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Abstract

This thesis proposes to optimize the navigation of autonomous underwater vehicles by en-

hancing underwater acoustic communication and target sensing in complex oceanic environ-

ments. Current deep learning techniques in underwater acoustic communication often fail to

account for domain knowledge, such as first-principles signal processing and acoustic propa-

gation laws, which govern chaotic underwater environments. The main focus is on the integra-

tion of domain knowledge of the underwater environment in training neural networks. Such a

context-aware deep learning model employs theory-trained neural network to accurately learn

a non-linear map between input and output data. Details of the theory-trained neural network

largely remains unexplored, with many open questions.

This research introduces a context-aware methodology for regularizing neural networks.

We explore three approaches to deep learning-based communication among AUVs. First, we

advance long short-term memory (LSTM) neural networks for accurate underwater target de-

tection that moves stealthily underwater. Second, we embed communication theory within a

convolutional neural network (CNN) model in a supervised learning framework. Third, we

test a minimally viable intelligent system that enables AUVs to communicate effectively in a

hostile underwater environment. Through these venues, we provide a foundation for a more

reliable and efficient underwater communication.
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Lay Summary

Underwater robotics, particularly artificial intelligence in autonomous underwater vehicles

(AUVs), is crucial for remotely sensing the wealth of ocean valued over $24 trillion. Thus,

integration of deep learning in AUVs is an extremely demanding research topic to enhance the

global underwater robotic market. Training a deep learning architecture to accurately iden-

tify a non-linear map using the theory-trained neural network approach remains in its infancy,

needing to answer many open questions. Adopting deep learning techniques in underwater

acoustic communication cannot account for the vast amount of domain knowledge such as the

first-principle signal processing laws and remote sensing with sounds that govern the acoustic

propagation in highly chaotic and turbulent underwater environment. Incorporating contex-

tual information can regularize the neural networks reducing the dimensionality of admissible

solution space to a size that is suitable for any communication scenario.

This research has focused on addressing the incomplete understanding of the theory-trained

deep learning approach to ensure that a swarm of intelligent underwater robots can utilize con-

textual information to properly communicate with each other. The context-aware methodology

of regularization in theory-trained neural network was discussed in the broader deep learning

literature but not yet clearly outlined. In this study, we explored three venues for deep learning-

based optimal communication between underwater autonomous vehicles. First, we advanced

the long-short term memory neural networks for accurate detection of underwater targets. We

tested this approach to detect stealthily operating underwater targets. Second, we investigated

the performance of theory-trained neural network, where we incorporated communication the-

ory into convolutional neural network in the context of supervised learning. Third, we have

tested the design of a minimally-viable intelligent technique so that AUVs can communicate

with each other by bypassing the effects of hostile underwater environments.
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Chapter 1

Introduction

1.1 Background

More than 70% of the Earth’s surface is covered by water. Oceans are our natural sources of

wealth. The asset value of the ocean has been estimated to be $24 trillion [1]. However, 95% of

the ocean remains unexplored. There has been an increased reliance on Underwater Robotics

so that Autonomous Underwater Vehicles (AUVs) become more intelligent to perform various

tasks in the marine environment. The global underwater robotics market value was estimated

as $4.49 billion in 2022. Recently, the integration of deep learning techniques in underwater

acoustic technology has greatly enhanced these vehicles. Nevertheless, the development of

efficient and reliable artificial intelligence (AI) technology has become crucial for enhancing

decision-making techniques in a network of AUVs for underwater communication. Figure 1.1

presents a typical structure of underwater acoustic communication networks. Figure 1.1 shows

a network consisting of stationary nodes, AUVs, and surface buoys to gather environmental

data for exploring the wealth of oceans.

Deep learning is a specialized method in artificial intelligence. In underwater acoustic

communication, the deep learning techniques extract critical features from the observed signals

to create a realizable AI decision-making system that aims to replicate the neural processing

mechanism of the human brain [2]. Deep learning excels in handling complex data, employing

1



Figure 1.1: An example of underwater acoustic communication network. The stationary sen-

sors, AUVs, and floating sensors can communicate with each other using acoustic links (The

image was adapted from the Google Image database).

sophisticated feature detection algorithms, and thus often achieves superior performance. When

sufficiently large training data is available, deep learning methods achieve high accuracy in

mapping input data to output data. This mapping leads to a universal function approximation,

which is the primary building block of deep learning algorithms. Integrating deep learning

approach with underwater acoustic communication has the potential to optimize underwater

robotic technology.

In this thesis, the primary objective is to develop a deep learning-based underwater robotic

technology leveraging acoustic communication. This is a multidisciplinary engineering prob-

lem that integrates wireless communication with artificial intelligence. Despite many recent

advancement of robotics within mechanical and marine engineering, underwater robotics still

faces several communication challenges, such as multipath propagation, time-variability of the

channel, and Doppler shift. In underwater robotics, accurate detection of acoustic signals is

hindered by these attenuation effects. For instance, signal detection is crucial for networks of

AUVs to effectively determine each other’s location and perform other data acquisition tasks
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reliably. Current underwater wireless communication methods require further developments to

address the challenges posed by time-variability, multipath interference, and Doppler effects.

Therefore, the thesis focuses on the fundamentals of deep learning to mitigate the attenuation

effects in underwater signal detection and provide a robust acoustic communication technique

for underwater robotics. This includes evaluating the performance of deep learning algorithms

in underwater sound classification, channel estimation, and signal recovery in unpredictable

underwater conditions.

The underwater wireless communication research community developed sophisticated al-

gorithms for determining location information of underwater objects [3]. Among other appli-

cations, such algorithms have the potential for unique subsea intelligence solutions [4]. The

ability to precisely detect acoustic signals is crucial for such operations because robots can si-

multaneously listen to many existing underwater sounds. Such research on underwater wireless

communication systems has great importance in various other industrial fields [5] [6] [7], in-

cluding underwater search-and-rescue [8], marine military operations [9], environmental mon-

itoring [10], etc [11].

In this context, the advancement of deep learning in orthogonal frequency division mul-

tiplexing (OFDM) systems holds immense potential for optimizing the field of underwater

robotics. In particular, efficient OFDM symbol detection is critical for ensuring reliable com-

munication between AUVs, as it maximizes spectral efficiency and mitigates signal distortion

caused by multipath interference in underwater environments. Deep learning-based OFDM

symbol detection offers unprecedented opportunities, whereas traditional methods often strug-

gle to accurately localize AUVs and other underwater targets. Developing deep learning tech-

niques to address the distortion of transmitted OFDM symbols in underwater environments is

essential for improving sonar imaging, cooperative robotic systems, object tracking, and other

key aspects of underwater wireless communication.
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1.2 Motivation

The integration of artificial intelligence in optimizing underwater robotics seeks to accurately

estimate the communication channel between wireless sensors in order to accurately estimate

the locations of AUVs. Conventional techniques, including OFDM and synthetic aperture

sonar, face significant challenge due to the distortion of transmitted signals in multipath un-

derwater environments [12]. The development of deep learning techniques can mitigate signal

distortion, which is crucial for enhancing synthetic aperture sonar technology [13] and cooper-

ative robotic systems [14], among other underwater wireless communication applications. By

leveraging the power of deep learning, we can significantly improve the accuracy and relia-

bility of underwater communications, leading to better navigation, object tracking, and data

transmission in challenging underwater conditions. This advancement not only promises to

improve existing technologies, but also opens up new possibilities for innovative applications

in marine exploration and surveillance.

In classical underwater communication, the advantage of OFDM is that one can address

signal distortion in an underwater environment efficiently. OFDM is a robust and versatile

modulation technique which achieves high data rates and spectral efficiency. This technique

attracted significant research interest due to its potential for enhanced energy and spectral ef-

ficiences while mitigating intersymbol interference (ISI) [15]. This thesis aims to incorporate

OFDM techniques in three deep learning directions in order to develop cost-effective underwa-

ter robots. The first direction focuses on long short-term memory (LSTM) for proper classifica-

tion of acoustic targets. The second direction focuses on convolutional neural networks (CNNs)

for accurate channel estimation in OFDM receivers. The third direction focuses on OFDM sym-

bol detection in the receiver without requiring the statistical knowledge of the channel. The

outcome of these three investigations brings impressive capabilities of acoustic communication

and artificial intelligence in underwater robots. The overall development of the thesis addresses

the channel modelling problems to deal with turbulent characteristics of the ocean environment

4



and loss of coherence due to Doppler spreads [12], surface scattering [16] [17] [18] [19], and

randomly moving obstacles [20] [21]. Such characteristics are difficult to resolve because there

are no universal channel models that effectively represent underwater acoustic systems.

1.3 Research Contributions and Novelty

Autonomous navigation of any robots must deal with air currents or underwater chaotic con-

ditions. This thesis has focused on the design, modelling, and analysis of deep learning-based

communication for underwater robotics. One approach is to utilize the vast majority of avail-

able data to train a neural network and implement it for autonomous navigation of robots. This

approach is not very efficient for the task of sensing, detecting, and monitoring objects that

are farther away from the AUV. This is because the communication channel is drastically af-

fected by the environmental conditions. However, there is no simple way of incorporating

such environmental variation into deep learning methods. Context-aware neural network is

a recently developed deep learning technique which aims to incorporate domain knowledge

or physical context of the system into neural networks. Such a context-aware deep learning

technique has the potential to fill in the research gaps and mitigate the demand for navigating

a swarm of robots and individual AUVs through underwater sensor networks. This thesis is

based on the results of investigation in three projects, which present a methodology of incorpo-

rating contextual information of the underwater environment in supervised learning for optimal

communications between underwater robots.

The originality and novelty of this research contribution is as follows:

• Project A: Many underwater targets operate stealthily, and thus detecting them with

classical sonar technique is a challenging endeavour. Underwater target tracking aims

to identify whether a received underwater acoustic signal belongs to a certain category

of sounds. Deep learning provides powerful classification algorithms that are optimized

on the training dataset obtained from certain underwater environments. Project A in-
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vestigated an underwater sound classification methodology using deep neural network.

The long short-term memory network (LSTM) is a deep neural network that effectively

learns temporal dependencies in data to address the time-variability of the underwater en-

vironment so we can detect stealthily operating vehicles. The study found that learning

temporal pattern of sound signals is not sufficient for LSTM to classify stealthily operat-

ing vehicles. However, applying the LSTM network to learn spectral energy distribution

of the signals can significantly improve the LSTM-based classification. The primary

outcome of project A suggest that incorporating contextual information into deep neu-

ral networks has the potential to significantly improve deep neural networks to detect

stealthily-operating underwater robots. Project B has further investigated context-aware

deep neural network for accurately estimating underwater channels by robots.

• Project B: In underwater object localization and robot communication, inaccurate chan-

nel estimation can lead to false positive object detection. Many recent works suggest

that CNN-based deep learning technique is a promising candidate for acoustic commu-

nication in highly time-varying underwater channels. However, detailed literature review

suggests that a truly fair comparison with the widely used pilot-assisted channel esti-

mation using orthogonal frequency division multiplexing modulation has not yet been

considered for underwater acoustic communication.

Utilizing pilot subcarriers, a sparse channel can be estimated by the least absolute shrink-

age and selection operator (LASSO) algorithm. Consider a system under the OFDM

modulation with n subcarriers and m symbols. Let hsp 2 Cnm, xp 2 Cnm, and yp 2 Cnm

denote the vectorized representation of channel path gains, transmitted symbols, and re-

ceived symbols at pilot subcarriers, respectively. Here, hsp is a sparse channel vector.

Following [22] about sparse channel estimation, the LASSO algorithm minimizes the L1

norm ||hsp||1 using a regularization parameter � and a sensing matrix A, where

ĥsp = argmin||yp �Axp||2 + �||hsp||1. (1.1)
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In most applications, the number of subcarriers n is much larger than the number of

symbols m. Since the complexity of solving Equation 1.1 is O(n3
m

3) and A is a sens-

ing matrix with nm rows and nm columns. The choice of LASSO is not feasible for

estimating underwater channels in chaotic environments.

This work has addressed such an underwater channel estimation problem by considering

a context-aware CNN architecture, where the channel estimation algorithm is adapted to

underwater channels in the Doppler-delay domain. We target the optimization of the pilot

overhead that exists in classicical OFDM techniques. Although the LASSO algorithm

can approximate the optimal solution in a statistical sense, it requires high computational

power. In practical underwater conditions, such methods are not reliable to accommodate

the multipath delay spreads of an underwater channel.

The CNN-based methodology compensates the computational burden of LASSO through

the offline training process. This approach is promising because spreading, absorption,

and scattering losses of underwater acoustic channels is sparse and high-dimensional in

the Doppler-delay domain. In this context, exploiting channel sparsity with CNN exhib-

ited very good trade-offs between pilot placement, algorithmic complexity, and estima-

tion error. Statistical estimate of reliability and validity has been considered to evaluate

the accuracy of the CNN-based channel estimation technique.

• Project C: In order to optimize underwater robotic technology using artificial intelli-

gence, traditional approaches require channel estimation in order to accurately detect

the OFDM symbols for target tracking. As discussed in Project B, the computational

cost of underwater channel estimation can be optimized by the CNN algorithm. How-

ever, in Project C, our goal is to detect the transmitted symbol without performing the

channel estimation. This project has thus developed a deep learning-based symbol detec-

tion technique for time-varying underwater acoustic channels which does not require any

prior knowledge of channel statistics. This work has considered long short-term mem-
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ory (LSTM) neural networks to classify the signal constellation of the received OFDM

symbols. This approach trains the neural network on input-output pairs of pilot OFDM

symbols. The trained network detects the transmitted symbol directly from the received

symbol without considering the channel state information. The LSTM-based channel

estimation result has been compared with that of the LS and MMSE methods. The max-

imum likelihood decoding technique has been considered to assess the reliability and

validity of the LSTM-based channel estimation approach.

1.4 Thesis Outline

Through the outcomes of three research projects, this thesis explores a unified principle for

developing context-aware deep learning models to optimize underwater robots. In underwa-

ter communication, context refers to the metadata that describes the environments of actual

information in relation to a specific task. Traditionally, deep learning methods aim to extract

critical features from training data while assuming everything is a similar type of information.

Existing literature has recognized that feature extraction omits semantic differences, leading to

interpretability issues. This thesis formulates the problem of context-awareness in the design

of network architecture for underwater robots. Three research projects investigated the role of

signal processing knowledge in developing a context-aware deep learning method for underwa-

ter robotics. The thesis consists of five chapters. Chapter 1 has reviewed the relevant work and

summarized the contribution of this thesis. Chapters 2-4 have summarized the research find-

ings in three directions, which are distinct but essential for improving the underwater robotic

technology. These three chapters have been organized in manuscript format, with the results

submitted for publication. Chapter 5 has summarized present research and discussed potential

future direction of advancing the deep learning approach for exploring the wealth from oceans.
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Chapter 2

Assesment of Underwater Acoustic Target

Classification using LSTM Network and

Fast Fourier Transform

The classification of underwater acoustic targets can optimize underwater target localization

tasks. This study investigates the performance of long short-term memory network combined

with fast fourier transforms in classifying underwater sounds. This study investigated the deep

learning-based signal classification to design an optimal underwater target localization system.

The numerical experiments compared the temporal learning performance of memory-enhanced

neural networks with sequence learning performance. We observed that decoupling the time

history of sound with the Fourier transform results in a sequence extracting the spectral con-

tent of the sound. In particular, for three test signals, the performance accuracy is increased

by 51.53%, 62.22%, and 66.91% when the neural network model is trained on the frequency

domain instead of the time domain.
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2.1 Introduction

In various ocean exploration projects, automated unmanned vehicles (AUVs) descend up to

a depth of 4 000 m [7, 9]. Some AUVs operate stealthily and gather information about their

surroundings. However, the cavitation sound created by the engine forms an acoustic signa-

ture of these targets. In a reliable acoustic communication, extracting contextual information

from the time and frequency domains is necessary to ensure that sensor nodes in the network

can identify the sound source to optimally localize such silent targets. If a target were oper-

ating stealthily to gather information about its surroundings, probe signal-based echo analysis

technique may not be an optimal strategy for such target localization. Effective AUV commu-

nication would classify whether the sound came from the target before extracting the location

information from the received acoustic data. For example, the OceanGate submersible went

missing in the Atlantic Ocean in June 2023 while descending towards the wreck of the Titanic.

In such a search operation, sound classification is crucial to optimize the cost of localizing the

missing submersible because there were many other potential sources of underwater sound.

Acoustic classification techniques can determine whether the sound came from a target, which

in the case of the OceanGate incident was whether the recorded banging noise came from the

missing submersible. Recent studies on deep learning (e.g. [23, 24, 25, 26, 27, 28, 3, 15]) have

opened a new approach with long short-term memory (LSTM) networks, which is potentially

promising to optimize underwater signal classification and underwater target detection [29, 30].

In acoustic signal classification, maximum likelihood methods estimate parameters of a

likelihood function, which calculates the probability that a received signal belongs to a specific

class, such as environmental noise, marine life sounds, or submarine activity. In contrast, deep

learning techniques take a data-driven approach, extracting critical features from received sig-

nals and often provide relatively effective decision boundaries for acoustic classification. In

underwater scenarios where AUVs move silently, the deep learning approach would be rela-

tively useful for classification of passive acoustic signals like cavitation noises from a target.
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LSTM networks can capture long-term temporal dependencies, and thus suitable for dealing

with temporal variability typical in acoustic signals. Note that LSTM networks have already

demonstrated success in various time-varying data classification problems, such as ECG signal

analysis and early stress prediction from wearable sensor data. Such a capability of LSTMs

suggest their potential for acoustic signal classification in complex underwater environments.

Several studies demonstrated promising results in underwater acoustic classification by

leveraging neural networks to map input signals directly to output labels/classes [31, 32].

In fact, the application of neural networks in underwater acoustics dates back to the early

1990s [33]. More recently, CNN-based deep learning methods have gained popularity in un-

derwater communication particularly due to the ability to extract accurate features from the

undersampled spectra [34, 35, 36, 37]. Works such as Gong et al. [3] presented a CNN-based

classification model to take advantage of the reduced complexity offered by the discrete frac-

tional Fourier transform (FrFT). However, such a CNN-based technique overlooked the time-

varying multipath effects in a turbulent underwater channel, including changes in temperature,

pressure, and the Doppler shift [38]. To address these limitations, this study evaluated the clas-

sification performance of the LSTM networks, which are well suited for the highly dynamic

nature of underwater channels.

For relatively complex deep learning models, recent studies demonstrated a strong gener-

alizability by progressively improving system performance through task-oriented learning and

capturing hidden information from data [39, 26, 27, 28, 3, 15]. On the other hand, the law of

parsimony suggests that simpler models, such as LSTM networks, that achieve similar level

of accuracy to complex models, are better suited to unseen data. Underwater environments

demand for developing generalizable network architecture for acoustic source localization and

detection, where sound waves reflect off the seabed, sea surface, and other underwater objects.

Considering these factors, simpler deep learning models may exhibit higher generalizability

performance, if such models account for a set of characteristics such as time-varying multipath

propagation, complex aquatic noise, and Doppler shift [26].
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The following Sections have briefly reviewed recent progresses in deep learning-based

sound source localization techniques. The basic concepts of classification via neural networks

has been outlined. The Fourier domain of the signals have also been discussed with regards to

their quality as training data into the LSTM model. This discussion includes simulation results

and the significance of these findings.

2.2 Deep Learning for Underwater Sound Classification

2.2.1 Problem Definition and Proposed Solution

Let x(t) denote the acoustic signature emitted from an underwater target. As sound propagates

through the ocean, the emitted signal is significantly affected by the multipath environmental

effects such as reflection off the seabed, sea surface, and other objects. The intercepted acoustic

signal, y(t), is a convolution of x(t) and the chaotic underwater environment. Thus, channel

estimation becomes crucial for accurate classification of x(t) and detecting the underlying tar-

gets. The channel estimation adds additional computational complexity to the classification of

x(t). The conventional sound classification framework depends heavily on critical features of

x(t), and thus the performance can deteriorate significantly if the classifier focuses on features

of y(t) to avoid the cost of channel estimation.

2.2.1.1 Sound Propagation

There exists a map between x(t) and y(t). The map is given by a superposition of the convo-

lution between the channel state information h(t, ⌧) and the delayed and attenuated copies of

x(t), with the intercepted signal represented as

y(t) =
PX

p=1

hpx(t� ⌧p)e
j2⇡⌫pt + ". (2.1)

Here, the time-varying channel of path p is represented by hp, the total number of paths is

represented by P , the acoustic signal transmitted from the underwater target is represented by
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x(t), and the amount of noise in the underwater channel is represented by ". The Doppler

shift is represented by ⌫p = v cos�pfc/vc, where v denotes the relative speed between the

sound source and the receiver, vc denotes the sound speed through water, fc denotes the carrier

frequency, and �p denotes the angle of arrival for path p. The multipath delay and attenuation

effects are represented by the channel impulse response

h(t, ⌧) =
PX

p=1

hp�(t� ⌧p(t)), (2.2)

where the propagation delay of path p is represented by ⌧p(t) = ⌧p � ⌫pt [3].

2.2.1.2 Feature Learning

We propose a sonar system to automatically discover a representation of x(t) satisfying Equa-

tion (2.1), which is employed to learn the necessary features of x(t). It is mathematically and

computationally convenient to assign an appropriate label to y(t), where x(t) is unknown. This

approach does not require channel equalization. A device can be trained in any real underwater

condition with respect to some known sound sources.

2.2.2 Signal Classification with Neural Networks

According to the convolution theorem, the Fourier Transform converts the convolutional Equa-

tion (2.1) into a product of the Fourier Transforms of x(t) and h(t), respectively. Thus, we

have

H�1Y = X . (2.3)

Let W ⇡ H�1 denote an approximation of the inverse of the channel matrix. In classification

theory, our goal is to predict a class label for x(t). Thus, the problem is broken into two stages.

The inference stage employs a set of training data {Yi} to estimate W which maximizes the

probability of WY to fall into a desired category. The subsequent decision stage employs

posteriori probabilities to make optimal class assignments. In the present study, we considered

the highest probability of representing certain features of X as the decision criteria. These
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features are represented by the class label, and thus, the classification framework reduces the

computational complexity bypassing the classical feature extraction process. In other words,

the tasks of channel estimation and feature extraction are replaced with the estimation of W .

In this research, we employed the long short-term memory (LSTM) neural network archi-

tecture, which is a special type of recurrent neural networks (RNNs). Our goal is to estimate

the network weights W using a set of measurements of y(t) as training data. LSTM can learn

an optimal relationship between input vector x 2 Rm and output vector y 2 Rn. Here, the

output is a categorical variable y 2 C, where C is a set of possible target labels. LSTM consists

of six steps:

• Forget gate: ft = �(Wf [ht�1, xt] + bf )

• Input gate: it = �(Wi[ht�1, xt] + bi)

• Candidate cell gate: c̃t = tanh(Wc[ht�1, xt] + bc)

• Cell state update: ct = ft � ct�1 + it � c̃t

• Output gate: ot = �(Wo[ht�1, xt] + bo)

• Hidden state update: ht = ot � tanh(ct)

• LSTM Output: yt = softmax(Wyht + by)

We see that a linear transformation converts the input vector x through multiple hidden

states. A non-linear function of the form y = �(·) maps the hidden vector to the output vector

yt. In other words, the LSTM network provides the best recurrence relation of a signal from

one time step to the next in order to accurately predict future states of the signal. The above

LSTM architecture is demonstrated schematically in figure 2.1 to indicate the methodology of

accurately learning the recurrence of a signal in the time-domain so that one can predict the

future state of the signal.
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Figure 2.1: A schematic illustration of the LSTM network.

2.2.3 Classification Algorithm

In the proposed LSTM-based signal classification method, the network produces an output

yt = softmax((Wyht + by)), which maps the observed signal sequence x to a label y 2 C. The

network is trained by minimizing the mean squared error between the predicted output and the

true label:

E =
1

2
||softmax(Wyht + by)� yt||2, (2.4)

where ht is the hidden state at step t in the frequency domain, and yt is the corresponding target

label. For the results presented in this paper, the weights and biases were optimized through

backpropagation using stochastic gradient descent. This optimization process allows the LSTM

network to learn the optimal weights and biases for recognizing the power spectral density of

discrete-time signals.

In real-time underwater localization systems, the computational load is handled through

offline training via the backward propagation algorithm. During the detection stage, the only

computational cost is due to the forward propagation. Apart from the computational gain, the

LSTM method provides an efficient technology for the identification of underwater targets,

particularly those that operate stealthily. An intuitive idea is to inject frequency-domain infor-

mation, thereby enhancing the performance of the LSTM-based signal classification.
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2.3 Simulations and Results

We considered a numerical study for underwater sound classification in order to evaluate the

deep learning-based underwater acoustic communication methodology. In this article, our goal

is to verify that LSTM network improves the classification accuracy by utilizing the power

spectral density of the received sound. During this study, we did not have access to a real-world

dataset of underwater sound. Any real-world data, such as acoustic signals generated by a ship,

is behind a paywall or otherwise confidential. Thus, we instead considered a dataset obtained

from MATLAB datastore which consists of six classes of underwater sounds. The dataset

include 1000 sound signals for each class of underwater sound. Each signal has a duration of

4 s with a sample frequency of 8.192 kHz. In this experiment, we verify that the LSTM network

accurately classifies underwater sound using the power spectral density.

2.3.1 Temporal vs. Sequence Learning

Figure 2.2 shows sound signals from each of the six classes. We see that class 2 and class 5

do no have an apparent pattern that can efficiently be learned by a memory-enhanced neural

network such as LSTM. In other words, temporal learning with LSTM has a high chance of

misclassification. Conversely, the characteristic features of the sound emitted from a target are

hidden behind the time-domain pattern, which is caused by a convolutional kernel. Figure 2.3

shows the power spectral density of the aforementioned signals in each class. According to the

convolution theorem, the Fourier transformed signal accounts for the channel state information

as a multiplication with the original sound. These plots indicate that the training of LSTM in

the Fourier domain, which is a sequence learning approach, is less likely to misclassification.

In the following Section, we compared the performance of sequence learning over the tem-

poral learning cases. A goal of this study is to show a design a decision strategy for an under-

water surveillance system, which employs the sound classification technique to optimize the

efficiency of target localization.
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Figure 2.2: The time-domain representation of sound signals y(t) from each of the six classes,

where the underlying pattern was convolved with an acoustic channel. The training data con-

sists of 1000 such signals per class.

2.3.2 Training and Validation Performance

The neural network considered for this experiment is trained using an Apple M1 Pro chip with

16GB of memory and implemented in MATLAB R2024a. This neural network considers the

ADAM algorithm for optimization with a maximum of 50 epochs and a batch size of 200 data

instances. The network parameters are updated during training with a learning rate of 1⇥ 10�3

and a weight decay of 1⇥ 10�4.

In this experiment, we demonstrate the classification performance of a neural network with
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Figure 2.3: The fourier-domain representation of the signals shown in Figure 2.2.

respect to the training data that is passed into it. To demonstrate the effect of the training data,

we consider the underwater signal classification in both the time-domain and the frequency

domain. To quantify the benefits of considering the signals in the Fourier domain, we perform

acoustic signal type classification. Table 2.1 compares the accuracy of the signal classification

for data in the time- and frequency-domain, respectively. For each type of training data, we have

the corresponding classification confidence scores of the predicted class on the test dataset. We

can also see the effect of the type of training data (i.e. time-domain vs. frequency-domain)

on the training performance of the neural network, as shown in Figure 2.4. For each class

of acoustic signals, the confusion matrix in Table 2.1 shows higher classification confidence
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scores for training data in the frequency-domain than in the time-domain.

(a) (b)

Figure 2.4: A comparison for the convergence rate of the ADAM optimizer. (a) Training loss

vs. number of iterations. (b) Validation loss vs. sampling index. The convergence rate of

time-domain learning (blue curves in a and b) is relatively high compared to spectral feature

learning (orange curve in a and b).

2.3.3 Discussion

An observation of Table 2.1 shows a difference in confidence scores for certain test signals

when classified under a neural network trained on data in the time-domain and frequency-

domain. This Table clearly shows that time-domain signals are generally less likely to have

accurate predictions, compared to frequency-domain signal. This is exemplified by Signal 2.

Though this signal has been correctly classified in the time-domain, the neural network had a

mere 33.05% confidence that the assigned class label is true. In contrast, the same signal in

the frequency-domain is assigned the correct class label by the neural network with a 99.96%

confidence. The same logic applies for Signals 4 and 6, of which their time-domain form

is assigned the correct class label with a mere 37.63% and 48.41% confidence, respectively.

In contrast, their frequency-domain form is assigned the correct class label with a 99.85%
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Table 2.1: A Comparison of Underwater Signal Classification Accuracy. (A) LSTM network

was employed to learn the temporal history of the training data in the time-domain, where

the signals were convolved with the channel. (B) The classification outcome of the LSTM

architecture, where the network was employed to learn the spectral history of the training data

in the frequency-domain, where the channel effect was decoupled from the sound signals. The

diagonal elements state the classification accuracy.

A - Time-domain training

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

S1 0.9687 0.24 0.008 0.010 3.35E-5 0.0043

S2 0.008 0.3305 0.053 0.016 6.51E-5 0.0099

S3 0.006 0.41 0.9349 0.0039 2.03E-5 0.0018

S4 0.015 0.011 0.002 0.3763 6.06E-6 0.50

S5 2.09E-4 3.9E-4 2.62E-4 4.47E-5 0.9999 7.32E-5

S6 0.002 0.010 0.0016 0.59 4.43E-6 0.4841

B - Frequency-domain training

S1 0.9984 3.15E-7 1.59E-5 3.61E-7 0.0015 4.62E-5

S2 7.29E-6 0.9996 5.27E-5 2.90E-4 1.12E-5 5.15E-6

S3 1.87E-4 1.30E-4 0.9995 2.067E-4 7.63E-6 1.28E-4

S4 5.48E-6 1.65E-4 8.97E-5 0.9985 1.55E-4 2.08E-4

S5 3.64E-4 1.29E-6 2.39E-6 1.33E-4 0.9975 1.85E-4

S6 0.0010 1.25E-4 3.42E-4 8.69E-4 7.83E-4 0.9994
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and 99.94% confidence, respectively.

A comparison made within Table 2.1 illustrates the importance of the training data passed

into the neural network. It is clearly shown that the LSTM network is trained more easily on

frequency-domain networks than on time-domain networks. This discrepancy in performance

is also illustrated in Figure 2.4, which shows the training and validation curves to be more

optimal for neural networks trained on frequency-domain signals than on time-domain signals.

2.4 Conclusion and Future Direction

2.4.1 Summary

This study investigated the potential of deep learning for signal classification in a harsh under-

water environment. We employed LSTM networks for the training of our deep learning model

because underwater signals rely on a strong temporal history due to multipath Doppler effects.

However, the convolution between the hostile underwater channel and the desired signal hin-

ders LSTM networks from efficiently learning signal features. Past studies have demonstrated

frequency-domain classification using LSTM networks in applications such as clinical diagnos-

tics [40], renewable energy [41], music classification [42], and time-series analysis [43]. The

present study aims to account for the channel effects, where we considered the Fourier trans-

form as contextual information and incorporated that into the training data. In other words,

the consideration of frequency-domain signal features results in the time history of the training

signals to be lost [39]. Nevertheless, our results show that training in the frequency domain sig-

nificantly improved the classification accuracy compared to training in the time-domain. These

results suggest two novel aspects of deep learning-based underwater target localization. First,

channel equalization and capturing the critical signal patterns are essential for accurately classi-

fying underwater sounds. Second, the LSTM networks are more efficient in sequence learning

if the signals are not convolved with secondary effects such as an underwater channel.
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2.4.2 Future Research Directions

In this research, we have not investigated the performance of deep learning-based underwater

target localization methodology. Many underwater targets typically move stealthily without

making a sound, except for the noise from their engines. Such targets listen to the acoustic

signatures of surveillance systems. The strategy of analyzing echos of probe signals is not

appropriate for localizing such targets. If we can accurately classify such stealthily operating

targets via their acoustic signatures, we can apply the time-reversal mirror technique [44] to ob-

tain the desired location information. Such a target localization technique employs the acoustic

wave Equation with a point sound source that can be estimated by the time-reversal method.

It is worth mentioning that the time-reversal method can accurately recognize the target using

wave Equation if the target is located 1500-2000m away.
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Chapter 3

CNN-based Context-Aware Deep Learning

of Underwater Acoustic Channels

Recent works have studied the performance of convolutional neural networks for underwater

acoustic channel estimation and target tracking. However, a full understanding of convolutional

neural networks for optimizing the signal processing techniques in the widely used orthogonal

frequency division multiplexing modulation requires further investigation. In this research,

we address the problem of channel estimation by considering pilot schemes as incomplete

measurements of channels. In this context, we present a comparison between deep learning-

based channel estimation and decision feedback equalization of channel matrices. The error

estimation shows that the proposed methodology performs better than the decision feedback

equalizer that uses the full knowledge of the channel statistics. The results also indicate that

our method can be used efficiently in localization and tracking of underwater targets. This

work provides a foundation to extend convolutional neural networks in underwater acoustic

communication.

23



3.1 Introduction

In various underwater applications, accurate channel estimation plays a significant role to over-

come the challenges of detecting underwater targets using wireless sensor networks [3]. Un-

derwater acoustic channel is extremely hostile due to multipath attenuation, strong Doppler ef-

fects, and large ambient noise. Although orthogonal frequency division multiplexing (OFDM)

is highly efficient in terrestrial communication, it can be challenging to fully exploit the po-

tential of the OFDM technique in underwater surveillance systems. There has been extensive

research on the conventional pilot-based estimation techniques such as least squares (LS) and

minimum mean squared error (MMSE). These methods are not efficient to directly apply to

underwater OFDM communication systems because they do not account for the sparsity and

the random multipath channel variations. Exploiting the sparsity and the Bayesian probability

of the underwater channel, the decision feedback channel estimation (DFCE) technique can re-

cover the channel with a sampling rate lower than the Nyquist sampling rate. Apart from these

approaches, the deep learning-based methods have recently emerged as effective underwater

channel estimation techniques.

A major challenge for the deep learning-based underwater acoustic communication is to

integrate domain-specific knowledge or physical laws into the training process and the general-

izability of trained models to unseen underwater channels for any values of the signal-to-noise

ratio (SNR). The lack of training data due to limited measurements of real underwater chan-

nels and the generalizability of the machine learning model hindered the applications of deep

learning-based techniques in underwater acoustic communication. To address these challenges,

recent works developed theory-trained neural networks, which is similar to physics-informed

neural networks [45]. This approach eliminates the need for large amounts of training data and

exhibited promising attributes such as generalizability, interpretability, and robustness. In this

study, we extend the application of theory-trained neural networks in underwater acoustic com-

munication. The fundamental idea is to train the network using pilot symbols and incorporate
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domain-specific theoretical knowledge using a mathematical model of underwater channels.

An important contextual-expert knowledge is that the underwater acoustic communication

channel is influenced by the intermittently time-varying underwater environment, where the

channel matrix H is highly sparse in the Doppler-delay domain. Therefore, exploiting a missing

data recovery technique is most likely an optimal approach to estimate H, particularly for

the task of underwater target localization through large-scale wireless sensor networks [46].

There have also been extensive work on using channel autocorrelation matrix into the minimum

mean squared error (MMSE) method and sparsity into the compressed sensing (CS) method.

Apart from these classical approaches of incorporating contextual information, deep learning-

based methods have also considered incorporating prior distribution in the channel estimation

problems.

In this research, we have developed a novel deep learning architecture to recover the chan-

nel matrix H by considering the pilot scheme as partial measurements of the ocean acoustic

channel impulse response. In localization and object tracking problems, such a critical channel

state information is essential to perform coherent detection. Generally, pilots are arranged by

following a pattern that is known to both transmitter and receiver (e.g. Gaudio et al. [22]). In

any communication scenario, both the pilot pattern and the channel estimation algorithm have

to be optimized. To achieve a high communication rate, there is a need to optimize the amount

of useful information sent in a block of pilot symbols. The optimization of this tradeoff is gen-

erally non-trivial. Existing techniques require a full knowledge of the channel statistics, which

is difficult for underwater acoustic communications. The proposed deep learning methodology

employs the convolutional neural network (CNN) to extract critical features of the CSI. The

training of the CNN architecture requires known channel matrices H to find optimal values

of the neural network parameters. In other words, the proposed methodology builds upon the

work of Gaudio et al. [22], which introduced the integration of feature extraction with regres-

sion of missing elements in H. Unlike their approach, our method incorporates CNN-based

sensing of a sparse channel H in the Doppler-delay domain.
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An important aspect of deep learning is to view the estimation of the channel time-frequency

response as two step process. The first step involves training a neural network model for the

desired task. The training step is an offline process which requires a relevant dataset. This is a

computationally intensive process, and it can be performed in such a way that the resulting neu-

ral network to map the transmitted signal with the received signal. Note that the performance

of such a deep learning-based channel estimation depends on the availability and suitability of

the training data [27]. The second step involves using the trained model to execute the appro-

priate task (i.e. estimating the channel, symbols, or target locations). Several recent works have

discussed the importance of understanding the fundamentals of deep learning-based prediction

for underwater wireless communication. There are known challenges that can possibly lead to

failure of such predictions. Nevertheless, by incorporating the domain knowledge of wireless

communication, we can address any forth-coming challenges.

3.1.1 Related Work

Over the years, various applications in wireless sensor networks developed promising tech-

niques to restore incomplete and noisy matrices [47] [48]. Robust principal component anal-

ysis is one of the powerful techniques, which is devoted to the noise removal and imputation

of missing values of any noisy convex set [49]. Mean imputation is another cost effective

approach that uses mean of the non-missing entries to replace the missing values [50]. The

Alternating Direction Method of Multiplier (ADMM) algorithm exhibits the best performance

in missing data recovery by jointly exploiting sparsity and low-rank properties of the data ma-

trix [51]. Recently, algorithms based on convolutional neural networks have also achieved high

performance in matrix completion problems [27] [52].

Acquiring accurate CSI with conventional channel estimation techniques, such as least

squares (LS) and minimum mean square error (MMSE) is challenging due to high-dimensionality

of channels [53] [54]. Methods that adopt the concept of compressed sensing and channel spar-

sity in the time-frequency domain have also been considered [55] [56] [57] [22]. Recent studies

26



have shown that we can optimize traditional channel estimation methods by incorporating deep

learning techniques [26] [58]. Several works have applied the deep learning approach for iden-

tifying signal constellations [59], detecting symbols [60], estimating channels [61], and isolat-

ing moving objects [3]. More specifically, the deep learning method can recover the optimal

CSI while minimizing the effects of channel distortion [26], intersymbol interference [62], and

noise [63].

An end-to-end deep learning architecture for signal transmission/reception was proposed

by Ye et al. [26]. In this approach, all functionalities of a wireless communication link are

treated implicitly with a trained deep learning framework, thereby treating the entire commu-

nication system as a black box. Thus, such a deep learning method aims to avoid the channel

time-frequency response, which is otherwise important for applications such as object localiza-

tion [3]. He et al. [61] and Soltani et al. [27] considered the channel matrix as an image and

applied a CNN-based image processing technique for channel estimation.

3.1.2 Our Contributions

In this research, the main idea is to achieve a robust channel estimation by exploiting matrix

completion methods as follows:

H = f�(H̃). (3.1)

Here, H̃ belongs to a latent space and f�(·) is a nonlinear function. The proposed algorithm

consists of two steps. The first step learns the latent representation H̃ by employing the pi-

lot symbols. The second step learns the nonlinear function f�(·) by employing a deep CNN

architecture. Thus, we have developed a novel methodology using a deep CNN architecture

to recover the channel state information from pilots by completing a matrix in an end-to-end

manner.

In particular, to develop a CNN-based framework for channel estimation in OFDM time-

frequency grid, we assume that the pilot symbols provide an incomplete channel (i.e. an un-

dersampled matrix). However, completing the channel with any efficient matrix completion
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algorithm may not be sufficient to capture the environmental conditions necessary for accu-

rate underwater communication. We propose to incorporate such contextual information by

employing an encoding technique, i.e. unsupervised learning of the critical features in the la-

tent space of the incomplete channel matrix, (i.e. H̃). Then, we consider a supervised learning,

which decodes H̃ through convolutional layers, thereby reconstructing the clean channel matrix

Ĥ . We have shown that the performance of the proposed CNN-based channel estimation algo-

rithm is better than that of conventional methods such as decision feedback channel equalizer

(DFCE).

We have surveyed the existing literature to show that our contributions have addressed a fun-

damental research gap. Some of the recent works (e.g. Ye et al. [26] and Mohammed et al. [58])

have conducted deep learning-based channel estimation and OFDM symbol detection. These

approaches are not directly applicable to object localization and detection problems where the

entire time-frequency spectrum of the channel is required (see Gong et al. [3]). Moreover,

converting the frequency-domain channel response into the time-domain by inverse Fourier

transform (e.g. the OFDM modulation) is computationally infeasible for practical underwater

communication, such as object detection and localization. Our methodology has the potential

to address this research gap. The rationale behind the proposed CNN-based methodology is

that exploiting the sparsity of the Doppler-delay underwater channel leads to a context-aware

methodology that would exhibit very good tradeoffs between the pilot overhead, complexity,

and estimation error [22].

3.2 Underwater Acoustic OFDM Systems

This Section introduces the principles of the algorithm to incorporate the expert knowledge of

wireless communication in the training of neural networks.
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3.2.1 Underwater Communication in Doppler-Delay Domain

In pilot-aided underwater communication, an acoustic channel appears as an incomplete data

with a large number of missing values. One of the best ways to incorporate expert knowledge

is to extract critical channel features from pilot symbols. Consider an underwater acoustic

channel for a relatively short period of time in the absence of the environmental shadowing

effects [64, 3, 65]. The impulse response of an underwater acoustic channel in the time-domain

is given by

h(t) =
PX

p=1

hp�(t� ⌧p + ⇢pt), (3.2)

where the multipath scattering component will have individual path loss hp, Doppler spread ⇢p,

and the time delay ⌧p for each path p. The total number of paths is represented by P . Since

underwater communication channels are characterized by long delay spreads and significant

Doppler effects due to the marine environmental conditions, the multipath scattering compo-

nents are usually sparse in the Doppler-delay plane [22]. In the OFDM time-frequency domain,

the underwater channel represented by Equation (3.2) is

H(t, f) =
PX

p=1

hpe
j2⇡⇢pte

�j2⇡⌧pf . (3.3)

Let us consider nd symbols and ns subcarriers. Now, we discretize the time-axis t as n�t for

n = 0, . . . , nd � 1, and the frequency-axis f as m�f for m = 0, . . . ns � 1. Considering the

discretized form of Equation (3.3), the Doppler-delay representation of a received signal at the

m-th subcarrier and the n-th data symbol satisfies the following Equation [22]:

Ym,n = Hm,nXm,n + "m,n (3.4)

where Y 2 Rns⇥nd is the received signal, H 2 Rns⇥nd is the channel, X 2 Rns⇥nd is the

transmitted signal, and " 2 Rns⇥nd is the noise.

According to Soltani et al. [27] and Gaudio et al. [22], the channel is sparse in the Doppler-

delay domain. Thus, a suitable approach to incorporate expert knowledge of wireless com-

munication in the training of neural networks is to transmit pilot symbols and estimate a few
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entries of the matrix H. These measurements would be repeated to provide a set of sufficient

training data, leading to an incomplete estimate of the channel matrix. Following Gaudio et al.

[22], we have developed a method that inserted pilots at subcarriers of a fixed spacing such as

3�f for as few as only two symbols. This leads to encoding a sparse and incomplete represen-

tation of H in the latent space. Following this unsupervised learning of contextual information

in the latent space, supervised learning facilitates the neural network to complete the matrix.

In contrast, conventional methods using such an arrangement, pilot symbols are interca-

lated along two pilot columns of H. The channel matrix H is then completed by interpolating

row-wise, which estimates each symbols at every subcarrier. Advanced methods such as com-

pressed sensing are more efficient to estimate the complete channel matrix. However, a major

challenge of such conventional methods is to accurately capture three channel parameters: the

amplitude hp, time delay ⌧p, and Doppler rate ⇢p [3, 66]. This is because the conventional

matrix completion algorithms do not have a mechanism to recover channel variation due to

environmental effects. The optimization of this tradeoff is not trivial and depends on the spar-

sity of the channel in the Doppler-delay domain. For example, Gong et al. [3] suggested that

accurate representation of environmental effects in the estimated channel parameters is crucial

for estimating the position and velocity of any moving target in a surveillance area.

Since the underwater channel is affected by various environmental factors, encoding chan-

nel state information into a latent space will exploit the sparsity of H(t, f), which in turn

would incorporate expert knowledge in the training of convolutional neural networks. In this

context, the proposed work has addressed the problem of accounting for channel sparsity in the

Doppler-delay domain, targeting the optimization of underwater surveillance tasks by consid-

ering artificial intelligence techniques.

In an underwater channel, the environmental dynamics are important contributors to dy-

namic variation of sparsity in the Doppler-delay domain [17, 67]. Thus, a truly fair compar-

ison of the proposed CNN-based channel estimation technique with its direct concurrent and

conventionally used decision feedback channel estimation (DFCE) provides a foundation to
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incorporate artificial intelligence in underwater search and rescue operations.

3.2.2 Incorporating Expert Knowledge into Neural Networks

We know that deep learning algorithms may be trained to reproduce the training data with high

accuracy. However, the resulting network will most likely not generalize well to previously

unseen underwater channels. To improve the generalization ability, the training of neural net-

works typically considers a validation stage using additional data not included into the training

set. Thus, deep learning can provide an accurate model with respect to a given geometry and

signal frequency associated with the training data. Nevertheless, no mathematical proof exists

to guarantee that the network will perform with unseen data as accurately as it performed with

the training data.

In contrast, leveraging disciplinary expert knowledge in the training process can signifi-

cantly improve the generalization ability of deep learning algorithms. The incorporation of

disciplinary knowledge in deep learning is referred to as physics-informed or theory-trained

neural networks [45]. This framework has gained significant attention from different domains

of research, indicating the generalization performance on independent unseen data. In wireless

communication problems, a mathematical framework of the physical layer of communications

(i.e. the system model) can be injected as expert knowledge to the neural networks.

In the present work, we propose to consider the decision feedback channel equalization

(DFCE) algorithm to assess how accurately the network has learned the expert knowledge of

the channel. Our approach minimizes the combined error of learning the data and learning the

model.

Let us represent the ns⇥nd channel matrix H by stacking all elements into a one-dimensional

vector in the Doppler-delay grid. We denote yd 2 Rnsnd⇥1, xd 2 Rnsnd⇥1 and hd 2 Rnsnd⇥1 to

represent the system on the entire resource grid. Considering the pilot symbols xp, we get the

incomplete channel state information at pilots (denoted by p) as

hLS
p
= yp/xp. (3.5)
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To complete the matrix, we take the feedback of the pilots to fill in the missing elements of

the entire channel state information hd. This is done by multiplying hLS
p

with a suitable matrix

AMMSE such that

ĥd = AMMSEhLS
p
.

Let us define the matrix in the following form:

AMMSE = Rhdhp

⇣
Rhphp + �

2
n

�
xdx

H

d

��1
⌘�1

(3.6)

where Rhdhp = E{hdhH

p
} is the correlation matrix between the CSI of the entire time-frequency

grid (hd) and the CSI extracted at pilot positions (hLS
p

). The filter matrix (AMMSE) given by Equa-

tion (3.6) incorporates contextual channel state information by solving the following optimiza-

tion problem:

minimize ||hd �AMMSEhLS
p
||2 s.t. yp = hLS

p
xp. (3.7)

It should be noted that the filter matrix AMMSE requires the full knowledge of the correlation

matrices Rhdhp and Rhdhp [53].

3.3 Proposed CNN-Based Channel Estimation

3.3.1 Generalizable Learning Framework

The convolutional neural network (CNN) is illustrated in Figure 3.1. CNN is a deep learning

architecture which can detect objects by extracting critical features to recognize patterns. CNN

slides a kernel through the target data and use the data that falls inside the kernel (i.e. the

receptive field) to extract the desired patterns within the target data. The basic idea of the

proposed approach is to consider a prior estimate of missing data and combine it with a CNN-

based data imputation technique.

This Section briefly presents the proposed CNN-based technique, which predicts the time-

frequency channel matrix using the neural network as Ĥ = f�(Ŵ ,hLS

p
). The proposed al-

gorithm consists of three steps. First, we estimate the elements of Ĥ corresponding to pilot
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Figure 3.1: An illustration of the CNN model

symbols, hLS

p
, and consider the remaining elements as missing data. Second, we determine

some weights Ŵ to employ a data imputation operator denoted by f�(·). It extracts critical

features of the channel by using time-frequency analysis and data imputation technique. Third,

it trains a CNN architecture to learn the correlation between the missing probabilities and the

critical features of the channel using training data.

The imputation is a projection operator [68],

P(Ĥ) =

8
><

>:

hij (i, j) 2 {pilots}

h̃ij (i, j) /2 {pilots}
,

which provides a set of all matrices that agree upon the non-missing entries at pilot locations.

We can prove that the set of all possible completions of such an incomplete matrix forms a

convex set. The above imputation operator thus projects missing values assuming h̃ij belongs

to a convex set.

The estimated values of the channel at pilot locations will be noisy. The CNN-based deep

learning algorithm will compare the imputed channel matrix H̃ with the true channel H or a

theory that implicitly represents the true channel. Since matrices with partial data belong to

convex sets, the imputation approach guarantees that the reception field of CNN will capture

local features [47, 49, 55]. Thus, one expects that i) the learning of the channel by CNNs

is guaranteed; ii) incorporation of expert knowledge through theory-trained neural networks

provides a CNN model that is generalizable to any unseen underwater environment, where the

“theory” used for training is applicable.

In order to impute missing values of high-dimensional OFDM channels, a matrix-to-matrix
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mapping model with the ability to retain local time-dependent features is a good choice. In

this way, the CNN kernel learns the true features within the receptive field. Without the second

step, a classical missing data algorithm would introduce a substantial amount of bias, thereby

making predictions more arduous. The proposed method can solve this problem because CNN

is powerful to capture the discrete spectrum with much lower sampling rate.

3.3.2 Approximation and Learning

Artificial neural networks (ANN) are computational architectures, which optimizes the weights

and biases to relate input H̃ (i.e. incomplete channel matrix) with target H (i.e. true chan-

nel) [62]. In deep neural network (DNN), the input goes through a finite number of linear

transformations called hidden layers. At each layer, an activation function accounts for the

underlying non-linearity of the target. The neural network approximation at the l-th layer is

Hl = �

⇣
W lH̃l�1 + bl

⌘
, l = 1 . . . L. (3.8)

Here, W l denotes the weights of the linear transformation between the (l � 1)-th layer and

the l-th layer; Hl denotes the output vector of the l-th layer; and bl contains the biases for

the l-th layer [69]. After a finite number of transformation, l = L, we have Ĥ ⌘ HL, which

approximates the true channel matrix H. In order to approximate H by the neural network

output Ĥ, the back-propagation algorithm estimates the optimal values of W l and bl.

More specifically, deep learning is a convex optimization problem, which minimizes an

appropriate Lagrangian or cost function [59] [26]. Typically, the following cost function is

considered:

L =
1

N

NX

i=1

||Ĥi �Hi||2, (3.9)

where N is the number of observations. In practice, DNNs can discover any channel matrix H

if there are a large number of observed channel matrices a large number of weights. However,

these requirements are not suitable in wireless communication because we need to transfer a

large amount of data in real time.
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CNN uses the following three steps to significantly minimize the number of weights with

respect to DNNs. These steps are: local receptive fields, shared weights and biases, and acti-

vation process. A local receptive field involves a certain number of neurons in one layer being

connected with only a few neurons in the following layer, which results in the total number of

parameters fewer than that of the ANN. We can mathematically represent a local receptive field

as a k ⇥ k kernel of the matrix H connected to a single neuron in the hidden layer. This kernel

is convolved with the original input matrix such that [70]

Hl+1
mn

=
kX

i=0

kX

j=0

w
l

mn
Hl

m+i,n+j
(3.10)

where Hl

mn
and wl

mn
respectively denotes the m

th row and n
th column of channel matrix H

and weight matrix w obtained at layer l of the neural network. The weight matrix wl

mn
at layer

l is convolved with Hl

mn
via the k⇥ k kernel. Thus, Equation (3.10) extracts the features of the

input H0 through L hidden layers, and maps the L-th layer HL to the actual channel response

H.

3.3.3 Training Underwater Sensor Nodes

A major challenge in CNN-based data recovery technique for underwater sensor nodes is to

collect offline training data. One possibility is to consider a statistical channel model to gen-

erate synthetic data for training the underwater sensor nodes. We use 80% of this data for

the training process. The remaining 20% is used for the testing process. The key benefit of

CNN-based missing data recovery for channel estimation is to use the known pilots to find the

remaining unknown elements of the channel state information. Pilot elements of Ĥ can be ob-

tained through the zero-forcing approach given by Equation (3.5). According to the universal

approximation theorem, the offline training of sensor nodes not only estimates the missing ele-

ments of Ĥ, but also improves the pilot values estimated by the zero-forcing method [71]. The

accuracy of the method is guaranteed by the hypothesis that any feed-forward neural network

can approximate a continuous function if the number of neurons and the number of hidden
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layers are sufficiently large.

To test such an approach for supervised training of sensor nodes, this study has considered

a channel model implemented in MATLAB to generate an underwater channel given by Equa-

tion (3.2). Then, we applied the OFDM demodulation of Equation (3.2) to construct the true

channel impulse response H 2 Rns⇥nd in the time-frequency domain. Considering reflection

and refraction in the p-th path of an underwater channel, the path gain (hp) and the delay-

Doppler pair (⇢p, ⌧p) were evaluated to generate a set of N OFDM channel matrices {Hi}Ni=1.

Note that the channel model accounts for the random variations of an underwater acoustic chan-

nel. These channel matrices were passed as training labels for the CNN architecture [12] [17].

An alternative approach for offline training of sensor nodes is to consider an existing chan-

nel estimation scheme. For instance, the training data can be generated by the pilot-based

compressed sensing scheme presented by Gaudio et al. [22]. In other words, the sensor nodes

can use a conventional method to estimate a finite number of multipath variations of reflection

and refraction in an underwater channel, thereby providing training data for network parame-

ters of a universal function approximator. A potential advantage is that a trained network will

provide good predictions of new channel variations without needing further channel estimation.

Currently, there exists massive computational resources and sufficient academic experiences on

deep learning [72] [4]. Thus, by incorporating the existing knowledge of wireless communica-

tion in the training of neural networks, we can further extend the proposed CNN-based channel

estimation scheme.

3.4 Results and Analysis

This study presents a deep learning model for underwater acoustic communication channels,

which accounts for environmental aspects of acoustic propagation and the effects of random

channel variation. The proposed methodology is based on missing data recovery techniques by

convolutional neural network. To evaluate the accuracy of the proposed CNN-based channel
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estimation technique, underwater acoustic channels were simulated to provide necessary data

for training and validation. The present study follows previous works such as [64, 65, 66, 73].

The channel data generated from this simulation was considered to train the CNN framework.

3.4.1 Simulation Setup

In this study, we considered a statistical approach to account for random channel variations

in a multipath underwater channel between a transmitter and a receiver. The channel consists

of a line-of-sight path, and a fixed number of reflections from sea surface and the seafloor.

Using the ray theory, we simulated a relatively accurate picture of the multipath environmental

conditions, incorporating Doppler effects caused by the receiver’s relative motion. The delay

spread was randomly chosen between 0 ns and 300 ns, while the maximum Doppler shift was

set to 50 kHz. The study utilized MATLAB’s 5G toolbox to simulate a transponder of an ROV,

which periodically sends np pings toward an array of nt transducers. Thus, for each of np ⇥ nt

pings, we simulated an individual realization of the channel as a matrix in the Doppler-delay

domain. These channel matrices were considered to train a CNN-based underwater acoustic

communication channel.

3.4.2 Recovery of Contextual Information in Underwater Channels

We investigated the performance of the DFCE algorithm to leverage contextual information in

estimating underwater acoustic channels. We incorporated contextual information using the

OFDM technique, while representing a class of underwater channels as ns ⇥ nd matrices. Due

to the small-scale scattering and large-scale location uncertainty of underwater environmen-

tal conditions, the channel path gain is expected to have a normal distribution if the Doppler

shift uncertainty is characterized as Gaussian. Thus, a context-aware estimation of the channel

matrix H in the Doppler-delay domain would accurately capture the overall statistical char-

acteristics of an underwater channel. To investigate whether the method captures contextual

information, the pilots were inserted into as few as only two columns of the OFDM channel H,
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where each of the 14 time slots consists of 612 subcarriers. For each of the two pilot time slots,

every third subcarrier was pilot symbols. All non-pilot data elements were treated as missing

values. Thus, the contextual feedback from 408 pilots, arranged in two columns, was taken to

recover missing channel data, which resulted in an estimated channel Ĥ of size 612⇥14. More

specifically, we considered a pilot arrangement in which about 95% elements of the channel

matrix were treated as missing values. We assessed the accuracy of the DFCE algorithm by

varying the values of SNR of the received signal (e.g. Equation 3.4) in the range of 1dB to

25dB.

Figure 3.2(a) shows the true channel in the time-frequency domain. Figures 3.2(b,c,d) show

the channel Ĥ estimated by the DFCE algorithm for SNR values of 1dB, 10dB, 15dB. The error

for each of the estimated channel Ĥ was obtained with respect to the true channel H shown

in figure 3.2(a). Figures 3.2(e,f,g) show the corresponding error. The results suggest that the

DFCE algorithm has qualitatively captured the underlying log-normal distribution of the path

gains because the estimation error has decreased as the SNR of the received signal increased.

Specifically, the results show that only 5% elements of the channel matrix H in two time slots

are sufficient to capture the channel for a class of underwater acoustic signals.

We investigated the performance of the CNN-based methodology while leveraging the con-

textual information via the DFCE algorithm. During the training stage, we considered the re-

ceived pilots for an environment with SNR = 15dB and employed a linear interpolation method

to input the missing elements of the channel. For each training sample, the path gains and

Doppler shifts were varied randomly to account for turbulent underwater conditions. The MSE

loss was defined as ||NN(w, H̃) � H|| + ||NN(w, H̃) � HDFCE||. Note that we have injected

the contextual information via DFCE while training the CNN architecture. Thus, our method

finds the optimal correlation between the neural network estimation, the training data H, and a

model-prediction HDFCE. In this way, the CNN kernel can accurately learn the channel and the

corresponding distribution of the channel parameters.

We compared the accuracy of the CNN-based channel estimation with that of the DFCE
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(a) True Channel

(b) DFCE (1dB) (e) Error (1dB)

(c) DFCE (10dB) (f) Error (10dB)

(d) DFCE (15dB) (g) Error (15dB)

Figure 3.2: (a) An exact channel matrix in the time-frequency domain, which was generated by

a statistical channel model. (b,c,d) The estimations of the true channel shown in (a) by using

DFCE. (e,f,g) The errors in the DFCE estimation method with respect to the true channel.
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algorithm for SNR = 5dB. Figures 3.3(a,b) show the channels estimated by the CNN and the

DFCE algorithms. Figures 3.3(c,d) show the error of the CNN-based estimation (⇠7%) and

the error of the DFCE (⇠8%). The results indicate that the accuracy of the CNN-based channel

estimation is approximately the same as that of the DFCE algorithm, even for significantly

different underwater environment with much lower SNR (5dB) than the training environment

of high SNR (15dB).

(a) CNN (b) DFCE

(c) Error (⇠ 7.04%) (d) Error (⇠ 8.84%)

Figure 3.3: OFDM modulated channel state information. (a) Channel state information esti-

mated by neural network; (b) Channel state information estimated by decision feedback channel

estimation; (c) relative error of neural network; (d) relative error of decision feedback channel

estimation
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3.4.3 Estimation of Statistical Characteristics of Underwater Channels

by Deep Learning Techniques

Statistical modelling of underwater channel is a subject of ongoing research, and no consensus

exist on the fading type [74]. Several past studies demonstrated the histograms of path gains,

which provide valuable insight about statistical characterization of underwater channels. To

this end, we have investigated the statistical properties of underwater channels using the pro-

posed CNN-based channel estimation technique. Our methodology is based on the assumption

that the missing data recovery technique will detect the relevant distribution of the random

channel variation. We assume that the fast variation of the instantaneous channel response

due to scattering and motion-induced Doppler shifting would remain the same with turbulent

variation of the environmental conditions. Thus, the classical maximum likelihood method is

appropriate to assess the accuracy of the CNN-based channel estimation. In other words, we

need to estimate the parameters of an assumed prior distribution. However, in the present work,

we have considered the quantile regression methodology to measure the similarity between the

distributions of the estimated channel and the true channel that acts as the training data.

Quantile regression is unbiased with sample size and can be an alternative to the binning

approach that is usually biased with the sample size [75]. To make this presentation self-

contained, let us briefly outline the quantile method. Consider the flattened elements hi, i =

1, . . . , N of a channel matrix H, and denote the expected distribution as F (h). Suppose that

the samples hi were sorted into a non-decreasing sequence, where hi  hj for any i  j. The

quantiles of the samples are defined as:

F
�1(qi) = inf{hi : F (hi) � qi} (3.11)

where qi = i�0.5
N

, i = 1, . . . , N . If the distribution of the true and estimated data match

closely, then

hi ⇡ F
�1(qi). (3.12)

Thus, the relation between hi and the corresponding quantiles of the expected distribution is
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approximately linear. The present study utilized MATLAB for the quantile-quantile analysis

discussed as follows.

The Q-Q technique has been applied to assess the ability of learning the distribution of ran-

dom channel variations. The underlying distribution of the channel parameters correspond to

important contextual information that may not be directly observed. A goal of learning the un-

derlying distribution is to ensure that the proposed CNN-based methodology can estimate the

channel in a new underwater environment, which was not considered in training the network

architecture. Since the neural network weights are obtained by minimizing the MSE, it corre-

sponds to the maximum likelihood solution of the underlying distribution. More specifically, a

trained neural network architecture provides a statistical channel model, which can account for

the random channel variation due to various environmental effects.

Numerical experiments were considered using a range of SNR values and random variation

of channel parameters. Figure 3.4(a) demonstrates the probability distribution of the channel

matrices used as training labels. The skewness and the kurtosis of the corresponding distribu-

tion were 0.2426 and 2.4863, respectively, which closely matches with the skewness (0.0) and

kurtosis (3.0) of the normal distribution. This means that the normalized path gains are ap-

proximately symmetrical. We considered two ways to assess the learning ability of the neural

network architecture. First, the Pearson’s correlation coefficient was computed to measure how

accurately the estimated channel Ĥ correlates with the true channel H. Second, the quantile-

quantile plot was considered to measure the difference between the distribution of the exact and

the estimated channel matrices.

On the top panels of Figs 3.4(b,c,d), we see the scatter plot between H and Ĥ for an SNR of

5dB, 15dB, and 25dB, respectively. The correlation coefficient increases as the SNR increases.

Note that the network was trained for 15dB. The bottom panel of these Figures compares the

distribution of H and Ĥ. The Q-Q plots suggest that a deep learning method is robust in

learning the underlying distribution.
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(a) True channel distribution (b) Q-Q plot (5dB)

(c) Q-Q plot (15dB) (d) Q-Q plot (25dB)

Figure 3.4: (a) The distribution of the true channel. (b)-(d) Scattered plots showing correlation

between true channel and its prediction by CNN (top panel). Quantile-quantile plot comparing

the distribution of the true channel and the distribution of the CNN prediction (bottom panel).

Three values of the SNR were considered: 5dB (b), 15dB (c), 25dB (d).

3.4.4 Effect of Environmental Noise in the Training Data

In this Section, we focused on training the neural network architecture in a variety of envi-

ronmental conditions that take into account random channel variations. In particular, we want

to understand the effectiveness of the CNN architecture in imputing the missing values of the

channel matrix in the Doppler-delay domain. To illustrate the performance of CNN-based chan-

nel estimation in various noisy underwater environments, we considered three sets of training

data with SNR of 5dB, 15dB, and 25dB. Each of the trained model was tested for six values
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of SNR within the range of 0dB and 25dB. For each of the tested channels, we calculated the

mean squared error (MSE) between the estimated and true channels.

Figure 3.5 has summarized the results. It demonstrates that if the test data has relatively

high levels of noise, (i.e. low SNR values in the range of SNR  12dB), then the CNN

performs relatively better in an underwater environment with relatively high noise (i.e. SNR

 5dB). Additionally, it is observed that for testing data of high SNR values (i.e SNR � 12dB),

the performance of CNN in a training environment of high SNR (i.e. 15dB) is relatively better

than the performance of CNN in a training environment of low SNR (i.e. 5dB). Previous

studies [27] have also attempted to address the aforementioned phenomenon by dividing the

channel estimation model into a low-SNR network (i.e. SNR  12.5), and a high-SNR network

(i.e. SNR � 12.5). Hence, the result in Figure 3.5 is consistent with past findings using other

form of neural network architectures. More specifically, Figure 3.5 suggests that the matrix

recovery approach is an efficient channel estimation technique.

Figure 3.5: A line plot that demonstrates that the optimization of a CNN model depends on

the amount of noise of both the training and testing data. The accuracy of the CNN model is

optimal when the noise within training data and the testing data are equal.
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In other words, the offline training of sensor nodes with such a CNN architecture can ef-

ficiently estimate the Doppler, delay, and path gains of an OFDM channel matrix [22]. It is

easy to see that the CNN-based methodology is efficient to obtain good communication rate

(i.e. transmitted information within a block of symbols). The proposed methodology is most

likely to address the tradeoff between the number of pilots and data symbols [76]. In under-

water acoustic channels, the optimization of this tradeoff is affected by the chaotic channel

propagation characteristics [17].

For the conventional channel estimation of an underwater wireless system, the estimation

accuracy depends on accurate representation of the statistics of the type of channel being esti-

mated. In contrast, the accuracy of deep learning-based technique may depend on optimizing

the hyperparameters of the neural networks. However, the universal approximation theorem

suggest that the effect of hyperparameters may not be a significant factor if the training epochs

are sufficiently large. Considering this assumption, we have tested the effect of modulation

scheme. This is shown in Figure 3.6, which compares the accuracy of CNN-based method

with that of the DFCE method. This test investigated the effect of training environments (char-

acterized by three SNR values) and OFDM modulation schemes on the performance of the

deep neural network. The OFDM modulation is employed to represent contextual information

regarding multipath interference and Doppler effects. Considering the training data for three

environmental conditions characterized by three SNR values, we tested the performance with

SNR (dB) values varying between 1dB - 20dB.

With this experiment, the configured independent variable are the channel properties, in-

cluding the delay spread, maximum Doppler shift, sampling rate, etc. Overall, the CNN-based

approach seems to outperform the conventional methods. Although we have not tested conven-

tional LS and MMSE, we generally expect that the DFCE performs about the same as MMSE.

Moreover, MMSE is usually better than the LS method.
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(a) (b)

Figure 3.6: Eight simulations were conducted to study the effects of SNR (dB) on training

data and that of OFDM modulation scheme on the performance of the CNN-based channel

estimation. The MSE was obtained with respect to the true channel corresponding to each of

the three training SNR values while the SNR values of test data varied between 0dB and 25dB.

(a) Comparison for QPSK. (b) Comparison for 64QAM.

3.5 Conclusion and Future Direction

In this research, we have proposed a novel methodology for context-specific characterization

of underwater acoustic channels using the convolutional neural network architecture. We bor-

rowed the concept from data analytic theory, where context is any information that characterizes

the situation of different entities. In an underwater environment, many factors such as tempera-

ture, salinity, and turbulent fluctuation of water pressure, etc may influence the performance of

underwater acoustic communication. We have found that one way of dealing with this problem

is to incorporate relevant context in the training of neural network. Similar approaches adopted

in material science are called physics-informed or theory-trained neural networks. Instead of

considering a black box neural network model, we have considered the similarity between the

feedforward neural network and the wireless communication system model. We observed that

the neural network weight matrix is similar to the channel matrix in wireless communication.

An important aspect of considering this similarity is to incorporate the domain knowledge of
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wireless communication and context-specific information into the deep learning-based archi-

tecture.

The underlying premise of the proposed development is that pilot-based wireless commu-

nication using the OFDM framework is equivalent to a data recovery problem. Algorithms

for classical data-recovery methods are not usually cost-effective for underwater acoustic com-

munication. However, deep learning method shifts almost all of the computational burden to

offline training process, which is needed only once. Although it is a challenging endeavour

to experimentally acquire accurate training data for underwater environment, we have shown

that considering the domain knowledge such as channel modelling and conventional channel

estimation, it is possible to generate sufficient training data. More specifically, the comparison

between CNN-based channel estimation and the DFCE algorithm suggests that DFCE can be

considered to produce synthetic training data.

We can extend the work of this research in underwater source localization and object de-

tection. CNN is basically an auto-encoder. This means that the OFDM channel matrix from

the time-frequency domain can be encoded to a low-dimensional feature space. When the

features from a CNN architecture is decoded back to the time-frequency domain, any under-

lying anomalies or outliers are efficiently identified. This approach is known to be a powerful

technique in data science. By incorporating signal processing knowledge with a variational

auto-encoder, it is most likely to be an efficient technique to design underwater sensor nodes

for source localization.
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Chapter 4

Assessment of LSTM-based Symbol

Detection for Underwater Acoustic

Receiver

OFDM is an emerging technology for symbol detection in underwater wireless communication.

This article has combined the long short term memory (LSTM) network with the feature clas-

sification technique to develop a deep learning- based OFDM symbol detection methodology

for acoustic signal processing. We have investigated the applications of neural networks for

channel estimation in an underwater environment. Conventional channel estimation techniques

are limited by the time variability, narrow bandwidth, multipath, frequency selective fading,

and the Doppler effect. To incorproate artificial intelligence for underwater acoustic communi-

cation, we turn to reccurence neural network models. More specifically, this chapter focuses on

Long Short Term Memory-based neural network architectures to account for the large volume

of data collected by numerous autonomous vehicles and sensors that have been deployed in

various parts of the ocean. The performance of the neural network model implemented in the

OFDM receiver has been assessed with respect to the theoretical error bound and compared

with traditional methods.
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4.1 Introduction

Orthogonal frequency division multiplexing (OFDM) is a promising modulation technique that

could enhance underwater acoustic communication systems for autonomous unmanned vehi-

cles (AUVs), particularly in target tracking and data acquisition applications [77, 78, 79, 3, 17,

80]. The OFDM technique can mitigate multipath effects, thereby improving signal clarity and

transmission of large volumes of data [17]. However, signal recovery remains challenging due

to the limited ability of existing channel models to accurately characterize the unpredictable

nature of underwater environments. Hence, developing efficient communication systems for

AUVs without heavily relying on channel estimation is a critical research area [79, 81]. More

specifically, the integration of artificial intelligence techniques offers promising underwater

acoustic communication between AUVs, which can bypass or minimize the traditional reliance

on estimating multipath interference, Doppler shift, frequency-selective fading, and other time-

varying factors [12, 17]. Overcoming these classical underwater challenges underscores the

need for direct symbol detection techniques that bypass channel estimation, and thereby paving

the way for more robust underwater tracking and data acquisition.

Recently, many researchers have leveraged the experimental data to advance deep learning

techniques for underwater channel estimation [26, 59, 82, 83]. They observed that convolu-

tional (CNNs) [84] and recurrent neural networks (RNNs) [85] have the potential to accurately

predict Doppler shifts in underwater signals. Such data-driven methods can also mitigate the

background noise and multipath interference. Long short-term memory networks (LSTM) is

another data-driven approach to offer an accurate channel equalization technique. Thus, deep

learning is crucial for localization and communication processes [69, 62]. Deep neural net-

works (DNNs) are usually trained offline, which offset the channel estimation complexity dur-

ing an underwater operation. Since the deep learning approach is a data-driven model, it does

not incorporate the physical characteristics of underwater channels, and thus it is not a context-

aware methodology. Context-awareness is crucial for AUVs to take intelligent decisions as
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they are employed to track objects in large marine areas with low-illumination and high-noise

situations [86]. Incorporating such contextual information in DNN-based techniques is an open

research challenge.

This research has considered the OFDM technique as a domain expertise that acts as a

regularization agent for incorporating contextual information into the neural network architec-

ture. We have leveraged the deep learning algorithm to accurately identify a nonlinear map

that detects a desired symbol constellation from a few OFDM data. The aim of this research

is to exploit OFDM techniques for advancing the recently developed theory-trained neural net-

works in underwater acoustic communication. This simple, yet powerful construction, allows

us to take advantage of the OFDM technique while employing the LSTM network in detecting

the constellation points of received OFDM symbols. The underlying premise of the proposed

LSTM network is to estimate the highest probability that a received symbol belongs to one of

the OFDM constellation point. Unlike the recent progresses of deep learning in channel esti-

mation, the proposed LSTM network detects the OFDM symbols in an end-to-end manner that

neither adopts the regression of transmitted symbols nor the explicit estimation of the CSI. It is

worth mentioning that the LSTM approach accounts for the time-variability of the underwater

environment in such a way that a relatively low number of neurons can achieve high spectral

efficiency and transmission rates in underwater acoustic communication. Consequently, the

proposed LSTM-based symbol detection becomes aware of channel variability (e.g. multipath

and Doppler effects), which is an important context-based characteristic for underwater acous-

tic communication.

To validate the proposed LSTM framework, we considered training data that incorporates

the multipath and Doppler effects. The trained network then finds the optimal functional rela-

tionship between the received symbols and the corresponding constellation points such that the

symbols at the OFDM receivers are properly detected. According to the universal approxima-

tion theorem, our context-aware LSTM network is guaranteed to learn the channel parameters

for a wide variety of conditions. In other words, the LSTM-based symbol detection technique
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becomes spectrally efficient, which means that the amount of data transfer is maximized while

maintaining a high level of accuracy.

We considered two approaches for assessing the accuracy of the proposed LSTM neural

network for joint channel estimation and symbol detection. First, we assessed the symbol er-

ror rate of the trained LSTM neural network by considering the Bayesian statistics. In other

words, if the transmitted symbols had a prior probability distribution, then the performance of

the MMSE detector is not necessarily superior to that of the LSTM detector. Second, we con-

sidered perfect channel state information of an underwater channel with multipath and Doppler

effects. The SER performance with respect to the perfect CSI and the MMSE estimator was

considered to assess the symbol error rate predicted by the LSTM network. The comparison

of such classical estimators with an LSTM-based symbol detector indicating the performance

difference suggests that the deep learning model is superior to the conventional approaches.

4.1.1 Prior Studies

DNN and the universal approximation theorem of neural networks were introduced as a pow-

erful signal processing methodology in the early 1990’s [87, 88, 89, 82, 20, 90]. Table 4.1

provides some representative past contributions of neural networks in signal processing. How-

ever, deep learning techniques have not been fully investigated for underwater signal detection.

A majority of recent works investigated deep learning techniques for channel estimation in the

field of terrestrial wireless communication [62, 33, 91, 92, 93, 36, 94].

Existing deep learning techniques for signal processing can be categorized into data-driven

and context-aware approaches. Data-driven approaches, as the name suggests, make strate-

gic decisions by training a black-box network architecture using large amounts of training

data without considering any domain knowledge of the underlying wireless communication

problems [72, 95]. In the data-driven approach, the neural networks have to be trained to

capture the long-term dependencies in the data, as well as the underlying sparsity of chan-

nel state information, which are typical in underwater acoustic channels due to environmental
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effects [96, 97, 98, 99, 12, 79, 78].

The context-aware deep learning methods incorporate the domain knowledge so that the

training process simultaneously learns the features of the training data and a mathematical

model that can predict these features. Several context-aware deep learning techniques em-

ployed the Bayesian estimation framework to optimize the neural network architecture by in-

corporating the existing expert knowledge in wireless communication [59, 100, 101]. Such

a context-aware deep learning approach is relatively new in wireless communication, and its

benefits were not fully exploited for underwater problems. Some past work demonstrated the

robustness and superiority of context-aware deep learning over that of the purely data-driven

deep learning technique for wireless communication [101, 102].

Ref. [33] reviewed the effectiveness of artificial intelligence in underwater acoustic com-

munication. Ref. [26] observed that channel estimation performance of the data-driven deep

learning method is comparable to that of the classical MMSE estimator. Ref. [27] proposed

to replace the entire channel estimation step through the data-driven training of a convolu-

tional neural network (CNN) architecture. Ref. [103, 104, 105, 62] indicated the potential for

data-driven methods in signal processing, channel estimation, and underwater acoustic com-

munication.

The aforementioned investigations were motivated by the complexity and limitations of

conventional techniques in underwater communication. The performance of these techniques

is influenced by statistical channel models, which is challenging due to fast dynamic changes

in the aquatic environment and the complexity of the associated time-space-frequency varia-

tions [20]. Recent progresses indicate that statistical channel models may not be a detrimental

factor for channel estimation by data-driven deep learning techniques if sufficient amount of

training data is available [58].
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Table 4.1: A Summary of Past Research Work on Deep Learning for Some Representative

Topics in Underwater Acoustic Communication

Architecture Contribution Remark

DNN

Channel Estimation [62, 106,

107, 108], OFDM communi-

cation [62, 106, 108], Object

detection [109], Doppler Es-

timation [110]

Combined deep learning with

domain knowledge

CNN

Channel Estimation [27, 36,

111, 37], OFDM communi-

cation [35, 37, 112], Object

Detection [113], Doppler Es-

timation [114]

Extended super-resolution

technique

LSTM

Channel Estimation [94, 115,

116], OFDM communication

[117, 116], Object detection

[118], Symbol detection [85],

Doppler Estimation [117]

The RNN model is trained by

extracting sequence feature

information of the OFDM re-

ceived signal from the big

data

4.1.2 Contributions

Many recent deep learning-based investigations focused on channel estimation accuracy [26,

82, 83, 69, 104]. Since underwater channels are affected by uncertain sparsity and other com-

plicated factors from marine environments, the proposed deep learning method bypasses the

channel estimation, thereby offering a generalized symbol detection scheme. This study has

thus complimented prior investigations by advancing the context-aware deep learning tech-

nique, where the multipath and Doppler effects in underwater channels have been considered

as critical contextual information. The results suggest that the proposed integration of OFDM
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with LSTM networks offers key benefits such as improved Doppler shift robustness, enhanced

generalization across channel variations, reduced training complexity, and increased accuracy

in symbol detection. Unlike conventional deep learning techniques that treat the underwater

channel entirely as a black-box DNN model (e.g. Table 4.1), the proposed context-aware deep

learning approach integrating the OFDM technique with neural networks facilitates real-time

implementation on AUVs.

Three case studies were considered to verify the performance of the proposed LSTM-based

context-aware technique. The first study assessed the symbol detection accuracy considering a

training data of an idealized channel in which the number of path was fixed; however, the path

gain varied randomly. The second study provided a hyperparameter analysis for the context-

awareness of the neural network architecture using training data of an underwater channel,

where signals experienced multipath reflections with varying delays and Doppler shifts. The

third study investigated the performance of AUVs employing the proposed OFDM receivers

for underwater activities. Thus, this study has assessed the proposed LSTM network, which

has evaluated the learning performance of the proposed OFDM receiver and its sensitivity to

the effect of Doppler shifts.

4.2 Neural Networks for Symbol Detection

In this Section, we introduce the underwater acoustic communication system, and the context-

aware deep learning for symbol detection in hostile underwater channels experiencing uncertain

sparsity.
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4.2.1 Underwater Acoustics System

Considering the time-variability of channel parameters, the delay-Doppler spread function of

an L-tap underwater acoustic channel is

h(t, ⌧) =
LX

i=1

hi(t)�(t� ⌧i(t)). (4.1)

In eq (4.1), L is the total number of taps and ⌧i characterizes the propagation of the i-th path.

According to ref. [64], one representation of the delay-Doppler spread function (4.1), where

different delays move at different speeds, is given by

hi(t) = ai exp[j(�i + 2⇡tfmax cos �i)]. (4.2)

Here, ai denotes the loss over the i-th path. Note that the maximum Doppler frequency fmax =

fcvmax/c depends on the carrier frequency fc, maximum relative velocity vmax of the AUVs,

and the speed of sound c in water. The channel distortion is represented by the phase shift �i

and angle of arrival �i. According to Equations (4.1-4.2), the channel autocorrelation matrix

would depend on the channel coefficients ai, the spread of time delays ⌧i, and the maximum

Doppler frequency fmax [72, 64]. At the receiver end, the received signal y(t) is given by

y(t) =

Z 1

�1
h(t, ⌧)x(t� ⌧)d⌧ + w(t), (4.3)

where h(t, ⌧) represents the delay-Doppler spread function and w(t) represents the noise present

in the underwater channel. Based on the universal approximation theorem, Equation (4.3) sug-

gest that a black-box neural network would accurately model the underwater communication

channel if sufficient amount of training data {x(t), y(t)} is available. Moreover, the scattering

from the entire water body, as well as the seafloor and sea surface enters into the DNN model

implicitly through a large amount of training data [69, 62, 88, 89].

Applying Fourier transform, the convolutional integral, Equation (4.3), is expressed in the

frequency domain as

Yk = HkXk +Wk. (4.4)
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Equation (4.4) provides the pilot-assisted channel estimation using the OFDM modulation,

which is optimal for spectral efficiency [76, 22, 74]. Knowing that the OFDM technique is

highly efficient in dealing with sparse multipath channels affected by Doppler shifts, a context-

aware deep learning approach that integrates OFDM with LSTM networks can add innovation

to underwater acoustic communication.

4.2.2 Context-Aware Deep Learning for Symbol Detection

This Section presents a context-aware deep learning technique for joint channel estimation

and signal detection. Figure 4.1(a) shows the OFDM link between two underwater AUVs,

where AUV1 sends a binary data stream to AUV2. At both AUVs, the binary data stream is

encoded into symbols according to a modulation scheme, where cyclic prefix is considered to

account for the multipath propagation and Doppler spread (i.e. intersymbol interference). The

entire OFDM link is robust to represent the contextual information of the complex underwater

channel.

The contextual information can be lost in classical pilot-assisted channel estimation. Fig-

ure 4.1(b-c) shows two types of pilot arrangements. Each filled circle (•) denotes a pilot sub-

carrier, where the constellation of the transmitted symbols are known to both AUVs [76, 119].

In this situation, pilot-assisted channel estimation not only loses the contextual information, but

also suffers from trade-offs between pilot overhead, complexity, and estimation error.

The proposed deep learning method provides a nonlinear map between a block of re-

ceived symbol Y and a particular constellation point C that corresponds to the received symbol

Yk. This procedure is schematically illustrated in Figure 4.2. The detection of constellation

points of received symbols at the k-th subcarrier Yk (k = 1, . . . , ns) involves an entire OFDM

block, which naturally contains rich contextual information. Thus, our first innovative idea has

combined the contextual information of wireless channel with the neural network framework

(e.g. [100]).

Note also that the proposed method does not directly estimate the channel parameters and
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becomes aware of the environmental variability such as multipath and Doppler effects because

neural networks account for the variability of symbols across an entire OFDM block. As shown

in the next Section, this approach will not have the same pilot overhead as in classical OFDM

techniques [22].

Thus, the second innovative idea has resolved the problem of pilot overhead. To achieve

this, we have employed the classification technique using an LSTM network that learns the

sequence of symbols of an OFDM block and assigns the network output to a corresponding

constellation point. In other words, the assigned constellation point becomes the class of the

OFDM block, where the LSTM framework does not depend on the pilots.

We note that learning the contextual information involves extracting complex, high-dimensional

patterns from training data. According to Equation 4.4, each received symbol is associated with

an OFDM constellation point. Incorporating contextual information in the LSTM networks

leads to effectively recovering the constellation point of the received symbol Yk. It is crucial

to learn the inherent pattern of all subcarriers with an OFDM block. While feedforward neural

networks appear to be appropriate in achieving a black-box channel model (e.g. Equation 4.3),

Equation (4.4) suggest that LSTM is suitable to detect the contextual information.

4.3 The Proposed Design of the LSTM Neural Network

4.3.1 LSTM-based Receiver Design

The underlying premise of the proposed underwater acoustic receiver is to integrate OFDM

communications in deep learning by using LSTM neural networks. Although deep learning has

recently been very successful in wireless OFDM communications, their applications in under-

water environment is not fully matured. The proposed LSTM-based receiver has been designed

by considering that a transmitted OFDM packet through neural networks (see figure 4.2) con-

sists of only two blocks: xp and xd. Here, xp contains pilot symbols and xd contains data

symbols. Pilot and data symbols are respectively denoted by a block with • and a block with �,
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(a)

(b) (c)

Figure 4.1: (a) A block diagram showing the transmission and reception of a bit stream through

water. An illustration of (b) block-type and (c) lattice type pilot arrangements, where • repre-

sents the pilot symbols, and � represents the data symbols.

as indicated in figure 4.1 (b-c). Let Y denote the received OFDM packet. The idea is to extract

the critical features through the pilot block and utilize the data block to enhance the learning

capability. In the LSTM framework, the OFDM symbols are treated sequentially, and thus we

have considered pilot block and data block to inject contextual information during the train-

ing process. While the design is fundamentally different from what has been considered for

underwater communication, the process would train a neural network that learns the following

map:

fw,b : Y ! C (4.5)

where C is the set of phase-shift keys. It is important to note that the constellation of pilot

symbols (•) is not known to the receiver during the training of the neural network. Instead, a

constellation is assigned to packet Y as the label for supervised learning.
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Figure 4.2: Signal detection process for a deep learning-based neural network model. Sub-

scripts p and d represent the pilot and data symbols, respectively. The network learns the class

C from the training data Y .

4.3.2 Verification of LSTM-based symbol error rate

Although deep learning-based joint channel estimation and signal detection have recently re-

ceived a growing popularity, very little is known about the decoding performance of this ap-

proach. To address this research gap, this Section presents exact error rate characterizations

under the assumption of gaussian channel and additive white noise.

Consider an LSTM-based decision function DA{·} applied to the symbol constellation,

where the symbol error rate (SER) is

SER =
1

N

NX

i=1

{x⇤ 6=x̂i} x̂i = DA{H†yi}. (4.6)

Here, x̂i denotes the LSTM decision of the i-th received packet, x⇤ denotes the true symbol, and

{x⇤ 6=x̂i} denotes the indicator function, which equals 1 when the detected symbol is incorrect.
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(a) (b)

Figure 4.3: A plot of the verification curve of the channel estimation technique. (a) N = 102

packets. (b) N = 105 packets

4.3.3 Symbol Detection Error

In the QPSK (quadrature phase shift keying) modulation scheme, two binary bits are modulated

simultaneously such that the carrier phase of each pair of bits are shifted by either 0o, 90o, 180o,

or 270o [74]. In this analysis, assume a random noise with mean µ = 0 and variance N0/2,

where the estimated symbol x̂ follows a Gaussian probability distribution [120, 74]:

p(x̂) =
1p
⇡N0

e
� x̂2

N0 . (4.7)

Since the neural network architecture learns the optimal mapping between the received noisy

input and the true transmitted symbols, we considered the Monte Carlo method for estimating

the uncertainty of symbol detection. Thus, the probability that the symbol s1 (e.g. 0� shift) has

been correctly detected is

p(x̂|s1) = 1� erfc

 r
Es

2N0

!
+

1

4
erfc2

 r
Es

2N0

!
. (4.8)

To get the total symbol error probability for a neural network architecture, we assume that

at least one of the symbols were decoded incorrectly (see ref. [74], chapter 3). Hence, the

probability of symbol error rate SER = 1� p(x̂|s1) is given as:

SER = erfc

 r
Es

2N0

!
+

1

4
erfc2

 r
Es

2N0

!
. (4.9)
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where Es/N0 represents the signal-to-noise ratio (SNR) of the underwater environment. If

sufficient data is available, then the deep learning technique has the ability to correctly rec-

ognize the pattern from any noisy measurement. Figure 4.3 shows that the SER performance

follows Equation (4.9) if the number of data increases. In particular, when neural networks

learn the nonlinear map between the input and output data, they may perform better than some

of the conventional methods. This is a potential advantage, which attracted many researchers

for adopting deep learning techniques in wireless communication [26, 121]. In Section 4.4,

we present simulation results that compares the SER of the LSTM network with conventional

techniques.

4.4 Results and Discussion

The SER performance of deep learning-based symbol detection in underwater channels de-

pends on the complexity and the environmental conditions. Estimating a lower-bound for

the SER performance of a deep learning-based symbol detection is not straightforward be-

cause neural networks are non-linear and highly adaptive. However, we can utilize the perfect

channel state information and an information-theoretic approach to provide insights into the

performance of LSTM networks in symbol detection. In this work, we assessed the LSTM-

based symbol detection performance by training the neural network on a multipath underwater

acoustic channel. The SER performance of the LSTM approach was compared with that of the

conventional MMSE approach and the Monte-Carlo simulation.

4.4.1 Training LSTM Network

Table (4.2) shows the parameters for the training data, where acoustic communication occured

between two AUVs in an underwater environment. In the present study, a packet of the training

data contains two blocks of OFDM symbols (i.e. pilots xp

k
and data xd

k
) representing bit streams

{00, 01, 11, 10} of four constellations. For each received symbol yk 2 Y , the trained LSTM
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determines the corresponding QAM constellation point while considering the contextual infor-

mation of the multipath underwater environment. In other words, the transmitting AUV sends

a message bit stream that is detected by the receiver AUV.

Table 4.2: A List of Parameters for Channel Estimation

Parameters Specifications

number of subcarriers 64

number of pilots 8, 16, 64

Modulation constellation scheme QPSK

number of channel paths 20

Length of cyclic prefix 16

Carrier frequency 5000 MHz

Number of packets N 10000

LSTM network with 16 hidden units

At the receiver AUV, each pair of OFDM blocks is represented as a sequence of 2ns com-

plex numbers. These sequences carry contextual information that we want to extract through

the training of our LSTM network. The real and imaginary part of each complex number were

arranged to form a feature vector Y of 4ns real numbers. The LSTM network, trained on

this data, identifies the pattern of each pair to maximize the probability of correctly mapping

them to the corresponding constellation points. In contrast to the classical methods, the LSTM

network knows no information of the channel and pilot symbols. However, in the context of

underwater communication, the proposed arrangement of the training data aims to detect the

contextual information underlying the transmitted symbols without prior knowledge of channel

statistics and pilots.
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(a) (b)

(c)

Figure 4.4: The effect of pilot overhead on the performance of (a) deep learning, (b) miminum

mean square error, (c) least squares

4.4.2 Comparison between Deep Learning and Conventional Approaches

To provide a fair comparison with classical MMSE techniques, we wish to incorporate pilot

symbols in training the LSTM network. We do this by considering the effect of pilot symbol

arrangement on the LSTM-based OFDM receiver and comparing it with conventional methods.

To provide a fair comparison with classical MMSE technique, we need to incorporate the

effects of pilot symbols in training the LSTM network. We compared the performance of the
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LSTM-based OFDM receiver with that of conventional methods by considering the effects of

pilot symbol arrangements. Pilot arrangement is critical to the performance of conventional

methods, which must be optimized for individual communication scenario. In this Section, we

have presented numerical test results showing that the performance of LSTM-based symbol

detection can be insensitive to pilot arrangment for any communication scenario.

Figure 4.4 compares the SER performance of the LSTM network with respect to conven-

tional methods. We trained the network offline using 10, 000 OFDM packets. The performance

of the LSTM network was tested using another set of 10, 000 packets, which were not seen by

the network during the offline training phase. The training was done in an underwater environ-

ment with a fixed SNR of 40dB. A high SNR was considered to ensure that the learning is not

biased with the environmental noise. To test the learning performance of the LSTM network,

the test data was taken from a noisy underwater environment with SNR values within a range

between 0dB and 20dB. The LSTM results were compared with the LS and MMSE results.

The effects of the number of pilots (in LS and MMSE results) were investigated by considering

8, 16, and 64 pilots, where the total number of subcarriers per OFDM block is 64.

The results indicate that the SER values gradually decrease as the SNR increases. To assess

the rate of convergence, the SER profile of each of the three methods (LS, MMSE, and LSTM)

was also compared with that of the Monte-Carlo simulation (denoted by the “Symbol Error

Probability” in Figure 4.4). For the block-type pilot arrangement, each subcarrier of the pilot

block is a pilot symbol, which were used by the LS and MMSE methods for channel estimation.

For the lattice-type arrangement, pilots were interleaved with information symbols in the pilot

block.

In the present test, the performance of the LSTM network is almost insensitive to the change

of pilot arrangement. Moreover, the LSTM performance is better than that of the LS and the

MMSE for each values of SNR. The SER values of the LSTM estimator were not affected

when the number of pilots was reduced. In contrast, the SER values did not decrease as SNR

increases for both the LS and MMSE when the number of pilots were 8 and 16 in block-type
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arrangements. An important and interesting observation is that the performance of the LSTM

estimator is not sensitive to the number of pilots for the cases tested by this study.

4.4.3 Impact of LSTM Network Architecture

For a successful application of deep learning techniques in underwater acoustic communica-

tions, only a few recent works investigated how to generalize a neural network architecture to

the underlying communication problems [122, 59, 89]. The Doppler effect is a potential source

of communication error. Here, we considered that one of the nodes moves at a speed of 5m/s.

The resulting Doppler spread is approximately 20Hz, where the carrier frequency is 6⇥103Hz,

and the sound speed is 1.5⇥ 103m/s [38]. Another source of uncertainty is due to the variation

of the sound speed with the temperature, salinity, water depth, and sediment layer, which may

contribute to an additional 20� 40% noise into the receiver (see [62]).

This Section investigates the performance of three neural network architectures consider-

ing Doppler effects in a complex underwater environment. The first architecture (referred to

as LSTM) is a recurrence neural network that consists of an input gate, memory cell, forget

gate, and output gate. In the second architecture (LSTM1), one additional fully-connected

layer was inserted. In the third architecture (LSTM2), a bidirectional LSTM framework was

considered. We show that by performing an end-to-end training of a LSTM network, one can

optimize the estimation accuracy of transmitted symbols, thereby providing significant system

level improvements [58]. In the following analysis, the networks were trained by gradually

increasing the number of training data up to 10 000 packets, as well as varying the SNR values

of the underwater environment between 5dB and 40dB. For each of these three architectures,

this study also tested the sensitivity of the number of neurons. In other words, the present

hyperparameter tuning study has considered most of the possible ways that an LSTM-based

supervised learning can optimize the weights and bias values during the training process. Note

that the SNR value of the underwater environment was fixed during the offline training stage.

However, the trained network was tested for an online underwater environment in which the
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SNR values varied between 0dB and 20dB.

Figures 4.5, 4.6, and 4.7 compare the effect of LSTM, LSTM1, and LSTM2 architectures,

respectively, on the underwater OFDM receivers. For each of these networks, we repeated the

training in four underwater environments, characterized by the SNR: 5dB, 10dB, 20dB, and

40dB. For each of the environments, we compared the symbol error rate by varying the SNR of

test data between 0dB and 20dB. The LSTM results were compared with LS and MMSE results,

as well as the symbol error probability of Monte-Carlo simulation. The symbol error rate

was compared for each of the training environment individually for better clarity. The results

presented in these Figures (4.5-4.7) indicate that an LSTM-based OFDM receiver can be robust

and relatively insensitive to a new underwater environment. As we can see, the deep learning

method outperformed the LS and MMSE for the considered Doppler spread. According to the

universal approximation theorem, the performance of a neural network-based estimator would

increase if more training data becomes available. Since the ocean has numerous autonomous

vehicles and sensors, the large volume of data collected by such sensors can be utilized in the

future for developing relatively robust LSTM-based receivers that may outperform in a complex

underwater environment.

4.4.4 Doppler Shift

To integrate artificial intelligence in the AUV-aided underwater search-and-rescue operation,

this Section has evaluated the effect of Doppler shifts in the LSTM-based symbol detection

technique. The Doppler estimation approach can occur in two stages. The first stage can

employ the LSTM-based technique to recover the transmitted symbols. The second stage can

estimate the Doppler rate using the estimated symbols and other informations obtained during

the first stage.

As we know, acoustic signals transmitted by an AUV generally experience severe multipath

effects. Thus, we investigated the effects of multipath propagation and Doppler frequency on

the SER performance of the LSTM equalizer. The Doppler effect due to the relative motion
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(a) (b)

(c) (d)

Figure 4.5: Single-layer unidirectional architecture, LSTM, and hyperparameter tuning. A

comparison of the SER performance between the deep learning results (using the single-layer

network) and the other methods for four training environments, which are characterized by

SNR values: (a) 5dB, (b) 10dB, (c) 20dB, (d) 40dB.

of the nodes was considered, which stretches or compresses the multipath underwater signals

and reduces system reliability. The SER performance of the LSTM network was assessed by

comparing the LSTM results with that of the MMSE and the perfect CSI criteria.

The LSTM network was trained with signals having a bandwidth between 20 and 30kHz in

a shallow water environment with a depth of 20m. The training data incorporated the Doppler
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(a) (b)

(c) (d)

Figure 4.6: Multi-layer unidirectional architecture, LSTM1, and hyperparameter tuning. A

comparison of the SER performance between the deep learning results (using the multi-layer

network) and the other methods for four training environments, which are characterized by

SNR values: (a) 5dB, (b) 10dB, (c) 20dB, (d) 40dB.

effect with respect to the relative node speed between 5 and 10m/s. The receiver was placed

5m deeper than the transmitter. The angle of arrival was varied to alter the Doppler rate in

training data. The SNR of the training data was 40dB. Table 4.3 shows relevant parameters of

the corresponding shallow water acoustic channel.

In an underwater environment, multiple reflections from the sea surface and the seabed
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(a) (b)

(c) (d)

Figure 4.7: Multi-layer bidirectional architecture, LSTM2, and hyperparameter tuning. A com-

parison of the SER performance between the deep learning results (using the bi-directional

multilayer network) and the other methods for four training environments, which are charac-

terized by SNR values: (a) 5dB, (b) 10dB, (c) 20dB, (d) 40dB.

lead to multipath propagation, which produces severe Doppler effect. The combined effect of

the linear transformation and the non-linear activation of neural networks allows for easy and

effective reduction of multipath interference. Figure 4.8 shows the SER performance of the

LSTM-based neural network technology when the delay spreads and Doppler shifts belonging

to each paths is different. The result shows that the neural networks learn the frequency offset of
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Table 4.3: A list of parameters for an underwater acoustic channel considering multipath and

Doppler effects.

Parameter Value

Communication distance 1000m

Depth of transmitter 10 m

Depth of receiver 15 m

Underwater sound speed 1538 m/s

Absorption coefficient 2dB/km

Water depth 20 m

Center frequency 25kHz

Number of paths 20

received OFDM signals due to Doppler effects. Such a frequency offset represents a distortion

and rotation of transmitted signals within the QPSK mapping vectors. In other words, the

proposed deep learning technique is efficient to determine the Doppler shift by estimating the

constellation point of the received OFDM symbols and the corresponding rotated angles. More

specifically, such an AI technology is suitable for underwater target localization.

4.5 Conclusion

This paper has presented a deep learning-based algorithm for OFDM symbol detection, aimed

at optimizing communication between underwater AUVs. We have proposed an LSTM-based

deep learning technique to account for contextual information in underwater communication.

We carried out a fair comparison between the LSTM training algorithm and the MMSE tech-

nique for symbol detection. The effectiveness of both approaches was evaluated in terms of

maximum achievable symbol error rate.

The results demonstrate that the LSTM-based technique bypasses the channel estimation

and detects the symbols directly based on offline training. The LSTM technique is able to
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Figure 4.8: A comparison between the LSTM and the MMSE symbol recovery technique with

respect to the theoretical bound when given an underwater channel that underwent the Doppler

effect.

achieve an acceptable performance under any time-varying communication channel with mul-

tipath effects and Doppler shifts. This conclusion is supported by numerical results and theo-

retical benchmark [26].

The generalizability of the proposed LSTM-based method to any time-varying multipath

channel is attributed to its integration of contextual information through OFDM modulation.

This, of course, comes at the cost of cyclic prefix in OFDM. However, the cost is mitigated

through the offline training. A breakthrough contribution of this research is the demonstra-

tion of the mathematically rigorous integration between the OFDM technique and the LSTM

network. Moreover, our research lays the idea of theory-trained neural networks, where the

theoretical knowledge of signal processing is utilized to improve the predictive capabilities of

neural networks.

Furthermore, this study investigated the concept of theory-trained neural network, where

the foundational signal processing knowledge is utilized to enhance the integration of artificial

intelligence in communication and signal processing. Unlike traditional black-box neural net-

works, the theory-trained approach is transparent and interpretable. This is a key advancement
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for future development of deep learning in communication engineering and signal processing.
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Chapter 5

Conclusions and Future Research

Directions

The thesis provides a comprehensive overview of context-aware deep learning for optimizing

underwater robots. Specifically, it investigates underwater acoustic communication systems in

the context of optimizing robotic operations. We summarize state-of-the-art acoustic commu-

nication techniques, highlighting their applicability in fully autonomous actions and interac-

tions of robots in the deep sea environment. The primary investigations and outcomes offer

a thorough review of the context-aware deep learning techniques for developing autonomy in

underwater robots. Additionally, three key technical questions regarding the applications of

deep neural networks were explored. Below is a summary of the outcomes of three research

projects. For each project, future extensions have been discussed. Future extensions of this

research are also highlighted.

5.1 Summary of Investigations

• Deep Learning-Based Signal Classification for Underwater Object Tracking.

The first question deals with how the classification algorithm can be incorporated into
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underwater signal processing despite the time-varying effects of the underwater environ-

ment. This research proposed a signal classification methodology to distinguish the un-

derwater cavitation signals from the environmental cues. Since signals are characterized

by temporal histories due to multipath Doppler effects, Chapter 2 investigated recurrent

neural network (RNN) for signal classification.

This research took advantage of LSTM as a recurrent neural network, which learns sig-

nal properties by directly processing the discrete-time history of signals without requiring

any feature extraction methods. This project is aimed at technological developments of

accurately sensing stealthily operating AUVs, which means that some targets do not send

active sonar signals as they intend to operate stealthily without exposing their locations.

The cavitation sound from their engine becomes the acoustic signature of such targets.

However, the hostile underwater channel hinders LSTM from efficiently learning sig-

nal features. To bypass the interference from the environmental cues, we apply Fourier

transform to incorporate a spectrum-sensing method with the LSTM network. Numerical

experiments were considered for both temporal learning and spectral learning. In other

words, the LSTM model was trained on signals in the time-domain and the frequency-

domain, with the results compared to analyze their performance. Experimental results

show that the LSTM network is more accurate at learning spectral information compared

to direct application in the time-domain. These results suggest two novel aspects of deep

learning-based localization. First, channel equalization and feature extraction are essen-

tial for optimal classification. Second, the LSTM network is more efficient in sequence

learning if the signals are not convolved with secondary effects such as the turbulent

underwater channel.

Future directions: Although this research focuses on the classification of underwater

acoustics for target localization, it does not directly address target localization itself. An

potential direction for future work is to extend the acoustic classification algorithm by
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integrating it with localization techniques, such as the time-reversal mirror method, to

track the underwater objects.

• Context-Aware Neural Network for Underwater Multipath Underwater Channels

with Doppler Shifts.

The second question was how to deal with limited availability of true underwater data,

and how to incorporate contextual information in deep learning. Such contextual fac-

tors include temperature, salinity, and turbulent fluctuation of water pressures. Chapter 3

developed a context-aware convolutional neural network (CNN) technique to ensure op-

timal wireless communication in a time-varying underwater environment by utilizing

classical OFDM techniques. The premise behind the proposed technique is that pilot-

based wireless communication via OFDM is equivalent to the data recovery problem.

For classic data-recovery techniques, they are not usually cost-effective for underwater

acoustic communication. In contrast, deep learning methods shift the computational bur-

den to offline training process, which only needs to be executed once. We observe that

the context-aware neural network is different than the physics-informed neural network

(PINN), which is a specialized deep learning technique that takes into consideration the

physical laws of the underwater environment. Nevertheless, both approaches are func-

tionally similar, but applied in different disciplines. Numerical experiments were con-

sidered to compare the proposed neural network with classical data recovery techniques

such as decision feedback channel equalization (DFCE).

Future directions: The research on context-aware neural network can be further ex-

tended by applying this domain-specific deep learning model into a network of under-

water sensors. With this extension, we are provided with an opportunity for the context-

aware CNN to detect any anomalies in the information propagated within the Internet

of Underwater Things (IoUT). This is because the CNN can take in the OFDM channel
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matrix as its input data and encode the matrix into a low-dimensional feature space. Due

to this encoding, any outliers are more easily evident.

• LSTM-based OFDM Receiver for Underwater Acoustic Communication

The third question was how to optimally detect symbols transmitted underwater. Conven-

tional techniques for symbol detection are limited by time variability, narrow bandwidth,

multipath effect, frequency selective fading, Doppler effect, etc. Thus, we turn to deep

learning models, in particular the LSTM. This project aims to improve the underwater

surveillance and object tracking tasks that bypasses the complexity of channel estima-

tion. The outcome of this project has the potential to be a minimally viable commercial

product that recovers the symbols transmitted underwater. Numerical experiments were

considered to assess the information recovery model in terms of its robustness to pilot

symbol overhead and Doppler shift, as well as compare the system with conventional

techniques such as minimum mean squared error (MMSE).

Future directions: An extension of this research involve the application of LSTM-

based symbol detection for a network of AUVs in various industrial work, including sub-

sea exploration, oil and mineral extraction, submarine detection in warfare, etc. Using

LSTM-based direct symbol detection can significantly enhance the capabilities of AUVs

by improving communication, navigation, and data processing. However, it is necessary

to utilize real-world data for assessing the performance of the proposed LSTM method-

ology. In addition, the performance of the proposed symbol detection methodology for

underwater target tracking needs to be assessed. This work is currently underway.

5.2 Discussion and Final Thoughts

The thesis focuses on improving underwater communication and navigation of AUVs using

deep learning techniques integrated with domain knowledge from underwater acoustics. Un-
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derwater robotics is a rapidly evolving and important area of research with acoustic communi-

cation playing a crucial role in its advancements. Recent studies suggest that combining deep

learning with underwater communication is reshaping the foundation of underwater robotics,

driving autonomy, collaboration, and mission success in the challenging and dynamic under-

water environment.

One of the primary challenges in this field is the limited availability of real-world data

for training deep learning models. Context-aware deep learning has emerged as a promising

approach to address this limitation. Such a technique has the promise to improve the effi-

ciency and robustness of underwater networks despite the high cost and difficulty of acquiring

underwater measurements. However, effectively incorporating domain knowledge into neural

networks remain an open research challenge. This thesis explores three key aspects of context-

awareness, highlighting both its potential advancements and inherent limitations. The thesis

has outlined future developments for optimizing underwater robotics by incorporating deep

learning-enhanced acoustic communication
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