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Abstract

With the rapid development of digital imaging and machine learning, generative

models for facial image manipulation have emerged as powerful tools, significantly

impacting various domains, from entertainment to law enforcement. Despite signifi-

cant advancements in generating natural-looking images, facial editing poses unique

challenges, such as generating high-quality and detailed facial features, preserving

identity, expression, and the integrity of facial structures.

This thesis investigates the application of generative models to facial image ma-

nipulation, targeting four key tasks: unconditional global facial editing (face restora-

tion), unconditional local facial editing (face inpainting), conditional facial editing

(exemplar-guided facial inpainting), and multimodal face editing.

For the first task, traditional face restoration techniques typically miss finer facial

details. We explored the use of latent representations as style prompts by using GANs

and diffusion models to guide the restoration, improving image quality and detail.

In the second task, existing image inpainting methods often depend on extensive

training data, limiting their effectiveness in few-shot scenarios. We developed a GAN-

based method that achieves high-quality results with small-scale data. For the third

task, current methods usually require substantial professional skills to edit facial

attributes like identity, expression, and gender. We propose an exemplar-guided GAN

framework that ensures a seamless blend between edited and unedited areas of the

face. For the fourth task, current multimodal editing techniques can alter unedited
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background areas and rely heavily on manually annotated paired data. We introduce

a novel multimodal editing method using GANs that allows for incremental editing

of facial images and reduces reliance on manual annotations.

We introduce novel frameworks that significantly enhance the realism and applica-

bility of facial image manipulation by solving problems in fidelity in restoration, data

efficiency, exemplar-guided inpainting, and multimodal editing. Our contributions

are mainly four manifold:

• A novel framework for blind face restoration is presented, leveraging latent rep-

resentations as style prompts to guide the restoration process, thereby enhancing

the fidelity and detail of restored facial images from degraded sources.

• We introduce a data-efficient generative model for facial image inpainting that

achieves high-quality results on limited datasets, addressing the challenge of

data scarcity and overfitting in image inpainting.

• We proposed an interactive, example-guided facial inpainting framework that

enables users to manipulate facial features with high realism, facilitating user-

driven customization in facial image editing.

• A multimodal facial image editing framework is proposed, integrating various

types of inputs to achieve comprehensive and personalized facial edits, catering

to the diverse needs of digital content editing.

ii



Acknowledgements

On a particularly difficult day, I faced the rejection of two papers simultaneously.

As I sat in a restaurant, trying to figure out how to improve my third manuscript,

a heavy weight settled in my chest. It was a tough moment, filled with doubt and

uncertainty about what the next round of reviews might bring. In that challenging

time, the words of my supervisor, Professor Xianta Jiang, echoed in my mind: “Do

not let this drive you crazy; just enjoy your life and your research.” His advice, to

value both life and the pursuit of knowledge, has stayed with me ever since and helped

me persevere.

Time flies, and I have done my best to make the most of every opportunity, even

through the hardest times – when algorithms didn’t work or weeks of exploration

led only to dead ends. Looking back, I feel fortunate to have made it through those

struggles, as they have shaped my growth.

I am deeply grateful to my supervisors for their unwavering support and guidance.

Professor Xianta Jiang gave me the confidence to tackle challenges head-on; Professor

Hanli Zhao emphasized the importance of precision and rigor in research; and Pro-

fessor Yuanzhu Chen broadened my perspective and sharpened my critical thinking.

Together, they transformed me from a hesitant student into a confident scholar.

I also want to thank Professors Minglun Gong, Xiaogang Jin, Yongliang Yang,

and Zili Yi for their mentorship. Their insights enriched my knowledge and opened

doors to new areas of research, fostering my growth as a researcher.

iii



To my senior colleagues, Tao Wang, Jingjing Zheng, Qiao Kang, and Yajun Yu,

thank you for your invaluable mentorship. Your advice and encouragement greatly

accelerated my progress. My heartfelt gratitude also goes to my friends and colleagues

(Ziying Lyu, Kaijie Shi, Jikai Wang, Lingming Su, Meng Wang, Vitaliy Zhao, etc.)

at Wenzhou University and Memorial University of Newfoundland. You have been

like family to me, providing not only collaboration but also personal support and

encouragement throughout this journey. I must also acknowledge the co-authors of

my published papers. Your collaboration and hard work have been instrumental in

overcoming numerous challenges and achieving success. Thank you, from the depths

of my heart, to everyone who has been part of this journey.

Finally, I owe everything to my parents. Your unwavering support and love have

been my anchor. Without you, I could never have reached this point or fulfilled my

dreams. This achievement belongs as much to you as it does to me.

I also would like to thank the anonymous reviewers for their constructive com-

ments. This work was supported by the Zhejiang Provincial Natural Science Founda-

tion of China (Grant No. LZ21F020001), Wenzhou Major Tackling Project of Science

and Technology Innovation (Grant No. ZF2024001), Natural Sciences and Engineer-

ing Research Council of Canada (NSERC, Grant No. DGECR-2020-00296), Govern-

ment of Canada’s New Frontiers in Research Fund (NFRF, Grant No. NFRFE-2022-

00407), and Digital Research Alliance of Canada.

iv



Contents

Abstract i

List of Figures xxvii

List of Tables xxxi

1 Introduction 1

2 Related Work 11

2.1 Generative models for image synthesis . . . . . . . . . . . . . . . . . . . 11

2.2 Blind face restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Image inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Facial image editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Visual Style Prompt Learning for Blind Face Restoration 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



3.2.2 Diffusion-based style prompt module . . . . . . . . . . . . . . . 25

3.2.3 Restoration auto-encoder . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.4 Module training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Experimental results and comparisons . . . . . . . . . . . . . . . . . . . 33

3.3.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Comparison with SOTA methods . . . . . . . . . . . . . . . . . . 36

3.3.3 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Facial landmark detection. . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Face emotion recognition. . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Data-Efficient Generative Residual Image Inpainting 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Network architectures . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 Iterative residual reasoning . . . . . . . . . . . . . . . . . . . . . 64

4.3 Experimental results and comparisons . . . . . . . . . . . . . . . . . . . 67

4.3.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Comparison on small-scale datasets . . . . . . . . . . . . . . . . 72

4.3.3 Comparison on large-scale datasets . . . . . . . . . . . . . . . . . 77

vi



4.3.4 Comparison on various few-shot settings . . . . . . . . . . . . . 88

4.3.5 Network complexity of recent SOTA methods . . . . . . . . . . 91

4.3.6 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Generative Facial Inpainting Guided by Exemplars 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.2 Multi-style modulation . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.3 Training objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.4 Spatial variant gradient backpropagation . . . . . . . . . . . . . 110

5.2.5 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.2 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.3 Performance of EXE-GAN on challenging cases . . . . . . . . . 127

5.3.4 Analysis on network complexity and computational efficiency . 128

5.3.5 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Applications with our facial inpainting . . . . . . . . . . . . . . . . . . . 133

5.4.1 Local facial attribute transfer . . . . . . . . . . . . . . . . . . . . 133

5.4.2 Guided facial style mixing . . . . . . . . . . . . . . . . . . . . . . 134

vii



5.4.3 Hairstyle editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4.4 Guided facial image recovery . . . . . . . . . . . . . . . . . . . . 136

5.4.5 Inherent stochasticity . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Multimodal Generative and Fusion Framework for Facial Editing 140

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.2 Latent warping module . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2.3 Latent attribute editing module . . . . . . . . . . . . . . . . . . 150

6.2.4 Multimodal aggregation module . . . . . . . . . . . . . . . . . . 151

6.2.5 Multimodal generator . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.6 Self-supervised module training . . . . . . . . . . . . . . . . . . . 154

6.3 Experimental results and comparisons . . . . . . . . . . . . . . . . . . . 161

6.3.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.3.2 Comparison on multimodal facial editing . . . . . . . . . . . . . 163

6.3.3 Comparison on sketch-guided facial editing . . . . . . . . . . . . 170

6.3.4 Comparison on semantic-guided facial editing . . . . . . . . . . 172

6.3.5 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4 More implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.4.1 Latent warping module . . . . . . . . . . . . . . . . . . . . . . . . 179

viii



6.4.2 Multimodal aggregation module . . . . . . . . . . . . . . . . . . 181

6.4.3 Training of multimodal aggregation module, refinement auto-

encoder and discriminator . . . . . . . . . . . . . . . . . . . . . . 182

6.4.4 Training peseudo-codes . . . . . . . . . . . . . . . . . . . . . . . . 185

6.5 More experimental results and comparisons . . . . . . . . . . . . . . . . 185

6.5.1 Comparison on color-guided facial editing . . . . . . . . . . . . . 185

6.5.2 Comparison on local attribute-conditional facial editing . . . . 189

6.5.3 Comparison on exemplar-guided facial editing . . . . . . . . . . 190

6.5.4 Comparison on guided facial pose editing . . . . . . . . . . . . . 192

6.5.5 More results on multimodal facial editing . . . . . . . . . . . . . 195

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7 Conclusion and Future Work 198

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.2 Limitations and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Bibliography 202

ix



List of Figures

3.1 The overall pipeline of our framework: the degraded image is processed

through a diffusion-based style prompt module (a) to get denoised

codes w0 through T time diffusion steps, beginning from noise codes

wT . Then, the restoration auto-encoder (c) processes the degraded

image, using the denoised codes w0, random codes ẑ, and a global
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Chapter 1

Introduction

Motivation. With the rapid development of the internet, cloud computing, and

mobile communication technologies, along with the improved processing capabilities

of mobile devices, various applications are reshaping our daily lives and work routines.

Among these, applications related to facial images have garnered widespread attention

due to their extensive use, resulting in the generation and storage of a vast number

of facial images every day. These applications across multiple domains, including

social entertainment, e-commerce, fashion design, visual effects in films, and criminal

investigation, underline the growing need for sophisticated facial image manipulation

technologies.

Facial image manipulation refers to the process of digitally altering facial images

through various computational techniques to enhance, transform, or modify facial fea-

tures in a photograph or image. This process encompasses a wide range of tasks, typ-
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ically including face restoration (e.g., denoising, deblurring, super-resolution, and en-

hancement), facial image inpainting [27], facial style transfer [28], and facial attribute

manipulation [29] (e.g., skin texture [16], face swapping [30], expression manipulation,

age manipulation [31], hair editing [32], facial contouring, and reshaping [33]).

To enhance the whole facial features or restore the noisy part of the whole fa-

cial image, unconditional global facial manipulation (such as facial restoration) can

be used to enhance the global and local details of facial features. To achieve lo-

calized enhancements, unconditional local facial manipulation (like image inpainting)

allows for interactive removal and seamless replacement of undesirable visual features.

However, these methods have limitations in terms of controllable editing ability and

cannot provide flexible editing of facial features. To bridge this gap, conditional local

facial editing (like exemplar-guided facial inpainting) empowers users to transfer spe-

cific facial attributes from a given exemplar image, enabling semantic manipulation

like expression and identity transfer. To support extensive multimodal editing, mul-

timodal facial editing stands out by utilizing semantics to edit facial image’s coarse

layout, sketches to refine facial structure and texture, and texts or attribute labels to

adjust facial attributes, to name just a few.

With the fast-paced progress in computer vision and deep learning, deep-learning-

based facial image editing has made considerable progress in recent years. These

methods understand images at a semantic level, delivering remarkable results beyond

the pixel-level interpretations of earlier techniques. Yet, numerous difficulties and
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challenges persist, affecting their wider application across various scenarios. This

thesis aims to address these issues in facial editing. We explored blind face restoration

for unconditional global facial editing, facial image inpainting for unconditional local

facial editing, exemplar-guided facial inpainting for conditional facial editing, and

tackled challenges in multimodal facial image editing.

Challenges. Starting from the unconditional global facial editing – blind face

restoration, we found that prior knowledge-based methods lead the way in achiev-

ing high-quality face restoration, but still face challenges in achieving high-quality

restoration performance. These methods use geometric priors to guide the restora-

tion process, by drawing on shape information such as parsing maps [34], component

heatmaps [35], and identity [36]. Nonetheless, their results often lack comprehensive

detail since they focus on limited facial features [37]. To address this issue, some

studies [38, 39, 37, 40] have employed facial priors inherently present in pre-trained

generative models [41, 42] or vector quantization dictionary [43] for guiding restora-

tions that retain detailed facial attributes. However, when facial images are degraded,

critical features (e.g., details of expression and identity) may be lost, leading to in-

accurate facial prior estimation for reconstruction. Achieving precise facial prior es-

timation that corresponds to high-quality images is crucial for enhanced restoration,

and is still an open challenge.

For the unconditional local facial editing – facial image inpainting, we found that

existing state-of-the-art methods [44, 45] require a large amount of data to train their
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convolutional neural network (CNN) or transformer models [46]. When these models

are trained on small image datasets, there is a high possibility of overfitting and model

collapse [47]. In practice, it is much easier for users if only a small number of training

images is required. Furthermore, in specific image domains, such as medical imaging,

art, and historical relics, collecting large datasets is often too costly or impractical,

significantly limiting the application of image inpainting in real-world scenarios. Thus,

designing a data-efficient method, which is capable of training on limited data while

producing high-quality inpainting outcomes remains a challenge.

For conditional facial manipulation – exemplar-guided image inpainting, to achieve

realistic facial inpainting guided by exemplar images, there are two main challenges:

how to learn the style of facial attributes from the exemplar and how to guarantee

natural transition on the mask boundary. Some works [48, 49] attempt to generate

diverse image inpainting results giving users the option to select their preferred one.

However, they cannot utilize user guidance to complete missing regions. Many recent

methods try to employ additional landmarks [50], strokes [16], or sketches [26, 51]

to guide the inpainting of facial structures and attributes. However, these methods

tend to overfit the resulting images with this limited guidance information. As a

result, these methods still require considerable professional skills in order to generate

satisfactory target facial attributes, such as identity, expression, and gender.

For multimodal facial manipulation, there are three main challenges. The first

challenge is the difficulty in preserving visual content in unedited background areas.
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However, existing multimodal facial editing techniques [52, 14, 12, 13] can only edit

the facial image as a whole and are prone to introduce unwanted changes to unedited

background regions. When users are not satisfied with some local effects, these tech-

niques fail to edit the local regions in an incremental manner. While state-of-the-art

(SOTA) methods may perform high-quality edits, they are likely to include unwanted

changes of other facial features in incremental editing scenarios, where an already

edited image is subject to further modifications using different modalities. The sec-

ond challenge is the need for manual annotations of paired data. For example, some

existing methods [52, 14] train their models with labeled paired data across differ-

ent modalities, but manual annotations of training datasets are label-intensive. The

third challenge is the need for training a single modal model for each input modal-

ity. The methods based on diffusion models [12, 13] train all uni-modal models first

and perform editing by integrating these pre-trained uni-modal models. When the

number of modalities grows, more uni-modal models should be trained separately.

How to design a multimodal manipulation method, that meets these requirements for

high-quality and controllable editing, is still an open question.

Contributions. Due to advances in deep learning, generative models (such as

Generative Adversarial Networks (GANs) [41], Variational Auto-Encoder (VAE) [53],

and Diffusion Probabilistic Models (DMs) [54]) have become key solutions for tack-

ling various challenges in image segmentation, image generation, image editing, etc.

Leveraging the advanced learning abilities of deep network architectures, such as Con-
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volutional Neural Networks (CNNs) and Transformers [46], these models can excel

at creating images with remarkable realism and precision, offering a deeper under-

standing of image semantics. However, the straightforward application of these tech-

niques results in limited effectiveness due to the absence of designs tailored to specific

questions. Finding ways to harness generative models and deep neural networks for

high-quality facial image manipulation remains challenging.

This thesis explores facial image manipulation, specifically focusing on overcom-

ing the aforementioned challenges across four pivotal tasks: face restoration, face

inpainting, exemplar-guided facial editing, and multimodal face editing.

For the face restoration, we explore the use of latent representations in pre-trained

generative models as visual style prompts for directing the face restoration process.

Specifically, there are mainly two questions: (1) how to accurately embed visual

prompts from a degraded face image, and (2) how to integrate the visual prompts

and facial priors within the network to boost performance. To answer these questions,

we first explore the role of Diffusion Models (DMs) in improving the estimation of

clean latent representations from degraded images, aiding facial feature extraction for

restoration. Secondly, we evaluate how rescaling and adjusting multiscale convolu-

tional kernels according to visual prompts can enhance feature extraction, and better

utilize visual information across different receptive fields.

For the face inpainting task, we propose a novel data-efficient generative residual

image inpainting framework (GRIG), which enables high-quality image inpainting on
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small-scale datasets. To effectively optimize inpainting results, we use iterative rea-

soning to more accurately and generalizably solve algorithmic reasoning tasks [55],

based on residual learning [56] to incrementally refine previous estimates. By con-

tinually updating residual offsets and utilizing inpainted information from previous

iterations, our model dynamically refines the input image. This approach reduces

direct memorization of input-to-ground-truth mappings, effectively diminishing over-

fitting and enhancing visual quality. We also investigate whether combining iterative

reasoning and residual learning with CNNs and transformers [46], as well as image-

level and patch-level discriminators, can lead to a more robust and data-efficient

method to tackle the data-efficient image inpainting task.

For exemplar-guided facial editing, we propose EXE-GAN, a novel interactive

facial inpainting framework, which enables high-quality generative facial inpainting

guided by exemplars. Our framework consists of four main components, including a

mapping network, a style encoder, a multi-style generator, and a discriminator. Our

method mixes the global style of the input image, the stochastic style generated from

the random latent code, and the exemplar style of the exemplar image to generate

highly realistic images. We impose a perceptual similarity constraint to preserve

the global visual consistency of the image. To enable the completion of exemplar-

like facial attributes, we further employ facial identity and attribute constraints on

the output result. To guarantee natural transition across the boundary of inpainted

regions, we devise a novel spatial variant gradient backpropagation method for the
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network training.

For multimodal face editing, we investigated whether incorporating generative ad-

versarial networks (GANs) [41] can improve global consistency for multimodal local

facial editing. By learning the distribution of real facial images, adversarial training

enforces the model to fill plausible contents for edited regions guided by multimodal-

ities. To minimize the dependency on paired training data, we asked the question

that if we can loose the ties between the paired modalities data by aligning all modal-

ities into a unified generative latent space to diminish the requirement for paired

text, attribute label, and exemplar modalities. Instead of training a uni-modal model

for each modality, we examined whether fusion and warping priors along with mul-

timodalies in both latent and feature space, could achieve seamless integration of

multimodalities.

We propose four novel frameworks:

• A visual style prompt learning framework for blind face restoration that uti-

lizes latent representations from pre-trained generative models for guiding the

restoration process.

• A data-efficient generative residual image inpainting framework (GRIG) that

optimizes the use of small-scale datasets for high-quality inpainting.

• An interactive facial inpainting framework (EXE-GAN) guided by exemplars,

enabling high-quality generative inpainting of facial images.
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• A multimodal generative fusion framework for local facial editing (FACEMUG)

that integrates various types of conditioning information for personalized edit-

ing.

Extensive experimental results and applications demonstrate the remarkable per-

formance of our methods in enhancing the realism, detail, and personalization of

facial image manipulation. The above research has led to the following published or

pending works [57, 58, 27, 59]:

• Wanglong Lu, Jikai Wang, Tao Wang, Kaihao Zhang, Xianta Jiang, and Hanli

Zhao. Visual style prompt learning using diffusion models for blind face restora-

tion. Pattern Recognition, 161:111312, 2025.

• Wanglong Lu, Xianta Jiang, Xiaogang Jin, Yong-Liang Yang, Minglun Gong,

Tao Wang, Kaijie Shi, and Hanli Zhao. GRIG: Few-shot generative residual

image inpainting, Computational Visual Media, (In Press), 2025.

• Wanglong Lu, Hanli Zhao, Xianta Jiang, Xiaogang Jin, Yong-Liang Yang, and

Kaijie Shi. Do inpainting yourself: Generative facial inpainting guided by ex-

emplars. Neurocomputing, 617:128996, 2025.

• Wanglong Lu, Jikai Wang, Xiaogang Jin, Xianta Jiang, and Hanli Zhao. FACE-

MUG: A multimodal generative and fusion framework for local facial editing.

IEEE Transactions on Visualization and Computer Graphics, 1-15, 2024.
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Organization of the Dissertation. The remainder of this thesis is structured

as follows: Chapter 2 introduces core concepts and related work on generative models

for image synthesis, blind face restoration, image inpainting, and facial image manip-

ulation. Chapter 3 discusses the visual style prompt learning framework for blind face

restoration. Chapter 4 presents the data-efficient generative residual image inpainting

framework (GRIG). The interactive facial inpainting framework (EXE-GAN) is ex-

plored in Chapter 5, and the multimodal generative fusion framework for local facial

editing (FACEMUG) is detailed in Chapter 6. Finally, conclusions and future work

are discussed in Chapter 7.

The writing style of this proposal follows the manuscript style. Chapters 3 to 6

are separate manuscripts published or under review. Some content of these sections

in the manuscripts maybe duplicated.

Co-Authorship Statement: I (Wanglong Lu) am the principal author for all

the published or submitted works presented in this thesis. For each work, I proposed

ideas and solutions, conducted experiments, and wrote the manuscripts. My co-

authors provided constructive comments, assisted with setting up experiments, and

contributed to manuscript revisions.
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Chapter 2

Related Work

2.1 Generative models for image synthesis

Thanks to the efficient sampling of high-resolution images with good perceptual qual-

ity [60], Generative Adversarial Networks (GANs) [41] have dominated in learning

image synthesis tasks for several years, such as image style transfer [61, 62], image

inapinting [63], and image super-resolution [64]. The learned latent space enables an

intuitive approach to control the image generation process, thereby achieving seman-

tic manipulation. With advancements of disentangled latent space learning, such as

Fader Networks [65] and StyleGANs [42, 60, 66], the manipulation of latent codes

in a pre-trained GAN model has become an active research area on image editing.

Recently, Diffusion Probabilistic Models [67] have showcased remarkable potential in

image synthesis quality [68]. To solve the drawback of low-speed sampling, Latent
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Diffusion Models (LDMs, Stable Diffusion) [69] were proposed for achieving better

visual quality on image inpainting and class-conditional image synthesis, while signif-

icantly reducing computational requirements. Even though the sampling speed can

be partially solved by sampling strategies [70] and hierarchical approaches [69, 71],

multiple denoising steps are still needed for high-quality synthesis.

2.2 Blind face restoration

Blind face restoration, which aims to reconstruct original faces from degraded images

with unknown sources of degradation, has been a long-standing problem with wide-

ranging application potentials [72, 73]. Following the achievements of Deep Neural

Networks (DNN) in various research fields, DNN-based approaches have become the

leading methodology in blind face restoration [74]. Since limited restoration cues are

available for effective restoration, the use of auxiliary priors has become increasingly

common. These include geometric priors [34], reference priors [75], generative pri-

ors [39, 76, 38, 77], and multi-priors [78]. For geometric priors, an auxiliary model

is employed to predict facial structure information, including landmarks [79], pars-

ing maps [34], and component heatmaps [35], to assist in restoration. However, the

accuracy of these geometric priors is heavily dependent on the condition of the fa-

cial degradation. Reference-based approaches [75] rely on exemplars for guidance, yet

their effectiveness is constrained when exemplars of the same identity as the degraded

face are unavailable. Generative priors [39, 76, 38, 77], leveraging high-quality face
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generators or vector quantization dictionaries [43, 37, 40], have shown significant po-

tential in blind face restoration. However, these methods do not focus primarily on

the explicit estimation of representations in pre-trained models, potentially limiting

their ability to provide accurate feature priors for guiding the restoration process.

Moreover, they also face challenges in dynamically selecting relevant features and

adjusting the kernels’ receptive fields. Recent studies [80] have employed diffusion

models for boosting robustness against common degradations, successfully generat-

ing high-quality facial images. Yet, these approaches, mainly operating in the pixel

space, suffer from low inference speeds and are time-intensive. In contrast, we utilize

a denoising process in the latent space to restore clear representations of degraded

images, restoring facial features with high efficiency. Our model combines the ad-

vantages of dynamically rescaling and adjusting convolutional kernels to enhance the

feature extraction of informative context and detailed patterns for better restoration.

2.3 Image inpainting

Image inpainting can be grouped into traditional image inpainting methods and deep-

learning-based inpainting approaches. The former mainly relies on low-level features,

while the latter leverages deep neural networks to extract semantic features, resulting

in better visual quality. However, there has been limited research into training these

deep-learning-based models on a small number of samples.
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Early image inpainting techniques rely heavily on low-level features from pixels

and image patches. Methods based on diffusion [81, 82, 83] propagate undamaged

information along the boundary to the hole’s center. Patch-based methods [84, 85, 86]

iteratively search for and copy similar appearances from image datasets or known

backgrounds. Some variants include GPU-based parallel methods [87], summarizing

of non-stationary patterns [88], and inpainting with nonlocal texture similarity [89].

Because of the lack of semantic understanding of the image, these methods perform

well for small-scale and narrow missing regions but fail to recover meaningful contents

for large holes [90].

Deep-learning-based inpainting methods have achieved great success in seman-

tic completion. Deep neural networks have been used extensively to improve the

visual quality of inpainting [91]. These works include an auto-encoder-based ar-

chitecture [92] and its variant architectures [93, 94, 95, 96]. Various sophisticated

modules or learning strategies have been developed to enhance the effectiveness

of image inpainting, including global and local discriminators [63], contextual at-

tention [97, 98, 99, 100] to improve semantic understanding, methods for dealing

with irregular holes [101, 26, 49], and utilization of auxiliary information (such as

sketches [16], foreground contours [102], and structures [103]). Recent research has

addressed issues related to high-resolution [99, 104, 44, 45, 105, 106], Transformer-

based inpainting [107, 108, 109, 110], pluralistic generation [45, 49, 48, 111, 112],

and large hole filling [113, 114, 115, 45, 49, 111, 105, 112, 116]. The methods dis-

14



cussed above aim for semantically high-quality completion, but they may overfit when

trained on data with a small number of samples.

Progressive-based image inpainting methods [114, 106, 115, 113, 116] are closely

related to our work. These methods primarily inpaint pixels from the hole boundary

to the center in a progressive manner [114, 113, 116, 106] or employ multi-stage

refinement schemes [106, 115]. For example, Zeng et al. [106] improved high-resolution

inpainting by iteratively predicting a confidence map and corresponding intermediate

results. Such methods reuse only a portion of the predicted information and do

not change pixels with high confidence for the next iterative inpainting. Recurrent

Feature Reasoning (RFR) [115] runs embedded feature maps through their feature

reasoning module multiple times to generate multiple features for adaptive feature

merging. RFR’s final inpainted results, on the other hand, are produced from their

decoder with a single forward pass, indicating that the model cannot readjust its

results at the pixel level for better fine details.

2.4 Facial image editing

Facial image editing (a.k.a. image manipulation) is closely related to image inpaint-

ing, which is a significant task in computer graphics and computer vision, focusing

on the modification and control of various visual features, such as skin texture [16],

lighting [117, 118], structure [33], expressions [27], and identity [119].

To remove the unwanted or blemished visual features, existing image inpainting
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techniques [99, 45, 49, 48, 111, 112] can be applied directly to remove the pixels

in masked regions and fill with plausible content. However, they have limitations

in terms of controllable editing ability and cannot provide multimodal conditional

editing. By utilizing auxiliary information, such as sketches [120, 16], colors [16],

foreground contours [102], and structures [103], low-level facial features such as tex-

ture and geometry can be manipulated. However, these methods tend to overfit on

limited guidance information. Thus, professional skills may needed when users opt

to edit facial features with semantic level (e.g., facial expression and identity).

To perform semantic-level face manipulation, some methods [121, 122] use a do-

main label to index the mapped latent codes and can control a set of attributes.

However, they are limited to pre-defined attributes, thereby restricting editing free-

dom. Geometry-guided face manipulation methods mainly use semantic geometry,

such as sketches [18, 15, 19], semantic maps [123, 21, 20, 6, 22] to guide the gen-

eration of facial structure. However, due to information loss during the projection

and reconstruction process between real photographs and corresponding latent repre-

sentations, these methods might inadvertently alter fine facial details (i.e., unedited

regions may be changed). Recent advancements allow the transfer of facial attributes

from example images at the instance level [124, 125, 126, 127, 119, 128], manipulating

attributes such as expression, identity, and decorative elements. Despite their advan-

tages, these methods share a common drawback: users cannot flexibly select facial

regions for local facial editing. Image-composition-based methods enable local edit-
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ing by overlaying the foreground of a source image onto the background of a target

image [3, 4, 5]. Although they can generate more diverse and realistic facial images,

their method may fail when the poses in the edited and reference images differ.

Manipulating latent codes in pre-trained GAN models is an active research area

in image editing. GAN inversion, a fundamental step in image manipulation, uses

optimization-based [129, 2, 130] and encoder-based [131, 18, 132, 17, 133] methods

to map an image back into a pre-trained GAN’s latent space. The predicted latent

codes can then be modified and fed back into the generator for corresponding seman-

tic editing. Various studies have pursued semantically meaningful paths for editing

latent codes through supervised methods such as annotated images [33, 32] or pre-

defined semantics attribute predictors [134, 24, 135], and unsupervised methods such

as closed-form factorization [136] or PCA in the latent space [137]. With StyleGAN’s

advancement, text descriptions, such as those employed by TediGAN [52] and Style-

CLIP [138], are gaining popularity for text-based image manipulation. However, these

methods rely on image inversion techniques that may unintentionally alter unedited

areas due to information loss in the inversion process.
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Chapter 3

Visual Style Prompt Learning for

Blind Face Restoration

3.1 Introduction

Blind face restoration is dedicated to reconstructing high-fidelity facial images from

a range of unidentified sources of degradation such as blurring, noise, downsampling,

and compression artifacts [139, 140]. Given the complexity and unpredictability of

the degradation in real-world situations, only minimal information could be utilized

from the compromised face images [141, 142]. Reconstructing faithful facial features

from blindly degraded images stands as a pivotal challenge in the fields of computer

vision and image processing [143].

Current prior-knowledge-based methods are leading the way in achieving high-
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quality face restoration. These methods use geometric priors, drawing on shape in-

formation such as parsing maps [34], component heatmaps [35], and identity [36] to

guide the restoration process. Nonetheless, due to their focus on limited facial fea-

tures, the results often lack comprehensive detail [37]. To address this issue, some

studies [38, 39, 37, 40] have investigated the use of facial priors inherently present in

pre-trained generative models [41, 42] or vector quantization dictionary [43], which

show promise for guiding restorations that retain detailed facial attributes. How-

ever, these techniques do not focus primarily on the explicit estimation of latent fea-

ture representations in a pre-trained model, which might not always lead to effective

restoration results when the estimated representation is not correctly predicted.

Recent studies have shown that using pre-trained embedding models as visual

prompts [144, 145] enhances restoration processes, highlighting the importance of

visual priors for restoration quality. Yet, these features, not being from generative

models, lack easy visualization and interpretation, which constrains understanding

of their impact on performance. In contrast, generative models provide dense latent

representations that encapsulate visual styles and attributes, offering valuable guid-

ance for restoration. By leveraging generative models’ latent representations, we can

introduce a more intuitive and reliable means to direct the face restoration process.

Nonetheless, research in this area remains limited.

In this paper, we explore the use of latent representations in pre-trained generative

models as visual style prompts for directing the face restoration process. Specifically,
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there are mainly two questions: (1) how to accurately embed visual prompts from

a degraded face image, and (2) how to integrate the visual prompts and facial pri-

ors within the network to boost performance. For the first question, GAN inversion

methods can effectively embed a given high-quality image to the corresponding latent

space. However, the optimization-based [130] is time-consuming, and the encoder-

based methods [132] offer faster but sometimes less precise mapping. Recent studies

on Diffusion Probabilistic Models (DMs) [54] show their potential in learning dis-

tributions effectively. Yet, their use in embedding latent representations is still not

widely explored. Also, the application of these models in processing degraded face

images remains insufficiently studied. For the second question, it is equally vital for

the network to adeptly utilize valuable guidance to improve restoration quality. Cur-

rent techniques like spatial feature transform [38] and deformable operations [146]

yield promising feature extraction but are limited by the narrow receptive fields of

convolutional layers, restricting global context usage. While Transformer-based meth-

ods [37, 40] excel in face restoration, they typically require substantial GPU memory

and computational resources. Moreover, these methods are not designed to utilize

visual prompts to enhance performance.

To tackle these challenges, we first explore the role of Diffusion Models (DMs) in

improving the estimation of clean latent representations from degraded images, aiding

facial feature extraction for restoration. Secondly, we evaluate how rescaling and

adjusting multiscale convolutional kernels according to visual prompts can enhance
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feature extraction, and better utilize visual information across different receptive

fields.

We thus propose a novel visual style prompt learning framework for blind face

restoration. Thanks to the well-disentangled and capable StyleGAN [60] latent space

in representing diverse facial attributes, we leverage the latent representations of a

pre-trained StyleGAN model as visual prompts to generate potential facial features

and inform the subsequent restoration process. To efficiently transform a degraded

face image into high-quality latent representations, a diffusion-based style prompt

module progressively performs denoising steps, refining low-quality visual prompts

into higher-quality (clean) counterparts. The resulting candidate facial features and

clean visual prompts are then employed to guide the restoration process within the

restoration auto-encoder. Furthermore, we introduce a Style-Modulated AggRega-

tion Transformation (SMART) layer to fully utilize visual prompts and capture both

contextual information and detailed patterns for better context reasoning. Exten-

sive comparisons and analysis compared to the state-of-the-art (SOTA) methods on

four public datasets demonstrate the effectiveness of our approach in achieving high-

quality blind face restoration. We also extend our algorithm to various applications,

such as facial landmark detection and face emotion recognition to demonstrate the

applicability of our method in helping address face-related tasks.

In summary, our paper offers four key contributions: (1) We proposed a novel

diffusion-based style prompt method that explicitly predicts visual prompts from de-
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graded images employing DMs within the latent space of a generative model. (2) A

novel style-modulated aggregation transformation layer is proposed, which effectively

leverages visual prompts and excels in capturing comprehensive contextual informa-

tion and detailed patterns for boosting performance. (3) We introduce a novel visual

style prompt learning framework for high-quality blind face restoration, which ex-

plicitly predicts visual prompts through the style prompt module and enhances the

clarity and detail of restoration by employing style-modulated aggregation transfor-

mation layers. (4) We conducted various experiments to demonstrate that our method

not only excels in enhancing the quality of images in both synthetic and real-world

blind face restoration datasets but also benefits various applications, highlighting the

effectiveness of our proposed method.

3.2 Method

3.2.1 Overview

As shown in Fig. 3.1, given a degraded facial image Ide ∈ Rh×w×3, a ground-truth face

image Igt ∈ Rh×w×3 (with h ×w pixels and three color channels). Let W+ denote the

disentangled style latent space [60]. Our framework aims to restore the degraded

facial image to achieve both visual and structural fidelity compared to the ground-

truth image.

Diffusion-based style prompt module. As shown in Fig. 3.1 (a), our style
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Figure 3.1: The overall pipeline of our framework: the degraded image is processed

through a diffusion-based style prompt module (a) to get denoised codes w0 through

T time diffusion steps, beginning from noise codes wT . Then, the restoration auto-

encoder (c) processes the degraded image, using the denoised codes w0, random codes

ẑ, and a global code c as style prompts. The network also leverages prior features

from the facial feature bank (b), integrating them through a fusion process f(⋅), to

achieve the restored image. During training, the restoration auto-encoder is jointly

optimized by loss functions.

prompt module is designed to predict denoised latent codes from a degraded facial

image. First, a style encoder Eθe(⋅) with the network parameters θe, embeds the

given degraded image to initial latent codes ŵ ∈ R512×N = Eθe(Ide) ∈ W+. Guided

by the initial latent codes, our code diffuser Pθp(⋅) (with the network parameters θp)

samples Gaussian random noise codes wT ∈ R512×N and then gradually denoise wT

with T steps to get denoised latent codes w0 ∈ R512×N ∈ W+. For each step t, code
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diffuser gradually predict the noise: ϵ̂t ∈ R512×N = Pθp(wt, ŵ, t). The denoising step

is performed by subtracting the predicted noise from wt ∈ R512×N . N is the number

of style vectors in latent codes.

Facial feature bank. As depicted in Fig. 3.1 (b), we leverage the StyleGAN

generator Sθs as our facial feature bank. The generator uses denoised latent codes w0

to produce multi-scale, coarse facial features. From Sθs , we can obtain a set of facial

feature maps F s = {Fs
i ∈ Rĥi×ŵi×ĉi ∣i ∈ [1,N]} and a inverted image Ive ∈ Rh×w×3, such

that (F s, Ive) = Sθs(w0). The dimensions ĥi × ŵi × ĉi represent the size of the feature

maps at the i-th layer.

Restoration auto-encoder. As shown in Fig. 3.1 (c), a multi-layer fully-

connected neural mapping network Fθf with the network parameters θf , first set a

random noise vector z ∈ R512×1 as the input to get random styles ẑ ∈ R512×1 = Fθf (z).

The restoration auto-encoder Gθg leverages Ide, w0, ẑ, and F s to generate an restored

image Iout = Gθg(Ide,w0, ẑ,F s) ∈ Rh×w×3. The restoration auto-encoder can be further

divided into an encoder Gen and a decoder Gde, i. e., Gθg = {Gen,Gde}.

Discriminator. A discriminator network Dθd with trainable parameters θd, is

trained to distinguish real images from generated ones (e.g., Iout or Igt). For a given

image I, we have Dθd(I) ∈ R1×1.
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Figure 3.2: The detailed diffusion (←) and denoising (→) processes in the style latent

space. We also show the corresponding inverted images of latent codes in steps.

3.2.2 Diffusion-based style prompt module

Guided by the initial codes ŵ, we adopt diffusion models (DMs) [54] by using our

code diffuser to generate denoised latent codes. DMs have a diffusion process and a

denoising process, where the former is for training, and the latter is to sample latent

codes from random Gaussian noise.

As shown in Fig. 3.2, the diffusion process (a.k.a. forward process) incrementally

introduces Gaussian noise into the data. This process transforms the clean latent

codes w0 into an approximately pure Gaussian noise wT using a variance schedule

β1, . . . , βT . The diffusion process is defined as:

q(wt∣wt−1) = N (wt;
√

1 − βtwt−1, βtI). (3.1)

In this process, wt can be directly approximated by wt = √ᾱtw0 +
√

1 − ᾱtϵ, with

ᾱt =∏t
s=1 αs, αt = 1 − βt, and ϵ ∼ N (0, I).

As shown in Fig. 3.2, the denoising process (a.k.a. reverse process) is designed to

sample the cleaner version wt−1 from wt by estimating the added noise, which can

25



ca paˆvw

ˆkw

ˆqw

vw

kw

qw

FC

FC

FC

R MLP

x m

Gate activationChannel-based
 cross-attention

TACC

TACC

TACC

Temporal-aware code-to-code block (TACC)

MLPFC

FC

FCR

Position-based
cross-attention

TACC

Code diffuser

4
tD

3
tD

2
tD

1
tD

t
iD

t

1
t
i-D1

t
i-D

tt

t

512 512´

tw
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Figure 3.3: The architecture of the coder diffuser and temporal-aware code-to-code

block.

be defined as:

pθ(wt−1∣wt) = N (wt−1;µθ(wt, t),Σθ(wt, t)). (3.2)

To sample the denoised latent codes w0 by using our code diffuser, we iteratively

denoise wt from t = T to t = 1. The Eq. 3.2 is implemented as:

wt−1 = 1√
αt

(wt − 1 − αt√
1 − ᾱt

ϵ̂t) + σtϵ, (3.3)

where ϵ̂t = Pθp(wt, ŵ, t); variance σ2
t = 1−ᾱt−1

1−ᾱt
βt and noise ϵ ∼ N (0, I).

Code diffuser. Fig. 3.3 shows that our code diffuser has four temporal-aware

code-to-code blocks (TACC). Our TACC block is extended from FFCLIP’s semantic

modulation block [29]. Each block sets ∆t
i−1 (∆t

0 =wt), initial codes ŵ, and denoising
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step t as inputs, and outputs the intermediate results ∆t
i (i = 1,2,3,4):

wq = FC([ŵ, t]),wk = FC(∆t
i−1),wv = FC(∆t

i−1),

ac =wv ⋅ Softmax(wq⊺ ⋅wk/τ1),

ŵq = FC([ŵ, t]), ŵk = FC(∆t
i−1), ŵv = FC(∆t

i−1),

ap = Softmax(ŵq ⋅ ŵk⊺/τ2) ⋅ ŵv,

ξ = σ(MLP([ŵ, t])),µ = ϕ(MLP([ŵ, t])),

∆t
i = LayerNorm(ac + ap)⊙ (ξ + 1) +µ,

(3.4)

where [⋅] is the concatenation operation; FC(⋅) is a fully connected layer; MLP(⋅)

is a stack of two fully connected layers; Softmax(⋅) is the softmax activation; σ(⋅)

denotes the sigmoid activation function; ϕ(⋅) corresponds to the LeakyReLU activa-

tion function with the negative slope of 0.2; LayerNorm(⋅) is the LayerNorm layer.

We set τ1 =
√
N , and τ2 =

√
512. Our blocks compute channel-based attention [147]

(ac), position-based attention [147] (ap), and gated maps ξ and the bias µ using time

step t, initial codes ŵ and intermediate results ∆t
i layer by layer to predict the noise

ϵ̂t =∆t
4.

3.2.3 Restoration auto-encoder

To produce high-quality restoration results, we develop a restoration auto-encoder

that fully utilizes denoised latent codes and facial priors to recover the given degraded

image Ide. We introduce the SMART layer to fully capture contextual information

and detailed patterns for enhancing context reasoning, while fully using latent codes
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to guide the restoration process.

As shown in Fig. 3.1 (c), given denoised latent codes w0, random styles ẑ and facial

priors F s = {Fs
i ∈ Rĥi×ŵi×ĉi ∣i ∈ [1,N]}. The features F en = {Fen

i ∈ Rĥi×ŵi×ĉi ∣i ∈ [1,N]}

in our restoration encoder Gen are defined as:

Fen
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

SMART(Fen
i−1, [w0

i , ẑ]), if i mod 2 = 1;

Down(SC(Fen
i−1, [w0

i , ẑ])), otherwise,

(3.5)

where SC(⋅) is the style layer; Down(⋅) indicates the the downsample operation;

Fen
0 = Conv(Ide). When i = N , we can further get the global code c = FC(Fen

N ). Our

restoration decoder then generate features Fde = {Fde
i ∈ Rĥi×ŵi×ĉi ∣i ∈ [1,N]}, which

can be calculated as follows:

Fde
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

SC(UP(Fde
i−1), [w0

i , ẑ,c]), if i mod 2 = 1;

SMART(F̂de
i−1, [w0

i , ẑ,c]), otherwise,

(3.6)
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where Fde
0 = Conv(Fen

N ), F̂de
i−1 = f(Fde

i−1,F
en
N−i+1,F

s
i−1), Iout = Conv(Fde

N ). We simply

use the summation of input features as our fusion function f(⋅).

Style-modulated aggregation transformation. As shown in Fig. 3.4, the

SMART layer is designed to leverage style prompts and various dilation factors to

widen the receptive field. This enables the network to capture detailed patterns and

informative distant image contexts for better reasoning.

Given input feature maps F̄ and corresponding style prompts w̄ ([w0
i , ẑ] for layers

in restoration encoder, [w0
i , ẑ,c] for layers in restoration decoder, where w0

i ∈ R512×1,

ẑ ∈ R512×1, c ∈ R512×2). We first generate a style vector s ∈ R512×1 for the sub-

sequent modulation and demodulation [60] to rescale Convolution kernels k, e.g.,

k ∈ R512×3×3×512. The Convolution layers Convk′

d=m, with the reweighted k′ and dila-

tion factor m are then applied to extract feature maps to get results. Our SMART

layer is expressed as follows:

s = FC(w̄),k′ = Demod(Mod(k,s)),

F1 = ϕ(Convk′

d=1(F̄)),F2 = ϕ(Convk′

d=2(F̄)),

F4 = ϕ(Convk′

d=4(F̄)),F8 = ϕ(Convk′

d=8(F̄)),

F̂ = Aggregation([F1,F2,F4,F8]]),

(3.7)

where the modulation operation Mod(⋅) is employed to scale the convolution weights

using given transformed s style vector, while the demodulation operation Demod(⋅)

is utilized to rescale kernels back to unit standard deviation for stable training. We

employ a 3 × 3 convolution layer as the aggregation layer to merge features from
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the four different dilation rates, thereby achieving more distinct facial structures.

Incorporating the SMART layer within the restoration network enables our model

to grasp the global facial structure and local details. It also facilitates control over

both global and local stylistic features using modulated styles, thereby enhancing

performance.

3.2.4 Module training

We utilize the pre-trained StyleGAN generator Sθs . We first train the style encoder

Eθe , and then optimize the code diffuser Pθp . Finally, we detail the training for both

the restoration auto-encoder and the discriminator.

Training of style encoder. We adopt the style encoder network architecture

and training objectives from e4e [132]. Throughout the training phase, degraded

images are input into the style encoder Eθ̂e
.

Training of code diffuser. To learn the diffusion process for the generation

of denoised latent codes, we reparameterize the learnable Gaussian transition as our

code diffuser Pθp(⋅), and use the commonly used optimization objectives, including

diffusion loss, Learned Perceptual Image Patch Similarity (LPIPS) loss, and identity

loss to constrain the training process.

Diffusion loss. The diffusion loss Ldm [54] is presented as:

L(θp)dm (ϵ, ϵ̂
t) = Et,w0,ϵ∼N (0,I) [∥ϵ − ϵ̂t∥2] , (3.8)

where ϵ̂t = Pθp(wt, ŵ, t). By minimizing Ldm, our code diffuser can be trained to
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learn how to predict the added Gaussian noise at step t.

LPIPS loss. To enhance the fidelity of the denoised latent codes, we apply the

LPIPS loss [148] to constrain the perceptual similarity between the inverted image

Ive and the ground-truth Igt using StyleGAN model Sθs . When t = T , we can generate

an inverted image (F s, Ive) = Sθs(w0) from the denoised latent codes w0. The LPIPS

loss can be written as:

L(θp)lpips(Ive, Igt) = ∥VGG(Ive) −VGG(Igt)∥2, (3.9)

where VGG(⋅) is the pre-trained perceptual feature extractor VGG [149].

Identity loss. Similar to the LPIPS loss, we apply the identity loss to constrain

identity similarity between the inverted image Ive and the ground-truth Igt in the

facial embedding space. The identity loss is formulated as:

L(θp)id (Ive, Igt) = 1 − cos (R(Ive),R(Igt)) . (3.10)

R(⋅) is the pre-trained face recognition ArcFace network [150].

Total loss. The total training loss of our code diffuser is expressed as:

O(θp) = L(θp)dm + λlpipsL(θp)lpips + λidL(θp)id , (3.11)

where λlpips = 0.1 and λid = 0.1 are weights of objectives. During training, we optimize

parameters θp by minimizing the total loss.

Training of restoration networks. We train the restoration and mapping

networks using LPIPS loss, identity loss, and adversarial loss.
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LPIPS loss. The LPIPS loss L(θg ,θf )lpips (Iout, Igt) is applied to enforce perceptual

similarity between the restored image Iout and the ground-truth Igt.

Identity loss. The identity loss L(θg ,θf )id (Iout, Igt) is employed to constrain identity

similarity between the restored Iout and the ground-truth Igt.

Adversarial loss. We employ the adversarial non-saturating logistic loss [41], with

R1 regularization [151]. The adversarial objective is defined as:

L(θg ,θf ,θd)adv (Iout, Igt) = EIout[log(1 −D(Iout)]

+EIgt[log(D(Igt))] −
γ

2
EIgt[∥∇IgtD(Igt)∥22],

(3.12)

where γ = 10 is used to balance the R1 regularization term. The restoration network

G learns to produce realistic images Iout, while the discriminator D tries to recognize

between real Igt and restored Iout images.

Total objective. The total training objective is expressed as:

O(θg, θf , θd) = L(θg ,θf ,θd)adv (Iout, Igt) + λ̂idL(θg ,θf )id (Iout, Igt)

+ λ̂lpipsL(θg ,θf )lpips (Iout, Igt).
(3.13)

We empirically set λ̂id = 0.1 and λ̂lpips = 0.5 in this work. We can obtain the optimized

parameters (θg, θf), and θd via the alternating training phases:

(θg, θf) = arg min
θg ,θf

O(θg, θf , θd),

(θd) = arg max
θd

O(θg, θf , θd).
(3.14)
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3.3 Experimental results and comparisons

3.3.1 Settings

Implementation. The proposed framework was developed using Python and Py-

Torch. We borrowed and fine-tuned the style encoder from e4e [132] on our training

dataset, training 150,000 iterations with a batch size of 16. For the code diffuser, we

trained 200,000 iterations with a batch size of 8, setting the denoising step T = 4 for

both training and testing. The variance schedule βt increased linearly from β1 = 0.1

to βT = 0.99. The restoration auto-encoder was trained on 500,000 iterations using a

batch size of 4. The code diffuser and restoration auto-encoder used the Adam opti-

mizer (momentum coefficients 0.5 and 0.999, learning rate 0.0002). All experiments

were conducted on the NVIDIA Tesla V100 GPU.

Datasets. We trained our algorithm on the FFHQ dataset [42], which comprises

70,000 high-resolution facial images. Each image was resized to the 512 × 512 res-

olution. Utilizing the FFHQ dataset, we generated degraded images following the

degradation model described in established literature [37, 36, 38]. The degradation

process is Ide = {[(Igt ⊗ kσ) ↓r +nδ]JPEGq
} ↑r. Here, Ide and Igt denote a degraded im-

age and its corresponding high-quality counterpart, respectively. kσ means a Gaussian

blur kernel with σ. ↓r corresponds to a bilinear downsampling operation with a scale

factor r. nδ is denoted as Gaussian noise with δ. [⋅]JPEGq is a JPEG compression with

quality factor q. ↑r represents a bilinear upsampling operation with a scale factor r
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Table 3.1: Quantitative comparison across multiple metrics on the CelebA-Test

dataset. Bold values indicate the best results.

Methods FID† ↓ U-IDS ↑ P-IDS ↑ FID ↓ NIQE ↓ PSNR ↑ SSIM ↑

PSFRGAN [34] 22.93 0 0 43.88 4.27 24.45 0.6308

Wan et al. [76] 32.34 0 0 70.21 5.19 23.00 0.6189

PULSE [39] 57.92 0 0 67.75 4.71 21.61 0.6287

GPEN [77] 14.65 0.03% 0 41.99 4.25 24.63 0.6476

GFP-GAN [38] 17.29 0 0 42.39 4.58 24.46 0.6684

VQFR [146] 13.41 0.02% 0 46.77 4.19 23.76 0.6591

RestoreFormer [37] 12.42 0.06% 0 41.45 4.18 24.42 0.6404

Ours 11.76 2.21% 0.40% 38.34 4.04 24.60 0.6513

to resize the same size of Igt. During training, the parameters σ ∈ [0.2, 10], r ∈ [1,8],

δ ∈ [0,20], and q ∈ [60, 100] were randomly sampled from the given ranges.

For testing, our method was evaluated on both a synthetic dataset (CelebA-

Test [152]) and three real-world datasets (LFW-Test [153], CelebChild-Test [38], and

WebPhoto-Test [38]). The CelebA-Test [152] comprises 3,000 samples generated from

CelebA-HQ images [154] using the above degradation process. LFW-Test has 1,711

images, which are extracted from the first image of each identity in LFW’s [153] val-

idation set. CelebChild-Test and WebPhoto-Test [38] contain 180 and 407 degraded

facial images, respectively. Note that real-world datasets have no ground-truth im-

ages.
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Table 3.2: Quantitative comparisons on three real-world datasets in terms of FID and

NIQE metrics. Bold values indicate the best results.

LFW-Test CelebChild-Test WebPhoto-Test

Methods FID ↓ NIQE ↓ FID ↓ NIQE ↓ FID ↓ NIQE ↓

PSFRGAN [34] 49.53 4.13 106.61 4.68 84.98 4.36

Wan et al. [76] 60.58 5.09 117.37 5.18 101.37 5.53

PULSE [39] 64.86 4.34 102.74 4.28 86.45 4.38

GPEN [77] 51.92 4.05 107.22 4.46 80.58 4.65

GFP-GAN [38] 49.96 4.56 111.78 4.60 87.35 5.80

VQFR [146] 49.79 3.82 114.79 4.42 84.78 4.67

RestoreFormer [37] 48.39 3.97 101.22 4.35 77.33 4.38

Ours 46.48 3.85 109.52 4.12 74.25 4.28

Metrics. We employed multiple metrics across perceptual, identity, and pixel lev-

els. These include the Fréchet Inception Distance (FID) [155], paired and unpaired

inception discriminative scores (P-IDS/U-IDS) [49], the Naturalness Image Quality

Evaluator (NIQE), the Peak Signal-to-Noise Ratio (PSNR), and the Structural Sim-

ilarity Index Measure (SSIM). FID and NIQE have been recognized as benchmark

non-reference metrics for assessing the quality of restored images. Unless specified, we

set the term FID for unpaired evaluation and FID† for paired evaluation, respectively.
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3.3.2 Comparison with SOTA methods

We compared our method with SOTA facial restoration methods, including geometric-

prior-based method (PSFRGAN [34]), generative-prior-based methods (Wan et al. [76],

PULSE [39], GPEN [77], GFP-GAN [38]), and codebook-based methods (VQFR [146],

RestoreFormer [37]).

Quantitative performance on synthetic datasets. Table 3.1 presents the

quantitative results of compared methods on the CelebA-Test dataset. This table

highlights that most generative-prior-based methods tend to outperform others, owing

to the extensive facial attributes accessible from pre-trained generative models. Meth-

ods like GPEN [77] and GFP-GAN [38], which build upon StyleGAN pre-trained pri-

ors, achieve commendable results by integrating pre-trained facial features. However,

as these methods implicitly predict latent codes, their performance can be impacted

when the latent code predictions are inaccurate. Approaches using reconstruction-

oriented dictionaries, such as VQFR [146] and RestoreFormer [37], provide a wealth

of high-quality facial features, significantly enhancing restoration quality. However,

the vector quantization process [43] may introduce quantization error since continu-

ous data must be mapped to the nearest discrete code. That can result in a loss of

detail, especially for subtle facial features that are important for a realistic reconstruc-

tion. In comparison, our method outperforms others in FID†, U-IDS, P-IDS, FID,

and NIQE metrics, showcasing superior restoration quality. It also shows competi-

tive performance in additional metrics, reflecting its effective handling in pixel-level
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Figure 3.5: Visual comparisons of our method and the SOTA facial restoration meth-

ods.

similarity.

Quantitative performance on real-world datasets. Table 3.2 presents eval-

uations of methods on LFW-Test, CelebChild-Test, and WebPhoto-Test datasets

to compare their generalization capabilities. Methods such as Wan et al. [76] and

PULSE [39], which do not incorporate identity information from degraded images,

may experience a drop in performance. GPEN [77] and GFP-GAN [38] apply gen-

erative facial priors, yet their local feature fusion might constrain their effectiveness.
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Approaches like VQFR [146] and RestoreFormer [37] rely on a fixed codebook, which

may restrict their ability to capture the fine-grained facial attributes. Our method

outperforms the most compared methods in FID and NIQE metrics on three datasets,

thanks to its strong visual style prompt learning and aggregated feature fusion across

a large receptive field, demonstrating superior restoration quality.

Qualitative performance. Fig. 3.5 presents the visual comparisons across four

datasets. While most existing approaches can produce high-fidelity faces from de-

graded images, our method attains more detail in critical regions, such as the hair

and mouth. The results indicate that methods by Wan et al. [76] sometimes struggle

to preserve the identity presented in the original images. GPEN [77] and GFP-

GAN [38] demonstrate improved performance, yet they occasionally introduce visual

artifacts on facial features. VQFR [146] and RestoreFormer [37] exhibit clearer facial

features. In contrast, our approach excels in restoring facial details with clearer facial

features and fewer artifacts, owing to our visual style prompt learning that precisely

predicts style prompts from degraded images and our SMART layer that captures

informative distant image contexts for better reasoning.

3.3.3 Ablation study

We conducted ablation studies to show the impact of individual components within

our framework. This involved selectively omitting each component and evaluating its

influence on restoration performance. Note that we used the same training settings
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Table 3.3: Ablation study of the framework components: (a) removing our coder dif-

fuser, (b) replacing our SMART layers with style layers, (c) removing the modulation

of style codes, (d) removing facial priors in fusion processes, and the full configura-

tions (ours). Bold values indicate the best results.

LFW-Test CelebChild-Test WebPhoto-Test

Methods FID ↓ NIQE ↓ FID ↓ NIQE ↓ FID ↓ NIQE ↓

(a) 46.58 4.13 111.33 4.26 75.89 4.66

(b) 48.42 3.85 110.18 4.14 74.99 4.20

(c) 47.30 3.88 109.76 4.16 75.89 4.32

(d) 48.58 3.87 109.68 4.22 76.15 4.29

Ours 46.48 3.85 109.52 4.12 74.25 4.28

as mentioned in Subsection 3.3.1.

Table 3.3 presents the quantitative outcomes for various configurations. In most

cases, our fully-equipped model surpasses all alternative variants in FID and NIQE

metrics, demonstrating its good restoration capabilities. When removing our coder

diffuser (a), the restoration network utilizes the initial codes as the style prompts.

Since the initial codes might not accurately represent clean facial attributes from

degraded images, we observed a noticeable deterioration in metric scores. When

replacing the SMART with the style layer (b), the network shows limited capabilities

to dynamically grasp the global facial structure and local details, leading to worse
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FID and NIQE performance. Removing style code modulation (c) implies that the

model is limited to leveraging guidance information from the style prompts to rescale

convolution kernels, leading to suboptimal performance and showing the significance

of style prompt modulation. Omitting facial priors in the fusion process (d) effectively

degrades the fusion mechanism to a basic Unet skip connection, with the resultant

decline in FID and NIQE scores. It shows that the guidance of facial priors helps

to achieve better performance. Our model excels by integrating finely-tuned style

prompts via our coder diffuser, adeptly capturing both local and global facial features

with our SMART layer, and enriching visual quality through the utilization of spatial

facial features from the restoration network and facial priors.

Figure 3.6 illustrates the visual performance corresponding with each alternative

model. Removing our coder diffuser (a) leads to the appearance of noticeable artifacts

in key areas, including the mouth and decorative features. Replacing the SMART

layers with style layers (b) slightly compromises the facial structures and details.

For instance, the restoration of the cloth in the second row appears blurred, likely

due to the restricted receptive field of the style layer. The absence of style code

modulation (c) leads to a decline in image quality. Specifically, in the first row,

model (c) exhibits color discrepancies between the hair and sunglasses. This may

caused by the missing modulation of the consistent styles. Removing facial priors

from the fusion process impacts the fidelity of facial structures. For instance, as

observed in the third row (d), the restored glasses’ structure is not symmetrical. In
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GTInput (a) (b) (d) Ours(c)

Figure 3.6: Visual examples from the ablation study with (a) removing the coder dif-

fuser, (b) replacing our SMART layers with style layers, (c) removing the modulation

of style codes, (d) removing facial priors in fusion processes, and the full configura-

tions (ours).

contrast, our full model successfully recovers structures and details in critical areas,

showcasing superior restoration capabilities.

Analysis of style prompt learning. Here, we assessed the quality of the

denoised latent codes by feeding them into the pre-trained StyleGAN generator to

produce inverted images on the CelebA-Test dataset. The ground-truth latent codes

were generated by feeding high-quality (ground-truth) images into the style encoder.

As shown in Fig. 3.7, we visualized these latent codes, degraded images, restored
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Figure 3.7: Visualization of denoised latent codes and restored images. Through the

diffusion process, the denoised latent codes wt incrementally reveal more clear facial

features.

images, and ground-truth images for better analysis. With more diffusion steps em-

ployed, the denoised latent codes increasingly reflect more distinct facial features and

exhibit greater fidelity. For instance, attributes such as facial pose, expression, and

hairstyle were closely aligned with the ground-truth latent codes, underscoring the

efficacy of visual style prompt learning in providing consistent coarse facial features.

Utilizing our restoration auto-encoder, the restored images showcase high-quality out-
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Figure 3.8: FID comparisons between denoised latent codes and ground-truth latent

codes.

comes that closely resemble the ground-truth images. Table 3.3 (a) and Fig. 3.7 show

the effectiveness of our diffusion-based style prompt module in improving restoration.

Fig. 3.8 shows FID scores for inverted images, demonstrating consistent improve-

ments in latent codes with more diffusion steps, but saturating at step 4. At this

step, the denoised codes even surpass the ground-truth FID scores, showing our code

diffuser’s ability to produce high-quality style prompts.

Analysis of SMART layer. As illustrated in Fig. 3.9, we further explored

the impact of the SMART layer across varying resolutions during restoration. We

visualized the feature maps generated at dilation rates of 1, 2, 4, and 8, alongside

their aggregation layers, spanning resolutions from 32 to 256. A dilation rate of 1

essentially converts the layer back to an original style layer. Our observations demon-

strate that at varying scales, lower dilation rates (1 and 2) typically emphasize local
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Figure 3.9: Visualization of feature maps from SMART layers at resolutions ranging

from 32 to 256. We show results across different dilation rates (1, 2, 4, 8) and

aggregation layers.

features, whereas higher dilation rates shift the network’s focus towards more global

attributes. The aggregation process further assigns higher importance to the more

informative and detailed facial features while reducing the impact of less informative

features. For example, at a 64 resolution, feature maps produced from a dilation rate

of 1 mainly focus on the nose and eye regions. In contrast, those from a dilation rate

of 8 encompass the global facial features, even though with some noise. The aggre-

gation process integrates features across these four dilation rates, resulting in clearer

44



Table 3.4: Quantitative comparisons of facial landmark detection in detection success

rate (DSR) and normalized mean error (NME). Bold values indicate the best results.

Method DSR ↑ NME ↓

FAN 99.73% 6.08%

Our improved 100.00% 2.43%

facial structures. Table 3.3 (b) and visual results demonstrate the SMART layer’s

effectiveness in producing key facial features for restoring natural facial attributes.

3.4 Applications

We show our method’s effectiveness in improving facial landmark detection and emo-

tion recognition. We tested on the CelebA-Test dataset.

3.4.1 Facial landmark detection.

By incorporating our method into a face alignment network (FAN [156]), we built our

improved facial landmark detection algorithm (Ours + FAN). For comparison, we set

the degraded images as inputs. The landmarks detected on the ground-truth images

were designated as ground-truth landmarks. We recorded the detection success rate

(DSR%) for the face images and the normalized mean error (NME%) for landmarks.

Table 3.4 shows quantitative comparisons between FAN and our improved ver-

sion. Incorporating our facial restoration method significantly enhances detection
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Figure 3.10: Visualization of facial landmark detection on degraded images, restored

images, and ground-truth images. Green points correspond to visualized facial land-

marks.

outcomes, improving the detection success rate to 100% and reducing the NME score

to get a relative improvement of 3.65%. This indicates that our improved version

markedly enhances the detection process by restoring clearer facial features for more

accurate identification.

Figure 3.10 further visualizes the detection comparisons. It shows that perform-

ing facial landmark detection directly on degraded images often leads to inaccurate

results. After incorporating our restoration method, the results in recovered face im-

ages display distinct facial features, which significantly enhance the subsequent facial

landmark detection process.
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Table 3.5: Face emotion recognition accuracy using HSEmotion and our enhanced

version. Bold values indicate the best results.

HSEmotion Our enhanced

Accuracy ↑ 79.73% 86.03%

HSEmotion Our enhanced GT HSEmotion Our enhanced GT

Fear Happiness Happiness Contempt Happiness Happiness

Neutral Anger Anger Surprise Happiness Happiness

Figure 3.11: Visualization of face emotion recognition using HSEmotion and our

enhanced.

3.4.2 Face emotion recognition.

By incorporating our face restoration into a face emotion recognition algorithm (HSE-

motion) [157], we built our enhanced algorithm (Ours + HSEmotion). For compari-

son, we set the degraded images as inputs and set the emotions recognized from the

ground-truth images as the ground-truth labels. The recognition accuracy (%) was

evaluated.

Table 3.5 illustrates the recognition comparison between HSEmotion and our im-

proved algorithm. While HSEmotion works well in some cases, its recognition ac-
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curacy remains capped at 79.73%. In contrast, our enhanced emotion recognition

achieved a higher accuracy of 86.03%, marking a relative improvement of 6.30% over

HSEmotion.

Fig. 3.11 presents additional visual comparisons for emotion recognition. These

examples illustrate that even the SOTA emotion recognition method struggles with

degraded images. By incorporating our facial restoration into the recognition pipeline,

our enhanced algorithm is able to accurately classify the true expressions. This

demonstrates the critical role of our facial restoration in improving the accuracy

of facial emotion recognition.

3.5 Summary

In this chapter, we have explored a novel visual style prompt learning framework for

blind face restoration. To get high-quality visual cues for guiding the restoration pro-

cess, we proposed a diffusion-based style prompt module to predict visual prompts

by employing DMs within the latent space of pre-trained generative models. A code

diffuser was implemented to effectively denoise the given noised codes. We designed

a SMART layer to utilize visual prompts and improve the extraction ability of infor-

mative contexts and detailed patterns. We build our restoration auto-encoder based

on our SMART layer to achieve high-quality restoration. The extensive experiments

and applications have demonstrated the effectiveness of the proposed method.

Limitations and future work. Although our method can achieve high-quality
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blind facial restoration, it comes with certain limitations. Like most blind facial

restoration algorithms, our model may not work well on highly complex backgrounds.

That might be caused by the lack of sufficiently diverse background data in the

training set. Designing a more sophisticated technique to decouple the foreground

and background restoration would be a promising direction. We would like to adapt

our method for a wider range of downstream applications, thereby broadening its

practical utility.
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Chapter 4

Data-Efficient Generative Residual

Image Inpainting

4.1 Introduction

Image inpainting is a fundamental task in computer graphics and computer vision [158,

159, 160, 161]. It has been employed in many downstream applications, such as image

restoration [76], and image manipulation [162]. Recently proposed image inpainting

methods have achieved impressive results [44, 45] on both realistic and facial im-

ages [163]. However, these methods have an overlooked limitation: they require a

large amount of data to train their convolutional neural network (CNN) or trans-

former models [46]. When these models are trained on small image datasets, there

is a high possibility of overfitting and model collapse [47]. In practice, it is much
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easier for users if only a small number of training images is required. Furthermore, in

certain image domains (e.g., medical, art, and historical relics), large image datasets

are either too expensive or infeasible to collect. This has severely restricted the use

of image inpainting in real-world scenarios. Moreover, real-world data often come

with their own set of challenges, including privacy concerns, data security, and data

quality. These issues can significantly limit the amount of usable data. Improving the

data efficiency of model training can be a crucial factor in expediting the adoption and

application of image inpainting, thereby increasing its applicability to various fields

that face limitations of data availability. Moreover, small-scale training samples de-

mand less processing power and memory, which enhances the feasibility of training

models in resource-limited environments.

Achieving high-quality image inpainting on small-scale datasets is still a chal-

lenging and open problem. Most existing methods [49, 45, 26] rely on single-pass

inferencing which may generate ambiguous results in inpainted sub-regions. Some

methods [106, 115] perform inpainting in a progressive fashion by reusing parts of

previously inpainted features from early refinement stages. However, these methods

do not fully utilize the inpainted pixels as useful information for the next iteration.

Moreover, existing inpainting methods are not designed specifically for data-efficient

learning and may not work well with a limited number of training samples. Domain-

related prior knowledge [164] or lightweight generative models [165, 166] may be

employed in image inpainting to mitigate overfitting. However, such approaches do
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not perform well when there is a large domain gap between two tasks or the reduced

network capacity affects the inpainting quality.

Thus, we propose a novel data-efficient generative residual image inpainting frame-

work (GRIG), which enables high-quality image inpainting on small-scale datasets. To

effectively optimize inpainting results, we use iterative reasoning to more accurately

and generalizably solve algorithmic reasoning tasks [55], based on residual learn-

ing [56] to incrementally refine previous estimates. By continually updating residual

offsets and utilizing inpainted information from previous iterations, our model dy-

namically refines the input image. This approach reduces direct memorization of

input-to-ground-truth mappings, effectively diminishing overfitting and enhancing

visual quality. We also investigate whether combining iterative reasoning and resid-

ual learning with CNNs and transformers [46], as well as image-level and patch-level

discriminators, can lead to a more robust and data-efficient method to tackle the

data-efficient image inpainting task.

We have implemented our framework using three components: a generator, a pro-

jected discriminator, and a forged-patch discriminator. The generator uses CNNs

to extract shallow features of edges and textures and transformer blocks to capture

global interactions between feature contexts at each iterative step. To accelerate net-

work convergence and reduce overfitting, we decouple image distribution learning by

using image-level and patch-level discriminators. We first build the projected dis-

criminator to capture the whole image-level distribution. We then use a forged-patch
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discriminator to enhance the patch-level details of generated images, as the projected

discriminator has difficulty in capturing fine details in inpainted images. The inpaint-

ing process is carried out in several forward passes by feeding the generator with the

output of the previous iteration and the corresponding mask. Experimental results

on ten small-scale and four large-scale datasets show that our method is superior to

state-of-the-art methods in terms of data-efficient and high-quality image inpainting.

In summary, this chapter proposes a novel data-efficient generative residual image

inpainting framework with the following contributions:

• A novel algorithm for data-efficient image inpainting, which integrates CNNs

and transformers, as well as employing image-level and patch-level discrimina-

tors for iterative residual reasoning.

• A forged-patch discriminator that assists the generative network to improve the

fine details of generated images and prevent overfitting for data-efficient image

inpainting.

• State-of-the-art performance on ten small-scale benchmark datasets with vary-

ing contents and characteristics, including facial, photorealistic, animal, medi-

cal, cartoon, and artistic images.

Iterative reasoning, which involves applying underlying computations to the out-

puts of previous reasoning steps repeatedly, has the potential to more accurately and

generalizably solve algorithmic reasoning tasks [55], whereas residual learning [56, 167]
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Figure 4.1: Pipeline of our data-efficient generative residual image inpainting frame-

work (GRIG). In each t-th residual reasoning step, the generator (a) utilizes the

(t−1)-th inpainted image I t−1out to generate the residual image ∆t. In the first residual

reasoning step (t = 1), we set I0out = Iin. With the inpainted image I t−1out and the initial

input image Iin, add and replace operations (refer to Eq. 4.1) are performed to ob-

tain I tout for the next iterative refinement. During adversarial training, the inpainted

image is fed into the projected discriminator (b) and forged-patch discriminator (c),

respectively. At each iterative reasoning step, the loss functions and corresponding

back-propagation are re-computed. During the test phase, a similar multi-step pre-

diction is performed without the loss functions and back-propagation. For simplicity,

down- and up-sampling operations are omitted.

facilitates the progressive optimization of previously predicted results. By iteratively

predicting residual offsets and reusing previously predicted information within the
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Figure 4.2: Network architecture of our generator. We show the output number of

channels and dimensions for each layer/block at each scale.

same generator during each reasoning step, our GRIG can dynamically learn to refine

the input image at each step. This method avoids memorizing the mapping between

the inputs and their ground-truth images, thereby preventing overfitting and improv-

ing visual quality for data-efficient inpainting. In addition, to efficiently learn the

global distribution of images, we utilize prior knowledge from pre-trained representa-

tions to build a compact classifier as an image-level discriminator for improving data

efficiency. While this classifier excels in robust feature-based classification, it may not

always capture intricate details. Recognizing this potential problem, we introduce a

forged-patch discriminator that is trained to recognize real and inpainted patches

based on the receptive field of the discriminator. The synergy of two discriminators

mitigates the risk of overlooking fine details while also avoiding overfitting, a common

challenge in data-efficient training.

As Fig. 4.1 shows, our framework consists of three main parts: a generator, a
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projected discriminator, and a forged-patch discriminator. Given a ground-truth

image Igt ∈ Rh×w×3 and a binary mask M ∈ Rh×w×1 (with 1 for unknown and 0 for

known pixels), the masked image Iin ∈ Rh×w×3 is obtained as Iin = Igt⊙ (1−M), where

⊙ denotes the Hadamard product. The goal of GRIG is to automatically inpaint a

realistic image ITout ∈ Rh×w×3 with T steps of iterative reasoning, where T > 1 denotes

the iterative reasoning steps during training. For each t-th iterative residual reasoning

step, a previously inpainted image I t−1out is fed into the generator to obtain a residual

prediction. At the first residual reasoning step (t = 1), we set I0out = Iin. Then, addition

and replacement operations are performed to produce a new image completion I tout.

Adversarial training is conducted at each iterative step with the network weights

updated accordingly via back-propagation.

4.2 Method

Iterative reasoning, which involves applying underlying computations to the outputs

of previous reasoning steps repeatedly, has the potential to more accurately and gen-

eralizably solve algorithmic reasoning tasks [55], whereas residual learning [56, 167]

facilitates the progressive optimization of previously predicted results. By iteratively

predicting residual offsets and reusing previously predicted information within the

same generator during each reasoning step, our GRIG can dynamically learn to refine

the input image at each step. This method avoids memorizing the mapping between

the inputs and their ground-truth images, thereby preventing overfitting and improv-
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ing visual quality for data-efficient inpainting. In addition, to efficiently learn the

global distribution of images, we utilize prior knowledge from pre-trained representa-

tions to build a compact classifier as an image-level discriminator for improving data

efficiency. While this classifier excels in robust feature-based classification, it may not

always capture intricate details. Recognizing this potential problem, we introduce a

forged-patch discriminator that is trained to recognize real and inpainted patches

based on the receptive field of the discriminator. The synergy of two discriminators

mitigates the risk of overlooking fine details while also avoiding overfitting, a common

challenge in data-efficient training.

As Fig. 4.1 shows, our framework consists of three main parts: a generator, a

projected discriminator, and a forged-patch discriminator. Given a ground-truth

image Igt ∈ Rh×w×3 and a binary mask M ∈ Rh×w×1 (with 1 for unknown and 0 for

known pixels), the masked image Iin ∈ Rh×w×3 is obtained as Iin = Igt⊙ (1−M), where

⊙ denotes the Hadamard product. The goal of GRIG is to automatically inpaint a

realistic image ITout ∈ Rh×w×3 with T steps of iterative reasoning, where T > 1 denotes

the iterative reasoning steps during training. For each t-th iterative residual reasoning

step, a previously inpainted image I t−1out is fed into the generator to obtain a residual

prediction. At the first residual reasoning step (t = 1), we set I0out = Iin. Then, addition

and replacement operations are performed to produce a new image completion I tout.

Adversarial training is conducted at each iterative step with the network weights

updated accordingly via back-propagation.

57



4.2.1 Network architectures

Generator. Taking the previous iteration’s inpainted results as input, the generator

is designed to combine CNNs and transformers [46, 168, 169] for efficient iterative

residual reasoning in data-efficient image inpainting. The generator Gθg consists

of an encoder, a global reasoning module with a stack of Restormer’s Transformer

blocks [170], and a decoder (see Fig. 4.1a). The CNN-based encoder and decoder excel

at feature extraction, whereas the transformer blocks excel at dynamic attention,

global context integration, and generalization. This combination helps the generator

generalize effectively on small-scale training samples.

Details of our generator network are shown in Fig. 4.2. To extract features and

enlarge the receptive field for capturing both informative distant image contexts and

rich patterns of interest, we first stack a convolution layer, several residual down-

sampling blocks [165], and AOT-blocks [104]. The extracted features are then fed

into a Restormer’s Transformer block stack for global context reasoning. Meanwhile,

skip-layer excitation modules (SLE) [165] are utilized for a shortcut gradient flow, and

skip connections are employed for collecting the multi-resolution feature maps in the

decoder. The decoder is then built using up-sampling blocks [165], AOT-blocks [104],

and a convolution layer. The decoder generates the intermediate prediction ∆t by

utilizing the multi-resolution feature maps output by the encoder and global reasoning

module. For stable adversarial training, we apply spectral normalization [171] to all

convolution layers of the networks.
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At each t-th iterative reasoning step, the inpainted image from the previous it-

eration I t−1out and its corresponding mask M (see Fig. 4.1a) are fed into a generative

network Gθg with the learnable network parameters θg. Gθg generates the intermedi-

ate residual inpainting ∆t = Gθg(I t−1out ,M) ∈ Rh×w×3. Then, the t-th inpainted image

I tout is calculated as:

I tout = (I t−1out +∆t)⊙M + Iin ⊙ (1 −M). (4.1)

Projected discriminator. To stabilize GAN training and improve data effi-

ciency, we use prior knowledge from pre-trained representations to train a compact

classifier for learning the global distribution of small-scale images. The projected

discriminator (see Fig. 4.1b) learns to assign high confidence scores to feature maps

extracted from real images while assigning low scores to synthetic ones. Initially,

feature maps are extracted from the input image I (i.e., I tout or Igt) using a U-net-like

projector Pθ̂p
with the pre-trained network parameters θ̂p. Pθ̂p

is implemented by a

pre-trained EfficientNet-Lite1 [172] with cross-channel mixing and cross-scale mixing

mechanisms [166]. Subsequently, the projected discriminator Eθe with learnable net-

work parameters θe maps the extracted feature maps to a scalar. Here we selected the

discriminator with the largest scale of feature projections (i.e., removing the other

three small-scale discriminators) from Projected GAN [166].

Forged-patch discriminator. Because the projected discriminator is primarily

focused on extracting global image features for robust classification, it is possible that

some fine detail features may be overlooked in these projected features. To help the
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Ground-truth Masked PatchGAN HM-PatchGAN SM-PatchGAN Ours

Figure 4.3: Differences between the discriminators of PatchGAN, HM-PatchGAN,

SM-PatchGAN, and our algorithm. The boxes represent patches with the size of the

discriminator’s receptive field (left two images) and corresponding projected positions

(right four images) in the resultant label maps over the (red) masked and (green)

unmasked regions; Pixel values in the label maps indicate labels for fake (white) and

real (black) patches.

generator produce faithful fine-grained textures and avoid overfitting in data-efficient

training, we propose a forged-patch discriminator that learns to identify real and

inpainted patches based on the receptive field [173] of the discriminator.

As shown in Fig. 4.1c, the forged-patch discrimination network Dθd with learnable

network parameters θd learns to recognize real or forged image patches from a given

image I (i.e., I tout or Igt). The discriminator Dθd maps I to a prediction map, where

each unit indicates a confidence score for each image patch based on the receptive

field. In this work, we adopted the network architecture for Dθd from PatchGAN [174].

The patch-level receptive field in neural networks has also been studied as a means

of overfitting avoidance in interactive video stylization [175] and improving diversity

and generalizability in image generation [176].
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4.2.2 Objective functions

GRIG is trained to optimize the learnable network parameters θg, θe, and θd using

the objective functions explained below. LPIPS loss. At each iterative reasoning

step, we use the Learned Perceptual Image Patch Similarity (LPIPS) metric [148] to

constrain the perceptual similarity between the inpainted image I tout and the ground-

truth image Igt:

Llpips(θg) = (4.2)

∑
l

1

HlWl
∑
u,v

∥wl ⊙ (Fl(I tout)u,v − Fl(Igt)u,v)∥22 ,

where Hl and Wl represent the height and width of the feature map for layer l,

respectively, u and v are spatial indices in the feature maps, wl is the weight assigned

to the feature map for layer l, F (⋅) is the pre-trained perceptual feature extractor,

Fl(⋅) is the feature map for layer l; we use VGG-16 in our work [149]. This can assist

our generative network in learning to maintain higher visual quality.

Projected adversarial loss. For fast convergence, the projected adversarial loss

utilizes pre-trained classification models to extract prior knowledge (see Fig. 4.1b).

We employ the hinge loss [166] to optimize the projected discriminator Eθe and gen-

erative network Gθg , respectively. The objective function can be formulated as:

LEadv(θe) = EIgt[ReLu(1 −Eθe(Pθ̂p
(Igt)))]

+EItout
[ReLu(1 +Eθe(Pθ̂p

(I tout)))],

LGadv(θg) = −EItout
[Eθe(Pθ̂p

(I tout))].

(4.3)
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The projected discriminator is constrained to assign low scores to inpainted images

and high scores to real images, while the generator Gθg is supervised by the projected

discriminator to inpaint the masked input based on the distribution of real images.

Adversarial forged-patch loss. As shown in Fig. 4.1c, we use the forged-patch

discriminator to distinguish forged patches from real patches in a given image. We

achieve this by constructing the corresponding label map X ∈ Rh′×w′ to supervise

the discriminator. Specifically, we partition I and M into h′ × w′ pairs of partially

overlapping patches (Ri,j and M i,j) based on the receptive field of forged-patch dis-

criminator Dθd . Here, 1 ≤ i ≤ h′ and 1 ≤ j ≤ w′ are horizontal and vertical indices,

and the sizes of Ri,j and M i,j are equal to the receptive field N ×N . The label map

is expressed as follows:

Xi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∥M i,j∥0 = 0;

1 otherwise,

(4.4)

where ∥M i,j∥0 is defined as the L0 norm of the sub-region mask M i,j. If ∥M i,j∥0 is

not zero, it indicates that there are some masked pixels in this sub-region mask, and

the image patch Ri,j contains inpainted pixels. Thus, we set Xi,j = 1, which means

that the sub-region Ri,j is a forged patch. Otherwise, it is a real patch. The hinge
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version of adversarial forged-patch loss is expressed as:

LDpatch(θd) = EIgt[ReLu(1 −Dθd(Igt))]

+EItout
[ReLu(1 −Dθd(I tout))⊙ (1 −X)]

+EItout
[ReLu(1 +Dθd(I tout))⊙X],

LGpatch(θg) = −EItout
[Dθd(I tout)⊙X].

(4.5)

Fig. 4.3 illustrates the differences between the proposed forged-patch discriminator

and other closely related discriminators. PatchGAN’s discriminator [174] directly

assigns all patches in inpainted images as fake patches, which can confuse the discrim-

inator when extracted patches do not have any generated pixel. HM-PatchGAN and

SM-PatchGAN [104] aim to segment synthesized patches of missing regions accord-

ing to inpainting masks. Since the inpainting masks have to be downsampled first

to agree with the spatial size of the discriminator’s output, the constraints around

the mask boundaries may be unclear. For example, downsampling inpainting masks

results in information loss of the precise location of inpainted pixels. SM-PatchGAN

tries to identify the generated and real patches, whereas our discriminator goes one

step further to consider whether generated pixels are consistent with surrounding real

pixels in a given patch. Our discriminator constructs the label map based on the re-

ceptive field and treats all patches with any inpainted pixels as fake patches, which

gives more constraints than PatchGAN and SM-PatchGAN.

Total objective. The total training objective of the generator is expressed as:

LGtotal = λlpipsLlpips + λadvLGadv + λpatchLGpatch, (4.6)
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Algorithm 1 GRIG training procedure

1: while Gθg , Eθe , and Dθd have not converged do

2: Sample batch images Igt from the training set

3: Create random masks M for Iin

4: Get inputs Iin ← Igt ⊙ (1 −M)

5: Set inputs I0out ← Iin

6: for iterative residual reasoning step t = 1 to T do

7: Get ∆t ← Gθg (I t−1out ,M)

8: Get I tout ← (I t−1out +∆t)⊙M + Iin ⊙ (1 −M)

9: Update Gθg with LGtotal

10: Update Eθe with LEadv

11: Update Dθd with LDpatch

where λlpips, λadv, and λpatch weight corresponding losses. During training, we alter-

nately optimize parameters θg, θe, and θd.

4.2.3 Iterative residual reasoning

The iterative residual reasoning for image inpainting can be formulated as an opti-

mization process over adversarial generative networks. This enables the generator to

implicitly learn to leverage previously predicted results and focus on residual infor-

mation in order to achieve high quality and better generality.

We introduce a generative network Gθg(I t−1out) as an explicit function to predict
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residual information (see Eq. 4.1). At each iterative reasoning step t, the generator Gθg

is trained to maximize the confidence values of Eθe(I tout) and values in the prediction

map of Dθd(I tout) while minimizing the perceptual similarity difference between I tout

and Igt. Thus, θg is solved by θg = arg minθgLGtotal. Simultaneously, Eθe and Dθd

are trained to distinguish images (fake or real) and patches, respectively, where θe =

arg minθe LEadv and θd = arg minθd LDpatch. The generative network Gθg directly predicts

the residual information while its parameters θg are supervised by the discriminators

as well as Igt. Pseudocode for the GRIG training procedure is given in Algorithm 1.

4.3 Experimental results and comparisons

4.3.1 Experimental setting

Python and PyTorch were used to build the proposed framework. We set λlpips = 1.5,

λadv = 1, λpatch = 1, and T = 3 for all experiments in both training and testing phases,

unless otherwise specified. We used the Adam optimizer with first momentum coeffi-

cient β1 = 0.5, second momentum coefficient β2 = 0.999, and learning rate 0.0002. Our

masks were created with the CMOD mask generation algorithm [49]. Our generator

contains 31.76M parameters and achieves around 21 FPS for each residual reasoning

step on an NVIDIA GeForce RTX 2080 GPU with 8 GB memory.

We compared GRIG to various state of the art image inpainting methods: Glob-

ally&Locally (G&L) [63], Contextual Attention (CA) [100], Partial Convolutions
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(PConv) [101], GMCNN [93], Gated Convolution (GConv) [26], Recurrent Feature

Reasoning (RFR) [115], AOT-GAN (AOT) [104], Co-mod-GAN (CMOD) [49], Lama [44],

MAT [45], FcF [177], TFill [105], and ZITS [178]. We also compared GRIG to an in-

painting model (Projected) based on the light-weight Projected GAN [166] to further

demonstrate the superiority of GRIG for data-efficient image inpainting. The pub-

licly available MMEditing framework [179], an open-source image and video editing

toolbox based on PyTorch, implements the models of G&L, CA, PConv, and GConv.

We used the authors’ codes for GMCNN, RFR, AOT, Lama, MAT, FcF, TFill, and

ZITS. We used the authors’ TensorFlow-based code to create a PyTorch-based ver-

sion of CMOD. To implement the Projected model, we added a mirrored encoder

of Projected GAN with skip connections and perceptual similarity Llpips. This Pro-

jected model was created using PyTorch with the same hyper-parameters as GRIG

with λlpips = 1.5.

Experiments were conducted on ten small-scale datasets (CHASE [180], Shell [165],

Skull [165], Anime [165], Fauvism [165], Moongate [165], Cat [181], Dog [181], Poke-

mon (pokemon.com), and Art (wikiart.org)) and four large-scale image datasets (in-

cluding CelebA-HQ [154], FFHQ [42], Paris Street View (PSV) [182], and Places365 [183]).

Details of the sizes of the datasets are given in Table 4.1. We used the original train-

ing and testing splits from the PSV and Places365 datasets, while other datasets were

split using random sampling. To ensure fairness, we used the same training/testing

splits for all experiments.

68



A
ni

m
e

C
H

A
SE

Sh
el

l
Sk

ul
l

Fa
uv

is
m

RFR MATLamaCMODAOTMasked

OursProjectedFcF TFill ZITS

RFR MATLamaCMODAOTMasked

OursProjectedFcF TFill ZITS

RFR MATLamaCMODAOTMasked

OursProjectedFcF TFill ZITS

Ground-truth

Ground-truth

Ground-truth

RFR MATLamaCMODAOTMasked

OursProjectedFcF TFill ZITSGround-truth

RFR MATLamaCMODAOTMasked

OursProjectedFcF TFill ZITSGround-truth
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Table 4.1: Details of the ten small-scale and four large-scale image datasets.

Type Dataset # Training set # Test set

S
m

al
l-

sc
al

e

CHASE 18 10

Shell 48 16

Skull 72 25

Anime 90 30

Fauvism 94 30

Moongate 106 30

Cat 120 40

Dog 309 80

Pokemon 633 200

Art 750 250

L
ar

ge
-s

ca
le

CelebA-HQ 28K 2K

FFHQ 60K 10K

PSV 14.9K 100

Places365 1.8M 36.5K

All images were resized to a resolution of 256 × 256. All compared models were

retrained on the datasets mentioned in the chapter, using a batch size of 8, unless

otherwise noted. During testing, various irregular masks with different mask ra-

tios [101] and a fixed center 25% (128 × 128) rectangular mask were used to simulate
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different situations for all experiments. All methods in our evaluation replaced the

unmasked known regions with the original image. All models were trained and tested

on NVIDIA V100 GPUs (with 32 GB memory).

Since L1 distance, PSNR, and SSIM all heavily prefer blurry results [49], we used

Fréchet inception distance (FID) [155] and LPIPS metrics for quantitative evaluation

following established practice in recent literature [44].

4.3.2 Comparison on small-scale datasets

To evaluate the performance on ten small-scale datasets (see Table 4.1), all mod-

els were trained with 400,000 image batches. We implemented the early-stopping

technique for each method, ensuring that each model is adequately trained without

overfitting and achieved optimal performance for evaluation. Fig. 4.4 and Fig. 4.5

quantitatively compare GRIG to the other state of the art inpainting methods on the

ten small-scale datasets. To compare the performance of image inpainting, various ir-

regular masks with different mask ratios [101], as well as a fixed center 25% (128×128)

rectangular mask, were used to simulate various scenarios. In the small-scale setting,

differentiable data augmentation [184] was applied for all compared methods when

sampling images in the training phase. As Fig. 4.4 and Fig. 4.5 show, GRIG out-

performs all baselines in terms of FID and LPIPS metrics by large margins on most

benchmarks for various kinds of masks. For most datasets, significant gains were

obtained by our method. Notably, for a 50-60% mask ratio, GRIG achieves a relative
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improvement of FID to the second-best methods of 9.12% (CHASE), 13.98% (Shell),

1.26% (Skull), 12.65% (Anime), 4.06% (Fauvism), 14.86% (Moongate), 6.64% (Cat),

16.40% (Dog), and 1.60% (Art).

Fig. 4.6 and Fig. 4.7 present inpainted results for the compared methods. It

reveals that most methods fail to produce plausible contents for datasets with fewer

than 100 training samples (for example, CHASE, Shell, Skull, and Anime) due to

overfitting to features and patterns from a small number of samples. When trained

on datasets with more than 500 samples (such as Pokemon and Art), some methods

may be able to fill more semantic content within masked areas. However, artifacts can

still be seen under close inspection. When the masked area is large, RFR is prone to

producing repetitive image patches in inpainted regions, and while AOT, Lama, and

ZITS can inpaint structures in missing regions, they leave artifacts in fine detail. We

also noticed that Lama and ZITS have similar blurring phenomena in the inpainted

regions when trained on small-scale data, which may be because the Fast Fourier

Convolution [185] (FFC) overfits the limited global repeating patterns [177], harming

subsequent feature extraction. CMOD, MAT, and TFill tend to overfit the training

data due to their large numbers of learnable parameters. Projected GANs can handle

the semantic structure, but they may introduce color inconsistency around mask

boundaries. By combining the benefits of FFC and stochasticity, FcF shows robust

performance on both textural and structural image inpainting. Fig. 4.4, Fig. 4.5,

Fig. 4.6, and Fig. 4.7 demonstrate that GRIG can achieve better performance on
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quantitative metrics and visual quality, even though our method has more learnable

parameters (31.76M) than those of GConv (4.0M) and is trained on limited samples.

GRIG demonstrates strong generalization capabilities in various small-scale datasets

with differing numbers of training samples, and produces images with higher visual

quality.

We believe that there are three reasons for the better generalization performance

and inpainting quality achieved on data-efficient image inpainting. Firstly, our it-

erative residual reasoning strategy enables the generator to use information learned

in previous iterations while also increasing the diversity of inputs to improve perfor-

mance. Secondly, the self-attention mechanism in Transformers [46] has advantages in

leveraging existing information for further context reasoning. In our generator, the en-

coder and decoder are used to extract local features, while the Restormer Transformer

blocks [170] are used for global context reasoning. Thirdly, the projected discrimina-

tor and forged-patch discriminator, with 2.829M and 2.765M learnable parameters,

respectively, help improve the generality of our method. The projected discrimina-

tor focuses on images at the semantic level based on the generality of pre-trained

features. The forged-patch discriminator focuses on learning patch-level consistency

to capture patch statistics and distinguishing between real and inpainted patches to

prevent overfitting by avoiding the need to memorize the entire image.
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4.3.3 Comparison on large-scale datasets

We also compared our method to the same inpainting methods on four large-scale

datasets. All methods were trained with their default settings to ensure fair compar-

isons. Our model was trained with 1,000, 000 image batches on CelebA-HQ, FFHQ,

and PSV, respectively, and 2,000, 000 image batches on Places365.

The quantitative results in Fig. 4.8 show that GRIG outperforms the majority

of the SOTA inpainting methods in terms of FID and LPIPS metrics on large-scale

datasets. In particular, GRIG achieves the best FID scores on PSV, and the best

LPIPS scores on PSV and Places365. MAT has the best FID scores on FFHQ and

Places365. Overall, GRIG performs comparably to MAT on the other large-scale

datasets while containing many fewer learnable weights (31.76M) than MAT (62.0M).

Our iterative residual learning effectively assists the networks in decomposing the

inpainting process into multiple reasoning steps with the progressive refinement of in-

painting results. Moreover, the decoupling of image distribution learning into image-

level and patch-level constraints with our projected discriminator and forged-patch

discriminator helps our GRIG model achieve excellent performance in both data-

efficient scenarios and large datasets.

Fig. 4.9 shows a corresponding qualitative performance evaluation. It demon-

strates that semantic inpainting on large masks remains difficult for most inpainting

methods. RFR produces repetitive image patches in inpainted regions because it-

erative refinement in feature space may overlook fine details in image space. AOT
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Figure 4.10: User study results on the FFHQ and PSV datasets using state of the

art methods (Lama, MAT, TFill, and ZITS). We give percentages of cases in which

each method is ranked first over others.

and CMOD perform well on these datasets. However, with complex backgrounds,

they struggle with larger masked areas in some cases. MAT and FcF handle texture

and structure inpainting well and generalize well to different types of datasets. Be-

cause one-time inferencing cannot re-adjust inpainted results, complex backgrounds

are likely to have negative impacts on MAT and FcF inpainting quality. With their

multi-stage inpainting processes, TFill and ZITS utilize Transformer architectures to

notably enhance the visual quality of inpainted pixels. However, their performance

may be influenced when previous networks in the process do not perform optimally.

Because fine details are easily overlooked in projected features, projection-based mod-

els [166] tend to produce blurred results. Our GRIG can inpaint plausible contents

in complex structures with high mask ratios.
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Figure 4.11: Quantitative comparisons between models (RFR, AOT, GMCNN, MAT,

FcF, TFill, ZITS, and ours) trained on the 5-shot setting of Shell, Skull, Anime,
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Figure 4.12: Quantitative comparisons between models (RFR, AOT, GMCNN, MAT,

FcF, TFill, ZITS, and ours) trained on the 10-shot setting of Shell, Skull, Anime,

Fauvism, and Moongate datasets. In each graph, the horizontal axis indicates mask

ratios; ‘Fixed’ denotes the fixed center 25% rectangular mask.

80



FI
D

LP
IP

S

Fauvism

Moongate

FI
D

Fauvism

Moongate

LP
IP

S

FI
D

LP
IP

S

Skull

FI
D

Skull

LP
IP

S

FI
D

Shell

LP
IP

S

Shell

Anime Anime

Figure 4.13: Quantitative comparisons between models (RFR, AOT, GMCNN, MAT,

FcF, TFill, ZITS, and ours) trained on the 30-shot setting of Shell, Skull, Anime,

Fauvism, and Moongate datasets. In each graph, the horizontal axis indicates mask

ratios; ‘Fixed’ denotes the fixed center 25% rectangular mask.
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Figure 4.14: Quantitative comparisons between models (RFR, AOT, GMCNN, MAT,

FcF, TFill, ZITS, and ours) trained on the 50-shot setting of Shell, Skull, Anime,

Fauvism, and Moongate datasets. In each graph, the horizontal axis indicates mask

ratios; ‘Fixed’ denotes the fixed center 25% rectangular mask.
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Figure 4.15: Quantitative comparisons between models (RFR, AOT, GMCNN, MAT,

FcF, TFill, ZITS, and ours) trained on the 5-shot setting for Cat, Dog, Art, CelebA-

HQ, and PSV datasets. In each graph, the horizontal axis indicates mask ratios;

‘Fixed’ denotes the fixed center 25% rectangular mask.
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Figure 4.16: Quantitative comparisons between models (RFR, AOT, GMCNN, MAT,

FcF, TFill, ZITS, and ours) trained on the 10-shot setting for Cat, Dog, Art, CelebA-

HQ, and PSV datasets. In each graph, the horizontal axis indicates mask ratios;

‘Fixed’ denotes the fixed center 25% rectangular mask.
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Figure 4.17: Quantitative comparisons between models (RFR, AOT, GMCNN, MAT,

FcF, TFill, ZITS, and ours) trained on the 30-shot setting for Cat, Dog, Art, CelebA-

HQ, and PSV datasets. In each graph, the horizontal axis indicates mask ratios;

‘Fixed’ denotes the fixed center 25% rectangular mask.
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Figure 4.18: Quantitative comparisons between models (RFR, AOT, GMCNN, MAT,

FcF, TFill, ZITS, and ours) trained on the 50-shot setting for Cat, Dog, Art, CelebA-

HQ, and PSV datasets. In each graph, the horizontal axis indicates mask ratios;

‘Fixed’ denotes the fixed center 25% rectangular mask.
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Table 4.2: User study results: average rankings of compared methods on the FFHQ

and PSV datasets. Bold indicates best results.

Dataset Lama MAT TFill ZITS GRIG

FFHQ 2.88 3.16 3.10 2.99 2.87

PSV 2.97 3.13 3.25 3.39 2.26

We conducted a user study using various state of the art methods (Lama, MAT,

TFill, and ZITS) on the FFHQ and PSV datasets to demonstrate GRIG’s inpainting

performance on large-scale datasets. For each dataset, we randomly sampled 100

images from the testing set, then randomly selected and assigned 20 of those images

to each participant. Each question contained a masked image, a ground-truth image,

and shuffled inpainted images from the five compared methods. The users were asked

to rank the compared methods based on visual quality and realism. We recruited 31

participants, totaling 620 votes for each method on each dataset.

Fig. 4.10 shows the percentage of time each method achieved the top rank on

the FFHQ and PSV datasets. Our GRIG had the highest percentages at 25.48% on

FFHQ and 40.81% on PSV. Table 4.2 displays the average rankings for each compared

method. All average rankings are within the range of [2.0, 3.5], indicating comparable

performance for these methods. Notably, our GRIG had the best average rankings

on FFHQ and PSV, of 2.87 and 2.26 respectively. The user study results show that

our GRIG produces high-quality image inpainting results.
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Table 4.3: Comparisons of mean FID and LPIPS scores across all mask ratios and

few-shot settings for each dataset. Bold indicates best results.

Metrics Methods Shell Skull Anime Fauvism Moongate Cat Dog Art CelebA-HQ PSV

F
ID

RFR 127.31 144.71 83.72 183.50 138.11 104.10 109.63 103.29 31.92 86.17

AOT 112.06 140.73 80.66 160.93 115.87 85.38 95.46 87.04 26.99 82.93

GMCNN 139.87 192.34 130.63 201.42 164.46 111.20 128.53 106.64 49.19 113.25

MAT 146.67 147.96 101.18 185.71 142.61 104.36 129.27 85.53 46.63 88.87

FcF 111.09 130.80 81.87 157.42 110.28 63.21 82.13 76.01 23.65 73.67

TFill 176.16 190.69 122.77 196.17 149.54 134.01 156.56 106.38 52.08 122.49

ZITS 190.74 193.72 108.92 197.22 134.08 125.43 147.07 106.96 68.22 117.37

Ours 100.12 114.77 66.49 140.03 105.21 53.45 68.02 74.83 19.27 69.17

L
P

IP
S

RFR 0.2163 0.2122 0.2074 0.2652 0.2426 0.2413 0.2279 0.2508 0.2093 0.2391

AOT 0.1875 0.2141 0.2074 0.2610 0.2385 0.2449 0.2305 0.2547 0.1992 0.2274

GMCNN 0.2191 0.2292 0.2307 0.2824 0.2785 0.2530 0.2496 0.2550 0.2344 0.2492

MAT 0.2190 0.2296 0.2416 0.2683 0.2576 0.2766 0.2677 0.2509 0.2402 0.2338

FcF 0.2842 0.2442 0.2337 0.2448 0.2374 0.2188 0.2061 0.2334 0.1990 0.2172

TFill 0.2085 0.2034 0.2478 0.3147 0.2688 0.2989 0.2923 0.2867 0.2480 0.2867

ZITS 0.2998 0.2296 0.2614 0.3108 0.2582 0.3135 0.3001 0.2709 0.2722 0.2753

Ours 0.1773 0.2028 0.1869 0.2266 0.2106 0.2023 0.1983 0.2298 0.1774 0.2051

4.3.4 Comparison on various few-shot settings

We conducted comparisons on various few-shot settings on small-scale and large-scale

datasets. The term “n-shot” means that n images in each training set in Table 4.1

were selected for training and the test sets were kept unchanged.

The quantitative results of FID scores are shown in Fig. 4.11, Fig. 4.12, Fig. 4.13,

Fig. 4.14, Fig. 4.15, Fig. 4.16, Fig. 4.17, and Fig. 4.18. FID and LPIPS scores decrease

as the number of training samples increases (e.g., 50-shot images), implying that more
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Figure 4.19: Visual comparison of results of models (RFR, AOT, GMCNN, MAT,

FcF, TFill, ZITS, and ours) trained on various few-shot settings.

training samples could improve inpainting quality. We further calculated the mean

scores of FID and LPIPS across all masked ratios and few-shot settings for each

dataset, as shown in Table 4.3. It highlights our GRIG’s superiority in few-shot

settings. For example, when trained on the Dog dataset, our GRIG achieved a mean

FID score of 68.02, indicating a 17.18% relative improvement over the second-best

method FcF (with 82.13). The results demonstrate that our method can improve the

performance on few-shot scenarios.

Fig. 4.19 presents visual comparisons on various few-shot settings. The results

reveal that GRIG achieves greater visual fidelity compared to the SOTA methods.
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Figure 4.20: Visual results of our GRIG models trained on various few-shot settings.

“All” means the training sets mentioned in Table 4.1.

For instance, when trained on 30 and 50 samples, GRIG produces sharp structural and

clear texture contents, while compared methods show more blurry results. Fig. 4.20

presents more inpainted examples of our GRIG. The quality of inpainted images

drops quickly when models were trained on fewer samples. For example, models

trained on 5-shot images are unable to inpaint semantic structures within masked

areas; while models trained on 10-shot and 30-shot images can inpaint more plausible

contents, some output results still show obvious color inconsistency around mask

boundaries. A similar phenomenon is also shown on CMOD and MAT in Fig. 4.6.

In contrast, models trained on 50-shot settings produce sharper results with more

complex textures and rich colors. We can find that the more training samples the
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Table 4.4: Network complexity of various image inpainting methods, including GRIG.

Bold indicates best.

Method RFR AOT CMOD Lama MAT FcF TFill ZITS GRIGT=1 GRIGT=3

# Parameters (M) 30.59 15.20 79.17 27.05 62.0 70.33 109.45 68.16 31.76 31.76

FLOPs (G) 206.17 72.88 90.25 42.87 139.11 40.26 45.45 270.08 20.47 61.41

models trained on, the better their performance on both quantitative and qualitative

evaluations. Our method produces more plausible contents when trained on few-shot

settings.

4.3.5 Network complexity of recent SOTA methods

In Table 4.4, we show the model complexity of our GRIG and the state of the art

methods in terms of number of parameters, and FLOPs needed for a resolution of

256 × 256. Our GRIG model achieves optimal efficiency with the lowest number of

FLOPs at an iterative reasoning step of T = 1, and is ranked as the fourth most

efficient at T = 3. While our model does not have the fewest parameters, its strong

performance on small-scale datasets highlights a different strength. This success is not

due to a reduced risk of overfitting from fewer parameters; instead, it is attributable to

the effectiveness of our proposed framework for data-efficient image inpainting. The

robust capacity of our network also plays a pivotal role in securing competitive results

on larger-scale datasets. Additionally, our superior image inpainting performance on

small-scale datasets, large-scale datasets, and various few-shot settings demonstrate
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that GRIG shows a good trade-off between image inpainting quality and computa-

tional resources.

Table 4.5: Ablation study providing FID scores for (A) GRIG without the forged-

patch discriminator, (B) GRIG without the projected discriminator, (C) GRIG with

forged-patch discriminator replaced by PatchGAN’s discriminator, (D) GRIG with

forged-patch discriminator replaced by SM-PatchGAN’s discriminator, (E) GRIG

with Transformer blocks replaced by down-sampling and up-sampling blocks, and

full GRIG . Results were evaluated on 50–60% mask ratios. Bold indicates best re-

sults.

Dataset (A) (B) (C) (D) (E) GRIG

CHASE 73.96 57.00 56.89 64.17 59.16 55.84

Anime 77.49 68.56 66.03 71.12 69.96 65.05

Dog 65.33 62.92 61.17 59.83 61.87 58.49

Art 96.84 79.19 79.16 78.83 77.35 77.32

CelebA-HQ 10.14 8.92 8.41 8.96 8.62 8.06

PSV 60.53 61.76 59.62 61.07 61.45 58.08
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4.3.6 Ablation study

Ablation study on components. We further analyzed the effects of the compo-

nents of GRIG. To analyze the effects of discriminators in GRIG, we individually

removed each discriminator and replaced our forged-patch discriminator with Patch-

GAN [174] and SM-PatchGAN [104], in turn. All compared discriminators used

the same network architecture of 70 × 70-sized PatchGAN. To demonstrate that in-

corporating Transformer blocks can further improve the inpainting quality, we tested

replacing Transformer blocks [170] with down-sampling and up-sampling blocks [165].

We evaluated inpainting performance to show the impact of these changes. Table 4.5

shows quantitative results of the compared variants. GRIG outperforms all variants

in terms of FID score on various small-scale and large-scale datasets. The FID scores

increase dramatically when removing either the forged-patch discriminator (model A)

or the projected discriminator (model B). Replacing our forged-patch discriminator

with other discriminators (models C and D) also leads to higher FID scores. These

results indicate that removing our discriminators or replacing the proposed forged-

patch discriminator causes a significant degradation in inpainting performance. The

best FID scores of our GRIG on various datasets validate the effectiveness of our

forged-patch discriminator for performance boosting and mitigating overfitting on

small-scale image inpainting. Additionally, without the global context integration of

Transformers (model E), the model performs worse. Our generator leverages both

advantages of shallow feature extraction and global context reasoning to enhance the
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Figure 4.21: Examples from the ablation study with (A) GRIG without the forged-

patch discriminator, (B) GRIG without the projected discriminator, (C) GRIG’s

forged-patch discriminator replaced by PatchGAN’s discriminator, (D) GRIG’s

forged-patch discriminator replaced by SM-PatchGAN’s discriminator, (E) GRIG

with Transformer blocks replaced by down-sampling and up-sampling blocks, and

full GRIG (ours).

visual quality of inpainted images.

Fig. 4.21 shows corresponding visual results. When removing the forged-patch dis-

criminator, the inpainted results show noticeable artifacts around mask boundaries,

and the produced textures are blurred, as shown in Fig. 4.21(A). When the projected

discriminator is removed, both quantitative performance and visual quality suffer. It

is more difficult to maintain the semantic structure of outputs in this case, e.g., the

asymmetrical Anime face, as shown in Fig. 4.21(B). The alignment between generated

pixels and known pixels may be influenced when we replace our forged-patch discrim-
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Figure 4.22: Inpainting performance at each iterative reasoning step. For each group:

Above-left: masked image. Below-left: input binary mask. Above-right: inpainted

images. Below–right: heatmaps of residual outputs ∆t. Colors red–blue in heatmaps

represent higher–lower change for the corresponding pixel.

inator with a Patch-GAN discriminator, as shown in Fig. 4.21(C). When we replace

our forged-patch discriminator with an SM-PatchGAN discriminator, it can create

plausible content, but consistency with known areas is poor, as seen in Fig. 4.21(D).

After replacing Transformer blocks with CNN-based blocks, the trained model excels

at inpainting texture and detailed contents, but may not be good at capturing struc-

ture information, as shown in Fig. 4.21(E). GRIG shows the best performance on

both quantitative and qualitative measures.

Number of iterative reasoning steps. To evaluate the effectiveness of the

iterative reasoning in GRIG, we varied the number of iterative reasoning steps T

and tested corresponding FID scores on 50–60% mask ratios: see Table 4.6. Each
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Figure 4.23: Comparisons of FID scores for each training iteration on Anime (left)

and Dog (right) datasets. Results were evaluated on a fixed center 25% rectangular

mask.

test used the same number of iterative reasoning steps as the corresponding training

phase. Compared to models trained for T = 1, models trained for T > 1 have large

performance gains. For example, on the CHASE dataset, the model trained on T = 3

has 6.92 lower FID score than that trained for T = 1 (55.84 vs 62.76). When T >

5, the performance gains saturate or decrease to some extent, but the inpainting

performance is still better than for T = 1 in most cases. The results indicate that

GRIG can produce satisfactory inpainting outcomes in the early steps, while the

residual offsets may fluctuate in subsequent steps, potentially leading to variations

in inpainting quality. However, GRIG effectively balances the number of steps and

the improvement in inpainting quality, achieving superior performance in the data-

efficient image inpainting task. In this chapter, we used T = 3 to strike a balance

between computational cost and visual quality. Fig. 4.22 visualizes the residual output

∆t for each step t for the model trained with T = 3. The masked images were gradually
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Table 4.6: FID scores for models trained with various numbers of iterative reasoning

steps T . Results were evaluated on 50–60% mask ratios. Bold indicates best results.

Dataset T = 1 T = 3 T = 5 T = 7 T = 9

CHASE 62.76 55.84 56.58 53.39 57.84

Anime 69.55 65.05 68.05 66.50 69.20

Dog 63.64 58.49 59.66 62.09 61.47

Art 78.40 77.32 78.04 78.29 78.23

inpainted. The model prioritizes semantic features in the early steps and fine details

in the later steps.

Fig. 4.23 shows an evaluation of GRIG on a fixed center 25% rectangular mask

for models trained with T = 1,3,5,7,9, respectively. The FID scores on Anime and

Dog datasets show that models trained with more iterative reasoning steps T converge

faster than those with fewer T , and models trained with T = 1 do not readily converge.

Specifically, models trained with T > 1 converge for around 10,000 image batches,

whereas models trained with T = 1 are far from convergence and fluctuate drastically

even after 10, 000 image batches. This shows that our framework can effectively help

networks to converge faster.
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4.4 Summary

We have taken a first step toward solving data-efficient image inpainting in this chap-

ter. By introducing iterative residual reasoning with decoupled image-level and

patch-level discriminators, we have presented a novel data-efficient generative resid-

ual image inpainting framework. The proposed generator effectively utilizes CNNs

for feature extraction and Transformers for global reasoning. To assist the generative

network in learning image fine details, a forged-patch discriminator was introduced.

Furthermore, we have established new state-of-the-art performance on multiple small-

scale datasets, and extensive experiments have demonstrated the efficacy of the pro-

posed method.

Our method has some limitations. The approach can effectively perform high-

fidelity image inpainting on small-scale datasets. However, GRIG cannot directly

utilize conditional information for guidance-based image inpainting. Introducing a

more sophisticated scheme or module to guide the inpainting process would be inter-

esting for controllable small-scale image completion. Moreover, GRIG is not special-

ized in diverse image inpainting. Using a mapping network to embed random style

codes into the generator could be a good solution for diversity of data-efficient image

inpainting.
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Chapter 5

Generative Facial Inpainting

Guided by Exemplars

5.1 Introduction

Faces are widely recognized as the most representative and expressive aspect of human

beings [186, 187, 188]. With the advancement of digital imaging and mobile comput-

ing techniques, facial photographs may now be readily collected and distributed. This

increases the need for effective and fast facial image altering in a convenient manner

while keeping authenticity.

In this chapter, we aim to solve a new face image manipulation problem. The

goal is to seamlessly fill in the missing region of an input image by referring to the

corresponding content of an exemplar image. This can largely help to generate a satis-

99



factory face image that would favor various application scenarios, including recovering

faces occluded by face masks, sunglasses, etc.; synthesizing faces of interest for person

identification; designing personalized hairstyles according to existing examples; and

generating face makeup for visual effects, to name just a few.

Many face image manipulation methods can achieve impressive manipulation of

facial attributes based on guidance information, such as geometries [123, 189], seman-

tics [122], and exemplars [128]. However, these methods often introduce unwanted

changes to unedited regions and thus cannot guarantee visual information of known

regions unchanged.

Facial inpainting plays an important role in facial image editing for filling missing

or masked regions [190]. To achieve realistic facial inpainting guided by exemplar

images, there are two main challenges: how to learn the style of facial attributes from

the exemplar and how to guarantee natural transition on the mask boundary. Some

works [48, 49] attempt to generate diverse image inpainting results allowing users to

select a desired one. However, they cannot complete missing regions with user guid-

ance. Many recent methods try to employ additional landmarks [50], strokes [16],

or sketches [26, 51] to guide the inpainting of facial structures and attributes. How-

ever, these methods tend to overfit the resulting images with this limited guidance

information. As a result, these methods still require considerable professional skills

in order to generate satisfactory target facial attributes, such as identity, expression,

and gender.
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Figure 5.1: Facial inpainting examples using our method. Top two rows: starting with

the input image (the top-left sub-image with mask), our method gradually edits the

eye style (left), the mouth style (middle left), the hair style (middle), and the facial

styles (right) from exemplars. Hairstyles can be edited with the insertion of basic

sketches (middle). Real-world and artistic face photos can both be used to direct the

inpainting of (blended) facial features in the locally edited regions without affecting

the visual content of the rest of the image. Bottom row: for occluded portraits with

eyeglasses and masks, we perform guided facial image recovery from exemplars.

To this end, we propose EXE-GAN, a novel interactive facial inpainting frame-

work, which enables high-quality generative facial inpainting guided by exemplars.

Our framework consists of four main components, including a mapping network, a

style encoder, a multi-style generator, and a discriminator. Our method mixes the

global style of the input image, the stochastic style generated from the random la-

tent code, and the exemplar style of the exemplar image to generate highly realistic

images. We impose a perceptual similarity constraint to preserve the global visual
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consistency of the image. To enable the completion of exemplar-like facial attributes,

we further employ facial identity and attribute constraints on the output result. To

guarantee natural transition across the boundary of inpainted regions, we devise a

novel spatial variant gradient backpropagation method for the network training. We

compare our method to the state-of-the-art (SOTA) methods to validate its advan-

tages. Experimental results show that our method outperforms competitive methods

in terms of visual quality. We also demonstrate several applications that could ben-

efit from our framework, including local facial attribute transfer, guided facial style

mixing, hairstyle editing, and guided facial image recovery (see Fig. 5.1).

In summary, this method makes the following contributions:

• A novel interactive facial inpainting framework for high-quality generative in-

painting of facial images with facial attributes guided by exemplars.

• A novel self-supervised attribute similarity metric to encourage the generative

network to learn the style of facial attributes from exemplars.

• A novel spatial variant gradient backpropagation method for network training

to guarantee realistic inpainting with natural transition on the boundary.

• Several applications benefiting from the proposed facial inpainting approach,

including local facial attribute transfer, guided facial style mixing, hairstyle

editing, and guided facial image recovery.

Our work is also closely related to image embedding which enables image synthesis
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Figure 5.2: Overview of our EXE-GAN framework. We employ style mixing on

stochastic and exemplar style codes, and modulate them with the global style code

of input image into the multi-style generator for facial inpainting. The adversarial,

identity, LPIPS, and attribute losses are integrated into the overall training objective.

Spatial variant gradient layers (SVGL) are utilized for natural transition across the

filling boundary. Once trained, EXE-GAN can be applied to various application

scenarios, such as local facial attribute transfer, guided facial style mixing, hairstyle

editing, and guided facial image recovery.

from latent space [7, 42, 60]. StyleGANs [42, 60] and SemanticStyleGAN [6] enable

direct scale-specific control of image synthesis with disentangled intermediate latent

style space and can produce plausible results for unconditional face image synthesis.

Optimization-based embedding [129, 2] and encoder-based embedding [131, 18, 132,

191, 32, 133] methods perform image manipulation by inverting an image to the

latent space [192]. Recently, EditingInStyle [193] and StyleFusion [194] show the
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impressive performance of image editing by semantically manipulating the style latent

space. Although image embedding has a strong capability in presenting image styles,

these methods may change unedited regions because of information losses in inversion

process. For instance, Richardson et al. [18] presented results of inpainting using

a pixel2style2pixel framework but failed to preserve the visual contents of unmasked

parts. In this work, we propose a novel facial inpainting framework by taking

advantage of style latent codes while keeping the unmasked region.

5.2 Method

5.2.1 Overview

The overall structure of our EXE-GAN framework is shown in Fig. 5.2. Given a

ground-truth face image Igt ∈ Rh×w×3, an exemplar image Iexe ∈ Rh×w×3, and a binary

mask M ∈ Rh×w×1 (with value 1 for unknown and 0 for known pixels), the input

image Iin ∈ Rh×w×3 is obtained by Iin = Igt ⊙ (1−M), where ⊙ denotes the Hadamard

product. The goal of our EXE-GAN framework is to automatically generate a realistic

face image Iout, where the inpainting of the masked regions in Iin is guided by the

facial attributes of Iexe while the known regions remain unchanged. The proposed

EXE-GAN consists of four main components, including a mapping network, a style

encoder, a multi-style generator, and a discriminator.

Mapping network. A multi-layer fully-connected neural network f linearly
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maps a random latent code z ∈ R512×1 to a stochastic style code w̃ = {w̃i ∈ R512×1∣i ∈ T} ∈

W̃+, where W̃+ denotes the extended stochastic style latent space and T = {1,2, ...,18}

denotes the index set. Let θf be the learnable network parameters in f , we have

w̃ = f(z; θf).

Style encoder. A style encoder E directly maps an image to a disentangled style

latent space W+. Given the network parameters θ̂e, the style encoder extracts the

exemplar style code w = {wi ∈ R512×1∣i ∈ T} = E(Iexe; θ̂e) and the inpainted style code

w = {wi ∈ R512×1∣i ∈ T} = E(Iout; θ̂e). Therefore, w ∈W+ and w ∈W+.

Multi-style generator. A generative network G that leverages multiple repre-

sentations (i.e., Iin, M , and ŵ) to generate an intermediate result Ipred ∈ Rh×w×3, where

ŵ = {ŵi ∈ R512×1∣i ∈ T} is the mixed style code of w and w̃. Let θg be the learnable

network parameters of G, we have Ipred = G(Iin,M, ŵ; θg). The multi-style generator

can be further divided into an encoder Gen and a decoder Gde, i. e., G = {Gen,Gde}.

Discriminator. A discriminative network D learns to judge whether an image is a

real or fake image. Let θd be the learnable network parameters of D, the discriminative

network maps the inpainted image Iout to a scalar D(Iout; θd) ∈ R1×1.

5.2.2 Multi-style modulation

To leverage the global style of the input image, the stochastic style generated from

the random latent code, and the exemplar style of exemplar image to perform gener-

ative facial inpainting, we propose a multi-style generator by also incorporating the
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exemplar style and mixing it with other styles based on carefully designed style mod-

ulation. The proposed multi-style generator can not only preserve the global visual

consistency of the input image, but also embed exemplar facial attributes to the local

facial inpainting. In addition, it has the good property of inherent stochasticity with

the stochastic style latent code.

First of all, the mixed style code ŵ is obtained by style mixing of the stochastic

and exemplar styles. Specifically, each layer of ŵ is defined as:

ŵi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wi if ϕi = 1;

w̃i otherwise,

(5.1)

where i ∈ T = {1,2, ...,18} and ϕ ∈ R18×1 is a binary vector to indicate which style

is modulated for each layer. Coarse-resolution layers correspond to high-level facial

attributes and fine-resolution layers could change small-scale features. We empirically

set ϕ = [0,0,0,0,1,1, ...,1] by balancing the stochastic and exemplar styles in this

chapter.

Secondly, the encoder Gen takes Iin and M as input, and outputs a global style

code c ∈ R2×512×1 as well as the corresponding multi-resolution feature maps.

Then, as illustrated in Fig. 5.2, the global style code c and the mixed style code ŵ

are transformed to multi-style vectors v for subsequent modulation within the style

layers of the decoder Gde. For each i-th style layer, the transformation is defined

as [60]:

vi = Ai([c, ŵi]), (5.2)
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where [⋅] refers to the concatenation operator, Ai is a learned affine transformation

within the i-th style layer, and vi is a linearly learned style representation conditioned

on the input style representations.

Next, the decoder Gde utilizes the multi-style vectors v and the multi-resolution

feature maps output by Gen to generate the intermediate inpainting Ipred. The decoder

contains two style layers in each resolution. In each i-th style layer, the multi-style

vector vi is then used for weight modulation and demodulation [60]. As shown in

Fig. 5.2, skip connections are used for collecting the multi-resolution feature maps in

the decoder Gde.

Finally, the inpainted image Iout is generated as follows:

Iout = Iin ⊙ (1 −M) + Ipred ⊙M. (5.3)

5.2.3 Training objectives

EXE-GAN is trained to optimize the learnable network parameters θg, θf , and θd

using the following objectives.

Adversarial loss. We use the adversarial non-saturating logistic loss [41] with R1

regularization [151]. Specifically, the adversarial objective is defined as:

Ladv(Iout, Igt) = EIout[log(1 −D(Iout)]

+EIgt[log(D(Igt))] −
γ

2
EIgt[∥∇IgtD(Igt)∥22],

(5.4)

where γ is used to balance the R1 regularization term. We empirically set γ = 10.

The generative network G learns to generate a visually realistic image Iout while the
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discriminative network D tries to distinguish between the ground-truth Igt and the

generated image Iout. G and D are trained in an alternating manner.

Identity loss. We constrain identity similarity between the output image Iout and

the exemplar image Iexe in the embedding space. The identity loss is formulated as

follows:

Lid(Iout, Iexe) = 1 − cos (R(Iout),R(Iexe)) , (5.5)

where R(⋅) is a pre-trained ArcFace network [195] for face recognition.

LPIPS loss. We employ the Learned Perceptual Image Patch Similarity (LPIPS)

loss [196] to constrain the perceptual similarity between the output image Iout and

the ground-truth Igt:

Llpips(Iout, Igt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∥F (Iout) − F (Igt)∥2 if Igt = Iexe;

0 otherwise,

(5.6)

where F (⋅) is the pre-trained perceptual feature extractor and we adopt VGG [149]

in our work. Note that Llpips is applied only when Igt and Iexe are sampled from the

same image (see Section 5.3.1 for the detailed settings).

Attribute loss. In order to learn the style of facial attributes from the exemplar

image, we introduce a novel self-supervised attribute similarity metric to measure the

consistency between facial attributes of the inpainted result Iout and the exemplar

Iexe in the style latent space:

Lattr(Iout, Iexe) =
1

∥ϕ∥0
∑
i∈T

ϕi ⋅ ∥wi − ŵi∥2, (5.7)
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Figure 5.3: Illustration of the SVGL on LPIPS and attribute losses. In forward-

propagation, SVGL does not change any information for Iout. In backpropagation,

gradients are re-weighted based on the spatial variant Mw and Mw, respectively.

where the L0 norm ∥ ⋅ ∥0 indicates the number of non-zeros.

Total objective. The total training objective can be expressed as:

O(θg, θf , θd, θ̂e) = Ladv(Iout, Igt) + λidLid(Iout, Iexe)

+λlpipsLlpips(Iout, Igt) + λattrLattr(Iout, Iexe),
(5.8)

where λid, λlpips, and λattr are weights of corresponding losses, respectively. We

empirically set λid = 0.1, λlpips = 0.5, and λattr = 0.1 in this work. During training, we

can obtain the optimized parameters θg, θf , and θd via the minimax game iteratively:

(θg, θf) = arg min
θg ,θf

O(θg, θf , θd, θ̂e),

(θd) = arg max
θd

O(θg, θf , θd, θ̂e).
(5.9)
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5.2.4 Spatial variant gradient backpropagation

It is expected that the inpainted facial attributes close to the filling center are more

similar to those of the exemplar image. Moreover, the inpainted values close to the

boundary should be perceptually more similar to those of the input image, and the

visual contents should be naturally transited on the boundary. To generate naturally

looking inpainting, we further exert constraint based on spatial location.

From Eqs. 5.6 and 5.7, we can find that the LPIPS loss and attribute loss are

defined over the entire inpainted image. GMCNN [93] applies the spatial constraint

to the pixel-wise reconstruction loss. However, we cannot directly impose GMCNN’s

spatial constraint on our loss functions. The reason is that our losses (e.g., attribute

loss) are defined in the embedding space and the dimensions of embedding features

do not match those of the spatial space. In our work, a novel spatial variant gra-

dient layer (SVGL) is designed to impose the spatial constraint on loss gradients in

backpropagation.

As illustrated in Fig. 5.3, SVGL has no parameter but relies on a spatial weight

mask. During forward-propagation, SVGL acts as an identity transform, which does

not change any information from the input. During backpropagation, it collects

gradients from subsequent layers, re-weights the gradients based on the spatial weight

mask, and passes the re-weighted gradients to the preceding layers.

Mathematically, given an input feature x and a spatial weight mask Mx, we can

treat SVGL as a “pseudo-function” P (x,Mx). The forward-propagation and back-
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propagation behaviors of SVGL are defined below:

P (x,Mx) = x,

∂P (x,Mx)
∂x

=Mx ⊙ I,

(5.10)

where I represents an identity matrix.

Then, we apply SVGL to the spatial variant LPIPS and attribute losses. Specifi-

cally, we equipped the network with an SVGL P (⋅,Mw) for the spatial variant LPIPS

loss and an SVGL P (⋅,Mw) for the spatial variant attribute loss, respectively, where

the confidence weight mask Mw ∈ Rh×w×1 is obtained with Gaussian smoothing on the

masked region of M and the reverse weight mask Mw = (1 −Mw) ⊙M ∈ Rh×w×1. As

shown in Fig. 5.3, both SVGLs are added right after the layer of generating Iout. Our

SVGL is general and can be used to apply spatial constraints to any loss functions

with spatial variant backpropagation. Note that the values of non-masked regions are

zeros. With the spatial variant gradient layers, the training objective is computed

with Eq. 5.8 during forward-propagation while its gradients are computed in a spatial

variant manner.

5.2.5 Implementation details

Algorithm 2 lists the pseudo-code for our EXE-GAN framework’s training proce-

dure. The threshold τ ∈ [0,1] was used to control the probability that the sampled

ground-truth image and exemplar image were the same. We set threshold τ = 0.1 in
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Algorithm 2 Training procedure of EXE-GAN

1: while f , G, and D have not converged do

2: Sample batch images Igt from training data

3: Sample random latent vectors Z

4: Sample a random number r ∈ [0,1]

5: if r > threshold τ then

6: Sample batch exemplars Iexe from training data

7: else

8: Set batch exemplars from ground-truth Iexe ← Igt

9: Create random masks M for Iin

10: Get confidence weight masks Mw for Llpips

11: Get reverse weight masks Mw for Lattr

12: Get inputs Iin ← Igt ⊙ (1 −M)

13: Get ŵ ←mixing(E(Iexe), f(Z))

14: Get Ipred ← G (Iin,M, ŵ)

15: Get outputs Iout ← Iin ⊙ (1 −M) + Ipred ⊙M

16: Update f and G with Ladv, Lid, Llpips, and Lattr

17: Update D with Ladv

this chapter. Our framework was implemented using Python and PyTorch. We

employed the mapping network f and discriminator D architectures from Style-

GANv2 [60], and borrowed the pre-trained the style encoder E from pSp [18]. We
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kept E frozen for training f , G and D. All weights of f , G, and D are trained from

scratch. Following the settings of StyleGANv2 [60], we employed the Adam opti-

mizer with the first momentum coefficient of 0.5, the second momentum coefficient

of 0.99, and the learning rate of 0.002. Mixing regularization [60] with a probability

of 0.5 was employed to generate stochastic style codes during training. For comput-

ing the confidence weight mask in SVGL, the Gaussian kernel is with size 64 × 64

and its standard deviation is 40. The free-form mask sampling strategy was adopted

for training by simulating random brush strokes and rectangles. The brush strokes

were generated using the algorithm presented in GConv [26] with maxVertex of 20,

maxLength of 100, maxBrushWidth of 24, and maxAngle of 360. Multiple up-to-

half-size rectangles and up-to-quarter-size rectangles were generated randomly. The

numbers of up-to-half-size rectangles and up-to-quarter-size rectangles were uniformly

sampled within [0,5] and [0,10], respectively.

5.3 Experiments

5.3.1 Settings

Experiments were conducted on two publicly available face image datasets CelebA-

HQ [154] and FFHQ [42]. For CelebA-HQ [154], we randomly selected 28,000 images

for training and remained 2,000 images for testing. For FFHQ [42], we randomly

selected 60,000 images for training and the rest 10,000 images for testing. Each
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image was resized to 256 × 256. We trained the networks for 800,000 iterations with

batch size of 8. Unless specified, all experiments were conducted on the NVIDIA

Tesla V100 GPU. The training time was around three weeks.

The performance was quantitatively evaluated using the Fréchet inception dis-

tance (FID) [155] and the paired/unpaired inception discriminative score (P-IDS/U-

IDS) [49]. FID has been proven to correlate well with human perception for the visual

quality of generated images. P-IDS and U-IDS are robust assessment measures for

the perceptual fidelity of generative models.

5.3.2 Comparisons

Comparison to free-form inpainting. We compared EXE-GAN on CelebA-HQ

and FFHQ datasets to the SOTA free-form inpainting methods, including Con-

textual Attention (CA) [100], Partial Convolutions (PConv) [101], Globally & Lo-

cally (G&L) [63], Gated Convolution (GConv) [26], EdgeConnect [51], GMCNN [93],

CMOD [49], ZITS [178], TFill [105], Stable Diffusion [69], RGTSI [9], and Tran-

sRef [10].

We used the publicly available MMEditing framework [179] for Contextual Atten-

tion (CA) [100], Partial Convolutions (PConv) [101], Globally & Locally (G&L) [63],

and Gated Convolution (GConv) [26]. MMEditing is an open-source image and video

editing toolbox based on PyTorch. We used the official codes for EdgeConnect [51],

GMCNN [93], ZITS [178], TFill [105], Stable Diffusion [69], RGTSI [9], and Tran-
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sRef [10]. For CMOD [49], we used the official TensorFlow-based code to implement

a PyTorch-based version. Except for Stable Diffusion [69], all the compared free-form

inpainting models were trained using CelebA-HQ and FFHQ datasets, respectively.

We used the pre-trained Stable Diffusion [69] sd-v1.5-inpainting model for inference.

The positive prompts included “best quality, extremely detailed, real human face, hu-

man face, high fidelity face, high-quality face.” To avoid low-quality images, we also

employed negative prompts such as “bad anatomy, bad hands, missing fingers, extra

digit, fewer digits, cropped, worst quality, low quality.” For reference-guided methods,

RGTSI [9] and TransRef [10], input-reference pairs with high similarity are crucial for

inpainting results. However, the CelebA-HQ and FFHQ datasets lack paired ground-

truth and exemplar images with the same attributes (identity, expression, decorative

goods, etc.). To address this, we adapted the training strategy by copying the ground-

truth image and applying random color jittering, translation, flipping, and bilinear

scaling operations [184] to create the exemplar image for each iteration. This ap-

proach ensures effective training and reasonable results, aligning with the strategies

used by RGTSI and TransRef for natural images. Our EXE-GAN does not re-

quire paired data due to the proposed self-supervised attribute similarity metric. We

randomly chose exemplar images during training and used a reversed batch of input

images to guide the inpainting during testing. For a fair comparison, we used the

same training/testing splits for all experiments.

Fig. 5.4 shows the quantitative performance comparisons between our method and
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Figure 5.4: Quantitative comparisons of our method to SOTA free-form inpainting

methods on the CelebA-HQ (top) and FFHQ (bottom) datasets.
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Figure 5.5: A qualitative comparison of our method to current free-form inpainting

methods.

the SOTA free-form methods on CelebA-HQ and FFHQ datasets. For easier com-

parison, we also show the corresponding FID scores in Table 5.1. To simulate various

scenarios, we used a fixed center rectangle mask of 128 × 128 and irregular mask

templates from PConv [101] for mask ratios ranging from 10-20% to 50-60%. For

evaluating large-scale mask inpainting, we generated mask templates using the mask

generation procedure of CMOD [49] for ratios ranging from 60-70% to 90-100%. Each

range includes 2,000 mask templates. Quantitative results show that our method can
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Table 5.1: FID scores for our method and SOTA’s free-form inpainting methods on

the CelebA-HQ (top) and FFHQ (bottom) datasets. The best is bolded, while the

second-best is underlined.

Methods Fixed 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

G&L 11.15 5.26 10.62 17.02 23.76 30.22 45.17 63.06 90.06 140.83

CA 7.12 4.70 8.23 12.36 17.50 25.81 40.35 64.27 112.61 184.60

PConv 6.23 10.00 9.44 10.16 12.51 16.60 52.59 89.00 151.03 254.59

GConv 4.46 3.46 5.45 7.12 9.52 13.61 27.08 47.17 93.10 182.71

EdgeConnect 9.53 3.96 6.76 9.84 14.07 22.51 37.53 69.44 150.17 266.11

GMCNN 7.46 4.47 6.63 9.67 12.60 18.75 23.58 34.11 58.48 134.48

CMOD 4.99 2.35 3.79 5.21 6.82 8.64 11.15 12.87 14.53 18.12

ZITS 4.31 2.81 4.42 5.71 7.26 9.11 11.94 15.34 21.07 34.73

TFill 6.48 3.28 5.27 6.69 8.68 11.04 15.44 20.11 26.66 40.58

Stable Diffusion 17.67 11.95 12.98 14.57 16.85 22.35 36.72 45.43 61.38 88.80

RGTSI 6.03 13.20 8.09 7.40 8.71 11.13 15.35 19.75 27.32 67.33

TransRef 10.39 6.71 10.35 14.61 18.98 23.18 26.69 29.18 30.01 29.10

Ours 4.66 2.10 3.50 4.80 6.22 8.16 11.86 14.78 18.71 27.15

G&L 6.45 3.26 7.67 13.05 19.47 27.36 47.16 68.56 103.23 166.28

CA 4.19 2.46 5.52 9.70 15.06 23.49 40.67 64.71 110.03 177.22

PConv 4.35 9.84 7.95 6.87 8.50 10.92 24.66 42.43 78.97 167.49

GConv 1.92 2.10 3.08 4.73 7.19 11.42 29.29 50.96 96.21 184.05

EdgeConnect 7.92 1.68 3.33 5.83 10.43 25.75 41.80 68.52 131.25 230.16

GMCNN 4.68 1.81 3.45 5.46 8.53 15.56 23.15 35.63 60.19 123.32

CMOD 2.19 0.82 1.41 2.02 2.70 3.76 6.04 7.57 9.66 14.85

ZITS 2.09 0.95 1.60 2.33 3.06 4.32 6.56 9.25 13.95 26.09

TFill 1.92 1.09 1.74 2.43 3.27 4.32 7.42 10.88 17.45 32.12

Stable Diffusion 10.03 1.98 2.38 2.89 3.77 6.87 18.97 30.33 52.16 96.67

RGTSI 7.78 3.02 4.35 5.21 10.44 24.14 39.09 43.55 51.95 90.94

TransRef 2.84 1.35 1.63 2.24 3.30 6.04 14.37 20.77 30.60 45.17

Ours 2.22 0.75 1.30 1.88 2.50 3.57 6.27 8.77 13.44 24.18
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compete with SOTA methods, despite the fact that its inpainting was guided by exem-

plars, which was thought to be difficult to maintain image quality [49]. Furthermore,

when the masked ratios increase and the useful information from unmasked regions

decreases, G&L [63], PConv [101], GConv [26], EdgeConnect [51], and GMCNN [93]

often fail to generate high-fidelity results due to their limited generative capacity.

For large-scale masks, ZITS [178], TFill [105], and CMOD [49] perform better thanks

to their more powerful generative capabilities, but they still have performance lim-

itations. Stable Diffusion [69] has the capability to produce high-quality inpainted

results by benefiting from extremely large-scale training data. However, since the

highly diverse results may not align with the ground-truth images, the quantitative

scores could be affected. RGTSI [9] and TransRef [10] rely on exemplar facial features

to guide inpainting, but may struggle when exemplars and ground truths differ in

poses, lighting, or extreme styles. Exemplar-guided methods are expected to extract

useful exemplar facial features and precisely fill the corresponding facial features to

align with the inpainting boundaries. On FFHQ and CelebA-HQ with various masks

in terms of FID, U-IDS, and P-IDS, our EXE-GAN achieves overall better quantita-

tive performance than exemplar-guided methods and competitive performance than

SOTA free-form inpainting methods.

Fig. 5.5 shows the quantitative performance of compared methods. Although all

the methods can compatibly fill in the missing regions, G&L [63] tends to produce

blurry inpainting while PConv [101] and GConv [26] fail to inpaint large-scale missing
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regions. CMOD [49], ZITS [178], and TFill [105] well handle textures and structures

inpainting. However, with large masked regions, CMOD would produce a little arti-

fact on masked boundaries (e.g., the first row). Some blurred contents could be found

under close inspection in TFill’s results. Stable Diffusion [69] can control the inpaint-

ing contents via text prompts, but some facial features, such as identity, are difficult

to describe using prompts. RGTSI [9] and TransRef [10] produce plausible inpainted

results. However, their results do not always accurately reflect exemplar facial fea-

tures, such as the hazy glasses structure shown in the third row. Our EXE-GAN can

generate high-quality inpainted results. Notably, the inpainting of facial attributes

cannot be controlled with CMOD, ZITS, and TFill. In contrast, with the help of

exemplar facial attributes, the inpainting of facial attributes with our EXE-GAN can

be controlled easily.

Comparison to guidance-based inpainting. We compared EXE-GAN on

Celeba-HQ dataset to the SOTA guidance-based facial inpainting methods, includ-

ing sketch-and-color-based facial inpainting SC-FEGAN [16], landmark-based face

inpainting LaFIn [50], reference-based inpainting RGTSI [9] and TransRef [10]. For

SC-FEGAN and LaFIn, we generated corresponding guided information from exem-

plar images and alternately took one facial image as the exemplar and the other one

as the masked image for facial attribute inpainting. We used the exemplar image

directly for inpainting in RGTSI, TransRef, and EXE-GAN. In addition, we used

ground-truth structure images as input for RGTSI, following the methodology of the
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Masked ratio

Figure 5.6: On the Celeba-HQ dataset, we performed a quantitative comparison of

our method to SOTA guidance-based facial inpainting methods.

original paper.

In this experiment, we used the officially released pre-trained SC-FEGAN [16] and

LaFIn [50] models, as well as the trained RGTSI and TransRef models described in

Subsection 5.3.2. SC-FEGAN [16] uses sketches and color as guidance to generate

missing pixels. Therefore, we leveraged the Canny edge detector to automatically

generate sketches from the exemplar image. To avoid inconsistency of color in the

inpainted pixels, we did not introduce color information of the exemplar into missing

regions. LaFIn [50] relies on landmarks to fill missing regions. Therefore, we uti-

lized the face alignment network FAN [156] to generate landmarks for the exemplar

image. To avoid the misalignment between the guidance information (i.e., sketches

and landmarks) and unmasked regions in the masked image, we first extracted the

angles of roll, pitch, and yaw from the CelebAMask-HQ dataset, then selected 550

pairs with similar poses from the testing set. For each pair, we alternately took one

facial image as the exemplar and the other one as the masked image to perform facial
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Figure 5.7: A qualitative comparison of our method and the SOTA guidance-based

facial inpainting methods.

attribute inpainting. As a consequence, we obtained 1,100 inpainted images for each

comparison method.

Fig. 5.6 shows the quantitative comparison of our EXE-GAN to SOTA guidance-

based inpainting methods. FID scores with various masked ratios were compared.

Experimental results show that our EXE-GAN is able to achieve the best FID scores

for all kinds of masks. RGTSI and TransRef are primarily designed for inpainting

images with natural scenes, with the assumption that each ground-truth image and its

reference (exemplar) image are similar in terms of structure and texture. However,

this assumption does not always hold for exemplar-guided facial image inpainting,

particularly when the exemplars differ significantly in pose, expression, identity, or

gender. In terms of the authenticity of inpainted images guided by exemplars, our

method outperforms the compared methods.

As shown in Fig. 5.7, SC-FEGAN [16] effectively generates facial attributes with

shapes guided by sketches but requires more information for high-quality facial at-
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tributes inpainting. Moreover, there may be visual artifacts in the inpainted images

with SC-FEGAN. LaFIn [50] generates facial expressions similar to exemplars but

may fail to inpaint the decorative attributes, such as glasses and hairstyles. RGTSI [9]

and TransRef [10] can produce high-quality inpainted results, but closer inspection

reveals some artifacts around the boundaries. In comparison, our method directly

learns the style of facial attributes from the exemplar without extra input, and can

produce more realistic facial inpainted results with exemplar-like facial attributes

including decorative attributes.

User study. For the user study, we randomly selected 100 pairs of images

from the 550 pairs of images with similar poses mentioned above. Then we randomly

divided these selected 100 pairs into 5 groups, and each group consists of 20 pairs

with different types of inpainting masks. For each pair, we set one image as the

masked input and the other as the exemplar to generate inpainting results using the

methods of SC-FEGAN [16], LaFIn [50], and our EXE-GAN, respectively. We then

randomly ordered one of these 5 groups to a user. For each round, an exemplar

image and its corresponding three inpainting images of SC-FEGAN [16], LaFIn [50],

and our EXE-GAN were provided. The participants were asked to select the best

image based on the visual quality of inpainting and the perceptual similarity to the

exemplar. We recruited 63 volunteers to subjectively evaluate the effectiveness of our

method comprehensively. The results show that our EXE-GAN obtains the majority

of votes (59.67%) compared to SC-FEGAN [16] (12.87%) and LaFIn [50] (27.46%).
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The user study validates that the output of our EXE-GAN is more realistic than the

compared methods visually observed by subjects.

Comparison to facial attribute transfer. We compared our method on

the Celeba-HQ dataset to the SOTA facial attribute transfer methods, including

StarGANv2 [122], MaskGAN [123], SimSwap [119], RGTSI [9], TransRef [10], Diff-

Face [197], and DiffSwap [198], where the same exemplar image was used to guide

the attribute transfer.

In this experiment, we used trained RGTSI [9] and TransRef [10] models, as de-

scribed in Subsection 5.3.2. The pre-trained models of StarGANv2 [122], MaskGAN [123],

SimSwap [119], DiffFace [197], and DiffSwap [198] provided in the official repository

were used. For StarGANv2 [122], we set the input image as the “reference” image

and the exemplar image as the “source” image. For MaskGAN [123], we extracted

semantic masks of input images from the CelebAMask-HQ dataset and obtained the

style-transferred results based on semantic masks and exemplars. SimSwap [119],

DiffFace [197], and DiffSwap [198] directly perform the exemplar-guided face syn-

thesis with the input and exemplar images. RGTSI [9], TransRef [10], and our

EXE-GAN synthesize facial attributes for masked regions of input images guided by

exemplar images.

As shown in Fig. 5.8, StarGANv2 [122] can transform an input image reflecting

the identity of the exemplar. However, it leaves users little freedom to manipulate face

images interactively. MaskGAN [122] transfers the style of exemplar to the input face
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Figure 5.8: A qualitative comparison of our method and the SOTA facial attribute

transfer methods.

image using the semantic mask. It requires projecting images into semantic masks

and reconstructing images from the mask manifold. As a result, it may introduce

irrelevant changes to fine details in the background. SimSwap [119], DiffFace [197],

and DiffSwap [198] can transfer the identity of the exemplar face to the input face and

preserve the facial attributes of the input. However, they do not allow users to flexibly

select regions for face editing and cannot successfully transfer decorative attributes,

like sunglasses. RGTSI [9], TransRef [10], and our method not only preserve the pixels

of known regions but also allow more degrees of freedom to interactively perform
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RGTSIGround-truth IdentityPreserving RGTSIGround-truth Image2StyleGAN++
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TransRef
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Figure 5.9: Visual comparisons between our EXE-GAN and closely related works

(small images in each group: masked and exemplar images). The results of Identi-

tyPreserving [1] and Image2StyleGAN++ [2] are taken from their respective papers.

The results of GuidedInpainting [3] and Re-composition [4] are from paper [4]. The

results of StyleMapGAN [5], SemanticStyleGAN [6], ILVR [7], and RefMatch [8] are

generated using their publicly available trained models. The results of RGTSI [9] and

TransRef [10] are generated from models re-trained from scratch.

facial attribute manipulation. However, because the exemplar facial features may

conflict with those around mask boundaries, RGTSI and TransRef struggle to ensure

a natural transition across the inpainted region boundaries. Thanks to our self-

supervised attribute similarity metric for learning exemplar facial features and SVGL

for enhancing natural transitions, EXE-GAN can produce high-quality results with

facial attributes guided by exemplars, including gender, makeup style, hairstyle, and

decorative style (e.g., glasses).
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Figure 5.10: Visual results of EXE-GAN on images with low light and large pose

variations (from top left to right in each group): masked image, exemplar image,

inpainting result.

More comparisons to closely related works. More comparisons to closely

related works are shown in Fig. 5.9. Although most methods produce plausible re-

sults, some visual artifacts can be seen in the details of IdentityPreserving [1] and

GuidedInpainting [3], RefMatch [8], RGTSI [9], and TransRef [10]. Color inconsis-

tencies may occur in SemanticStyleGAN [6], ILVR [7], and RefMatch [8]. In addition,

Image2StyleGAN++ [2], Re-composition [4], StyleMapGAN [5], SemanticStyleGAN,

and ILVR introduce unwanted changes in background or unedited regions. Ref-

Match [8] hypothesizes that the exemplar and targeted inpainting images have very

similar contexts, such as the same landmark building. The inpainting quality deteri-

orates when the exemplar exhibits different facial features, such as poses, identity, or

styles, that violate assumptions, as discussed in RefMatch’s limitation section. On the

other hand, our EXE-GAN can seamlessly fill in the masked pixels using exemplar-like

attributes without changing unmasked areas, yielding high-quality inpainting results

while avoiding the above artifacts.
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Table 5.2: Network complexity and computational efficiency of compared methods.

Bold indicates the best.

Method EdgeConnect GMCNN CMOD TFill ZITS RGTSI TransRef EXE-GAN

# Parameters (M) 21.54 12.56 79.17 109.45 67.90 175.55 41.97 79.18

FLOPs (G) 122.64 67.20 90.25 45.45 182.73 146.67 7.55 90.26

FPS 73.59 121.58 77.79 43.55 11.55 34.56 81.60 77.62

Training time (H) 331.84 61.44 192.28 287.04 299.53 123.92 88.41 269.49

5.3.3 Performance of EXE-GAN on challenging cases

Fig. 5.10 illustrates the exemplar-guided inpainting of EXE-GAN on challenging cases,

including low-light conditions (first row) and large pose variations (second row), us-

ing various masks. In the first row, the inpainted images retain the low-light char-

acteristics of the masked inputs, but faces remain recognizable. Additionally, using

a low-light image as an exemplar (4-th case), the inpainted result clearly exhibits

the exemplar’s features while maintaining high fidelity. The second row shows that

EXE-GAN effectively handles large pose variations. For instance, the second-last

case demonstrates that EXE-GAN performs well even with extreme exemplar poses;

the last case shows that despite using a completely different pose for inpainting, the

resulting image maintains good quality.
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5.3.4 Analysis on network complexity and computational ef-

ficiency

In Table 5.2, we show the model complexity and computational efficiency of our EXE-

GAN and the SOTA methods in terms of the number of parameters, FLOPs, frames

per second (FPS) in the inference phase, and training time (hours). All methods were

evaluated on a machine with a single RTX 3090 GPU using images with the size of

256 × 256. To estimate the training time, we first recorded the time taken for 1,000

iterations on the CelebA-HQ dataset for each module of each method using their

default hyperparameters. We then multiplied this time by the total number of 1000-

iteration chunks required and summed the times for all modules to get the estimated

training time for each method. All the models show good efficiency and practical

viability, with no more than 200.0M learnable parameters. Most models, including

GMCNN, TransRef, and EXE-GAN, can perform real-time inference and process

more than 70 images per second. For example, TransRef only needs 7.55 GFLOPs

for each image, showing excellent computational efficiency with robust inpainting

performance. While our model does not have the fewest parameters, the moderate

capacity of our network is critical in achieving competitive results when learning

to use the exemplar facial features. Furthermore, our competitive image inpainting

performance on the CelebA-HQ and FFHQ datasets shows that EXE-GAN achieves

a good balance between image inpainting quality and computational resources.
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(b) (c)(a) (d) (e)Exemplar Masked imageGround-truth (f) Ours

Figure 5.11: Qualitative examples of the ablation study for large-scale facial inpaint-

ing by exemplars with (a) EXE-GAN without any SVGLs in Lattr and Llpips, (b)

EXE-GAN without SVGL in Lattr, (c) EXE-GAN without SVGL in Llpips, (d) EXE-

GAN without Lattr, (e) EXE-GAN without Llpips, (f) EXE-GAN without Lid, and

(Ours) EXE-GAN.

Table 5.3: Ablation study for large-scale facial inpainting by exemplars with (a) EXE-

GAN without any SVGLs in Lattr and Llpips, (b) EXE-GAN without SVGL in Lattr,

(c) EXE-GAN without SVGL in Llpips, and (Ours) EXE-GAN. Results are averaged

over 5 runs. Bold: top-2 quantity.

Method
CelebA-HQ FFHQ

FID↓ U-IDS↑ P-IDS↑ FID↓ U-IDS↑ P-IDS↑

(a) 12.853 4.024% 1.25% 7.298 17.29% 6.55%

(b) 10.433 8.875% 3.35% 4.909 22.46% 8.75%

(c) 9.804 8.875% 4.25% 4.408 24.61% 10.04%

Ours 9.967 9.175% 3.85% 4.353 24.33% 9.92%
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5.3.5 Ablation study

Ablation study on SVGL. We further investigated the effectiveness of SVGL in our

EXE-GAN via an ablation study. The free-form mask sampling strategy mentioned

in Subsection 5.2.5 was adopted. We present qualitative examples in Fig. 5.11 (a-c)

to express the visual effects of the ablation study. Table 5.3 shows the quantitative

results. When SVGLs are removed from both the attribute and LPIPS losses, both

quantitative measures and visual qualities drop dramatically, and completed images

may not show clear manifestations of exemplar facial images in attributes, such as

wearing glasses in Fig. 5.11 (a). When replacing the SVGL-based attribute loss with

the standard attribute loss without SVGL, there may be visible boundary inconsisten-

cies in the generated results (see Fig. 5.11 (b)), and the quantitative performance is

also affected. When replacing the SVGL-based LPIPS loss with the standard LPIPS

loss without SVGL, the visual similarities of facial attributes (e.g., facial expres-

sion, wearing glasses) between the generated result and the exemplar image decrease,

while the quantitative scores are comparable to EXE-GAN for both testing datasets,

as demonstrated in Fig. 5.11 (c). In this case, the standard LPIPS loss is applied

to all pixels of the image to enforce the generator to reconstruct the contents of

ground-truth instead of exemplar attributes. In comparison, our EXE-GAN is able

to produce realistic facial images with facial attributes similar to exemplars while

achieving competitive quantitative scores.

Ablation study on attribute loss, LPIPS loss, and identity loss. An-
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Table 5.4: Ablation study for large-scale facial inpainting by exemplars with (d) EXE-

GAN without Lattr, (e) EXE-GAN without Llpips, and (Ours) EXE-GAN. Results are

averaged over 5 runs. Bold: top-2 quantity.

Method
CelebA-HQ FFHQ

FID↓ U-IDS↑ P-IDS↑ FID↓ U-IDS↑ P-IDS↑

(d) 9.714 11.38% 4.65% 4.453 23.84% 9.86%

(e) 10.207 7.37% 2.95% 4.726 23.50% 9.53%

Ours 9.967 9.175% 3.85% 4.353 24.33% 9.92%

other ablation study was carried out to investigate attribute loss and LPIPS loss in

EXE-GAN. The free-form mask sampling strategy mentioned in Subsection 5.2.5 was

employed. Fig. 5.11 (d-e) and Table 5.4 show visual comparisons as well as quantita-

tive results. When the attribute loss in EXE-GAN is removed, the model produces

comparable results but reduces the visual similarity of facial attributes between the

generated result and the exemplar image, as shown in Fig. 5.11 (d). When the LPIPS

loss is removed, both the quantitative and qualitative measures decrease rapidly, and

visual artifacts can be seen around the mask boundaries, as illustrated in Fig. 5.11 (e).

In contrast, EXE-GAN results demonstrate high fidelity with facial attributes similar

to exemplars and competitive quantitative scores.

To further demonstrate the effectiveness of identity loss in preserving the identity

information of exemplar images, we assessed the identity distance metric (IDD) in

ArcFace’s feature space. We trained another model without Lid and tested it alongside
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Table 5.5: IDD scores for facial inpainting by exemplars with (f) EXE-GAN without

Lid, and (Ours) EXE-GAN. Bold: top-1 quantity.

Methods Fixed 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

(f) 1.277 1.449 1.430 1.407 1.376 1.314 1.292 1.251 1.211 1.193

Ours 1.264 1.447 1.425 1.401 1.368 1.303 1.283 1.240 1.197 1.161

our EXE-GAN on the CelebA-HQ test set with different masked ratios. Fig. 5.11 (f)

shows that without Lid, the trained model can still reflect the exemplar attributes

in the inpainted images with similar visual quality. However, the IDD similarity

results in Table 5.5 indicate that the inpainted images of Model (f) lose some identity

information of the given exemplar image. By incorporating identity loss, our EXE-

GAN performs better in preserving the identity information guided by exemplars.

Ablation study on exemplar styles modulation. We performed ablation

experiments on the modulation of exemplar styles by re-training our model with

different vector ϕ configurations, and ϕ is a binary vector that indicates which style

for each style layer is modulated. According to Fig. 5.12, the more exemplar style

codes that are modulated, the more exemplar facial attributes will appear in the

inpainted images.
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Figure 5.12: Examples of facial inpainting with various subsets of the style codes:

ground-truth, exemplar, masked image, and various style effects. In each row, values

of the i-th to j-th layers in the style code are from the exemplar, and values of the

remaining layers are from the stochastic style code.
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Figure 5.13: Examples of local facial attribute transfer.

5.4 Applications with our facial inpainting

5.4.1 Local facial attribute transfer

Since our EXE-GAN helps the generator learn the mapping between injected ex-

emplar representations and corresponding facial attributes, our method can be used

to produce vivid facial attribute transfer effects guided by various exemplars, such

as real-world facial attributes and artistic expressions. As shown in Fig. 5.13 and

Fig. 5.14, for a masked input, our EXE-GAN produces high-quality local facial at-
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Figure 5.14: More examples of local facial attribute transfer guided by exemplars.

tribute transfer results by leveraging facial attributes of exemplars.

5.4.2 Guided facial style mixing

Our EXE-GAN can be used to generate facial inpainting effects by mixing two exem-

plar style latent codes. We first employ the style encoder E to obtain two exemplar

style codes from two exemplars, respectively. Then, we apply the style mixing [42, 60]

on the two latent codes with a crossover point. By simply changing the crossover

point, we can obtain multiple mixed latent codes. Therefore, guided facial style mix-

ing effects can be obtained by moving the crossover point over the vector ϕ in Eq. 5.1,

as shown in Fig. 5.15.
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None 5~5 5~6 5~7 5~8 5~9 5~10 5~11 5~12 5~13 5~14Masked

Figure 5.15: Examples of facial style mixing (from top left to right in each group):

masked image, pairs of exemplars, and style-mixing effects. In each row, values of

the style code of the first exemplar from i-th to j-th channels are replaced by those

of the second exemplar.

5.4.3 Hairstyle editing

We further fine-tuned our trained EXE-GAN with extra hand-drawn-like sketches

which were produced automatically with a pencil-sketch filter [18]. The application

allows users to sketch in the mask to indicate roughly the hair styles. Given a masked

image with sketches and an exemplar image, EXE-GAN produces a style-edited out-

put. As shown in Fig. 5.16, various hairstyle editing results are obtained by changing

the user-edited style sketches. It is easy even for a novice to obtain various styles by

simple sketch editing.
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Figure 5.16: Examples of hairstyle editing: (the first row) edited results with different

sketches guided by different exemplars and (last two rows) edited results with the same

sketch guided by different exemplars.

EXE-GAN Lyu et al.Lyu et al.EXE-GANEXE-GAN Lyu et al.Lyu et al.EXE-GAN

Figure 5.17: Comparison on portrait eyeglasses removal (from top left to right in

each group): masked image, exemplar image, our recovered result, and Lyu et al.’s

result [11].

5.4.4 Guided facial image recovery

The guided facial image recovery for occluded portrait eyeglasses and masks was

achieved by masking them out and taking a different image from the same person as

exemplar. As shown in Fig. 5.17, we compared our method to Lyu et al.’s eyeglasses

removal method [11] on tinted eyeglasses (leftmost), sunglasses (mid-left), and myopia

glasses (mid-right). The results show that our guided facial image recovery method
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Figure 5.18: Examples of guided facial image recovery: (top four rows, from left to

right in each group) occluded image, recovered face image, and exemplar; (bottom

row) diverse recovered results guided by different exemplars.

performs well in removing tinted eyeglasses and sunglasses which may fail with Lyu

et al.’s method. Fig. 5.18 shows that our method can also recover faces from occluded

glasses or masks effectively.

5.4.5 Inherent stochasticity

EXE-GAN can produce multiple diverse facial inpainting results for an input masked

facial image and an exemplar image by leveraging the inherent stochasticity. Users

can easily select the preferred one among these results. The inherent stochasticity

is achieved by adding per-pixel noise after each convolutional layer, leveraging the
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Figure 5.19: Examples of diverse facial inpainting with inherent stochasticity. Based

on the same masked image, we use different exemplars to guide the generation of

various results.

injected random latent code, and applying a truncation trick to tune the stochastic

style representations [42, 60]. Fig. 5.19 shows a variety of facial inpainting results

with various random latent codes.

5.5 Summary

In this chapter, we have presented a novel interactive framework for realistic facial

inpainting by taking advantage of exemplar facial attributes. An attribute similar-

ity metric was introduced to help the generative network learn the style of facial

attributes from the exemplar. We further proposed a novel spatial variant gradient

backpropagation technique to address the issue of visual inconsistency on the filling

boundary. Extensive experiments and applications have demonstrated the effective-

ness of our method.
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Our method has some limitations. Using the embedded style codes, we successfully

transfer the facial attribute styles from the exemplar image. The explicit mapping

between the facial attribute and the embedded style codes, on the other hand, is

still unknown [18]. Incorporating a more advanced embedding algorithm into our

pipeline could be a good next step. The trained model works well for aligned images

because the facial images in the experimented training datasets [154, 42] are highly

aligned. It is necessary to align and crop the inputs before inpainting nonaligned

images. It would be preferable to train models on unstructured datasets to create a

more sophisticated algorithm.
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Chapter 6

Multimodal Generative and Fusion

Framework for Facial Editing

6.1 Introduction

The rapid development of digital imaging and mobile computing has fueled the de-

mand for personalized content in social media and various applications [199, 200, 201],

making facial image editing an essential research area in computer graphics and com-

puter vision. Faces are universally acknowledged as the most representative and ex-

pressive aspect of human beings, which makes facial editing a challenging task [202].

Many image editing tools provide convenient guidance information to allow users

to edit facial features interactively [203]. In order to provide convenient user inter-

faces, many face image editing tools make use of various input modalities to guide

140



the editing of facial features. In recent years, multimodal facial image editing has

attracted considerable interest. Since multimodal models excel at conveying various

types of conditioning information, their combined synergy can offer clearer descrip-

tions to aid in facial editing. For example, semantics can define a facial image’s coarse

layout; sketches can detail its structure and texture; and text or attribute labels can

adjust facial attributes, to name just a few. The support of local editing capability is

also important in a variety of image editing applications. Local editing enables users

to edit local image regions in an incremental manner while keeping the contents of

unedited background regions unchanged.

There are some limitations in existing multimodal local facial editing methods.

The first limitation is the difficulty in maintaining visual contents in unedited back-

ground regions. Existing multimodal facial editing techniques [52, 14, 12, 13] can

only edit the facial image as a whole and are prone to introduce unwanted changes

to unedited background regions. When users are not satisfied with some local effects,

these techniques will fail to edit the local regions in an incremental manner. As shown

in Fig. 6.1 (bottom two rows), while state-of-the-art (SOTA) methods may perform

high-quality edits, they are likely to include unwanted changes of other facial features

in incremental editing scenarios, where an already edited image is subject to further

modifications using different modalities. Some existing methods [52, 14] have the

limitation in manual annotations of paired data. These methods train their models

with labeled paired data across different modalities but manual annotations of train-
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Figure 6.1: Examples demonstrating the superior performance of FACEMUG in high-

quality globally consistent local facial editing, using subsets of the five modalities

including semantic label, sketch, text, color, and exemplar image. Our method (top

row) exhibits better visual quality and fidelity in incremental editing (the later editing

taking the previous output image as input), compared to SOTA multimodal face

editing methods: ColDiffusion [12] (middle row) and Unite&Conquer [13] (bottom

row).

ing datasets are label-intensive. Recent methods based on diffusion models [12, 13]

instead train all uni-modal models first and perform multimodal facial editing by inte-

grating these pre-trained uni-modal models. However, when the number of modalities

grows, more uni-modal models should be trained separately with these methods.

With this in mind, we explored ways to tackle these limitations. We investi-

gated whether incorporating generative adversarial networks (GANs) [41] can improve

global consistency for multimodal local facial editing. By learning the distribution
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of real facial images, adversarial training enforces the model to fill plausible contents

for edited regions guided by multimodalities. To minimize the dependency on paired

training data, we asked the question that if we can loosen the ties between the paired

modalities data by aligning all modalities into a unified generative latent space to

diminish the requirement for paired text, attribute label, and exemplar modalities.

Instead of training a uni-modal model for each modality, we examined whether fu-

sion and warping priors, along with multimodalities in both latent and feature space,

could achieve seamless integration of multimodalities.

We thus introduce a MUltimodal Generative and fusion framework for local

FACial Editing (FACEMUG), which can solve the above problems. First, since the

StyleGAN latent space [60] is disentangled well, we design our framework by bridging

all modalities to the StyleGAN latent space. Second, for the seamless integration

of multimodalities, we design our multimodal generator with fusion and warping in

latent and feature space. To support the heterogeneity and sparsity of the pixel-wise

conditional inputs, we aggregate multimodal conditional inputs into a homogeneous

feature space. Since a fully trained GAN model excels at capturing rich textures and

structural priors [204], we utilize a StyleGAN generator as a facial feature bank to

provide candidate facial features and introduce style fusion blocks to fuse facial fea-

tures for improving the generation quality. Moreover, to rectify the pose misalignment

between the edited image and the given latent codes, we present a self-supervised la-

tent warping method to efficiently transfer the pose of the edited image to that of the
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given latent codes in the latent space. To simulate the latent editing process during

training and boost facial editing capabilities, a diversity-enhanced attribute loss is

proposed.

To the best of our knowledge, our FACEMUG is the first method that gener-

ates realistic facial features in response to multimodal inputs on the edited regions

while maintaining visual coherence with the unedited background to achieve global

consistency. We have conducted extensive comparisons of FACEMUG against the

SOTA methods and comprehensive experiments to demonstrate the superiority of

FACEMUG in terms of editing quality, flexibility, and semantic control, illustrating

its potential to significantly enhance various applications within facial editing.

In summary, our paper makes the following contributions:

• A novel globally-consistent local facial editing framework that enables diverse

facial attribute manipulation.

• A novel multimodal feature fusion mechanism that utilizes multimodal aggre-

gation and style fusion blocks to fuse facial features in both latent and feature

spaces.

• A novel latent warping algorithm automatically aligns facial poses between

edited and exemplar images in latent space, without relying on annotated labels

or pose detection models.

• Our novel framework would benefit numerous practical applications, supporting
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Figure 6.2: Overall pipeline of our FACEMUG globally-consistent local facial editing:

the given attribute label (or text), random latent code z, and exemplar image Iex are

first processed through the exemplar style module, latent warping module, and the

latent attribute editing module to get the edited latent codes. Simultaneously, the

input pixel-wise multimodal inputs X and a binary mask M are fed into the multi-

modal aggregation module and the multimodal generator to get an edited realistic

face image Iout, where the manipulation of the masked regions in M is guided by

multimodal inputs.

incremental editing scenarios guided by multimodities (sketches, semantic maps,

color maps, exemplar images, text, and attribute labels).
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6.2 Method

6.2.1 Overview

The overall editing pipeline of our FACEMUG framework is shown in Fig. 6.2. Given

a collection of pixel-wise multimodal inputs X = {Im, I1, I2, . . . , In}, an attribute label

wd ∈ W+ (or text ttar), an exemplar image Iex ∈ Rh×w×3, a ground-truth face image

Igt ∈ Rh×w×3 (with h×w pixels and three color channels), and a binary mask M ∈ Rh×w×1

(with 1 for editing and 0 for unedited pixels), the masked image Im ∈ Rh×w×3 is

obtained by Im = Igt ⊙ (1 −M), where each input pixel-wise modality Ik ∈ Rh×w×ck

contains ck channels and ⊙ denotes the Hadamard product. Let W+ denote the

disentangled style latent space [60] and Z denote the random latent space. The goal of

FACEMUG is to generate an edited realistic face image Iout, where the manipulation

of the masked regions in M is guided by multimodal inputs, while the unedited regions

remain unchanged.

Exemplar style module. As shown in Fig. 6.2 (b), our exemplar style module is

designed to support randomized and exemplar-guided facial attribute editing. First, a

multi-layer fully-connected neural mapping network Fθ̂f
with the network parameters

θ̂f linearly maps a random latent code z ∈ R512×1 (z ∈ Z) to style latent codes wz =

Fθ̂f
(z) = {wz

i ∈ R512×1∣i ∈ T} ∈ W+, where T = {1,2, ..., t} and t is the number of the

style latent code. Simultaneously, a style encoder Eθ̂e
with the network parameters

θ̂e maps multimodalities to W+. Given an exemplar image Iex, the style encoder
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extracts exemplar latent codes we = {we
i ∈ R512×1∣i ∈ T} = Eθ̂e

(Iex) ∈ W+. Then we

perform style interpolation between wz and we to get the interpolated latent codes

w ∈W+.

Latent warping module. As shown in Fig. 6.2 (c), to alleviate visual artifacts

due to the misalignment between the facial poses of the exemplar image and the edited

image, we introduce a latent warping module Hθh that learns to transfer the pose of

a target image to a source image in the style latent space with the learnable network

parameters θh. We first utilize the style encoder to project the pixel-wise multimodal

inputs X to the projected latent codes wp = Eθ̂e
(X ) ∈ W+. Then we obtain the

warped latent codes as ŵ = Hθh(wp − w,w) + w, ŵ ∈ W+, under the guidance of wp.

As a consequence, ŵ aligns to the pose of projected latent codes wp while preserving

facial features of w.

Latent attribute editing module. As shown in Fig. 6.2 (d), the latent attribute

editing module is designed to edit the warped latent codes ŵ to support attribute-

conditional facial attribute editing and text-driven facial attribute editing in the style

latent space. In this module, we obtain the edited latent codes w∗.

Multimodal aggregation module. As shown in Fig. 6.2 (e), for better control-

lability and visual quality in the image space, a multimodal aggregation module Aθa

with the learnable network parameters θa is proposed to deal with multiple hetero-

geneous and sparse conditional inputs by merging them into a homogeneous feature

space containing ca feature channels. Given the pixel-wise multimodal inputs X , we
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obtain the aggregated feature tensor F̂a = Aθa(X ) ∈ Rh×w×ca . F̂a is then input into

our multimodal generator.

Multimodal generator. As shown in Fig. 6.2 (f), our multimodal generator

consists of a facial feature bank and a refinement auto-encoder Gθg with the trainable

network parameters θg. We implement the facial feature bank using the StyleGAN

generator Sθ̂s
. Sθ̂s

produces multi-scale coarse facial feature maps from edited latent

codes w∗ while Gθg refines the editing results by utilizing the aggregated feature

tensor, the latent codes, and the generated coarse features. A set of facial feature maps

F s = {Fs
i ∈ Rĥi×ŵi×ĉi ∣i ∈ T} and a reconstructed image Ip are obtained as (F s, Ip) =

Sθ̂s
(w∗). We define ĥi × ŵi × ĉi as the size of feature maps at i-th layer. Then, the

refinement auto-encoder Gθg leverages F̂a, w∗, and F s to generate an edited image

Iout ∈ Rh×w×3:

Iout(w∗) = Im ⊙ (1 −M) +Gθg(F̂a,w∗,F s)⊙M. (6.1)

The refinement auto-encoder can be further divided into an encoder Gen and a decoder

Gde, i. e., Gθg = {Gen,Gde}.

Discriminator. A discriminative network Dθd with the learnable network param-

eters θd learns to judge whether an image is a real or fake image. The discriminator

maps an image (e.g., Iout or Igt) to a scalar Dθd(I) ∈ R1×1. Note that the discriminator

is only applied during the training phase.
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6.2.2 Latent warping module

To achieve realistic exemplar-guided or randomized facial attribute editing, the pri-

mary challenge lies in the potential differences in pose between the exemplar image

and the edited image, which can readily result in noticeable misalignment between

the two facial images. Several existing methods [25, 205] have been developed for

facial pose alignment in the context of face reenactment. However, these methods of-

ten require additional pre-trained facial pose detection models or involve multi-stage

training processes, which can be resource-intensive. We thus ask: Is it possible to

directly conduct facial pose transfer in the latent space, thereby eliminating auxiliary

steps such as preliminary GAN inversion, subsequent pose detection, and ultimately

pose transfer?

To solve this, we propose a self-supervised latent warping method that eliminates

the need for manual annotations and pre-trained facial pose detection models. Our

method provides an intuitive and straightforward way of warping the pose of the

exemplar image to match that of the edited image in the latent space while preserving

the attributes of individual faces (e.g., identity or expressions). The key idea is that

we use the pose of a target image to guide the pose of a source image by warping the

latent codes in the style latent space.

To effectively predict the offsets in the latent space from given two latent codes for

facial warping, we design our latent warping network Hθh by four stacked code-to-code

modulation blocks. We construct our code-to-code modulation block by extending
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FFCLIP’s semantic modulation block [29] to code-to-code embeddings. Moreover,

the sigmoid activation is incorporated in the semantic injection for gate activation.

Let wta ∈ Rt×512×1 and wso ∈ Rt×512×1 be the target and source latent codes, respec-

tively. The warped latent codes wwa ∈ Rt×512×1 is obtained by warping wso guided by

wta:

wwa =Hθh(wr,wso) +wso, (6.2)

where wr = wta −wso is the residual latent codes between wta and wso. By leveraging

the code-to-code modulation mechanism, our latent warping module effectively aligns

the pose of the warped latent codes with the target latent codes.

6.2.3 Latent attribute editing module

Our method supports two types of latent attribute editing, including attribute-conditional

facial attribute editing and text-driven facial attribute editing. It allows us to utilize

conditional labels or text to manipulate latent codes for semantic-level editing with

unedited portions unchanged, which is usually hard to achieve with GAN-inversion-

based methods [17].

Attribute-conditional editing. Each attribute label corresponds to a semantic

direction. For a user-specified target attribute label, we obtain the edited latent

codes w∗ ∈W+ by moving the warped latent codes ŵ (wwa) along the corresponding

semantic direction wd. The editing process can be expressed below [206]:

w∗ = ŵ + ϵ ⋅wd, (6.3)
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where ϵ is a user-specified weight of the latent semantic direction (attribute label)

wd ∈W+ to control the degree of attribute adjustment.

Text-driven editing. For a user-specified target attribute text ttar, we leverage

CLIP [207] to find text-driven latent codes by solving the following latent codes

optimization problem:

w∗ = arg min
w∈W+

(λclip ⋅Lclip(ttar, tsrc,w, ŵ) + λreg ⋅ ∥w − ŵ∥2) , (6.4)

where tsrc = “face”; λclip ∈ [0.1, 1.0] and λreg are used to balance the directional CLIP

loss term and the regularization term. By default, we set λclip = 0.05 and λreg = 0.08.

The directional CLIP loss Lclip [208] is employed to align directions between the

text-image pairs of the original and edited images in the CLIP space:

Lclip(ttar, tsrc,w, ŵ) = 1 − cos (∆T,∆I) ,

∆T = ET (ttar) −ET (tsrc) ,

∆I = EI (Iout(w)) −EI(Iout(ŵ)),

(6.5)

where ET and EI are the text and image encoders of the CLIP model, Iout(w) and

Iout(ŵ) are obtained using Eq. 6.1.

6.2.4 Multimodal aggregation module

To integrate multimodalities within a unified framework, the varying density and

value range among images, sketches, semantic maps, and color maps present chal-

lenges [209]. For pixel-wise multi-conditional image editing, the discrepancies in in-

formation content across modalities make it difficult to apply standard convolution
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layers to capture the diverse characteristics of each modality, leading to suboptimal

generation quality. Moreover, the differing levels of details and densities in the inputs

can impact the visual appearance and realism of the generated images. To mitigate

this issue, we introduce a multimodal aggregation module that efficiently aggregates

the multimodal inputs. We achieve this by using separate convolution layers for each

modality and incorporating a normalized adaptive weighting mechanism to merge ex-

tracted features into a homogeneous feature space. As a result, the module provides

more robust representations, making it well-suited for handling multi-conditional im-

age editing tasks.

For the pixel-wise multimodal inputs X , we first employ a residual block to extract

feature maps for each modality, resulting in a feature set. Using this set, a shared

residual block is utilized to compute the contribution scores for each spatial point

across all pixel-wise modalities, producing a contribution score map for each modality.

Each score map adaptively weights the importance of each modality in a pixel-wise

fashion for the aggregation process. Thus, we can get the aggregated feature F̂a =

Aθa(X ) ∈ Rh×w×ca . This adaptive weighting mechanism allows the model to assign

higher importance to informative and detailed pixel-wise modalities while reducing

the impact of less informative inputs.
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6.2.5 Multimodal generator

To support multimodal conditional editing and generate high-quality editing results,

we develop a multimodal generator that fully utilizes aggregated facial features and

edited latent codes, while efficiently fusing feature maps from the refinement encoder,

the facial feature bank, and the refinement decoder. To achieve this, we introduce a

style fusion block to fuse features in both high-level and shallow-level feature spaces.

These carefully designed modules enhance our approach’s editing capabilities, en-

abling the generation of diverse and high-fidelity editing results.

Given the aggregated feature tensor F̂a and the edited latent codes w∗, the refine-

ment encoder Gen extracts multi-scale feature maps F en = {Fen
i ∈ Rĥi×ŵi×ĉi ∣i ∈ T} and

outputs a global latent vector c ∈ R512×2 from the aggregated multimodal feature F̂a,

i.e., (F en, c) = Gen(F̂a). At the same time, the facial priors F s = {Fs
i ∈ Rĥi×ŵi×ĉi ∣i ∈ T}

are extracted from the edited latent codes w∗ in the facial feature bank with the

StyleGAN generator. Finally, the feature maps Fde = {Fde
i ∈ Rĥi×ŵi×ĉi ∣i ∈ T} in the

refinement decoder Gde are calculated as follows:

Fde
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

UP(SC(Fde
i−1, [w∗i , c])), if i mod 2 = 1;

SC(Fg
i−1, [w∗i , c]), otherwise,

(6.6)

where [⋅, ⋅] denotes concatenation; UP(⋅) refers to up-sampling; SC(⋅, ⋅) indicates

the style layer [60], Fde
0 = Conv(Fen

t ), Conv(⋅) is a Convolution layer; Fg
j (j =

1,3,5, . . . ,2⌊ t2⌋ + 1) is the fused feature map by the proposed style fusion block. We

set Iout = Conv(Fde
t ) ∈ Rh×w×3 as the model output.
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Style fusion block. The proposed style fusion block is as shown in Fig. 6.3. To

fully leverage the guidance information extracted from the refinement auto-encoder

and facial feature priors of the facial feature bank, we employ the gated fusion scheme

to perform element-wise fusion between these features for enhancement. We first

apply an adaptive gated fusion to activate features from the refinement encoder to

obtain the intermediate generated feature F̂g
i :

F̂g
i = (σ(SC(Fde

i ,w∗i+1))+1)⊙Fen
t−i + ϕ(SC(Fde

i ,w∗i+1)), (6.7)

where σ(⋅) denotes the sigmoid activation function and ϕ(⋅) corresponds to the LeakyReLU

activation function with the negative slope of 0.2. Then, the style layer computes the

spatially-variant gate map Fm
i from the facial priors Fs

i and the modulated latent

vector w∗i for each i-th layer. The feature fusion is calculated as follows:

Fm
i = σ(SC(Fs

i ,w
∗
i+1)),

Fg
i = Fm

i ⊙Fs
i + (1 −Fm

i )⊙ F̂g
i ,

(6.8)

where the spatially-variant gating map Fm
i automatically selects the important fea-

tures from generated feature maps F̂g
i and the facial priors Fs

i .

6.2.6 Self-supervised module training

In our framework, we utilize the pre-trained StyleGAN generator Sθ̂s
and mapping

network Fθ̂f
from StyleGAN-V2 [60]. We begin by the training of the style encoder

Eθ̂e
. Next, we optimize the latent warping network Hθh with our proposed self-

supervised warping learning. Finally, we detail the training process for the multimodal
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Figure 6.3: Illustration of our style fusion block. Conditioned by the modulated

latent vector w∗i+1, the block effectively integrates multi-scale facial features in both

high-level and shallow-level feature spaces.

aggregation module Aθa , the refinement auto-encoder Gθg , and the discriminator Dθd .

This training process can be in parallel with the optimization of the latent warping

network.

Training of style encoder. The style encoder for exemplar images and that for

multimodalities (sketch, color, semantic map, and mask) are the same encoder. The

network of the style encoder Eθ̂e
is borrowed from e4e [132]. In order to enable the

encoder to project each modality individually into the latent space, we customized the

first convolution layer of the e4e encoder to handle 26 channels from four modalities

respectively: 3 channels for the exemplar image, 1 channel for sketches, 3 channels

for colors, and 19 channels for semantic layouts. Then, we feed the concatenated

randomly masked multimodal inputs into Eθ̂e
for training. In addition, the loss

functions defined in e4e [18, 132] are employed.

Training of latent warping module. As shown in Fig. 6.4, a triplet of

initial, source, and target latent codes is utilized to learn the pose warping guided
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Figure 6.4: Illustration of the self-supervised training of our latent warping module.

We employ the style encoder to project the augmented image to obtain the target

latent codes wta. The source latent codes wso are sampled using interpolation between

the initial latent codes wini and the flipped latent codes wf . The identity loss, the

LPIPS loss, and the attribute loss are utilized as constraints to disentangle the identity

and pose. This module effectively transfers the pose of wta to the warped latent codes

wwa while remaining other facial features unchanged. The inversion process is utilized

for the visualization purpose.

by the target latent codes. We begin by projecting an initial image Iini into the

style latent space to get the initial latent codes wini = Eθ̂e
(Iini). Then, we obtain an

augmented image Ita by applying bilinear scaling, color jittering, and region masking

operations [184] to Iini. In addition, we obtain a flipped image If with mirror flipping

of Iini. Therefore, If shares the same identity as Iini with a flipped pose. Then, the

target latent codes wta and the flipped latent codes wf can be obtained by wta =

Eθ̂e
(Ita) and wf = Eθ̂e

(If), respectively. Next, we obtain the source latent codes wso
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with a linear interpolation:

wso = β ⋅wini + (1 − β) ⋅wf , (6.9)

where β ∈ [0,1] is a uniform random number. Since wini and wf share the same

facial features except for the pose, the interpolated source codes wso maintain the

same facial identity to wini but have a different pose. The warped latent codes wwa

are obtained by transferring the pose of wta to wso while maintaining the identity of

wso, using our latent warping network Hθh . Finally, we obtain the warped image as

(Fwa, Iwa) = Sθ̂s
(wwa).

Total loss. In order to disentangle the identity and pose during warping, we train

Hθh by utilizing the identity loss, the LPIPS loss, and the attribute loss to constrain

the identity and attribute similarities between wwa and wini. The total training loss

of Hθh is defined as:

O(θh) = λlatent ⋅ (Lid(Iwa, Iini) +Llpips(Iwa, Iini) +Lattr(wwa,wini)), (6.10)

where λlatent is empirically set to 0.1 in this work; Lid, Llpips, and Lattr are the identity

loss, the LPIPS loss, and the attribute loss, respectively, and are defined below.

Identity loss. The identity loss [27, 29] is incorporated to constrain the identity

similarity:

Lid(Ix, Iy) = 1 − cos(R(Ix),R(Iy)), (6.11)

where R(⋅) is a pre-trained ArcFace network [195].
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LPIPS loss. The Learned Perceptual Image Patch Similarity (LPIPS) [196] is

applied to constrain the perceptual similarity:

Llpips(Ix, Iy) = ∥P (Ix) − P (Iy)∥2, (6.12)

where P (⋅) is a pre-trained VGG feature extractor [149].

Attribute loss. The attribute loss [27, 210] is used to constrain the learning in the

style latent space:

Lattr(wx,wy) = ∥wx −wy∥2. (6.13)

Consequently, we can obtain the optimized parameters θ∗h via the minimization of

O(θh). By taking advantage of the code-to-code modulation mechanism of Hθh with

the loss constraints, wwa effectively learns the pose from wta while remaining other

facial features (e.g., identity) of wso unchanged.

Training of multimodal aggregation module, refinement auto-encoder

and discriminator. The identity loss, the LPIPS loss, the diversity-enhanced at-

tribute loss, and the adversarial loss are combined to optimize the multimodal aggre-

gation module, the refinement auto-encoder, and the discriminator.

To learn the mapping between style latent codes and corresponding facial at-

tributes, and to support attribute-conditional editing in the style latent space, a

diversity-enhanced attribute loss Lattr(wo,w) is employed to constrain the consis-

tency between facial attributes of the edited image Iout and the interpolated latent

codes w, where wo = Eθ̂e
(Iout).
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Figure 6.5: Visual comparison to ColDiffusion [12] and Unite&Conquer [13] for text-

driven multimodal facial editing. Our method produces visually appealing and glob-

ally consistent images with good responses to the corresponding multimodal inputs,

and remains unmasked parts unchanged.

Total loss. The total training loss is defined as:

O(θa, θg,θd) = λidLid(Iout, Iex) + λattrLattr(wo,w)

+ λlpipsLlpips(Iout, Igt) +Ladv(Iout, Igt),
(6.14)

where we empirically set λid = 0.1, λlpips = 0.5, and λattr = 0.1 in this work; Ladv is the

adversarial non-saturating logistic loss [41] with R1 regularization [151].

The refinement network Gθg is trained to generate a realistic edited image Iout

while the discrinimator Dθg tries to differentiate between Igt and Iout. In an alternating

fashion, Aθa and Gθg are trained in a phase while Dθd is trained in the other. For

each iteration, we obtain the optimized parameters θ∗a , θ∗g and θ∗d via the minimax

game iteratively.

Implementation without manual annotation. Our framework was imple-
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mented using Python and PyTorch. We trained FACEMUG and our latent warping

module independently. For more implementation details of the latent warping mod-

ule, the multimodal aggregation module, and the training procedures of our networks,

please refer to the supplementary document.

Manual annotations of labeled paired data across different modalities are required

in existing multimodal editing methods [52, 14]. On the contrary, the training modal-

ities (i.e., editing mask, exemplar, semantics, sketch, and color) in this paper were

generated without any manual annotation using well-built methods. The trained

masks were generated randomly with the mask generation algorithm from CMOD [49].

The Face-parsing model [211] was used to extract semantic maps. Hand-drawn-like

sketches were generated using a pencil-sketch filter [18]. Color images were processed

using a mean color of each semantic region. Exemplar images were sampled randomly

from the ground-truth images. By aligning all modalities into a unified generative

latent space, FACEMUG effectively loosens the ties between the paired modalities

and enables model training without any human annotation.

The latent attribute editing module was implemented as follows. For the attribute-

conditional editing, attribute labels employed in InterfaceGAN [134], GANSpace [137],

StyleCLIP [138], and CLIP2StyleGAN [135] were integrated in the module for se-

mantic direction. For the text-driven editing, the edited latent codes were obtained

through 100 ∼ 300 iterations of gradient descent [138] with the learning rate of 0.1.

Following the settings of StyleGANv2 [60], we employed the Adam optimizer with
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the first momentum coefficient of 0.5, the second momentum coefficient of 0.99, and

the learning rate of 0.002. We trained the networks for 800,000 iterations with a

batch size of 8.

6.3 Experimental results and comparisons

6.3.1 Settings

We conducted experimental evaluations on two publicly available and commonly used

benchmark face image datasets: CelebA-HQ [154] and FFHQ [42]. Our FACEMUG

was trained on the training set of FFHQ and evaluated on the testing set of CelebA-

HQ and FFHQ, respectively. In the CelebA-HQ dataset, 2,000 images were randomly

selected for testing. For the FFHQ dataset, 60,000 images were randomly chosen for

training, and the remaining 10, 000 images were used for testing. All images were

resized to the resolution of 256× 256. To ensure a fair comparison, the same training

and testing splits were used for all experiments.

All experiments were conducted on the NVIDIA Tesla V100 GPU. The training

time of our FACEMUG was around one month. We also evaluated FACEMUG on a

PC equipped with an NVIDIA GeForce RTX 4090 GPU. It takes 29 ms (34 FPS) for

each inference.

We quantitatively evaluated the performance by using the Fréchet inception dis-

tance (FID) [155], the unpaired inception discriminative score (U-IDS) [49], and
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Figure 6.6: Visual comparison to PoE-GAN [14]. We used the input modalities and

results published in their paper. The consistency between generated images and

multimodal inputs of FACEMUG is better than that of PoE-GAN.

LPIPS [196] metrics which are robust assessment measures and correlate well with

human perception for the image quality.

We demonstrated the performance of FACEMUG by utilizing various multimodal

inputs. For convenience, we used the following abbreviations for these multimodali-

ties: “+Sk” for adding sketches, “+Se” for adding semantic maps, “+Co” for adding

color information, “+Ex” for adding an exemplar image, “+Te” for adding text. We

used the notation “+Ma” to represent the inclusion of a masked image for local edit-

ing. Different masks may affect the quantitative results because of the variation in

position, size, and shape. We included various types of masks for comprehensive

quantitative evaluation. Each mask was selected randomly from one of the following

types of masks: hair, face, foreground subject, irregular region (50−60% mask ratio),

and a fixed center (128 × 128) rectangle. The center mask was included because it

effectively covers most of the facial region in a facial image. For quantitative compar-
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isons, masks were obtained automatically. Semantics-based masks (hair, face, etc.)

were created with the Face-parsing model [211]. Irregular masks were obtained from

the irregular mask templates [101]. For qualitative comparisons, masks were manually

defined. A consistent set of inputs was used in each comparison to ensure fairness,

both quantitatively and qualitatively. For more experimental results, please refer to

the supplementary document.

6.3.2 Comparison on multimodal facial editing

To evaluate the quality of generated images and the responsiveness of multimodal in-

puts, we performed comparisons against SOTA multimodal facial image editing tech-

niques, including Unite&Conquer [13], Collaborative-Diffusion (ColDiffusion) [12],

and PoE-GAN [14] using multimodal conditional inputs. Unless specified, we em-

ployed officially released pre-trained models of compared methods.

Ground-truth Unite&Conquer
(+Sk+Se)

Guidance Ours
(+Sk+Se)

Mask Ground-truth Unite&Conquer
(+Sk+Se)

Guidance Ours
(+Sk+Se)

MaskOurs
(+Sk+Se+Ma)

Ours
(+Sk+Se+Ma)

Figure 6.7: Visual comparison to Unite&Conquer [13]. We show more FACEMUG

results by adding extra masks. Our method shows better visual quality and preserves

background information when using masks.
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Table 6.1: Quantitative comparison of our method to SOTA multimodal facial editing

methods with sketches, semantic maps, and text on the CelebA-HQ dataset. Bold:

top-1 quantity.

Method FID↓ U-IDS↑ LPIPS↓

ColDiffusion [12] (+Se+Te) 26.87 0 0.5283

Unite&Conquer [13] (+Se+Te) 44.52 0 0.5809

Ours (+Se+Te) 38.41 0 0.4699

Ours (+Se+Te+Ma) 11.85 0.20% 0.1645

Unite&Conquer [13] (+Sk+Se+Te) 45.29 0 0.5493

Ours (+Sk+Se+Te) 32.65 0 0.4046

Ours (+Sk+Se+Te+Ma) 11.24 0.28% 0.1448

Fig. 6.5 shows visual comparisons of our FACEMUG to Unite&Conquer and ColD-

iffusion. It shows that all the compared methods can use semantics or sketches

to control the facial layout while adjusting appearance using given text. However,

Unite&Conquer and ColDiffusion show low consistency between the output image and

the text caption. In contrast, our method is capable of combining the three modal-

ities to perform high-quality multimodal editing. Fig. 6.6 shows visual comparisons

of our FACEMUG to PoE-GAN using text with sketches, semantics, and exemplar,

respectively. The results of PoE-GAN show high-quality and good responses to the

corresponding input modalities. However, for the first case, our method shows a clear
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Figure 6.8: Qualitative comparison of incremental editing (the later editing taking

the previous output image as input), compared to SOTA methods (SemanticStyle-

GAN [6], ColDiffusion [12], DeepFaceEditing [15], SC-FEGAN [16], HFGI [17]) in

row 2, using uni-modality. Our model shows better visual quality.

smile expression, and for the last case, the edited result exhibits more correlation with

the exemplar. For FACEMUG, the semantic maps and sketches provide geometry in-

formation, while text controls the appearance of the generated content. Moreover, by

leveraging the additional masked image, the generated content exhibits high consis-

tency to the input modalities and is coherent to the editing boundary, preserving the

unedited part unchanged. We also show the quantitative comparison of multimodal

editing with ColDiffusion [12] and Unite&Conquer [13] on CelebA-HQ dataset, as

shown in Table 6.1. The semantic maps and text are from CelebAMask-HQ [123]

and CelebA-Dialog [212] datasets, respectively. Guided by semantic maps and text,

both ColDiffusion and Unite&Conquer produce high-quality images yet exhibit lower

consistency with ground-truth images, as reflected by their LPIPS scores. In contrast,

FACEMUG achieves lower LPIPS and competitive FID scores, indicating good fidelity
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pSpGround-truth DeepFaceEditing ControlNet Our results guided by various conditional inputs

Figure 6.9: Visual comparison between our FACEMUG and the SOTA sketch-guided

editing methods (pSp [18], DeepFaceEditing [15], and ControlNet [19]). The sub-

images in each group represent the guidance information for the editing process.

FACEMUG produces images with superior quality and finer details by using more

modalities, and shows global consistency when adding masks for local facial editing.

of our results. When applying a mask to indicate the editing regions, FACEMUG

not only demonstrates improved performance of FID and LPIPS scores but also illus-

trates superior editing quality. Our method achieves the lowest FID scores because

it can modify specific facial attributes within the masked area while maintaining the

unmasked regions unchanged and enhancing the overall image consistency.

We further conducted comparisons between FACEMUG and Unite&Conquer [13],

focusing on facial editing using sketches and semantics. For a fair comparison, given

that Unite&Conquer utilizes only the “skin” and “hair” semantic maps, we accord-

ingly adjusted FACEMUG by removing other semantic labels. As shown in Fig. 6.7,

Unite&Conquer unites multiple diffusion models trained on multiple sub-tasks to per-

form editing with the guidance of sketch and partial semantic labels. However, the

presence of visual artifacts in the edited images indicates that employing disparate off-
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Table 6.2: Quantitative comparison to SOTA multimodal facial image editing meth-

ods with sketches and semantic maps on CelebA-HQ and FFHQ datasets. Bold:

top-1 quantity.

Method
CelebA-HQ FFHQ

FID↓ U-IDS↑ LPIPS↓ FID↓ U-IDS↑ LPIPS↓

Unite&Conquer [13]
44.76 0 0.5350 52.39 0 0.5707

(+Sk+Se)

Ours (+Sk+Se) 29.96 0 0.3999 23.16 0.03% 0.4036

Ours (+Sk+Se+Ma) 10.36 0.63% 0.1371 2.26 30.38% 0.1162

the-shelf diffusion models, trained on different datasets, remains a challenging task.

In comparison, FACEMUG adeptly leverages sketches and partial semantic labels to

facilitate geometry-guided facial generation (+Sk+Se) and editing (+Sk+Se+Ma).

Moreover, the generated contents maintains consistency with the unedited portions.

Table 6.2 displays the FID, U-IDS, and LPIPS scores of each method on CelebA-HQ

and FFHQ datasets. Unite&Conquer introduces a novel reliability parameter to facil-

itate the multimodal mixing of contents generated from various uni-modal diffusion

networks. Nevertheless, our method surpasses Unite&Conquer, exhibiting superior

FID, U-IDS, and LPIPS scores.

Fig. 6.1 and Fig. 6.8 show examples of incremental multimodal local facial editing.

Our FACEMUG incrementally edits the input facial images to achieve high-quality

manipulation by taking advantage of multimodal inputs, including masks, exemplars,
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Our results guided by various conditional inputsGround-truth pSp SEAN SofGAN SDM ColDiffusion Ours

Figure 6.10: Visual comparison between our FACEMUG and the SOTA semantic-

guided editing methods (pSp [18], SEAN [20], SofGAN [21], SDM [22], and ColDif-

fusion [12]). The sub-images in each group represent the guidance information for

the editing process. FACEMUG produces more visually appealing results using more

conditional modalities, and achieves high-quality local facial editing by incorporating

masks.

semantics, sketches, colors, and attribute labels. It is worth noting that incremen-

tal editing is achieved effectively with our unified FACEMUG model, while existing

methods have to use multiple uni-modal models (see Fig. 6.8) and introduce unwanted

modifications on unedited facial features (see Fig. 6.1). By leveraging provided mul-

timodalities, our FACEMUG can edit various realistic facial attributes (e.g., facial

geometry, hairstyle, and decorative goods) while preserving unedited parts unchanged.

User study. We conducted a user study for multimodal facial editing comparing

ColDiffusion and Unite&Conquer with “Se+Te” and “+Sk+Se+Te” configurations.

We sampled 100 images randomly from the CelebA-HQ test set and obtained cor-

responding edited images. 20 pairs of edited images were chosen randomly for each

method-to-method comparison. For FACEMUG, ten edited images were produced
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Table 6.3: The user study results on the CelebA-HQ dataset. We present the per-

centages (%) of cases where our results were preferred over those of the compared

methods.

Configuration Method-to-method comparison Percentage

+Se+Te Ours vs. ColDiffusion [12] 54.90%

+Se+Te Ours vs. Unite&Conquer [13] 76.83%

+Se+Sk+Te Ours vs. Unite&Conquer [13] 77.88%

with additional masks (+Ma), which were selected randomly from hair, face, and

foreground subject masks; the other ten images were produced without masks. The

participants were asked to perform two-alternative forced choices (2AFCs) based on

visual realism and consistency with input modalities. Finally, we recruited 52 partic-

ipants, resulting in 1040 votes per comparison.

Table 6.3 shows the user study results. With the “+Se+Te” configuration, our

FACEMUG received 54.90% and 76.83% of the preference votes compared to ColD-

iffusion (45.10%) and Unite&Conquer (23.17%), respectively. Our FACEMUG also

surpassed Unite&Conquer with 77.88% of majority votes with the “+Sk+Se+Te”

configuration. The user study validated that our FACEMUG effectively produces

realistic facial images by taking advantage of multimodal local facial editing.
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Table 6.4: Quantitative comparison to SOTA sketch-guided facial image editing meth-

ods (+Sk) on CelebA-HQ and FFHQ datasets. Bold: top-1 quantity.

Method
CelebA-HQ FFHQ

FID↓ U-IDS↑ LPIPS↓ FID↓ U-IDS↑ LPIPS↓

TediGAN [52] 42.83 0 0.4909 85.17 0 0.6031

pSp [18] 42.70 0 0.4911 85.16 0 0.6031

DeepFaceEditing [15] 19.78 0 0.2796 11.59 5.13% 0.2850

ControlNet [19] 64.59 0 0.5530 62.31 0 0.5475

Ours (+Sk) 36.58 0 0.4071 24.29 0 0.4096

Ours (+Sk+Co) 17.43 0 0.2936 9.12 9.59% 0.2815

Ours (+Sk+Ma) 11.43 0.52% 0.1444 2.49 29.51% 0.1259

6.3.3 Comparison on sketch-guided facial editing

We compared FACEMUG to the SOTA sketch-guided facial editing methods, includ-

ing pSp [18], DeepFaceEditing [15] and ControlNet [19]. The pre-trained models of

pSp and DeepFaceEditing provided in the official online repository were used in this

experiment. For ControlNet, we fine-tuned the officially provided pre-trained weights

on the FFHQ training set with corresponding sketches. To ensure optimal perfor-

mance, we used default forms of sketches that were used during training for each

method.

As depicted in Fig. 6.9, all the compared methods are capable of generating high-

quality images guided by sketches. However, pSp may neglect some facial attributes,
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like glasses from input sketches. Even conditioned on facial appearance and sketches,

DeepFaceEditing exhibits some visual artifacts in edited outputs. While ControlNet

can generate high-quality results, it needs several denoising steps and depends on

high-quality prompts. Without colors and unmasked background information (third

last column), the color richness generated by FACEMUG may be affected. By in-

corporating both colors and sketches as guidance (second last column), FACEMUG

can produce facial images with high fidelity. Our method (last column) demonstrates

sketch-guided local facial editing, showcasing our method’s ability to achieve high-

quality facial image editing by leveraging unmasked pixels and input sketches while

preserving the unedited regions unchanged.

Table 6.4 presents a quantitative comparison between FACEMUG and the exist-

ing SOTA approaches. All methods demonstrate good FID scores on both datasets.

DeepFaceEditing achieves competitive FID and U-IDS scores by utilizing sketch and

appearance information extracted from ground-truth images. Since sketches lack color

and appearance information, the performance of FACEMUG (+Sk) may be limited.

FACEMUG (+Sk+Co), which incorporates color as guidance information, further en-

hances the visual quality. FACEMUG (+Sk+Ma) surpasses all the compared methods

by leveraging background information, demonstrating superior performance.
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Table 6.5: Quantitative comparison to SOTA semantic-guided facial image editing

methods (+Se) on CelebA-HQ and FFHQ datasets. Bold: top-1 quantity.

Method
CelebA-HQ FFHQ

FID↓ U-IDS↑ LPIPS↓ FID↓ U-IDS↑ LPIPS↓

TediGAN [52] 45.19 0 0.5208 85.50 0 0.6109

pSp [18] 45.19 0 0.5208 85.50 0 0.6109

SEAN [20] 28.74 0 0.2595 26.55 1.5% 0.3801

SofGAN [21] 38.88 0 0.6369 15.43 8.14% 0.6297

SDM [22] 27.61 0 0.4995 - - -

ColDiffusion [12] 30.22 0 0.5280 76.73 0 0.5937

Ours (+Se) 41.18 0 0.4462 43.78 0 0.4536

Ours (+Se+Co) 31.02 0 0.3691 14.08 8.09% 0.3018

Ours (+Se+Ma) 10.65 0.53% 0.1570 2.41 28.99% 0.1356

6.3.4 Comparison on semantic-guided facial editing

We compared FACEMUG to the SOTA semantic-guided facial editing methods, in-

cluding pSp [18], SEAN [20], SofGAN [21], SDM [22], and ColDiffusion [12]. The

pre-trained models of the compared methods provided in the official online repository

were used in this experiment.

As shown in Fig. 6.10, all methods can generate high-quality images guided by

semantic maps. However, pSp and ColDiffusion may not accurately capture certain

attributes (e.g., the shape of the glasses). SofGAN may produce facial images with less
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GT IDE-3D Ours

GT IDE-3D Ours

Figure 6.11: Visual comparison of the semantic-guided local facial editing with zoom-

in details between IDE-3D [23] and FACEMUG. Sub-images are the guidance infor-

mation. The result of IDE-3D was obtained from the paper [23].

defined details. SDM and ColDiffusion are capable of generating superior images but

at the cost of longer computation time. Additionally, above compared methods fail to

preserve the unedited regions surrounding the editing area. In contrast, FACEMUG

(third last column) conditioned by semantic maps exhibits clear manifestations of

semantic maps. When guided by color information as well (second last column), our

method demonstrates superior visual performance. Furthermore, FACEMUG (last

column) allows for local facial editing guided by semantic maps, preserving known

regions while providing more flexibility for interactive facial attribute manipulation.

FACEMUG consistently produces high-quality results with facial attributes guided

by semantic maps.

Table 6.5 presents the quantitative performance of the compared methods. SDM

and ColDiffusion achieve good FID scores when conditioned by semantic maps. With-

out colors and unmasked pixels, the performance of FACEMUG (+Se) is limited. In-
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Figure 6.12: Visual performance of our FACEMUG with various modal inputs. The

masked image was utilized for all outputs. There are a total of 32 combinations

(subsets) of five modalities. Our FACEMUG generates visually appealing results and

shows high global consistency to the unedited regions.
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Figure 6.13: Visual comparison of the ablation study on the latent warping module

(from left to right in each group): the masked image, the exemplar image, inversion

of latent codes of the exemplar image, the editing result without the latent warping

module (+Ex w/o warping), inversion of warped latent codes of the exemplar image,

and the editing result with the latent warping module (+Ex). Our warping module

improves the visual quality when the pose misalignment happens between the edited

image and the exemplar.

corporating colors significantly improves the performance of FACEMUG (+Se+Co).

With the ability to edit masked regions while preserving unmasked pixels, FACE-

MUG (+Se+Ma) achieves the best FID, U-IDS, and LPIPS scores for both datasets.

FACEMUG outperforms the compared models in terms of the authenticity of locally

edited facial images guided by semantic maps.

Fig. 6.11 shows the visual comparison between FACEMUG and the SOTA 3D-

aware facial editing method, IDE-3D [23]. Both methods achieve high-quality editing.

IDE-3D supports 3D face synthesis but may result in some losses in facial details

during GAN inversion, such as moles and eyelids. In comparison, FACEMUG excels

at preserving unedited facial attributes but faces challenges in reconstructing 3D
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facial geometry. Combining the strengths of both methods could contribute to a

more advanced multimodal facial editing framework.
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Figure 6.14: Quantitative comparison of the ablation study on the latent warping

module on the FFHQ dataset. “+Ex w/o warping”: the exemplar image without the

latent warping module used; “+Ex”: the exemplar image with the latent warping

module used. Other modalities were not used.

6.3.5 Ablation study

Ablation study on multimodal inputs. We also conducted experiments to eval-

uate the effects of multimodal inputs on our FACEMUG framework. Fig. 6.12 show-

cases editing examples of FACEMUG using a total of 32 input configurations of five

modalities. Generally, when multimodalities are consistent with each other, incorpo-

rating more modalities achieves much better visual quality. “None” means that only

the masked image is utilized for image inpainting. When using sketches or semantic

maps, FACEMUG clearly exhibits the structure of inputs. Incorporating colors en-

hances texture details and produces faithful edited results. Example images further
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help transfer the styles and facial identity to the edited regions. With the guidance of

the text, more detailed facial attributes can be manipulated. Utilizing all modalities

(five modalities) information allows FACEMUG to achieve the best overall perfor-

mance. It also demonstrates that our method can work well on all the subsets of five

modalities.

Ablation study on latent warping module. We conducted a study to assess

the effectiveness of our latent warping module. Various irregular masks with different

mask ratios [101] and a fixed center 25% (128 × 128) rectangular mask were used to

simulate different editing situations. We show visual examples in Fig. 6.13. We can

find that our latent warping module effectively aligns the exemplar pose to the edited

image while preserving the facial attributes and identity of the exemplar images. As

shown in Fig. 6.14, the quantitative performance results demonstrate that our latent

warping module achieves better quantitative performance (+Ex) compared to not

using it (+Ex w/o warping). Since the edited and exemplar images contain different

poses, directly transferring features to target regions may cause obvious artifacts.

Our latent warping module mitigates this issue by adapting the exemplar pose to

align with the edited image in the style latent space, thereby avoiding the boundary

issue during editing.

Ablation study on other main components. Here, we explored the image

generation performance of other main components by comparing FACEMUG to its

five variants on the FFHQ dataset with 50− 60% mask ratios, as shown in Table 6.6.
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Table 6.6: Ablation study of the image generation performance of other main com-

ponents on the FFHQ dataset with 50 − 60% mask ratios. (A) represents our full

model (FACEMUG). (B) replaces our style fusion blocks with element-wise addition

operations. (C) replaces our style fusion blocks with gated convolution blocks [26].

(D) replaces our diversity-enhanced attribute loss with the attribute loss [27]. (E)

removes the facial feature bank. Bold: top-1 quantity.

Method FID↓ U-IDS↑ LPIPS↓

A 3.274 28.14% 0.1917

B 3.829 24.05% 0.2010

C 3.478 26.70% 0.1954

D 3.599 26.44% 0.1991

E 3.725 25.26% 0.1971

We tested to replace our fusion blocks with element-wise addition operations (B) and

gated convolution blocks [26] (C). The quantitative performance of models (B) and

(C) exhibited a certain degree of decline, compared to our full model (A). When

replacing our diversity-enhanced attribute loss with the attribute loss [27] (D), the

quantitative measures also show a decrease. We also show FACEMUG’s effectiveness

by removing the facial feature bank (E). The quantitative scores dropped significantly,

underscoring the importance of the facial feature bank for high-quality results.
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Figure 6.15: The architecture of the latent warping network.

6.4 More implementation details

6.4.1 Latent warping module

Let wta ∈ Rt×512×1 and wso ∈ Rt×512×1 be the target and source latent codes, and

wr = wta − wso be the residual latent codes between wta and wso. As illustrated

in Fig. 6.15 (right), each code-to-code modulation block computes channel-based

attention [147], position-based attention [147], and gated maps [26] between wr and

179



∆w
i−1, and outputs the latent codes ∆w

i (i = 1,2,3,4):

wq = FC(wr),wk = FC(∆w
i−1),wv = FC(∆w

i−1),

ac = Softmax(wq ⋅wk⊺/τ1) ⋅wv,

ŵq = FC(wr), ŵk = FC(∆w
i−1), ŵv = FC(∆w

i−1),

ap = ŵv ⋅ Softmax(ŵq⊺ ⋅ ŵk/τ2),

ξ = σ(MLP(wr)), µ = ϕ(MLP(wr)),

∆w
i = LayerNorm(ap + ac)⊙ (ξ + 1) + µ,

(6.15)

where wq, wk, wv, ac, ŵq, ŵk, ŵv, ap, ξ, µ, and ∆w
i have the same dimension as wso,

and ∆w
0 = wso. We set τ1 =

√
t and τ2 =

√
512. Our code-to-code modulation block

calculates query projections (wq and ŵq), key projections (wk and ŵk), and value

projections (wv and ŵv) to obtain channel-based and position-based cross-attention

maps, respectively. This allows us to obtain the reorganized latent codes ac and ap.

The gated maps ξ and the bias µ are utilized to assign importance weights and offsets

to each element. FC(⋅) is a fully connected layer; Softmax(⋅) is the softmax activation;

MLP(⋅) is a stack of two fully connected layers; LayerNorm(⋅) is the LayerNorm layer.

The latent warping network Hθh(⋅) outputs the latent codes ∆w
4 and we can obtain

the warped latent codes wwa =∆w
4 +wso. By leveraging the code-to-code modulation

mechanisms, our latent warping module can effectively align the pose of the source

latent representations with the target latent codes.
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Figure 6.16: Illustration of the multimodal aggregation module.

6.4.2 Multimodal aggregation module

As shown in Fig. 6.16, for the given pixel-wise multimodal inputs X = {Im, I1, I2, . . . , In},

we first employ a residual block to extract feature maps for each modality, resulting

in a feature set {Fa
0,F

a
1,F

a
2, . . . ,F

a
n}, where Fa

j ∈ Rh×w×ca and j = 0,1, . . . , n. Sub-

sequently, a shared residual block is utilized to compute the contribution scores

for each spatial point across all pixel-wise modalities, producing n + 1 score maps

{B0,B1,B2, . . . ,Bn}, where Bj ∈ Rh×w and j = 0,1, . . . , n. To obtain the normalized

contribution score for each modality, the softmax activation is applied to normalize

scores along the channel dimension. Specifically, the normalized score map B̂k ∈ Rh×w

for the k-th modality is computed as follows:

B̂(u, v)k =
exp (B(u, v)k)
∑n

j=0 exp (B(u, v)j)
, (6.16)

where (u, v) denotes the spatial point. The contribution score map adaptively weights

the importance of each modality in a pixel-wise fashion for the aggregation process.
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This adaptive weighting mechanism allows the model to assign higher importance to

the more informative and detailed pixel-wise modalities while reducing the impact of

less informative inputs. The final aggregated multimodal feature is obtained with the

broadcasting technique:

F̂a =
n

∑
j=0

Fa
j ⊙ B̂j. (6.17)

6.4.3 Training of multimodal aggregation module, refinement

auto-encoder and discriminator

The identity loss, the LPIPS loss, the diversity-enhanced attribute loss, and the adver-

sarial loss are combined to optimize the multimodal aggregation module, refinement

auto-encoder, and discriminator.

Identity loss. The identity loss Lid(Iout, Iex) is employed to constrain the identity

similarity between the edited image Iout and the exemplar image Iex.

The identity loss [27, 29] is defined as:

Lid(Iout, Iex) = 1 − cos(R(Iout),R(Iex)), (6.18)

where R(⋅) is a pre-trained ArcFace network [195].

LPIPS loss. The LPIPS loss Llpips(Iout, Igt) is applied to enforce the perceptual

similarity between Iout and Igt. When Igt and Iex are not from the same image, we

set Llpips(Iout, Igt) = 0.
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The LPIPS loss [196] is defined as:

Llpips(Iout, Igt) = ∥P (Iout) − P (Igt)∥2, (6.19)

where P (⋅) corresponds the pre-trained perceptual feature extractor VGG [149].

Diversity-enhanced attribute loss. In order to learn the mapping between style

latent codes and corresponding facial attributes, and support attribute-conditional

editing in the style latent space, we propose a diversity-enhanced attribute loss to

constrain the consistency between facial attributes of the edited image Iout and the

interpolated latent codes w. To emulate the latent editing process during the training

phase, our approach involves style mixing and interpolation operations. We first apply

the style mixing [60] to get mixed latent codes ŵz from two random latent codes. Then

we generate exemplar latent codes we = Eθ̂e
(Iex) and interpolate between ŵz and we

to obtain the interpolated latent codes w:

ŵz =Mixing(Fθ̂f
(z1), Fθ̂f

(z2)),

w =α ⋅we + (1 − α) ⋅ ŵz,

(6.20)

where z1 ∈ Z and z2 ∈ Z are two random latent codes, α ∈ [0,1] is the uniformly

sampled random number, and we set α = 1.0 when Igt = Iex. Then, we modulate the

interpolated latent codes w into the multimodal generator to obtain the edited image

Iout. We then apply the attribute loss to constrain the training in the style latent

space, i.e., Lattr(wo,w), where wo = Eθ̂e
(Iout).

The attribute loss [27, 210] is defined as:

Lattr(wo,w) = ∥wo −w∥2. (6.21)
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The diversity-enhanced attribute loss is designed to mimic the latent attribute

editing process, promoting a diverse range of embedded latent codes throughout train-

ing. By exposing the multimodal generator to a wide variety of mapping cases, the

model becomes more effective in handling potential latent codes, thereby improving

the latent attribute editing capability.

Adversarial loss. We use the adversarial non-saturating logistic loss [41] with R1

regularization [151]:

Ladv(Iout, Igt) = EIout[log(1 −D(Iout)]

+EIgt[log(D(Igt))] −
γ

2
EIgt[∥∇IgtD(Igt)∥22],

(6.22)

where γ = 10 is used to balance the R1 regularization term.

Total loss. The total training loss is defined as:

O(θa, θg,θd) = λidLid(Iout, Iex) + λattrLattr(wo,w)

+ λlpipsLlpips(Iout, Igt) +Ladv(Iout, Igt),
(6.23)

where λid = 0.1, λlpips = 0.5, and λattr = 0.1 in this work.

For each iteration, we obtain the optimized parameters θ∗a , θ∗g and θ∗d via the

minimax game iteratively:

(θ∗a , θ∗g) = arg min
θa,θg

O(θa, θg, θd),

θ∗d = arg max
θd

O(θa, θg, θd).
(6.24)

The refinement network Gθg is trained to generate a realistic edited image Iout

while the discrinimator Dθg tries to differentiate between Igt and Iout. In an alternating

fashion, Aθa and Gθg are trained in a phase while Dθd is trained in the other. Note

184



that θ̂f , θ̂e, and θ̂s are keeping unchanged. During training, we attempted to embed

all pixel-wise modalities in each iteration, but the model tended to overfit with the

combined modalities and struggled with missing ones. As a solution, we randomly

removed pixels and dropped out some input modalities for each training iteration,

enhancing the robustness of missing modalities during inference.

6.4.4 Training peseudo-codes

The pseudo-codes of our training procedures are provided in Algorithm 3, Algorithm 4

and Algorithm 5. The threshold ρ ∈ [0,1] is used to control the probability that

the sampled ground-truth image and exemplar image are the same. The threshold

ω ∈ [0,1] and the random masks M̂ are used to control the sparsity for multimodal

inputs. We set ρ = 0.5 and ω = 0.8 in this paper.

6.5 More experimental results and comparisons

6.5.1 Comparison on color-guided facial editing

We compared FACEMUG to SC-FEGAN [16] on color-guided facial editing using

sketches and colors. We masked out the edited pixels and utilized the corresponding

color information to guide makeup generation. To preserve the source facial structures

and other facial attributes, we extracted sketches using a Canny edge detector to

extract sketches for guiding the generation of facial geometry. Fig. 6.17 presents
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Algorithm 3 Training procedure of the style encoder

1: while Eθe have not converged do

2: Sample batch images Igt from training data

3: Set exemplars from ground-truth I0 ← Igt

4: Sample corresponding multimodal inputs I1,I2, . . . ,In

5: Create random masksM

6: Sample a random number r ∈ [0, n]

7: for i = 0 to n do

8: if r = i then

9: Get masked modality Ii ←M⊙ Ii

10: else

11: Set modality Ii to be zero tensor

12: Set inputs X ← {I0,I1,I2, . . . ,In}

13: Get projected latent codes wp
← Eθe(X )

14: Get a reconstructed image Ip ← Sθ̂s
(wp
)

15: Update θe using the total loss defined in e4e

visual illustrations of editing results. Results from SC-FEGAN show clear responses

to the input sketches and colors. However, some visual artifacts are noticeable in

the masked regions. In contrast, FACEMUG utilizes sketches for facial geometry and

colors for color editing to enable customized makeup editing within editing regions.

Our style fusion blocks efficiently utilize extracted features to produce more visually

appealing results.
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Figure 6.17: Visual comparison of color-guided facial editing between SC-FEGAN [16]

and ours: (first two rows) sub-images represent the colors and masked images with

sketches; (bottom row) diverse editing results guided by different color maps. Our

method produces images with higher quality.

Algorithm 4 Training procedure of our latent warping module

1: while Hθh has not converged do

2: Sample batch images Igt from training data

3: Calculate augmented images Ita from Igt

4: Calculate mirror flipped images If from Igt

5: Get ground-truth latent codes wgt
← Eθ̂e

(Igt)

6: Get target latent codes wta
← Eθ̂e

(Ita)

7: Get flipped latent codes wf
← Eθ̂e

(If)

8: Sample a random number β ∈ [0,1]

9: Get source latent codes wso
← β ⋅wgt

+ (1 − β) ⋅wf

10: Get results wwa
←Hθh(w

ta
−wso,wso

) +wso

11: Update θh with Lattr, Lid, and Llpips
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Algorithm 5 Training procedure of the multimodal aggregation module, the refinement

auto-encoder, and the discriminator
1: while Aθa , Gθg , and Dθd have not converged do

2: Sample batch images Igt from training data

3: Sample corresponding multimodal inputs I1,I2, . . . ,In

4: Create random masksM

5: Sample a random number r ∈ [0,1]

6: if r > threshold ρ then

7: Sample exemplars Iex from training data

8: Set I1,I2, . . . ,In to be zero tensors

9: else

10: Set exemplars from ground-truth Iex ← Igt

11: Sample random numbers q1, q2, . . . , qn ∈ [0,1]

12: for i = 1 to n do

13: if qi > threshold ω then

14: Set modality Ii to be zero tensor

15: else

16: Create random masks M̂

17: Get masked modality Ii ← M̂⊙M⊙ Ii

18: Get masked images Im ← Igt ⊙ (1 −M)

19: Set inputs X ← {Im,I1,I2, . . . ,In}

20: Get exemplar latent codes we
← Eθ̂e

(Iex)

21: if r > threshold ρ then

22: Sample random latent vectors Z1 and Z2

23: Get mixed codes ŵz
←Mixing(Fθf (Z1), Fθf (Z2))

24: Sample a random number α ∈ [0,1]

25: Get interpolated codes w ← α ⋅wz
+ (1 − α) ⋅ ŵe

26: else

27: Get codes from exemplar latent codes w ← we

28: Get projected latent codes wp
← Eθ̂e

(X )

29: Extract facial features from the StyleGAN generator Fs
← Sθ̂s

(wp
)

30: Extract aggregated features Fa
← Aθa(X )

31: Get Iout ← Im ⊙ (1 −M) +Gθg(F
a, w,Fs

)⊙M

32: Update θg with Ladv, Lid, Llpips, and Lattr

33: Update θd with Ladv
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Figure 6.18: Visual comparison of attribute-conditional editing between HFGI [17]

and our FACEMUG. For FACEMUG, the left sub-images in each group represent the

attribute label (top) and editing regions (bottom). FACEMUG shows more flexible

attribute-conditional editing by only manipulating selected regions (e.g., first row,

middle, wink expression), and keeps unrelated features unchanged to show better

visual quality and global consistency.

6.5.2 Comparison on local attribute-conditional facial edit-

ing

Through aligning our latent space with theW+ style latent space [60], we demonstrate

that our approach is not only capable of performing attribute-conditional facial edits

using off-the-shelf latent-based semantic editing techniques [134, 24, 137, 135], but

also retains the integrity of unedited regions.

Fig. 6.18 shows how our method can carry out attribute-conditioned semantic

modifications on masked relevant semantic areas. The compared method HFGI [17]

alters unwanted facial attributes or background information, while our approach en-

sures the background information (unmasked area) remains unchanged. Additionally,

FACEMUG exhibits the capability to execute more complex edits, such as producing
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OursStyleMapGAN ILVR SemanticStyleGAN

Figure 6.19: Visual comparison of our FACEMUG to the SOTA exemplar-guided

editing methods (StyleMapGAN [5], ILVR [7], and SemanticStyleGAN [6]): top-left

(masked image), bottom-left (exemplar image), right (results). FACEMUG shows

seamless incorporation of exemplar facial attributes while keeping unmasked regions

unchanged and achieving global consistency.

a winking expression, attributable to its flexibility in choosing editing regions.

6.5.3 Comparison on exemplar-guided facial editing

We also show the comparison with StyleMapGAN [5], ILVR [7], and SemanticStyle-

GAN [6] for exemplar-guided editing. To ensure proper facial alignment between the

exemplar image and the input image, we extracted the roll, pitch, and yaw angles from

the CelebAMask-HQ [123] dataset. Subsequently, we selected 550 pairs with similar

poses from the testing set of CelebA-HQ. For each pair, we alternately used one facial

image as the exemplar and the another as the masked input image to perform edit-

ing. The masked regions were replaced with corresponding exemplar facial features.

Publicly available trained models were utilized to generate the editing results.
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Table 6.7: Quantitative comparison of our method to existing exemplar-guided edit-

ing. Bold: top-1 quantity.

Metric StyleMapGAN [5] ILVR [7] SemanticStyleGAN [6] Ours

FID↓ 24.59 62.27 32.54 13.28

LPIPS↓ 0.5833 0.3495 0.5801 0.0851

As shown in Fig. 6.19, although most methods produce plausible results, some vis-

ible boundary inconsistencies can be found in the details of SemanticStyleGAN, ILVR,

and StyleMapGAN. Moreover, these compared methods may introduce unwanted

changes in the background or unedited regions. Our FACEMUG can seamlessly fill in

the masked pixels using exemplar-like attributes without changing unmasked areas,

yielding high-quality editing results while avoiding the above artifacts.

Table 6.7 shows the quantitative performance of compared methods. It shows that

exemplar-guided editing is still a challenging task. For SemanticStyleGAN and ILVR,

directly filling the corresponding exemplar’s facial features into the masked regions

may cause obvious artifacts. The style maps in StyleMapGAN can help achieve more

harmonious editing results, but it still shows limits on exemplar-guided editing. Our

FACEMUG achieves the best FID and LPIPS scores, indicating that the edited images

from FACEMUG obtain the highest visual quality.
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Source OursStyleFlow Source OursStyleFlow Source OursStyleFlow

Figure 6.20: Visual comparison to StyleFlow [24] on pose editing. Our warping

module shows better visual quality and visual consistency for facial attributes.

Source OurspSp Source OurspSp Source OurspSp

Figure 6.21: Visual comparison to pSp [18] on face frontalization. Our warping

module provides superior visual quality and maintains the consistency of attributes.

FaceReenactment Ours FaceReenactment Ours FaceReenactment OursSource Target Source Target Source Target

Figure 6.22: Visual comparison to FaceReenactment [25] on pose transfer. Our warp-

ing module ensures enhanced visual quality and consistency of facial features.

6.5.4 Comparison on guided facial pose editing

To further demonstrate the effectiveness of our latent warping module, we conducted

comparisons with SOTA latent-based facial pose editing methods, including Style-

Flow [24], pSp [18], and FaceReenactment [25] on pose editing, face frontalization,

and pose transfer, respectively. We utilized their pre-trained models and codes ob-

tained from their official websites. Fig. 6.20 shows visual examples of editing cases
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Figure 6.23: Incremental local facial editing examples with our FACEMUG. Each

row: given an input image (first row), FACEMUG incrementally edits the facial image

with blemish removal, exemplar-guided facial style transfer, semantic-guided attribute

edits, sketch-guided hairstyle edits, color-guided makeup, and attribute-conditioned

semantic edits (e.g., gender, age, and expression). For each group, FACEMUG only

edits the masked area (bottom-left) guided by the guidance information (top-left) to

produce the edited image (right). In the last row’s first edit, we copy the hat to the

input image and regenerate boundaries seamlessly.

from StyleFlow and ours. StyleFlow excels in editing facial orientation while pre-

serving identity and other facial attributes. However, we observed minor changes

in decorative attributes and expressions. In contrast, our latent warping module

achieves more natural editing, ensuring consistency in facial attributes through our

self-supervised training. Fig. 6.21 shows that pSp demonstrates face frontalization

capabilities but exhibits minor visual artifacts in the generated results. On the con-

trary, our latent warping module produces more pleasing outcomes. Moreover, we

computed the cosine similarity (CSIM [25]) of ArcFace between frontalized images

and the ground-truth images for each method on prepared image pairs from Subsec-
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Figure 6.24: More multimodal local facial editing examples with our FACEMUG.

Sketches, semantic maps, colors, exemplars, and attribute labels were utilized for

these editing results.

Figure 6.25: Examples of sketch-guided facial attribute editing with FACEMUG:

texture editing, structure editing, hairstyle editing, and expression editing. For each

group: (left) ground-truth, (top-middle) free-hand sketches, (bottom-middle) masked

image, and (right) editing result.

tion 6.5.3. Compared to pSp with the CSIM score of 0.035, our FACEMUG achieves

the CSIM score of 0.835, demonstrating the superiority of our method in preserving

facial identity. Fig. 6.22 shows that FaceReenactment focuses on transferring the

facial pose from a target image to a source face. Compared to FaceReenactment, our

warping module effectively transfers the facial pose of source images to the target

faces with high fidelity.
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Figure 6.26: Examples of semantic-guided facial attribute editing with FACE-

MUG: chin editing, hairstyle editing, hair removal, and accessory addition. For

each group: (left) ground-truth, (top-middle) hand-edited semantic maps, (bottom-

middle) masked image, and (right) editing result.

6.5.5 More results on multimodal facial editing

Here, we show more results guided by multimodalities, including incremental local

facial editing in Fig. 6.23 and multimodal local facial editing in Fig. 6.24. We also show

more facial structure editing of FACEMUG by utilizing free-hand sketches and hand-

edited semantic maps. As illustrated in Fig. 6.25, our FACEMUG framework allows

for facial attribute editing using sketches. When provided with masked images and

free-hand facial sketches, our method is capable of performing editing on various facial

features such as texture (wrinkles and beards), structure (nose and chin), hairstyles,

and expressions (mouth and eyes) while preserving the unedited regions unchanged.

As displayed in Fig. 6.26, FACEMUG endows users with the capability to edit chins,

remove hair, modify hairstyles, and add accessories, all utilizing the provided masked

images and semantic maps. Our approach generates visually appealing and globally

consistent images, effectively responding to multimodal inputs while preserving the
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unmasked areas.

6.6 Summary

In this chapter, we have explored a novel multimodal generative and fusion framework

(FACEMUG) for globally-consistent local facial editing, which generates realistic fa-

cial features in response to multimodal inputs on the edited regions while maintaining

visual coherence with unedited parts. FACEMUG takes advantage of diverse input

modalities (e.g., sketches, semantic maps, color maps, exemplar images, text, and at-

tribute labels) to perform fine-grained and semantic facial editing on geometry, color,

expressions, attributes, and identity within edited regions, and allows for incremental

edits. Extensive experiments have demonstrated the effectiveness of the proposed

method.

Limitations and future work. Our approach comes with certain limitations.

First, although the inference of FACEMUG is fast, the training of FACEMUG is

time-intensive and requires approximately one month to complete on a V100 GPU.

We plan to develop a more lightweight model to expedite FACEMUG’s training pro-

cess in the future. Second, because of the limited training data, the pre-trained Style-

GAN struggles to generate relatively extreme expressions, poses, and appearances,

potentially leading to FACEMUG failures in these domains. A more expressive and

powerful pre-trained StyleGAN will improve our model. Third, like most multimodal

editing algorithms [14], FACEMUG may not generate satisfying results when different
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modalities contain contradictory guiding information. Designing a more sophisticated

technique to reweight the contribution of each modality would be a promising step

forward. Finally, an interesting future direction is to incorporate more modalities,

such as text and audio, into our multimodal aggregation module to achieve more

diverse editing. A possible solution is to employ facial landmarks as an intermediate

motion representation [213].

197



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis introduces four innovative methods for manipulating face images using

advanced generative models. We started with a diffusion-based style prompt frame-

work for blind face restoration; then, we designed the GRIG for data-efficient image

inpainting. To explore conditional image inpainting and editing, we proposed the

EXE-GAN for interactive facial inpainting using exemplar images. We finally de-

signed the FACEMUG to investigate multimodal facial manipulation.

First, the diffusion-based style prompt framework uses a SMART layer and a

style prompt module to greatly improve the quality of blind face restoration, demon-

strating its utility in practical applications. Second, GRIG employs iterative residual

reasoning with image-level and patch-level discriminators, enhancing data efficiency
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in image inpainting and setting new performance benchmarks across both small and

large datasets. Third, EXE-GAN uses exemplar facial attributes to produce realistic

and visually consistent outcomes, highlighting the effectiveness of attribute-driven

generative models. Fourth, FACEMUG utilizes various input modalities to ensure

high visual consistency between edited and unedited regions, proving the strength of

integrating multiple modalities in generative networks. These methods improve the

visual quality of the results and streamline processes to more accurately mimic human

visual perception. The extensive experiments and applications have demonstrated the

effectiveness of the proposed methods.

7.2 Limitations and discussions

While our proposed methods demonstrated considerable advancements, they come

with certain limitations. First, like most blind facial restoration algorithms, our style

prompt framework may not work well on highly complex backgrounds. That might

be caused by the lack of sufficiently diverse background data in the training set. De-

signing a more sophisticated technique to decouple the foreground and background

restoration would be a promising direction. Second, GRIG is not specialized in diverse

image inpainting. Using a mapping network to embed random style codes into the

generator could be a good solution for the diversity of data-efficient image inpaint-

ing. Third, for the EXE-GAN, the explicit mapping between the facial attribute and

the embedded style codes, on the other hand, is still unknown [18]. Incorporating a
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more advanced embedding algorithm into our pipeline could be a good next step. The

trained model works well for aligned images because the facial images in the experi-

mented training datasets [154, 42] are highly aligned. It is necessary to align and crop

the inputs before inpainting nonaligned images. It would be preferable to train models

on unstructured datasets to create a more sophisticated algorithm. Fourth, although

the inference of FACEMUG is fast, the training of FACEMUG is time-intensive and

requires approximately one month to complete on a V100 GPU. We plan to develop

a more lightweight model to expedite FACEMUG’s training process in the future. In

addition, because of the limited training data, the pre-trained StyleGAN struggles to

generate relatively extreme expressions, poses, and appearances, potentially leading

to FACEMUG failures in these domains. A more expressive and powerful pre-trained

StyleGAN will improve our model. Moreover, like most multimodal editing algo-

rithms [14], FACEMUG may not generate satisfying results when different modalities

contain contradictory guiding information. Designing a more sophisticated technique

to reweight the contribution of each modality would be a promising step forward.

7.3 Future work

Current models excel at capturing major facial features like expressions and poses but

often overlook finer details such as decorative goods or facial textures. Future research

could aim to enhance the models’ ability to recognize and preserve these smaller

details. Incorporating advanced features like the Transformer [46] and Mamba [214]
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into existing models could improve their accuracy in maintaining both overall and

detailed aspects of images.

As technologies for creating fake images and videos advance, the potential for mis-

use increases. Future efforts should concentrate on developing robust and transparent

methods to detect and counteract these threats. This is crucial for safeguarding pri-

vacy and maintaining trust in digital media.
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