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Abstract

The accelerated failure time (AFT) model is widely used in survival analysis and
auxiliary information can be used to improve the efficiency of the model. We developed
a weighted AFT model by using empirical likelihood probabilities as weights based
on information from previous studies. The proposed model effectively overcomes
the challenges associated with managing censored observations, resulting in more
reliable and accurate estimates. Theoretical justifications of the proposed model are
developed.

A comprehensive simulation study was conducted to assess the effectiveness of the
proposed weighted models, incorporating both partial and complete auxiliary informa-
tion. Both the Standard Accelerated Failure Time (AFT) and AFT with Generalized
Estimating Equations (AFTGEE) models were employed for this comparative analy-
sis. The simulation results suggest that when estimating coefficients, weighted models
incorporating complete or partial auxiliary information on the linked covariate pro-
vide more accurate estimates compared to the model without any weights. Finally,
the proposed method was implemented on a real dataset, illustrating its ability to
accurately determine coefficients, minimize standard errors, and enhance significance
levels by incorporating auxiliary information.
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Chapter 1

Introduction

1.1 Survival Analysis

Survival analysis is a statistical methodology used to analyze and interpret time-to-
event data, involves various models and techniques, including the key tools in ana-
lyzing time-to-event data such as Kaplan-Meier estimator, Cox Proportional Hazards
model, Parametric Survival Models, and Accelerated Failure Time (AFT) models.
These techniques aim not only to estimate the probability of an event occurring over
time but also to identify factors associated with the occurrence of the event. Sur-
vival analysis was initially developed for assessing patient survival rates in medical
research, this analytical method has expanded well beyond its original scope. It now
finds widespread use in numerous fields, including finance, engineering, sociology, and
others.

Ajay et al. [2021] discussed the applications of survival analysis, highlighting its
broad utility across health and economic studies. Emmerson and Brown [2021] pro-
vide an overview of survival analysis in clinical trials, focusing on its application to
time-to-event data that often involves censoring. The researchers explain commonly
used techniques, such as Kaplan-Meier plots for visualizing survival curves, as well
as statistical tests like the log-rank and Wilcoxon tests to evaluate the significance of
differences between groups. Additionally, they highlight the usage of hazard ratios as
a measure for comparing the impact of treatments on survival outcomes.
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Censoring is a crucial concept in survival analysis that addresses situations where
the exact time of the event of interest is not observed for all subjects in the study.
The situation may occur due to various factors like participant dropout before ex-
periencing the event, the study ending before the event occurs for all individuals, or
missing follow-up data. Censoring is classified into three main types right censoring,
left censoring, and interval censoring. Right censoring is the most common, where
participants haven’t experienced the event by the study’s end, often due to premature
departure, early study conclusion, or incomplete follow-up information. Left censoring
involves events occurring before the study starts, with unknown timing, while interval
censoring is when the event happened within a known time range but with uncertain
timing.

In this study, we employed right censoring, where subjects’ survival times (Y)
were observed as the minimum of either the censoring time (C) or the failure time
(T), whichever occurred first. The recorded data consists of three elements (𝑌, 𝛿, 𝑿),
where 𝛿 is the censoring indicator defined as 𝐼 (𝑇 ≤ 𝐶) , and 𝑿 represents the covariate
vector. Let 𝑇 be a continuous random variable, with 𝑓 (𝑡) representing the probability
density function and 𝐹 (𝑡) = 𝑃(𝑇 ≤ 𝑡) as the cumulative distribution function. The
probability of an individual’s survival beyond a given time 𝑡 can be mathematically
expressed using the survival function.

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹 (𝑡) =
∫ ∞

𝑡

𝑓 (𝑢)𝑑𝑢

The hazard function denoted as ℎ(𝑡) represents the instantaneous failure rate
within a short interval [𝑡, 𝑡 + Δ𝑡), given that the subject has survived up to time
𝑡.

Mathematically, the hazard function is expressed as,

ℎ(𝑡) = lim
Δ𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡 |𝑇 ≥ 𝑡)
Δ𝑡

=
𝑓 (𝑡)
𝑆(𝑡) = − 𝑑

𝑑𝑡
log 𝑆(𝑡)

Several statistical methods have been developed to address the challenges caused
by censored data in survival analysis. The methods include non-parametric techniques
such as the Kaplan-Meier method and log-rank test, semi-parametric techniques like
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the Cox Proportional Hazard (PH) model, and parametric models such as the Para-
metric PH model and Accelerated Failure Time (AFT) model. While the Cox PH
model is widely employed in modeling survival data, the Parametric AFT model
introduces a distinctive perspective. The AFT model expresses survival time loga-
rithmically as a linear function of covariates, providing an alternative approach that
diverges from the proportional hazard assumptions inherent in the Cox PH model.

Turkson et al. [2021] conducted a study that investigated various methods for
addressing censoring in survival analysis. Their research highlighted the potential for
bias and reduced statistical power when censoring is not effectively managed. They
explored diverse approaches, emphasizing the importance of integrating incomplete
information to enhance the comprehension of the study and effectively reduce biases.

Another method in survival analysis is the Buckley–James method, introduced by
Buckley and James [1979], a few years after Sir David Cox proposed the Cox propor-
tional hazards model (David et al. [1972]). Both methods can be utilized for analyzing
survival data. However, the former method mainly focuses on the computation of the
expected value of the survival time, while the later method focuses on determining the
relative risk of explanatory variables on the failure event. Currently, the Cox model
is the prevailing method for analyzing survival data (Cui [2005]).

The study conducted by Ali et al. [2015] compared AFT models with Cox Propor-
tional Hazard (PH) models for analyzing the survival of gastric cancer patients. They
discovered that when the proportional hazards assumption is violated, the results from
the Cox PH model may become unreliable and biased. To address this limitation, the
study recommends using AFT models as an alternative approach. AFT models with
error distributions generalized gamma, log-logistic, log-normal, Gompertz, Weibull,
and exponential do not rely on the proportional hazards assumption.

Furthermore, the AFT model in survival analysis has gained significant attention
and is currently recognized as a valuable alternative to Cox models. It offers a more
natural and straightforward approach for describing the impact of covariates on event
times compared to Cox models (Kalbfleisch and Prentice [2011]).
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1.2 AFT Model

The AFT model is used to investigate the association between covariates and the
duration until an event of interest occurs (Kalbfleisch and Prentice [1980]). The
AFT model expresses the logarithm of survival time as a linear function involving
covariates. The model’s adaptability and interpretability make it a useful tool for
studying time-to-event data. The general expression for the AFT model is as follows.

log(𝑇𝑖) = 𝑋′
𝑖 𝜷 + 𝜖𝑖, 𝑖 = 1, . . . , 𝑛 (1.1)

Here, log(𝑇𝑖) denotes logarithm of failure time of the 𝑖th subject, 𝑋𝑖 represents the
covariate vector for the 𝑖th subject with dimensions 𝑝 × 1, where 𝑝 is the number of
covariates with dimensions 𝑝×1, 𝜷 denotes the vector of regression coefficients, and 𝜖𝑖

represents the error term specific to each observation. The error terms, denoted as 𝜖𝑖,
are typically assumed to be independent and identically distributed random variables.
These errors generally follow specific distributions, such as the normal, extreme value,
or log-logistic distributions. The AFT model is classified as parametric when the
error terms adhere to a recognized statistical distribution. Alternatively, if the error
distribution is not specified the AFT model is classified as semi-parametric.

Swindell [2009] used the AFT model to analyze data from 16 survivorship ex-
periments investigating the effects of genetic manipulations on mouse lifespan. This
study revealed that the majority of genetic modifications had a multiplicative effect
on survivorship, which was consistent across different ages and age groups, accurately
reflected by the ”deceleration factor” of the AFT model.

Recently, a study in the medical field was conducted to utilize the Weibull AFT
model for predicting the time until a health-related event occurs (Liu et al. [2023]).
The study demonstrates the application of this model in providing a more comprehen-
sible estimate of survival time compared to conventional probability based methods.
The larynx cancer dataset was used to illustrate the implementation of the proposed
method.

The AFT model, implemented with Generalized Estimating Equations (GEE), is
a statistical approach that combines components of survival analysis and generalized
estimating equations for datasets that indicate clustering or correlation. This model
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aims to understand the relationship between covariates and the time until an event
of interest while accounting for potential correlations within clusters of observations.
Chiou et al. [2014b] introduced the AFTGEE method, which provides an alternative
solution to the challenges associated with the less utilized AFT models, providing
improved reliability and computational efficiency.

1.3 Weighted Accelerated Failure Time Model
(Weighted AFT Model)

The Weighted AFT model is an improved version of the standard AFT model. It
enhances accuracy of coefficient estimation by including weights that are assigned to
individual observations based on their qualities or significance within the dataset. This
weighting approach is very efficient in reducing the impact of censoring in survival
data analysis. Researchers have explored various methods to derive these weights,
aiming to improve the precision and reliability of their analyses.

For instance, Mustefa and Chen [2021] compared the performance of weighted
least-squares estimation against classical methods using a real dataset of patients
undergoing Antiretroviral Therapy. The results offer more precise estimations of how
covariates impact outcomes and identify important associations with patient survival
factors.

In another approach, Dong et al. [2023] proposed a novel weighted least squares
model averaging method for AFT models with right censored data. This method,
using Mallows criterion-based weights, demonstrated superior performance in model
selection and averaging, particularly in cases of misspecified candidate models.

Furthermore, LASSO and threshold-gradient-directed regularization (TGDR) were
investigated by Huang et al. [2006] as two regularization techniques for the Stute
estimator in the AFT model with multiple covariates. They employed a weighted
least squares approach in the estimator, incorporating Kaplan-Meier weights to handle
censoring efficiently. Both methods aim to achieve simultaneous variable selection
and estimation, with LASSO penalizing the 𝐿1 norm (∥𝜷∥1 =

∑︁𝑝

𝑗=1 |𝛽 𝑗 |), where the
vector 𝜷 represents the regression coefficients and 𝑝 is the number of covariates, of
regression coefficients, and TGDR using cross-validation to determine the number
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of gradient search steps and threshold value 𝜏. Simulation studies and a real data
example demonstrate the effectiveness of these methods in handling high-dimensional
covariates and censored failure time data. Additionally, they explore the asymptotic
distributions of the estimators and evaluate the performance of the bootstrap method
for variance estimation.

In our study, we utilize auxiliary information from previous studies to compute
weights aiming to enhance the effectiveness of the AFT model.

1.3.1 Auxiliary Information

Many studies are continuous or refined versions of previous studies. Properly inte-
grating information from previous studies as auxiliary could enhance the efficiency of
parameter estimation and statistical inference when fitting a model to relevant data.
For example, in a study examining two covariates, if we have information available for
one covariate from previous studies, it will be helpful to utilize this partial auxiliary
information in the data analysis.

Let 𝑿 be the covariates from the previous study, and let 𝑿𝑑 be a subset of 𝑿.
Consider the association between logarithm of survival time (𝑌) and 𝑿𝑑, expressed
as,

𝑌 = 𝑓 (𝑿𝑑; 𝝓)

The understanding of this relationship might be considered as auxiliary informa-
tion. Generally, the auxiliary information can be formulated as 𝐸{𝑔(𝑍 ; 𝝓)} = 0, where
𝑍 denotes the observed data derived from present study. Here, 𝝓 ∈ R𝑑, and the func-
tion 𝑔(𝑍 ; 𝝓) ∈ R𝑞, where 𝑞 ≥ 𝑑. The parameter 𝝓 might not be known initially and
can be estimated by utilizing available information from prior studies.

Granville and Fan [2014] proposed a nonparametric approach using the Buckley-
James estimator to estimate regression parameters in accelerated failure time models
incorporating auxiliary covariates. By employing kernel smoothing techniques and
utilizing auxiliary covariates, this approach effectively handles missing or mismea-
sured data. Application of this estimator to the entire study cohort allows for robust
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inference on covariate effects, supported by bootstrapping to estimate standard devi-
ations of regression coefficients. The application of this approach to the PBC data
illustrated its practical utility.

Auxiliary information, which can come in various forms such as additional co-
variates, known relationships between certain covariates, or established relationships
between covariates and the response based on past experience or records, serves as a
valuable asset (Vasudevan et al. [2019]).

We utilized the empirical likelihood approach in our study to compute weights,
which were subsequently incorporated into the AFT model to derive the weighted
AFT model.

1.3.2 Empirical Likelihood

Empirical likelihood is a nonparametric inference method with sampling properties
similar to the bootstrap. However, instead of depending on resampling techniques
like the bootstrap, it generates a multinomial probability by utilizing the observed
sample data (Owen [1991]). The characteristics of empirical likelihood in independent
and identically distributed scenarios are explained in Owen [1990], Hall [1990], and
DiCiccio et al. [1991]. In a later stage, Owen [1991] extended the empirical likelihood
method to regression problems, addressing both fixed and random regressors, as well
as robust and heteroscedastic regressions.

Empirical likelihood approaches have become more widely used in various fields
due to their nonparametric framework and strong statistical properties. These meth-
ods have also been extensively applied to survival data for their notable benefits in
dealing with censored and complex data structures.

Li and Wang [2003] developed empirical likelihood methods for linear regression
analysis of right censored data. They formulated an empirical likelihood for the re-
gression coefficients vector using synthetic data. The adjusted empirical likelihood
exhibits a central chi-squared limiting distribution, allowing for inference using stan-
dard chi-square tables. A simulation study was conducted to compare the performance
of the adjusted empirical likelihood (ADEL) and estimated empirical likelihood (EEL)
methods with the normal approximation method (Koul et al. [1981] ; Lai et al. [1995]).
The findings indicate that empirical likelihood confidence intervals tend to offer more



8

precise coverage compared to intervals based on normal theory.

Later, Fang et al. [2013] proposed an innovative empirical likelihood method for
semiparametric linear regression. This method focused on dealing with scenarios
where the error distributions were completely unknown and involved right-censored
survival data. Their method involved constructing an estimated empirical likelihood
based on the Buckley-James estimating equation (Buckley and James [1979]) and in-
tegrated auxiliary information. They conducted simulations to compare their method
with the synthetic data empirical likelihood approach proposed by Li and Wang [2003].
Additionally, illustrate the proposed method using the Stanford heart transplantation
data.

Further extending the application of empirical likelihood methods, Wu [2005] pre-
sented computational algorithms for the pseudo empirical likelihood method in ana-
lyzing complex survey data. These algorithms are designed to determine maximum
pseudo empirical likelihood estimators and construct pseudo empirical likelihood ratio
confidence intervals. The algorithms are executed using R functions for practical use.

Vasudevan et al. [2019] introduced a weighted quantile regression method based on
EL. The proposed method aims to improve the efficiency of censored quantile regres-
sion estimates by utilizing auxiliary data. This approach greatly enhances estimation
accuracy by converting previous population information into probabilities based on
empirical likelihood. The EL-based data driven probability computation was designed
for scenarios with both known and unknown prior information about population pa-
rameters. Integrated into the regression model, these probabilities improve consis-
tency and yield lower standard errors than the standard method, particularly when
using all available covariates. The method also maintains reliable coverage probability
and demonstrates efficacy in both heteroscedastic and homoscedastic models.

1.4 Motivation

Many survival studies are repetitive, and data from previous research are often read-
ily accessible. Utilizing this historical information provides an opportunity to refine
current models by incorporating insights from similar past studies. By calculating
and incorporating weights derived based on information from previous studies, we
can effectively enhance the overall accuracy of the models.
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Exploring nonparametric methods in survival analysis offers a chance to improve
model flexibility and robustness. However, there is a notable lack of research on
how previous study information can be utilized in a nonparametric setting within
AFT models. This research aims to fill that gap by incorporating nonparametric
techniques with empirical likelihood-based weights, providing a new and innovative
approach to survival analysis.

The proposed method extends the capabilities of traditional AFT models and
AFTGEE models by integrating empirical likelihood, using weights based on previous
study information to improve parameter estimation. Theoretical justifications for
this approach have been developed. Simulation studies have demonstrated that the
proposed method significantly improves the efficiency of parameter estimation.

The structure of the remaining part of the thesis is outlined as follows. Chapter 2
provides an overview of the Standard AFT Model, the incorporation of Generalized
Estimating Equations (GEE) into the AFT model, the method for computing weights
using the Empirical Likelihood function, and the Weighted AFT model. The last
section of the chapter presents asymptotic of the proposed method. In Chapter 3,
synthetic data was generated for a simulation study, offering a detailed explanation
of the process. In the end, the chapter covers the summary and interpretation of
simulation results, along with the illustration of the proposed method using a real
dataset. Finally, Chapter 4 presents the conclusion and discussion of the entire study.



Chapter 2

Methodology

2.1 The Accelerated Failure Time (AFT) Model

The AFT model, employed in survival analysis to examine time-to-event data, offers
numerous advantages compared to other survival models such as the Cox proportional
hazards model. The key benefit of this method is that it provides coefficients that
are more easily interpreted and directly related to the logarithm of the time-to-event
variable, improving the understanding of predictor effects on survival time. This fea-
ture enhances predictability when analyzing events. AFT models possess remarkable
flexibility in accommodating a wide variety of survival time distributions, including
Exponential, Weibull, Log-logistic, and Log-normal distributions. This adaptability
empowers researchers to select the distribution that best fits their data.

When survival data is right-censored, the relative risk model (Cox [1972]) and the
AFT model (Kalbfleisch and Prentice [2002]) are commonly employed as regression
models (Chiou et al. [2014b]). The AFT models effectively manage data that is right-
censored and exhibit robustness to outliers and extreme values, addressing concerns
that may impact other models used in survival analysis. These models also demon-
strate resilience in handling the common issue of missing values frequently seen in
real-world datasets. These qualities collectively make AFT models a valuable tool for
survival analysis in various research contexts.

The AFT models find widespread application in diverse fields for analyzing time-
to-event data. In the field of medical research, they are crucial for examining patient



11

survival and treatment effects. In addition, various other fields of study, such as eco-
nomics, utilize AFT models to examine the duration of unemployment, patterns of
retirement, and rates of loan repayment. Engineers utilize these models for predic-
tive analysis, forecasting maintenance requirements, and enhancing system efficiency.
AFT models are utilized in pharmacology to optimize drug dosages, and in environ-
mental science to assess the duration of resources for sustainable management. These
examples highlight the versatile and essential role of AFT models in addressing time-
to-event data analysis challenges across various fields.

The AFT model can be defined mathematically as follows.

𝑌𝑖 = log(𝑇𝑖) = 𝑋′
𝑖 𝜷 + 𝜖𝑖, 𝑖 = 1, . . . , 𝑛 (2.1)

where:

log(𝑇𝑖) represents the logarithm of the survival time of the 𝑖𝑡ℎ subject,

𝑋′
𝑖

denotes the transpose of the covariate vector with dimension 1 × 𝑝,

𝜷 is a vector of coefficients associated with the covariates with dimension 𝑝 × 1,

𝜖𝑖 is a random error term.

2.1.1 Parameter Estimation

Parameter estimation in the Accelerated Failure Time (AFT) model with a Weibull
distribution typically involves the following steps (Klein et al. [2003]).

The survival function for the Weibull distribution, given the scale parameter 𝜆

and the shape parameter 𝛼, is expressed as:

𝑆𝑇 (𝑡) = exp(−𝜆𝑡𝛼)

The hazard rate is expressed as:

ℎ𝑇 (𝑡) = 𝜆𝛼𝑡𝛼−1
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The survival function for 𝑌 = log(𝑇) is:

𝑆𝑌 (𝑦) = exp(−𝜆𝑒𝛼𝑦)

If parameters are redefined as 𝜆 = exp(−𝜇/𝜎) and 𝜎 = 1/𝛼, then:

𝑌 = log(𝑇) = 𝜇 + 𝜎𝑊

Here, 𝑊 follows the extreme value distribution with the probability density
function:

𝑓𝑊 (𝑤) = exp(𝑤 − 𝑒𝑤)

and survival function:
𝑆𝑊 (𝑤) = exp(−𝑒𝑤)

The probability density function of 𝑌 is given by:

𝑓𝑌 (𝑦) =
1
𝜎

exp
[︂ 𝑦 − 𝜇

𝜎
− 𝑒(

𝑦−𝜇
𝜎 )

]︂
and the survival function:

𝑆𝑌 (𝑦) = exp
[︂
−𝑒(

𝑦−𝜇
𝜎 )

]︂
The likelihood function for right-censored data is:

𝐿 =

𝑛∏︂
𝑗=1

[︁
𝑓𝑌 (𝑦 𝑗 )

]︁𝛿 𝑗
[︁
𝑆𝑌 (𝑦 𝑗 )

]︁ (1−𝛿 𝑗 )

=

𝑛∏︂
𝑗=1

[︃
1
𝜎
𝑓𝑊

(︂ 𝑦 𝑗 − 𝜇

𝜎

)︂]︃𝛿 𝑗 [︂
𝑆𝑊

(︂ 𝑦 𝑗 − 𝜇

𝜎

)︂]︂1−𝛿 𝑗

The maximum likelihood estimators of 𝜆 and 𝛼 are:

�̂� = exp
(︃
− �̂�

�̂�

)︃
and �̂� =

1
�̂�
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2.2 Accelerated Failure Time Model with GEE

When the error distribution is not specified, the AFT model is referred to as the
semiparametric AFT model. This model has undergone thorough investigation and
serves as an alternative to the relative risk model, particularly when error distribution
is unspecified. Two widely used approaches for fitting such models have gained popu-
larity. One method is the rank-based approach, which is inspired by the inversion of
the weighted log-rank test (Prentice [1978]). The other follows the least squares prin-
ciple, such as the Buckley-James (BJ) estimator (Buckley and James [1979]). Both
approaches were not widely used in practice until recently due to the lack of efficient
and reliable computing algorithms (Jin et al. [2003]; Jin et al. [2006a]).

Chiou et al. [2014a] explored the practical application of the AFTGEE model in
routine survival analysis. The authors provide a thorough analysis of the method,
emphasizing its flexibility in constructing AFT models. Their work discusses various
modeling strategies supported by the AFTGEE approach, highlighting its effective-
ness in handling diverse survival data sets, distributions, and covariate effects. The
AFTGEE method offers convenient access to AFT models, utilizing both rank-based
and least squares techniques.

In survival analysis, multiple computational methods are available for estimating
parameters in AFT models. These methods are implemented in various R packages,
including survival (Therneau and Lumley [2015], rms Harrell Jr [2014], and eha
Broström [2014]). Parametric AFT models face the critical issue of potential mis-
specification of error distributions, which can result in biased estimations and draw
misleading conclusions.

Semiparametric AFT models, which do not specify an error distribution, offer
an alternative approach (Harrell Jr [2014]; Huang and Jin [2007]). However, existing
methods for these models also have their limitations. For instance, the Buckley-James
(BJ) estimator produces variance estimators using only non-censored observations.
While this method shows favorable results in simulation studies, it lacks solid theo-
retical justification. Furthermore, the BJ estimator exhibits slow and non-guaranteed
convergence, and it is specifically designed for univariate failure time data (Chiou
et al. [2014b]).

The lss package in R is designed for fitting AFT model with right-censored data
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using rank-based estimators with Gehan’s weight derived from linear programming
methods, along with iterative techniques for least squares estimation starting with
the rank-based estimator (Huang and Jin [2007]). The variance estimators for both
methods are based on bootstrap resampling, and their validity is theoretically justi-
fied. The process of estimating variance using bootstrap methodology is quite time-
consuming. The rank-based estimator is constrained to Gehan’s weight, which may
be the optimal. The linear programming technique for rank-based estimator is quite
computationally demanding, which has an impact on the least squares estimator as
well as the initial estimator. In addition, the package does not provide functionality
for specifying user-defined initial values for the least squares estimator. When deal-
ing with clustered failure times, this method assumes that each cluster functions are
independent and ignores any dependence within the cluster. However, this approach
may result in a loss of efficiency, particularly when there is a high dependence within
the cluster.

To address these limitations, the AFTGEE model provides more comprehensive
tools for practical survival analysis. This approach significantly enhances computa-
tional speed compared to linear programming based methods, without compromising
accuracy. It also offers efficient sandwich variance estimators as faster alternatives
to full bootstrap variance estimation. By utilizing rapid rank-based estimators as
initial estimates, this method employs an iterative least squares procedure that ex-
tends GEE to handle clustered censored data. Additionally, these methodologies can
be extended to incorporate additional sampling weights to manage missing data and
diverse sampling schemes. These features make the AFTGEE model an attractive
choice for analysts seeking to fit AFT models seamlessly in their routine survival data
analysis.

2.2.1 Buckley-James estimators

The Buckley-James estimator is the most suitable extension of least squares esti-
mation for right-censored regression models (Kong and Yu [2007]). It is computed
using a combination of iterative methods and numerical integration. Considering sur-
vival data that incorporates right censoring, Buckley and James [1979] replaced each
response 𝑇𝑖 with the conditional expectation 𝑌�̂� (𝛽) = 𝐸𝛽 (𝑇𝑖 | 𝑌𝑖, 𝛿𝑖,X𝑖), where the ex-
pectation is determined based on regression coefficients 𝛽. Here, 𝑇𝑖 is redefined as the
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logarithm of failure time and 𝑌𝑖 is redefined as the logarithm of survival time to align
with the methodology.

Specifically, the estimator is given by

𝑌 𝑖 (𝒃) = 𝛿𝑖𝑌𝑖 + (1 − 𝛿𝑖)
⎡⎢⎢⎢⎢⎣
∫ ∞
𝑒𝑖 (𝒃)

𝑡 𝑑�̂�𝑒𝑖 (𝒃) (𝑡)

1 − �̂�𝑒𝑖 (𝒃) [𝑒𝑖 (𝒃)]
+ 𝑿′

𝑖 𝒃

⎤⎥⎥⎥⎥⎦ (2.2)

where 𝒃 represents the estimated vector of regression coefficients, 𝛿𝑖 is an indicator
variable equal to 1 for observed events and 0 for right-censored observations, 𝑌𝑖 is the
survival time, 𝑒𝑖 (𝒃) = 𝑌𝑖 − 𝑋𝑖𝒃 and �̂�𝑒𝑖 (𝒃) is the Kaplan-Meier estimator based on the
censored residual 𝑒𝑖 (𝒃). That is,

�̂�𝑒𝑖 (𝒃) (𝑡) = 1 −
∏︂

𝑖:𝑒𝑖 (𝒃)<𝑡

[︄
1 − 𝛿𝑖∑︁𝑛

𝑗=1 𝐼(𝑒 𝑗 (𝒃)≥𝑒𝑖 (𝒃))

]︄
(2.3)

Although many researchers have extensively studied the theoretical properties of
the BJ estimator, its practical use remains rare due to numerous challenges. An
alternative approach has been suggested, emphasizing a more realistic solution by
deriving a least squares estimator from a particular estimating equation, using an
initial estimator 𝒃𝑛 of 𝜷. The least squares estimator is derived by solving the following
estimating equation.

𝑈𝑛,ls(𝜷, 𝒃) =
𝑛∑︂
𝑖=1

(︁
𝑿𝑖 − �̄�

)︁′ (︂
𝑌 𝑖 (𝒃) − 𝑿𝑖𝜷

)︂
= 0 (2.4)

where �̄� = 𝑛−1 ∑︁𝑛
𝑖=1 𝑿𝑖 is the mean vector.

The BJ estimator is given as the solution to the equation 𝑈𝑛,ls(𝜷, 𝜷) = 0. The
benefit of setting the beginning value 𝑏𝑛 is to prevent numerical complexities arising
from solving Equation 2.4, which is neither continuous nor monotonic in 𝜷 (Jin et al.
[2006b]) developed an iterative algorithm, �̂�(𝑚)

n,ls = 𝐿𝑛

(︂
�̂�
(𝑚−1)
n,ls

)︂
for 𝑚 > 1 with �̂�

(0)
n,ls = 𝒃𝑛

where,

𝐿𝑛 (𝒃) =
[︄

𝑛∑︂
𝑖=1

(𝑿𝑖 − �̄�)′(𝑿𝑖 − �̄�)
]︄−1 [︄

𝑛∑︂
𝑖=1

(𝑿𝑖 − �̄�)′
(︂
𝑌 𝑖 (𝒃) − 𝑌 (𝒃)

)︂]︄
(2.5)
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with �̂�
(𝑚)

= 𝐿 ( �̂�(𝑚−1)) and 𝑌 (𝒃) = 1
𝑛

∑︁𝑛
𝑖=1𝑌 𝑖 (𝒃).

If the initial estimator 𝒃𝑛 is both consistent and asymptotically normal, the 𝜽
(𝑚)
ls is

also both consistent and asymptotically normal for every 𝑚 (Jin et al. [2006a]). The
induced smoothing Gehan estimator is a suitable candidate for the initial estimator.
An estimation of the variance of the resulting estimate can be obtained by employing
a resampling approach (Jin et al. [2006a]).

2.2.2 GEE approach incorporating with weights

The weighted least squares estimator is also determined through a combination of
iterative techniques and numerical integration. Let 𝒃 be an initial estimator of 𝜷.
The expression for the weighted least squares estimator can be formulated as follows
(Zhang [2019]).

𝑈𝑛,GEE(𝜷, 𝒃) =
𝑛∑︂
𝑖=1

𝑤𝑖

(︁
𝑿𝑖 − �̄�

)︁′ (︂
𝑌 𝑖 (𝒃) − 𝑿𝑖𝜷

)︂
= 0, 𝑖 = 1, . . . , 𝑛 (2.6)

where,

�̄� =

∑︁𝑛
𝑖=1 𝑤𝑖𝑿𝑖∑︁𝑛
𝑖=1 𝑤𝑖

Here, 𝑤𝑖 represents the weight for each observation. The weighted form of the
function 𝐿𝑛 (𝒃) can be expressed as 𝐿∗

𝑛 (𝒃).

𝐿∗
𝑛 (𝒃) =

[︄
𝑛∑︂
𝑖=1

𝑤𝑖 (𝑿𝑖 − �̄�)′(𝑿𝑖 − �̄�)
]︄−1 [︄

𝑛∑︂
𝑖=1

𝑤𝑖 (𝑿𝑖 − �̄�)′
(︂
𝑌
∗
𝑖 (𝒃) − 𝑌

∗(𝒃)
)︂]︄

(2.7)

Here, 𝑌 𝑖 (𝒃) and 𝑌 (𝒃) are defined as follows.

𝑌
∗
𝑖 (𝒃) = 𝛿𝑖𝑌𝑖 + (1 − 𝛿𝑖)

⎡⎢⎢⎢⎢⎣
∫ ∞
𝑒𝑖 (𝒃)

𝑡 𝑑�̂�
∗
𝑒𝑖 (𝒃) (𝑡)

1 − �̂�
∗
𝑒𝑖 (𝒃) [𝑒𝑖 (𝒃)]

+ 𝑿′
𝑖 𝒃

⎤⎥⎥⎥⎥⎦ (2.8)
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𝑌
∗
𝑖 (𝒃) = 𝑛−1

𝑛∑︂
𝑖=1

𝑌
∗
𝑖 (𝒃) (2.9)

The Kaplan-Meier estimator �̂�
∗
𝑒𝑖 (𝒃) is computed as follows.

�̂�
∗
𝑒𝑖 (𝒃) (𝑡) = 1 −

∏︂
𝑖:𝑒𝑖 (𝒃)<𝑡

[︄
1 − 𝛿𝑖∑︁𝑛

𝑗=1 𝐼(𝑒 𝑗 (𝒃)≥𝑒𝑖 (𝒃))

]︄
(2.10)

The iterative procedure for updating the estimator is given by,

�̂�
∗(𝑚)

= 𝐿𝑛

(︂
�̂�
∗(𝑚−1))︂

, for 𝑚 > 1

In both the standard AFT modeling and the AFTGEE method, the EL method
can be utilized to determine weights by incorporating auxiliary information. In the
next section, we will explore the detailed process of calculating these weights using
the EL method.

2.3 Empirical Likelihood

Maximum Likelihood Estimation (MLE) encounters challenges in statistical modeling,
particularly when dealing with inaccuracies in the actual distributions. MLE depends
on specific parametric assumptions about the distribution function, and any inaccu-
racies in these assumptions can result in less efficient or precise estimations. While
incorrect model selection can be effective in certain situations, such as estimating nor-
mal means using the Central Limit Theorem, it may fail when attempting to estimate
normal variances. This failure can lead to inefficiencies in determining the outcomes
of statistical tests. In addressing these challenges, non-parametric methods such as
Empirical Likelihood prove to be a valuable alternative that effectively overcomes the
limitations associated with MLE.

The empirical likelihood method, introduced by Owen [1988], has gained signifi-
cant popularity and is commonly employed as a flexible nonparametric statistical tool.
It efficiently overcomes practical challenges in various fields of study. One of its signif-
icant benefits is its capacity to effectively handle the complexity of various datasets,
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manage uncertainties caused by unknown distributions, address non-parametric sce-
narios, and consistently handle outliers. Furthermore, empirical likelihood is a power-
ful method for estimating parameters, constructing data-driven confidence intervals,
and conducting hypothesis tests with minimal reliance on distributional assumptions.
Hence, its significant benefit becomes evident in areas where data naturally shows
variability or deviates from standard distributions.

2.3.1 Weight estimation using Empirical Likelihood

In our study, We developed a method to transform auxiliary information into data-
driven probabilities based on EL. These probabilities were then utilized as weights for
our AFT models and AFTGEE models. This decision was motivated by the inherent
advantages of empirical likelihood. Specifically, EL is robust in managing complex
data and flexible in accommodating non-standard distributions. By incorporating
these weights, our goal is to enhance the reliability and adaptability of our survival
analysis.

Let 𝑋1, 𝑋2 . . . , 𝑋𝑛 be iid observations from an unspecified distribution function F.
The empirical distribution function 𝐹𝑛 (𝑥) is a reliable estimator of the distribution 𝐹,
and it can be considered as a non-parametric maximum likelihood estimate of 𝐹.

The cumulative distribution function is 𝐹 (𝑥) = 𝑃(𝑋𝑖 ≤ 𝑥𝑖) and 𝐹 (𝑥𝑖) − 𝐹 (𝑥−
𝑖
) =

𝑃(𝑋𝑖 = 𝑥𝑖). So 𝑃(𝑋𝑖 = 𝑥𝑖) = 𝐹 (𝑥𝑖) − 𝐹 (𝑥−
𝑖
) .

The empirical cumulative distribution function (ECDF) of 𝑋1, 𝑋2, . . . , 𝑋𝑛 ∈ R is

𝐹𝑛 (𝑥) =
1
𝑛

𝑛∑︂
𝑖=1

1𝑋𝑖≤𝑥 , 𝑓 𝑜𝑟 −∞ < 𝑥 < ∞

Given 𝑋1, 𝑋2, . . . , 𝑋𝑛 ∈ R , the non-parametric likelihood function of F is given by,
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𝐿𝑛 (𝐹) =
𝑛∏︂
𝑖=1

[𝐹 (𝑥𝑖) − 𝐹 (𝑥𝑖−)]

=

𝑛∏︂
𝑖=1

𝑃(𝑋𝑖 = 𝑥𝑖)

=

𝑛∏︂
𝑖=1

𝑝𝑖

(2.11)

with 𝑝𝑖 = 𝑃(𝑋 = 𝑥𝑖). 𝑝𝑖 ≥ 0, 𝑖 = 1, . . . 𝑛 and
∑︁𝑛

𝑖=1 𝑝𝑖 = 1

The non-parametric empirical log-likelihood function 𝑙𝑛 (𝐹) is defined as follows.

𝑙𝑛 (𝐹) =
𝑛∑︂
𝑖=1

log 𝑝𝑖 (2.12)

subject to the constraints
∑︁𝑛

𝑖=1 𝑝𝑖 = 1 and 𝑝𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑛.

Let 𝐿𝑛 (𝐹) be the likelihood of the observed data under the distribution function
𝐹 and 𝐿𝑛 (𝐹𝑛) be the likelihood of the observed data under the empirical distribu-
tion function 𝐹𝑛. Then the 𝐿𝑛 (𝐹) is maximized when 𝐹 is equal to the empirical
distribution function 𝐹𝑛. The Empirical Likelihood (EL) ratio can be defined as,

𝑅𝑛 (𝐹) =
𝐿𝑛 (𝐹)
𝐿𝑛 (𝐹𝑛)

=

∏︁𝑛
𝑖=1 𝑝𝑖

(1/𝑛)𝑛

=

𝑛∏︂
𝑖=1

(𝑛𝑝𝑖)

(2.13)

The Empirical log-likelihood ratio can be derived as 𝑟𝑛 (𝐹),

𝑟𝑛 (𝐹) =
𝑛∑︂
𝑖=1

log(𝑛𝑝𝑖) (2.14)
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2.3.2 Profile Empirical Likelihood

Assume we aim to investigate inference on the parameters under the assumptions that
𝐹 belongs to a nonparametric distribution family F , denoted as 𝝓 = 𝑇 (𝐹), where 𝑇

is some functional of the distribution.

Given a likelihood value at 𝝓, we can make inferences about 𝝓 using the likelihood
approach. For each given value of 𝝓, there are many members of F such that 𝑇 (𝐹) = 𝝓.
We must determine which 𝐹 best represents 𝝓. The idea behind profile empirical
likelihood is to identify the 𝐹 for which the empirical likelihood reaches its maximum
among the set satisfying 𝑇 (𝐹) = 𝝓.

The profile empirical likelihood is defined as follows.

𝐿𝑛 (𝝓) = sup {𝐿𝑛 (𝐹) | 𝑇 (𝐹) = 𝝓; 𝐹 ∈ F } (2.15)

The likelihood inference on 𝝓 can be constructed using 𝐿𝑛 (𝝓). This likelihood
shares similar properties with its parametric counterpart.

Since 𝐿𝑛 (𝝓) ≤ 𝑛−𝑛 = 𝐿𝑛 (𝐹𝑛), it is convenient to standardize 𝐿𝑛 (𝝓) by defining the
ratio function.

𝑅𝑛 (𝝓) =
𝐿𝑛 (𝝓)
𝐿𝑛 (𝐹𝑛)

= 𝑛𝑛𝐿𝑛 (𝝓)

The empirical log-likelohood ratio function is,

𝑟𝑛 (𝝓) = 𝑛 log 𝑛 + log 𝐿𝑛 (𝝓) = 𝑛 log 𝑛 + 𝑙𝑛 (𝝓)

Let 𝜙0 = 𝐸 (𝑋1) and Var(𝑋1) < ∞. Then,

−2 log [𝑅𝑛 (𝜙0)]
𝐷→ 𝜒2

𝑑 as 𝑛 → ∞

Where 𝑑 = dim(𝑋) = dim(𝝓) (Owen [2001]).
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Based on the above results, we derive the 100(1 − 𝛼)% confidence interval for 𝝓 :

{𝜙 : −2 log [𝑅𝑛 (𝜙0)] ≤ 𝜒2
𝑑,1−𝛼}

2.3.3 Optimization

Suppose the parameter 𝝓 = (𝜙1, 𝜙2, . . . , 𝜙𝑑) is defined by an estimating equation
𝐸{𝑔(𝑍, 𝝓)} = 0, where 𝑔(.) is a real-valued function.

EL based on general estimating equations was developed by Qin and Lawless
[1994]. It applies to a random sample {𝑇𝑖, 𝑌𝑖, 𝛿𝑖, 𝑋𝑑𝑖}𝑛𝑖=1, denoted as {𝑍𝑖𝑛𝑖=1}, and an
estimating function 𝑔(𝑍𝑖; 𝝓) with parameter 𝝓. The maximum empirical likelihood is
given by,

𝐿EL(𝝓) = sup
{︄

𝑛∏︂
𝑖=1

𝑝𝑖 : 𝑝𝑖 ≥ 0,
𝑛∑︂
𝑖=1

𝑝𝑖𝑔(𝑍𝑖; 𝝓) = 0
}︄

The Lagrange multiplier method is highly effective for solving this constrained
maximization problem.

Define,

𝐺 (𝑝1, 𝑝2, . . . , 𝑝𝑛, 𝑠, 𝜆, 𝝓) =
𝑛∑︂
𝑖=1

log(𝑝𝑖) + 𝑠

(︄
𝑛∑︂
𝑖=1

𝑝𝑖 − 1
)︄
− 𝑛𝜆

(︄
𝑛∑︂
𝑖=1

𝑝𝑖𝑔(𝑍𝑖, 𝝓)
)︄

where 𝜆 (vector valued) and 𝑠 are Lagrange multipliers.

Now, setting to zero the partial derivative of 𝐺 with respect to 𝑝𝑖 gives the following
results.

𝜕𝐺

𝜕𝑝𝑖
= 𝑠 + 𝑛 (2.16)

So,

0 =

𝑛∑︂
𝑖=1

𝑝𝑖
𝜕𝐺

𝜕𝑝𝑖
=

1
𝑝𝑖

+ 𝑠 − 𝑛𝜆𝑔(𝑍𝑖, 𝝓) (2.17)
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giving 𝑠 = −𝑛.

Thus,

𝑝�̂� =
1

𝑛{1 + �̂�
′
𝑔(𝑍𝑖, 𝝓)}

, 𝑖 = 1, 2, . . . , 𝑛. (2.18)

The value of 𝜆 can be determined using numerical search for given 𝝓.

We know that 𝜆 = 𝜆(𝝓) is the solution of,

1
𝑛

𝑛∑︂
𝑖=1

𝑔(𝑍𝑖, 𝝓)
1 + �̂�

′
𝑔(𝑍𝑖, 𝝓)

= 0

The profile EL corresponding to a given parameter 𝝓 is expressed as:

𝑙𝑛 (𝝓) = −𝑛 log(𝑛) −
𝑛∑︂
𝑖=1

log{1 + �̂�
′
𝑔(𝑍𝑖, 𝝓)}

and the EL ratio function is,

𝑟𝑛 (𝝓) = −
𝑛∑︂
𝑖=1

log{1 + �̂�
′
𝑔(𝑍𝑖, 𝝓)}

Furthermore, the EL ratio statistic for the given 𝝓 is defined as:

W(𝝓) = −2𝑟𝑛 (𝝓) = −2
𝑛∑︂
𝑖=1

log{1+�̂�′𝑔(𝑍𝑖, 𝝓)}, which converges in distribution to 𝜒2
𝑑 as 𝑛 → ∞.

where 𝑑 is the dimension of 𝝓.

Computation of Lagrange Multipliers

The determination of Lagrange multipliers will be discussed in detail in the this
section. Chen et al. [2002] introduced an adapted Newton-Raphson algorithm to
compute the Lagrange multiplier corresponding to a given value of the parameter.
Recently, several methods have been developed for computing Lagrange multipliers
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(Zhou [2023]; Kim et al. [2024]).

The Lagrange multiplier 𝜆 is determined by solving the equation ,

𝑛∑︂
𝑖=1

𝑔𝑖 (𝝓)
1 + 𝜆′𝑔𝑖 (𝝓)

= 0 (2.19)

for the given set of vectors 𝑔𝑖 (𝝓) , 𝑖 = 1, 2, . . . , 𝑛.

The equation 2.19 is the derivative of R with respect to 𝜆 for a given 𝝓, where

𝑅 =

𝑛∑︂
𝑖=1

log {1 + 𝜆′𝑔𝑖 (𝝓)} (2.20)

In the empirical likelihood estimation, it is necessary that the solution satisfies the
condition

1 + 𝜆′𝑔𝑖 (𝝓) > 0, 𝑖 = 1, 2, . . . , 𝑛. (2.21)

The modified Newton-Raphson algorithm for estimating 𝜆 for a given value of 𝝓
can be outlined as follows:

Step 1 : Set 𝜆𝑐 = 0, 𝑐 = 0, 𝛾𝑘 , 𝜖 = 10−8 and 𝝓 = 𝝓0

Step 2 : Let 𝑅𝜆 and 𝑅𝜆𝜆 denote the first and second partial derivatives of 𝑅 given in 2.20
with respect to 𝜆, which are given by

𝑅𝜆 =

𝑛∑︂
𝑖=1

[︃
𝑔𝑖 (𝝓)

1 + 𝜆′𝑔𝑖 (𝝓)

]︃
,

𝑅𝜆𝜆 = −
𝑛∑︂
𝑖=1

[︃
𝑔𝑖 (𝝓)𝑔′𝑖 (𝝓)
1 + 𝜆′𝑔𝑖 (𝝓)2

]︃
,

Compute 𝑅𝜆 and 𝑅𝜆𝜆 for 𝜆 = 𝜆𝑐 and let Δ (𝜆𝑐) = −[𝑅𝜆𝜆]−1𝑅𝜆

If ∥Δ (𝜆𝑐)∥ < 𝜖 terminate the algorithm and report 𝜆𝑐 ; otherwise, continue.

Step 3 : Calculate 𝛿𝑐 = 𝛾𝑐Δ (𝜆𝑐). If 1 + 𝜆𝑐 − 𝛿𝑐𝑔𝑖 (𝝓) ≤ 0 for some i, then set 𝛾𝑐 = 𝛾𝑐/2
and go to Step 2.
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Step 4 : Set 𝜆𝑐+1 = 𝜆𝑐 − 𝛿𝑐, 𝑐 = 𝑐 + 1, and 𝛾𝑐+1 = (𝑐 + 1)−1/2 and go to Step 2. Step 2 will
guarantee that 𝑝𝑖 > 0 and the optimization is performed in the right direction.
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2.3.4 Determining Weights Utilizing Auxiliary Information

This section provides a brief overview of how weights are determined using partial
and complete auxiliary information.

Auxiliary information based on both 𝑋1 and 𝑋2

Suppose both 𝑋1 and 𝑋2 are used as auxiliary information. Derive the loss function
after fitting a model with 𝑌0 and covariates with estimated coefficients 𝜃0, 𝜃1, and 𝜃2

from previous data. Here, 𝑌0 denotes the 𝑌 values from the current data.

𝐿 = (𝑌0 − 𝑿�̂�)′(𝑌0 − 𝑿�̂�)) (2.22)

Where 𝑿 = (𝑋0, 𝑋1, 𝑋2) and �̂� = (𝜃0, 𝜃1, 𝜃2). Here, 𝑋0 typically represents a
column vector of ones that is used to account for the intercept term in the model.

𝐿𝑖 = (𝑌0𝑖 − (𝜃0 + 𝜃1𝑋1𝑖 + 𝜃2𝑋2𝑖))′(𝑌0𝑖 − (𝜃0 + 𝜃1𝑋1𝑖 + 𝜃2𝑋2𝑖)), 𝑖 = 1, 2, . . . , 𝑛 (2.23)

To minimize 𝐿𝑖, we compute the partial derivatives of 𝐿𝑖 to each parameter 𝜃 and
set them to zero.

Partial derivatives with respect to 𝜃0,

d𝐿𝑖

d𝜃0
= −2𝑋0𝑖 ∗ (𝑌0𝑖 − (𝜃0 + 𝜃1𝑋1𝑖 + 𝜃2𝑋2𝑖)) = 0 (2.24)

Partial derivatives with respect to 𝜃1,

d𝐿𝑖

d𝜃1
= −2𝑋1𝑖 ∗ (𝑌0𝑖 − (𝜃0 + 𝜃1𝑋1𝑖 + 𝜃2𝑋2𝑖)) = 0 (2.25)

Partial derivatives with respect to 𝜃2,

d𝐿𝑖

d𝜃2
= −2𝑋2𝑖 ∗ (𝑌0𝑖 − (𝜃0 + 𝜃1𝑋1𝑖 + 𝜃2𝑋2𝑖)) = 0 (2.26)

The functions in the equations 2.24, 2.25, and 2.26 were utilized to calculate
empirical likelihood and derive weights based on auxiliary information based on 𝑋1
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and 𝑋2.

Auxiliary information based on 𝑋1

Consider a real-world scenario where we only have auxiliary information based on a
single covariate 𝑋1 and the estimated coefficients 𝝓 = (𝜙0, 𝜙1) are denoted as 𝛾0 and
𝛾1. Now, the loss function can be expressed as follows.

𝐿 = (𝑌0 − 𝑿�̂�)′(𝑌0 − 𝑿�̂�)) (2.27)

Where 𝑿 = (𝑋0, 𝑋1) and �̂� = (𝛾0, 𝛾1).

𝐿𝑖 = (𝑌0𝑖 − (𝛾0 + 𝛾1𝑋1𝑖))′(𝑌0𝑖 − (𝛾0 + 𝛾1𝑋1𝑖), 𝑖 = 1, 2, . . . , 𝑛 (2.28)

To minimize 𝐿𝑖, we calculate the partial derivatives of 𝐿𝑖 and equate them to zero.

Partial derivatives with respect to 𝛾0,

d𝐿𝑖

d𝛾0
= −2𝑋0𝑖 ∗ (𝑌0𝑖 − (𝛾0 + 𝛾1𝑋1𝑖)) = 0 (2.29)

Partial derivatives with respect to 𝛾1,

d𝐿𝑖

d𝛾1
= −2𝑋1𝑖 ∗ (𝑌0𝑖 − (𝛾0 + 𝛾1𝑋1𝑖)) = 0 (2.30)

The functions in the equations 2.29 and 2.30 were employed to calculate empirical
likelihood and derive weights based on auxiliary information based on 𝑋1.

Auxiliary information based on 𝑋2

Now, consider a scenario where we have auxiliary information based on a single covari-
ate 𝑋2, and the estimated coefficients for 𝝓 = (𝜙0, 𝜙2) are denoted as 𝛿0 and 𝛿2. The
loss function, which evaluates the fit of the model using these estimated coefficients,
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can be expressed as follows.

𝐿 = (𝑌0 − 𝑿�̂�)′(𝑌0 − 𝑿�̂�)) (2.31)

Where 𝑿 = (𝑋0, 𝑋2) and �̂� = (𝛿0, 𝛿2).

𝐿𝑖 = (𝑌0𝑖 − (𝛿0 + 𝛿2𝑋2𝑖))′(𝑌0𝑖 − (𝛿0 + 𝛿2𝑋2𝑖), 𝑖 = 1, 2, . . . , 𝑛 (2.32)

Once again, to minimize 𝐿𝑖, we calculate the partial derivatives of 𝐿𝑖 and set them
equal to zero.

Partial derivatives with respect to 𝛿0,

d𝐿𝑖

d𝛿0
= −2𝑋0𝑖 ∗ (𝑌0𝑖 − (𝛿0 + 𝛿2𝑋2𝑖)) = 0 (2.33)

Partial derivatives with respect to 𝛿1,

d𝐿𝑖

d𝛿1
= −2𝑋2𝑖 ∗ (𝑌0𝑖 − (𝛿0 + 𝛿2𝑋2𝑖)) = 0 (2.34)

The functions in equations 2.33 and 2.34 were utilized to calculate empirical like-
lihood and derive weights based on auxiliary information from 𝑋2.

2.4 The Weighted Accelerated Failure Time Model
(Weighted AFT Model)

It is well known that introducing weights in the models of survival analysis could
improve the efficiency of the statistical inference, for example the inverse probability
weights. Zhang [2019] proposed a weighted least-squares method for estimating pa-
rameters in semiparametric AFT models. This methodology can estimate parameters
for mixture cure and case-cohort data, and can be extended to handle clustered data
using generalized estimating equations (GEE). They used inverse probability weights
(IPW) to address sampling bias and validated the method through large-scale simula-
tions. In this thesis we propose to utilize weights obtained through empirical likelihood
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method towards the AFT model.

Our study aims to enhance the precision of parameter estimates by utilizing
weights and auxiliary information. This methodology employs empirical likelihood
probabilities to calculate weights, integrating information from a prior dataset to im-
prove the weighting procedure. By considering previous information, we address the
challenges of censoring, enabling a more detailed examination of survival times.

The derived weights can be utilized in both parametric AFT models and AFTGEE
models.

2.5 Parameter Estimation and Asymptotic Prop-
erties

Recalling equation 2.4, the least squares estimating equation can be expressed as
follows :

𝑈𝑛,ls(𝜷, 𝒃) =
𝑛∑︂
𝑖=1

(︁
𝑿𝑖 − �̄�

)︁′ (︂
𝑌 𝑖 (𝒃) − 𝑿𝑖𝜷

)︂
= 0 (2.35)

where :

𝜷 is a vector of coefficients associated with the covariates,

𝒃 is a initial estimator of 𝜷,

�̄� is the mean vector, which is defined as:

𝑿 = 𝑛−1
𝑛∑︂
𝑖=1

𝑿𝑖

,

𝑌 𝑖 (𝒃) = 𝛿𝑖𝑌𝑖 + (1 − 𝛿𝑖)
⎡⎢⎢⎢⎢⎣
∫ ∞
𝑒𝑖 (𝑏)

𝑡 𝑑�̂�𝑒𝑖 (𝜷) (𝑡)

1 − �̂�𝑒𝑖 (𝜷) [𝑒𝑖 (𝒃)]
+ 𝑿′

𝑖 𝒃

⎤⎥⎥⎥⎥⎦ ,
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𝑒𝑖 (𝒃) = 𝑌𝑖 − 𝑿𝑖𝒃,

�̂�𝑒𝑖 (𝒃) the Kaplan-Meier estimator based on censored residual 𝑒𝑖 (𝒃) where,

�̂�𝑒𝑖 (𝒃) (𝑡) = 1 −
∏︂

𝑖:𝑒𝑖 (𝒃)<𝑡

[︄
1 − 𝛿𝑖∑︁𝑛

𝑗=1 𝐼(𝑒 𝑗 (𝒃)≥𝑒𝑖 (𝒃))

]︄
.

Now, starting with an initial estimator 𝒃 of 𝜷 , the proposed weighted least squares
estimator can be obtained by solving the estimating equation.

𝑈𝑛,wls(𝜷, 𝒃) =
𝑛∑︂
𝑖=1

𝑤𝑖

(︁
𝑿𝑖 − �̄�

)︁′ (︂
𝑌 𝑖 (𝒃) − 𝑿𝑖𝜷

)︂
= 0 (2.36)

where,

𝑤𝑖 = 𝑛𝑝�̂�

,

�̄� =

∑︁𝑛
𝑖=1 𝑤𝑖𝑿𝑖∑︁𝑛
𝑖=1 𝑤𝑖

and

𝑌
∗
𝑖 (𝒃) = 𝛿𝑖𝑌𝑖 + (1 − 𝛿𝑖)

⎡⎢⎢⎢⎢⎣
∫ ∞
𝑒𝑖 (𝒃)

𝑡 𝑑�̂�
∗
𝑒𝑖 (𝒃) (𝑡)

1 − �̂�
∗
𝑒𝑖 (𝒃) [𝑒𝑖 (𝒃)]

+ 𝑿′
𝑖 𝒃

⎤⎥⎥⎥⎥⎦
The Kaplan-Meier estimator �̂�

∗
𝑒𝑖 (𝒃) is determined using the following equation.

�̂�
∗
𝑒𝑖 (𝒃) (𝑡) = 1 −

∏︂
𝑖:𝑒𝑖 (𝒃)<𝑡

[︄
1 − 𝛿𝑖∑︁𝑛

𝑗=1 𝐼(𝑒 𝑗 (𝒃)≥𝑒𝑖 (𝒃))

]︄
The least squares estimating equation and the weighted estimation equation can

be solved through numerical methods. Next, it is necessary to demonstrate that the
weighted estimating equation is asymptotically normal and consistent.



30

Asymptotic Properties

Now we wish to show that the resulting estimates of the regression parameters are
consistent and asymptotically normal.

Define

𝐹 (𝑡 | 𝑿) = Pr(𝑌 ≤ 𝑡 | 𝑿), �̄� (𝑡 | 𝑿) = Pr(𝑌 > 𝑡 | 𝑿), �̃� (𝑡 | 𝑿) = Pr(𝑌 ≤ 𝑡, 𝛿 = 1 | 𝑿),

�̄� (𝑦 | 𝑿) = − 𝑓 (𝑦 | 𝑿) = −𝑑𝐹 (𝑦 | 𝑿)
𝑑𝑦

, �̃� (𝑦 | 𝑿) = 𝑑�̃� (𝑦 | 𝑿)
𝑑𝑦

.

Define 𝑽𝒊 = 𝜆′
𝜙0
𝑔(𝑍𝑖, 𝝓0)𝑿𝑖 , 𝑖 = 1, 2, . . . , 𝑛 as a 𝑝 - vector.

Regularity Conditions :

𝑹.1 𝜖 and (Z, C) are independent.

𝑹.2 (𝜖 , C, Z) takes on finitely many values.

𝑹.3 The observations, denoted as 𝑍𝑖 for 𝑖 = 1, 2, . . . , 𝑛, are independent and identi-
cally distributed (iid) samples from a certain distribution F. We make the as-
sumption, without loss of generality, that (𝑌𝑖, 𝛿𝑖, 𝑿′

𝑑𝑖
)′ ⊂ 𝑍𝑖 for all 𝑖 = 1, 2, . . . , 𝑛.

𝑹.4 There exists 𝝓0 such that E{𝑔(𝑍𝑖; 𝝓0)} = 0, the matrix 𝚺(𝝓0) = E{𝑔(𝑍𝑖; 𝝓0)𝑔(𝑍𝑖; 𝝓0)′}
is positive definite, 𝜕𝑔(𝑧;𝝓)

𝜕𝝓 is continuous in the neighborhood of 𝜙0. The matrix
E

[︂
𝜕𝑔(𝑧;𝝓)

𝜕𝝓

]︂
is of full rank. Furthermore, there exist functions 𝐻𝑙 𝑗 (𝑧) such that

for 𝜙 in the neighborhood of 𝝓0:

(a)
|︁|︁|︁ 𝜕𝑔𝑙 (𝑧;𝝓)𝜕𝝓 𝑗

|︁|︁|︁ ≤ 𝐻𝑙 𝑗 (𝑧),

(b) For a constant 𝐶, E{𝐻2(𝑍)} ≤ 𝐶 < ∞ for 𝑙 = 1, . . . , 𝑞 and 𝑗 = 1, . . . , 𝑑.

𝑹.5 max
𝑖

∥𝑿𝑖∥2 = 𝑜(
√
𝑛) and max

𝑖
∥𝑿𝑖𝑌𝑖𝐺 ∥ = 𝑜(

√
𝑛), a.s.

𝑹.6 sup
𝑖

∥𝑿𝑖∥ < ∞

Now, we state the following theorems.

Theorem 2.5.1: Assuming that the regularity conditions 𝑹.1 - 𝑹.6 hold, the
estimator ∥ �̂� − 𝛽0∥

𝑃𝑟−−→ 0 as the sample size 𝑛 → ∞.
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Theorem 2.5.2: Assuming that the regularity conditions 𝑹.1 - 𝑹.6 hold, the
estimator 𝑛1/2{ �̂�−𝛽0} converges in distribution to 𝑁 (0, 𝜎2

𝛽0
) as the sample size 𝑛 → ∞.

To prove Theorems 2.5.1 and 2.5.2, we need to show that max1≤𝑖≤𝑛 |𝜆′𝝓0
𝑔(𝑍𝑖; 𝝓0) | =

𝑜𝑝 (1). Here, 𝑔(𝑍𝑖; 𝝓) contains the censored observations.

Under the regularity condition 𝑹.5, Qin and Jing [2001] proved the following for
the function 𝑔(.) with censored observations.

max
1≤𝑖≤𝑛

|𝜆𝝓0𝑔(𝑍𝑖; 𝝓0) | = 𝑜𝑝 (1) (2.37)

Following Owen [2001] and using Taylor’s series expansion of weights, 𝑝𝑖’s can be
rewritten as follows.

𝑝𝑖 (𝝓0) =
1

𝑛[1 + 𝜆′𝝓0
𝑔(𝑍𝑖; 𝝓0)]

=
1
𝑛
[1 − 𝜆′𝝓0

𝑔(𝑍𝑖; 𝝓0)]{1 + 𝑜𝑝 (1)}; 𝑖 = 1, 2, . . . , 𝑛
(2.38)

Now 𝑤𝑖 (𝝓0) can be calculated as follows.

𝑤𝑖 (𝝓0) = 𝑛𝑝𝑖 (𝝓0)
= [1 − 𝜆′𝝓0

𝑔(𝑍𝑖; 𝝓0)]{1 + 𝑜𝑝 (1)}; 𝑖 = 1, 2, . . . , 𝑛

By equation 2.36, the weighted least square estimating function can be rewritten
as follows.

𝑈𝑛,wls(𝜷, 𝒃) =
𝑛∑︂
𝑖=1

𝑤𝑖 (X𝑖 − X̄)′(𝑌 𝑖 (𝒃) − X𝑖𝜷)

=

𝑛∑︂
𝑖=1

[1 − 𝜆′𝜃0
𝑔(𝑍𝑖; 𝜃0)] (X𝑖 − X̄)′(𝑌 𝑖 (𝒃) − X𝑖𝜷) + 𝑜𝑝 (

√
𝑛)

=

𝑛∑︂
𝑖=1

(X𝑖 − X̄)′(𝑌 𝑖 (𝒃) − X𝑖𝜷) −
𝑛∑︂
𝑖=1

[𝜆′𝜃0
𝑔(𝑍𝑖; 𝜃0)] (X𝑖 − X̄)′(𝑌 𝑖 (𝒃) − X𝑖𝜷) + 𝑜𝑝 (

√
𝑛)

=

𝑛∑︂
𝑖=1

(X𝑖 − X̄)′(𝑌 𝑖 (𝒃) − X𝑖𝜷) −
𝑛∑︂
𝑖=1

𝑉𝑖 (X𝑖 − X̄)′(𝑌 𝑖 (𝒃) − X𝑖𝜷) + 𝑜𝑝 (
√
𝑛)
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Asymptotically, by 2.37, we have ∥𝑽𝑖∥ = 𝑜𝑝 (1); 𝑖 = 1, 2, . . . , 𝑛. So,

𝑈𝑛,wls(𝜷, 𝒃) =
𝑛∑︂
𝑖=1

(X𝑖 − X̄)′(𝑌 𝑖 (𝒃) − X′
𝑖𝜷) + 𝑜𝑝 (

√
𝑛)

Compared to the first part of the equation, 𝑜𝑝 (
√
𝑛) is ignorable. Therefore, our

weighted least square estimating function is asymptotically equivalent to the least
square estimating function. Jin et al. [2006a] have shown that the least square esti-
mator is both consistent and asymptotically normal. This implies that the weighted
least square estimator also possesses these desirable properties of consistency and
asymptotic normality.



Chapter 3

Numerical Studies

In this chapter, simulation studies are conducted to compare the performance of
standard AFT models with AFTGEE models. Further investigation is also performed
to compare the weighted versions of both methods using empirical likelihood. A real
dataset is used to illustrate the methods and verify the findings.

3.1 Simulation Study

3.1.1 Data generation and steps for the simulation studies

In the simulation study, we fitted the regression model by including fixed covariates
𝑋1 and 𝑋2, and the logarithm of failure time 𝑇 . We assumed a linear relationship
between 𝑇 and both 𝑋1 and 𝑋2.

𝑇𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝜖𝑖, for 𝑖 = 1, 2, . . . , 𝑛 (3.1)

where:

𝑋11, 𝑋12 . . . 𝑋1𝑛 generated from Ber (𝑝 = 0.5) distribution,

𝑋21, 𝑋22 . . . 𝑋2𝑛 generated from 𝑁 (𝜇 = 40, 𝜎 = 5) distribution,

𝜖𝑖
iid∼ 𝑁 (0, 𝜎𝜖 ).
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The simulation study was divided into two main phases. In the initial phase, we
generated a finite population and used it as auxiliary information for subsequent steps
in the study. From this auxiliary data, we computed probability weights 𝑃𝑖 based on
Empirical Likelihood (EL). Subsequently, the study proceeded to estimate parameters
using various random samples drawn from the previously specified population and
different percentages of censoring. Both the standard AFT method and the AFTGEE
method were employed in these estimations, incorporating EL-based weights into
fitting the standard AFT and AFTGEE models. The evaluation of model performance
involved the comparison of average bias, average standard deviations, and coverage
probabilities.

To provide a more comprehensive explanation of the simulation study, the descrip-
tion of Phase I and Phase II is as follows.

3.1.2 Steps for the Simulation Study - Phase I

Step 1 : For the simulation study, a regression model was fitted incorporating 𝑋1, 𝑋2,
and the logarithm of the failure time 𝑇 . The formulated equation is expressed as
follows. Here, 𝑋1𝑖 was generated from a Bernoulli distribution with a probability
of success of 0.5. 𝑋2𝑖 was generated from a Normal distribution with a mean of
40 and a standard deviation of 5, and the resulting values were rounded up to
the nearest integer.

𝑇𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝜖𝑖, for 𝑖 = 1, 2, . . . , 𝑛 (3.2)

where, 𝜎𝜖 = (0.4, 1.0), 𝛽0 = 6.9, 𝛽1 = 1.2 and 𝛽2 = −0.12.

Step 2 : Censoring time is generated from a uniform distribution 𝑈 (0, 𝜏) to achieve the
desired censoring percentage. The status indicator function 𝛿𝑖 = I(𝑇𝑖 ≤ 𝐶𝑖) is
determined using the logarithm of the failure time (𝑇𝑖), and the logarithm of
censoring time (𝐶𝑖). To reach a specific censoring rate, 𝜏 is gradually increased
until the proportion of censored data matches the target percentage. This pro-
cess obtains the optimal 𝜏 values for each combination of sample size and 𝜎𝜖

values.

Step 3 : For a sample size of 𝑁 = 50, 000, 𝑿1 and 𝑿2 are generated as described in Step
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1, and the regression model is fitted according to equation 3.2. The failure time
can be determined by exponentiating 𝑇𝑖. Censoring times are generated using
a uniform distribution ranging from 0 to the 𝜏 value determined based on the
sample size 𝑁 = 50, 000 and the corresponding 𝜎𝜖 .

Step 4 : Observed time is determined by selecting the minimum value between the failure
time and censoring time, 𝑌 = min(𝑇0𝑖, 𝐶0𝑖), where 𝑇0𝑖 is logarithm of failure time
and 𝐶0𝑖 is logarithm of censoring time. The censoring rate is calculated using
the status indicator 𝛿𝑖0 = I(𝑇𝑖0 ≤ 𝐶𝑖0).

Step 5 : The linear regression models were fitted using 𝑌 with each covariate individually,
as well as with 𝑌 and both covariates together. Coefficients were computed using
the least squares approach. The individual models were fitted as follows:

– A linear regression was fitted between 𝑌 and 𝑋1 as 𝑌 ∼ 𝑋1 and estimating
the coefficients 𝛾0 and 𝛾1.

– A linear regression was fitted between 𝑌 and 𝑋2 as 𝑌 ∼ 𝑋2 and estimated
the coefficients 𝛿0 and 𝛿2.

– A linear regression was fitted between 𝑌 with 𝑋1 and 𝑋2 as 𝑌 ∼ 𝑋1 + 𝑋2

and estimated the coefficients 𝜃0, 𝜃1 and 𝜃2 .

Step 6 : Steps 3, 4, and 5 were repeated for varying censoring rates of 10%, 20%, and
30% and different values of 𝜎𝜖 .

3.1.3 Steps for the Simulation Study - Phase II

Step 1 : For the sample size (𝑛 = 100, 𝑛 = 200 or 𝑛 = 500) , fixed 𝑋1 and 𝑋2 were
generated, and regression models were fitted according to Step 1 in Phase I.

Step 2 : Failure time, censoring time, observed time, and censoring rate were calculated
as described in Step 3 and Step 4. To determine the censoring time, the corre-
sponding 𝜏 value was used based on the sample size and 𝜎𝜖 .

Step 3 : Weights were obtained using the empirical likelihood method as described in
Section 2.3.2 of Chapter 2. The el.test.wt2 function from the emplik package
was used to calculate the weights, incorporating the partial derivatives described
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in that section. Weight 𝑾1 was derived using auxiliary data from 𝑋1, weight
𝑾2 was obtained using auxiliary information from 𝑋2, and weight 𝑾12 was
calculated using auxiliary information from both 𝑋1 and 𝑋2.

Step 4 : Coefficients were estimated using the weighted model incorporating 𝑾1, 𝑾2, and
𝑾12, as well as without any weight, in both AFT models and AFTGEE models.

Step 4 : For the fixed covariates, the simulation study was repeated 1,000 times to cal-
culate the mean of the estimated coefficients. Standard errors were computed
using the bootstrap method, and coverage probabilities were determined based
on these standard errors. Bias, standard deviations, and coverage probabilities
were subsequently used to compare the performance of the models.

As discussed in Step 3 of Phase II, to compute the weights using empirical likeli-
hood, it is essential to have information on population parameters 𝜙 or their estimated
values. When both 𝑋1 and 𝑋2 are used as auxiliary information, the estimated co-
efficients for 𝜙 = (𝜙0, 𝜙1, 𝜙2) can be obtained as 𝜃0, 𝜃1, and 𝜃2 following the process
detailed in Step 5 of Phase I. These estimates were derived using the least squares
approach in ordinary linear regression, conducted with a finite population size of
𝑁 = 50, 000.

To proceed with the remaining part of the simulation study, after calculating
the weights, the regression coefficients, and its standard errors can be calculated as
described in Phase II.

3.1.4 Implementation of R functions

AFT Model

The survreg function in the survival package is used to fit AFT models (Therneau
and Lumley [2015]). The response is constructed using the Surv object, which com-
prises two columns. The first column represents the survival time or censored time,
while the second column is the censoring indicator, which indicates the right cen-
sored data. The convergence of the procedure in survreg is controlled by the relative
tolerance and the maximum number of iterations. These parameters can be defined
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using the survreg.control() function. The iteration process terminates and pro-
duces the outcome when either the relative tolerance is met, or the iteration reaches
the predetermined maximum number of iterations.

survreg(formula, data, weights, subset, na.action, dist = ”weibull”,
init = NULL, scale = 0, control, parms = NULL, model = FALSE, x =
FALSE, y = TRUE, robust = FALSE, cluster, score = FALSE, ...)

AFTGEE Model

The aftgee function in the aftgee package is used to fit AFTGEE models (Chiou
et al. [2014a]). Similar to the survreg function in the survival package, the aftgee
function requires both the formula and data arguments.

The iteration process stops and generates results when either the given tolerance
is achieved or the maximum number of iterations is reached. The settings can be
modified by use the aftgee.control() method.

aftgee(formula, data, subset, id = NULL, contrasts = NULL, weights
= NULL, margin = NULL, corstr = ”independence”, binit = ”srrge-
han”, B = 100, control = aftgee.control())

In situations where there is no censoring, and the independent working correlation
structure is specified in the aftgee function, the model will return an ordinary least
squares estimate.

Empirical Likelihood Probabilities

Empirical likelihood probabilities can be calculated using the el.test.wt2 function
from the emplik package (Zhou [2023]). The function returns several key outputs,
including the Lagrange multiplier at the solution, the vector of weights used in the
empirical likelihood calculation and the probabilities that maximize the weighted em-
pirical likelihood under the mean constraint.

el.test.wt2(x, wt, mu, maxit = 25, gradtol = 1e-07, Hessian = FALSE,
svdtol = 1e-09, itertrace = FALSE)

In the following section, we focus on the findings of the simulation study using
various combinations.
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Simulation Study Combinations

In the simulation study, the performance of the proposed method is compared under
different sample sizes, censoring percentages, and standard deviation values of the
error term. The study comprises 18 cases, each with these varying parametric values.
These cases are detailed below.

Summary of simulation study cases

Case number Description

Case I 𝑛 = 100 , 𝜎𝜖 = 0.4 and 10% Censored data
Case II 𝑛 = 100 , 𝜎𝜖 = 0.4 and 20% Censored data
Case III 𝑛 = 100 , 𝜎𝜖 = 0.4 and 30% Censored data
Case IV 𝑛 = 200 , 𝜎𝜖 = 0.4 and 10% Censored data
Case V 𝑛 = 200 , 𝜎𝜖 = 0.4 and 20% Censored data
Case VI 𝑛 = 200 , 𝜎𝜖 = 0.4 and 30% Censored data
Case VII 𝑛 = 500 , 𝜎𝜖 = 0.4 and 10% Censored data
Case VIII 𝑛 = 500 , 𝜎𝜖 = 0.4 and 20% Censored data
Case IX 𝑛 = 500 , 𝜎𝜖 = 0.4 and 30% Censored data
Case X 𝑛 = 100 , 𝜎𝜖 = 1.0 and 10% Censored data
Case XI 𝑛 = 100 , 𝜎𝜖 = 1.0 and 20% Censored data
Case XII 𝑛 = 100 , 𝜎𝜖 = 1.0 and 30% Censored data
Case XIII 𝑛 = 200 , 𝜎𝜖 = 1.0 and 10% Censored data
Case XIV 𝑛 = 200 , 𝜎𝜖 = 1.0 and 20% Censored data
Case XV 𝑛 = 200 , 𝜎𝜖 = 1.0 and 30% Censored data
Case XVI 𝑛 = 500 , 𝜎𝜖 = 1.0 and 10% Censored data
Case XVII 𝑛 = 500 , 𝜎𝜖 = 1.0 and 20% Censored data
Case XVIII 𝑛 = 500 , 𝜎𝜖 = 1.0 and 30% Censored data

The performance of the standard AFT and AFTGEE models was assessed in terms
of bias, standard deviation (sd), and coverage probabilities (CP) at 90%, 95%, and
99% confidence levels of the regression parameters. These results were utilized to
compare the performance of weighted models to models without weights. Each case is
divided into two parts, denoted as (a) and (b), to record 𝛽1̂ and 𝛽2̂ data, respectively.



39

3.1.5 Scenario 01 : Case I (Sample size 100 , 𝜎𝜖 = 0.4 and 10%
Censored data)

We first set the sample size to 100, with a censoring percentage of 10% and 𝜎𝜖 = 0.4.
We generated 1000 datasets and estimated the parameters 𝛽1 and 𝛽2 for both AFT
and AFTGEE models using different weighting schemes, including no weights, 𝑊1,
𝑊2, and 𝑊12. We then computed the bias, standard deviation (sd), and coverage
probabilities at 90%, 95%, and 99% confidence levels, as detailed in Table 3.1 and
Table 3.2 for 𝛽1 and 𝛽2, respectively.

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0019 0.0826 89.4 93.7 98.3
𝑊1 -0.0015 0.0752 89.1 93.6 98.9
𝑊2 0.0040 0.0835 89.6 93.9 98.3
𝑊12 -0.0032 0.0650 87.3 91.1 96.0

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0021 0.0826 89.4 93.8 98.4
𝑊1 -0.0016 0.0753 89.0 93.8 98.9
𝑊2 0.0039 0.0834 89.6 94.1 98.3
𝑊12 -0.0033 0.0650 87.3 90.9 95.7

Table 3.1: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 10% cen-
sored data for sample size 𝑛 = 100 and 𝜎𝜖 = 0.4 (Case I)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0004 0.0086 89.0 93.3 98.0
𝑊1 -0.0009 0.0088 88.1 93.5 97.9
𝑊2 -0.0002 0.0080 87.2 93.3 98.5
𝑊12 0.0006 0.0071 86.4 91.6 95.8

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0004 0.0086 89.2 93.3 97.9
𝑊1 -0.0009 0.0088 88.3 93.5 97.7
𝑊2 -0.0002 0.0079 87.2 93.3 98.5
𝑊12 0.0006 0.0071 86.3 91.6 95.7

Table 3.2: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 10% cen-
sored data for sample size 𝑛 = 100 and 𝜎𝜖 = 0.4 (Case I)

From Table 3.1, we see that model with 𝑊12 weight have the lowest standard
deviation for 𝛽1 among the models in both the AFTGEE and standard AFT models.
𝑊1 follows with the next lowest standard deviation. The model incorporating 𝑊2 does
not show any improvement over the model without weights. Models using 𝑊1 weights
consistently maintaining coverage probabilities across various confidence levels (90%,
95%, and 99%). Although models with 𝑊12 also perform well, they show slightly lower
coverage probabilities compared to those with 𝑊1, but still remain at an acceptable
level. This suggests that, when estimating 𝛽1, the weighted models incorporating
auxiliary information based on 𝑋1, as well as those incorporating information from
both 𝑋1 and 𝑋2, provide better estimates for 𝛽1.

Table 3.2 presents the data based on estimates for 𝛽2. From this table we see
that models utilizing the weight 𝑊12 have the lowest standard deviation in both the
standard AFT and AFTGEE models. Although models associated with 𝑊12 exhibit
slightly lower coverage probabilities compared to other models , these probabilities re-
main within an acceptable range of the nominal levels. This suggests that the weighted
models that include auxiliary information from 𝑋2, as well as auxiliary information
from both covariates 𝑋1 and 𝑋2, provide good estimations for 𝛽2.
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3.1.6 Scenario 02 : Impact of the censoring

In this scenario, we examine how different levels of censoring percentages affect the
performance of weighted AFT and AFTGEE models. Using a fixed sample size of 100
and 𝜎𝜖 = 0.4, we evaluated model performance by increasing the censoring percentage
to 20% and 30% to explore the impact of censoring on the estimation of parameters
𝛽1 and 𝛽2. Table 3.3 and Table 3.4 display the results for data with 20% censoring,
while Table 3.5 and Table 3.6 present the results for data with 30% censoring.

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0043 0.0908 88.2 94.0 99.1
𝑊1 -0.0039 0.0831 88.7 94.3 98.8
𝑊2 0.0005 0.0906 88.8 94.3 98.9
𝑊12 0.0014 0.0822 88.3 93.5 98.3

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0045 0.0907 87.9 94.1 99.0
𝑊1 -0.0041 0.0830 88.9 94.6 98.7
𝑊2 0.0004 0.0905 88.6 94.6 98.9
𝑊12 0.0011 0.0821 88.4 93.7 98.4

Table 3.3: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 20% cen-
sored data for sample size 𝑛 = 100 and 𝜎𝜖 = 0.4 (Case II)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0004 0.0091 88.4 94.3 98.8
𝑊1 -0.0008 0.0092 88.5 94.8 99.2
𝑊2 -0.0001 0.0085 89.5 94.6 99.2
𝑊12 0.0000 0.0085 90.1 94.7 98.1

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0004 0.0092 88.7 94.4 98.8
𝑊1 -0.0008 0.0092 88.2 94.6 99.1
𝑊2 -0.0001 0.0086 89.3 94.4 99.2
𝑊12 0.0000 0.0086 90.0 94.6 98.0

Table 3.4: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 20% cen-
sored data for sample size 𝑛 = 100 and 𝜎𝜖 = 0.4 (Case II)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 0.0013 0.0924 90.7 95.6 98.9
𝑊1 0.0033 0.0872 90.3 95.7 99.0
𝑊2 0.0063 0.0923 91.1 95.9 99.0
𝑊12 0.0086 0.0861 91.0 95.8 99.4

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 0.0010 0.0923 90.3 95.4 99.0
𝑊1 0.0030 0.0871 90.8 95.7 98.9
𝑊2 0.0062 0.0923 91.1 95.6 98.9
𝑊12 0.0084 0.0861 91.1 95.7 99.5

Table 3.5: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 30% cen-
sored data for sample size 𝑛 = 100 and 𝜎𝜖 = 0.4 (Case III)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0007 0.0107 85.2 91.5 97.7
𝑊1 -0.0012 0.0108 86.4 92.2 97.6
𝑊2 -0.0005 0.0101 85.5 91.3 98.4
𝑊12 -0.0008 0.0101 87.0 93.7 98.0

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0007 0.0107 85.7 91.4 97.7
𝑊1 -0.0011 0.0108 87.1 91.9 97.5
𝑊2 -0.0005 0.0101 86.2 91.8 98.3
𝑊12 -0.0008 0.0101 87.4 93.4 97.9

Table 3.6: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 30% cen-
sored data for sample size 𝑛 = 100 and 𝜎𝜖 = 0.4 (Case III)

When comparing 𝛽1 and 𝛽2 estimations, as the censoring percentage increases,
models with 𝑊12 show results that approach the nominal levels more closely. This
improvement is observed across all confidence levels (90%, 95%, and 99%) compared
to the situation with the 10% censoring rate.

Even with a high censoring percentage, the results indicate that models incorpo-
rating auxiliary information based on 𝑋1 and both 𝑋1 and 𝑋2 provide better estimates
for 𝛽1. Additionally, when estimating 𝛽2, models using auxiliary information based
on 𝑋2 and both 𝑋1 and 𝑋2 offer more precise estimates.

When comparing the Standard AFT and AFTGEE models, no significant differ-
ences are observed in the standard deviation or coverage probabilities between the
two methods.

As the censoring percentage increases, the proposed weighted model that uti-
lizes either partial or complete auxiliary information specific to the relevant covariate
achieves more precise estimations.
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3.1.7 Scenario 03 : Impact of the sample size

In this scenario, we increased the sample size to 200 and 500 to examine the effect
of sample size on the performance of weighted AFT and AFTGEE models. We com-
pared the impact of sample size across all censoring levels of 10%, 20%, and 30%
with 𝜎𝜖 = 0.4. This analysis aims to determine how varying sample sizes influence
the estimation of parameters 𝛽1 and 𝛽2. Table 3.7 to Table 3.12 display results for a
sample size of 200, while Table 3.13 to Table 3.18 show results for a sample size of
500, at different censoring percentages.

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0024 0.0597 88.5 94.5 98.9
𝑊1 -0.0017 0.0522 89.4 94.6 98.7
𝑊2 0.0007 0.0598 88.2 94.7 98.8
𝑊12 -0.0030 0.0456 88.5 94.1 97.8

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0024 0.0597 88.7 94.3 98.9
𝑊1 -0.0018 0.0522 89.1 94.4 98.7
𝑊2 0.0007 0.0598 88.2 94.7 98.6
𝑊12 -0.0030 0.0456 88.1 94.0 97.9

Table 3.7: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 10% cen-
sored data for sample size 𝑛 = 200 and 𝜎𝜖 = 0.4 (Case IV)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0004 0.0061 88.4 93.7 98.7
𝑊1 -0.0007 0.0061 88.1 93.5 98.9
𝑊2 -0.0005 0.0054 88.7 94.1 98.5
𝑊12 -0.0003 0.0051 87.2 93.1 97.4

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0004 0.0061 88.5 93.9 98.7
𝑊1 -0.0007 0.0061 88.1 93.5 98.8
𝑊2 -0.0005 0.0054 88.7 94.1 98.3
𝑊12 -0.0003 0.0051 87.0 93.1 97.3

Table 3.8: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 10% cen-
sored data for sample size 𝑛 = 200 and 𝜎𝜖 = 0.4 (Case IV)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0020 0.0633 88.5 93.9 98.6
𝑊1 -0.0014 0.0571 89.1 93.6 98.9
𝑊2 0.0009 0.0636 88.2 94.0 98.6
𝑊12 -0.0002 0.0553 89.0 94.6 98.6

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0022 0.0632 88.3 93.6 98.6
𝑊1 -0.0016 0.0571 89.3 93.5 98.8
𝑊2 0.0007 0.0635 88.5 93.7 98.7
𝑊12 -0.0004 0.0552 88.9 94.3 98.6

Table 3.9: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 20% cen-
sored data for sample size 𝑛 = 200 and 𝜎𝜖 = 0.4 (Case V)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0003 0.0064 89.3 94.5 98.7
𝑊1 -0.0006 0.0064 89.3 95.1 99.0
𝑊2 -0.0004 0.0060 88.9 94.3 98.9
𝑊12 -0.0005 0.0060 87.9 94.2 98.8

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0003 0.0064 89.4 94.6 98.7
𝑊1 -0.0006 0.0064 89.7 95.0 98.8
𝑊2 -0.0004 0.0060 88.9 94.6 98.9
𝑊12 -0.0005 0.0060 88.1 94.1 99.0

Table 3.10: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 20% cen-
sored data for sample size 𝑛 = 200 and 𝜎𝜖 = 0.4 (Case V)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0003 0.0674 88.4 93.8 98.6
𝑊1 0.0003 0.0624 89.5 94.2 98.9
𝑊2 0.0023 0.0679 88.3 93.6 98.5
𝑊12 0.0017 0.0624 89.1 94.4 98.4

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0005 0.0673 88.9 93.8 98.8
𝑊1 0.0001 0.0624 89.7 94.1 98.8
𝑊2 0.0021 0.0678 88.4 93.9 98.6
𝑊12 0.0015 0.0623 89.4 94.6 98.7

Table 3.11: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 30% cen-
sored data for sample size 𝑛 = 200 and 𝜎𝜖 = 0.4 (Case VI)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0002 0.0069 89.3 94.0 98.7
𝑊1 -0.0005 0.0069 89.1 94.2 98.5
𝑊2 -0.0003 0.0066 89.9 94.5 98.2
𝑊12 -0.0005 0.0066 90.6 94.3 98.2

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0002 0.0069 89.3 94.1 98.5
𝑊1 -0.0005 0.0069 89.1 94.3 98.5
𝑊2 -0.0003 0.0065 89.4 94.6 98.3
𝑊12 -0.0005 0.0065 90.6 94.4 98.3

Table 3.12: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 30% cen-
sored data for sample size 𝑛 = 200 and 𝜎𝜖 = 0.4 (Case VI)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0017 0.0396 86.4 93.8 98.5
𝑊1 -0.0011 0.0347 87.4 93.9 98.8
𝑊2 -0.0005 0.0396 86.5 94.1 98.6
𝑊12 -0.0017 0.0295 89.7 94.4 98.3

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0017 0.0396 86.3 93.9 98.5
𝑊1 -0.0011 0.0347 87.5 93.7 98.8
𝑊2 -0.0005 0.0396 86.4 94.0 98.6
𝑊12 -0.0017 0.0295 89.6 94.4 98.3

Table 3.13: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 10% cen-
sored data for sample size 𝑛 = 500 and 𝜎𝜖 = 0.4 (Case VII)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0003 0.0038 89.7 94.3 98.4
𝑊1 -0.0004 0.0038 88.8 94.2 98.6
𝑊2 -0.0002 0.0034 89.4 94.1 98.5
𝑊12 -0.0001 0.0030 91.4 95.4 98.6

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0003 0.0038 89.8 94.3 98.5
𝑊1 -0.0004 0.0038 88.7 94.1 98.6
𝑊2 -0.0002 0.0034 89.3 94.0 98.5
𝑊12 -0.0001 0.0030 91.4 95.5 98.6

Table 3.14: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 10% cen-
sored data for sample size 𝑛 = 500 and 𝜎𝜖 = 0.4 (Case VII)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0013 0.0410 87.4 93.5 98.4
𝑊1 -0.0006 0.0378 87.6 93.7 98.6
𝑊2 -0.0002 0.0410 87.3 94.0 98.6
𝑊12 -0.0005 0.0354 88.7 94.0 98.5

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0013 0.0410 87.5 93.5 98.5
𝑊1 -0.0007 0.0378 87.6 93.7 98.6
𝑊2 -0.0002 0.0410 87.4 94.2 98.6
𝑊12 -0.0006 0.0353 88.6 94.3 98.6

Table 3.15: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 20% cen-
sored data for sample size 𝑛 = 500 and 𝜎𝜖 = 0.4 (Case VIII)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0001 0.0040 89.9 94.4 98.5
𝑊1 -0.0002 0.0041 89.7 94.4 98.6
𝑊2 0.0000 0.0037 89.2 93.4 98.7
𝑊12 0.0000 0.0035 89.9 94.9 99.4

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0001 0.0040 90.0 94.1 98.5
𝑊1 -0.0002 0.0040 89.7 94.3 98.6
𝑊2 0.0000 0.0037 89.2 93.5 98.7
𝑊12 0.0000 0.0035 90.0 94.9 99.5

Table 3.16: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 20% cen-
sored data for sample size 𝑛 = 500 and 𝜎𝜖 = 0.4 (Case VIII)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0015 0.0441 88.0 94.3 98.8
𝑊1 -0.0008 0.0417 87.0 93.3 99.1
𝑊2 -0.0006 0.0441 88.2 94.3 98.8
𝑊12 -0.0006 0.0409 87.8 93.8 98.6

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0016 0.0441 88.1 94.4 98.8
𝑊1 -0.0009 0.0418 86.9 93.5 99.1
𝑊2 -0.0006 0.0441 88.3 94.3 98.8
𝑊12 -0.0007 0.0409 87.8 93.8 98.7

Table 3.17: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 30% cen-
sored data for sample size 𝑛 = 500 and 𝜎𝜖 = 0.4 (Case IX)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 0.0001 0.0043 90.8 94.6 98.4
𝑊1 0.0000 0.0043 90.5 94.8 98.6
𝑊2 0.0001 0.0041 88.7 94.7 99.1
𝑊12 0.0001 0.0039 91.3 96.1 99.1

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 0.0001 0.0043 90.6 94.6 98.6
𝑊1 0.0000 0.0043 90.6 94.6 98.6
𝑊2 0.0001 0.0041 88.5 94.7 99.0
𝑊12 0.0001 0.0039 91.3 96.2 99.1

Table 3.18: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 30% cen-
sored data for sample size 𝑛 = 500 and 𝜎𝜖 = 0.4 (Case IX)

After increasing the sample size to 200 and 500, the study provides evidence that
biases remain insignificant across all models. A comprehensive analysis reveals that,
with larger sample sizes, the AFTGEE models produce outcomes that are more similar
to those of the Standard AFT models.

Across all sample sizes and censoring percentages, models associated with 𝑊12

exhibit the lowest standard deviations in both the Standard AFT and AFTGEE
models, consistent with the findings from scenarios 1 and 2. When estimating 𝛽1, the
analysis consistently reveals that models with weights 𝑊1 exhibit the second lowest
standard deviations in both the Standard AFT and AFTGEE models. In contrast,
models with weights 𝑊2 show the second lowest standard deviations when estimating
𝛽2.

When comparing coverage probabilities across all models, they consistently reach
nominal levels of 90%, 95%, and 99%. However, the weighted model with 𝑊12 achieves
the best coverage probabilities, particularly when the sample size is large.

Similar to the results presented in Scenarios 1 and 2, it can be concluded that
models incorporating auxiliary information based on 𝑋1 and both 𝑋1 and 𝑋2 provide
good estimates for 𝛽1, whereas models incorporating auxiliary information based on
𝑋2 offer better estimates for 𝛽2.
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Furthermore, considering all the tables, the proposed weighted models demonstrate
significant improvements in results with high censoring percentages and large sample
sizes.

This indicates that with increased sample sizes, the proposed weighted methods
perform well in both Standard AFT and AFTGEE models.

3.1.8 Scenario 04 : Impact of the 𝜎𝜖

To investigate the impact of error variability on model performance, we increased
𝜎𝜖 to 1.0. We repeated the entire simulation study that was originally conducted
with 𝜎𝜖 = 0.4. This allows us to examine how increased error variability influences
the performance of weighted AFT and AFTGEE models, particularly in terms of
parameter estimation and the effects of censoring percentages and sample sizes. The
simulation results with 𝜎𝜖 = 1.0 are presented in Table A.1 to Table A.18 in Appendix
A for varying sample sizes and censoring percentages.

The results from both the Standard AFT and AFTGEE models show that the
biases in estimating the parameters �̂�1 and �̂�2 are are negligible and tend towards
zero, even for significant 𝜎𝜖 .

Increasing the error standard deviation from 0.4 to 1.0 leads to higher standard
deviations across all models. This outcome was expected as a result of the increased
variation in error.

The models with weight 𝑊12, which incorporate auxiliary information from both
𝑋1 and 𝑋2, provide the lowest standard deviation and consistently approach nominal
levels of 90%, 95%, and 99%. Moreover, as the error variance increases, the gap in
standard deviations between these 𝑊12 weighted models and others becomes higher.

Models incorporating auxiliary information from both 𝑋1 and 𝑋2 consistently per-
form better than other models, especially with larger sample sizes and higher censoring
rates.

Similar to the scenario with lower error standard deviation, the weighted models
incorporating auxiliary information from 𝑋1 alone and from both 𝑋1 and 𝑋2 provide
better estimates for 𝛽1. Conversely, the weighted models incorporating information
from 𝑋2 alone and from both 𝑋1 and 𝑋2 offer better estimates for 𝛽2. Considering the
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overall results, we can conclude that the proposed weighted method remains stable
under varying levels of error variability.

3.2 Application of the proposed Weighted AFT
Model to Real-Time Data

The Leukemia Survival dataset explores the survival outcomes of 1,043 patients di-
agnosed with acute myeloid leukemia, initially examined by Henderson et al. [2002].
The focus of the investigation is to identify potential spatial variations in survival,
considering established individual prognostic factors such as age, sex, white blood
cell count (wbc) at diagnosis, and the Townsend score (tpi), where higher values
signify less affluent areas.

In this study, we utilize data encompassing survival duration (measured in years),
final status at the end of observation (0 - right-censored, 1- dead), age (in years), sex
(0 for female, 1 for male), white blood cell count recorded at diagnosis (wbc limited
to 500), and the Townsend score (tpi).

Let’s define the variables as follows. 𝑋1 represents the variable for sex, 𝑋2 relates
to the variable for age, 𝑋3 designates the variable for white blood cell count (wbc),
and 𝑋4 represents the variable for the Townsend score (tpi).

Among the 1,043 observations in the dataset, 164 were censored, making up 15.72%
of the total. Next, the dataset was split into two distinct parts. The first part,
including 200 observations, served as auxiliary data with a censoring rate of 12.50%.
The remaining 843 observations were included in the analysis, and this subset had a
censoring percentage of 16.49%.

We derived weights from the covariates age (𝑊2), white blood cell count (𝑊3), and
Townsend score (𝑊4), along with their combinations (𝑊23, 𝑊24, 𝑊34, 𝑊234). Due to its
insignificance, the sex covariate was only included in the weights with all covariates
model (𝑊1234).
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Variables in the models EL Weights
𝑿2 𝑊2
𝑿3 𝑊3
𝑿4 𝑊4
𝑿2 and 𝑿3 𝑊23
𝑿2 and 𝑿4 𝑊24
𝑿3 and 𝑿4 𝑊34
𝑿2, 𝑿3 and 𝑿4 𝑊234
𝑿1, 𝑿2, 𝑿3 and 𝑿4 𝑊1234

Table 3.19: Weights associated with variable combinations

When evaluating the effectiveness of different weights for demonstrating a proposed
weighted approach, our attention turns to the comparison of five particular models:
No Weights, 𝑊2, 𝑊23, 𝑊234, and 𝑊1234.

Table 3.20 shows a comparison between the Standard AFT model and various
weighted models. The results are presented for the model without weights, as well as
for weighted models with 𝑊2, 𝑊23, 𝑊234, and 𝑊1234. For each weighting scheme, the
table reports the estimated coefficients (�̂�), SE, and p-values for the covariates sex,
age, wbc, and tpi.

Table 3.21 compares the Standard AFTGEE model with several weighted models,
with weights 𝑊2, 𝑊23, 𝑊234, and 𝑊1234. The table presents the outcomes for both
the unweighted model and weighted models utilizing 𝑊2, 𝑊23, 𝑊234, and 𝑊1234. Each
model offers the estimated coefficients, SE, and p-values for the covariates.

Tables 3.20 and 3.21 show that the use of the 𝑊1234 weight consistently results in
the lowest standard error among the different models. This suggests that the precision
of estimation is enhanced when utilizing auxiliary information based on all covariates
for both the standard AFT and AFTGEE models.

The p-values of the covariate tpi (𝑋4) become statistically more significant when
the 𝑊234 and 𝑊1234 weights are included in the models. Furthermore, the p-values
of the covariate sex (𝑋4) become more insignificant with 𝑊1234 weights. This indi-
cates that this study accurately captures past data properties, as the tpi covariate is
significant and the sex covariate is insignificant in past data.

The findings strongly show that using 𝑊1234 weight not only improves the accuracy
of the estimates but also enhances the significance of essential variables in the models.
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Table 3.20: Comparison of Standard AFT with different Weights

Standard AFT Model (No Weights)

Covariates 𝜷 SE P-value
sex (𝑋1) -0.0692 0.1414 0.6246
age (𝑋2) -0.0588 0.0038 0.0000
wbc (𝑋3) -0.0063 0.0011 0.0000
tpi (𝑋4) -0.0568 0.0199 0.0044

AFT model with weight 𝑾2

Covariates 𝜷 SE P-value
sex (𝑋1) -0.0537 0.1565 0.7314
age (𝑋2) -0.0442 0.0017 0.0000
wbc (𝑋3) -0.0068 0.0012 0.0000
tpi (𝑋4) -0.0611 0.0232 0.0086

AFT model with weight 𝑾23

Covariates 𝜷 SE P-value
sex (𝑋1) -0.0520 0.1528 0.7337
age (𝑋2) -0.0456 0.0016 0.0000
wbc (𝑋3) -0.0082 0.0002 0.0000
tpi (𝑋4) -0.0601 0.0225 0.0076

AFT model with weight 𝑾234

Covariates 𝜷 SE P-value
sex (𝑋1) -0.0470 0.1549 0.7613
age (𝑋2) -0.0459 0.0015 0.0000
wbc (𝑋3) -0.0079 0.0002 0.0000
tpi (𝑋4) -0.0733 0.0048 0.0000

AFT model with weight 𝑾1234

Covariates 𝜷 SE P-value
sex (𝑋1) -0.0025 0.0348 0.9425
age (𝑋2) -0.0458 0.0017 0.0000
wbc (𝑋3) -0.0079 0.0001 0.0000
tpi (𝑋4) -0.0729 0.0046 0.0000
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Table 3.21: Comparison of AFTGEE with different Weights

Standard AFTGEE model (No Weights)

Covariates 𝜷 SE P-value
sex(𝑋1) -0.0723 0.1418 0.6103
age (𝑋2) -0.0590 0.0037 0.0000
wbc (𝑋3) -0.0063 0.0011 0.0000
tpi (𝑋4) -0.0576 0.0200 0.0039

AFTGEE model with weight 𝑾2

Covariates 𝜷 SE P-value
sex (𝑋1) -0.0585 0.1561 0.7081
age (𝑋2) -0.0445 0.0016 0.0000
wbc (𝑋3) -0.0069 0.0012 0.0000
tpi (𝑋4) -0.0617 0.0232 0.0077

AFTGEE model with weight 𝑾23

Covariates 𝜷 SE P-value
sex (𝑋1) -0.0566 0.1527 0.7107
age (𝑋2) -0.0460 0.0016 0.0000
wbc (𝑋3) -0.0082 0.0002 0.0000
tpi (𝑋4) -0.0607 0.0225 0.0070

AFTGEE model with weight 𝑾234

Covariates 𝜷 SE P-value
sex (𝑋1) -0.0516 0.1550 0.7391
age (𝑋2) -0.0463 0.0015 0.0000
wbc (𝑋3) -0.0079 0.0002 0.0000
tpi (𝑋4) -0.0737 0.0051 0.0000

AFTGEE model with weight 𝑾1234

Covariates 𝜷 SE P-value
sex (𝑋1) -0.0067 0.0358 0.8509
age (𝑋2) -0.0462 0.0017 0.0000
wbc (𝑋3) -0.0079 0.0002 0.0000
tpi (𝑋4) -0.0734 0.0049 0.0000
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The following figures illustrate the residual diagnostics for standard AFT models
and AFTGEE models, as well as their weighted models with 𝑊1234. This analysis helps
assess whether residuals exhibit randomness and independence, which are essential for
validating model assumptions.

Figure 3.1: Residuals vs. log(Fitted values) plots

In Figure 3.1, we plotted the logarithm of the fitted values against the residuals
for all models. The graphs show that the residuals are randomly distributed in a
horizontal band centered around the zero line, with no clear pattern, indicating that
the models fit the data appropriately and the error terms are independent. Even with
the weighted models, there is no systematic pattern of positive and negative values,
suggesting that the assumptions of linearity, constant variance, and independence of
error terms are met for both standard and weighted models.
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Figure 3.2: Histograms

The Figure 3.2 shows that both the models without weights and the models with
weights 𝑊1234 exhibit roughly symmetric, bell-shaped distributions centered around
zero. There are no obvious clusters or outliers in the residual distributions, suggesting
uniform variance across the range of residuals in all models. Based on these obser-
vations, we can conclude that both the standard models and the models with 𝑊1234

weights are approximately normally distributed.
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Figure 3.3: Q-Q Plots

Considering the Q-Q plots in Figure 3.3, it is evident that the residuals of both
standard and weighted models lie almost entirely along the straight line in the Q-Q
plots, indicating that the residuals are approximately normally distributed.



Chapter 4

Summary and Future Work

4.1 Summary

This research propose a Weighted AFT model, enhancing the Standard AFT model
and AFTGEE model by incorporating auxiliary information. The models utilize em-
pirical likelihood probabilities as weights derived from previous studies, improving ac-
curacy by considering individual observation qualities. This methodology effectively
overcomes the challenges associated with managing censored observations, resulting
in more reliable and accurate estimates.

An extensive simulation study was conducted to evaluate the effectiveness of
weighted models with both partial and complete auxiliary information. Standard
AFT and AFTGEE models were employed to test these weighted models, along with
models without weights.

This study examined both discrete and continuous covariates, using three different
sample sizes: 𝑛 = 100, 200 & 500, with different error standard deviations, such as
𝜎𝜖 = 0.4 & 1.0. Each sample size had varying levels of censoring at 10%, 20%, and
30%.

According to the simulation study, all biases were found to be negligible, suggest-
ing that the estimated parameters closely approximate the true values for all models.
Therefore, comparisons between models were made using standard deviation and cov-
erage probabilities. When evaluating 𝛽1 estimates associated with discrete covariates,
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both weighted models with auxiliary information based on 𝑋1 and auxiliary infor-
mation based on 𝑋1 and 𝑋2 can be considered good estimates compared to other
models.

As the sample size increases, the 𝑊12 models consistently demonstrate the lowest
standard deviation and the highest coverage probability, suggesting that they offer
more precise estimates. However, it’s worth noting that in cases of small sample
sizes and low censoring percentages, models with 𝑊1 often display accurate coverage
probabilities compared to 𝑊12 models. When the censoring percentage increases,
weighted models with 𝑊12 provide the most accurate estimates in both standard
AFT models and AFTGEE models.

When evaluating estimates for 𝛽2 associated with a continuous variable, both
weighted models incorporating auxiliary information based on 𝑋2 and auxiliary infor-
mation based on 𝑋1 and 𝑋2 are considered more accurate than alternative models.
However, models with auxiliary information based on 𝑋1 and 𝑋2 can be identified
as the best estimate when considering standard deviation and coverage probabilities
across all confidence levels. As the sample size increases and the censoring percentage
rises, models with the 𝑊12 weight consistently provide the best results.

When 𝜎𝜖 is low, both standard AFT and AFTGEE models yield very similar
estimates. However, as the standard deviation of the error increases, they produce
two distinct results.

When estimating coefficients using weighted models, it is prefered to incorporate
weights based on all covariate as auxiliary information. Excluding the covariate from
the weighting process negatively impacts the outcome, resulting in an increase in the
standard deviation rather than improving the estimation

The application of the proposed method to real data, specifically using ”The
Leukemia Survival Data,” serves as a valuable illustration of the weighted AFT ap-
proach. The results demonstrate that utilizing the correct weight allows for the es-
timation of coefficients with smaller standard errors compared to the model with no
weights. Additionally, the analysis reveals that the proposed method enhances the
significance level by incorporating auxiliary information.

Overall results reveal that the Weighted AFT model, which incorporates auxil-
iary information through empirical likelihood, is highly beneficial for enhancing the
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precision and efficiency of estimates.

4.2 Future Work

Based on the findings of this study, there are several opportunities to refine and expand
the use of the Weighted AFT model. One such direction is to enhance the model to
handle left-censored and interval-censored data, which are frequently encountered in
survival analysis. Furthermore, the model could be applied to multivariate survival
data. These extensions would make the Weighted AFT model more flexible, precise,
and suitable for a broader range of survival analysis applications.
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Appendix A

Simulation Study Results: 𝜎𝜖 = 1.0

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0075 0.2021 90.3 95.1 99.3
𝑊1 -0.0082 0.1215 90.8 95.3 99.1
𝑊2 0.0059 0.2048 90.5 94.9 98.9
𝑊12 -0.0074 0.0804 88.6 93.2 97.8

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0090 0.2017 90.5 94.8 99.3
𝑊1 -0.0097 0.1214 90.7 95.1 99.0
𝑊2 0.0043 0.2043 90.6 94.6 99.2
𝑊12 -0.0090 0.0807 88.2 92.4 97.8

Table A.1: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 10% cen-
sored data for sample size 𝑛 = 100 and 𝜎𝜖 = 1.0 (Case X)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 0.0007 0.0217 89.6 94.0 97.9
𝑊1 -0.0007 0.0220 89.8 93.3 97.9
𝑊2 -0.0004 0.0135 89.7 94.8 99.2
𝑊12 -0.0005 0.0095 88.3 93.5 96.8

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 0.0008 0.0217 89.3 93.6 98.0
𝑊1 -0.0006 0.0220 89.7 93.1 98.0
𝑊2 -0.0003 0.0136 89.7 94.8 99.3
𝑊12 -0.0004 0.0095 87.8 93.4 96.8

Table A.2: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 10% cen-
sored data for sample size 𝑛 = 100 and 𝜎𝜖 = 1.0 (Case X)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0152 0.2191 88.1 93.1 98.2
𝑊1 -0.0079 0.1458 89.7 94.5 98.3
𝑊2 -0.0015 0.2228 88.7 94.3 98.4
𝑊12 -0.0103 0.1213 88.4 94.0 98.1

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0152 0.2198 88.3 93.1 98.1
𝑊1 -0.0079 0.1468 89.3 94.7 98.2
𝑊2 -0.0017 0.2236 89.0 93.9 98.5
𝑊12 -0.0104 0.1225 88.7 93.6 97.7

Table A.3: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 20% cen-
sored data for sample size 𝑛 = 100 and 𝜎𝜖 = 1.0 (Case XI)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0003 0.0219 88.5 93.8 98.8
𝑊1 -0.0016 0.0222 89.7 93.8 98.8
𝑊2 -0.0002 0.0155 91.0 95.5 98.7
𝑊12 0.0002 0.0137 88.5 94.1 98.0

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0002 0.0220 88.7 93.6 98.8
𝑊1 -0.0015 0.0223 89.5 93.8 98.7
𝑊2 -0.0001 0.0156 91.0 95.4 98.8
𝑊12 0.0003 0.0137 88.2 93.7 98.0

Table A.4: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 20% cen-
sored data for sample size 𝑛 = 100 and 𝜎𝜖 = 1.0 (Case XI)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0088 0.2289 87.1 94.4 98.8
𝑊1 -0.0005 0.1655 90.7 95.8 98.9
𝑊2 0.0028 0.2317 88.0 94.5 98.9
𝑊12 -0.0017 0.1573 88.8 93.5 98.4

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0091 0.2293 87.7 94.2 98.8
𝑊1 -0.0006 0.1663 91.0 95.6 98.8
𝑊2 0.0022 0.2322 88.6 94.4 99.0
𝑊12 -0.0023 0.1582 88.3 93.3 98.6

Table A.5: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 30% cen-
sored data for sample size 𝑛 = 100 and 𝜎𝜖 = 1.0 (Case XII)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0010 0.0226 89.5 94.9 99.0
𝑊1 -0.0022 0.0229 90.0 94.7 98.9
𝑊2 -0.0005 0.0177 90.8 95.4 99.2
𝑊12 -0.0003 0.0168 88.3 93.5 98.4

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0009 0.0226 88.9 94.7 98.8
𝑊1 -0.0021 0.0229 90.6 94.7 98.8
𝑊2 -0.0003 0.0178 91.0 94.9 99.1
𝑊12 -0.0002 0.0169 87.8 92.9 98.3

Table A.6: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 30% cen-
sored data for sample size 𝑛 = 100 and 𝜎𝜖 = 1.0(Case XII)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0069 0.1456 88.9 94.4 99.1
𝑊1 -0.0043 0.0852 90.8 95.2 99.3
𝑊2 0.0009 0.1468 88.8 94.4 99.1
𝑊12 -0.0082 0.0579 88.0 93.0 96.9

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0076 0.1455 88.4 94.4 99.0
𝑊1 -0.0050 0.0853 90.8 95.5 99.2
𝑊2 0.0003 0.1466 89.0 94.3 99.0
𝑊12 -0.0087 0.0582 87.9 93.0 96.8

Table A.7: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 10% cen-
sored data for sample size 𝑛 = 200 and 𝜎𝜖 = 1.0 (Case XIII)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0008 0.0148 87.8 94.8 98.7
𝑊1 -0.0017 0.0148 88.6 94.3 98.8
𝑊2 -0.0010 0.0089 91.6 95.8 99.1
𝑊12 -0.0007 0.0068 87.6 93.0 97.6

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0008 0.0148 88.0 94.8 98.8
𝑊1 -0.0017 0.0149 88.4 94.2 98.8
𝑊2 -0.0010 0.0090 91.8 95.9 99.1
𝑊12 -0.0007 0.0069 87.5 93.0 97.7

Table A.8: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 10% cen-
sored data for sample size 𝑛 = 200 and 𝜎𝜖 = 1.0 (Case XIII)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0052 0.1514 88.9 94.3 99.0
𝑊1 -0.0034 0.0992 90.9 94.5 98.8
𝑊2 0.0026 0.1530 89.0 94.3 99.1
𝑊12 -0.0071 0.0822 89.6 93.9 98.3

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0057 0.1510 88.6 94.4 98.9
𝑊1 -0.0038 0.0991 90.8 94.6 98.9
𝑊2 0.0022 0.1527 88.7 94.5 99.0
𝑊12 -0.0075 0.0826 89.7 93.5 98.1

Table A.9: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 20% cen-
sored data for sample size 𝑛 = 200 and 𝜎𝜖 = 1.0 (Case XIV)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0008 0.0155 89.4 93.8 98.7
𝑊1 -0.0017 0.0155 88.9 93.7 98.7
𝑊2 -0.0010 0.0109 88.9 94.4 98.2
𝑊12 -0.0007 0.0096 87.8 92.3 98.2

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0007 0.0155 89.6 93.5 98.7
𝑊1 -0.0016 0.0156 89.4 93.6 98.6
𝑊2 -0.0009 0.0109 88.7 94.2 98.3
𝑊12 -0.0005 0.0097 87.3 92.5 98.0

Table A.10: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 20%
censored data for sample size 𝑛 = 200 and 𝜎𝜖 = 1.0 (Case XIV)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0007 0.1595 88.9 94.2 98.5
𝑊1 0.0004 0.1151 90.7 94.9 98.6
𝑊2 0.0071 0.1611 88.8 94.8 98.8
𝑊12 -0.0025 0.1060 89.4 94.9 98.9

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0013 0.1593 88.9 93.9 98.9
𝑊1 -0.0002 0.1151 90.4 94.9 98.7
𝑊2 0.0064 0.1610 88.8 94.3 98.8
𝑊12 -0.0031 0.1063 89.1 94.7 98.7

Table A.11: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 30%
censored data for sample size 𝑛 = 200 and 𝜎𝜖 = 1.0 (Case XV)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0009 0.0161 89.5 94.5 98.8
𝑊1 -0.0018 0.0162 89.5 95.3 98.5
𝑊2 -0.0011 0.0125 88.4 94.2 98.5
𝑊12 -0.0009 0.0119 88.7 94.0 98.8

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0008 0.0161 89.2 94.7 98.9
𝑊1 -0.0017 0.0162 89.4 95.2 98.6
𝑊2 -0.0010 0.0125 89.1 93.8 98.4
𝑊12 -0.0008 0.0119 87.7 93.5 98.7

Table A.12: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 30%
censored data for sample size 𝑛 = 200 and 𝜎𝜖 = 1.0 (Case XV)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0049 0.097 87.5 94.0 98.7
𝑊1 -0.0032 0.0546 91.1 95.7 99.1
𝑊2 -0.0017 0.0976 87.3 94.2 98.7
𝑊12 -0.0056 0.0383 88.2 93.2 97.9

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0049 0.0970 87.4 94.2 98.7
𝑊1 -0.0032 0.0547 90.8 95.5 99.3
𝑊2 -0.0017 0.0975 87.6 94.4 98.7
𝑊12 -0.0057 0.0383 88.1 93.5 97.9

Table A.13: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 10%
censored data for sample size 𝑛 = 500 and 𝜎𝜖 = 1.0 (Case XVI)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0005 0.0092 88.2 94.2 98.6
𝑊1 -0.0009 0.0093 88.3 94.0 98.8
𝑊2 -0.0006 0.0056 90.5 95.1 98.4
𝑊12 -0.0004 0.0040 90.1 94.6 97.9

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0006 0.0092 88.2 94.2 98.7
𝑊1 -0.0009 0.0093 88.2 93.8 98.8
𝑊2 -0.0006 0.0056 90.7 95.1 98.4
𝑊12 -0.0004 0.0040 90.0 94.9 98.0

Table A.14: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 10%
censored data for sample size 𝑛 = 500 and 𝜎𝜖 = 1.0 (Case XVI)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0054 0.1001 87.5 93.8 98.5
𝑊1 -0.0033 0.0644 89.0 94.3 98.9
𝑊2 -0.0023 0.1004 87.2 94.1 98.7
𝑊12 -0.0052 0.0549 88.2 94.3 98.1

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0054 0.0999 87.8 94.3 98.6
𝑊1 -0.0032 0.0643 89.0 94.0 99.0
𝑊2 -0.0022 0.1003 87.4 94.1 98.8
𝑊12 -0.0052 0.0547 88.7 94.4 98.2

Table A.15: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 20%
censored data for sample size 𝑛 = 500 and 𝜎𝜖 = 1.0 (Case XVII)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0004 0.0096 89.4 93.6 98.8
𝑊1 -0.0008 0.0096 89.7 94.3 99.1
𝑊2 -0.0005 0.0066 90.2 94.2 98.4
𝑊12 -0.0003 0.0057 90.4 95.5 98.3

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0004 0.0096 89.6 93.7 99.0
𝑊1 -0.0007 0.0096 89.4 94.2 99.1
𝑊2 -0.0005 0.0066 89.6 94.4 97.9
𝑊12 -0.0003 0.0057 90.2 95.4 98.2

Table A.16: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 20%
censored data for sample size 𝑛 = 500 and 𝜎𝜖 = 1.0 (Case XVII)

Standard AFT -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0022 0.1046 87.9 93.2 98.1
𝑊1 -0.0004 0.0755 87.4 94.0 98.8
𝑊2 0.0007 0.1048 87.5 93.3 98.3
𝑊12 -0.0019 0.0703 88.9 93.6 98.1

AFTGEE -𝜷1

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 -0.0023 0.1045 88.3 93.4 98.0
𝑊1 -0.0006 0.0753 87.7 93.9 99.0
𝑊2 0.0006 0.1046 88.4 93.6 98.2
𝑊12 -0.0021 0.0700 89.6 93.7 98.2

Table A.17: Comparative Analysis of 𝛽1̂: Standard AFT vs AFTGEE with 30%
censored data for sample size 𝑛 = 500 and 𝜎𝜖 = 1.0 (Case XVIII)
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Standard AFT -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 0.0000 0.0100 89.9 93.7 99.0
𝑊1 -0.0003 0.0100 90.4 94.4 98.9
𝑊2 0.0000 0.0075 89.1 94.2 98.8
𝑊12 0.0001 0.0070 90.1 95.1 98.5

AFTGEE -𝜷2

Weights Bias sd 90% CP 95% CP 99% CP
No 𝑊 0.0001 0.0100 90.4 93.9 99.1
𝑊1 -0.0002 0.0100 89.8 94.3 99.0
𝑊2 0.0000 0.0075 89.1 94.0 99.0
𝑊12 0.0002 0.0070 90.7 95.3 98.5

Table A.18: Comparative Analysis of 𝛽2̂: Standard AFT vs AFTGEE with 30%
censored data for sample size 𝑛 = 500 and 𝜎𝜖 = 1.0 (Case XVIII)
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