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Abstract

Automatic music generation has garnered significant interest among musicians and
composers. In particular, the task of accompaniment in music generation presents
unique challenges, as it involves generating an instrument track responsive to other
played instruments. This project focuses on accompanying musicians with auto-
matically generated tracks, specifically accompanying bass guitar players with Al-
generated drum tracks. The proposed system was trained on multi-track songs to
capture the connection between bass and drum tracks using the framework of Condi-
tional Generative Adversarial Networks (CGANs). Unlike typical Al-generated drum
tracks, which often lack nuanced dynamics, human-performed drums feature expres-
sive elements such as velocity—the varying loudness of each strike. To capture this
expressiveness, our transformer model is trained on human drum performances and
focuses on assigning realistic velocities to the generated drum hits. An ablation study
was conducted, and the results indicate that combining pitch and velocity genera-
tion into a single network significantly reduces music quality (measured by groove
consistency), reinforcing our approach of separating velocity assignments to main-
tain coherent drum patterns while enhancing expressiveness. We also evaluate the
generated music using objective metrics, demonstrating the models’ performance and
evolution during training. The drum generation system supports real-time interac-
tion, enabling spontaneous live jamming sessions. Simplifications facilitate real-time

operation, and we provide results from sample sessions.
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Chapter 1

Introduction

Automatic music generation has long captivated human imagination, with early at-
tempts dating back to the 18th century when composers like Mozart devised musical
dice games to randomly generate music sequences [25]. This enduring interest is driven
by both the desire to deepen our understanding of music itself and the technical and
artistic challenges it presents. With the advent of deep learning, this field has seen
remarkable advancements, surpassing traditional statistical models and opening new
horizons for musicians and composers. Today, automatic music generation not only
provides novel tools for creativity but also poses unique challenges, particularly in
generating responsive and cohesive accompaniments that interact dynamically with
human performers [9, 16]. This project, motivated by the rich history and recent ad-
vancements, aims to address these challenges by developing an Al-driven system that

accompanies bass guitar players with expressive, real-time generated drum tracks.



1.1 Motivation

Improvisation is widely regarded by educators and performers as a crucial skill in mu-
sical development, enhancing listening, timing, and creativity [17]. However, young
musicians often lack access to a full band for consistent practice, limiting their abil-
ity to build ensemble skills in improvisational settings. By offering an intelligent,
responsive Al drummer, our system addresses this gap—enabling solo musicians to
rehearse and explore improvisation more effectively without needing a complete en-
semble. This not only promotes technical growth but also nurtures musical intuition

in a more accessible and engaging way.

The landscape of automatic music generation has undergone a profound transfor-
mation over the last sixty years, evolving from early grammar-based and probability
model approaches to the revolutionary impact of deep learning methodologies. This
transformative shift has spurred the development of numerous Al-driven systems,
surpassing traditional statistical methods such as Markov models in the creation of

high-quality musical compositions [6].

Generating realistic and aesthetically pleasing pieces stands out as one of the most
intriguing challenges within the field of artificial intelligence. Recent advancements
have witnessed significant progress in the generation of images, videos, and text,
notably leveraging Generative Adversarial Networks (GANs) [13, 20]. Similar efforts
have been made in the domain of symbolic music generation [9, 37, 23|, although it

remains a challenging task.

Our research aims to advance the field of Al-driven music generation by developing
a system that can improvise alongside human musicians. Building upon existing ef-

forts like Magenta’s DrumBot [33], which generates real-time drum accompaniments,



we focus on enhancing the expressiveness and adaptability of Al-generated music.
Specifically, our project seeks to create a real-time interactive system that generates
dynamic drum tracks to accompany human bass guitar players, allowing for sponta-
neous and creative performances. By incorporating features such as expressive velocity
variations and real-time genre switching, we aim to deepen the collaboration between

musicians and Al, exploring new possibilities in human-AI improvisation.

1.2 Overview of the Drummer Companion System

Our research focuses on creating interactive popular multi-genre music accompani-
ment by generating expressive drum tracks that complement bass guitar performances
by human musicians, both in real-time and offline. We also integrated genre adapt-
ability, allowing musicians to select their desired genre for the generated drum accom-

paniment. We have named our system the Drummer Companion System (DAS).

The decision to accompany the bass with drums was based on the inherent com-
patibility of these two instruments in forming the rhythmic backbone of music. In
many musical genres, the bass and drums constitute the rhythm section, working
closely together to establish the groove and drive the tempo [5]. Additionally, we
chose drums as the accompanying instrument to focus on enhancing its expressiveness

by making it sound more human-like.

In addition to creating an accompanying drum track, we propose a novel approach
to make the generated drum track expressive and sound human-like by training a
separate network on drum tracks played by humans. Although velocity is often gen-
erated alongside pitch [2, 30, 37], we tested a single grayscale piano roll that encodes

velocity as color intensity. Our ablation study revealed that combining both tasks in



one network lowered drum quality, as evidenced by a decline in ‘groove consistency’
[35]. Thus, our research proposes a drummer companion system that generates drum

tracks for a given bass track in two phases:

1. Drum Generator (DG): Generates a drum track for a given bass track using a

GAN (Generative Adversarial Networks).

2. Velocity Assigner (VA): Assigns velocity to the generated drum track using a

transformer model trained solely on the human-played drum dataset.

1.3 Contributions

The contributions of this project can be listed as follows:

e Separation of Drum Pitch Generation and Velocity Assignment: We
adopt a two-stage approach; our ablation study shows that combining pitch and
velocity generation reduces drum quality (via ‘groove consistency’). Splitting

these tasks preserves coherent drum patterns and boosts expressiveness.

e Genre-Conditioned Drum Generation with Real-Time Genre Switch-
ing: We design our drum pitch generator using a Conditional Generative Ad-
versarial Network (CGAN) that accepts the desired genre as input, enabling the
generation of drum tracks in a specified genre. This feature allows musicians
to change the genre during performances, providing flexibility and creative con-
trol. Incorporating real-time genre switching in drum accompaniment systems

enhances adaptability and user interaction.

e Development of a Real-Time Interactive System for Drum Accompa-

niment: We develop a real-time interactive system capable of generating drum



tracks to accompany human bass guitar players, suitable for both live improvi-
sation and offline use with MIDI files. Although real-time drum accompaniment
has been explored in prior works, our system integrates the separation of pitch
and velocity generation with real-time genre conditioning, aiming to enhance

the expressiveness and adaptability of Al-generated drum tracks.

1.4 Thesis Outline

e Chapter 2: In this chapter, first we explore different music representations
(Section 2.1). Then, we review similar works in the literature. We explore
various methods of music generation and categorize research in this area while

examining the different challenges that arise.

e Chapter 3: In this chapter, we explain the model we propose for drum track
generation. We discuss the earlier version of our work and the conclusions
that led to our current research. Additionally, se describe the deep learning
framework used for generating drum tracks, detailing the different components

of drum generation and the models used in each part.

e Chapter 4: In this chapter, we provide the implementation details for our
drummer companion network. These details include the datasets used for train-
ing (Section 4.1), network configurations (Section 4.2), and implementation of

real-time interaction (Section 4.3).

e Chapter 5: In this chapter, we provide details on the conducted experiments
and their results. First, we show the results of the ablation test that justifies the
separation of velocity generation and pitch generation in Section 5.1. Then we

discuss training losses (Section 5.2), evaluate the generated music using objective



performance indices (Section 5.3), and provide a sample of human interaction

(Section 5.4).

e Chapter 6: This chapter discusses the conclusions of our work and possible

future research directions in music generation for accompanying humans.



Chapter 2

Related Works

This chapter reviews prior work related to automatic music generation, focusing on
four key areas relevant to this thesis. Section 2.1 discusses various methods of repre-
senting music in a format suitable for machine learning models. Section 2.2 explores
approaches used in generating symbolic music, particularly melody and multi-track
compositions. Section 2.3 focuses on models that incorporate expressive elements
such as velocity into music generation. Finally, Section 2.4 reviews existing methods
for generating music accompaniment, with a particular emphasis on drum pattern

generation.

2.1 Music Representation

The first problem to address in music generation is the representation of musical data.
The music representation significantly affects the type of deep learning models that
can be used and determines what kinds of musical information can be embedded in

the representation.



Symbolic representations, such as MIDI (Musical Instrument Digital Interface),
encode music through discrete events like pitch, duration, and velocity, using MIDI
messages to convey performance data such as note on/off events. These can be rep-
resented in 1D sequences, facilitating communication between electronic instruments

and software. The following list provides and example set of MIDI messages:

Listing 2.1: MIDI note samples.

Note (start=0.000000, end=0.123958, pitch=57, velocity=96)
Note (start=0.000000, end=0.373958, pitch=52, velocity=96)
Note (start=0.125000, end=0.373958, pitch=59, velocity=96)
Note (start=0.375000, end=0.498958, pitch=57, velocity=96)
Note (start=0.375000, end=0.748958, pitch=52, velocity=96)
Note (start=0.500000, end=0.748958, pitch=59, velocity=96)
Note (start=0.750000, end=0.873958, pitch=57, velocity=96)
Note (start=0.750000, end=0.998958, pitch=52, velocity=96)
Note (start=0.875000, end=0.998958, pitch=59, velocity=96)

Note(start=0.937500, end=1.123958, pitch=55, velocity=96)

For every note in this listing, start determines at which point in time (in seconds)
the note should be played and end indicates when the note should end (in seconds).
The pitch number is indicated by pitch which corresponds to a specific musical pitch
on the MIDI note scale. For example, a pitch of 52 corresponds to E3, which is the
note E in the third octave of the MIDI scale. The wvelocity indicates how forcefully a
note is played, representing the intensity or volume of the note. The range for velocity
values is from 0 to 127, where a higher velocity value (closer to 127) means the note

is played with more intensity or louder and vice versa.



Another musical representation is the 2D pianoroll, where notes are depicted over
time as a matrix. This method, although visually intuitive, faces challenges in dis-
tinguishing long and short notes and struggles with complicated rhythms, leading
to proposals like the Conlon pianoroll [1] which explicitly represents note durations.
The 2D matrix representation offers a visual advantage but requires careful consider-
ation of time resolution and note duration representation to capture music nuances

effectively.

Figure 2.1 illustrates a score sheet and pianoroll representation of a piece and also

describes the musical terminology used for the rest of the paper.

Pianoroll Representation

ﬁ—F ]—F = — < —
'g’l_i‘ EE=EEE
of :
v v \ v
rhythm beat with note beat witha > measure/bar
two notes single note
(chord)

Figure 2.1: Pianoroll representation of a music score sheet. The number 4/4 defines
the rhythm (time signature) of a measure (bar) and what will be the duration of a
measure. Each measure consists of multiple beats. Each beat is a single note or a
group of notes.
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2.2 Music Generation

Advancements in GAN (Generative Adversarial Networks) architecture have yielded
promising outcomes in music generation. This architecture not only demonstrates
the ability to produce music but also offers the potential to exert control over the
generated music by conditioning its generation based on given input. Researchers
have approached the representation of sequential music data by adopting the piano
roll format [9, 37], which can be treated as an image, thus facilitating processing
by CNNs (Convolutional Neural Networks). As an example, in the MidiNet model
[37], researchers employed a GAN structure with CNNs in both the generator and
discriminator networks to generate multi-track music. Multi-track music refers to
a composition that consists of multiple distinct instrumental or vocal parts (tracks),
which are combined to create a richer and more layered sound. This model conditioned
the generation of new bars on previously generated music bars, leading to melodies
perceived as more appealing by test subjects compared to those generated by other

state-of-the-art multi-track music generation models such as MelodyRNN [33].

The MuseGAN model [9] also addresses multi-track music generation, including
drums, by using a GAN architecture. It allows for the simultaneous generation of mul-
tiple instruments, with drums being one of the key components. Although MuseGAN
focuses on generating all tracks together, it highlights the importance of drums in the

overall texture of generated music.

Furthermore, the MuseFlow model [8], which relies on an RNN (Recurrent Neural
Network) structure, introduced flow-based music generation for creating music ac-
companiments, including drums, guitar, bass, and strings, based on the input piano
melody. MuseFlow demonstrates superior performance in terms of accompaniment

quality and harmony between tracks, closely mirroring the distributions of note pitch
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and duration found in real music data.

In addition to treating music as images using the piano-roll format, numerous
works have concentrated on generating music by treating it as sequential data. This
approach allows for the utilization of architectures such as RNN [33], LSTM (Long
Short-Term Memory) [31], and transformers [23, 38|, which excel in capturing tempo-
ral dependencies within sequential data. Roberts et al. [31] integrated LSTM-based
recurrent neural networks with Deep Q-learning, introducing a novel approach for real-
time generation of musical sequences, particularly focusing on MIDI-encoded music

scores.

Models like MelodyRNN, developed by the Magenta Project from the Google Brain
team, have garnered attention for their ability to generate melodies from minimal
input [33]. Minimal input refers to the small amount of initial musical information
required for the model to begin the generation process. This could be a short sequence
of notes, a single motif, or a starting melody, from which the model predicts and
generates the subsequent notes using recurrent neural networks (RNNs). By learning
musical patterns such as pitch and rhythm from large datasets, MelodyRNN can

autonomously expand on this initial input, creating a complete and coherent melody.

MelodyRNN offers variants such as lookback RNN and attention RNN, enhancing
its capability to understand longer-term structures and improve melody quality. Ad-
ditionally, deep learning techniques have expanded symbolic music generation bound-
aries. DeepBach, by Sony CSL, utilizes an RNN-based architecture to compose poly-
phonic chorale music in J.S. Bach’s style, allowing users to apply various constraints
like rhythm and chords [14]. In contrast, C-RNN-GAN (Continuous Recurrent Neural
Networks with Adversarial Training) pioneers the use of GANs in music generation,

generating diverse melodies through random noise but lacks a conditional mechanism
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for generating music based on priming melodies or chord sequences, showcasing the

potential of GANs in innovative composition [22].

Addressing concerns regarding unpleasant melodies and insufficient harmony preva-
lent in existing multi-track music generation models, Zhao et al. [38] introduced a
novel model that utilizes TransformerX (generator) - SpanBERT (discriminator) se-
quence conditions within a Generative Adversarial Network structure. In comparison
to Transformer-GAN [23] and MuseGAN [9], their results demonstrate that the pro-
posed model produces music with more harmonious tracks, enriched melody, rhythm,

and coherence.

2.3 Velocity Task

In a velocity task, the system or model is tasked with predicting or assigning appropri-
ate velocity values to each note, which can significantly affect the expressiveness and
dynamics of the generated music. In the literature, velocity information of notes is
often either ignored [9] or generated with the same network that generates the pitches.
Several deep learning approaches have been explored for incorporating musical veloc-
ity into generated pieces. One approach utilizes a Deep Convolutional Generative
Adversarial Network (DCGAN) to analyze MIDI data representations that include
pitch, time, and velocity information [32]. This method enables the DCGAN to learn
the inherent distribution of these elements from a given dataset and generate new

music that incorporates these dynamics [32].

Expanding on the need to improve dynamic expressiveness in generated music,
PopMAG introduced a novel MuMIDI representation [30]. MuMIDI allows for the si-

multaneous generation of multiple tracks within a single sequence, where each musical
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note can include attributes like pitch, duration, and velocity [30]. This approach en-
hances the model’s ability to capture the interplay between instruments but requires
additional techniques to manage the increased sequence length due to incorporating

multiple note attributes [30].

While some models focus on general expressive qualities, others target specific
musical styles. The Pop Music Transformer leverages a Transformer architecture to
generate expressive pop piano music [15]. However, it emphasizes the importance
of data representation in achieving this expressiveness. By incorporating metrical
structure into the input data, the model can more effectively capture the rhythmic
and harmonic aspects of pop music, suggesting that specific data formatting can

influence the model’s ability to generate velocity variations [15].

Beyond stylistic considerations, research has also explored using deep learning for
music style transfer. MIDI-VAE, a Variational Autoencoder based model, demon-
strates the ability to manipulate musical dynamics by including note durations and
velocities in its representation [2]. This allows MIDI-VAE to not only change pitches
but also adjust the dynamics and instrumentation of a piece during style transfer

tasks [2].

2.4 Music Accompaniment

Real-time music accompaniment by Al systems has seen significant development, fo-
cusing on both improvisation and following scores [18, 29, 27, 28]. One area of research
explores Al accompaniment for jazz improvisation. Systems like the one presented in

[18] analyze a soloist’s input and musical score to generate accompanying chords in
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real-time. This approach utilizes recurrent neural networks to predict soloist inten-

tions and adapt the accompaniment accordingly.

Another approach focuses on real-time accompaniment for pre-composed pieces.
Works like [29, 27, 28] analyze the soloist’s performance (often through hidden Markov
models) alongside the musical score. This information is then used to guide the
generation or selection of accompaniment parts in real-time. These systems can learn
from past rehearsals to personalize the accompaniment to the soloist’s playing style

27, 28].

Recent advancements address challenges like latency and limited musical knowl-
edge in real-time accompaniment. SongDriver [34] proposes a two-phase system sep-
arating chord arrangement and accompaniment generation. This avoids both logical
latency and exposure bias, allowing for more natural-sounding accompaniment. Ad-
ditionally, the model incorporates long-term musical information to compensate for

shorter input sequences under real-time constraints.

Drums play a vital role in setting the rhythm and energy of a musical piece, and
generating realistic drum patterns that complement other instruments is a complex
task. One of the pioneering works in this domain is by Gillick et al. [12], who intro-
duced a model for generating drum patterns conditioned on other instruments using
sequence-to-sequence neural networks. Utilizing the Groove MIDI Dataset [12], which
contains expressive human-performed drum recordings, they focused on capturing the

nuances of human drumming, including timing and velocity variations.

In the realm of Generative Adversarial Networks (GANs), the DrumGAN model by
Nistal et al. [24] leverages a GAN to synthesize drum sounds and patterns conditioned
on latent embeddings. While primarily focused on sound synthesis, their approach

contributes to the generation of drum accompaniments by enabling the creation of
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realistic drum timbres that can be integrated into musical compositions.

Choi et al. [3] introduced a method for generating drum patterns using variational
autoencoders (VAEs). Their model learns the latent representation of drum grooves
and can generate new patterns by sampling from the latent space. This approach
emphasizes the stylistic aspects of drumming and the ability to generate patterns

that fit specific genres or moods.

Despite these advancements, existing models often struggle with capturing the
expressive dynamics and intricate timing of human drumming, especially when condi-
tioned on specific musical inputs like bass guitar tracks. Our work aims to fill this gap
by introducing a GAN-based model that generates drum accompaniments conditioned
on human-played bass guitar inputs. We emphasize the expressiveness of the gener-
ated drums by incorporating a separate network for velocity assignment, leveraging

transformer architectures to capture the sequential nature of music dynamics.



Chapter 3

Methodology

3.1 Preliminary Work

In our initial attempts, we aimed to generate music in a simplistic and intuitive
manner. We used Markov Chains on music scores to learn the underlying statistical
characteristics of these scores. A Markov chain [4] is a mathematical model that
describes a sequence of possible events where the probability of each event depends
only on the state attained in the previous event. This property makes Markov chains
suitable for modeling sequential data, including music, where the next note or chord

is influenced by the current one.

In a musical context, each state in a Markov chain can represent a specific musical
chord or note. For instance, consider a Markov chain where the states are chords,
and the transitions between states represent the likelihood of moving from one chord
to another based on trained data. By analyzing a piece of music, we can determine
the probability of transitioning from one chord to another, thereby constructing a

transition matrix that encodes these probabilities. This matrix can then be used to
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Figure 3.1: An example of Markov Chain trained on a simple music, showing transition
probablities between chords and notes.

generate new music by following the chain’s transitions, thus producing a sequence
of chords or notes that are statistically similar to the original dataset. Figure 3.1

provides an example of Markov Chain trained on a minimal music sheet.

We trained a Markov Chain on five Metallica songs. Metallica’s song notes are
easily accessible in the format of GP3 files, making it easy to work with them and
import them as symbolic music. We employed two methods: (1) taking musical
measures as states, and (2) taking beats as states. In the first approach, there was
little overlap between the musical measures of the five songs. Thus, during the Markov
Chain random walk, whichever song the first measure belonged to, the Markov Chain
tended to stay in that song. The only probable switches between different songs

occurred at silent measures, which exist in all of the training songs.

In the second approach, when we took beats as states, the overlap between songs
increased, as the training set had more overlapping beats. However, the rhythm of
measures was sometimes violated, and the resulting music, despite not being pleasant

to the ear, mimicked the training set.
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One challenge we faced in the early stages was that the five songs had different
tempos, and the measure rhythm and tempo changed during the songs. This problem
manifested during the Markov Chain random walk when we generated a song with a
single tempo, causing beats and measures from songs with different tempos to sound
either slow or fast. Thus, ideally, a training set would have a single tempo and fixed
rhythm. This finding helped us in choosing a dataset for training our system, which

is discussed in detail in Section 4.1.

Additionally, the Markov Chain model was not suitable for our Drummer Com-
panion purpose, as the Markov Chain only generates music but does not generate a
track (drum) corresponding to another instrument (bass). Furthermore, the Markov
Chain only captures simplistic statistical features of the training data. However, music
generation for improvisation with humans requires a more complex generative model
that could mimic the training dataset with greater complexity. For this purpose, we

chose to use GANs [13] due to their success in generating new data instances.

3.2 Proposed Method

In this section, the proposed Drum Accompaniment System (DAS) is discussed in
detail, with each part of the model explained. Overall, DAS consists of two inde-
pendent parts trained separately and serving different purposes. The first part, the
Drum Generator (DG), receives a human bass track and generates a drum track for it
without velocity. The second part, the Velocity Assigner (VA), receives drum tracks
generated by DG in the form of MIDI messages and assigns them velocity using the
pre-trained BERT transformer [7] in cased English language. The entire pipeline is

depicted in Figure 3.2. The following subsections explain both of these parts in detail.
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Figure 3.2: Proposed architecture for bass accompanying drum agent. The blue block
represents DG, and the red block represents VA.

3.2.1 Drum Generator

Generating a responsive drum track requires solving three challenges: 1) generating
drum tracks, 2) generating drum tracks responsive to human-played bass, and 3) gen-
erating drum tracks based on the required genre. Each of these challenges contributes
to the final architecture of the model. The part of the model that handles these

challenges is called Drum Generator (DG).

For drum generation, we used a binary pianoroll representation of music. The
pianoroll representation is a binary 3D matrix, where the first dimension corresponds
to pitch, the second dimension corresponds to measure (bar), and the third dimension
corresponds to time (beat). By introducing measure as a separate dimension, we
enforce our network to learn the structure of a bar. For the velocity assignment

section ( the red block in Figre 3.2), we used a one-dimensional MIDI representation
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since, in that network, the main objective is to extract velocity information. We
also tested a variant of DG using a grayscale piano-roll to simultaneously generate
pitch and velocity. Velocity was encoded as the gray colour intensity in the piano-roll

representation.

We chose our dataset based on the decided music representation and the informa-
tion they carry. Further elaboration on dataset selection will be provided in Section

4.1. In the following subsections, each architectural challenge is described in detail.

Generating Drum Track with No Input

Considering that the music data is stored as 3D binary matrices, CNNs are a good
choice to analyze these data. Since we are focused on generating innovative data based
on the training dataset, a GAN framework is ideal for this purpose. The fundamental
principle of GANS lies in adversarial learning, which involves the construction of two
networks: the generator and the discriminator [13]. The generator is tasked with
mapping random noise z sampled from a predefined distribution p, to the data space
Pdata- Conversely, the discriminator is trained to differentiate between real data x,..u
and data generated by the generator x sk, while the generator aims to deceive the
discriminator. This training process is formally represented as a two-player minimax
game between the generator G and the discriminator D. The optimization objective

of a GAN can be formulated as Equation 3.1:

mén max V(D,G) = Eyppya@llog D(@)] + E.p_ ) [log(1 — D(G(2))] (3.1)
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Using this framework, we can generate drum tracks that are similar to the train-
ing data but responsive to human inputs. For this purpose, a Conditional Generative
Adversarial Network (CGAN) [21] is employed, a GAN model that incorporates con-
ditioning. Conditioning in this context refers to the process of generating outputs
based on additional input data, allowing the model to tailor the generated music to

specific conditions, such as the bass line played by the musician.

Generating Drum Track Based on Human Input

In the CGAN framework, the generation process is guided by providing a condition
y for both the generator and discriminator networks. Within the generator, the prior
input noise p.(z) and condition y are combined into a joint hidden representation,
offering substantial flexibility in the composition of this hidden representation. In the
discriminator, the input is the concatenation of z and y. In our case, the condition
y, which is the pianoroll representation of the bass track played by humans, can
be concatenated with = to be fed to D but cannot be concatenated with z for the
generator due to dimension differences. Thus, the embedder network, E, generates a
learnable embedding of the condition, that can be concatenated with z, resulting in
a vector which has compatible dimensions to be fed to the Generator network. The

objective function of this two-player minimax game is expressed as Equation 3.2.

minmax V(D, G) = By, )08 D(aly)] + Bavy. o llog(1 — D(G(=|EW)] (32)

Compared to Equation 3.1, we observe that D(x) and G(z) are replaced by D(z|y)

and G(z|E(y)), respectively. This indicates that the output of the discriminator, in
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addition to the input data x, also depends on a condition—in this case, the human
bass input y. Furthermore, G(z|E(y)) shows that the generation of the drum track
depends not only on the latent vector z but also on the embedded representation of

the human bass input, denoted as E(y).

Human bass input is received as MIDI messages. With a buffer of 4 musical mea-
sures, these MIDI notes are then converted to a piano-roll representation, which can
be considered as an image or binary matrix. The binary matrix, which in our CGAN
context is y, passes through the embedder network to generate 2. All embedder,

generator, and discriminator networks are implemented as CNNs.

Generating Drum Track Based on Desired Genre

The CGAN framework enables us to condition the generated drum track not only on
the human bass input but also on the desired genre. Assuming the training dataset
contains a finite number of genre labels, an embedder layer can map each genre
to a corresponding matrix representation. This matrix representation can then be
concatenated with other conditional inputs for both the discriminator and generator,

allowing us to control the genre of the generated drum tracks.

3.2.2 Velocity Assigner

In this phase, to add velocity information to the drum track and make it expressive,
we used the pre-trained Bidirectional Encoder Representations from Transformers
(BERT) [7] on cased English, which retains the distinction between uppercase and
lowercase letters, and fine-tuned it on human-played drum tracks which include ve-
locity information. This part of the model which is tasked with assigning velocity to

generated drum pitches is named Velocity Assigner (VA).
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The objective here is to assign velocities, v, for drum notes that lack it. For this
purpose, for drum tracks in the Groove dataset [12], we removed velocity informa-
tion, and our goal was to train a deep learning model that would reacreate velocity
information for each drum strike. The reason for choosing BERT model for this task
is that velocity of a drum beat depends on the context of music and bar. This depen-
dency includes beats before and after current beat, thus a bi-directional context of
music increases the chances of better velocity assignment, compared to CGAN where

context is local and limited.

A linear layer was attached to the last layer of the BERT model that transferred
each input token’s hidden state to its velocity. The velocity information is then
incorporated into the original MIDI file, and the output is a MIDI file with a drum
track with velocity. We used the Mean Squared Error (MSE) loss function to measure

the error between the produced velocities vpredictea and the expected velocities Vyear:

N
loss = ('Ureal - Upredicted)2 (33)

=1

1
N

For tokenization, we used the Miditok library [11] (version 3.0.1) to tokenize MIDI
messages. Then, we used the BERT tokenizer from the HuggingFace platform to to-
kenize these MIDI tokens into another set of tokens that are processable with BERT.
The final output of the velocity assigner, after passing through the linear layer, con-
sists of integers that correspond to Vpredictea- 10 aid the training process, we scaled
velocity information from the range of [0,127] to [0,1]. Scaling the velocity values
to a normalized range helps improve the numerical stability of the network during
training by ensuring that the input features are on a similar scale, which facilitates

faster convergence and more effective learning.
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Implementation

This chapter presents the implementation details of our proposed drum accompani-
ment system. We begin by introducing the datasets used for training both the Drum
Generator (DG) and the Velocity Assigner (VA) in Section 4.1. Section 4.2 outlines
the architectural and training configurations for each component of the system. Fi-
nally, Section 4.3 describes how the implemented system enables real-time interaction
with human performers and discusses the practical considerations and simplifications

applied to support live performance scenarios.

4.1 Dataset

4.1.1 Training Drum Generator

For training the Drum Generator (DG), we used the Lakh Piano-roll Dataset (LPD)
[9], which includes piano rolls of multi-instrument songs. Specifically, we utilized the

LPD-cleansed dataset [9], comprising 21,425 piano rolls of multitrack songs featuring
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five instruments: bass, piano, strings, drums, and guitar. All measures in songs have

a time signature of 4/4 and all songs start with the first beat at time zero.

The time signature constraint (being consistently in 4/4) was applied to the train-
ing songs, and it is recommended to test the model with songs that adhere to this
constrain. If this constrain is not followed, the Drum Accompaniment System will
still generate a drum track, but it may produce unexpected results. For the sake of

this thesis and to simplify music generation, we adhered to this constrain.

Furthermore, each song belongs to one of 13 genres: Folk (45 songs), Country (512
songs), Rap (164 songs), Blues (22 songs), RnB (397 songs), New-Age (67 songs), Vo-
cal (114 songs), Reggae (45 Songs), Pop Rock (4345 songs), Electronic (889 songs),
International (206 songs), Jazz (157 songs), and Latin (360 songs). This genre infor-
mation is used during training for conditioning drum generation based on the desired

genre.

During each epoch of training, we used 4 measures of the bass track from each data
instance as condition y, and the drum track from the data instance as real data ' ea
for the discriminator, along with the genre of music for conditioning the generator

and discriminator.

4.1.2 Training Velocity Assigner

The Velocity Assigner (VA) operates on MIDI files, and its sole purpose is to assign
velocity to generated drum pitches. The output of the generator network, Zfye, is
converted from a piano roll to MIDI messages and fed to the BERT network for

velocity assignment.

We chose the pretrained BERT model for cased English [7] and fine-tuned it using
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the Groove MIDI Dataset (GMD) [12]. The GMD comprises 13.6 hours of synchro-
nized MIDI and synthesized audio of human-performed, tempo-aligned expressive
drumming, including 1,150 MIDI files and over 22,000 measures of drumming, with
most performances in 4/4 time. Expressive drumming embodies the feel and groove

that comes from a human’s touch, making the music sound lively and engaging.

For each song in this dataset, we tokenized MIDI events using REMI (REvamped
MIDI-derived events), implemented by the Miditok Python library [10]. Then, the
tokens corresponding to velocity information were masked with the special BERT
token, “[MASK]”. The IDs corresponding to these tokens were tokenized using the
BERT cased tokenizer [7]. Input lengths were limited to 510 tokens. The hidden
states from the last layer of the BERT model, with dimensions of 768 (each hidden
layer dimension) x 510 (number of output layers), were passed through a fully con-
nected linear layer to reduce dimensions to 510 outputs. The outputs corresponding to
masked input tokens were compared against initial velocity values, and the difference

was backpropagated through the network.

4.2 Model Settings

4.2.1 Drum Generator

Networks G (Generator), £ (Embedder), and D (Discriminator) are implemented as
deep CNNs. G uses six 3D transposed convolution layers to increase the dimensions
of the random noise vector z to the size of a piano roll with 4 measures, each measure
with a 16-beat resolution. FE uses six 3D convolution layers to reduce the size of
human bass tracks to a vector of size 128, the same size as z. E has a similar layer

size to GG, only in reverse order. Both networks use 3D batch normalization. D uses
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seven 3D convolution layers, with batch normalization in each layer. All G, D, and E
are updated simultaneously. The training time for each model was less than 24 hours

with an Nvidia RTX 3090 GPU.

4.2.2 Velocity Assigner

We used the BERT base model [7], which has 12 layers, 768 features in each layer,
and 12 self-attention heads. We used the BERT pretrained on cased English and

fine-tuned it for our purpose on the Groove MIDI dataset [12].

4.3 Real-time Interaction

The DG part was trained and tested on music files, so the music generation was not
initially real-time. However, given a random vector z of size 128 and four bars of
a bass track (along with the desired genre), G generates four bars of a drum track.
This allows humans to interact with the model and jam with it since after every four
measures of generated drums, a new random latent vector z conditioned with the
desired genre and human bass input will trigger the generation of the next four bars

of drums.

However, a few challenges need to be addressed. First, considering that DG works
with a music buffer of four bars, and assuming a fixed tempo of 120 bpm and a rhythm
of 4/4, each bar will take 2 seconds, and thus a buffer of four bars will take 8 seconds.
During this whole 8-second period, DG listens to the human bassist, and once it
receives the full four bars, it generates the associated drum track for the previously
played bass bar. In other words, the drum track for the bass track played in the time

window of ¢, to t; will be played in the time window of ¢; to t14. Considering the
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computation needed for DG, which was 2 seconds on an Apple MacBook Pro 2019,
the drum track will be generated in the time window of tg to t;6. Thus, the drum
track is played with a delay. If we try to assign velocities with VA, due to the larger

size of the VA network, this time delay will increase.

This problem can be solved by different methods, one of which could be estimating
the human bass track in the next time frame and generating the drum track for that
estimation. However, for simplicity and to allow the human bassist to interact with
the model in its current form, we relied on the repetitive nature of drum tracks [19]
in songs and played the delayed drum track for the bassist. Since the human bassist
plays four bars and DG generates four bars of drums, any computation time of DG
will cause a silence between drum generations. In other words, when the human plays
the bass track in the time window of ¢y to t7, there will be a silence of 2 seconds for
DG to generate the drum track. Thus, there will be silence in the time window of ¢;
to tg, and DG will start to play the drum track in the time window of tg to t14. It
should be noted that 2 seconds is for a MacBook Pro 2019. Different machines will

have different computation times based on their computational power.

To avoid the time frame of silence caused by the computation time needed for
DG, we proposed a simplistic solution of repeating the last bar of the generated drum
track from the previous frame to fill the silence until DG generates the next four bars
of drums. The reason we repeat only the last bar is due to our assumption that since
the tempo is 120 bpm and the rhythm is 4/4, 2 seconds will correspond to one full
bar. To avoid increasing the silence time frame and reduce computation time, we did
not include VA for real-time interaction since, due to the large size of VA networks
(BERT model), the computation time required for VA is relatively large (5 seconds on

a MacBook Pro 2019). In future work, a smaller network for VA can be considered, or
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if human bass track prediction is implemented, VA calculation time will not impose

a problem.

By applying the aforementioned simplifications, DG is capable of interacting with

human bassists in real time. Results for this interaction are provided in Section 5.4.

The interaction setup with the human player is depicted in Figure 4.1. We used a

MIDI keyboard instead of a bass guitar for the ease of directly getting MIDI messages

to the computer.

Bass
MIDI messages

Generated
Drum Audio

Figure 4.1: Setup of a human interacting with the drum companion. For the ease of
generating MIDI messages, we used a MIDI keyboard instead of a bass guitar. The
computer runs the DG model and plays the output, the generated drum track, to
accompany the human player. To reduce generation latency, we did not use VA in
real-time interaction.



Chapter 5

Experiments and Results

Assessing the quality of artistic creations, particularly those generated by algorithms,
presents a unique challenge. Unlike tasks in machine learning focused on objective
goals like classification or prediction, artistic domains such as music, literature, and
cinema are inherently subjective [36]. While accuracy is paramount in tasks like image
recognition, the evaluation of creative endeavors ultimately relies on human judgment
as the arbiter of quality. This inherent subjectivity makes it difficult to establish a
single, unified evaluation criterion for algorithmic art generation. However, objective

evaluation metrics can still provide valuable insights.

The task of defining various objective musical measures is an active area of research
[16], with each metric assessing different aspects of musical performance, such as
melody and rhythm. Most deep learning research on music relies on subjective tests
alongside a few objective metrics [9, 37, 16]. In our work, we sampled the output
of our model for a human bass guitarist in both real-time and offline scenarios and
report and compare the generated tracks in this chapter. Additionally, we report the

training loss of the Drum Generator (DG) and Velocity Assigner (VA) (Section 5.2)



31

to provide an intuition about the models’ learning processes.

After examining different musical performance indexes, we selected two perfor-
mance indexes applicable to drum tracks: Empty Bar Ratio and Drum Pattern [9].
Further details on these performance metrics are provided in Section 5.3. The main
goal with these performance indexes is to achieve values similar to the original dataset,
as these values themselves do not directly indicate the quality of the generated music.
However, having performance index values close to the original dataset can suggest

that our trained model generates music similar to the original dataset.

Beyond Empty Bar Ratio and Drum Pattern, we also report a ‘groove consis-
tency’ metric [35] to evaluate how stable the drum patterns remain across consecutive

measures. The results of this study are reported in Section 5.1.

5.1 Ablation Study on Joint Pitch-Velocity Gen-

eration

Following [35], we use groove consistency to assess the quality of generated music. This
metric quantifies differences in note placements between two consecutive measures
without considering note velocity. Values close to those found in the training dataset
typically correspond to a more pleasing rhythmic flow [26], whereas larger deviations
often indicate abrupt or incoherent transitions between bars, making the track less

musically appealing.

We conducted an ablation study by modifying the DG to generate pitch and
velocity from a single grayscale piano roll representation. As shown in Table 5.1, this

combined approach yielded a substantially higher deviation from the dataset’s groove
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consistency (from now on referred to as GC) baseline compared to the separate-task
approach, indicating poorer rhythmic stability. This finding prompted us to maintain
our two-stage design, where velocity assignment is modelled separately to preserve

drum pattern quality and enhance expressiveness.

GC deviation for binary DG 0.00427
GC deviation for DG with velocity generation | 0.0158
GC deviation for untrained DG 0.06811

Table 5.1: Groove Consistency (GC) deviation from GC of the training dataset for
three models: 1) binary DG where DG was focused on only creating pitches without
considering velocity. 2) DG with velocity generation along with pitch generation. 3)
Untrained DG network, which basically just produces noise.

5.2 Model Errors

5.2.1 Drum Generator

We here report the loss values for the discriminator D. Positive values correspond to
real samples, and negative values correspond to fake samples. As the CGAN operates
in a Min-Max framework, we ideally expect the loss to converge to a steady value
over training epochs [13]. The loss of the discriminator is reported in Figure 5.1. We
have selected five critical points in the training process to observe the evolution of the

model from different aspects.

The piano roll output of the generator model at these points is shown in Figure
5.2. It can be seen that the generated drum piano roll initially starts with a noisy

pattern and then converges to common drum patterns.
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Discriminator loss

0.2

0.0

_0.2 -

_06 =

_0.8 -

_1.0 -

-1.2 4

T T T T T
0 200 400 600 800 1000
Epoch

Figure 5.1: Discriminator loss over training epochs. The gray data represent the
original losses and the black line is the smoothed data. Point A represents the initial
untrained state, Points B and C represent mid-training states, Point D is the first
instance of reaching a steady state value, and Point E is the converged state.
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Figure 5.2: Evolution of piano roll representation corresponding to points in Figure
5.1.
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5.2.2 Velocity Assigner

The training loss for VA is reported in Figure 5.3. As illustrated, the BERT model

learns to associate drum pitch velocity with each drum pitch in the Groove dataset.

Training Loss
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Figure 5.3: Training loss for VA on Groove dataset.

Figure 5.4 illustrates the validation loss for VA. Despite being lower than the
training loss, the validation loss, (approximately) 0.18 for most epochs, oscillates.
Considering that the training loss decreases as the network is trained over more-
and-more epochs, the oscillation in the validation loss might indicate overfitting or
a small validation dataset. Despite this phenomenon, the velocities generated for
drum pitches in music pieces from the LPD dataset were satisfactory by subjective

judgment (Refer to section 5.4 for more details.) In future work, it may be possible to
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reduce validation loss by decreasing the learning rate over time and/or incorporating

different regularization methods such as dropout.

Validation Loss
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Figure 5.4: Validation loss for VA on Groove dataset.

5.3 Music Performance Index

The performance indexes reported in this section are applied to DG with its net-
work weights at epoch 1000. This is the epoch where the discriminator shows stable

convergence based on Figure 5.1.
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5.3.1 Empty Bar Ratio

Empty Bar Ratio (EB) is defined as the ratio of empty bars to non-empty bars in
percentage [9]. We calculated EB only for generated drum tracks over the entire bass
track of the LPD dataset and compared it with the EB of the LPD dataset for drum

tracks. EB is independent of drum pitch velocity and the pitch value.

The results are depicted in Table 5.2. As shown, both datasets have a low EB.
However, there is a 6.09% difference between them. This occurs because DG some-
times creates a single pitch in an empty bar instead of leaving the whole bar empty.
Due to the sensitive nature of EB, a single pitch in a bar disqualifies that bar from
being empty. It was also observed that DG has less tendency to leave a whole bar

empty and usually inserts a pitch or two in an otherwise empty bar.

5.3.2 Drum Pattern

Drum Pattern (DP) is defined as the “ratio of notes in 8- or 16-beat patterns, common
ones for Rock songs in 4/4 time (in %)” [9]. DP is only calculated for songs with the
Pop-Rock genre since this pattern is common in this genre. For the entire LPD
dataset drum tracks, we counted the number of notes that follow this pattern and did
the same for the drum tracks generated by DG based on LPD bass tracks. In Table
5.2, we reported these values in percentage. The small difference between the DP of
the dataset and the generated drum tracks (0.31%) suggests that DG has captured

the general drum pitch pattern for Pop-Rock songs in the LPD dataset.

EB DP
LPD dataset 0.42% | 81.26%
Generated drum | 6.51% | 80.95%

Table 5.2: Performance index values for generated drum tracks and LPD dataset.



37

5.4 Improvisation Samples

Similar to the previous section, the generated drum tracks here are reported based on
the DG’s weights at epoch 1000. A human bass player improvises in real-time with
DG, and the improvisation is shown in Figure 5.5. The selected genre for this live
session was Pop-Rock. The video link for this improvisation along with audio sample
and implementation of DAS is: arash-sadeghi.github.io/MusicAiPage/

s

Human Played Bass

Generated Drum

Figure 5.5: Real-time improvisation sample of a human bassist with DG.

In Figure 5.5, we observe the piano roll representation of the drum track generated
by DG in real-time, responding to the live improvisation of the human bass player.
Due to processing time constraints discussed in Section 4.3, there is a slight delay in the
drum generation relative to the bass input. Despite this latency, the generated drum
patterns seem to effectively complement the bass line, producing music that sounds
coherent and musically acceptable. The drum hits are placed in a manner that aligns
with the bass notes, resulting in a drum track that, in our subjective judgment, fits

well with the bassist’s performance even with real-time processing limitations. The
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generated music does not resemble noise or disjointed notes; instead, it sounds like a
proper drum accompaniment appropriate for the bass track and genre. We acknowl-
edge that musical interpretation is subjective, and we encourage readers to listen to
the provided audio samples available at arash-sadeghi.github.io/MusicAiPage/

to form their own judgments.

From this live session, we extracted the bass track and also generated the drum
track offline, meaning that we converted the played bass track to a piano roll and fed
it to DG at once. The generated drum track is illustrated in Figure 5.6.

[o]
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Human Played Bass

Generated Drum

Figure 5.6: Offline improvisation sample of a human bassist with DG.

Figure 5.6 shows the piano roll of the drum track generated offline. In this scenario,

DG has access to the full bass track without the constraints of real-time processing.

As a result, the drum hits in the offline generation are aligned with the bass notes
without any delay. The generated drum hits are distributed across different percussion
instruments, such as kick, snare, and hi-hat, which are essential components in Pop-

Rock music. The music produced seems cohesive and fits well within the intended
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genre, enhancing the overall musical piece. Again, we invite readers to listen to the
audio samples on our website to make their own evaluations, understanding that

perceptions of music are inherently subjective.

We then fed the generated drum track to VA, and the result is shown in Figure
5.7.

Human Played Bass
pitch

Generated Drum
pitch

Figure 5.7: Velocity assigned to offline improvisation of DG with a human bassist.
Red notes indicate higher velocity values and blue notes indicate velocity values close
to zero.

In Figure 5.7, the assigned velocities add a dynamic layer to the drum track,
reflecting variations in how forcefully each drum is struck. The velocity variations
contribute to the expressiveness and realism of the drum accompaniment. For in-
stance, stronger beats such as downbeats may have higher velocities (warmer shades),
emphasizing their rhythmic importance, while lighter beats may have lower velocities
(colder shades). This dynamic variation is characteristic of human drumming, where

emphasis and articulation play crucial roles in musical expression.

These figures collectively demonstrate that our model is capable of generating
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drum tracks that are rhythmically and dynamically aligned with a human-played bass
track in both real-time and offline settings. The real-time generation shows DG’s abil-
ity to interactively respond to live input, producing drum patterns that complement
the bass improvisation. The offline generation allows DG to generate drum notes at
precisely the right times without disruption of time delays. The velocity assignment
by VA enhances the expressiveness of the drum tracks, introducing dynamic nuances

that are essential for realistic and engaging music production.



Chapter 6

Conclusion

In this research, we proposed a novel drum accompaniment system designed to gener-
ate expressive drum tracks for human bass players, both in real-time and offline. The
primary focus was on generating drum tracks based on played bass tracks, but the
framework could be extended to accompany any human instrument player by training
the CGAN model with different instruments. Our drum generation process incorpo-
rated human-played bass input and accepted a desired genre for generating the drum

track, adding flexibility and adaptability to the system.

Our experiment of generating pitch and velocity in a single network showed a larger
deviation from the training dataset’s groove consistency, resulting in less coherent
drum patterns and reinforcing our decision to separate pitch generation from velocity

assignment.

Drum generation occurred in two phases: pitch generation, handled by the Drum
Generator (DG), and velocity assignment, handled by the Velocity Assigner (VA).
The purpose of VA was to enhance the expressiveness of the generated drum tracks

by assigning appropriate velocity values, simulating the dynamic intensity of a human
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drummer. This approach aimed to make the generated drum tracks sound more

human-like and musically engaging.

We evaluated our models using objective metrics to provide insights into their
learning processes and performance. However, we acknowledge the challenge of defin-
ing performance metrics for music generation, as music is inherently subjective and
emotional. Due to time constraints, we were unable to perform a thorough subjective
evaluation with organized test subjects. Instead, we provided improvisation samples,
including piano roll visualizations and audio recordings, to give a sense of how the gen-
erated drums sound. These samples suggest that the generated drum tracks effectively
accompany the bass tracks, producing music that sounds coherent and appropriate

for the intended genre.

The improvisation samples demonstrated that our model can generate drum pat-
terns that seem to correspond with the bass notes. In the offline setting, where
processing delays are not a factor, the drum hits appear to align well with the bass
input, resulting in cohesive and well-timed accompaniments. In the real-time setting,
despite inherent processing delays, the generated drum patterns seem to complement

the live bass improvisation, providing an interactive and engaging experience.

The velocity assignment by VA introduced dynamic nuances that contribute to
the expressiveness and realism of the drum tracks. The variations in velocity add
a layer of human-like dynamics, enhancing the overall musicality of the generated

accompaniments.

In conclusion, our system demonstrates the potential for AI models to generate
expressive and contextually appropriate drum accompaniments for human musicians.
While our evaluations were limited by time constraints and the subjective nature

of music assessment, the provided samples and analyses suggest that our approach is
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effective in producing musically coherent, expressive and engaging drum tracks. More-
over, by offering an intelligent, responsive Al drummer, our work directly addresses
the need for accessible improvisation practice highlighted in our motivation—enabling

young musicians to develop ensemble skills without requiring a full band [17].

6.1 Future Work

Potential improvements and future directions for this work include:

e The songs used to train the DG model were based on the LPD-cleansed dataset,
whose songs have constant tempo and no rhythm changes. Alternative CGAN
networks, such as transformers, along with different music representations, could
be used to reduce the model’s dependency on these constraints, since time sig-

natures and tempo changes are common in music.

e In real-time improvisation with DG, drum generation always lags behind the
played bass track. This could be addressed by incorporating bass track esti-
mation dynamics to predict the bass track that will be played in the next time

frame and generate the drum track accordingly.

e The VA network’s validation loss oscillated through different epochs. This could
be addressed by adjusting network parameters such as the learning rate or in-

corporating different regularization methods such as dropout.

e For gaining subjective insight to generated music, a subjective evaluation could
be proposed by designing listening tests with human participants to assess the

musicality and expressiveness of the generated drum accompaniments.
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