ocean is itself a moving target, the

returning radar signal is Doppler-shifted. The radar returns from the surface can

be significant, occluding targets of interest in both the range and Doppler domains.

This phenomenon has been studied significantly in the past, with particular efforts

focused on developing radar cross section (RCS) models for the ocean surface. In the

context of HF radar, an ocean RCS is the ratio of the signal power reflected from the
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ocean relative to the transmitted signal power. It is frequently defined as a function

of Doppler frequency and specified as a normalized per-unit-area quantity. The use

of RCS models in developing methods to estimate ocean conditions from HF radar

measurements has resulted in HF Surface Wave Radars (HFSWR) being primarily

employed as oceanographic sensors, with target detection often treated as a secondary

function.

Even with the advantages provided by the long-range and real-time updates of

HF radars for observing targets, relatively little effort has been made in the past to

study electromagnetic scattering from targets on the ocean surface when compared

to the scattering from the ocean itself. Early works addressing scattering from sur-

face targets favoured experimental measurements [4]. With the introduction of the

EEZ, interest in monitoring ships increased along with a corresponding increase in

model development. In one study, Pondsford [3] proposes extrapolating an empirical

estimate originally developed by Skolnik [5] with marine radars to obtain the RCSs

of ships in the HF band as a function of their displacement. In more recent work,

numerical computer modelling has been used to simulate the RCSs of surface targets.

This method can be expensive in time and computing resources and typically neglects

the time-varying nature of the ocean surface [6–8].

A potentially significant contribution to the Doppler signature of a surface target is

the result of a second-order effect where radiation scattered by the target is scattered

a second time from the ocean surface (or vice-versa) before reaching a radar receiver.

When the radiation from an HF radar is scattered by two moving targets, the re-

radiated field will experience two or more Doppler shifts depending on the relative

motion. In addition, the directional nature of both dominant surface waves and
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targets may lead to significant returns for specific geometries and radar look angles.

With knowledge of the current ocean state able to be derived from the radar returns, it

may be possible to determine unique information about surface targets in this second-

order return. By developing mathematical expressions that model this scenario, the

physical parameters that contribute to it can be better understood. These expressions

may also aid in designing new or employing existing HF radar systems for monitoring

surface targets. Furthermore, mathematical models can aid in the development of

signal processing techniques, including clutter suppression and target tracking.

The overarching objective of this work is to analyze bistatic scattering from de-

terministic targets in motion on a rough, time-varying surface. In applying the work

to HF radars monitoring the ocean surface, commonly used approximations will be

employed to derive radar cross section models that may be easily computed. These

cross sections can be incorporated in a full radar system model to predict the received

signal for a given set of target and environmental parameters. This allows for a bet-

ter understanding of existing systems in addition to providing insight into improving

the target detection capabilities of future HF radars. It is primarily intended that

the results aid in the future development of techniques for detecting, tracking, and

classifying surface targets in the challenging ocean environment. The results may

also find a secondary application in enhancing measurements from radars deployed

for oceanographic remote sensing. In particular, an understanding of the scattering

from both the target and its surroundings may enable the ability to separate the tar-

get and sea-scatter contributions. This would permit an estimate of the sea-scatter

signature without the target present and a determination of the undisturbed ocean

surface conditions.
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1.2 Literature Review

The proposed research spans two mature topics in the field of electromagnetics,

namely scattering from deterministic surface targets and the scattering from con-

ducting, time-varying random rough surfaces. As this research aims to study the

interaction between targets and rough surfaces, the following literature review will

focus on electromagnetic scattering modelling methods that have successfully been

applied to each topic. For a thorough introduction to HF Radar in the ocean envi-

ronment, the reader is referred to Chapter 1 of [1], while a detailed review specific to

rough surface scattering may be found in Gill’s doctoral thesis [9].

The earliest published works studying HF radar scattering report experimental

results from targets and rough surfaces. These include Crombie’s well-known work

recognizing the strong peaks in HF radar returns from the ocean as a form of Bragg

scatter [10]. In the context of HF radar, Bragg scatter refers to significant reflected

signals from ocean waves having a wavelength of half that of the central frequency of

the transmitting waveform. Two notable approaches to approximate analytical RCS

models of the ocean as applied to HF radars have been adopted by researchers, both

of which have been adapted for surface target modelling. Barrick developed first- [11]

and second-order [12] models based on the perturbation method used by Rice [13].

This method has been adapted by Anderson to model HF signatures of ship wakes,

including their interaction with the ocean [14]. In the 1980’s, Walsh and colleagues

developed a technique using generalized functions to model propagation and scatter

over conducting media [15] that is small in height and slope. This method was used by

Srivastava to develop analytical approximations to the monostatic RCSs of an ocean
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patch [16] and extended by Gill to the bistatic case [17, 18]. The method was also

used to model scattering from discontinuities as applied to ice-hazards including sea-

ice and icebergs [19, 20]. Additionally, scattering from deterministic surface targets

was treated by Walsh and Gill but only for the monostatic case [21].

Any contemporary study of electromagnetic scattering should consider the avail-

ability of numerical simulation software, such as Ansys HFSS [22] or CST Studio

Suite [23]. With widespread access to significant computing power and commer-

cial software able to model complex geometries, accurate scattering models can be

implemented to produce detailed RCSs. Numerous methods exist; however, the gen-

eral principle is the same. The target and its surroundings are discretized, allowing

Maxwell’s equations to be enforced on a point-by-point basis. The result is a system

of equations that can be solved for the electric or magnetic fields or currents in a de-

fined region for a given excitation or incident wave. The Numerical Electromagnetics

Code (NEC) [24] is an implementation of the Method of Moments (MoM) that has

frequently been used to model ships, including superstructures, as wire grids.

The following sections provide background for each of the methods introduced

above. Significant details of the Walsh method and its applications are provided as

they form the foundation of the proposed research.

1.2.1 Experimental Measurements

Experimental measurements at HF may be performed to characterize a scattering

target for which an analytical model does not already exist or to validate a model

that has already been developed based on theory. Additionally, more functional
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experiments may be performed to demonstrate an implemented system’s capabilities.

The first reported cross sections of marine vessels were determined by measurements

using calibrated radars at X, S, and L bands [5]. The result is the empirical expression

for the RCS, σ,

σ = 52f 1/2D3/2 (1.1)

where f is the operating frequency of the radar in megahertz and D is the displace-

ment of the vessel in kilotons. This expression has been used by Pondsford for HF

radar RCS estimates [3]. A subsequent experiment performed by the U.S. Naval Re-

search Laboratory measured the RCS of small boats using a calibrated HF radar [4].

That work determined that the RCS of small boats is dominated by the grounded

vertical superstructure acting as a monopole scatterer. A later experiment was per-

formed by Khan et al, demonstrating the ability of an HF surface wave radar to detect

ships, icebergs, and low flying aircraft [25].

In understanding how the RCS of targets may be determined by measurement, it

is helpful to write the radar equation as

Pr =
PtGt

4πR2

σAr

4πR2
(1.2)

where the various quantities are

Pr: The power received by the radar

Pt: The power transmitted by the radar

Gt: The transmit antenna gain

R: The range to the target

Ar: The effective aperture of the receiving antenna .

7



In a calibrated radar used for RCS measurements, with the exception of the RCS

itself, all the quantities on the right hand side are known. Thus the target’s RCS

may be determined from the received power.

Following Crombie’s deduction [10] that the sea-echo observed by HF radars was

a form of Bragg scattering, much of the experimental work focused on validating

RCS models based on newly-developed theory. Additionally, rather than validate the

absolute RCS predicted by the models, these experiments tended to use alternative

sensors, e.g. wave buoys or current sensors, to ground truth the models’ abilities to

predict radar returns for specific ocean conditions. The ultimate objective of these

experiments is to produce a means to invert the models, allowing ocean conditions to

be determined from HF radar measurements [26].

1.2.2 Numerical Modelling

Perhaps the most widely used method of modelling electromagnetic scattering cur-

rently is through commercially-available software. A number of packages are available

that use different numerical methods to determine the total electric field in a sim-

ulated environment for a specific excitation. Commonly-used methods include the

Finite Element (FEM) and Finite-Difference Time-Domain (FDTD) methods, and

the Method of Moments (MoM). FEM and FDTD discretize the entire simulated

environment, generating a large system of linear equations where the unknowns are

the electromagnetic field values in each discrete unit. In its simplest form, the MoM

discretizes only the boundaries between conducting surfaces and surrounding free

space. In this case, the unknowns are the electric and magnetic surface currents on
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the boundaries. In many cases, this results in a smaller system of equations to solve

compared to FEM or FDTD.

Examples of the use of the Method of Moments in modelling the scattering from

hard targets at HF are prevalent in the literature. It has been used in determining

the RCS of ships [6–8] as well as studying the composite scattering from multiple

ships and structures in close proximity [27]. In [28], hull shaping for HF radar cross

section reduction was studied for skywave geometries using the MoM. In one example

relevant to the application detailed in Chapter 4 of this work, a tumblehome hull,

where the hull narrows as the height above ocean surface increases, was modelled.

This shape has been used in some modern warships such as the Swedish Visby-class

corvette [29] and the American Zumwalt-class Destroyer [30] to reduce microwave

radar signatures; however it was noted that the RCS reduction was limited at HF.

This can be attributed to the decametric wavelength of HF radiation having the

same order of magnitude as the overall ship dimensions. While not as prevalent in

studying HF radar sea-echo, one study by Demarty et al. [31] evaluated backscatter

from a time-varying surface using the MoM. In this case, the surface was required to

be simulated for a number of time steps to form the Doppler spectrum. Additionally,

only a patch of the surface was modelled, thus potential scattering from locations

remote from the patch would not be observed [15,16].

1.2.3 Perturbation Theory

Perturbation Theory refers to methods used for finding analytical approximations to

solutions of a problem using the exact solution of a simpler, related problem as a
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starting point. First presented by Lord Rayleigh [32] in the context of acoustical

scattering from rough walls, it was adapted by Rice in studying electromagnetic

scattering from a rough surface [13] that is small in height and slope. Using the

method developed by Rice, Barrick derived expressions for the effective impedance

of the surface to study the propagation of HF and VHF electromagnetic radiation

at grazing incidence [33]. Subsequent work produced first- and second-order cross

sections of the ocean surface by introducing a time-variation to the rough surface

[11, 12]. A more general review of perturbation theory, as applied to the scattering

from rough surfaces, is provided by Gill [9].

While not directly applied to scattering from hard targets, Barrick’s Doppler spec-

tral models have been adapted by Anderson to study first- and second-order scatter-

ing from the wakes of both ships and submarines [14]. That work also considered the

composite scatter from both the ship wake and the nearby surrounding ocean.

1.2.3.1 Radar Cross Sections of an Ocean Patch

Following the work of Rice [13], Barrick [11] expressed the random surface height

as a Fourier series but introduced time as an independent variable. The scattered

electric fields were also expanded as a series of plane waves. The coefficients of

the scattered electric field were then found by enforcing a Leontovich (or impedance

boundary) condition on the surface and assuming the surface is small in both slope

and height. The average scattered power was then determined from the Fourier

transform of the autocorrelation of the scattered electric field. By introducing an

ocean spectrum model, expressions for the first- and second-order RCS of a patch

were obtained [11,12,34].
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1.2.4 Ship Wake Radar Signatures

The possibility of monitoring small ships using HF radars to detect their wakes had

long been recognized, but little analytical work had been completed until Ander-

son in 2019 [14]. Anderson recognized that the Doppler spectrum, D(k⃗scat, k⃗inc;ωd),

predicted by Barrick’s work could be expressed in the form

D(k⃗scat, k⃗inc, ωd) =

∫︂
F1(k⃗scat, k⃗inc, k1⃗)S(k1⃗)dk1⃗

+

∫︂
k2⃗

∫︂
k1⃗

F2(k⃗scat, k⃗inc, k1⃗, k2⃗)S(k1⃗)S(k2⃗)dk1⃗dk2⃗ (1.3)

where ωd is the Doppler frequency, F1, F2 are integration kernels for first- and second-

order scatter, k⃗scat, k⃗inc, are the scattered and incident electromagnetic wave vectors,

and S(k⃗) is the directional wave spectrum. By expressing the total wave spectrum as

the sum

S(k⃗) = S(k⃗)wave + S(k⃗)wake (1.4)

and substituting it into the equation for the Doppler spectrum, an expression contain-

ing six terms results. This comprises two first-order terms corresponding to Bragg

scattering and direct scattering from the wake, and four second-order terms contain-

ing all possible combinations of wave-wave, wave-wake, wake-wave, and wake-wake

scattering. Anderson restricted the wake model to the ship’s Kelvin wake, the V-

shaped wake pattern first explained by Lord Kelvin [35] that trails a ship travelling

with uniform linear motion. The Doppler signatures of different ships are compared

with each other as well as with the signature of the ambient ocean. The analysis

suggests that the Doppler signature of wake scattering may be detectable in Doppler
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regions away from the Bragg frequency. One key challenge noted by Anderson was

efficiently computing the wake spectra to be able to use these models in real time

applications.

1.2.5 Walsh’s Method

In 1980, Walsh [15] proposed a technique for the analysis of electromagnetic scattering

from rough surfaces using generalized functions. The method has been adapted for

periodic surfaces [36] and discontinuities in mixed paths [37], and generalized for

two-body scattering [38]. Further refinements to the method produced RCS models

for conducting surface targets [21, 39]. The presentation of Walsh’s method in this

section includes refinements developed in a subsequent technical report written in

1990 [39]. As neither of the technical reports that develop the technique are publicly

accessible, references in the following sections will be limited to equivalent work that

subsequently appeared in academic journals. It should also be noted that the following

sections have similarities inherent to the doctoral dissertations of both Gill [9] and

Silva [40]. This can be expected as the proposed work shares a common starting point

with the work of both authors.

The infinite two-dimensional surface depicted in Figure 1.1 forms a boundary

between two media. Walsh and Gill [21] characterize the whole space using

hR(x, y, z) = 1− h[z − ξ((x, y)] , (1.5)

where ξ(x, y) is the height of the surface, and h is the Heaviside function that is
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defined as

h(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, z ≥ 0

0, z < 0 .

(1.6)

The medium above the surface is assumed to be free space with permittivity, per-

meability, and conductivity of ϵ0, µ0, and 0 respectively. For the medium below

the surface, these values are ϵ1, µ0, and σ1. Under these assumptions, the electrical

properties of the entire space can be expressed using Equation (1.5) as

σ = hRσ1 (1.7)

ϵ = ϵ1hR + ϵ0(1− hR) . (1.8)

Figure 1.1: Rough surface from Chapter 1 of Huang and Gill [1].

Recalling Maxwell’s equations in point form for ejωt time (t) dependence (i.e. for
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time-harmonic fields) with angular frequency, ω,

∇× E⃗ = −jωB⃗ (1.9)

∇× H⃗ = −jωD⃗ + J⃗ c + J⃗s (1.10)

∇ · E⃗ = ρv (1.11)

∇ · B⃗ = 0 (1.12)

where E⃗ and H⃗ are the electric field and magnetic fields, J⃗ c and J⃗s are the conduction

and source currents, and ρv is the charge density. Using Equations (1.7) and (1.8),

the constitutive relations become

D⃗ = [ϵ1hR + ϵ0(1− hR)] E⃗ (1.13)

B⃗ = µ0H⃗ (1.14)

J⃗ c = σ1hRE⃗ . (1.15)

Using the work of Walsh and Donnelly [38], the electric field for the entire space is

found to satisfy

∇2E⃗ + [ηrhR + (1− hR)] k
2E⃗ =

η2r − 1

η2r
∇
[︂
E⃗

+
· ∇hR

]︂
− TsE(J⃗s) (1.16)

where k2 = ω2µ0ϵ0, ηr is the refractive index of the lower medium, the E⃗
+

is the

electric field immediately above the boundary, and TsE is an electrical source operator

defined as

TsE(J⃗s) =
1

jωϵ0

[︂
∇(∇ · J⃗s) + k2J⃗s

]︂
. (1.17)

14



The electric field is then decomposed as

E⃗ = (1− hR)E⃗ + hRE⃗ (1.18)

and its Laplacian is evaluated. The result is two differential equations describing the

electric field in the media above and below the surface as well as an equation contain-

ing the boundary conditions. The field equations are converted to integral equations

though convolution with the electromagnetic Green’s function for the respective me-

dia. The resulting integral equations, presented in [21], dictating the electric field are

written as

(1− hR)E⃗ = E⃗s +

{︃
∇ ·
[︂
E⃗

+
∇hR

]︂
+
(︂
∇E⃗

)︂+
· ∇hR

}︃
xyz
∗ G0 (1.19)

hRE⃗ = −
{︃
∇ ·
[︂
E⃗

−
∇hR

]︂
+
(︂
∇E⃗

)︂−
· ∇hR

}︃
xyz
∗ G1 (1.20)

where E⃗s ≡ TsE(J⃗s)
xyz
∗ G0, and the boundary conditions naturally arise through the

Laplacian evaluation as

[︁
(∇E)+ − (∇E)−

]︁
· ∇hR +∇ ·

[︁
(E+ − E−)∇hR

]︁
=

η2r − 1

η2r
∇(E+∇hR) . (1.21)

The superscripts indicate whether the terms are evaluated just above (positive) or

below (negative) the interface, and the
xyz
∗ operator indicates a three-dimensional

convolution with the electromagnetic Green’s functions, G0 and G1, for the different
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media which are defined as

G0 =
e−jkr

4πr
, G1 =

e−jkηrr

4πr
(1.22)

with r =
√︁

x2 + y2 + z2. From the form of Equations (1.19) and (1.20), Walsh notes

that contributions to a field in a region must produce zero field outside that region,

hR

{︃
E⃗s +

[︃
∇ ·
[︂
E⃗

+
∇hR

]︂
+
(︂
∇E⃗

)︂+
· ∇hR

]︃
xyz
∗ G0

}︃
= 0 (1.23)

(1− hR)

{︃[︃
∇ ·
[︂
E⃗

−
∇hR

]︂
+
(︂
∇E⃗

)︂−
· ∇hR

]︃
xyz
∗ G1

}︃
= 0 . (1.24)

Equations (1.19) and (1.20) show that the scattered field in each region may be

determined from the electric field and its derivatives on the boundary inside that

region. The objective of Walsh’s method is then to find a solution to these values.

In the context of an HF radar operating in the surface-wave mode, attention can be

limited to the normal component of the electric field just above the surface. This is

justified at observation distances far removed from the source and points of scatter as

the tangential electric field component decays more rapidly than the normal compo-

nent. Walsh formally demonstrates this through Fourier analysis assuming the lower

medium is a good conductor, and the surface, ξ, is electrically small in height (i.e.

kξ << 1). The resulting operator equation for the normal component of the surface

electric field, E+
0n , is then given as

E+
0n − T1(E

+
0n)− T2(E

+
0n) = Es , (1.25)
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with

T1(E
+
0n) =

1

|n⃗|3
·
{︃
∇ξ

|n⃗|2
· ∇xy

[︁
|n⃗|(E+

0n)
]︁ xy
∗ F (ρ)

e−jkρ

2πρ

}︃
,

T2(E
+
0n) =

∇ξ

|n⃗|3
·
{︃
∇ξ∇ξ

|n⃗|2
· ∇xy

[︁
|n⃗|(E+

0n)
]︁ xy
∗ F (ρ)

e−jkρ

2πρ

}︃
,

Es =
n⃗

|n⃗|3
·
{︃

n⃗n⃗

|n⃗|2
· F−1

xy

[︃
2uFxy

(︃
E⃗

z−

s

)︃
e−z−u

]︃
xy
∗ F (ρ)

e−jkρ

2πρ

}︃
.

In Equation (1.25), ∇xy indicates a gradient operating on only the x- and y- di-

mensions, n⃗, is the upward-pointing normal to the surface, F (ρ), is the Sommerfield

attenuation function, and Fxy is a two-dimensional Fourier transform with transform

variablesKx andKy. Additionally, the
xy
∗ operator indicates a two-dimensional planar

convolution. In the expression for Es, the z− superscript on the E⃗
z−

s term, indicates

it should be evaluated on a plane z− < 0 < ξ(x, y) and u is given as

u =
√︂
K2

x +K2
y − k2 . (1.26)

Equation (1.25) is greatly simplified by assuming |∇⃗ξ| ≪ 1, also referred to as the

small slope assumption, implying

|n⃗|2 = 1 + |∇ξ|2 ≈ 1 . (1.27)

Under this assumption, Equation (1.25) reduces to

E+
0n − T1(E

+
0n) = Es (1.28)
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or

E+
0n −∇ξ · ∇xy(E

+
0n)

xy
∗ F (ρ)

e−jkρ

2πρ
= Es , (1.29)

when terms with gradients of order higher than one are omitted and |n⃗| ≈ 1.

Obtaining solutions to Equations (1.25) and (1.29) has been the focus of numerous

researchers since the introduction of Walsh’s method; see for example, [9, 16, 41–43].

1.3 Analysis Method Selection Rationale

The preceding literature review identified several analysis techniques that have been

applied to both HF scattering from the ocean and surface targets. When compared

to methods employing analytical approximations, experimental measurements and

numerical solutions to Maxwell’s equations may be considered more direct, yielding

the desired measured or calculated metric for a set of operating conditions. The

implementation of these techniques requires significant capital or computational costs,

limiting their application to specific use cases. More significantly, expressions derived

through analytical approximations can provide physical insight in to the scattering

process that is not possible with measurements or numerical simulation. As the

primary objective of the research completed in this work is to develop RCS expressions

that aid in the design and deployment of HF radar systems, particular attention was

directed towards the consideration of the perturbation and Walsh methods.

In evaluating the perturbation and Walsh methods as applied to HF radar scatter,

it is important to recognize that both techniques seek to form analytical approxi-

mations to Maxwell’s equations by employing relevant simplifying assumptions and
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constraints. In effect, both methods share a common starting point and it should be

expected that results obtained from either method for the same set of constraints are

consistent. This is demonstrated in the work of Srivastava [16] and Gill [9] when com-

paring their results with the monostatic [33] and bistatic [34] perturbation analyses

performed by Barrick.

A key difference in the use of the perturbation and Walsh methods is how each

method employs the simplifying assumptions and the order in which they are applied.

In following the work of Rice [13] and expanding the incident and scattered fields as a

series of plane waves, Barrick [33] implicitly assumes a continuous wave or infinite du-

ration transmitting waveform. Barrick’s subsequent application of the perturbation

approach to determine the scattered fields at the boundary immediately and con-

currently assumes that the surface is small in slope and height, and that it may be

considered a good conductor at the frequency of interest. As noted by Silva [43], this

second consideration is fundamental to the use of perturbation theory and prevents

the removal of any one of the assumptions.

The Walsh method begins with Maxwell’s equations and uses generalized functions

to model the region of interest and associated boundaries. Solutions to the scattered

field from a rough surface are found through sequential application of simplifying

assumptions. As constraints are imposed at different stages of the derivations, it is

possible to re-evaluate the analysis to relax some constraints or include additional

considerations. This fact has been exploited by numerous researchers as evident

by the example applications listed in Section 1.4 and is the primary motivation for

its use in this work. While the final form of many of the expressions derived in

this work employ the same assumptions used by Barrick [33], the use of the Walsh
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method provides opportunity to further generalize the results in subsequent research

endeavors.

1.4 Applications of Walsh’s Method

The easily adaptable nature of using generalized functions to model electromagnetic

scattering has led to Walsh’s method being employed in a variety of applications.

Gill [9], provides a detailed history of the development of first- and and second-order

RCS models of the ocean surface, while developing new expressions for bistatic cross

sections for a pulsed-dipole transmitting source. More recent work has produced RCS

models for radars installed on moving platforms [42,44], ionosphere clutter [41,45,46],

and surfaces with electrically large heights [43]. Shahidi, Silva, and Gill have also

proposed a number of novel methods using a change-of-variables in the electric field

[47] and RCS integrals [48–50] to extract ocean parameters from measured HF radar

in both the time- and frequency- domains respectively.

In addition to the fundamental scattering analyses, rough surface RCS models

developed using the Walsh method have found use in both industry and the scien-

tific community. Notably, Northern Radar Inc. was established to develop HFSWR

systems and ocean remote sensing software based on the results of Walsh’ work. The

benefits provided by the contributions of Northern Radar in partnership with Memo-

rial University were recognized by the Canadian government resulting in significant

funding to further develop the analysis software [51]. More recently, the cross sec-

tion models for ship-borne radars have been adapted by the scientific community in

studying and suppressing ocean returns for various radar configurations with some
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examples found in [52–54].

While the majority of work employing Walsh’s method is directed toward rough

surface scattering, there have been some applications to hard target scattering. The

earliest work modelled backscatter from sea-ice represented as a discontinuous mixed

path, [19, 55]. This work was further developed to model scattering from finite dis-

continuities, producing RCS models of icebergs [20, 56]. In a separate development,

Walsh and Gill [21] presented a solution to Equation (1.29) for scattering to third-

order from deterministic targets protruding from a conducting surface. The results

were used to approximate the RCS of a sphere and an exponential boss. In the case

of a sphere, the estimated RCS was found to be approximately 20% of the accepted

value, but the expression was proportional to the fourth power of the sphere’s ra-

dius as predicted by accepted theory. The discrepancy was attributed to the sphere’s

profile violating the small-slope assumption.

As the rough surface scattering analysis is the starting point for the deterministic

target RCS, the details will be given here. The general process outlined in Gill’s

doctoral thesis [9] will be followed, with a few modifications for brevity and to in-

clude some refinements from more recent works. Subsequently, the process used by

Walsh and Gill in developing RCS models for stationary deterministic targets will be

detailed. These two analyses form the basis for the research carried out in this work.

1.4.1 Radar Cross Section Models of an Ocean ‘Patch’

In the previous works deriving RCS models of the ocean surface from solutions to

(1.29), a formulaic method has been established. It begins with solving (1.29) us-
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ing the Neumann series method. The surface is then defined using a Fourier series

before the electric field components are simplified using asymptotic approximations.

A source waveform is then specified and time-domain field expressions are found us-

ing a temporal inverse Fourier transform. After introducing a time-variation to the

surface definition, the power spectral density (PSD) of a received radar signal for

each component is found as the Fourier transform of their autocorrelation functions.

Normalized per-unit-area RCSs are found by comparing the PSD with the standard

radar equation. An ocean patch may be defined from the cell resulting from the range

and angular resolutions of the radar and its RCS found as the product of the cell’s

area with the normalized RCS of the ocean.

An iterative (or Neumann Series) solution for the electric field scattered from a

rough surface may be found by writing Equation (1.29) as

E+
0n = Es + T1(E

+
0n)

= Es + T1(E
s + T1(E

+
0n))

= Es + T1(E
s) + T 2

1 (E
+
0n)

= Es + T1(E
s) + T 2

1 (E
s) + T 3

1 (E
+
0n)

= ...

(1.30)

or

E+
0n =

∞∑︂
m=0

T m
1 (Es) (1.31)

For a vertical dipole transmitter located at the origin, the zero-order solution to
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(1.31), (E+
0n) = T 0

1 (E
s) = Es, is shown to reduce to

Es = C0F (ρ)
ejkρ

2πρ
, (1.32)

where C0 is defined as

C0 =
I∆lk2

jωϵ0
, (1.33)

where I is the frequency-domain current on the dipole of length ∆l with radian

frequency ω. This solution may be recognized as the field propagated over a planar

surface impedance. Higher order terms may be derived by successive application of

the T1 operator, with each application of T1 corresponding to an individual scatter

from the rough surface. It may be noted that in Walsh’s original analysis [39], it is

established that the monostatic Doppler spectrum agrees with measured results and

the predictions of Barrick’s [34] when limiting the analysis to second-order. For this

reason, subsequent researchers employing the Walsh method have restricted attention

to first- and second-order theory and the same limiting assumption is applied to this

work.

Before writing out the first- and second-order expressions, it is convenient to

provide a description of the rough surface. In past works, it has been common to

first define the surface as time-invariant before introducing a temporal variation. For

brevity and because the analysis in this work involves the ocean surface, a time-

varying random rough surface description is directly introduced as

ξ(x, y, t) =
∑︂
K⃗,ω

PK⃗,ωe
jK⃗·ρ⃗ejωt , (1.34)
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where ρ⃗ is the position vector in polar coordinates, t refers to the time evolution of

the rough surface, and PK⃗,ω is the Fourier series coefficient associated with the surface

wave vector, K⃗, and frequency, ω. Assuming the ocean surface is homogeneous and

stationary [57], the stochastic nature of the surface may be introduced by assuming

the PK⃗,ω’s are normally distributed random variables with ensemble average

⟨︂
PK⃗,ωP

∗
K⃗

′
,ω′

⟩︂
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S(K⃗, ω)dK⃗dω, K⃗ = K⃗

′
, ω = ω′

0, otherwise ,

(1.35)

where S(K⃗, ω) is the power spectral density of the ocean surface. As the ocean surface

is considered zero-mean and real valued, the Fourier coefficients are seen to satisfy

P−K⃗,−ω = P ∗
K⃗,ω

. (1.36)

To account for second-order hydrodynamic effects, the Fourier coefficients in (1.34)

may be expanded to second-order as

PK⃗,ω = 1PK⃗,ω + 2PK⃗,ω (1.37)

with 1PK⃗,ω and 2PK⃗,ω associated with first- and second-order waves respectively. The

second-order coefficients are given by

2
PK⃗,ω =

∑︂
K⃗=K⃗1+K⃗2
ω=ω1ω2

HΓ 1PK⃗1,ω1 1PK⃗2,ω2
, (1.38)
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where HΓ is a hydrodynamic coupling coefficient and for deep waves may be found

from Hasselmann’s analysis [58] as

HΓ =
1

2

{︃
K1 +K2 +

g

ω1ω2

(K1K2 − K⃗1 · K⃗2)

(︃
gK + (ω1 + ω2)

2

gK − (ω1 + ω2)2

)︃}︃
. (1.39)

g is the usual gravitational acceleration.

A final consideration in the surface description is the relation between the fre-

quency and wavelength of the individual ocean wave components. This dispersion

relation for first-order gravity waves is

ω =
√︁

gK tanhKd (1.40)

where ω is the angular frequency of the surface component associated with the

wavenumber K that is traveling in water of depth, d. For sufficiently deep water

depths, (1.40) may be approximated as

ω =
√︁
gK . (1.41)

For a more detailed discussion on the specification of the surface in the context of

the ocean and HF radar, including second-order effects and wave-wave interactions,

the reader is referred to Chapter 3 of [9].

First-Order

A first-order scatter refers to the case where electromagnetic radiation from a radar

transmitter is scattered a single time from a first-order ocean wave. This scenario
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and its associated geometry are depicted in Figure 1.2. Electromagnetic radiation

from a transmitter, T , propagates along ρ1⃗ and is scattered by the rough surface at

(x1, y1) as indicated by the planar convolution operator. It then propagates along ρ2⃗

before reaching the receiver, R. The first-order electric field can be expressed as the

convolution

(︁
E+

0n

)︁
1
= T1(E

s) ∼ −jkC0

[︃
ρ̂ · ∇xy(ξ)F (ρ)

e−jkρ

2πρ

xy
∗ F (ρ)

e−jkρ

2πρ

]︃
∼ −jkC0

4π2

∫︂
x1

∫︂
y1

ρ̂1 · ∇x1,y1(ξ(x1y1))
F (ρ1)F (ρ2)

ρ1ρ2
e−jk(ρ1+ρ2)dx1dy1

(1.42)

where the asymptotic approximation, ∇xy[C0F (ρ) e
jkρ

2πρ
] ∼ −jkC0F (ρ) e

jkρ

2πρ
ρ̂, has been

used. This simplifying assumption is justified in Appendix A of [9], where the surface

gradient is found in polar coordinates as

∇xy[C0F (ρ)
ejkρ

2πρ
] =

∂

∂ρ

(︃
C0F (ρ)

ejkρ

2πρ

)︃
ρ̂

= −jkC0F (ρ)
ejkρ

2πρ
ρ̂+Xρ̂ ,

(1.43)

where X involves the derivatives of F (ρ) and 1
2πρ

. For large ρ, the terms in X are

argued to be much less than the leading term and may be ignored in an asymptotic

sense.

On substituting only first-order components of the ocean surface description,

(1.34), into (1.42), the convolution is converted to elliptical (µ, α) coordinates and the

α integral is evaluated using a stationary phase approximation. After introducing the

distance variable, ρs =
ρ1+ρ2

2
, a pulsed dipole source is specified and the time-domain
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Figure 1.2: First-order rough surface scatter.

electric field is found through a temporal inverse Fourier transform as

(︁
E+

0n

)︁
11
(t0, t) ≈

−jη0∆lI0k
2
0

(2π)
3
2

∑︂
K⃗,ω

1PK⃗,ω

√︁
K cosϕ0e

j ρ⃗
2
·K⃗ejk0∆ρsejωt

· F (ρ01, ω0)F (ρ02, ω0)√︂
ρ0s[ρ20s − (ρ

2
)2]

e−j π
4 ejρ0sK cosϕ0∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
,

(1.44)

where Sa[·] is the sampling or sin(x)
x

function, I0 is the amplitude of the excitation cur-

rent, ω0 is the centre frequency of the transmitted signal, and k0 is its corresponding

wavenumber. The first temporal variable, t0, is understood as the total delay from

transmit to receive and establishes a specific scattering ellipse. The second temporal

variable, t, corresponds to the time evolution of the surface as previously discussed.

Additionally, ∆ρs =
cτ0
2

is the bistatic patch width for a pulse radar with pulse width,

τ0, and c is the speed of light in free space. The 0 inserted in the subscripts of the

quantities ρ01, ρ02, ρ0s, ϕ0 implies the variables are fixed to their central values for

a specific patch of ocean. Lastly, the Sommerfeld attenuation functions have been
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modified to show they are evaluated for the constant centre frequency. It may be

noted only surface components with vectors directed towards the outward pointing

normal of the scattering ellipse contribute to the field in (1.44). Furthermore, the

ellipse normal at this point is found to bisect the angle between the transmitter and

receiver as viewed from the scattering point.

The first-order scattered electric field, (1.44), describes a stationary random pro-

cess; thus its PSD may be found as the Fourier transform of its autocorrelation

function. A convenient normalized form is introduced as

R(τ) =
Ar

2η0
< E+

0n(t0, t+ τ)E+∗
0n (t0, t) > , (1.45)

where η0 is the intrinsic impedance of free space and t0 is treated as a constant when

evaluating the autocorrelation function for returns from a specific scattering ellipse.

After applying a temporal Fourier transform to the autocorrelation of (1.44), the

resulting PSD is compared with the radar equation to produce an equivalent RCS

normalized per-unit area. To limit consideration to first-order effects, only the first-

order component of the ocean wave spectrum is retained. The resulting RCS is

σ11(ωd) = 24πk2
0

∑︂
m=±1

S1(mK⃗)
K

5
2 cosϕ0√

g
Sa2

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
, (1.46)

where S1(mK⃗) is the first-order component of the ocean wave spectrum, with positive

and negative m corresponding to receding waves and advancing waves respectively.

The square of the sampling function in (1.46) results in two major peaks in the first-

order ocean cross section. Using the dispersion relation given in (1.41), these can be
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shown to occur for frequencies of

ωd = ±
√︁

2gk0 cosϕ = ±ωB = ±2πfB , (1.47)

where the subscript B indicates these are referred to as Bragg frequencies [34].

Second-Order

A second-order scatter occurs when radiation from the transmitter is scattered a single

time from a second-order ocean wave, or when the radiation is scattered twice from

two distinct first-order ocean waves. The former case is generally referred to as the

hydrodynamic contribution and a corresponding RCS expression may be derived by

including the second-order ocean wave spectrum in (1.46). The latter case is referred

to as the electromagnetic contribution. A derivation of a second-order electromagnetic

scatter will first be detailed before including the hydrodynamic contribution in a total

second-order RCS model.

Using (1.30) the second-order field that results from two electromagnetic scatters

is (︁
E+

0n

)︁
2
= T 2

1 {Es} = T1{T1{Es}} (1.48)

which from (1.42) can be written as

(︁
E+

0n

)︁
2
= −jkC0

{︃
∇ξ · ∇xy

[︃(︃
ρ̂ · ∇ξF (ρ)

e−jkρ

2πρ

)︃
xy
∗ F (ρ)

e−jkρ

2πρ

]︃
xy
∗ F (ρ)

e−jkρ

2πρ

}︃
.

(1.49)

Using the differentiation and associative properties of convolutions, Gill [9] shows
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(1.49) may also be expressed

(︁
E+

0n

)︁
2
= − k2C0

(2π)3

{︃[︃
ρ̂ · ∇ξF (ρ)

e−jkρ

2πρ

]︃
1

xy
∗
[︃
ρ̂ · ∇ξF (ρ)

e−jkρ

2πρ

]︃
2

xy
∗
[︃
F (ρ)

e−jkρ

2πρ

]︃
3

}︃
.

(1.50)

A physical interpretation of this expression can be made with the aid of Figure 1.3.

The [ ]1 term describes propagation from the transmitter, T , along ρ⃗1, and scattering

at the first surface point, (x1, y1). Similarly, the propagation along ρ⃗12 and scatter

at (x2, y2) is accounted for in the [ ]2 term. Finally, propagation along ρ⃗20 from the

second scatter point to the receiver, R, is described by [ ]3

*

R x

y

T
(0,0)

** *

Figure 1.3: Second-order rough surface scatter.

In his doctoral thesis, Gill [9] applies a stationary phase analysis of the first

convolution in (1.50) for a bistatic geometry and finds three significant contributions

to the convolution integral. Referring to Figure 1.4, a physical meaning may be

assigned to each of these contributions.

The first case is referred to as patch scatter when considering pulsed radar ap-

plications. Under this condition, ρ1 = ρ2, and both scatters occur at the ‘same’,

location. This geometry is depicted in Figure 1.4a.

For the second case, ρ1 = 0 and ρ12 = ρ2. Thus, the first scatter occurs at the
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(a) Patch scatter.

R x

y

T
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 = 

*

(b) Transmitter foot scatter.

*

R x

y

T
(0,0)

** *

(c) Off-patch scatter.

Figure 1.4: Second-order scattering geometries.

transmitter, and the second occurs at a remote location (x2, y2) on the rough surface.

This phenomenon has been referred to as foot scatter, specifically at the transmitter,

and is depicted in Figure 1.4b. Gill also performs a ‘backwards’ analysis and finds

that foot scatter can also occur at the receiver.

The last contribution is the general case and is referred to as off-patch scatter.

In this case, shown in Figure 1.4c, both scatter points are remote from both the

transmitter and receiver and must be at separate locations.

When considering shore-based HF radars, previous works [9, 59] have found that

foot-scatter and off-patch scatter are generally negligible in comparison to patch scat-

ter. For this reason, only the patch scatter case is considered in this work. After eval-

uating both convolutions in (1.50) for the patch-scatter case, a pulsed transmitting

dipole is imposed as in the first-order analysis and an expression for the second-order

electric field for patch scatter is derived. If only first-order components of the surface,
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ξ, are considered, the patch scattered field is found as

(︁
E+

0n

)︁
2ep

(t0, t) ≈
−jη0∆lI0k

2
0

(2π)
3
2

∑︂
K⃗1,ω1

∑︂
K⃗2,ω2

1PK⃗1,ω1 1PK⃗2,ω2
ej(ω1+ω2)t

√︁
K cosϕ0

· EΓP (K⃗1, K⃗2)e
j ρ⃗
2
·K⃗ejk0∆ρs

F (ρ01, ω0)F (ρ02, ω0)e
−j π

4√︂
ρ0s[ρ20s − (ρ

2
)2]

ejρ0sK cosϕ0

·∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
,

(1.51)

where K⃗1, K⃗2 and their associated quantities refer to the surface descriptions at the

first and second scattering points respectively, and EΓP is defined as the electromag-

netic coupling coefficient. For the patch scatter case, the vector sum of K⃗1 and K⃗2

must now be in the direction of the outward ellipse normal evaluated at the scat-

tering point. It may be noted that in going from (1.50) to (1.51), Gill [9] uses a

two-dimensional stationary phase approximation in elliptical coordinates to evaluate

the first convolution. An updated analysis is derived in [44] for a radar installed on a

moving platform. This refined analysis uses polar coordinates and a Sommerfeld-type

integral in azimuth followed by a one-dimensional stationary phase approximation

in the radial coordinate. When platform motion is removed, the updated analysis

produces an expression equivalent to (1.51), with a new electromagnetic coupling co-

efficient that behaves similarly as the original expression derived in [9], but does not

exhibit the non-physical singularities that were manually omitted in the computations

of that work. The updated electromagnetic coupling coefficient, EΓP , is used in this

work and is given by

EΓP =
jk0

K cosϕ0

(K⃗1 · ρ̂2)(K̂s · K⃗2)G[Ks(ρ̂2, K⃗1)] , (1.52)
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where

K⃗s(Ks, θs) = kρ̂2 − K⃗1 (1.53)

and

G[Ks(ρ̂2, K⃗1)] =
1

Ks

[︄
1− j

k(1 + ∆)√︁
K2

s − k2 + jk∆

]︄
, (1.54)

with ∆ being the surface impedance of the ocean. While the surface impedance is

in general a frequency-dependent parameter, it is frequently considered constant over

the narrow bandwidths of HF radar signals.

Before computing a second-order RCS for patch-scatter, a hydrodynamic contri-

bution to the second-order electric field is found by substituting the second-order

component of the ocean surface description, (1.38), for the first-order surface compo-

nent in the first-order electric field (1.44). The resulting scattered field expression is

denoted (E+
0n)12, and corresponds to a single electromagnetic scatter from a second-

order ocean wave. It is given by

(︁
E+

0n

)︁
12
(t0, t) ≈

−jη0∆lI0k
2
0

(2π)
3
2

∑︂
K⃗1,ω1

∑︂
K⃗2,ω2

1PK⃗1,ω1 1PK⃗2,ω2
ej(ω1+ω2)t

√︁
K cosϕ0

· HΓP (K⃗1, K⃗2)e
j ρ⃗
2
·K⃗ejk0∆ρs

F (ρ01, ω0)F (ρ02, ω0)e
−j π

4√︂
ρ0s[ρ20s − (ρ

2
)2]

ejρ0sK cosϕ0

·∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
.

(1.55)

The sum of (1.51) and (1.55) is considered the total second-order patch scattered
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field and is given by

(︁
E+

0n

)︁
2P

(t0, t) ≈
−jη0∆lI0k

2
0

(2π)
3
2

∑︂
K⃗1,ω1

∑︂
K⃗2,ω2

1PK⃗1,ω1 1PK⃗2,ω2
ej(ω1+ω2)t

√︁
K cosϕ0

· ΓP (K⃗1, K⃗2)e
j ρ⃗
2
·K⃗ejk0∆ρs

F (ρ01, ω0)F (ρ02, ω0)e
−j π

4√︂
ρ0s[ρ20s − (ρ

2
)2]

ejρ0sK cosϕ0

·∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
,

(1.56)

where

ΓP = HΓP + EΓP . (1.57)

Following the same approach that produced the first-order RCS from its corresponding

electric field expression, a second-order RCS for patch scatter is derived as

σ2P (ωd) =23πk2
0∆ρs

∑︂
m1=±1

∑︂
m2=±1

∫︂ ∞

0

∫︂ π

−π

{︃
S1(m1K⃗1)S1(m2K⃗2)

· |SΓP (K⃗1, K⃗2)|2K2 cosϕ0Sa
2

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
· δ
(︂
ωd +m1

√︁
gK1 +m2

√︁
gK2

)︂
K1

}︃
dK1dθK⃗1

dK ,

(1.58)

where SΓP (K⃗1, K⃗2) is a symmetrical form of the combined coupling coefficient, ΓP ,

and is defined as

SΓP (K⃗1, K⃗2) =
1

2
[ΓP (K⃗1, K⃗2) + SΓP (K⃗2, K⃗1)] . (1.59)
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1.4.2 Radar Cross Section Models of Deterministic Surface

Targets

In [21], Walsh and Gill propose a method of adapting electric field equations govern-

ing scatter from a rough surface described as a Fourier series to model scattering from

finite deterministic surface targets. The method expresses the target as an inverse

Fourier transform which is substituted for the Fourier coefficients of the surface de-

scription. The Fourier summation over discrete surface components is then replaced

with an integral over continuous surface components. The resulting expressions are

simplified, and RCS models derived. In this work, the method is further extended

to account for target motion as well as the presence of the surrounding ocean; thus,

relevant details of the original work will be described here.

The method begins by describing the surface target as a height profile, ξt(x, y).

With reference to Figure 1.5, ξt(x, y) is understood to be a function of x and y whose

value is a height above the z = 0 plane and evaluates to zero everywhere outside the

small, bounded region R. The two-dimensional Fourier transform of ξt(x, y) is found

as

Ξt(K⃗) =

∫︂
x

∫︂
y

ξt(x, y)e
−jK⃗·ρ⃗dxdy. (1.60)
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Figure 1.5: Discrete target definition geometry.

Using the change of variables

x′ = x− xt, y′ = y − yt , (1.61)

an origin-shifted two-dimensional Fourier Transform, Ξt0(K⃗), is then introduced as

Ξt0(K⃗) =

∫︂
x′

∫︂
y′
ξt(x

′ + xt, y
′ + yt)e

−jK⃗·ρ⃗ ′
dx′dy′

= ejK⃗·ρ⃗t
∫︂
x

∫︂
y

ξt(x, y)e
−jK⃗·ρ⃗dxdy ,

(1.62)

where

ρ⃗ = xx̂+ yŷ , ρ⃗ ′ = x′x̂+ y′ŷ, (1.63)

and

ρ⃗t = ρ⃗− ρ⃗ ′ = xtx̂+ ytŷ. (1.64)

The vector, ρ⃗t, represents an arbitrary fixed location in R and is used as the origin
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for the Fourier transform. From (1.60) and (1.62), Ξt(K⃗) can also be expressed as

Ξt(K⃗) = e−jK⃗·ρ⃗tΞt0(K⃗) , (1.65)

such that ξt(x, y) may be written as the inverse Fourier transform

ξt(x, y) =
1

(2π)2

∫︂
K⃗

e−jK⃗·ρ⃗tΞt0(K⃗)ejK⃗·ρ⃗dK⃗ . (1.66)

In [21], monostatic scattered electric field equations for a target described by (1.66)

are found by modifying monostatic, time-invariant forms of the first- and second-

order rough surface scattering fields, (1.44) and (1.51). For the first-order field, this

modification takes the form of a single substitution,

PK⃗ → e−jK⃗·ρ⃗tΞt0(K⃗)
dK⃗

(2π)2
, (1.67)

and conversion of the Fourier series to a Fourier integral. Similarly, the second-order

substitution is

PK⃗1
→ e−jK⃗1·ρ⃗tΞt0(K⃗1)

dK⃗1

(2π)2

PK⃗2
→ e−jK⃗2·ρ⃗tΞt0(K⃗2)

dK⃗2

(2π)2
.

(1.68)

Surface target radar cross section expressions are derived to second-order by com-

paring the magnitude squared of the scattered electric fields with the standard radar

equation. The resulting total RCS is found as

σ =

[︃
16k2

0

π
|P|2

]︃
, (1.69)
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where P is given by

P = Ξt0(2k0, θ1) +
1

2(2π)2

∫︂
K⃗

Ξt0(k0ρ̂1 + K⃗)

· Ξt0(k0ρ̂1 − K⃗)
|K⃗ × ρ̂t|2√︁
K2 − k2

0

dK⃗ .

(1.70)

where θ1 is the angle of a vector, ρ1⃗, pointing from the radar to the scattering point

and ρ̂1 is the corresponding unit vector. In their analysis, Walsh and Gill [21] set the

target origin to the nominal scattering point location, i.e. ρ⃗t = ρ⃗1.

1.5 Scope of the Thesis

This thesis presents a theoretical analysis of the scattered electric field from deter-

ministic targets embedded in time-varying random rough surfaces. As discussed in

Section 1.4, the foundation of the analysis is formed from two applications of the gen-

eral scattering techniques developed and extended by Walsh and colleagues. These

applications both consider the scattering of high frequency electromagnetic radiation

but treat the cases of ocean scatter and finite, deterministic surface targets indepen-

dently. By combining and extending aspects of each application, radar cross section

models are derived for bistatic HFSWR targets that account for the target geometry

and motion as well as the presence of the nearby surrounding ocean.

In Chapter 2, bistatic scattered electric field expressions are derived to second-

order for a moving surface target embedded in a time-varying random rough surface.

These expressions include first- and second-order components involving scattering

solely from the deterministic target, and an additional target-ocean second-order

38



expression corresponding to an electromagnetic scatter from the target followed by a

secondary scatter from a point on the surface in close proximity to the target. The

starting point for the analysis is the bistatic scattered electric fields from a rough

surface after a pulsed dipole source has been imposed. The surface target definition

is modified to allow for arbitrary motion. For scattering from the surface target

only, the target substitutions are applied as described in Section 1.4.2. To account

for the target-ocean scatter, only terms related to the first scattering point in the

second-order rough surface scattered field are replaced with their deterministic target

equivalents. The electric fields derived in this chapter are simplified to forms suitable

for deriving RCS expressions.

Chapter 3 follows the established process in finding RCS models from time-varying

electric field expressions. First, the target and target-ocean field components derived

in this work are added to existing expressions for the scattered field from the ocean

itself to form the total scattered electric field from an ocean patch containing a surface

target. The autocorrelation function of the total field is then found through ensemble

averaging and shown to reduce to the sum of the autocorrelation functions of each

field component treated separately. Here, the properties of a zero-mean stationary

Gaussian surface are imposed to simplify the autocorrelation functions before power

spectral densities are found via a temporal Fourier transform. Lastly, RCS models

are derived through a comparison of the spectral densities with the standard radar

range equation. In this chapter, the motion of the surface target remains arbitrary

to allow for more general applications of the results.

Chapter 4 demonstrates the utility of the derived RCS models through an ap-

plication to a marine vessel moving with constant velocity. The chapter begins by
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simplifying the general motion expressions for the case of uniform linear motion. For

the first-order target RCS, the resulting expression is found to contain the expected

Doppler shift for a bistatic target. A surface target profile representative of a simpli-

fied Visby-class corvette hull is then introduced as an example target. The Visby-class

features a tumblehome hull, which narrows as the height above the ocean surface in-

creases. A radar system model is used to predict the total Doppler spectrum of the

received signal from an ocean patch containing the target using the RCS models de-

rived in this work and existing RCS models of the ocean surface. Doppler spectra

are computed for varying radar geometries, sea-states, and target velocities and com-

pared with the background sea-clutter in order to facilitate observations regarding

the detectability of both the direct target scatter as well as the target-ocean scatter.

Chapter 5 contains a summary of the research completed in this work and proposes

directions for future work.
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Chapter 2

Electric Field Equations for a

Deterministic Surface Target

Embedded in a Time-Varying

Random Rough Surface

2.1 Introduction

A method to obtain the scattered electric field from a non-moving deterministic sur-

face target using the scattered electric field from a time-invariant rough surface rep-

resented as a Fourier series was presented by Walsh and Gill in [21]. In that work,

the starting point was the first and second-order patch scatter expressions for a time-

invariant rough surface where only a monostatic radar geometry was considered. In

this chapter, the method will be extended to allow the surface target to move be-

tween radar acquisitions and applied to the bistatic expressions presented by Gill and

Walsh [18] for the scattered electric field from a time-varying surface. Furthermore,
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an additional second-order target-ocean component (and its converse ocean-target

component) will be found accounting for a secondary scatter from the ocean surface

following a scatter from a target (or vice-versa).

In the derivations of both the rough surface scattering equations and their adapta-

tion for deterministic surface target scattering, the authors in [21] employed a number

of simplifying assumptions with the intention to apply the results to HF radar. As the

analysis carried out in this chapter builds upon these derivations, the results will in-

herently rely on these same assumptions. As such, it is appropriate to summarize and

comment on their implications in the context of surface targets before carrying out

the analysis. The first key assumption is that the rough surface, and therefore target,

is a good conductor. For marine vessels with metallic hulls, this is clearly suitable.

Secondly, the rough surface is constrained to be electrically small in height. When

modelling the RCS of a small hemisphere, Walsh and Gill [21] found their results

consistent with Rayleigh theory, where the radius (or equivalently height for surface

targets) is less than one tenth of a wavelength. At the lower end of the HF band,

where many surveillance radars operate, the operating wavelength is 100 m; thus

targets with heights up to 10 m may be modelled without violating this constraint.

Thirdly, the slope of the rough surface or target must also be small. While this may

prevent the models from perfectly modelling all features of a ship hull, Walsh and Gill

noted that when neglecting the larger slopes of the hemisphere, the RCS contained

the expected geometry dependence with only a constant proportional error. Lastly,

the target should be able to be described as an inverse Fourier transform, meaning the

height of the target should be a function of position in a flat plane. The implications

of the last two assumptions related to the target’s shape will be further addressed in
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an application in Chapter 4.

2.2 First-Order Scattered Field from a Determin-

istic Surface Target

The first-order analysis begins with equation (1.44), the electric field equation for

first-order scatter from a time-varying rough surface for a pulsed dipole transmitting

source. Repeating it here for convenience, the normal component of the scattered

field is

(︁
E+

0n

)︁
1
(t0, t) ≈

−jη0∆lI0k
2
0

(2π)
3
2

∑︂
K⃗,ω

PK⃗,ω

√︁
K cosϕ0e

j ρ⃗
2
·K⃗ejk0∆ρsejωt

· F (ρ01, ω0)F (ρ02, ω0)√︂
ρ0s[ρ20s − (ρ

2
)2]

e−j π
4 ejρ0sK cosϕ0∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
,

(2.1)

where the surface is understood to be described by the time-varying Fourier series

ξ(x, y, t) =
∑︂
K⃗,ω

PK⃗,ωe
jK⃗·ρ⃗ejωt . (2.2)

To allow for target motion, the origin-shifted Fourier transform of the target profile,

(1.62), is modified to vary with time, t, by re-writing it as

Ξt0(K⃗) =

∫︂
x′

∫︂
y′
ξt(x

′ + xt(t), y
′ + yt(t))e

−jK⃗·ρ⃗ ′
dx′dy′

= ejK⃗·ρ⃗t(t)
∫︂
x

∫︂
y

ξt(x, y)e
−jK⃗·ρ⃗dxdy ,

(2.3)
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where ρ⃗t(t) = xt(t)x̂ + yt(t)ŷ is now a function of a temporal variable, t. Similar

to the definition of the time-varying rough surface, (2.2), the time required for an

appreciable change in target position is much greater than the delay between a radar

transmission and reception, t0. Thus, the target location may be assumed fixed during

a single radar measurement. With this in mind, the ‘surface’ may be described as the

inverse Fourier transform of (2.3), that is

ξ(x, y, t) =
1

(2π)2

∫︂
K⃗

e−jK⃗·ρ⃗t(t)Ξt0(K⃗)ejK⃗·ρ⃗dK⃗ . (2.4)

Comparing (2.4) and (2.2) in the context of (1.67), it is seen that the appropriate

transformation to convert the summation over random surface components in (2.1)

to a deterministic integral is

PK⃗ωe
jωt → e−jK⃗·ρ⃗t(t)Ξt0(K⃗)

dK⃗

(2π)2
. (2.5)

Applying this transformation to (2.1), yields the first-order scattered electric field

from a moving surface target. The result, denoted (E+
0n)1t, is

(︁
E+

0n

)︁
1t
(t0, t) ≈

−jη0∆lI0k
2
0

(2π)
7
2

∫︂
K⃗

e−jK⃗·ρ⃗t(t)Ξt0(K⃗)
√︁

K cosϕ0

· ej
ρ⃗
2
·K⃗ejρ0sK cosϕ0∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
· F (ρ01, ω0)F (ρ02, ω0)e

−j π
4√︂

ρ0s[ρ20s − (ρ
2
)2]

ejk0∆ρsdK⃗ .

(2.6)
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The integral in (2.6) may be simplified by first expressing it in polar form

(︁
E+

0n

)︁
1t
(t0, t) ≈

−jη0∆lI0k
2
0F (ρ01, ω0)F (ρ02, ω0)e

−j π
4

(2π)
7
2

√︂
ρ0s[ρ20s − (ρ

2
)2]

ejk0∆ρs

·
∫︂
K

ejρ0sK cosϕ0K
√︁

K cosϕ0∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
·
∫︂
θK

e−jK⃗·ρ⃗tej
ρ⃗
2
·K⃗Ξt0(K⃗)dθKdK .

(2.7)

Next, ρ⃗t(t) is expressed as the sum of two components, one constant and one time-

varying

ρ⃗t(t) = ρ⃗0t + δρ⃗t(t) , (2.8)

and a new vector, ρ⃗ ′
0t is defined as

ρ⃗ ′
0t = ρ⃗0t −

ρ⃗

2
. (2.9)

Using (2.8) and (2.9) in (2.7) , allows the θK integral to be written as

IθK =

∫︂
θK

e−jK⃗·ρ⃗tej
ρ⃗
2
·K⃗Ξt0(K⃗)dθK

=

∫︂
θK

e−jK⃗·δρ⃗t(t)e−jK⃗·ρ⃗ ′
0tΞt0(K⃗)dθK

=

∫︂
θK

e−jK⃗·δρ⃗t(t)Ξt0(K⃗)e
−jKρ′0t cos(θK−θρ′0t

)
dθK

(2.10)

With the intention of applying a stationary phase approximation to (2.10), it is

first noted that the sampling function in (2.7) will limit contributions to values of

K ≈ 2k0 cosϕ0 and that in the HF band, k0 will be on the order 10−2 to 10−1m−1.

Furthermore, targets of interest to coastal HF radar operators are likely to be 10’s to
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100’s of kilometers from either transmitter, receiver, or the centre point on the line

between them. Thus, the product Kρ′0t may be assumed large, and the application

of the stationary phase method is appropriate. This assumption requires that the

time-varying component of the target origin, δρ⃗t(t), is small with respect to both ρ⃗0t

and ρ⃗ ′
0t or that the total target displacement over multiple radar acquisitions is small

relative to the distances to the transmitter, receiver, or the centre-point of the line

between them.

As a first step in applying the approximation, the stationary points are found as

the solution to

d cos(θK − θρ′0t)

dθK
= 0 . (2.11)

Solving (2.11) yields the following condition

θK = θρ′0t , θρ′0t + π . (2.12)

Recalling that only surface components with K⃗ directed towards the outward pointing

normal of the scattering ellipse contribute to (2.1) and by extension (2.7), the solution

in (2.12) is valid only if θρ′0t = θN , where θN is the angle the normal of the ellipse makes

with the x axis. Thus, only the first stationary point found in (2.12) is meaningful.

With this in mind, the θK integral may be approximated as

IθK ≈
√
2πΞt0(K⃗)e−jK⃗·δρ⃗t(t) e−jρ0t⃗ ′·K⃗√︂

−jK⃗ · ρ0t⃗
′

⃓⃓⃓⃓
⃓
θK=θρ′0t

≈
√
2πΞt0(K⃗)e−jK⃗·δρ⃗t(t) e

−jKρ′0t√︁
Kρ′0t

ej
π
4 .

(2.13)
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Substituting (2.13) into the first-order field expression, (2.7), yields

(︁
E+

0n

)︁
1t
(t0, t) ≈

−jη0∆lI0k
2
0F (ρ01, ω0)F (ρ02, ω0)

(2π)3
√︂
ρ′0tρ0s[ρ

2
0s − (ρ

2
)2]

ejk0∆ρs

·
∫︂
K

ejρ0sK cosϕ0e−jKρ′0te−jK⃗·δρ⃗t(t)K
√︁

cosϕ0

· Ξt0(K⃗)∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
dK .

(2.14)

To evaluate the K integration, the radar patch width, ∆ρs, is assumed sufficiently

large such that

∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
→ 2π cosϕ0δ(K − 2k0 cosϕ0) , (2.15)

where δ(·) is the familiar Dirac delta function. The monostatic equivalent of (2.15)

was used by Walsh and Gill [21] in developing cross sections of surface targets, while

Gill [9] employed the assumption as written in computing second-order ocean cross

sections. When (2.15) is applied to (2.14), the K integral yields to the Dirac delta

function and the first-order scattered electric field from a moving target reduces to

(︁
E+

0n

)︁
1t
(t0, t) ≈

−j2η0∆lI0k
3
0F (ρ01, ω0)F (ρ02, ω0)

(2π)2
√︂

ρ′0tρ0s[ρ
2
0s − (ρ

2
)2]

√︁
cos5 ϕ0Ξt0(K⃗)

· ejk0∆ρsejρ0sK cosϕ0e−jKρ′0te−jK⃗·δρ⃗t(t) ,

(2.16)

where K is now understood to be equal to 2k0 cosϕ0. As a last step in the sim-

plification of the first-order scattered field, the distance, ρ′0t, will be assumed to be

approximately equal to the radius of curvature of the scattering ellipse at centre of the

scattering patch, ρ0c. When combined with the stationary phase condition, (2.12),
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this suggests

ρ⃗ ′
0t = ρ0cN̂ , (2.17)

where N̂ is the unit vector of the outward pointing normal of the scattering ellipse.

If the central scattering point (x01, y01) is located at the target reference location

(xt, yt), (2.17) is only satisfied for monostatic radar geometries. While this assumption

provides a convenient ‘special case’, Appendix B shows equivalent general bistatic

expressions result for a continuous wave source and an arbitrarily located rectangular

scattering patch. On noting that the radius of curvature can be expressed as found

in [9] as

ρ0c =
(ρ01ρ02)

3
2

ρ0s

√︂
ρ20s −

(︁
ρ
2

)︁2 , (2.18)

using (2.17) in (2.16) results in

(︁
E+

0n

)︁
1t
(t0, t) ≈

−j2η0∆lI0k
3
0F (ρ01, ω0)F (ρ02, ω0)

(2π)2ρ01ρ02
cos2 ϕ0Ξt0(K⃗)

· ejk0∆ρsejρ0sK cosϕ0e−jKρ′0ce−jK⃗·δρ⃗t(t) ,

(2.19)

where the identity ρ20s − (ρ
2
)2 = ρ01ρ02 cos

2 ϕ0 has been used.

2.3 Second-Order Scattered Field from a Deter-

ministic Surface Target

A second-order scatter from a deterministic surface target refers to the case where

electromagnetic radiation from a radar transmitter experiences two scatters before

being measured at a receiver. It follows that the second-order expression for patch
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scatter from a rough surface, (1.51), is a suitable starting point for the analysis. This

expression, repeated here for completeness, is given by

(︁
E+

0n

)︁
2ep

(t0, t) ≈
−jη0∆lI0k

2
0

(2π)
3
2

∑︂
K⃗1,ω1

∑︂
K⃗2,ω2

PK⃗1,ω1
PK⃗2,ω2

ej(ω1+ω2)t
√︁
K cosϕ0 EΓP (K⃗1, K⃗2)

· ej
ρ⃗
2
·K⃗ejk0∆ρs

F (ρ01, ω0)F (ρ02, ω0)e
−j π

4√︂
ρ0s[ρ20s − (ρ

2
)2]

ejρ0sK cosϕ0

·∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
.

(2.20)

To produce second-order cross section expressions for surface targets from (2.20),

the transformation defined in (2.5) must be applied to terms corresponding to the

first and second scattering points separately. Here, that takes the form of

PK⃗1,ω1
ejω1t → e−jK⃗1·ρ⃗t(t)Ξt0(K⃗1)

dK⃗1

(2π)2

PK⃗2,ω2
ejω2t → e−jK⃗2·ρ⃗t(t)Ξt0(K⃗2)

dK⃗2

(2π)2
.

(2.21)

Applying (2.21) to (2.20) gives

(︁
E+

0n

)︁
2t
(t0, t) ≈

−jη0∆lI0k
2
0

(2π)
11
2

∫︂
K⃗1

∫︂
K⃗2

e−jK⃗1·ρ⃗t(t)Ξt0(K⃗1)e
−jK⃗2·ρ⃗t(t)Ξt0(K⃗2)

·
√︁

K cosϕ0 EΓP (K⃗1, K⃗2)
F (ρ01, ω0)F (ρ02, ω0)e

−j π
4√︂

ρ0s[ρ20s − (ρ
2
)2]

· ej
ρ⃗
2
·K⃗ejk0∆ρsejρ0sK cosϕ0

·∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
dK⃗1dK⃗2 ,

(2.22)

where the subscript 2t indicates a second-order electromagnetic scatter from a surface

target. Using the fact that K⃗ = K⃗1 + K⃗2, the integration over K⃗2 may be changed
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to an integration over K⃗. After expressing the resulting K⃗ integration in polar form,

the second-order target scattered electric field is

(︁
E+

0n

)︁
2t
(t0, t) ≈

−jη0∆lI0k
2
0

(2π)
11
2

F (ρ01, ω0)F (ρ02, ω0)e
−j π

4√︂
ρ0s[ρ20s − (ρ

2
)2]

ejk0∆ρs

·
∫︂
K1⃗

Ξt0(K⃗1)

∫︂
K

K
√︁
K cosϕ0e

jρ0sK cosϕ0

·∆ρsSa

[︃
ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃∫︂
θK

EΓP (K⃗1, K⃗ − K⃗1)

· Ξt0(K⃗ − K⃗1)e
−jK⃗·[ρ⃗t(t)−

ρ
2
]dθKdKdK⃗1 .

(2.23)

Similar to the first-order target scatter analysis, only the θK integration will be con-

sidered. Using the definitions (2.8) and (2.9), IθK , is

IθK =

∫︂
θK

EΓP (K⃗1, K⃗ − K⃗1)Ξt0(K⃗ − K⃗1)e
−jK⃗·[ρ⃗t(t)−

ρ
2
]dθK

=

∫︂
θK

EΓP (K⃗1, K⃗ − K⃗1)e
−jK⃗·δρ⃗t(t)e−jK⃗·ρ⃗ ′

0tΞt0(K⃗ − K⃗1)dθK

=

∫︂
θK

EΓP (K⃗1, K⃗ − K⃗1)e
−jK⃗·δρ⃗t(t)Ξt0(K⃗ − K⃗1)e

−jKρ′0t cos(θK−θρ′0t
)
dθK .

(2.24)

The exponential in (2.24) is exactly the same as the exponential seen in (2.10). Thus,

using the same arguments in Section 2.2, a stationary phase approximation of the in-

tegral is deemed appropriate. Furthermore, the stationary analysis follows the results

of (2.13), allowing (2.24) to be re-written as

IθK ≈
√
2π EΓP (K⃗1, K⃗ − K⃗1)Ξt0(K⃗ − K⃗1)e

−jK⃗·δρ⃗t(t) e
−jKρ′0t√︁
Kρ′0t

ej
π
4 , (2.25)

where it is understood that θρ′0t = θK = θN . On substituting the result of (2.25) into
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(2.23), the second-order scattered field from a surface target becomes

(︁
E+

0n

)︁
2t
(t0, t) ≈

−jη0∆lI0k
2
0

(2π)5
F (ρ01, ω0)F (ρ02, ω0)√︂

ρ′0tρ0s[ρ
2
0s − (ρ

2
)2]

ejk0∆ρs

·
∫︂
K1⃗

Ξt0(K⃗1)

∫︂
K

K
√︁
cosϕ0e

jρ0sK cosϕ0∆ρsSa

[︃
ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
· EΓP (K⃗1, K⃗ − K⃗1)Ξt0(K⃗ − K⃗1)e

−jK⃗·δρ⃗t(t)e−jKρ′0tdKdK⃗1 .

(2.26)

Using the result of the long pulse assumption from (2.15), the sampling function

in (2.26) may be replaced with a Dirac delta function and the K integral can be

immediately evaluated to give

(︁
E+

0n

)︁
2t
(t0, t) ≈

−j2η0∆lI0k
3
0

(2π)4
F (ρ01, ω0)F (ρ02, ω0)√︂

ρ′0tρ0s[ρ
2
0s − (ρ

2
)2]

ejk0∆ρs cos5/2 ϕ0

·
∫︂
K1⃗

Ξt0(K⃗1)Ξt0(K⃗ − K⃗1)e
jρ0sK cosϕ0

· EΓP (K⃗1, K⃗ − K⃗1)e
−jK⃗·δρ⃗t(t)e−jKρ′0tdK⃗1 ,

(2.27)

where it is now understood that K⃗ = 2k0 cosϕ0N̂ . If it is agreed to set ρ′0t ≈ ρ0c as

was done for the first-order expressions, (2.27) is further reduced to

(︁
E+

0n

)︁
2t
(t0, t) ≈

−j2η0∆lI0k
3
0

(2π)4
F (ρ01, ω0)F (ρ02, ω0)

ρ01ρ02
cos2 ϕ0

· ejk0∆ρsejρ0sK cosϕ0e−jK⃗·δρ⃗t(t)e−jKρ0c

·
∫︂
K1⃗

Ξt0(K⃗1)Ξt0(K⃗ − K⃗1) EΓP (K⃗1, K⃗ − K⃗1)dK⃗1 ,

(2.28)

where the identity ρ20s − (ρ
2
)2 = ρ01ρ02 cos

2 ϕ0 has been used.

The K⃗1 integration in (2.28) can be re-written following the additional simplifi-
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cation steps taken in [21] by first noting K⃗2 = K⃗ − K⃗1, giving

IK⃗1
=

∫︂
K1⃗

Ξt(K⃗1)Ξt(K⃗ − K⃗1) EΓP (K⃗1, K⃗ − K⃗1)dK⃗1

=

∫︂
K⃗2

Ξt0(K⃗ − K⃗2)Ξt0(K⃗2) EΓP (K⃗ − K⃗2, K⃗2)dK⃗2

=

∫︂
K′⃗

Ξt0(K⃗
′
)Ξt0(K⃗ − K⃗

′
)

·
{︃
1

2

[︂
EΓP (K⃗

′
, K⃗ − K⃗

′
) + EΓP (K⃗ − K⃗

′
, K⃗

′
)
]︂}︃

dK⃗
′
,

(2.29)

where the last equality in (2.29) results from the fact that both K⃗1 and K⃗2 are over

all wavenumber space. The expression within the braces may be recognized as a

symmetrical electromagnetic coefficient, more commonly written as

SEΓP (K⃗1, K⃗2) =
1

2

[︂
EΓP (K⃗1, K⃗2) + EΓP (K⃗2, K⃗1)

]︂
. (2.30)

As a final simplification, (2.29) may be re-written using the variable change

K⃗
′
= K⃗

′′
+

K⃗

2
= K⃗

′′
+ k0 cosϕ0 , (2.31)

with the result being

IK⃗1
=

∫︂
K⃗

′′
Ξt0(k0 cosϕ0N̂ + K⃗

′′
)Ξt0(k0 cosϕ0N̂ − K⃗

′′
)

· SEΓP (k0 cosϕ0N̂ + K⃗
′′
, k0 cosϕ0N̂ − K⃗

′′
)dK⃗

′′
.

(2.32)

Substituting (2.32) into (2.27) gives the final expression for the second-order target
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field as

(︁
E+

0n

)︁
2t
(t0, t) ≈

−j2η0∆lI0k
3
0

(2π)4
F (ρ01, ω0)F (ρ02, ω0)

ρ01ρ02
cos2 ϕ0

· ejk0∆ρsejρ0sK cosϕ0e−jK⃗·δρ⃗t(t)e−jKρ0c

·
∫︂
K⃗

′′
Ξt0(k0 cosϕ0N̂ + K⃗

′′
)Ξt0(k0 cosϕ0N̂ − K⃗

′′
)

· SEΓP (k0 cosϕ0N̂ + K⃗
′′
, k0 cosϕ0N̂ − K⃗

′′
)dK⃗

′′
.

(2.33)

Noting the similarities between the first- and second-order target scattered field ex-

pressions given in (2.19) and (2.33) respectively, a combined scattered electric field

can be found by summing the components. The total target scattered field may then

be written as

(︁
E+

0n

)︁
t
(t0, t) ≈

−j2η0∆lI0k
3
0

(2π)2
F (ρ01, ω0)F (ρ02, ω0)

ρ01ρ02
cos2 ϕ0P0(2k0 cosϕ0N̂)

· ejk0∆ρsejρ0sK cosϕ0e−jK⃗·δρ⃗t(t)e−jKρ0c

(2.34)

where P0 is a function of surface wave number defined by

P0(K⃗) =Ξt0(K⃗) +
1

(2π)2

∫︂
K⃗

′′
Ξt0

(︄
K⃗

2
+ K⃗

′′
)︄
Ξt0

(︄
K⃗

2
− K⃗

′′
)︄

· SEΓP

(︄
K⃗

2
+ K⃗

′′
,
K⃗

2
− K⃗

′′
)︄
dK⃗

′′
.

(2.35)
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2.4 Second-Order Target-Ocean Scattered Field

from a Deterministic Surface Target and

Time-varying Random Rough Surface

A second-order scatter involving both a target and the surrounding surface is depicted

in Figure 2.1. In this scenario, referred to as target-ocean scatter, radiation from the

transmitter is first scattered by a deterministic target before being scattered a second

time from the randomly rough ocean surface.

Rx
x

y

Tx

*

(0,0)

Figure 2.1: General target-ocean scattering geometry.

If the transformation described by (2.21) is applied to only the first scattering

point in (2.20), an expression is obtained which describes the scattered electric field

when the secondary scatter is near the target. The relevant geometry is depicted in

Figure 2.2. This second-order target-ocean patch scatter field, denoted as (E+
0n)2to, is

given by
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(︁
E+

0n

)︁
2to(t0, t) ≈

−jη0∆lI0k
2
0

(2π)
7
2

∫︂
K⃗1

∑︂
K⃗2,ω2

e−jK⃗1·ρ⃗t(t)Ξt0(K⃗1)e
jω2t

1PK⃗2,ω2

· ej
ρ⃗
2
·K⃗ejk0∆ρsejρ0sK cosϕ0

EΓP (K⃗1, K⃗2)
√︁
K cosϕ0

· F (ρ01, ω0)F (ρ02, ω0)e
−j π

4√︂
ρ0s[ρ20s − (ρ

2
)2]

∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
dK⃗1 .

(2.36)

Rx x

y

Tx
(0,0)

Figure 2.2: Target-ocean patch scatter geometry.

To simplify this expression, the integration variable in (2.36) is first changed to

K⃗ = K⃗1 + K⃗2 and the transformed integral is expressed in polar coordinates. This

process yields
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(︁
E+

0n

)︁
2to(t0, t) ≈

−jη0∆lI0k
2
0

(2π)
7
2

F (ρ01, ω0)F (ρ02, ω0)e
−j π

4√︂
ρ0s[ρ20s − (ρ

2
)2]

· ejk0∆ρs
∑︂
K⃗2,ω2

ejω2t
1PK⃗2,ω2

ejK⃗2·ρ⃗t(t)

·
∫︂
K

K
√︁
K cosϕ0e

jρ0sK cosϕ0∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
·
∫︂
θK

Ξt0(K⃗ − K⃗2) EΓP (K⃗ − K⃗2, K⃗2)e
−jK⃗·[ρ⃗t(t)− ρ⃗

2 ]dθKdK .

(2.37)

The θK integral is seen to be of the same form as the θK1 integral in the second-order

target expression (2.23) if the definitions given in (2.8) and (2.9) are used. It follows

from (2.24) and (2.25) that (2.37) can be immediately simplified to

(︁
E+

0n

)︁
2to(t0, t) ≈

−jη0∆lI0k
2
0

(2π)3
F (ρ01, ω0)F (ρ02, ω0)√︂

ρ′0tρ0s[ρ
2
0s − (ρ

2
)2]

· ejk0∆ρs
∑︂
K⃗2,ω2

ejω2t
1PK⃗2,ω2

ejK⃗2·ρ⃗0tejK⃗2·δρ⃗t(t)

·
∫︂
K

K
√︁
cosϕ0e

jρ0sK cosϕ0∆ρsSa

[︃
∆ρs
2

(︃
K

cosϕ0

− 2k0

)︃]︃
· Ξt0(K⃗ − K⃗2) EΓP (K⃗ − K⃗2, K⃗2)e

−jK⃗·δρ⃗t(t)e−jKρ′0tdK .

(2.38)

As in the previous two sections, the radar pulse width will be assumed sufficiently long

so that the sampling function in (2.38) may be replaced with a Dirac delta function

according to (2.15). Completing the K integral under this condition gives
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(︁
E+

0n

)︁
2to(t0, t) ≈

−j2η0∆lI0k
3
0

(2π)2
F (ρ01, ω0)F (ρ02, ω0)√︂

ρ′0tρ0s[ρ
2
0s − (ρ

2
)2]

cos5/2 ϕ0

· ejk0∆ρsϕ0e
jρ0sK cosϕ0e−jK⃗·δρ⃗t(t)e−jKρ′0t

·
∑︂
K⃗2,ω2

ejω2t
1PK⃗2,ω2

ejK⃗2·ρ⃗0tejK⃗2·δρ⃗t(t)Ξt0(K⃗ − K⃗2) EΓP (K⃗ − K⃗2, K⃗2) ,

(2.39)

where K = 2k0 cosϕ0. Again, as was assumed for both first- and second-order electric

field expressions, the distance, ρ′0t, is taken to be approximately equal to the radius

of curvature, ρ0c, at the scattering point, (x01, y01). This yields

(︁
E+

0n

)︁
2to(t0, t) ≈

−j2η0∆lI0k
3
0

(2π)2
F (ρ01, ω0)F (ρ02, ω0)

ρ01ρ02
cos2 ϕ0

· ejk0∆ρsejρ0sK cosϕ0e−jK⃗·δρ⃗t(t)e−jKρ0c

·
∑︂
K⃗2,ω2

ejω2t
1PK⃗2,ω2

ejK⃗2·ρ⃗0tejK⃗2·δρ⃗t(t)Ξt0(K⃗ − K⃗2) EΓP (K⃗ − K⃗2, K⃗2) ,

(2.40)

where the identity ρ20s − (ρ
2
)2 = ρ01ρ02 cos

2 ϕ0 has been used.

The expression derived in (2.40) describes the scattered electric field that results

from a secondary scatter from the ocean surface following an initial scatter from

the deterministic target. Intuitively, it follows that the converse scenario should be

accounted for. If the transformation described in (2.21) is now applied to only the

second scattering point in (2.20), and an identical process to that resulting in (2.40)

is conducted, by symmetry the second-order field for ocean-target scatter, (E+
0n)2ot,
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can be immediately written as

(︁
E+

0n

)︁
2ot(t0, t) ≈

−j2η0∆lI0k
3
0

(2π)2
F (ρ01, ω0)F (ρ02, ω0)

ρ01ρ02
cos2 ϕ0

· ejk0∆ρsejρ0sK cosϕ0e−jK⃗·δρ⃗t(t)e−jKρ0c

·
∑︂
K⃗1,ω1

ejω1t
1PK⃗1,ω1

ejK⃗1·ρ⃗0tejK⃗1·δρ⃗t(t)Ξt0(K⃗ − K⃗1) EΓP (K⃗1, K⃗ − K⃗1) .

(2.41)

On recognizing that the summations in (2.40) and (2.41) are over all surface wavenum-

bers, a combined ocean-target, target-ocean scattered electric field may be written

as

(︁
E+

0n

)︁
2to+ot(t0, t) ≈

−j2η0∆lI0k
3
0

(2π)2
F (ρ01, ω0)F (ρ02, ω0)

ρ01ρ02
cos2 ϕ0

· ejk0∆ρsejρ0sK cosϕ0e−jK⃗·δρ⃗t(t)e−jKρ0c

·

[︄ ∑︂
K⃗2,ω2

ejω2t
1PK⃗2,ω2

ejK⃗2·ρ⃗0tejK⃗2·δρ⃗t(t)Ξt0(K⃗ − K⃗2) EΓP (K⃗ − K⃗2, K⃗2)

+
∑︂
K⃗1,ω1

ejω1t
1PK⃗1,ω1

ejK⃗1·ρ⃗0tejK⃗1·δρ⃗t(t)Ξt0(K⃗ − K⃗1) EΓP (K⃗1, K⃗ − K⃗1)

]︄

≈ −j2η0∆lI0k
3
0

(2π)2
F (ρ01, ω0)F (ρ02, ω0)

ρ01ρ02
cos2 ϕ0

· ejk0∆ρsejρ0sK cosϕ0e−jK⃗·δρ⃗t(t)e−jKρ0c

·
∑︂
K⃗2,ω2

ejω2t
1PK⃗2,ω2

ejK⃗2·ρ⃗0tejK⃗2·δρ⃗t(t)Ξt0(K⃗ − K⃗2)

·
[︂
EΓP (K⃗ − K⃗2, K⃗2) + EΓP (K⃗2, K⃗ − K⃗2)

]︂
.

(2.42)
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Using (2.30), (2.42) may be rewritten as

(︁
E+

0n

)︁
2to(t0, t) ≈

−j4η0∆lI0k
3
0

(2π)2
F (ρ01, ω0)F (ρ02, ω0)

ρ01ρ02
cos2 ϕ0

· ejk0∆ρsejρ0sK cosϕ0e−jK⃗·δρ⃗t(t)e−jKρ0c

·
∑︂
K⃗2,ω2

ejω2t
1PK⃗2,ω2

ejK⃗2·ρ⃗0tejK⃗2·δρ⃗t(t)Ξt0(K⃗ − K⃗2) SEΓP (K⃗ − K⃗2, K⃗2) ,

(2.43)

where the original subscript 2to has been reused for compactness.

2.5 Summary

In this chapter, bistatic electric field expressions were derived for deterministic tar-

gets in motion on a surface described by a time-varying Fourier series. In deriving

the expressions, a method originally presented by Walsh and Gill [21] and applied to

non-moving monostatic radar targets was extended to permit arbitrary target mo-

tion and applied to bistatic expressions subsequently derived by the same authors.

The electric field expressions were simplified through asymptotic methods and other

approximations to forms suitable for finding power spectral densities. Obtaining the

power spectral densities and corresponding radar cross sections associated with each

of these expressions constitutes the objectives of the next chapter.
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Chapter 3

Radar Cross Sections for Surface

Targets in Motion on the Ocean

Surface

3.1 Introduction

In the preceding chapter, electric field expressions were derived to second-order for a

deterministic target in motion on a time-varying rough surface. The objective in this

chapter is to obtain the corresponding RCS models by considering the total scattered

electric field from an ocean patch containing a surface target. The target velocity

will remain arbitrary to allow it to be specified in a variety of future applications.

In evaluating the various operations performed in deriving RCS models, relevant

stochastic properties typically used in studying HF scattering from the ocean surface

will be employed.

The process to obtain the RCS models will follow the general method that has
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been used by previous authors studying scattering from the ocean surface [18, 33].

The PSD of the scattered electric field at the receiver will be found and compared

with a bistatic form of the radar equation. To accomplish this, the corresponding

autocorrelation function must first be derived. The PSD is then found through a

Fourier transform. To validate the results of this chapter, the bistatic moving target

cross sections will be shown to reduce to that of monostatic, fixed target RCSs found

in previous work [21].

3.2 Power Spectral Densities of the Received Elec-

tric Field

The process for deriving the received spectral densities begins with finding the auto-

correlation function of the scattered electric field. A convenient form of the autocor-

relation function was defined in Chapter 1 and is repeated here as

R(τ) =
Ar

2η0
< E+

0n(t0, t+ τ)E+∗
0n (t0, t) > , (3.1)

where Ar is the effective aperture of the receiving antenna and E+
0n is the total verti-

cally polarized electric field measured at the receiver. This work considers the scat-

tered electric field from a deterministic target as well as the surrounding surface. If

it is agreed to limit the analysis to second-order effects, the total electric field should

include the first- and second-order contributions from a target only, (2.16) and (2.33),

the first- and second-order components from the surrounding ocean, (1.44) and (1.56),

as well as the second-order target-ocean scatter derived in Section 2.4. This may be
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written explicitly as

(E0n)
+(t0, t) =

(︁
E+

0n

)︁
1t
(t0, t) +

(︁
E+

0n

)︁
2t
(t0, t)

+
(︁
E+

0n

)︁
11
(t0, t) +

(︁
E+

0n

)︁
2p
(t0, t) +

(︁
E+

0n

)︁
2to

(t0, t)

=
(︁
E+

0n

)︁
t
(t0, t) +

(︁
E+

0n

)︁
11
(t0, t) +

(︁
E+

0n

)︁
2p
(t0, t) +

(︁
E+

0n

)︁
2to

(t0, t) ,

(3.2)

where the second equality results from summing the two components involving only

target scatter to

(︁
E+

0n

)︁
t
(t0, t) =

(︁
E+

0n

)︁
1t
(t0, t) +

(︁
E+

0n

)︁
2t
(t0, t) . (3.3)

The total autocorrelation function of the received electric field is then found by ap-

plying (3.1) to (3.2). Formally, this is

R(τ) =
Ar

2η0

⟨︃[︂ (︁
E+

0n

)︁
t
(t0, t+ τ) +

(︁
E+

0n

)︁
11
(t0, t+ τ) +

(︁
E+

0n

)︁
2p
(t0, t+ τ)

+
(︁
E+

0n

)︁
2to

(t0, t)
]︂
·
[︂ (︁

E+
0n

)︁∗
t
(t0, t) +

(︁
E+

0n

)︁∗
11
(t0, t) +

(︁
E+

0n

)︁∗
2p
(t0, t)

+
(︁
E+

0n

)︁∗
2to

(t0, t)
]︂⟩︃

,

(3.4)

and may be expanded as the sum of sixteen ensemble averages containing both auto-

and cross-correlations i.e.
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R(τ) =
Ar

2η0

{︃⟨︁(︁
E+

0n

)︁
t
(t0, t+ τ)

(︁
E+

0n

)︁∗
t
(t0, t)

⟩︁
+
⟨︁(︁
E+

0n

)︁
t
(t0, t+ τ)

(︁
E+

0n

)︁∗
11
(t0, t)

⟩︁
...

+
⟨︁(︁
E+

0n

)︁
11
(t0, t+ τ)

(︁
E+

0n

)︁∗
t
(t0, t)

⟩︁
+
⟨︁(︁
E+

0n

)︁
11
(t0, t+ τ)

(︁
E+

0n

)︁∗
11
(t0, t)

⟩︁
...

+
⟨︂(︁

E+
0n

)︁
2p
(t0, t+ τ)

(︁
E+

0n

)︁∗
t
(t0, t)

⟩︂
+
⟨︂(︁

E+
0n

)︁
2p
(t0, t+ τ)

(︁
E+

0n

)︁∗
11
(t0, t)

⟩︂
...

+
⟨︁(︁
E+

0n

)︁
2to

(t0, t)
(︁
E+

0n

)︁∗
t
(t0, t)

⟩︁
+
⟨︁(︁
E+

0n

)︁
2to

(t0, t)
(︁
E+

0n

)︁∗
11
(t0, t)

⟩︁
...

}︃
.

(3.5)

Before finding expressions for the important terms in (3.5), it is shown that a number

of terms can be eliminated. A similar expression for the autocorrelation of the received

signal from the ocean surface only is found in Chapter 3 of Gill’s doctoral thesis

[9]. There it was found that all cross-correlations involving ocean scatters only (e.g.

< (E+
0n)2p(t0, t + τ)(E+

0n)
∗
11(t0, t) >) evaluated to zero. Next, the cross-correlation

< (E+
0n)t(t0, t+ τ)(E+

0n)
∗
11(t0, t) >, is considered, i.e.

⟨︁(︁
E+

0n

)︁
t
(t0, t+ τ)

(︁
E+

0n

)︁∗
11
(t0, t)

⟩︁
=

⟨︃
2η20|∆lI0|2k5

0

(2π)
7
2

F (ρ01, ω0)F (ρ02, ω0)

ρ01ρ02
cos2 ϕ0

· P0(2k0 cosϕ0N̂)ejρ0sK cosϕ0e−jK⃗·δρ⃗t(t+τ)e−jKρ0cej
π
4
F ∗(ρ′01, ω0)F

∗(ρ′02, ω0)√︂
ρ′0s[ρ

′2
0s − (ρ

2
)2]

·
∑︂
K′⃗ ,ω′

1P
∗
K′⃗ ,ω′

√︁
K ′ cosϕ0e

−j ρ⃗
2
·K′⃗

e−jωte−jρ0sK′ cosϕ0∆ρsSa

[︃
∆ρs
2

(︃
K ′

cosϕ0

− 2k0

)︃]︃⟩︃
.

(3.6)
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If the target velocity and the ocean surface displacement are assumed uncorrelated,

this becomes

⟨︁(︁
E+

0n

)︁
t
(t0, t+ τ)

(︁
E+

0n

)︁∗
11
(t0, t)

⟩︁
=

2η20|∆lI0|2k5
0

(2π)
7
2

F (ρ01, ω0)F (ρ02, ω0)

ρ01ρ02
P0(2k0 cosϕ0N̂)

· ejρ0sK cosϕ0e−jKρ0cej
π
4

⟨︂
e−jK⃗·δρ⃗t(t+τ)

⟩︂ F ∗(ρ′01, ω0)F
∗(ρ′02, ω0)√︂

ρ′0s[ρ
′2
0s − (ρ

2
)2]

·
∑︂
K′⃗ ,ω′

⟨︂
1P

∗
K′⃗ ,ω′

⟩︂√︁
K ′ cosϕ0e

−j ρ⃗
2
·K′⃗

e−jωte−jρ0sK′ cosϕ0∆ρsSa

[︃
∆ρs
2

(︃
K ′

cosϕ0

− 2k0

)︃]︃
,

(3.7)

which evaluates to zero as ⟨︂
1P

∗
K′⃗ ,ω′

⟩︂
= 0 (3.8)

for the zero-mean first-order ocean surface. The same result occurs for any cross-

correlation containing only a single rough surface component; thus, any cross cor-

relation between a target field component and either first-order ocean, or target-

ocean scattered field will evaluate to zero. Similarly, any cross-correlation contain-

ing
(︁
E+

0n

)︁
2to

(t0, t) and a second-order ocean component will include an odd num-

ber of Fourier components as factors, with an ensemble average that evaluates to

zero as noted in [9]. Lastly, the cross-correlation containing the target-only elec-

tric field and a second-order scatter from the ocean is considered. One such term is

< (E+
0n)t(t0, t+ τ)(E+

0n)
∗
2P (t0, t) > which may be expressed as
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⟨︁(︁
E+

0n

)︁
t
(t0, t+ τ)

(︁
E+

0n

)︁
2P

(t0, t)
⟩︁
=

⟨︃
2η20|∆lI0|2k5

0

(2π)
7
2

F (ρ01, ω0)F (ρ02, ω0)

ρ01ρ02
cos2 ϕ0

· P0(2k0 cosϕ0N̂)ejρ0sK cosϕ0e−jK⃗·δρ⃗t(t)e−jKρ0c
F ∗(ρ′01, ω0)F

∗(ρ′02, ω0)√︂
ρ′0s[ρ

′2
0s − (ρ

2
)2]∑︂

K⃗
′
1,ω

′
1

∑︂
K⃗

′
2,ω

′
2

1P
∗
K⃗

′
1,ω

′
1
1P

∗
K⃗

′
2,ω

′
2

e−j(ω′
1+ω′

2)t
√︁
K ′ cosϕ0Γ

∗
P (K⃗

′
1, K⃗

′
2)

· ej
π
4 e−j ρ⃗

2
·K⃗′

e−jρ′0sK
′ cosϕ0∆ρsSa

[︃
∆ρs
2

(︃
K ′

cosϕ0

− 2k0

)︃]︃⟩︃
,

(3.9)

and reduces to

⟨︁(︁
E+
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2
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1
1P

∗
K⃗

′
2,ω

′
2
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2)t
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1, K⃗

′
2)

· ej
π
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′ cosϕ′

0∆ρsSa

[︃
∆ρs
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cosϕ′
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− 2k0

)︃]︃
,

(3.10)

if the ocean surface displacement and target velocity are uncorrelated. Using (1.35)

and (1.36) it is permissible to write

⟨︂
1P

∗
K⃗

′
1,ω

′
1
1P

∗
K⃗

′
2,ω

′
2

⟩︂
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S1(K⃗

′
1, ω

′
1)dK⃗dω, K⃗

′
1 = −K⃗

′
2 , ω

′
1 = −ω′

2

0, otherwise .

(3.11)

In deriving the second-order patch scattered field, it was noted that K⃗ = K⃗1 + K⃗2.

The constraints on (3.11) require K⃗1+K2
⃗ = 0⃗. On noting that the sampling function
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in (3.10) is negligible forK = 0, and exactly zero if the long pulse assumption (2.15) is

employed, the cross-correlation < (E+
0n)t(t0, t+ τ)(E+

0n)
∗
2P (t0, t) > may be eliminated.

In exactly the same manner, the cross-correlation < (E+
0n)2P (t0, t + τ)(E+

0n)
∗
t (t0, t) >

may also be neglected.

From the analyses given in this section, and the arguments presented in Chapter

3 and Appendix B of [9], all cross-correlation components of (3.5) may be neglected

and the total autocorrelation function for the received electric field can be expressed

R(τ) =
Ar

2η0

{︃⟨︁(︁
E+

0n

)︁
t
(t0, t+ τ)

(︁
E+

0n

)︁∗
t
(t0, t)

⟩︁
+
⟨︁(︁
E+

0n

)︁
11
(t0, t+ τ)

(︁
E+

0n

)︁∗
11
(t0, t)

⟩︁
+
⟨︁(︁
E+

0n

)︁
2P

(t0, t+ τ)
(︁
E+

0n

)︁∗
2P

(t0, t)
⟩︁
+
⟨︁(︁
E+

0n

)︁
2to

(t0, t)
(︁
E+

0n

)︁∗
to
(t0, t)

⟩︁}︃
.

= Rt(τ) +R11(τ) +R2P (τ) +Rto(τ) .

(3.12)

where the subscript on the terms defined in the last equality corresponds to the

appropriate electric field component on which the autocorrelation operation must be

performed. The Doppler power spectral density, Pd(ωd), of the received electric field

is found as the Fourier transform of (3.12). As the Fourier transform is a linear

operator, the Doppler power spectral density can be expressed as

Pd(ωd) = F [R(τ)]

= F [Rt(τ)] + F [R11(τ)] + F [R2P (τ)] + F [Rto(τ)]

= Pt(ωd) + P11(τ) + P2P (τ) + Pto(τ) .

(3.13)

and each term may be evaluated separately to form a total composite RCS for the
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return from an ocean patch containing a surface target as

σ(ωd) = σt(ωd) + σ11(τ) + σ2P (τ) + σto(τ) . (3.14)

Expressions for the terms related to ocean scatter only, σ11(τ) and σ2P (τ), are pre-

sented in [18] with additional details contained in [9]. Thus, attention is now di-

rected towards finding the power spectral densities involving target scatter, Pt(ωd)

and Pto(ωd), and their corresponding cross section models.

3.2.1 Target Scatter Power Spectral Density

From (3.12), and applying (3.1) to (2.34), the autocorrelation function of the com-

bined first- and second-order scattered field from a surface target is

Rt(τ) =
Ar

2η0

⟨︁(︁
E+

0n

)︁
t
(t0, t+ τ)

(︁
E+

0n

)︁∗
t
(t0, t)

⟩︁
=

2Arη0|∆lI0|2k6
0

(2π)4
F (ρ01, ω0)F (ρ02, ω0)

ρ01ρ02

F ∗(ρ′01, ω0)F
∗(ρ′02, ω0)

ρ′01ρ
′
02

·
⟨︂
e−jK⃗·δρ⃗t(t+τ)ejK⃗

′·δρ⃗t(t)
⟩︂
e−jKρ0cejK

′ρ′0c

· cos2 ϕ′
0 cos

2 ϕ0P∗
0 (2k0 cosϕ0N̂

′
)P0(2k0 cosϕ0N̂) .

(3.15)

This expression can be greatly simplified if a narrow beam receiver is assumed such

that the nominal geometry of the scattering point or ‘patch’ is fixed between mea-

surements. In this case, the primed quantities in (3.15) are equal to their unprimed

equivalents. The result is
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Rt(τ) =
2Arη0|∆lI0|2k6

0

(2π)8
|F (ρ01, ω0)F (ρ02, ω0)|2

ρ201ρ
2
02

· cos4 ϕ0|P0(2k0 cosϕ0N̂)|2
⟨︂
Mt(K⃗, τ, t)

⟩︂
,

(3.16)

where Mt has been defined as

Mt(K⃗, τ, t) = e−jK⃗·δρ⃗t(t+τ)ejK⃗ ·δρ⃗t(t) . (3.17)

This expression may be recognized as the phase difference in the received electric

field between successive radar acquisitions due to a small displacement of the target.

Similar expressions are derived in previous work addressing HF radars installed on

moving platforms [42, 44] where the phase contribution is associated with a small

displacement of the transmitting source.

The power spectral density of the scattered field from a surface target only is

found by taking the Fourier transform of its autocorrelation function with respect to

the delay variable τ . Performing this operation on (3.16) yields

Pt(ωd) =
2Arη0|∆lI0|2k6

0

(2π)4
F (ρ01, ω0)F (ρ02, ω0)

2

ρ201ρ
2
02

cos4 ϕ0|P0(2k0 cosϕ0N̂)|2

· F
[︂⟨︂

Mt(2k0 cosϕ0N̂ , τ, t)
⟩︂]︂

,

(3.18)

where the stationary, long-pulse value of K⃗ = 2k0 cosϕ0N̂ has been substituted into

the argument of Mt.
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3.2.2 Target-Ocean Scatter Power Spectral Density

The autocorrelation of the target-ocean scattered electric field, Rto(τ), is found by

applying (3.1) to (2.43). The result is

Rto(τ) =
8Arη0|∆lI0|2k6

0

(2π)4
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2
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K⃗ ′

2,ω
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2
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ejK⃗2·ρ⃗0te−jK⃗ ′

2·ρ⃗0t
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∗
t0(K⃗

′ − K⃗ ′
2) SEΓP (K⃗ − K⃗2, K⃗2) SEΓ
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(3.19)

In distributing the ensemble average operator, <>, to the exponentials related to

the target motion and the Fourier series coefficients separately, it has been implicitly

assumed that the target velocity is independent of the ocean surface displacement.

Invoking (1.35), equation (3.19) reduces to

Rto(τ) =
8Arη0|∆lI0|2k6
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(3.20)
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Imposing a narrow beam receiver assumption as was done in the previous section,

(3.20) can also be simplified to

Rto(τ) =
8Arη0|∆lI0|2k6

0

(2π)4
|F (ρ01, ω0)F (ρ02, ω0)|2

ρ201ρ
2
02

cos4 ϕ0

·
∫︂
K⃗2

∫︂
ω2

ejω2τS1(K⃗2, ω2)|Ξt0(K⃗ − K⃗2)|2|SEΓP (K⃗ − K⃗2, K⃗2)|2

·
⟨︂
Mto(K⃗, K⃗2, t, τ)

⟩︂
dK⃗2dω2 .

(3.21)

where

Mto = e−jK⃗·[δρ⃗t(t+τ)−δρ⃗t(t)]ejK⃗2·δ[ρ⃗t(t+τ)−δρ⃗t(t)] . (3.22)

The corresponding power spectral density is easily found as the Fourier transform

with respect to τ of (3.21). The result may be written directly as

Pto(ωd) =
8Arη0|∆lI0|2k6

0

(2π)4
|F (ρ01, ω0)F (ρ02, ω0)|2

ρ201ρ
2
02

cos4 ϕ0

·
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K⃗2

∫︂
ω2

S1(K⃗2, ω2)|Ξt0(K⃗ − K⃗2)|2|SEΓP (K⃗ − K⃗2, K⃗2)|2

· F
[︂
ejω2τ

⟨︂
Mto(K⃗, K⃗2, t, τ)

⟩︂]︂
dK⃗2dω2 .

(3.23)

3.3 Radar Cross Section Models: General Form

Radar cross section models corresponding to the power spectral densities derived in

the previous section may be found with the aid of the bistatic radar range equation.

In [18], Gill and Walsh present a convenient form of a modified radar equation in-

corporating the Sommerfeld attenuation functions. In that work, the incremental

received power spectral density from a differential area is expressed as a function of
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radar parameters and a per-unit area radar cross section. Here, this expression is

re-used with a conventional radar cross section in place of the per-unit area cross

section with the understanding that output of the function is now a typical received

power spectral density from a finite area. Thus, the bistatic radar equation used in

this chapter is

P(ωd) =
Arη0k

2
0|I0∆l|2|F (ρ01, ω0)F (ρ02, ω0)|2

16(2π)3(ρ01ρ02)2
σ(ωd) , (3.24)

where σ(ωd) is a radar cross section evaluated at a Doppler frequency of ωd.

3.3.1 Target-Only Radar Cross Section

The bistatic RCS of a surface target is found by comparing the received power spec-

tral density of the electric field scattered by a target, (3.18), with the form of the

radar equation given in (3.24). The result, including first- and second-order scatters

exclusively from the target is

σt(ωd) =
16k4

0

π
cos4 ϕ0|P0(2k0 cosϕ0N̂)|2F

[︂⟨︂
Mt(2k0 cosϕ0N̂ , τ, t)

⟩︂]︂
, (3.25)

where P0(2k0 cosϕ0N̂) is found using (2.35) as

P0(2k0 cosϕ0N̂) =Ξt0(2k0 cosϕ0N̂)

+
1

(2π)2

∫︂
K⃗

′′
Ξt0

(︂
k0 cosϕ0N̂ + K⃗

′′)︂
Ξt0

(︂
k0 cosϕ0N̂ − K⃗

′′)︂
· SEΓP

(︂
k0 cosϕ0N̂ + K⃗

′′
, k0 cosϕ0N̂ − K⃗

′′)︂
dK⃗

′′
.

(3.26)
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This expression represents a new bistatic RCS model for a surface target with arbi-

trary motion.

The general bistatic target RCS described by (3.25) may be compared with the

monostatic cross sections derived byWalsh and Gill [21] and discussed in Section 1.4.2.

For convenience, the monostatic RCS model produced in that work is reproduced here:

σ =

[︃
16k4

0

π
|P|2

]︃
, (3.27)

with P defined as

P = Ξt0(2k0, θ1) +
1

2(2π)2

∫︂
K⃗

Ξt0(k0ρ̂1 + K⃗)Ξt0(k0ρ̂1 − K⃗)
|K⃗ × ρ̂1|2

K2 − k2
0

dK⃗, (3.28)

where ρ̂1 is a unit vector that points from the radar to the origin of the target profile

or centre of the scattering patch and θ1 is its associated angle. Comparing (3.25)

and (3.26) with (3.27) and (3.28) the expressions are seen to be in general agreement,

with the model derived in this work containing two additional factors that may be

attributed separately to the bistatic geometry and target motion. The cos4 ϕ0 in

(3.25) may be shown to appear in the bistatic ocean cross section models derived by

Gill [18] for an unbounded patch width, ∆ρs. This is equivalent to the long pulse

width assumption used in this work. The Fourier factor in (3.25) accounts for the

Doppler shift associated with the target motion. It will be revisited and evaluated in

the next chapter in an application considering a constant target velocity.

As a last comparison, it is straight forward to show that when considering only

first-order scatters, (3.25) reduces to (3.27) for a monostatic radar and zero-velocity
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target. This is accomplished by first assigning a monostatic geometry such that

ϕ0 = 0 and N̂ = ρ̂01 . (3.29)

For a zero-velocity target, the Fourier transform of the motion-related factor evaluates

as

F
[︂⟨︂

Mt(2k0 cosϕ0N̂ , τ, t)
⟩︂]︂

= F [1] = 2πδ(ωd) ; (3.30)

however, the RCS given in (3.27) is not considered in the context of a Doppler spec-

trum. Thus, to compare the expressions, it is appropriate to set

F
[︂⟨︂

Mt(2k0 cosϕ0N̂ , τ, t)
⟩︂]︂

= 1 (3.31)

and omit the ωd argument. Under these conditions, (3.25) evaluates to

σt =
16k4

0

π
|P0(2k0ρ̂01)|2 . (3.32)

If first-order scattering effects are exclusively considered, only the leading term of P0

(or P from (3.27)) need be retained, and the expressions agree exactly. If second-

order target scattering effects are included, the full form of P0(2k0 cosϕ0N̂) must be

considered. Appendix C addresses this case and shows they are approximately equal,

with the differences attributed to the refined analysis that produced the updated

version of the electromagnetic coupling coefficient, EΓP .
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3.3.2 Target-Ocean Radar Cross Section

The second-order target-ocean RCS is found in equating the corresponding power

spectral density, (3.23), with the received power spectral density predicted by the

radar equation (3.24). The result is

σto(ωd) =
64k4

0

π
cos4 ϕ0

∫︂
K⃗2

∫︂
ω2

S1(K⃗2, ω2)

· |Ξt0(K⃗ − K⃗2)|2|SEΓP (K⃗ − K⃗2, K⃗2)|2

· F
[︂
ejω2τ

⟨︂
Mto(K⃗, K⃗2, t, τ)

⟩︂]︂
dK⃗2dω2 .

(3.33)

This expression represents a new second-order RCS component that has not been

investigated in the literature and thus has no previous results with which it may be

directly compared. It may be noted however, if |Ξt0(K⃗ − K⃗2)|2 is interpreted as a

surface power spectral density, (3.33) takes the general form of a second-order RCS

frequently seen in scattering from the ocean surface [12, 18]. In that manner, it is

calculated as an integration over all ocean surface vector wavenumbers and radian

frequencies. Additionally, it contains a Fourier factor within the integration that

accounts for a Doppler shift involving both the target’s displacement and the temporal

frequency of the ocean surface.

3.4 Summary

In this chapter, two bistatic radar cross section components were obtained for a deter-

ministic surface target on the ocean surface. This includes a cross section component

involving first- and second-order scatters directly from the surface target, and an
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additional second-order component involving one scatter from the deterministic tar-

get and one scatter from the nearby ocean. In deriving the RCS components, the

target motion was maintained arbitrary, allowing the models to be used in a vari-

ety of applications. The target-only cross section was shown to agree with previous

work, producing exactly the same first-order expression if a monostatic geometry is

imposed and the target is held to zero velocity. The second-order target-ocean com-

ponent was seen to appear similarly as previous second-order ocean scattering radar

cross sections.

In the following chapter, the expressions derived here are evaluated for a target

travelling with constant velocity on the ocean surface. After introducing a target

profile and ocean surface spectrum, the RCS will be computed and included in a

radar model predicting the received signal from an ocean patch containing a marine

vessel.
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Chapter 4

Radar Cross Section Models of

Ocean Surface Targets with

Constant Velocity

In the analyses leading to this chapter, a radar cross section model for a deterministic

target on the ocean surface was derived. In both the derivations of the electric fields

in Chapter 2 and the determination of the cross section expressions themselves in

Chapter 3, the target motion was left as arbitrary - to be defined as needed in specific

applications. The only constraints imposed were that the total displacement over

successive radar acquisitions must be small relative to the distance to either radar

transmitter or receiver and the target must remain within a radar patch defined by

the radar beamwidth and range resolution. The first part of this chapter imposes

a constant target velocity on the models derived in Chapter 3 and simplifies the

resulting RCS expressions.

The second part of this chapter applies the constant velocity models to a simpli-

76



fied model of a marine vessel featuring a tumblehome hull that narrows as its height

above the ocean surface increases. In particular, the Swedish Visby-class corvette [29]

is considered. The use of a tumblehome hull is an example of an RCS reduction, or

‘stealth’, technique through shaping. A ship’s RCS may be reduced by avoiding

vertical features and right angles, with the most significant reduction occurring for

backscatter geometries at microwave and higher frequencies. It has been noted in

previous literature that the HF RCSs of ships and large aircraft are relatively inde-

pendent of shaping details as the overall target dimensions are of the same order of

magnitude as the radar wavelength [60, 61]. Thus, HFSWRs are uniquely capable of

detecting ships with hulls designed for low radar observability.

After defining a mathematical model of a simplified Visby-class corvette, example

cross sections are calculated and implemented in a radar system model presented by

Gill [62]. The system model is used to predict the frequency-domain power spectral

density of the received signal from a radar cell on the ocean including a surface target.

The results are compared with external noise sources as well as the returns from an

ocean patch without a target to determine the ability to detect the presence of a ship

either by direct target scatter, or through the secondary target-ocean return. The

calculations are repeated for varying target orientations, velocities, ocean conditions,

and bistatic angles. Characteristics of the results are then discussed. In a final

example, time-series data for the radar returns of the ocean patch containing a target

are simulated and processed in a similar manner as a pulsed Doppler radar. The

results demonstrate how the received signal obtained by a practical radar may appear.
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4.1 Cross Section Models for Targets with Con-

stant Velocity

In this section, the expressions derived in Chapter 3 for the target-only RCS com-

ponent, (3.25), and the target-ocean component, (3.33) are evaluated for a target

moving with constant velocity, v⃗. To effect this, the time-varying component of the

target position as defined in (2.8) is expressed as

δρ⃗t(t) = v⃗t . (4.1)

4.1.1 Target Scatter Component

For the target-only cross section, (3.25), the motion-related factor, Mt, is first consid-

ered. On substituting (4.1) into the definition of Mt, (3.17), the resulting expression

reduces to

Mt(K, θK , τ, t) = e−jK⃗·v⃗τ

= e−j2k0v cosϕ0 cos(θN−θv)τ ,

(4.2)

where v and θv are the magnitude and direction of v⃗ respectively and the stationary

long-pulse value of K⃗ = 2k0 cosϕ0N̂ has been used. In [42], the ensemble average of

a similar motion-related autocorrelation factor is evaluated for a sinusoidal displace-

ment of the transmitting source through a temporal average. Here, (4.2) is seen to no

longer contain a t dependency; it is therefore its own ensemble average. From (4.2)

and (3.25), the target cross section component expression for constant velocity is

σt(ωd) =
16k4

0

π
cos4 ϕ0|P0(2k0 cosϕ0N̂)|2F

[︁
e−j2k0v cosϕ0 cos(θN−θv)τ

]︁
. (4.3)
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From any standard Fourier transform table (e.g. Lathi [63], Chapter 7), the Fourier

transform in (4.3) can be found as

F
[︁
e−j2k0v cosϕ0 cos(θN−θv)τ

]︁
= 2πδ(ωd + 2k0v cosϕ0 cos(θN − θv)) , (4.4)

and the target-only radar cross section component for uniform linear motion evaluates

to

σt(ωd) =32k4
0 cos

4 ϕ0|P0(2k0 cosϕ0N̂)|2δ(ωd + 2k0v cosϕ0 cos(θN − θv)) . (4.5)

It is observed here that the target cross section contains a delta function limiting the

received signal to a single point in the Doppler domain at ωd = −2k0v cosϕ0 cos(θN −

θv). This is the expected bistatic Doppler shift for a target moving with constant

velocity [64]. As a last point, if attention is limited to first-order scatters, only the

leading term of P0(2k0 cosϕ0N̂) is retained, and the RCS reduces to

σ1t(ωd) =32k4
0 cos

4 ϕ0|Ξt0(2k0 cosϕ0N̂)|2δ(ωd + 2k0v cosϕ0 cos(θN − θv)) , (4.6)

where the subscript, 1t, refers to a first-order scatter from a target. In this case, if

the Fourier transform of the surface target is known or pre-computed, the target RCS

component can be calculated directly. If second-order target-only effects must be

considered, the integration in the second-term of P0(2k0 cosϕ0N̂) may be calculated

numerically.
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4.1.2 Second-Order Target-Ocean Cross Section

To form expressions for the second-order target-ocean cross section component, the

motion related factor, which for this case is Mto, is again considered first. Using (4.1)

and (3.22), an expression for Mto can be written for a target with constant velocity

as

Mto(K, θK , K2, θK2 , τ, t) = e−jK⃗·v⃗τejK⃗2·v⃗τ

= e−jτ[2k0v cos(θN−θv)−K2v cos(θK2
−θv)] .

(4.7)

As was the case with (4.2), this expression is its own ensemble average. On sub-

stituting (4.7) into (3.33) and evaluating the Fourier transform, the second-order

target-ocean cross-section for uniform linear motion is

σto(ωd) =128k4
0 cos

4 ϕ0

∫︂
K⃗2

∫︂
ω2

S1(K⃗2, ω2)

· |Ξt0(K⃗ − K⃗2)|2|SEΓP (K⃗ − K⃗2, K⃗2)|2

· δ(ωd − ω2 + 2k0v cos(θN − θv)−K2v cos(θK2 − θv))dω2dK⃗2 .

(4.8)

When compared to the target-only cross section given in (4.5), it may be observed that

the delta function argument of the target-ocean cross section contains two additional

terms, ω2 andK2v cos(θK2−θv). The former is the radian frequency of each ocean wave

component that contributes to the integration; a similar term arises in derivations of

second-order ocean cross sections (e.g. [18]). On writing the latter term as K⃗2 · v⃗,

it can be seen this term represents an additional phase shift corresponding to the

target displacement between successive radar measurements projected along a given

surface wave component. It will be seen in the next section that once an ocean wave

spectrum model is introduced, the target-ocean cross section produces a continuous
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Doppler response. This is in contrast to the single-frequency Doppler response of the

target-only component.

4.2 Application to Marine Vessels

Here, the results of the previous section are applied to predict the radar returns

from a simplified profile of a Visby-class corvette moving with a constant velocity. A

mathematical model for a surface target is introduced, and a discussion regarding the

model’s constraints relative to the assumptions inherent to the analyses that resulted

in (4.6) and (4.8) is presented in the context of tumblehome hulls. After specifying

an ocean spectrum and radar system model, the cross section components and re-

ceived power spectral density from an ocean patch containing a target are calculated.

The calculations are repeated for varying operating parameters and conditions and

observations are made regarding the ability to detect a ship in the presence of sea

clutter.

4.2.1 Surface Target Model

The RCS models derived in this work require the Fourier transform of the surface

target profile as an input. To facilitate the example calculations and subsequent

analyses in this section, a mathematical model describing a general tumblehome shape

is proposed. It is defined as

ξt0(x
′, y′) =

he

4

[︂
1 + cos

(︂
K⃗ l · ρ⃗ ′

)︂]︂[︄
1− |K⃗w · ρ⃗ ′ |

π

]︄
w(x′, y′), (4.9)
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where he is the maximum height of the target, K⃗ l, K⃗w are orthogonal surface wave

vectors, and w(x′, y′) is a windowing function used to ensure the profile is zero outside

of a rectangular region. It is noted that the subscript on ξt0 indicates that this surface

model forms a Fourier transform pair with Ξt0. Thus, the primed coordinate variables

x′ and y′ are referred to the time-varying target origin ρ⃗t(t) that was defined in (2.3).

To model a tumblehome-like shape, it is appropriate to set

K⃗ l =
2π

L
x̂ , K⃗w =

2π

W
ŷ (4.10)

and specify a rectangular window function

w(x′, y′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, |x′| ≤ L, |y′| ≤ W

0, otherwise .

(4.11)

The resulting shape is characterized by a raised cosine profile along its length and a

triangular profile in width. It follows that (4.9) models a hull shape that narrows with

height as required and accounts for the vessel’s approximate volume, aspect ratio, and

orientation.

The target profile that results from setting L = 72.7 m and W = 10.4 m in (4.10)

and substituting the result into (4.9) is depicted in Figure 4.1. These dimensions

correspond to the length and beam of the Visby-class [29]. In this manner, Figure 4.1

represents a simplified model of the Visby-class’s tumblehome hull that is oriented

along the x-axis. Arbitrary orientations may be modelled through suitable rotational

transformations of (4.9). As the actual height of a Visby-class corvette was not
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available, the height of the model is set as the maximum value permitted under the

small height approximation for a radar operating frequency of 3 MHz, or he = 10 m.

(a) Three-dimensional view (b) Top-down view

Figure 4.1: Simplified Visby-class model.

4.2.1.1 Surface Target Constraints

The key constraints related to the surface target definition are that it must be able

to be described by an inverse Fourier transform and that it is small in height and

slope. The requirement that the target profile be described by a Fourier transform

suggests the results of this work are well suited to the modelling of cross sections of

marine vessels with tumblehome hulls. As a tumblehome hull narrows as its height

above the ocean surface increases, its exterior profile may be described as a surface,

the elevation of which is a function of position in a flat plane. As a result, the surface

profile will have a computable two-dimensional Fourier transform. Recent examples

of modern warships have used tumblehome hulls to reduce their cross sections at

microwave and higher frequencies [29,30].

In Chapter 2, it was noted that according to Rayleigh theory, the maximum target
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height should be constrained to less than one tenth the operating wavelength of the

radar. It should also be noted that it is typical for HF radars deployed for target

detection and tracking to operate at the lower end of the band to achieve maximum

range. Thus, for a practical application including the previously described 10 m

tall target, a 3 MHz radar operating frequency will be considered in the example

calculations later in this chapter.

In simplifying the expressions for the scattered electric field from the rough surface,

Walsh and Gill [21] employed a small slope assumption that is inherited in this work.

Additional details related to the small slope assumption may be found in [9], where

the mean square slope of the ocean surface is used as the criterion to apply the

approximation. The mean square slope of the target described by (4.9) is dependent

on the surface wavenumbers Kl, Kw and its height. If the small slope assumption is

applied, albeit somewhat liberally, to constrain the mean square slope, |∇xyξ(x, y)|2,

such that

|∇xyξ(x, y)|2 <
1

2
, (4.12)

and the values ofKl andKw that produced Figure 4.1 are maintained, it is empirically

found that the target height should be limited to approximately 4.2 m. Clearly, the

model depicted in Figure 4.1 violates this constraint. For the purposes of this example,

the height will be maintained at its small height limit of 10 m. In [21], the small slope

assumption was similarly neglected for the first-order cross-section of a sphere. In that

work, the RCS expression was found to be dimensionally consistent with, but 7 dB

below, the accepted value for a small sphere. In that context, in violating the small-

slope assumption, the radar returns associated with steeper aspects of the target are
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likely to be underestimated; however, the model will appropriately account for the

target’s volume, aspect ratio, orientation, and velocity. To prevent any errors this

assumption may generate from compounding, consideration will be limited to single

scatters from the target, i.e. the target-only cross section component will be limited

to first-order.

In further consideration of the small slope assumption, it is observed that the

shape defined by (4.9) avoids any sharp features. While ships that use shaping to re-

duce their RCS, including tumblehome hulls, avoid vertical or steep features, smaller

aspects of a practical ship will violate the small slope requirement. This includes

edges that may be present in the ship’s hull and bridge as well as equipment in-

stalled on its deck. Previous works have noted that the decametric wavelengths of

HF electromagnetic radiation limit the radar returns from such small features. This

is evident in both a numerical study of skywave cross sections conducted in [28], and

the fact that the commonly-used empirical model [5] is a function of only the ship

displacement and radar operating frequency. Thus, for the purposes of estimating

ship radar cross sections, including the target-ocean effect derived in this work, the

smaller, steep features of a ship are neglected and only the general overall shape is

considered.

4.2.2 Ocean Spectrum Model

In order to compute the target-ocean cross section component, a model for the first-

order ocean spectrum, S1(K⃗, ω), must be specified. In studying radar returns from

the ocean surface, previous authors have focused attention on gravity-waves [9, 33].
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These waves contain the majority of the ocean wave energy and have wavelengths on

the same order of magnitude as electromagnetic radiation in the HF band. It follows

that gravity waves interact strongly with signals from HF radars. If only gravity

waves are considered and the ocean depth, d, near the target is sufficiently deep as

compared to the wavelength of the ocean waves of interest, λw, (i.e.
d
λw

≥ 1
2
), a

convenient form of the first-order surface power spectral density is [65]

S1(K⃗, ω) =
1

2

∑︂
m=±1

S1(mK⃗)δ(ω +m
√︁
gK) . (4.13)

In this work, the ocean spectrum will be obtained using a Pierson–Moskowitz ocean

model for a fully developed sea and a cardioid distribution factor for S1(mK⃗) with a

spreading factor of 2. Similar models have been used in previous bistatic cross section

modelling work by Gill and Walsh [18] and Ma et al. [66]. The resulting expression

for S1(mK⃗) in a form compatible with this work is

S1(mK⃗) =

[︄
0.0081

4K2
e

(︃
−0.74g2

K2U4

)︃]︄
·

[︄
4

3π
cos4

(︄
θK⃗ + (1−m)π

2
− θ

2

)︄]︄
(4.14)

where U is the speed of the wind generating the waves 19.5 m above the ocean surface

in m/s and θ may be interpreted as the overall mean direction of the generating wind.

The full details in deriving this model may be found in Chapter 3 of [9]. It may be

noted that in applying this ocean model to the expressions developed in this work,

the contribution of the wake produced by the surface target and any high-order wave

interactions with the surrounding ocean that may result are neglected.

With the ocean spectrum model specified, the second-order target-ocean cross
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section can be further simplified by substituting (4.13) into (4.8). This gives

σto(ωd) =64k4
0 cos

4 ϕ0

∑︂
m=±1

∫︂
K⃗2

S1(mK⃗2)|Ξt0(K⃗ − K⃗2)|2|SEΓP (K⃗ − K⃗2, K⃗2)|2

· δ(ωd +m
√︁
gK2 + 2k0v cos(θN − θv)−K2v cos(θK2 − θv))dK⃗2 ,

(4.15)

where the ω2 integral has yielded to the Dirac delta function in the ocean spectrum.

4.2.3 Radar System Model

With the target profile defined and an ocean spectrum model specified, the cross

section expressions derived in Section 4.1 are able to be calculated for arbitrary target

locations and velocities. To draw meaningful conclusions from the results, however,

they must be considered in the context of the total signal received by the radar. This

includes both the radar returns from the ocean itself (i.e. sea clutter) and external

noise sources. If a particular region of ocean is considered, the magnitude of the clutter

signal relative to the target and target-ocean returns can be determined directly from

the ocean cross section expressions, (1.46) and (1.58), discussed in Chapter 1. A

more detailed system model must be considered to determine the absolute strength

of the received signal when comparing it with external noise sources. In [62], Gill

and Walsh present two such models. The first model calculates the received power

spectral density in the Doppler frequency domain, while the second method generates

time-series data for the received signal. This section considers the frequency domain

model while the time-series simulation is discussed in Section 4.3.

The radar cross section components given in (1.46) and (1.58) correspond to the
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first- and second-order returns from a differential area of the ocean surface. For a radar

operating with an omnidirectional transmitting antenna and a separate narrowbeam

receiving antenna in either bistatic or quasi-monostatic configurations, the received

signal from the ocean for a specific delay (or, equivalently, range) may be attributed

to a ‘patch’ defined by the radar’s range resolution, or pulse width, and beamwidth.

For the receiving array geometry shown in Figure 4.2, the patch area, Ap may be

found as

Ap = ρ02∆ρ0sθBW , (4.16)

where θBW is the beamwidth of the receiving antenna in radians and the remaining

parameters were defined in Chapter 1. If the patch is considered sufficiently small

such that the normalized ocean cross section components, σ11(ωd) and σ2P (ωd), may

be considered constant over the patch, the aggregate clutter RCS, σc(ωd), may be

expressed as

σc(ωd) = Ap [σ11(ωd) + σ2P (ωd)] . (4.17)

When the returns from a target are included, a total RCS for a specific patch may

be given as

σtotal(ωd) = σt(ωd) + σto(ωd) + Ap [σ11(ωd) + σ2P (ωd)] . (4.18)

The system model presented by Gill and Walsh [62] provides a means to determine

the signal-to-noise ratio by computing both the received power spectral density of the

signal and the noise spectral density measured by the radar. To determine the received

power spectral density measured at the receiver, the radar equation is modified to
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Figure 4.2: Receiving array geometry with elements along x-axis.

account for average (as opposed to peak) transmitter power. In this case, it is written

as

P(ωd) =
λ2
0

(︂
τ0
TL

)︂
PtGtGr|F (ρ01, ω0)F (ρ02, ω0)|2

(4π)3ρ201ρ
2
02

σ(ω) (4.19)

where Gt and Gr are the transmitting and receiving antenna gains respectively, Pt

is peak transmitter power, and TL is the pulse repetition interval (PRI) such that

the average transmitter power is Pt

(︂
τ0
TL

)︂
. As written, equation (4.19) produces the

received power spectral density of an arbitrary radar cross section. The power spectral

density of the full patch may be obtained by substituting in σtotal(ωd), while individual

components may be calculated by substituting their respective values.

To predict the noise measured by a HF radar during a measurement, Gill [62]

provides a model for the approximated noise power spectral density, (PN). It is given

in decibels by

(PN(f)) = −204 dB + Fam (4.20)

where f is the frequency in hertz, and Fam is the median external noise figure. It

is well known that HF radars are frequently externally noise limited, i.e. the noise
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received from ambient sources dominates the internal noise generated by the radar.

Thus, (4.20) represents, to a good approximation, the total noise signal. The Inter-

national Telecommunication Union (ITU), provides recommended noise figure values

for three significant categories, atmospheric, galactic, and man-made for a range of

radar operating frequencies [67] that may be used in computing noise powers from

(4.20).

To make use of (4.19) and (4.20), a set of radar operating parameters are listed

in Table 4.1. These values are similar to those of a surface wave radar demonstrator

installed at Cape Race in Newfoundland [25, 62, 68] for target tracking. The median

external noise figure is taken as the linear sum of the three components given in [67]

assuming a “quiet receiving site”. The atmospheric noise component is taken as

the average of its value exceeded 0.5% of the time and its value exceeded 99.5% of

the time. In [62], a FORTRAN program [69] was used to compute the Sommerfeld

attenuation function. As the program was not available, a representative value of

0.312 was assumed from [62]. The value is reported as the attenuation for a wind

velocity of 15 m/s directed at an angle 120◦ relative to the look direction, for a radar

operating frequency of 25 MHz. For the lower operating frequencies of the examples

in this work, this value may be considered a conservative estimate. Lastly, it may

be noted that the Cape Race radar evolved over a number of generations and the

values used here reflect characteristics of different iterations, with the exception of

the receiving beamwidth and the transmitting waveform whose chosen values are

addressed below.

The first notable deviation from the Cape Race system is related to the receiving

antenna aperture. In Table 4.1, the receiver beamwidth has been assumed to be 3◦.
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Parameter Symbol Value
Operating Frequency f0 3 MHz
Peak Transmitter Power Pt 16 kW
Waveform Pulsed Sinusoid
Pulse Width τ0 3 µs
Pulse Repetition Interval TL 500 µs
Transmitting Antenna Gain Gt 2 dBi
Receiving Antenna Gain Gr 19.67 dBi
Receiving Antenna Half Power Beamwidth θ3dB 3◦

Median External Noise Figure Fam 45 dB
Sommerfeld Attenuation Function F (ρ, ω0) 0.312

Table 4.1: Radar operating parameters

If the array is assumed to be uniform and linear, the relationship between its length

and beamwidth can be approximated as [70]

θ3dB =
2.65λ0

(N + 1)d
, (4.21)

where θ3dB is the half power beamwidth of the array in radians, (N+1) is the number

of antenna elements, and d is the spacing between elements. For the 3◦ beamwidth

and 3 MHz operating frequency assumed here, the total array length, (N+1)d, should

be 1.69 km. While this length is approximately twice that of the Cape Race system,

similar and longer arrays have been used in a number of HF skywave radars in the

United States [71]. For a lossless long dipole array with λ0/2 spacing, the gain may

be estimated by [70]

Gr =
5.48(N + 1)d

λ0

, (4.22)

which evaluates to 92.61 for the receiving array. This value, in decibels, is reflected

in the receiving antenna gain of Table 4.1 where antenna losses have been neglected.
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The second notable deviation from the Cape Race demonstrator is that a pulsed

waveform has been assumed, where the range resolution and signal bandwidth are

fixed for a specified pulse width. All iterations of the Cape Race system employed

some form of pulse compression to decouple the range resolution (or signal bandwidth)

from the pulse width. In Table 4.1 the pulse width has been set to provide the same

range resolution as the 375 kHz bandwidth used in [25]. It is noted here that the

Walsh technique employed in this work has been used successfully to produce ocean

cross section models for alternative waveforms [72, 73] but is considered outside the

scope of this thesis and left for future work.

4.2.4 Computation of the Model

To compute the total RCS for a single radar cell of the system model described in the

previous section, each term in (4.18) is first evaluated individually and the total RCS

found as their sum. This section details the process of computing the target-related

cross-section terms, σt and σto. The details for calculating the ocean surface RCS

components may be found in [9,17,18]. Once the RCS components are calculated, the

received power spectral density and signal-to-noise ratio (SNR) may be determined

using the system and noise models given by (4.19) and (4.20) respectively.

As discussed in Section 4.2.1.1, the radar cross section contribution attributed to

scatter directly from the target will be limited to first-order. The first-order target

RCS, (4.6), can be directly computed once a profile’s Fourier transform has been

found. For the results in this chapter, the target model, as defined by (4.9), is

specified numerically in MATLABR and the Fourier transform, Ξt0(K⃗), found using
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a suitably scaled Fast Fourier Transform (FFT) implementation. The required value

of Ξt0(K⃗) for a given wavenumber K⃗ is extracted as needed.

The evaluation of the second-order target-ocean RCS is complicated due to the

presence of the delta function whose argument is itself a function of the integration

variable. To solve the delta function constraint, a technique similar to that previously

employed in calculating second-order ocean cross sections employed by Gill [9] (and

Barrick and Lipa [74] prior) will be adapted. The technique begins by introducing

a change of variable, Y =
√
K2, to the target-ocean cross section expression, (4.15),

such that K2dK2 = 2Y 3dY and rewriting (4.15) as

σto(ωd) =128k4
0 cos

4 ϕ0

∑︂
m=±1

∫︂ 2π

θK2
=0

∫︂ ∞

Y=0

|Ξt0(K⃗ − K⃗2)|2

· S1(mK⃗2)|SEΓP (2k0 cosϕ0N̂ − K⃗2, K⃗2)|2δ(G(Y ))Y 3dY dθK2 ,

(4.23)

where

G(Y ) = ωd + m
√
gY − Y 2v cos(θK2 − θv) + 2k0v cosϕ0 cos(θN − θv) . (4.24)

At this point, it is convenient to note the property of the Dirac delta function [75],

δ(G(Y )) =
∑︂
k

δ(Y − Yk)

|G′(Yk)|
, (4.25)

where the Yk’s are the zeros of G(Y ), and the singular point, G′(Yk) = 0, must be
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excluded. Using (4.24) and (4.25), (4.23) can be cast as

σto(ωd) =128k4
0 cos

4 ϕ0

∑︂
m=±1

∫︂ 2π

θK2
=0

∑︂
k

∫︂ ∞

Y=0

|Ξt0(K⃗ − K⃗2)|2

· S1(mK⃗2)|SEΓP (2k0 cosϕ0N̂ − K⃗2, K⃗2)|2

· δ (Y − Yk)

|m√
g − 2Ykv cos(θK2 − θv)|

Y 3dY dθK2 .

(4.26)

To calculate (4.26), a Riemann sum is used to approximate the θK2 integral. For each

θK , the Y integral is found treating θK2 as a constant. The Y integral yields to the

Dirac delta function, producing 0, 1, or 2 values to sum, depending on the number of

real, non-zero solutions to G(Y ) = 0 found.

4.2.4.1 Significant Contributions to the Integrand

Prior to performing example calculations of (4.26) and discussing the results, it is

noted that there are two sources of singularities and/or maxima within the integrand

that have the potential to produce significant contributions to the target-ocean RCS.

These are the symmetric electromagnetic coupling coefficient, SEΓP , and the denom-

inator of the fraction term seen in the final line of the equation.

In [9], Gill addresses the singularities of the electromagnetic coupling coefficient,

as derived in that work. In this work, a refined coupling coefficient as found in [44] and

given in (1.52)-(1.54) is employed that does not contain these singularities; however,

it demonstrates similar behaviour and contains sharp local maxima for the same

condition that produce the singularity observed in Gill’s work. This condition is

K⃗1 ·
[︂
K⃗1 − 2k0ρ2̂

]︂
= 0 or K⃗2 ·

[︂
K⃗2 − 2k0ρ2̂

]︂
= 0 , (4.27)
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where, for the patch scatter case here, the unit vector ρ2̂ can be considered as the

unit vector associated with ρ02⃗ in Figure 2.2. Gill shows that the conditions in

(4.27) represent circles in the K⃗1, K⃗2 complex planes and establishes that significant

contributions occur when the circle is tangent to the integration contour for a given ωd.

These conditions are shown to correspond to the ‘corner reflector’ effect commonly

observed in scattering applications. As the integration contours in this work are

distinct from the ocean patch scatter addressed by Gill, the condition for a significant

contribution may be unrelated to Gill’s analysis. Thus, rather than formally derive a

tangent condition, here it is simply acknowledged that significant contributions may

occur for ωd contours that pass near the circles in the K⃗1 or K⃗2 plane. This fact will

be recalled as needed in the discussion of results of example calculations performed

in the next section.

It also may be seen that when

2Ykv cos(θK2 − θv) = m
√
g (4.28)

the denominator in the integrand of (4.26) evaluates to zero, resulting in a singularity.

Recalling that Y =
√
K2, the condition given in (4.28) may be re-written as

K⃗2 · v⃗
K2

=
m

2

√︃
g

K2

. (4.29)

The left hand side of this expression can be interpreted as the component of the

target velocity projected in the direction of the ocean wave vector K⃗2, denoted vθK2
.

The magnitude of the right hand side can be recognized as the group velocity of
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an ocean wave with wave number K2. Thus, in the context of evaluating (4.26),

for a given target velocity and ocean wave direction, a singularity can result from a

secondary scatter involving an ocean wave with group velocity equal to vθK2
. If (4.28)

is substituted into (4.24), it follows that the singularity will occur at the Doppler

frequency,

ωd = −K2v cos(θK2 − θv)− 2k0v cosϕ0 cos(θN − θv). (4.30)

The first term on the right hand side of (4.30) is the negative scalar product of the

ocean wave vector that satisfies (4.29) with the target velocity, while the second term

is the classical bistatic Doppler shift for uniform linear motion as seen in (4.6). Thus,

(4.30) may be interpreted as the sum of two Doppler shifts, with one associated with

translation across a specific ocean surface component and the second associated with

the normal component of the target velocity relative to the radar geometry.

4.2.5 Results and Observations

To demonstrate the utility of the cross section models for detecting targets in the

presence of sea clutter, the power spectral density of a scattered signal received by

the system described in Section 4.2.3 from an ocean patch with and without the target

defined in Section 4.2.1 are calculated. Where it is deemed helpful to the discussion,

the individual radar cross section components are calculated and presented. Table

4.2 lists the nominal values for the target and wind velocities, as well as the location

of ocean patch relative to the radar. It should be noted that angles are given relative

to the positive x-axis in the receiver geometry shown in Figure 4.2. These values,

in addition to those listed in Table 4.1 are used as inputs to the radar cross section
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components and system model. In the following four examples, the target speed,

target heading, wind speed, and bistatic angle will be independently varied from

their nominal values to observe their effects, if any, on target detection. All other

values will remain as listed in Tables 4.1 and 4.2.

Parameter Symbol Value
Target Heading θv −30◦

Target Speed v 15 m/s
Wind Speed U 8 m/s

Wind Direction θ 0◦

Bistatic Angle ϕ0 0◦ (monostatic)
Ellipse Normal Direction θN 90◦

Transmitter Range ρ01 50 km
Receiver Range ρ02 50 km

Table 4.2: Nominal parameters for calculations.

Figure 4.3: Radar cross section components of an ocean patch containing a Visby-
class like target with zero-velocity and oriented along the x-axis. See Tables 4.1 and
4.2 for the various model parameters.
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Prior to calculating and plotting cross sections and spectral densities for a vari-

ety of conditions, the zero-velocity case is first considered. The radar cross section

components of an ocean patch containing the target described in Section 4.2.1 are

calculated and plotted in Figure 4.3. In calculating the RCS components, the nominal

values in Tables 4.1 and 4.2 have been used with the exception that the target has

been oriented along the x-axis and fixed at zero-velocity, i.e. θv = 0 and v = 0. This is

evident in the first-order target RCS, depicted as an impulse at zero Doppler, labeled

αt1. The ocean cross section component contains the characteristic Bragg peaks, la-

beled FN and FP , at ±0.1766 Hz as predicted by (1.47). It may be noted that for the

radar operating frequency and sea state in this example, the ocean Doppler spectrum

peaks attributed to second-order effects are not observed. Additionally, the second-

order target-ocean contribution to the radar cross section is seen to be negligible,

appearing as small bands on either side of αt1. The second plot, Figure 4.4, contains

the corresponding PSD of the sum of all components in Figure 4.3 as well as the PSD

of just the ocean component. Also shown is the predicted noise floor. The PSD’s

are seen to completely overlap except for the target scatter peak, αt1. While in this

example, the second-order target ocean component does not significantly contribute

to the total received PSD, it follows that if there is a discrepancy between the PSD

of the total patch and the PSD of just the ocean contribution away from αt1, it may

be attributed to a target-ocean scatter component.

4.2.5.1 Varying Target Speed

In this example, the marine vessel’s speed is varied from 0 to 15 m/s in 5 m/s in-

crements while the target orientation and direction of motion is maintained at −30◦
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Figure 4.4: Received power spectral densities from an ocean patch with and without
a Visby-class like target with zero-velocity and oriented along the x-axis. See Tables
4.1 and 4.2 for the various model parameters.

with respect to the positive x-axis. The resulting predicted received power spectral

densities are plotted in Figures 4.5a through 4.5d and a summary of the locations and

magnitudes of the first-order target and second-order target-ocean peaks is listed in

Table 4.3. In the first three plots, the first-order return from the target manifests as a

strong peak in the total scatter that is clearly distinguished from the ocean only scat-

ter. The magnitude of this peak is approximately constant through the three plots,

while the locations of these peaks shift to increasingly higher Doppler frequencies as

predicted by the argument of the delta function in (4.6).

A particularly important result is observed in Figure 4.5d. The strong first-order

ocean return almost entirely masks the first-order return from the target near fd =

0.15 Hz; however, a secondary peak occurs near fd = 0.0805 Hz when the ship is

present. Figure 4.6 plots the first-order target and second-order target cross section

components separately, as well as the ocean patch cross section for this case. In
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(a) v = 0 m/s (b) v = 5 m/s

(c) v = 10 m/s (d) v = 15 m/s

Figure 4.5: Predicted received power spectral densities from an ocean patch with
and without a Visby-class like target with the parameters listed in Tables 4.1 and
4.2. The target speed, v, is set to 0, 5, 10, and 15 m/s in subfigures (a) through (d)
respectively.

addition to the peaks identified in Figure 4.3, a strong second-order target-ocean

peak, labelled α2to, is observed for a Doppler frequency of fd = 0.0805 Hz. Thus, it

is the second-order target-ocean component of the radar cross section producing the

additional peak in the total return. This suggests the possibility of detecting a ship

masked by ocean clutter by its secondary scatter.

To illustrate how the strong peak in the second-order target-ocean component is

generated, the m = 1 integration contour of the target-ocean cross section, as written
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Target Speed [m/s] v = 0 v = 5 v = 10 v = 15
First-order
target peak

fd [Hz] 0 0.0495 0.1003 0.1498
P(fd) [dBW] -130.4 -130.4 -130.4 -128.9

Second-order
target-ocean peak

fd [Hz] - - - 0.0805
P(fd) [dBW] - - - -133.9

Table 4.3: Summary of observations of the varying speed calculations depicted in
Figure 4.5. A ‘−’ indicates the corresponding peak was not observable for the specified
target speed.

Figure 4.6: Radar cross section components of an ocean patch with a Visby-class
like target with the parameters listed in Tables 4.1 and 4.2. The direction of target
velocity, θv, is set to −30◦.

in (4.15), in the K⃗1 = K⃗ − K⃗2 plane is overlaid on a representation of the magnitude

of the two-dimensional Fourier transform of the target profile, Ξt0(K⃗1), as shown

in Figure 4.7. Two additional contours are also included in the plot that indicate

conditions of singularities or sharp local maxima in the integrand of (4.26). The solid

black contour corresponds to a singularity that arises when the denominator under

the delta function in the cross section expression as written in (4.26) evaluates to zero.

The dashed black contour represents the condition of a sharp local maximum in the
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symmetric electromagnetic coupling coefficient. This contour, as noted by Gill [9],

takes the shape of a circle in the K⃗1 plane. The red integration contour is seen to pass

through an intersection of the singularity and maxima contours that occurs within the

‘main lobe’ of |Ξt0|(K⃗). It follows that the integration produces a significant value as

three factors within the integrand are large in the neighbourhood of this intersection.

Figure 4.7: Illustration of the m = 1 integration contour for the second-order target-
ocean cross section component in the K⃗1 plane. The contour is shown in red and
corresponds to the Doppler frequency of fd = 0.0805 Hz in Figure 4.5d. The con-
ditions that produce significant contributions are shown in solid and dashed black
traces. The plot is overlaid on the magnitude of the Fourier transform of the target
profile.

4.2.5.2 Varying Target Heading

Figures 4.8a through 4.8d depict the predicted received power spectral densities for

target headings of 0◦, −30◦, −60◦, and −90◦, with all angles referred to the positive x-

axis. A summary of the locations and magnitudes of the first-order target and second-

order target-ocean peaks is listed in Table 4.4. Similar to the previous example, each
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figure contains a peak in the total scatter corresponding to the first-order return from

the target. The location of this peak corresponds to the Doppler shift due to the

normal component of the ship’s velocity increasing as predicted by the delta function

of (4.6). Unlike the last example however, the magnitude of the first-order target RCS

reduces as the direction of the ship is rotated. Physically, this may be explained as

the projected cross sectional area of the target in the direction of the radar decreases

from its maximum value when the ship is oriented along the x-axis (θv = 0◦), to its

narrowest when the ship is heading directly towards the radar (θv = −90◦). Each

plot in 4.8 also contains an observable second-order target-ocean contribution in the

total return. In Figure 4.8a, the contribution appears as sharp peak to the left of the

first-order peak. Figure 4.8b, contains the same results as 4.5d that were previously

detailed. In Figures 4.8c and 4.8d the second-order target-ocean contribution appears

as shoulders to the right of the first-order target peak. These results suggest that

in addition to providing a means of detecting clutter-limited targets, information

regarding the target orientation may be determined from the target-ocean returns.

103



(a) θv = 0◦ (b) θv = −30◦

(c) θv = −60◦ (d) θv = −90◦

Figure 4.8: Predicted received power spectral densities from an ocean patch with and
without a Visby-class like target with the parameters listed in Tables 4.1 and 4.2.
The direction of target velocity, θv, is set to 0◦, −30◦, −60◦, and −90◦ respectively
in subfigures (a) through (d).

Target Heading [◦] θv = 0 θv = −30 θv = −60 θv = −90
First-order
target peak

fd [Hz] 0 0.1498 0.2600 0.3000
P(fd) [dBW] -127.5 -128.9 -136.8 -141.0

Second-order
target-ocean peak

fd [Hz] -0.862 0.0805 0.349 0.359
P(fd) [dBW] -135.8 -133.9 -150.9 -144.7

Table 4.4: Summary of observations of the varying heading calculations depicted
in Figure 4.8. A ‘−’ indicates the corresponding peak was not observable for the
specified target speed.
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4.2.5.3 Varying Ocean Conditions

In Figure 4.9, the received power spectral densities have been calculated for three

different sea-states. This is achieved by adjusting the speed of the wind generating

the ocean waves to 5, 10, and 15 m/s. A summary of the locations and magnitudes of

the first-order target and second-order target-ocean peaks is listed in Table 4.5. In the

lowest sea-state, plotted in Figure 4.9a, the first-order target scatter peak at fd = 0.15

Hz is observed to exceed that of the ocean clutter and noise floor, suggesting a target

is likely to be successfully detected. As the sea-state increases, the first-order target

peak is dominated by the first-order ocean clutter; however, an interesting effect is

observed in the second-order target-ocean peak near fd = 0.0805 Hz. When the

wind speed increases from 5 to 10 m/s, the magnitude of this peak is seen to increase

significantly relative to the ocean returns, and it is easily distinguished from the ocean

clutter. As the wind speed is further increased to 15 m/s, higher-order peaks in the

ocean clutter are seen to appear such that target-ocean return is difficult to discern.

This suggests there may be a particular range of sea-states where the target-ocean

returns provide a secondary detection mechanism.
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(a) U = 5 m/s (b) U = 10 m/s

(c) U = 15 m/s

Figure 4.9: Predicted received power spectral densities from an ocean patch with and
without a Visby-class like target with the parameters listed in Tables 4.1 and 4.2.
The speed of the wind generating the ocean waves, U , is set to 5, 10, and 15 m/s in
subfigures (a) through (c) respectively.

Wind Speed [m/s] U = 5 U = 10 U = 15
First-order
target peak

fd [Hz] 0.1498 0.1498 -
P(fd) [dBW] -130.5 -126.4 -

Second-order
target-ocean peak

fd [Hz] - 0.0805 0.0805
P(fd) [dBW] - -126.5 -122.1

Table 4.5: Summary of observations of the varying ocean condition calculations de-
picted in Figure 4.9. A ‘−’ indicates the corresponding peak was not observable for
the specified target speed.
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4.2.5.4 Varying Bistatic Angle

In a final example exploring the dependence on model inputs, the bistatic angle is set

to 0◦, 30◦, and 60◦ and the results shown in Figure 4.10. The locations and magnitudes

of the first-order target and second-order target-ocean peaks listed in Table 4.6. The

plots show that the location of the first-order target peak has a stronger dependency

on the bistatic angle than the locations of the first-order ocean peaks. From the delta

function in equation (4.6), the Doppler shift of the target peak may be found as

fdt0 =
2k0v cosϕ0 cos(θN − θv)

2π
=

2v

λ0

cosϕ0 cos(θN − θv) , (4.31)

while (1.47) gives the locations of the first-order Bragg peaks as fd = ±
√
2gk0 cosϕ0.

Thus, the target peak frequencies vary with cosϕ0 and the Bragg frequencies vary

with
√
cosϕ0 and the behaviour seen in Figure 4.10 is expected. The results also

show the second-order target-ocean peak shifting to lower Doppler frequencies for

larger bistatic angles. As a consequence, for the same target and ocean conditions,

the bistatic angle may determine whether a first-order target peak or second-order

target-ocean peak is observable.
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(a) ϕ0 = 0◦ (b) ϕ0 = 30◦

(c) ϕ0 = 60◦

Figure 4.10: Predicted received power spectral densities from an ocean patch with
and without a Visby-class like target with the parameters listed in Tables 4.1 and
4.2. The bistatic angle at the patch of interest, ϕ0, is set to 0, 30, and 60 degrees in
subfigures (a) through (c) respectively.

Bistatic Angle [◦] ϕ0 = 0 ϕ0 = 30 ϕ0 = 60
First-order
target peak

fd [Hz] 0.1498 0.1302 0.0749
P(fd) [dBW] -128.9 -129.5 -127.8

Second-order
target-ocean peak

fd [Hz] 0.0805 0.0434 -
P(fd) [dBW] -133.9 -137.5 -

Table 4.6: Summary of observations of the varying bistatic angle calculations depicted
in Figure 4.10. A ‘−’ indicates the corresponding peak was not observable for the
specified target speed.
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4.3 Time-Series Simulation

In the examples of the preceding section, received power spectral densities were com-

puted directly in Doppler frequency domain. To model the process used in forming

Doppler spectra by practical radars, Gill andWalsh [62] proposed a technique whereby

time series data of both ocean clutter and external noises are simulated. The series

are summed together in the time domain before being taken back to the frequency

domain via the Fast Fourier Transform (FFT). The resulting PSD estimates account

for the finite signal duration corresponding to a spreading out of sharp peaks in

Doppler frequency. Here, the returns from the target and target-ocean contributions

are included with the clutter returns to predict the power spectral density that may

be estimated from the signal received by a HF radar.

To obtain a time series from the power spectral density of a one-dimensional

stationary Gaussian process, Gill modifies a model used by Pierson [76]. The time-

series, f(t), is found as

f(t) =

∫︂
B

ejωtejϵ(ω)
√︃

Fs(ω)
dω

2π
, (4.32)

where B is the total Doppler bandwidth of the signals, Fs(ω) is the power spectral

density of f(t), and ϵ(ω) is a uniformly distributed random phase between 0 and 2π.

To make use of (4.32), a signal power spectral density, Ps, is defined as the PSD of

the received signal due to the sum of the first-order and second-order target-ocean

scatters. Similarly, a clutter PSD, Pc, may be defined for the returns from the ocean

surface, and a noise spectral density (NSD), Pn(ωd), defined for the signal produced
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by the external noise discussed in Section 4.2.3. By substituting

Fs(ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ps, for the signal process

Pn, for the noise process

Pc, for the clutter process

, (4.33)

f(t) may be recognized as

f(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
s(t), for the signal process

n(t), for the noise process

c(t), for the clutter process

. (4.34)

The power spectral densities, Ps and Pc, may be found by substituting the appropriate

radar cross section components into (4.19). Gill addresses the external NSD for both

finite and infinite series of pulses. For a sufficiently long series of pulses, Pn(ωd) may

be approximated using (4.20).

To compute an example time series, a slightly modified scenario from the example

in the previous section is modelled, with the full parameters listed in Table 4.7. In

determining the total signal duration available to compute the FFT, the extent of

the radar cell and target velocity must be considered. For the radar range resolution,

target distance, and receiving antenna beamwidth, as well as the velocity of the target

listed in Table 4.7, the maximum time-on-target is approximately 100 s. Knowing

this, a discretized form of (4.32) is used to generate 2048-point time series realizations

of the signal, noise, and clutter processes at a sampling frequency of 21 samples per

second. The time series are summed and plotted in Figure 4.11.
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Parameter Symbol Value
Operating Frequency f0 3 MHz
Waveform Pulsed Sinusoid
Peak Transmitter Power Pt 16 kW
Pulse Width τ0 6 µs
Pulse Repetition Interval TL 500 µs
Transmitting Antenna Gain Gt 2 dBi
Receiving Antenna Gain Gr 19.67 dBi
Receiving Antenna Half Power Beamwidth θ3dB 3◦

Median External Noise Figure Fam 45 dB
Sommerfeld Attenuation Function F (ρ, ω0) 0.312
Target Heading θv −30◦

Target Speed v 15 m/s
Wind Speed U 8 m/s

Wind Direction θ 45◦

Bistatic Angle ϕ0 0◦ (monostatic)
Ellipse Normal Direction θN 90◦

Transmitter Range ρ01 25 km
Receiver Range ρ02 25 km

Table 4.7: Parameters for time-domain simulations.

Figure 4.11: Simulated time-series data for the parameters listed in Table 4.7. The
signal represents the received signal including returns from the target and ocean, as
well as external noise sources.

111



To estimate the PSD of the total received signal shown in Figure 4.11, a 2048

sample FFT is first taken using a modified Bartlett-Hann window [77]. A periodogram

estimate is then formed as the magnitude squared with a suitably scaled frequency

axis and plotted in Figure 4.12. Also plotted in Figure 4.12 is the periodogram of the

‘signal’ comprised of only the clutter and noise components. The results show that

the first-order return from the target, labeled αt1, is almost entirely obscured by the

positive Bragg peak, FP , and could potentially be mis-identified as a shoulder of FP .

The second-order target-ocean peak, α2to, however, is clearly distinguished from the

background clutter and noise signal. Thus, this example has demonstrated how in a

practical radar system, the second-order target-ocean scatter remains detectable and

provides a means of detecting a ship otherwise masked by first-order clutter.

Figure 4.12: Periodogram of simulated time-series data.
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4.4 Conclusion

In this chapter, the surface target radar cross section components derived in Chapter

3 were simplified for the case of a target moving with constant velocity. It was

observed that the motion-related factor in the radar cross section component involving

only scatters from the target reduced to a delta function constraining the response

to a single Doppler frequency that is consistent with the expected bistatic Doppler

shift from classical physics. The second-order target-ocean motion-related factor was

reduced to a delta function whose argument included the classical bistatic Doppler

shift, as well as terms related to the ocean and target displacement over a radar

observation.

To demonstrate a practical application of the derived models, a surface target

model corresponding to a simplified Visby-class corvette was introduced. In the con-

text of the small height and slope assumptions inherent in the expressions derived

in this work, constraints related to the target definition were addressed. It was con-

cluded that the model was able to account for the target height, volume, orientation,

velocity and aspect ratio. It was noted from the analysis of Walsh and Gill [21] that

in neglecting higher-order slope components, the computed results were likely to un-

derestimate radar cross sections by approximately 7 dB and larger returns may be

expected in practical measurements.

The radar cross section expressions were computed for the representative surface

target and included in a radar system model to predict the received signal strength

under varying operating conditions. It was observed that under some conditions,

the target-ocean cross section component produced an observable response when the
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target-only scatter was masked by sea-clutter. Thus, the second-order target-ocean

scatter provides a means of target detection in clutter-limited scenarios. In a final

example, the received radar signal was predicted using a time series simulation. This

demonstrated that target-ocean scatter remains detectable when finite integration

times that account for a practical radar range cell and target velocity are considered.
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Chapter 5

Conclusions

5.1 Summary and Significant Results

The objective to develop a bistatic model of the HF radar cross section for a gen-

eral surface target on the ocean that includes the effects of the ocean itself has been

achieved. A model was derived by employing and extending previous analyses ad-

dressing scattering from the ocean and surface targets. The resulting cross section

model was applied to the case of a marine vessel moving with constant velocity and

incorporated into a system model of a representative coastal HF radar observing an

ocean environment. Example computations demonstrated the utility of the model,

with results indicating the expressions may be used to aid in the location and tracking

of ships masked by ocean clutter in high sea states.

The model derivation initiated with an analysis of the scattered electric field from

a surface target on a time-varying rough surface was presented in Chapter 2. The

analysis utilized a transformation proposed by Walsh and Gill [21] for adapting ex-

pressions describing the scattered field from a rough surface to model the scattering

115



from deterministic targets. In applying the transformation to bistatic expressions

for rough surface scattering derived in [17], new expressions describing the bistatic

scattered field from a surface target were obtained. To account for a second-order

scatter involving both a deterministic target and the surrounding rough surface, the

transformation was adapted such that it was only applied to a single scattering point.

Subsequent analyses showed both an ocean-target and target-ocean field could be

combined into a single electric field component using a symmetric electromagnetic

coupling coefficient frequently seen in work addressing scattering from the ocean sur-

face at HF. The bistatic electric field equations for target scatter were then simplified

following a similar approach employed in [21], with one modification required to ac-

count for the new bistatic geometry. A nominal scattering location was assumed to

allow for a stationary phase approximation in evaluating a convolutional integral. To

validate this assumption, an alternative analysis assuming a large scatter patch was

performed. This second approach is similar to that employed by other researchers in

HF radar [11,78] and produced equivalent electric field expressions.

The radar cross section models for a deterministic target embedded in a time-

varying rough surface are formally derived in Chapter 3. The RCS expressions are

found by first determining the power spectral density of the received scattered field

through the Fourier transform of its autocorrelation function. To this point of the

analysis, the models represent a general case where the target motion is left as ar-

bitrary. The only simplifying assumption imposed is that the target displacement

over successive radar acquisitions is considered small relative to the distance to ei-

ther transmitter or receiver. It is observed that the resulting expressions contain

similarities to those governing ocean scatter for HF radars installed on moving plat-
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forms [42,44,79], in that the motion of the target (or platform in the referenced works)

is accounted for by the Fourier transform of the ensemble average of a complex ex-

ponential.

To demonstrate a practical application of the results presented in Chapter 3, the

general-motion cross sections are simplified for the case of a surface target moving

with constant velocity. The component of the RCS involving only target scatter

was found to contain a Delta function corresponding to the classical bistatic Doppler

shift. The second-order target-ocean component also contained a Delta function with

an argument that included the classical bistatic Doppler shift in addition to terms

related to ocean dispersion and the relative displacement of the target between radar

acquisitions.

In the second part of Chapter 4 example cross sections were computed for a target

profile representative of a Visby-class corvette. The cross sections were included in a

system model representative of an HF radar demonstrator previously installed at Cape

Race. The system model was used to predict the received signal strength including

contributions from target scatter, ocean clutter, and external noise under varying

conditions. The results of the example computations demonstrated the first-order

target-only scatter behaved as expected in its magnitude response and Doppler shift.

The most notable observation however, was that the second-order RCS contribution

involving a target and ocean scatter was detectable in the presence of external noise

and sea-clutter in certain configurations. This observation implies the model derived

in this work may be used to aid in the location and tracking of ships masked by

ocean clutter in high sea states. In a final demonstration, the system model was

adapted to a time-series simulation to better represent the process used by practical
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radars to form Doppler spectra. For this example, a time series of a received radar

signal was generated for the total duration a target remained within a radar cell.

A Fourier transform was performed on the data to generate Doppler spectra. The

results demonstrated that the second-order target-ocean scatter remains detectable

when Doppler integration time is accounted for.

5.2 Suggestions for Future Work

In completing the research detailed in this dissertation, several areas of future develop-

ments have been identified. In undertaking the fundamental analyses that produced

the RCS models of this work, the potential to extend the analyses to more general

cases is apparent. Additionally, the results of example computations performed in

Chapter 4 suggest a number of applications in which the models may be employed.

This includes an experimental campaign to allow for a refinement of the RCS expres-

sions. Some examples of potential future developments are discussed here.

In using the bistatic rough surface scattering expressions derived by Gill and

Walsh [17,18], the analyses performed in this work inherently assume that the surface

target may be considered small in both height and slope. The small height assumption

considers the electrical height of the surface (i.e kξ << 1), as such, the operating

frequency used in the examples of this work were intentionally limited to the lower

end of the HF band, where a target height of 10 m above the ocean surface was

found to adhere to the Rayleigh limit of kξ < π
5
. Clearly for radars with operating

frequencies at the upper end of the HF band, the applicability of this constraint will

prevent the model’s application to practical target heights. It follows that further
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analysis to address this limitation will increase the potential applications of the cross

section models. In [43], correction terms to the small height ocean RCS were derived.

One potential direction addressing the small height constraint would be to consider

the applicability of these correctional terms to surface targets.

The small slope constraint considers the physical mean square slope of the surface

target profile. In computing example cross sections of a tumblehome hull, it was noted

that the small slope constraint represented a greater restriction on target height than

the electrically small height limitation. Following [21], the small slope restriction was

violated with the understanding the magnitude of the resulting RCSs will represent

underestimates of the true value. Developing corrections to address this small slope

constraint are likely to increase the suitability of the models to more general targets

and increase the accuracy of the corresponding RCS estimates.

The surface target cross sections presented in this work correspond to electromag-

netic scatters from ship hulls. It has been noted in previous works that the radar

returns from small ships are dominated by scattering from vertical superstructures

(e.g. masts) acting as resonant dipole or monopole scatterers [4, 80]. To produce

RCS expressions for these targets including the ocean-target component found in this

work, the scattering of a vertical linear conductor over a time-varying rough surface

may be addressed. One method suited to this area of development is the Walsh anal-

ysis that forms the foundation of the derivations found in this dissertation. It may

be expected that the target-ocean scatter from a dipole-like scatterer would appear

to have similarities to the foot scatter discussed in Chapter 1 and analyzed by Gill

and Walsh [9,17,18]. One challenge in this undertaking would be developing expres-

sions for arbitrary and location-dependent source fields rather than the case of an
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elementary dipole at the origin.

As the cross sections derived in this work are relatively simple to compute, they

can provide a significant benefit to future developments of signal processing tech-

niques for the detection, tracking, and classification of surface targets in the presence

of ocean clutter. This includes the ability to validate proposed signal processing al-

gorithms without the need to undertake an expensive experimental campaign, as well

as the ability to generate synthetic training data sets for use with machine learning

techniques.

The example results presented in this dissertation are based on computations and

simulations of the cross sections as well as a radar system model. While care was

taken to account for practical considerations such as ocean clutter and the presence

of external noise, an important area of future work is an experimental measurement

campaign. By employing an operational HF radar and a cooperative target, the mod-

els derived in this work may be further validated and refined based on the measured

results.
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Appendix A

Summary of Electric Field

Formation Process

To track the evolution of the three electric field components derived in Chapter 2,

a flow chart depicting the general process is presented in Figure A.1. Additionally,

Tables A.1 - A.3 describe the primary operation performed in each step and provide

references to the relevant equations and page numbers.
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Apply target transformation to
obtain 2D integral expression

for target or target-ocean
scatter

Reduce 2D integral to 1D
assuming target is far remote
from transmitter and receiver

Evaluate 1D integral for long
transmitting pulse width

Electric field scattered from
time-varying rough surface

Simplified scattered field target
or target-ocean component

Figure A.1: Flowchart summarizing the process used in Chapter 2 for deriving scat-
tered electric field components.
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Step Description
Symbol
of Result

Equation
Reference

Page
Reference

0
Initial rough surface electric field
expression

(E+
0n)1 (2.1) p. 43

1 Target substitution

(E+
0n)1t

(2.3) - (2.5) p. 44
2 Stationary phase integral (2.7) - (2.14) pp. 45 - 47
3 Long pulse assumption (2.15) - (2.19) pp. 47 - 48
4 Final target scattered electric field (2.19) p. 48

Table A.1: Summary of first-order target scattered electric field derivation.

Step Description
Symbol
of Result

Equation
Reference

Page
Reference

0
Initial rough surface electric field
expression

(E+
0n)2ep (2.20) p. 49

1 Target substitution

(E+
0n)2t

(2.21) - (2.22) p. 49
2 Stationary phase integral (2.23) - (2.26) pp. 50 - 51
3 Long pulse assumption (2.27) p. 51
4 Final target scattered electric field (2.28) p. 51

Table A.2: Summary of second-order target scattered electric field derivation.

Step Description
Symbol
of Result

Equation
Reference

Page
Reference

0
Initial rough surface electric field
expression

(E+
0n)2ep (2.20) p. 49

1 Target substitution (2.36) p. 55
2 Stationary phase integral (2.37) - (2.38) pp. 56 - 56
3 Long pulse assumption (E+

0n)2to (2.39) p. 57

4 Final target-ocean scattered
electric field

(2.40) p. 57

Table A.3: Summary of second-order target-ocean scattered electric field derivation.
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Appendix B

Bistatic First-Order Scattered

Electric Field from a Deterministic

Target for a Continuous Wave

Source

An alternative to the analysis detailed in Section 2.2 is presented here. In Section

2.2, the analysis began with an expression for the scattered field from a time-varying

surface after a pulsed dipole transmitter is specified. The analysis here begins instead

with the general case describing the scattered field from a time-invariant surface in

the frequency domain. The transmitter is then assumed to be a dipole excited by a

continuous wave source, and the surface region contributing to the scattered field is

explicitly specified. The objective is to show both methods provide equivalent results

and to justify the assumptions made in the final steps of simplifying the first-order

scattered field from a deterministic surface target.

Figure B.1 depicts the geometry of a first-order scatter from a rough surface.
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In [21], the normal component of the corresponding scattered electric field in the

frequency domain is found to be

(︁
E+

0n

)︁
1
≈ kC0

(2π)2

∑︂
m,n

PK⃗mn
Kmn

·
∫︂
y1

∫︂
x1

cos(θmn − θ1)
F (ρ1)F (ρ2)

ρ1ρ2
ejρ⃗1·K⃗mne−jk(ρ1+ρ2)dx1dy1 ,

(B.1)

where k is the radar wavenumber, (x1, y1) is the scattering point location, and the

surface is represented as

ξ(x, y) =
∑︂
m,n

PK⃗mn
ejρ⃗·K⃗mn . (B.2)

For a short transmitting dipole of length ∆l, the parameter C0 may be specified as a

function of the excitation radian frequency ω,

C0(ω) =
∆lk2

jωϵ0
I(ω), (B.3)

where I(ω) is the current on the dipole and ϵ0 is the permittivity of free space.

R x

y

T

*

(0,0)

Figure B.1: First-order rough surface scatter.
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Rather than finding a stationary phase approximation to (B.1) prior to finding a

time-domain expression as in [21] or [18], the electric field expression will be taken im-

mediately to the time-domain. Afterwards, a continuous wave source may be specified

and the region of interest will be limited to a particular rectangular patch. Taking

the inverse Fourier transform of (B.1)

(︁
E+

0n

)︁
1
(t) ≈ 1

(2π)2
F−1

t (kC0)
t∗
∑︂
m,n

PK⃗mn
Kmn

·
∫︂
y1

∫︂
x1

cos(θmn − θ1)
F (ρ1, ω0)F (ρ2, ω0)

ρ1ρ2
ejρ⃗1·K⃗mnδ

(︃
t− ρ1 + ρ2

c

)︃
dx1dy1 ,

(B.4)

where Ft,
t∗ indicate a Fourier transform and convolution with respect to t respectively,

and the frequency dependency of the Sommerfeld attenuation functions, F ( ), has

been explicitly written. Additionally, the approximate inverse Fourier transform

F−1
[︁
F (ρ1, ω)F (ρ2, ω)e

jk(ρ1+ρ2)
]︁
≈ F (ρ1, ω0)F (ρ2, ω0)δ

(︃
t− ρ1 + ρ2

c

)︃
(B.5)

has been used where ω0 is the central frequency of the excitation. This approximation

is used in [21] with details discussed in [9].

On specifying a CW current source,

i(t) = I0e
jω0t , (B.6)
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the inverse Fourier transform of kC0 can be found following the work in [21] as

F−1(kC0) = j
η0∆l

c2
∂2

∂t2
[i(t)]

= −jη0∆lI0k
2
0e

jω0t ,

(B.7)

where k0 =
ω0

c
. Substituting (B.7) into (B.4) and evaluating the convolution yields

(︁
E+

0n

)︁
1
(t) ≈−jη0∆lI0k

2
0

(2π)2

∑︂
m,n

PK⃗mn
Kmne

jω0t

·
∫︂
y1

∫︂
x1

cos(θmn − θ1)
F (ρ1, ω0)F (ρ2, ω0)

ρ1ρ2
ejρ⃗1·K⃗mne−jk0(ρ1+ρ2)dx1dy1 .

(B.8)

Now, consideration will be limited to an L×L patch, centred at (x01, y01). First, the

transformations

x1 = x01 + x′
1 and

y1 = y01 + y′1 ,

(B.9)

are introduced and used to write the distances ρ1 and ρ2 as

ρ1 =
√︁

(x01 + x′
1)

2 + (y01 + y′1)
2

= ρ01

√︄
1 +

2x01x′
1 + 2y01y′1
ρ201

+

(︃
x′
1 + y′1
ρ01

)︃2 (B.10)

and

ρ2 =
√︁

[ρ− (x01 + x′
1)]

2 + (y01 + y′1)
2

= ρ02

√︄
1 +

−2(ρ− x01)x′
1 + 2y01y′1

ρ202
+

(︃
x′
1 + y′1
ρ02

)︃2 (B.11)

where ρ01 =
√︁

x2
01 + y201, and ρ02 =

√︁
(ρ− x01)2 + y201. If the distances from the radar

transmitter and receiver to the patch are large relative to the patch extent, (i.e. ρ1,

140



ρ2 ≫ L , (B.10) and (B.11) may be approximated as

ρ1 ≈ ρ01 + ρ⃗01 · ρ⃗ ′
1

(B.12)

and

ρ2 ≈ ρ02 − ρ⃗02 · ρ⃗ ′
1 , (B.13)

where ρ⃗ ′
1 = x′

1x̂+ y′1ŷ. Using these approximations allows (B.8) to be simplified to

(︁
E+

0n

)︁
1
(t) ≈−jη0∆lI0k

2
0

(2π)2

∑︂
m,n

PK⃗mn
Kmne

jω0tejρ⃗01·K⃗mne−jk0(ρ01+ρ02)

·
∫︂ L

2

y′2=
L
2

∫︂ L
2

x′
2=

L
2

cos(θmn − θ1)
F (ρ1)F (ρ2)

ρ1ρ2
ejρ⃗

′
1·K⃗mne−jk0[(ρ̂01−ρ̂02)·ρ⃗ ′

1]dx′
1dy

′
1 .

(B.14)

In Appendix A of [9], it is established that the ellipse normal bisects the angle between

ρ⃗01 and ρ⃗02. Using this fact, it is easy to show that ρ̂01 − ρ̂02 = 2 cosϕ0N̂ . If it is

further assumed that factors in the integrand other than the exponential containing

x′
1 and y′1 are slowly varying and may be removed from the integral and replaced with

their values at the centre of the patch, (B.4) can be re-written as

(︁
E+

0n

)︁
1
(t) ≈ −jη0∆lI0k

2
0

(2π)2

∑︂
m,n

PK⃗mn
Kmne

jω0t

· ejρ⃗01·K⃗mne−jk0(ρ01+ρ02) cos(θmn − θ01)
F (ρ01)F (ρ02)

ρ01ρ02

·
∫︂ L

2

y′1=
L
2

∫︂ L
2

x′
1=

L
2

ejρ⃗
′
1·K⃗mne−j2k0 cosϕ0N̂ ·ρ⃗ ′

1dx′
1dy

′
1 .

(B.15)
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The double integration in (B.15) can be carried out as

Ix′
1,y

′
1
=

∫︂ L
2

y′1=
L
2

∫︂ L
2

x′
1=

L
2

ejρ⃗
′
1·K⃗mne−j2k0 cosϕ0N̂ ·ρ⃗ ′

1dx′
1dy

′
1

=

∫︂ L
2

x′
1=

L
2

ejx
′
1(Kmn,x−2k0 cosϕ0Nx)dx′

1

∫︂ L
2

y′1=
L
2

ejy
′
1(Kmn,y−2k0 cosϕ0Ny)dy′1

= LSa

[︃
L

2
(Kmn,x − 2k0 cosϕ0Nx)

]︃
LSa

[︃
L

2
(Kmn,y − 2k0 cosϕ0Ny)

]︃
,

(B.16)

where the x and y subscripts added to the magnitude quantities Kmn and N indicated

the x and y components of their corresponding vectors. Using (B.16) in (B.15) gives

(︁
E+

0n

)︁
1
(t) ≈−jη0∆lI0k

2
0

(2π)2

∑︂
m,n

PK⃗mn
Kmne

jω0t

ejρ⃗01·K⃗mne−jk0(ρ01+ρ02) cos(θmn − θ01)
F (ρ01)F (ρ02)

ρ01ρ02

· LSa
[︃
L

2
(Kmn,x − 2k0 cosϕ0Nx)

]︃
· LSa

[︃
L

2
(Kmn,y − 2k0 cosϕ0Ny)

]︃
,

(B.17)

To use (B.17) in modelling the scattered electric field from a moving deterministic sur-

face target, the required transformation that is equivalent to (1.67) can be identified

as

PK⃗mn
→ e−jK⃗·ρ⃗t(t)Ξt0(K⃗)

dK⃗

(2π)2
. (B.18)
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Applying this to (B.17) yields

(︁
E+

0n

)︁
1
(t) ≈ −jη0∆lI0k

2
0

(2π)4
ejω0t

∫︂
K⃗

e−jK⃗·ρ⃗t(t)Ξt0(K⃗)K

· ejρ⃗01·K⃗e−jk0(ρ01+ρ02) cos(θK − θ01)
F (ρ01)F (ρ02)

ρ01ρ02

· LSa
[︃
L

2
(Kx − 2k0 cosϕ0Nx)

]︃
· LSa

[︃
L

2
(Ky − 2k0 cosϕ0Ny)

]︃
dK⃗ .

(B.19)

If the rectangular patch is sufficiently large, the sampling functions in (B.19) may be

approximated as

LSa

[︃
L

2
(Kx − 2k0 cosϕ0Nx)

]︃
→ 2π cosϕ0δ(Kx − 2k0 cosϕ0Nx) (B.20)

and

LSa

[︃
L

2
(Kx − 2k0 cosϕ0Nx)

]︃
→ 2π cosϕ0δ(Ky − 2k0 cosϕ0Ny) . (B.21)

Under this condition, (B.19) simplifies to

(︁
E+

0n

)︁
1
(t) ≈ −j2η0∆lI0k

3
0F (ρ01)F (ρ02)

(2π)2ρ01ρ02
cos2(ϕ0)Ξt0(K⃗)

· ejk0∆ρsejρ⃗01·K⃗e−jK⃗·ρ⃗0te−jK⃗·δρ⃗t(t) ,

(B.22)

where K⃗ = 2k0 cosϕ0N̂ as a result of the delta function constraints and the identity

ϕ0 = θN −θ01 was used from Figure B.1. Additionally the first exponential was found

using the identity

ejω0te−jk0(ρ01+ρ02) = ejk0∆ρs (B.23)
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derived in [18].

Comparing (B.22) to the first-order target scatter electric field in (2.19), they are

seen to be equivalent, with the exception of a few phase terms that are constant with

respect to t. In Chapter 3, radar cross sections are obtained from these expressions

by finding the power spectral density as the Fourier transform of the autocorrelation

function. This operation results in the elimination of constant phase terms; thus RCS

expressions derived using either electric field will produce the same result.
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Appendix C

Reduction to Monostatic

Zero-Velocity, Target-Only Cross

Sections

In Section 3.3 it was shown the first-order target-only RCS component derived in

this work reduces to its monostatic, zero-velocity equivalent derived in previous work

by Walsh and Gill [21]. In this appendix, the comparison is extended to the second-

order where it will be shown that the expressions generated by this work are in general

agreement with those reported in [21], with the exception of an additional factor that

is attributed to the use of a refined electromagnetic coupling coefficient that is derived

in subsequent work by Walsh in [44].

In [21], the monostatic RCS model for perfectly conducting, stationary surface

targets is found to second-order as

σt =
16k4

0

π
|P|2 , (C.1)
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with P defined as

P = Ξt0(2k0, θ1) +
1

2(2π)2

∫︂
K⃗

Ξt0(k0ρ̂1 + K⃗)Ξt0(k0ρ̂1 − K⃗)
|K⃗ × ρ̂1|2√︁
K2 − k2

0

dK⃗ . (C.2)

In Section 3.3, the target-only RCS derived in this work was shown to reduce to

σt =
16k4

0

π
|P0(2k0ρ̂01)|2 , (C.3)

where P0(2k0ρ̂01) was found using (2.35) as

P0(2k0ρ̂01) =Ξt0(2k0ρ̂01) +
1

(2π)2

∫︂
K⃗

′′
Ξt0

(︂
k0ρ̂01 + K⃗

′′)︂
Ξt0

(︂
k0ρ̂01 − K⃗

′′)︂
· SEΓP

(︂
k0ρ̂01 + K⃗

′′
, k0ρ̂01 − K⃗

′′)︂
dK⃗

′′
.

(C.4)

To properly compare the RCS expressions the electromagnetic coupling coeffi-

cient, SEΓP , in (C.4) must be expanded. The monostatic form of the electromagnetic

coupling coefficient used in this work is found in [44] (where it is denoted by 2C2) as

SEΓP (K⃗1, K⃗2) =
jk0
2K2

T

|K⃗1 × K⃗2|2

k2
0 − K⃗1 · K⃗2

⎧⎨⎩1− j
k0(1 + ∆)√︂

−K⃗1 · K⃗2 + jk0∆

⎫⎬⎭ , (C.5)

where K⃗1 and K⃗2 are arbitrary surface wave vectors, KT
⃗ = K⃗1 + K⃗2, and ∆ is the

surface impedance. It is easy to show that (C.5) can also be written as

SEΓP (K⃗1, K⃗2) =
|K⃗1 × K⃗2|2

2K2
T

[︃√︂
−K⃗1 · K⃗2 + jk0∆

]︃ k0

k0 −
√︂

K⃗1 · K⃗2

.
(C.6)

Recalling that Walsh and Gill [21] considered a perfect electric conductor (∆ = 0),
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(C.6) reduces to

SEΓP (K⃗1, K⃗2) =

⎧⎨⎩ j|K⃗1 × K⃗2|2

2K2
T

√︂
K⃗1 · K⃗2

⎫⎬⎭ k0

k0 −
√︂

K⃗1 · K⃗2

=
{︂
− SEΓ

′′

P (K⃗1, K⃗2)
}︂ k0

k0 −
√︂
K⃗1 · K⃗2

,

(C.7)

where SEΓ
′′
P (K⃗1, K⃗2) is the symmetric electromagnetic coupling coefficient as it is

was originally derived in the technical report [39] that forms the basis of the work

contained in [21]. The negative sign associated with SEΓ
′′
P (K⃗1, K⃗2) in (C.7) arises due

to a difference in sign convention when defining the electromagnetic coupling coeffi-

cient in [39] and subsequent works [9, 44]. For the arguments of the electromagnetic

coupling coefficient as it appears in (C.4), the expression in (C.7) may be shown to

reduce to

SEΓP (k0ρ̂01 + K⃗
′′
, k0ρ̂01 − K⃗

′′
) =

|K⃗
′′
× ρ̂01|2

2
[︂√︁

(K ′′)2 − k2
0

]︂ k0

k0 −
√︁

k2
0 − (K ′′)2

, (C.8)

where KT = 2k0 was used as a result of the long pulse assumption used in going from

(2.26) to (2.27). Substituting (C.8) into the monostatic expression for P0(2k0ρ̂01)

given in (C.4) yields

P0(2k0ρ̂01) =Ξt0(2k0ρ̂01) +
1

2(2π)2

∫︂
K⃗

′′
Ξt0

(︂
k0ρ̂01 + K⃗

′′)︂
Ξt0

(︂
k0ρ̂01 − K⃗

′′)︂
· |K⃗

′′
× ρ̂01|2√︁

(K ′′)2 − k2
0

k0

k0 −
√︁

k2
0 − (K ′′)2

dK⃗
′′
.

(C.9)

Comparing (C.9) and (C.2), the expressions are seen to be in agreement with the
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exception of an extra factor, k0

k0−
√

k20−(K′′)2
, in the integrand of (C.9). From (C.7)

and the discussion that immediately followed, this factor arises due to the different

analyses that produced the electromagnetic coupling coefficient. Gill’s modified sta-

tionary phase analysis [9] includes the same additional factor where it is attributed

to the fact that radiation from the first scatter may occur in any direction before the

second scatter; i.e., with reference to Figure 1.3, as ρ12 → 0, the direction of ρ⃗12 is

not unique. This phenomenon was not considered in [39] or [21]; however, Gill [9]

notes that the value of this factor does not significantly effect the magnitude of the

electromagnetic coupling coefficient when computing second-order cross sections of

the ocean surface.

The comparison performed in this appendix may be made exact if the electro-

magnetic coupling coefficient, as it was original derived in [39] (with an additional

factor of -1 to account for the differing sign conventions), is substituted into (C.4).

It follows that the monostatic zero-velocity, target-only form of the cross sections

derived in this work agree with those previously reported in [39], when the use of a

refined electromagnetic coupling coefficient is accounted for.
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Appendix D

Summary of Radar Cross Section

Formation Process

To visualize the formation of the RCS of an ocean patch containing a deterministic

target employed in Chapter 3, a flow chart is presented in Figure D.1.
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Figure D.1: Flowchart summarizing the RCS formation process employed in Chapter
3.
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