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Abstract

In the analysis of count time series at equally spaced intervals with covariate informa-

tion, Poisson Autoregressive (AR) or Integer-Valued Autoregressive (INAR) models

have been widely discussed in the literature, with their fundamental properties and

estimation methods thoroughly explored. However, when time series data exhibits

both long-term dependencies (autocorrelation) and moving average effects, capturing

both of these elements is essential for more effective modeling and forecasting. To ad-

dress this, we introduce autoregressive moving average (ARMA) models of order (1,1)

for count time series. We first consider the case where the offspring random variable

follows a Bernoulli distribution, meaning that each individual in the population at

time t − 1 can produce only one or zero offspring at time t. Additionally, we extend

this model to incorporate the possibility of any individual producing multiple offspring

at a given time point, resulting in a binomial offspring random variable. We derive

the key properties of these models, present methods for parameter estimation and

forecasting function. The performance of the proposed methods are assessed through

simulation studies.

Keywords: moving average model, autoregressive moving average model, generalized

quasi likelihood method, generalized method of moments.
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Chapter 1

Introduction

Consider a sequence of n random variables Yt1 , Yt2 , ..., Ytn indexed by time, where

t1 < t2 < t3 < ... < tn. Let yt1 , yt2 , ..., ytn be observed values of the random variables

{Yt, t ∈ Z}. The random variable Yt is said to be nth order weakly stationary if

the joint moments of Yt up to order n does not depend on time. When observations

yt1, yt2, ..., ytn are measured at specific time points t1, t2, ..., tn, respectively (t1 < t2 <

... < tn), then this set of observations is called time series data (Box et al., 2015).

The time intervals between observations can either be equal or unequal. Since the

focus is on time series data with equal intervals, some commonly used time series

models assuming equal time spacing are discussed. Furthermore, depending on the

nature of the observed values, time series data are classified into different types, such

as continuous time series, count time series, and multinomial time series (Chatfield,

1975).

1.1 Models for Continuous Time Series Data

Continuous time series data refers to sequential observations collected over a period

of time, where each data point can take any value within a specified range. The

concept of correlation in time series data resulting from lagged linear relationships

led to the development of autoregressive (AR) and autoregressive moving average

(ARMA) models, as detailed by Whittle (1951).
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1.1.1 Autoregressive Model

In AR(p) model the current value of the time series, yt is considered as a linear com-

bination of p most recent past values of itself and a random term wt that incorporates

everything new at the series at time point t that is not explained by the past values

(Box et al., 2015; Chuang, 1991; Shumway et al., 2000; Teräsvirta, 1994). Let yt

be a stationary process with mean µ and ỹt = yt − µ be the mean deleted process.

Additionally, wt is a white noise process with mean 0 and variance σ2. A pth order

AR process, ỹt, has the form,

ỹt = φ1ỹt−1 + φ2ỹt−2 + ...+ φpỹt−p + wt. (1.1)

Notice that in equation (1.1), ỹt is modeled as a linear combination of past history

of ỹt and a random component, wt. Thus, ỹt is a random variable. Here, φi is the

parameter of the model for i = 1, 2, . . . , p, representing the influence of the i-th lagged

value on the current value yt. Some basic properties of the model are:

• E(yt) = µ.

• v(yt) = γ(0) =
∑p

j=1 φjγ(j) + σ2, where γ(j) is the autocovariance function.

• cov(yt, yt−k) = γ(k) =
∑p

j=1 φjγ(|k − j|), where the lag k ≥ 1.

• corr(yt, yt−k) = ρ(k) =
∑p

j=1 φjρ(|k − j|), where the lag k ≥ 1. It can be

observed that the autocorrelation function (ACF), denoted by ρ(k), satisfies a

difference equation. This difference equation for the lag-k ACF is commonly

referred to as the Yule-Walker difference equation (Box et al., 2015).

1.1.2 Moving Average Model

In MA(q) model the current value of the time series, yt is considered as a linear

combination of lagged white noise processes (Box et al., 2015; Chuang, 1991; Shumway

et al., 2000). A mean deleted qth order MA process, ỹt, has the form,

ỹt = wt − θ1wt−1 − θ2wt−2 − ...− θqwt−q.
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Here, θi is the parameter of the model for i = 1, 2, . . . , p, representing the influence of

the i-th lagged white noise process on the current value of ỹt. Some basic properties

of the model are:

• E(yt) = µ.

• v(yt) = γ(0) = σ2
∑q

j=0 θj
2, where θ0 = −1.

• cov(yt, yt−k) = γ(k) = σ2
∑q

i=0(θiθi+k − θk), where θ0 = −1.

• corr(yt, yt−k) = ρ(k) =

∑q
i=0 θiθi+k∑q
j=0 θj

2 , where θ0 = −1.

1.1.3 Autoregressive Moving Average Model

In ARMA model, the AR and the MA components are combined to consider both

the effects of past values and past random terms of a time series (Box et al., 2015;

Chuang, 1991; Shumway et al., 2000). A mean deleted ARMA(p,q) model has the

form,

ỹt = φ1ỹt−1 + φ2ỹt−2 + ...+ φpỹt−p + wt − θ1wt−1 − θ2wt−2 − ...− θqwt−q.

Here, φi and θi are the parameters of the model for i = 1, 2, . . . , p, representing the

influence of the i-th lagged value on the current value yt and i-th lagged white noise

process on the current value yt respectively. When q = 0, an ARMA(p,0) model

reduces to the AR(p) process. Similarly, when p = 0, an ARMA(0,q) model reduces

to the MA(q) process. So, MA and AR models are special cases of ARMA(p,q) model.

The simplest example of the ARMA(p,q) model is the ARMA(1,1) model defined as,

ỹt = φ1ỹt−1 + wt − θ1wt−1.

Some basic properties of the ARMA(1,1) model are:

• E(yt) = µ.

• v(yt) = γ(0) =
θ1

2 − 2θ1φ1 + 1

1− φ1
2 σ2.
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• cov(yt, yt−k) = γ(k) =

φ1γ(0)− θ1σ2, for k = 1,

φ1
kγ(0), for k > 1.

• corr(yt, yt−k) = ρ(k) =

φ1 −
θ1σ

2

γ(0)
, for k = 1,

φ1
k, for k > 1.

From the ACF of the ARMA(1,1) model, it can be observed that the ACF behaves

like that of the AR(1) model after lag 1 (Brockwell & Davis, 2002; Hyndman, 2018).

In general, it can be shown that the ACF of ARMA(p,q) model behaves like that of

the AR(p) model after lag q (Brockwell & Davis, 2002; Hyndman, 2018).

1.2 Models for Count Time Series Data

Count data consists of non-negative integer values that represent the number of occur-

rences of an event (Czado et al., 2009; Cameron & Trivedi, 2013). Early researchers

who have studied count time series have often used Poisson Autoregressive models of

order 1 (Al-Osh & Alzaid, 1987; Sutradhar, 2003, 2011; Oyet & Sutradhar, 2013). Al-

Osh and Alzaid (1987) introduced a model for a stationary sequence of integer-valued

random variables with lag-one dependence, naming it the integer-valued autoregres-

sive process of order one (INAR(1) process). In their proposed INAR(1) process

binomial thinning operation, denoted by *, was used to replace scalar multiplication

of discrete random variables (Steutel & Van Harn, 1979; Steutel et al., 1983; Puig

& Valero, 2007). Specifically, if Y is a discrete random variable taking non-negative

integer values, then the binomial thinning operation is defined as,

ρ ∗ Y =
Y∑
j=1

bj(ρ), (1.2)

where bj(ρ) is an identically and independently distributed binary random variable

with P [bj(ρ) = 1] = ρ = 1 − P [bj(ρ) = 0] and ρ ∈ [0, 1]. In each model, thinning

operations are assumed to be independent of previous history of the process. Al-Osh

and Alzaid (1987) demonstrated that the distribution properties of the INAR(1) pro-

cess are similar to those of the AR(1) model for continuous data. They also discussed

the estimation of parameters using the Yule-Walker estimators, the conditional least
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squares estimators and the maximum likelihood estimators.

1.2.1 Autoregressive Model

Zhang and Oyet (2014) extended the Poisson AR(1) model to the AR(2) model. They

studied the properties of the model and proposed a GQL approach for estimating the

model parameters.

Let xt = (xt1 , xt2 , ..., xtp)T be a p-dimensional covariate vector measured at time t,

along with the count yt for a single community and β be the (p×1) vector of covariate

effect parameter. Let dt represent the immigration variable, indicating the number

of individuals entering the community from different regions at time t. Based on the

study conducted by Zhang and Oyet (2014), for a single community a AR(p) model

for count data can be written as,

yr =
r−1∑
l=1

ρl ∗ yr−l + dr, r = 2, 3, ..., p (1.3)

yt =

p∑
l=1

ρl ∗ yt−l + dt, t = p+ 1, p+ 2, ..., T, (1.4)

where y1 ∼ Poi(µ1 = exp(x1
Tβ)) and, dt and yt−l are independent. In particular,

when p = 1, the AR(p) model reduces to the AR(1) model and by using binomial

thinning operation the model is given by

yt =

yt−1∑
j=1

bj(nt, ρ) + dt, (1.5)

where bj ∼ Binomial(nt, ρ) with assumptions y1 ∼ Poi(µ1 = exp(x1
Tβ)), dt ∼

Poi(µt−ntρµt−1) for t = 2, 3, ..., T and, dt and yt−1 are independent. Here 0 < ρ < 1.

The basic properties of the AR model, satisfying the condition ρ < min

(
µt

ntµt−1
, 1

)
,

are as follows,

i. µt = exp(xt
Tβ),

ii. σtt = µt − ntρ2µt−1 + nt
2ρ2σt−1,t−1,
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iii. cov(yt, yt−k) =

(
k−1∏
l=0

nt−l

)
ρkσt−k,t−k,

iv. corr(yt, yt−k) =

(
k−1∏
l=0

nt−l

)
ρk
√
σt−k,t−k
σtt

.

However, when nt = 1, variable bj then reduces to a binary variable leading yit to

follow a Poisson AR model with E(yt) = v(yt) = µt = exp(xt
Tβ)) (Oyet & Sutradhar,

2013).

1.2.2 Moving Average Model

A moving average (MA) model of order q can be defined as,

yt =

q∑
l=1

ρl ∗ dt−l + dt. (1.6)

for t = 2, 3, ..., T (McKenzie, 1988; Brännäs & Hall, 2001; Weiß, 2008). In particular,

when q = 1, the MA(q) model reduces to the MA(1) model, given by

yt = ρ ∗ dt−1 + dt, (1.7)

assuming that y1 = d1 ∼ Poi(µ1 = exp(x1
Tβ)) and dt ∼ Poi

(∑t−1
u=o(−ρ)uµu−t

)
for all

t = 2, 3, ..., T (McKenzie, 1988). The mean and variance of the MA model are equal,

E(yt) = v(yt) = µt = exp(xt
Tβ). The correlation between yt and yk is defined as,

corr(yt, yk) =


ρ
[∑min(t,k)−1

t=0 (−ρ)tµmin(t,k)−t

]
√
µtµk

, for |t− k| = 1,

0, for otherwise.

In MA model, ρ must satisfy the condition 0 < ρ < min[1, ρ20, ..., ρt0, ..., ρT0], where

ρt0 is the solution of
∑t−1

u=o(−ρ)uµu−t = 0.
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1.3 Generalized Quasi Likelihood Method

Several methods have been proposed in the literature for estimating the parameters

of models for count data. Liang and Zeger (1986) proposed generalized estimating

equation (GEE) approach where a ”working” correlation matrix is used to estimate

the covariate parameter. However, Crowder (1995) demonstrated that the asymp-

totic properties of the estimator can undergo a breakdown due to the uncertainty

in the definition of the ”working” correlation matrix. Later, Sutradhar and Das

(1999) demonstrated that the independence assumption based quasi-likelihood (QL)

approach is more efficient than the GEE approach considering situations where GEE

provides consistent estimators for the covariate parameters. Sutradhar (2003) ex-

tended the work of Wedderburn (1974) to the general stationary setup and proposed

a generalized quasi-likelihood (GQL) method to estimate the time independent co-

variates effect of the models for binary or count data. Furthermore, Sutradhar et al.

(2010) demonstrated that the stationary correlation based estimation approach may

lead to inefficient regression estimates for time dependent count data. They suggested

a generalized quasi-likelihood (GQL) approach based on a true non-stationary corre-

lation structure.

In this GQL approach the estimated lag correlation of the responses are used to

construct the correlation structure. The correlation structure can be written as fol-

lows

C(ρ) =


1 ρ12 ρ13 . . . ρ1T

ρ21 1 ρ23 . . . ρ2T
...

...
...

...

ρT1 ρT2 ρT3 . . . 1

 (1.8)

where ρm,n represents the correlation between ym and yn for m = 1, 2, ..., T and

n = 1, 2, ..., T . Let, E(yt) = µt, v(yt) = σtt and A = diag(σ11, σ22, ..., σTT ). As Σ(ρ)

denote the variance covariance matrix of y, Σ(ρ) = A
1
2C(ρ)A

1
2 . Then GQL estimating

equation for regression parameter, β, is given by,

XTAΣ−1(ρ) (y − µ) = 0, (1.9)
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where y = (y1, y2, ..., yT )T , µ = (µ1, µ2, ..., µT )T and X = (x1,x2, ...,xT )T . By using

(1.9), estimate of β can be obtained assuming all ρm,n are known. Newton-raphson

iterative approach is used to solve the equation in (1.9).

1.4 Motivation

Al-Osh and Alzaid (1987) studied an AR model and discussed the Yule-Walker, Con-

ditional Least Squares (CLS) estimates, and MLE estimates of model parameters.

Some researchers examined AR processes as branching processes and their applica-

tions (Winnicki, 1988; Wei & Winnicki, 1990; Du Jin-Guan, 1991; Sutradhar et al.,

2010; Weiß, 2015). However, in practice, one may encounter count data that is not

suitable for AR models. Such data may exhibit both autocorrelation and moving

average effects, making it crucial to account for both aspects to improve modeling

and forecasting accuracy. McKenzie (1988) proposed an ARMA model but did not

provide any estimation methods. To the best of our knowledge, there are no stud-

ies in the existing literature that investigate the properties, estimation methods, and

forecasting functions of ARMA models for count data based on Poisson immigration

variables. Therefore, in this thesis, we extend the work of Al-Osh and Alzaid (1987)

and McKenzie (1988) to the estimation of ARMA(1,1) model parameters.

The objectives of our research are as follows:

i. develop the basic properties of stationary and non-stationary cases for proposed

Poisson ARMA (1,1) model for binary offspring and ARMA (1,1) model with

binomial offspring,

ii. compare the proposed ARMA (1,1) models for count data with ARMA (1,1) for

continuous data to check for similarities,

iii. estimate the parameters of the models using Generalized Quasi Likelihood method

and Generalized Method of Moments,

iv. derive asymptotic distribution of covariate effect parameter, β, and

v. derive forecasting function for ARMA (1,1) model for binary offspring and

ARMA (1,1) model with binomial offspring.
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1.5 Main Contributions and Outline of Thesis

In this section, we will discuss the primary contributions of this thesis, highlighting

the key findings, methodologies, and theoretical advancements made throughout our

research.

First, we proposed an ARMA(1,1) model with binary offspring. The fundamental

properties of this model are derived and summarized in Theorem 2.2.1. Additionally,

we present the Generalized Quasi-Likelihood (GQL) estimation method for estimat-

ing the covariate effect parameter β, along with the Generalized Method of Moments

(GMM) for estimating the parameters ρ1 and ρ2. These methods were found to per-

form well in the simulation study. The asymptotic distribution of the covariate effect

parameter β is derived and presented in Theorem 2.2.2. Finally, we derived the l-

step ahead forecasting function, including the mean and variance of the forecast error.

We also proposed an ARMA(1,1) model with binomial offspring. The fundamental

properties of this model are derived and summarized in Theorem 2.3.1. Furthermore,

we present the GQL estimation method for estimating the parameter β, along with

the GMM for estimating the parameters ρ1 and ρ2. We derive the l-step ahead fore-

casting function, as well as the mean and variance of the forecast error. Additionally,

we consider a special case where the number of offspring produced by an individual

during a given time period does not depend on time. The fundamental properties

of this model are derived and summarized in Theorem 2.3.2. We again present the

GQL estimation method for estimating the parameter β, along with the GMM for

estimating the parameters ρ1 and ρ2. These methods perform well in the simulation

study. We derived the l-step ahead forecasting function, along with the mean and

variance of the forecast error.

This thesis is written in manuscript form. In Chapter 2, ARMA(1,1) models for

count data are discussed in detail. Section 2.2 explores the ARMA(1,1) model for

count data with binary offspring, while Section 2.3 covers the ARMA(1,1) model

for count data with binomial offspring. The conclusion of the research is presented

in Chapter 3, summarizing the key findings and contributions of the study. It also

outlines some recommendations for future research as extensions of this thesis.



Chapter 2

Autoregressive Moving Average

Models for Count Data

Abstract

When equally spaced time series of counts is observed along with covariate informa-

tion at each time point several authors have discussed the analysis of such data with

Poisson Autoregressive or Integer valued Autoregressive (INAR) models. The basic

properties and estimation of these INAR models are well documented in the literature.

When time series data exhibits both autocorrelation and moving average effects, it is

imperative to account for both of these aspects for improving modelling and forecast-

ing effectiveness. Consequently, we consider autoregressive moving average models of

order (1,1) for count time series with covariate information. First, we consider binary

offspring random variable so that each member of a family at time t− 1 is allowed to

only a single offspring to the population at time t and propose an ARMA(1,1) model

with binary offspring. We also extend our proposed model by allowing the possibility

of an individual producing more than one offspring in a time point and propose an

extended ARMA(1,1) model with binomial offspring. We derive the basic properties

of the models and discuss the estimation of the model parameters. The performance

of our proposed methods are examined through simulation studies.

Keywords: moving average model, autoregressive moving average model, generalized

quasi likelihood method, generalized method of moments.
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2.1 Introduction

Several research are available for Poisson autoregressive model where a specified char-

acteristic of interest is considered to be correlated with the observations of previous

time points.

Al-Osh and Alzaid (1987) introduced a model for a stationary sequence of integer-

valued random variables with lag-one dependence, naming it the integer-valued au-

toregressive process of order one (INAR(1) process). The binomial thinning operation,

denoted by *, was used to replace scalar multiplication of discrete random variables

(Steutel et al., 1983). Specifically, if Y is a discrete random variable taking non-

negative integer values and ρ ∈ [0, 1], then the binomial thinning operation is defined

as,

ρ ∗ Y =
Y∑
j=1

bj(ρ),

where bj(ρ) is an identically and independently distributed binary random variable

with P [bj(ρ) = 1] = ρ = 1 − P [bj(ρ) = 0]. In each model, thinning operations are

independent of previous history of the process. In their paper, they demonstrated

that the distribution properties of the INAR(1) process are similar to those of the

AR(1) model for continuous data. They also discussed the estimation of parameters

using the Yule-Walker estimators, the conditional least squares estimators and the

maximum likelihood estimators.

Later, Mckenzie (1988) proposed a family of models for discrete time processes where

Poisson distribution is considered as the marginal distribution. In his paper, he dis-

cussed AR(1), MA(1), MA(q) and ARMA(1,q) models. According to Mckenzie (1988),

using a common innovation process, {Wt}, the ARMA(1,q) model can be defined as,

The AR(1) component: yt = ρ ∗ yt−1 +Wt.

The MA(q) component: Xt = yt−q +

q∑
j=1

bj(ρ)Wt−j.

Oyet and Sutradhar (2013) modeled infectious disease data collected over a short

period of time using a branching process with immigration and provided consistent
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estimates of the parameters in their proposed model. Zhang and Oyet (2014) extended

this work by proposing a second order longitudinal dynamic model based on a second

order branching process with immigration. However, the effect of the random term

over the past time periods was not considered.

In this paper, we propose autoregressive moving average models of order (1,1) for

count data. It is an extension of the work of Al-Osh and Alzaid (1987) and McKenzie

(1988). The proposed Poisson ARMA(1,1) model with binary offspring is discussed in

Section 2.2, with basic properties and parameter estimation methods outlined in Sec-

tions 2.2.1 and 2.2.2, respectively. The asymptotic distribution of the GQL estimate is

presented in Section 2.2.3, followed by a simulation study evaluating the performance

of the estimation methods in Section 2.2.4 and the forecasting function in Section

2.2.5. Additionally, we introduce an extended ARMA(1,1) model with binomial off-

spring in Section 2.3, where the properties and parameter estimation methods are

discussed in Sections 2.3.1 and 2.3.2, respectively, and the forecasting function for

this model is outlined in Section 2.3.3. A special case of the model is presented in

Section 2.3.4, and Section 2.3.5 demonstrates a simulation study to assess the perfor-

mance of the estimation methods for the model parameters. Finally, conclusion and

potential future research are provided in Section 2.4.

2.2 ARMA Model for Count Data with Binary

Offspring

Let yt be the total number of individuals at time t with a specified characteristics

of interest. Let xt = (xt1,xt2, . . . ,xtp)
T be a p-dimensional vector of covariates at

time t, and the correlation parameters be ρ1 and ρ2 such that 0 < ρ1 < 1 and

0 < ρ2 < 1. Additionally, let dt represent the immigration variable, indicating the

number of individuals entering the population from different regions at time t. Then,

our proposed version of ARMA(1,1) model is given by

yt = ρ1 ∗ yt−1 + ρ2 ∗ dt−1 + dt, (2.1)
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In this model, we assume that an individual can produce either one offspring or

none, with the offspring variable, b1j, represented as a binary random variable with

probability ρ1. Furthermore, b2j is regarded as a binary variable with a probability

of ρ2, capturing the effect of immigration variables from previous time periods. Then

proposed model in (2.1) can be written as,

yt =

yt−1∑
j=1

b1j(ρ1) +

dt−1∑
j=1

b2j(ρ2) + dt. (2.2)

We make the following assumptions about our proposed ARMA(1,1) model in (2.2),

Assumption 1.1. y0 = 0.

Assumption 1.2. y1 ∼ Poi(µ1 = exp(x1
Tβ)) and d1 ∼ Poi(µ1 = exp(x1

Tβ)).

Assumption 1.3. dt ∼ Poi(µt − ρ1µt−1 − ρ2µdt−1), for all t = 2, 3, ..., T.

Assumption 1.4. dt and yt−1 are independent for t = 2, 3, ..., T.

Here, 0 < ρ1 < 1 and 0 < ρ2 < 1. Again, µt = exp(xt
Tβ), where xt = (xt1 , xt2 , ..., xtp)T

and β = (β1, β2, ..., βp)
T for t = 1, 2, ..., T . The mean of Poisson must be non-negative.

Therefore, for t = 2, 3, . . . , T ,

ρ1 < min

{
µt
µt−1

− ρ2
µdt−1

µt−1
, 1

}
, for fixed ρ2. (2.3)

For stationary case, when xt = x, µt = µ,

ρ1 < min

{
1− ρ2

µdt−1

µ
, 1

}
, for fixed ρ2. (2.4)

2.2.1 Basic Properties

Based on assumption 1.2, E(y1) = v(y1) = µ1. Additionally, E(d1) = v(d1) = µ1. By

taking successive expectations, and using conditional mean and variance, the mean

and variance of yt is obtained for t = 1, 2, . . . , T . The following Theorem 2.2.1 outlines

the basic properties of the model in 2.2. Its proof is given in the Appendix A.1.

Theorem 2.2.1 Let yt be the number of individuals at time t, and dt be the immi-

gration variable at time t for t = 1, 2, ..., T . Consider a binary offspring variable for
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the binomial thinning operation in model (2.2), which satisfies Assumptions 1.1-1.4.

Then, yt ∼ Poi(µt = exp(xt
Tβ)), with the following properties:

i. The covariance between yt and yt−k is given by:

cov(yt, yt−k) =

(ρ1 + ρ2)µt−1 − ρ2(ρ1µt−2 + ρ2µdt−2), for k = 1,

ρk1µt−k, for k > 1.

ii. The correlation between yt and yt−k is given by:

corr(yt, yt−k) =


(ρ1 + ρ2)

√
µt−1
µt
− ρ1ρ2

µt−2√
µtµt−1

− ρ22
µdt−2√
µtµt−1

, for k = 1,

ρk1

√
µt−k
µt

, for k > 1.

Stationary Case: In particular, when yt do not depend on time t for t = 1, 2, ..., T ,

xt = x leads to µt = µ, and corr(yt, yt−k) =

ρ1 + ρ2 − ρ1ρ2 − ρ22
µdt−2

µt
, for k = 1,

ρk1, for k > 1.

The expression of autocorrelation for k > 1 in Theorem 2.2.1 is same as the auto-

correlation structure of AR(1) model for continuous data. This is also apparent in

the stationary case. It can be concluded that for k > 1, ARMA(1,1) model behaves

like AR(1) model whereas for continuous process ACF of ARMA(1,1) model also be-

haves like AR(1) model after lag 1 (Al-Osh & Alzaid, 1987). This is one of the many

similarities between the properties of ARMA(1,1) for count data and ARMA(1,1) for

continuous data.

2.2.2 Estimation of Parameters

In this section, estimation methods to estimate the parameters of Poisson ARMA(1,1)

model with binary offspring are developed. To estimate the parameter β a Generalized

Quasi-Likelihood (GQL) method is used assuming parameters ρ1 and ρ2 are fixed.

Again, Generalized Method of Moments (GMM) is used to estimate parameters ρ1

and ρ2 for fixed β.
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2.2.2.1 Estimation of Parameter β

Let the (T×P ) matrix of covariates be defined asX = (x1,x2, . . . ,xT )>, the response

vector y = (y1, y2, . . . , yT )>, and the mean vector µ = (µ1, µ2, . . . , µT )>. Let Σ be the

variance-covariance matrix of y. In estimating β using the GQL method, we assume

that ρ1 and ρ2 are known. The expected value of yt is given by E(yt) = µt = ex
>
t β for

all t = 1, 2, 3, . . . , T . The GQL estimating equation for β is then given by

∂µT

∂β
Σ−1 (y − µ) = 0

or,XTUΣ−1 (y − µ) = 0, (2.5)

where, U (T×T ) = diag(µ1, µ2, . . . , µT )T . The symmetric covariance matrix Σ in terms

of ρ1 and ρ2, can be defined as,

Σ =



µ1 (ρ1 + ρ2)µ1 ρ21µ1 . . . ρT−11 µ1

µ2

(ρ1 + ρ2)µ2

+ρ2(ρ1µ1 + ρ2µd1)
. . . ρT−21 µ2

...
...

...
...

...

(ρ1 + ρ2)µT−1

−ρ2(ρ1µT−2 + ρ2µdT−2
)

µT


By using the Newton-Raphson iterative approach the GQL estimating equation can

be solved as (Wedderburn, 1974),

β̂(r+1) = β̂(r) +
[
XTUΣ−1UX

]−1 [
XTUΣ−1 (y − µ)

]
β=β̂(r)

. (2.6)

Here, β̂(r) is the estimated value of β at rth iteration. The GQL estimate is a

consistent estimate since E
(
X>U Σ−1(y − µ)

)
= 0 (Zhang & Oyet, 2014).
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2.2.2.2 GMM Estimation of Parameters ρ1 and ρ2

Let us define, Stt, St,t+1 and St,t+2 to be the standardized sample variance, stan-

dardized sample lag 1 autocovariance and standardized sample lag 2 autocovariance

respectively. Then,

Stt =
1

T

T∑
t=1

(
yt − µt
σt

)2

,

St,t+1 =
1

T − 1

T−1∑
t=1

(
yt − µt
σt

)(
yt+1 − µt+1

σt+1

)
,

and St,t+2 =
1

T − 2

T−2∑
t=1

(
yt − µt
σt

)(
yt+2 − µt+2

σt+2

)
.

Using first order approximation and assuming higher orders are negligible, since

E(Stt) = 1, the moment equations are,

St,t+1

Stt
= E

(
St,t+1

Stt

)
= E(St,t+1) (2.7)

or,
St,t+1

Stt
=

T−1∑
t=1

1

T − 1

[
(ρ1 + ρ2)

√
µt
µt+1

− ρ1ρ2
µt−1√
µtµt+1

− ρ22
µdt−1√
µtµt+1

]
(2.8)

and
St,t+2

Stt
= E

(
St,t+2

Stt

)
= E(St,t+2) (2.9)

or,
St,t+2

Stt
=

T−2∑
t=1

1

T − 2
ρ1

2

√
µt
µt+2

. (2.10)

By solving the moment equations and using Newton-Raphson iterative approach, the

estimate of ρ1 and ρ2 can be obtained as,

ρ̂1 =

St,t+2

Stt

[
1

T − 2

T−2∑
t=1

√
µt
µt+2

]−11/2

(2.11)

ρ̂2(r+1)
= ρ̂2(r) −

[
∂g(ρ1, ρ2)

∂ρ2

]−1
g(ρ1, ρ2)

∣∣∣∣∣
ρ1=ρ̂1(r) ,ρ2=ρ̂2(r)

(2.12)
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where,

g(ρ1, ρ2) =
St,t+1

Stt
−

T−1∑
t=1

1

T − 1

[
(ρ1 + ρ2)

√
µt
µt+1

− ρ1ρ2
µt−1√
µtµt+1

− ρ22
µdt−1√
µtµt+1

]

∂g(ρ1, ρ2)

∂ρ2
= −

T−1∑
t=1

1

T − 1

[√
µt
µt+1

− ρ1
µt−1√
µtµt+1

− 2ρ2
µdt−1√
µtµt+1

]
.

Here, ρ̂1(r) and ρ̂2(r) are the estimated values of ρ1 and ρ2 at the rth iteration respec-

tively.

2.2.3 Asymptotic Distribution of GQL Estimate β

The following Theorem 2.2.2 outlines the asymptotic distribution of β̂. Proof of

Theorem 2.2.2 is given in the Appendix A.2.

Theorem 2.2.2 Let the GQL (Generalized Quasi-Likelihood) estimating function for

β be given by

XTUΣ−1 (y − µ) = XTU
[
A

1
2C(ρ)A

1
2

]−1
(y − µ) =

T∑
j=1

T∑
i=1

xjµjqji(yi − µi)
σjσi

where A
1
2 = diag(σ1, σ2, . . . , σT )

1
2 and C(ρ)−1 = (q1, q2, . . . , qT )T . Here, qi is the

inverse of (i− 1)th lag autocorrelation of y for i = 1, 2, ..., T .

As T →∞, the estimator β̂ asymptotically follows a Gaussian distribution with mean

β and covariance matrix,

cov(β̂) = R∗ =
[
XTUΣ−1UX

]−1
.

2.2.4 Forecasting

One of the primary goals of time series analysis is to predict future values of the series.

This section focuses on the approach to forecasting, where the l step ahead forecast

of yt is denoted by ŷt+l. Here, t is the forecast origin and l is the lead time. After

estimating the model parameters, the l step ahead forecast for yt can be derived as:

ŷt+l = yt(l) = E(yt+l|yt+l−1) (Brockwell & Davis, 2002; Freeland & McCabe, 2004;
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Sutradhar, 2008). The 1 step ahead forecast of yt can be obtained as

yt(1) = E(yt+1|yt) = Edt (E(yt+1|yt, dt)) .

Now using equation (A.2) from Appendix A, it can written as

E (yt+1|yt, dt) = ρ1yt + ρ2dt + E(dt+1)

Edt (E (yt+1|yt, dt)) = ρ1yt + ρ2E(dt) + E(dt+1)

= ρ1yt + ρ2µdt + µt+1 − ρ1µt − ρ2µdt
= µt+1 + ρ1(yt − µt).

Therefore, yt(1) = E(yt+1|yt) = µt+1 + ρ1(yt − µt), where yt = yt(0). The forecast

error can be obtained as

et(1) = yt+1 − yt(1)

= yt+1 − µt+1 − ρ1(yt − µt).

Now, E(et(1)) = E(yt+1) − E(yt(1)) = µt+1 − µt+1 − ρ1(µt − µt) = 0. This implies

that the 1 step ahead forecast is unbiased. To calculate the variance of the forecast

error, the following conditional variance is used.

v(et(1)) = Edt (v(et(1)|dt)) + vdt (E(et(1)|dt)) ,

where, E(et(1)|yt, dt) = E(yt+1|yt, dt)− E(yt(1)|yt, dt)

= ρ1yt + ρ2dt + µdt+1 − µt+1 − ρ1(yt − µt)

= ρ2dt + µdt+1 − µt+1 + ρ1µt.

Consequently, E(et(1)|dt) = Eyt(E(et(1)|yt, dt))

= Eyt(ρ2dt + µdt+1 − µt+1 + ρ1µt)

= ρ2dt + µdt+1 − µt+1 + ρ1µt
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Again, v(et(1)|dt) = Eyt (v(et(1)|yt, dt)) + vyt (E(et(1)|yt, dt))

= Eyt (v(yt+1 − yt(1)|yt, dt)) + vyt (E(et(1)|yt, dt))

= Eyt (v(yt+1|yt, dt)) + vyt (E(et(1)|yt, dt))

= Eyt (ρ1(1− ρ1)yt + ρ2(1− ρ2)dt + µt+1 − ρ1µt − ρ2µdt)

+ vyt(ρ2dt + µdt+1 − µt+1 + ρ1µt)

[Using (A.6)]

= µt+1 − ρ21µt + ρ2(1− ρ2)dt − ρ2µdt
Hence, v(et(1)) = Edt (v(et(1)|dt)) + vdt (E(et(1)|dt))

= Edt
(
µt+1 − ρ21µt + ρ2(1− ρ2)dt − ρ2µdt

)
+ vdt(ρ2dt + µdt+1 − µt+1 + ρ1µt)

= µt+1 − ρ21µt − ρ22µdt + ρ22µdt

= µt+1 − ρ21µt

2.2.5 Simulation Study

A simulation study was conducted to visualize the sample paths for the Poisson

ARMA(1,1) model with binary offspring for count data and Normal ARMA(1,1)

model for continuous data in stationary setup. An R code was developed for this

purpose. Data was generated from the proposed Poisson ARMA(1,1) model in (2.2),

assuming 2nd order weak stationarity (i.e.µt = µ) with T = 100, β = (0.2, 0.6)T ,

ρ2 = 0.4 and x = (3, 1.5)T . For fixed ρ2 = 0.4, we used (2.4) to obtain ρ1 = 0.5. Now,

ARMA(1,1) model for continuous data can be written as,

yt = (1− φ1)µc + φ1yt−1 + at − θ1at−1, (2.13)

where at
iid∼N(0, 1). Using φ1=0.5 and µ = µc = v(yt) = 4.48, the value of θ1 is ob-

tained as θ1 = −0.1086. Using these values in (2.13), data were generated from the

Normal ARMA(1,1) model for 100 time points. Figure 2.1 shows the sample paths of

yt’s generated from the continuous Normal ARMA(1,1) model overlaid on the sample

path of data generated from Poisson ARMA(1,1) model. The sample paths for both

models were constructed using the same mean and variance. However, a wider spread
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is observed in the data generated from the Poisson ARMA(1,1) model compared to

the ARMA(1,1) model for continuous data.

Furthermore, an extensive simulation study was carried out to evaluate the perfor-

mance of the estimation methods for β, ρ1 and ρ2. R codes were developed to carry

out the simulation study. Data was generated for different combinations of β, ρ1 and

ρ2, while time points T = 250, T = 500 and T = 700 were used to examine the effect

of time lengths on the estimates. Two covariates xt1 and xt2 were considered in this

study, where for t = 1, 2, ..., T ,

xt1 ∼ Binomial(1, 0.5) and, xt2 =
t

T

Once generated, it was fixed for all simulations. Due to the restrictions on ρ1 and ρ2

Time
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Figure 2.1: A plot of data generated from Poisson ARMA(1,1) model for count data
(black step) overlaying sample paths from Normal ARMA(1,1) model for continuous
data (blue line)

outlined in (2.3), only a narrow range of values can be chosen for these parameters.

After some trial and error, two values for ρ2 were fixed, and the corresponding ρ1
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values were calculated satisfying the condition in (2.3). For each combination of β, ρ1

and ρ2, we generated y1 and d1 from Poi(µ1), and dt from Poi(µt − ρ1µt−1 − ρ2µdt−1)

for t = 2, 3, ..., T . Finally, using y1 and dt’s, yt’s were generated from the proposed

model (2.2) for t = 2, 3, ..., T .

Initial values of β = (0, 0), ρ1 = 0 and ρ2 = 0 were used to estimate the param-

eters using equations (2.6), (2.11) and (2.12). Iteration for equations (2.6) and (2.12)

were continued until convergence was achieved. This procedure was repeated 1000

times for fixed values of β, ρ1 and ρ2. The average estimates, β̂, ρ̂1 and ρ̂2, from the

1000 simulations are presented in Table 2.1. Additionally, the standard error of each

estimated parameter was calculated from the 1000 simulations to show the dispersion

around the mean.

Table 2.1 shows that the GQL method perfoms well to estimate β, while the GMM

method effectively estimates ρ1 and ρ2. As T increases, the estimates approach

the true values, and the standard error decreases. For example, when T=700, with

β = (0.2, 0.3), ρ1 = 0.3 and ρ2 = 0.2, the estimates are, β̂ = (0.200, 0.298), ρ̂1 = 0.353

and ρ̂2 = 0.172, whereas for T=250, the estimates are β̂ = (0.164, 0.417), ρ̂1 = 0.331

and ρ̂2 = 0.132. Moreover, it can be observed that when T = 250, the estimated

values are not as close to the true values. However, for T = 500 and T = 700, the

GQL and GMM methods provide better estimates of the model parameters.

2.3 ARMA Model for Count Data with Binomial

Offspring

In this section, we propose an ARMA(1,1) model assuming that an individual can

produce more that one offspring. Assuming that an individual can produce nt offspring

at time point t, for t = 1, 2, ..., T , an extended autoregressive moving average model

of order (1,1) can be defined as,

yt =

yt−1∑
j=1

b1j(nt, ρ1) +

dt−1∑
j=1

b2j(ρ2) + dt. (2.14)



22

True Values Parameter Estimates

T β ρ1 ρ2 β̂ SE(β̂) ρ̂1 SE(ρ̂1) ρ̂2 SE(ρ̂2)

250 (0,0) 0.3 0.2 (-0.063,0.102) (0.002,0.003) 0.472 0.001 0.063 0.002
500 (0.060,-0.104) (0.001,0.002) 0.339 0.001 0.164 0.002
700 (0.004,-0.035) (0.001,0.001) 0.352 0.001 0.184 0.002
250 0.4 0.3 (-0.066,0.023) (0.002,0.003) 0.568 0.001 0.090 0.002
500 (0.047,-0.058) (0.001,0.002) 0.438 0.001 0.193 0.002
700 (-0.012,-0.024) (0.001,0.002) 0.482 0.001 0.166 0.001

250 (0.3,0) 0.3 0.2 (0.272,-0.034) (0.002,0.004) 0.482 0.002 0.063 0.002
500 (0.318,-0.063) (0.001,0.002) 0.345 0.002 0.149 0.002
700 (0.284,-0.004) (0.001,0.002) 0.374 0.001 0.153 0.002
250 0.4 0.3 (0.247,0.035) (0.002,0.004) 0.562 0.001 0.110 0.002
500 (0.323,-0.022) (0.001,0.002) 0.460 0.001 0.166 0.001
700 (0.282,-0.041) (0.001,0.002) 0.458 0.001 0.197 0.001

250 (0.2,0.3) 0.3 0.2 (0.164,0.417) (0.002,0.003) 0.331 0.002 0.132 0.003
500 (0.211,0.247) (0.001,0.002) 0.331 0.002 0.151 0.002
700 (0.200,0.298) (0.001,0.002) 0.353 0.001 0.172 0.002
250 0.4 0.3 (0.182,0.276) (0.002,0.004) 0.549 0.001 0.111 0.002
500 (0.224,0.248) (0.001,0.002) 0.461 0.001 0.163 0.002
700 (0.179,0.288) (0.001,0.002) 0.477 0.001 0.191 0.002

250 (0.3, 0.5) 0.3 0.2 (0.267,0.460) (0.002,0.003) 0.482 0.001 0.075 0.002
500 (0.325,0.491) (0.001,0.002) 0.339 0.002 0.152 0.002
700 (0.317,0.470) (0.001,0.002) 0.363 0.001 0.149 0.002
250 0.4 0.3 (0.274,0.409) (0.004,0.006) 0.542 0.002 0.137 0.002
500 (0.318,0.493) (0.001,0.002) 0.466 0.001 0.160 0.002
700 (0.302,0.502) (0.001,0.002) 0.465 0.001 0.191 0.002

Table 2.1: Comparison of True and Estimated Parameter Values of Poisson
ARMA(1,1) model with binary offspring for different combination of β, ρ1, ρ2 and T
values

In the model (2.14), we assume that the offspring variable b1j ∼ Binomial(nt, ρ1) and

the variable b2j ∼ Binomial(1, ρ2).. Assumptions about ARMA(1,1) model for count

data with binomial offspring in (2.14) are,

Assumption 2.1. y0 = 0.

Assumption 2.2. y1 ∼ Poi(µ1 = exp(x1
Tβ)) and d1 ∼ Poi(µ1 = exp(x1

Tβ)).

Assumption 2.3. dt ∼ Poi(µt − ρ1ntµt−1 − ρ2µdt−1), for all t = 2, 3, ..., T.

Assumption 2.4. dt and yt−1 are independent for t = 2, 3, ..., T.
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Here, 0 < ρ1 < 1, 0 < ρ2 < 1 and, µt = exp(xt
Tβ), where xt = (xt1 , xt2 , ..., xtp)T and

β = (β1, β2, ..., βp)
T for t = 1, 2, ..., T . The mean of Poisson must be non-negative.

Therefore, for t = 2, 3, . . . , T ,

ρ1 < min

{
µt

ntµt−1
− ρ2

µdt−1

µt−1
, 1

}
, for fixed ρ2. (2.15)

In particular, for stationary case, when xt = x, µt = µ,

ρ1 < min
{

1
nt
− ρ2

µdt−1

µ
, 1
}

, for fixed ρ2.

2.3.1 Basic Properties

Basic properties of ARMA(1,1) model for count data with binomial offspring are

obtained by using conditional expectation and conditional variance formulas. The

following Theorem 2.3.1 outlines the basic properties of the model in (2.14). Its proof

is given in the Appendix A.3.

Theorem 2.3.1 Let yt be the number of individuals at time t, and dt be the immi-

gration variable at time t for t = 1, 2, ..., T . If a binomial offspring variable for the

binomial thinning operation in model (2.14) is considered and model (2.14) satisfies

Assumptions 2.1-2.4,

i.E(yt) = µt = exp(xt
Tβ), for all t = 1, 2, 3, ..., T.

ii.v(yt) =



µ1, for t = 1,

µ2 + ρ21n2(n2 − 1)µ1, for t = 2,

µt + ρ21nt(nt − 1)µt−1

+
∑t−2

l=1

[
ρ
2(l+1)
1 nt−l(nt−l − 1)

(∏l−1
j=0 n

2
t−j

)
µt−(l+1)

]
, for t = 3, .., T.

iii. The covariance between yt and yt−k is given by:

cov(yt, yt−k) =

ntρ1σt−1,t−1 + ρ2σdt−1,dt−1 , for k = 1,(∏k−1
l=0 nt−l

)
ρk1σt−k,t−k, for k > 1.
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iv. The correlation between yt and yt−k is given by:

corr(yt, yt−k) =


ρ1nt

√
σt−1,t−1
σt,t

+ ρ2
σdt−1,dt−1√
σt,tσt−1,t−1

, for k = 1,(∏k−1
l=0 nt−l

)
ρk1

√
σt−k,t−k

σt,t
, for k > 1.

2.3.2 Estimation of Parameters

In this section, Generalized Quasi-Likelihood (GQL) method to estimate the param-

eter β and Generalized Method of Moments (GMM) to estimate parameters ρ1 and

ρ2 of proposed extended ARMA(1,1) model with binomial offspring are discussed.

2.3.2.1 Estimation of Parameter β

Let X = (x1,x2, . . . ,xT )> be the (T × P ) matrix of covariates. Let us define the

response vector as y = (y1, y2, . . . , yT )> and the mean vector as µ = (µ1, µ2, . . . , µT )>.

Let Σ represent the variance-covariance matrix of y. In estimating β with the GQL

method, we assume that ρ1 and ρ2 are known. The expected value of yt is expressed

as E(yt) = µt = exp(x>t β) for t = 1, 2, . . . , T . The GQL estimating equation for β is

same as the one used for the model in (2.2). The only difference lies in the covariance

structure. In this case, the symmetric covariance matrix is given by,

Σ =



µ1 n2ρ1σ11 + ρ2σd1,d1 n3ρ
2
1σ11 . . .

T−2∏
l=0

nT−lρ
T−1
1 σ11

µ2 + ρ21n2(n2 − 1)µ1 n3ρ1σ22 + ρ2σd2,d2 . . .

T−3∏
l=0

nT−lρ
T−2
1 σ22

...

µT + ρ21nT (nT − 1)µT−1+

T−2∑
l=1

[
ρ
2(l+1)
1 nT−l(nT−l − 1)(

l−1∏
j=0

n2
T−j

)
µT−(l+1)

]
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Therefore, by using Newton-Raphson iterative approach the GQL estimating equation

can be solved as (Wedderburn, 1974),

β̂(r+1) = β̂(r) +
[
XTUΣ−1UX

]−1 [
XTUΣ−1 (y − µ)

]
β=β̂(r)

. (2.16)

Here, β̂(r) is the estimated value of β at rth iteration. The GQL estimate is a

consistent estimate since E
(
X>U Σ−1(y − µ)

)
= 0 (Zhang & Oyet, 2014).

2.3.2.2 GMM Estimation of Parameters ρ1 and ρ2

The GMM estimation of parameters ρ1 and ρ2 in the ARMA(1,1) model for count

data with binomial offspring is similar to the approach discussed in Section 2.2.2.2.

The moment equations are similar to those in (2.7) and (2.9). By solving these

moment equations for a fixed β and applying the Newton-Raphson iterative method,

the estimates of the parameters ρ1 and ρ2 in model (2.14) can be obtained as follows:

ρ̂1 =

St,t+2

Stt

[
1

T − 2

T−2∑
t=1

ntnt+1

√
σt,t

σt+2,t+2

]−11/2

(2.17)

ρ̂2(r+1)
= ρ̂2(r) −

[
∂f(ρ1, ρ2)

∂ρ2

]−1
f(ρ1, ρ2)

∣∣∣∣∣
ρ1=ρ̂1(r) ,ρ2=ρ̂2(r)

(2.18)

where,

f(ρ1, ρ2) =
St,t+1

Stt
−

T−1∑
t=1

1

T − 1

[
ρ1nt+1

√
σt,t

σt+1,t+1

+ ρ2
σdt,dt√

σt,tσt+1,t+1

]

∂g(ρ1, ρ2)

∂ρ2
= −

T−1∑
t=1

1

T − 1

σdt,dt√
σt,tσt+1,t+1

.

Here, ρ̂1(r) and ρ̂2(r) are the estimated values of ρ1 and ρ2 at the rth iteration respec-

tively.
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2.3.3 Forecasting

This section focuses on the approach to forecasting, where l step ahead forecast of

yt is denoted by ŷt+l. Here, t is the forecast origin and l is the lead time. After

estimating the model parameters, the l step ahead forecast for yt can be derived as:

ŷt+l = yt(l) = E(yt+l|yt+l−1) (Brockwell & Davis, 2002; Freeland & McCabe, 2004;

Sutradhar, 2008). The 1 step ahead forecast of yt can be obtained as

yt(1) = E(yt+1|yt) = Edt (E (yt+1|yt, dt)) .

Now using equation (A.10) from Appendix A, it can written as

E (yt+1|yt, dt) = ρ1nt+1yt + ρ2dt + E(dt+1)

Edt (E (yt+1|Yt, dt)) = ρ1nt+1yt + ρ2E(dt) + E(dt+1)

= ρ1nt+1yt + ρ2µdt + µt+1 − ρ1nt+1µt − ρ2µdt
= µt+1 + ρ1nt+1(yt − µt).

Therefore, yt(1) = E(yt+1|yt) = µt+1 + ρ1nt+1(yt− µt), where yt = yt(0). The forecast

error can be obtained as

et(1) = yt+1 − yt(1)

= yt+1 − µt+1 − ρ1nt+1(yt − µt).

Now, E(et(1)) = E(yt+1)−E(yt(1)) = µt+1−µt+1−ρ1nt+1(µt−µt) = 0. This implies

that the 1 step ahead forecast is unbiased. To calculate the variance of the forecast

error, the following conditional variance is used.

v(et(1)) = Edt (v(et(1)|dt)) + vdt (E(et(1)|dt))

where, E(et(1)|yt, dt) = E(yt+1|yt, dt)− E(yt(1)|yt, dt)

= ρ1nt+1yt + ρ2dt + µdt+1 − µt+1 − ρ1nt+1(yt − µt)

= ρ2dt + µdt+1 − µt+1 + ρ1nt+1µt.

Consequently, E(et(1)|dt) = Eyt(E(et(1)|yt, dt))

= Eyt(ρ2dt + µdt+1 − µt+1 + ρ1nt+1µt)

= ρ2dt + µdt+1 − µt+1 + ρ1nt+1µt
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Again, v(et(1)|dt) = Eyt (v(et(1)|yt, dt)) + vyt (E(et(1)|yt, dt))

= Eyt (v(yt+1 − yt(1)|yt, dt)) + vyt (E(et(1)|yt, dt))

= Eyt (v(yt+1|yt, dt)) + vyt (E(et(1)|yt, dt))

= Eyt (ρ1(1− ρ1)nt+1yt + ρ2(1− ρ2)dt + µt+1 − ρ1nt+1µt − ρ2µdt)

+ vyt(ρ2dt + µdt+1 − µt+1 + ρ1nt+1µt)

[Using A.14]

= µt+1 − ρ21nt+1µt + ρ2(1− ρ2)dt − ρ2µdt .

Hence, v(et(1)) = Edt (v(et(1)|dt)) + vdt (E(et(1)|dt))

= Edt
(
µt+1 − ρ21nt+1µt + ρ2(1− ρ2)dt − ρ2µdt

)
+ vdt(ρ2dt + µdt+1 − µt+1 + ρ1nt+1µt)

= µt+1 − ρ21nt+1µt − ρ22µdt + ρ22µdt

= µt+1 − ρ21nt+1µt.

2.3.4 Special Case (When nt = n)

If the total number of offspring at each time point does not depend on time, nt = n,

then the ARMA(1,1) model with binomial offspring in (2.14) can be written as,

yt =

yt−1∑
j=1

b1j(n, ρ1) +

dt−1∑
j=1

b2j(ρ2) + dt. (2.19)

In this case the assumptions about ARMA(1,1) model with binomial offspring would

be,

Assumption 3.1. y0 = 0.

Assumption 3.2. y1 ∼ Poi(µ1 = exp(x1
Tβ)) and d1 ∼ Poi(µ1 = exp(x1

Tβ)).

Assumption 3.3. dt ∼ Poi(µt − ρ1nµt−1 − ρ2µdt−1), for all t = 2, 3, ..., T.

Assumption 3.4. dt and yt−1 are independent for t = 2, 3, ..., T.
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Here, 0 < ρ1 < 1, 0 < ρ2 < 1 and, µt = exp(xt
Tβ), where xt = (xt1 , xt2 , ..., xtp)T . The

mean of Poisson must be non-negative. Therefore, for t = 2, 3, . . . , T ,

ρ1 < min

{
µt

nµt−1
− ρ2

µdt−1

µt−1
, 1

}
, for fixed ρ2. (2.20)

In particular, for stationary case, when xt = x, µt = µ,

ρ1 < min
{

1
n
− ρ2

µdt−1

µ
, 1
}

, for fixed ρ2.

2.3.4.1 Basic properties

Basic properties of ARMA(1,1) model for count data with binomial offspring (when

nt = n) are obtained by using conditional expectation and conditional variance for-

mulas. The following Theorem 2.3.2 states the basic properties of the model in (2.19).

Its proof is given in the Appendix A.4.

Theorem 2.3.2 Let yt be the number of individuals at time t, and dt be the immi-

gration variable at time t for t = 1, 2, ..., T . If a binomial offspring variable for the

binomial thinning operation in model (2.19) is considered and model (2.19) satisfies

Assumptions 3.1-3.4,

i.E(yt) = µt = exp(xt
Tβ), for all t = 1, 2, 3, ..., T.

ii.v(yt) =

µ1, for t = 1,

µt + n(n− 1) +
∑t−1

l=1 ρ
2(l)
1 n2(l−1µt−l, for t = 2, 3, .., T.

iii. cov(yt, yt−k) =

nρ1σt−1,t−1 + ρ2σdt−1,dt−1 , for k = 1,

(nρ1)
kσt−k,t−k, for k > 1.

iv. corr(yt, yt−k) =


nρ1

√
σt−1,t−1
σt,t

+ ρ2
σdt−1,dt−1√
σt,tσt−1,t−1

, for k = 1,

(nρ1)
k

√
σt−k,t−k
σt,t

, for k > 1.
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2.3.4.2 Estimation of Parameter β, ρ1 and ρ2

A new simplified covariance structure is obtained for this special case. The symmetric

covariance matrix is given by,

Σ =


µ1 nρ1σ11 + ρ2σd1,d1 (nρ1)

2σ11 . . . (nρ1)
T−1σ11

µ2 − nρ21µ1 + n2ρ21σ11 nρ1σ22 + ρ2σd2,d2 . . . (nρ1)
T−2σ22
...

µT − nρ21µT−1 + n2ρ21σT−1,T−1


Similar to the GQL estimation method discussed in Section 2.3.3.1, the estimation

of the regression parameter β can be obtained by using Newton-Raphson iterative

approach for known ρ1 and ρ2. The GQL estimating equation can be solved as

(Wedderburn, 1974),

β̂(r+1) = β̂(r) +
[
XTUΣ−1UX

]−1 [
XTUΣ−1 (y − µ)

]
β=β̂(r)

(2.21)

Here, β̂(r) is the estimated value of β at the rth iteration. Furthermore, by using the

GMM for known β the estimates of ρ1 and ρ2 can be obtained as,

ρ̂1 =

St,t+2

Stt

[
1

T − 2

T−2∑
t=1

n2

√
σt,t

σt+2,t+2

]−11/2

(2.22)

ρ̂2(r+1)
= ρ̂2(r) −

[
∂f(ρ1, ρ2)

∂ρ2

]−1
f(ρ1, ρ2)

∣∣∣∣∣
ρ1=ρ̂1(r) ,ρ2=ρ̂2(r)

(2.23)

where,

f(ρ1, ρ2) =
St,t+1

Stt
−

T−1∑
t=1

1

T − 1

[
ρ1n

√
σt,t

σt+1,t+1

+ ρ2
σdt,dt√

σt,tσt+1,t+1

]
∂g(ρ1, ρ2)

∂ρ2
= −

T−1∑
t=1

1

T − 1

σdt,dt√
σt,tσt+1,t+1

Here, ρ̂1(r) and ρ̂2(r) are the estimated value of ρ1 and ρ2 at rth iteration respectively.
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2.3.4.3 Forecasting

In this section forecasting function is derived for the ARMA(1,1) model for count

data with binomial offspring when the number of offspring at a given time does not

depend on time. Let us denote the l step ahead forecast of yt as ŷt+l. Here, t is

the forecast origin and l is the lead time. After obtaining the estimated value of the

model parameters, the l step ahead forecast for yt can be derived as: ŷt+l = yt(l) =

E(yt+l|yt+l−1) (Brockwell & Davis, 2002; Freeland & McCabe, 2004; Sutradhar, 2008).

Accordingly, the 1 step ahead forecast of yt can be obtained as

yt(1) = E(yt+1|yt) = Edt (E (yt+1|Yt, dt)) .

Now using equation (A.10) from Appendix A, it can be written as

E (yt+1|yt, dt) = ρ1nt+1yt + ρ2dt + E(dt+1)

Edt (E (yt+1|Yt, dt)) = ρ1nyt + ρ2E(dt) + E(dt+1)

= ρ1nyt + ρ2µdt + µt+1 − ρ1nt+1µt − ρ2µdt
= µt+1 + ρ1n(yt − µt).

Therefore, yt(1) = E(yt+1|yt) = µt+1 + ρ1n(yt − µt), where yt = yt(0). The forecast

error can be obtained as

et(1) = yt+1 − yt(1)

= yt+1 − µt+1 − ρ1n(yt − µt).

Now, E(et(1)) = E(yt+1)−E(yt(1)) = µt+1 − µt+1 − ρ1n(µt − µt) = 0. Consequently,

it can be said that the 1 step ahead forecast is unbiased. To calculate the variance of

the forecast error, the following conditional variance is used.

v(et(1)) = Edt (v(et(1)|dt)) + vdt (E(et(1)|dt)) ,

where, E(et(1)|yt, dt) = E(yt+1|yt, dt)− E(yt(1)|yt, dt)

= ρ1nt+1yt + ρ2dt + µdt+1 − µt+1 − ρ1n(yt − µt)

= ρ2dt + µdt+1 − µt+1 + ρ1nµt.
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Consequently, E(et(1)|dt) = Eyt(E(et(1)|yt, dt))

= Eyt(ρ2dt + µdt+1 − µt+1 + ρ1µt)

= ρ2dt + µdt+1 − µt+1 + ρ1nµt.

Again, v(et(1)|dt) = Eyt (v(et(1)|yt, dt)) + vyt (E(et(1)|yt, dt))

= Eyt (v(yt+1 − yt(1)|yt, dt)) + vyt (E(et(1)|yt, dt))

= Eyt (v(yt+1|yt, dt)) + vyt (E(et(1)|yt, dt))

= Eyt (ρ1(1− ρ1)nyt + ρ2(1− ρ2)dt + µt+1 − ρ1nµt − ρ2µdt)

+ vyt(ρ2dt + µdt+1 − µt+1 + ρ1nµt)

[Using A.22]

= µt+1 − ρ21nt+1µt + ρ2(1− ρ2)dt − ρ2µdt .

Hence, v(et(1)) = Edt (v(et(1)|dt)) + vdt (E(et(1)|dt))

= Edt
(
µt+1 − ρ21nµt + ρ2(1− ρ2)dt − ρ2µdt

)
+ vdt(ρ2dt + µdt+1 − µt+1 + ρ1nµt)

= µt+1 − ρ21nt+1µt − ρ22µdt + ρ22µdt

= µt+1 − ρ21nµt.

2.3.5 Simulation Study

A simulation study is carried out to evaluate the performance of the estimation meth-

ods for the parameters β, ρ1 and ρ2 of the ARMA(1,1) model with binomial offspring.

R codes were developed to carry out the simulation study. Data was generated for

different combinations of β, ρ1 and ρ2, while time points T = 250, T = 500 and

T = 700 were used to examine the effect of time lengths on the estimates. We con-

sider, n = 3, allowing the possibility of an individual producing at most 3 offspring at

a given time point. Two covariates xt1 and xt2 were considered in this study, where

for t = 1, 2, ..., T ,

xt1 ∼ Binomial(1, 0.5) and, xt2 =
t

T
.

Due to the restrictions on ρ1 and ρ2, only a narrow range of values can be chosen

for these parameters. After some trial and error, two values for ρ2 were fixed, and

the corresponding ρ1 values were calculated satisfying the condition in (2.20). For
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each combination of β, ρ1 and ρ2, we generated y1 and d1 from Poi(µ1), and dt from

Poi(µt − nρ1µt−1 − ρ2µdt−1) for t = 2, 3, ..., T . Finally, using y1 and dt’s, yt’s were

generated from the proposed model (2.19) for t = 2, 3, ..., T . Once generated, data

was fixed for all simulations. Initial values of β = (0, 0), ρ1 = 0 and ρ2 = 0 were

used to estimate the parameters using equations (2.21), (2.22) and (2.23). Iteration

for equations (2.21) and (2.23) were continued until convergence. This procedure was

repeated 1000 times for fixed values of β, ρ1 and ρ2. The average estimates, β̂, ρ̂1 and

ρ̂2, from the 1000 simulations are presented in Table 2.2. Additionally, the standard

True Values Parameter Estimates

T β ρ1 ρ2 β̂ SE(β̂) ρ̂1 SE(ρ̂1) ρ̂2 SE(ρ̂2)

250 (0.2,0.3) 0.18 0.15 (0.136,0.371) (0.002,0.005) 0.211 0.0005 0.105 0.002
500 (0.198,0.346) (0.002,0.004) 0.189 0.0005 0.128 0.002
700 (0.184,0.267) (0.001,0.003) 0.195 0.0004 0.125 0.001
250 0.20 0.12 (0.186,0.075) (0.002,0.006) 0.184 0.0007 0.092 0.002
500 (0.169,0.415) (0.001,0.004) 0.207 0.0005 0.092 0.002
700 (0.201,0.316) (0.001,0.003) 0.200 0.0004 0.083 0.002

250 (0.25, 0.35) 0.18 0.15 (0.248,0.416) (0.002,0.005) 0.187 0.0007 0.136 0.003
500 (0.281,0.287) (0.001,0.003) 0.192 0.0005 0.139 0.002
700 (0.222,0.354) (0.001,0.003) 0.199 0.0005 0.156 0.002
250 0.20 0.12 (0.257,0.178) (0.002,0.006) 0.196 0.0007 0.096 0.002
500 (0.286,0.298) (0.002,0.004) 0.203 0.0005 0.144 0.003
700 (0.222,0.351) (0.001,0.003) 0.214 0.0004 0.123 0.002

250 (0.3, 0.5) 0.18 0.15 (0.301,0.481) (0.002,0.005) 0.177 0.0008 0.258 0.004
500 (0.269,0.596) (0.001,0.003) 0.201 0.0005 0.185 0.003
700 (0.276,0.484) (0.001,0.003) 0.182 0.0005 0.234 0.002
250 0.20 0.12 (0.259,0.526) (0.004,0.007) 0.211 0.0007 0.180 0.003
500 (0.292,0.555) (0.001,0.004) 0.212 0.0005 0.160 0.002
700 (0.286,0.601) (0.001,0.004) 0.212 0.0004 0.181 0.002

Table 2.2: Comparison of True and Estimated Parameter Values of ARMA(1,1) model
with binomial offspring for different combination of β, ρ1, ρ2 and T values

error of each estimated parameter was calculated from the 1000 simulations to show

the dispersion around the mean.

Table 2.2 shows that the GQL method perfoms well to estimate β, while the GMM

method effectively estimates ρ1 and ρ2. As T increases, the estimates approach the

true values, and the standard error decreases. For example, when T=700, with

β = (0.2, 0.3), ρ1 = 0.18 and ρ2 = 0.15, the estimates are, β̂ = (0.184, 0.267),

ρ̂1 = 0.195 and ρ̂2 = 0.125, whereas for T=250, the estimates are β̂ = (0.136, 0.371),
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ρ̂1 = 0.211 and ρ̂2 = 0.105. Moreover, it can be observed that when T = 250, the

estimated values are not as close to the true values. Additionally, it can be observed

that the standard error of the estimates are close to zero. As T increases the stan-

dard errors of the estimates decrease. Therefore, it can be said that GQL and GMM

methods perform well in estimating the model parameters.

2.4 Concluding Remarks

In this paper, we have developed ARMA models for count data that incorporate the

impact of past immigration variables on count data. We have proposed an ARMA(1,1)

model with a binary offspring and extended the model by considering a binomial off-

spring. We derived the basic properties of these models. We found that the lag k

autocorrelation function of the model satisfied a Yule-Walker type difference equation

similar to that of the model for continuous data after lag 1. Specifically, we found

that the lag k ACF (k > 1) followed that of the AR(1) model for count data. This

is a pattern commonly found in ARMA(1,1) model for continuous time series. Ad-

ditionally, we have discussed the GQL approach for estimating the covariate effect

parameter and the GMM approach for estimating the correlation index parameters.

The results of the simulation study have showed that the GQL and GMM approaches

performed well in estimating the parameters of the models. Our findings indicate that

the ARMA(1,1) model with binary offspring and the ARMA(1,1) model with binomial

offspring are useful for count data influenced by past immigration variables, providing

flexibility for modeling different types of count data. We have also derived forecasting

function for ARMA(1,1) model with binary offspring and ARMA(1,1) model with

binomial offspring..



Chapter 3

Discussion of Results and Future

Work

In this research, we proposed ARMA models that incorporate the effect of past im-

migration variables. First, we consider a simple scenario where an individual can pro-

duce either one offspring or none at a given time, resulting in the offspring variable

being binary. We also consider a binary immigration variable and propose a Poisson

ARMA(1,1) model with binomial offspring. The basic properties of the model are

derived. We also investigate the stationary case and derive the basic properties for

this situation. The acf of yt satisfies a Yule-Walker type difference equation. From

Theorem 2.2.1 it can be observed that the acf of yt at lag k is given by,

corr(yt, yt−k) = ρ1, corr(yt−1, yt−k) = ρk1

√
µt−k
µt

, for k > 1.

For stationary case, when yt do not depend on time t for t = 1, 2, ..., T , the acf of yt at

lag k is, corr(yt, yt−k) = ρk1, for k > 1. Hence, in both stationary and non-stationary

cases, the acf in the Poisson ARMA(1,1) model with binary offspring behaves like the

acf of a Poisson AR(1) model after lag 1. This is the same property evident in the

ARMA(1,1) model for continuous data outlined in Section 1.1.3.

We then apply the GQL and GMM methods to estimate the model parameters.

Through simulation studies, these methods are found to be performing well in es-

timating the parameters β, ρ1, and ρ2. A forecasting function for ARMA(1,1) model
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with binary offspring is developed to predict future values of yt.

Later, we extend our model to consider a binomial offspring variable, allowing the

possibility that an individual can produce nt offspring at a given time. We propose

an ARMA(1,1) model with binomial offspring and derive the basic properties and

estimation methods for the model parameters, considering both scenarios where the

maximum number of offspring (nt) depends on time and where it remains constant (n)

over time. From Theorem 2.2.1 and 2.3.1, it can be observed that the mean of yt for

ARMA(1,1) model with binomial offspring is same as the mean of yt for ARMA(1,1)

model with binary offspring. The variance of yt for ARMA(1,1) model with binomial

offspring is,

v(yt) =



µ1, for t = 1,

µ2 + ρ21n2(n2 − 1)µ1, for t = 2,

µt + ρ21nt(nt − 1)µt−1

+
∑t−2

l=1

[
ρ
2(l+1)
1 nt−l(nt−l − 1)

(∏l−1
j=0 n

2
t−j

)
µt−(l+1)

]
, for t = 3, .., T.

when nt = 1, the variance of yt reduces to µt, which is the same as that of the

ARMA(1,1) model with binary offspring. This is also evident for covariance and

correlation between yt and yt−k for lag k, indicating that the ARMA(1,1) model with

binomial offspring is a generalization of the ARMA(1,1) model with binary offspring.

From Theorem 2.3.1, it can be observed that the acf of yt for ARMA(1,1) model with

binomial offspring is,

corr(yt, yt−k) =

(
k−1∏
l=0

nt−l

)
ρk1

√
σt−k,t−k
σt,t

, for k > 1,

which is same as the acf of yt for AR(1) model for count data, as outlined in Section

1.2.1. Therefore, the acf in the ARMA(1,1) model with binomial offspring behaves

like the acf of a AR(1) model with binomial offspring after lag 1. This property is

also observed when nt = n. In this case, corr(yt, yt−k) = (nρ1)
k

√
σt−k,t−k
σt,t

, for k > 1.

A simulation study is conducted to evaluate the performance of the GQL and GMM

methods for the ARMA(1,1) model with binomial offspring when the offspring vari-

able, b1j ∼ bin(n, ρ1). We observe that the GQL method performs well in estimating
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the covariate parameter β, while the GMM method is effective in estimating ρ1 and

ρ2. We derive forecasting functions for ARMA(1,1) model with binomial offspring

considering both situations where the maximum number of offspring (nt) depends on

time and where it remains constant (n) over time.

In conclusion, our proposed models can be used for count data when the immigration

variable from previous time points affects the number of individuals at the present

time point. Additionally, our proposed models offer researchers the option to choose

between models for binary offspring variables or binomial offspring variables, depend-

ing on the type of count data.

There are several opportunities for further research in this area. The next step could

involve identifying an appropriate model for the available count data. Another area

for exploration is the use of a mixed model approach that incorporates random ef-

fects. This would allow for the inclusion of unobservable factors that may influence

the time series data, providing a more comprehensive understanding of the underlying

dynamics. Future research could also extend the current model to higher-order Pois-

son ARMA models, enabling more complex autocorrelation structures to be captured

in the count data, potentially leading to more precise and comprehensive modeling.



References

Al-Osh, M. A., & Alzaid, A. A. (1987). First-order integer-valued autoregressive (inar

(1)) process. Journal of Time Series Analysis , 8 (3), 261–275.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series

analysis: forecasting and control. John Wiley & Sons.

Brännäs, K., & Hall, A. (2001). Estimation in integer-valued moving average models.

Applied Stochastic Models in Business and Industry , 17 (3), 277–291.

Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting.

Springer.

Cameron, A. C., & Trivedi, P. K. (2013). Regression analysis of count data. Cambridge

university press.

Chatfield, C. (1975). The analysis of time series: theory and practice. Springer.

Chuang, A. (1991). Time series analysis: univariate and multivariate methods. Taylor

& Francis.

Crowder, M. (1995). On the use of a working correlation matrix in using generalised

linear models for repeated measures. Biometrika, 82 (2), 407–410.

Czado, C., Gneiting, T., & Held, L. (2009). Predictive model assessment for count

data. Biometrics , 65 (4), 1254–1261.

Du Jin-Guan, L. Y. (1991). The integer-valued autoregressive (inar (p)) model. J.

Time Ser. Anal , 12 , 129–142.

Freeland, R. K., & McCabe, B. P. (2004). Forecasting discrete valued low count time

series. International Journal of Forecasting , 20 (3), 427–434.

Hyndman, R. (2018). Forecasting: principles and practice. OTexts.

Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized

linear models. Biometrika, 73 (1), 13–22.

McKenzie, E. (1988). Some arma models for dependent sequences of poisson counts.

Advances in Applied Probability , 20 (4), 822–835.



38

Oyet, A. J., & Sutradhar, B. C. (2013). Longitudinal modeling of infectious disease.

Sankhya B , 75 , 319–342.

Puig, P., & Valero, J. (2007). Characterization of count data distributions involving

additivity and binomial subsampling. Bernoulli , 544–555.

Shumway, R. H., Stoffer, D. S., & Stoffer, D. S. (2000). Time series analysis and its

applications (Vol. 3). Springer.

Steutel, F. W., & Van Harn, K. (1979). Discrete analogues of self-decomposability

and stability. The Annals of Probability , 893–899.

Steutel, F. W., Vervaat, W., & Wolfe, S. J. (1983). Integer-valued branching processes

with immigration. Advances in applied probability , 15 (4), 713–725.

Sutradhar, B., Oyet, A. J., & Gadag, V. G. (2010). On quasi-likelihood estimation for

branching processes with immigration. Canadian Journal of Statistics , 38 (2),

290–313.

Sutradhar, B. C. (2003). An overview on regression models for discrete longitudinal

responses. Statistical Science, 18 (3), 377–393.

Sutradhar, B. C. (2008). On forecasting counts. Journal of Forecasting , 27 (2),

109–129.

Sutradhar, B. C. (2011). Dynamic mixed models for familial longitudinal data

(Vol. 18). Springer.

Sutradhar, B. C., & Das, K. (1999). Miscellanea. on the efficiency of regression

estimators in generalised linear models for longitudinal data. Biometrika, 86 (2),

459–465.
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Appendix A

Proof of Theorems

In this Appendix proof of Theorem 2.2.1, Theorem 2.2.2, Theorem 2.3.1 and Theorem

2.3.2 are discussed.

A.1 Proof of Theorem 2.2.1

Based on the Assumption 1.2 stated in section 2.2, E(y1) = v(y1) = µ1. Additionally,

E(d1) = v(d1) = µ1. From Assumption 1.3, E(dt) = v(dt) = µt − ρ1µt−1 − ρ2µdt−1 for

t = 2, 3, ..., T .

Mean: Let, µt = exp(xt
Tβ) be the mean of yt and µdt be the mean of dt. We

know,

E (yt) = Edt−1,yt−1 (E (yt|yt−1, dt−1)) (A.1)

By taking conditional expectation on (2.1) we get,

E (yt|yt−1, dt−1) = ρ1yt−1 + ρ2dt−1 + E(dt) (A.2)

Eyt−1 (E (yt|yt−1, dt−1)) = ρ1E(yt−1) + ρ2dt−1 + E(dt) (A.3)

Edt−1,yt−1 (E (yt|yt−1, dt−1)) = ρ1E(yt−1) + ρ2E(dt−1) + E(dt) (A.4)

= ρ1E(yt−1) + ρ2E(dt−1) + µt − ρ1µt−1 − ρ2µdt−1 (A.5)

Therefore,

E(yt) = ρ1E(yt−1) + ρ2E(dt−1) + µt − ρ1µt−1 − ρ2µdt−1
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For t = 2,

E(y2) = ρ1E(y1) + ρ2E(d1) + µ2 − ρ1µ1 − ρ2µd1
= ρ1µ1 + ρ2µ1 + µ2 − ρ1µ1 − ρ2µ1

= µ2

For t = 3,

E(y3) = ρ1E(y2) + ρ2E(d2) + µ3 − ρ1µ2 − ρ2µd2
= ρ1µ2 + ρ2(µ2 − ρ1µ1 − ρ2µd1) + µ3 − ρ1µ2 − ρ2(µ2 − ρ1µ1 − ρ2µd1)

= µ3

Through the method of mathematical induction, if E(yt−1) = µt−1, E(dt−1) = µdt−1

then E(yt) = ρ1µt−1 + ρ2µdt−1 + µt − ρ1µt−1 − ρ2µdt−1 = µt.

Therefore, E(yt) = µt = exp(xt
Tβ) for all t = 1, 2, 3, ..., T

Variance: Let, v(yt) = σt,t and v(dt) = σdt,dt for all t = 1, 2, ..., T . From Assumption

1.4 of the model in 2.2, cov(yt−1, dt) = 0. Now by taking conditional variance on (2.1),

v(yt|yt−1, dt−1) = yt−1v(b1j) + dt−1v(b2j) + v(dt)

= ρ1(1− ρ1)yt−1 + ρ2(1− ρ2)dt−1 + µt − ρ1µt−1 − ρ2µdt−1 .
(A.6)

Let, v(yt−1) = σt−1,t−1 and v(dt−1) = σdt−1,dt−1 . Then

v(yt|dt−1) = Eyt−1 (v (yt|yt−1, dt−1)) + vyt−1 (E (yt|yt−1, dt−1))

= Eyt−1(ρ1(1− ρ1)yt−1 + ρ2(1− ρ2)dt−1 + µdt)

+ vyt−1(ρ1yt−1 + ρ2dt−1 + µt − ρ1µt−1 − ρ2µdt−1)

= ρ1(1− ρ1)µt−1 + ρ2(1− ρ2)dt−1 + µdt + ρ21σt−1,t−1.

Now,

v (yt) = Edt−1 (v (yt| dt−1)) + vdt−1 (E (yt| dt−1))

= Edt−1

(
ρ1(1− ρ1)µt−1 + ρ2(1− ρ2)dt−1 + µdt + ρ21σt−1,t−1

)
+ vdt−1

(
µt + ρ2dt−1 − ρ2µdt−1

)
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= ρ1(1− ρ1)µt−1 + ρ2(1− ρ2)µdt−1 + µt − ρ1µt−1 − ρ2µdt−1 + ρ21σt−1,t−1 + ρ22v(dt−1)

= µt − ρ21µt−1 − ρ22µdt−1 + ρ21σt−1,t−1 + ρ22σdt−1,dt−1

= µt − ρ21µt−1 + ρ21σt−1,t−1 [Since from Assumption 1.2, µdt−1 = σdt−1,dt−1 ].

Therefore, we get the following expression for variance of yt,

v(yt) = σt,t = µt − ρ21µt−1 + ρ21σt−1,t−1. (A.7)

Again, v(y1) = µ1. For T = 2, 3, ...T , using the equation in (A.7),

when t = 2,

v(y2) = µ2 − ρ21µ1 + ρ21σ1,1

= µ2 − ρ21µ1 + ρ21µ1

= µ2.

when t = 3,

v(y3) = µ3 − ρ21µ2 + ρ21σ2,2

= µ3 − ρ21µ2 + ρ21mu2

= µ3.

If we calculate for t = 4, 5, ... and so on, assume that, σt−1,t−1 = µt−1 then,

v(yt) = µt − ρ21µt−1 + ρ21σt−1,t−1

= µt − ρ21µt−1 + ρ21µt−1

= µt.

So, v(yt) = µt = exp(xt
Tβ) for all t = 1, 2, 3, ..., T . Since mean and variance are

equal, {yt} is a Poisson ARMA(1,1) process.

Covariance and Correlation: To derive the lag k covariance between yt and yt−k,

we use the following formula as,
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cov(yt, yt−k) = cov

(
yt−1∑
j=1

b1j(ρ1), yt−k

)
+ cov

(
dt−1∑
j=1

b2j(ρ2), yt−k

)
+ cov (dt, yt−k)

= cov

(
yt−1∑
j=1

b1j(ρ1), yt−k

)
+ cov

(
dt−1∑
j=1

b2j(ρ2), yt−k

)
[since cov(dt, yt−k) = 0].

Considering the first part of the above formula we get,

cov

(
yt−1∑
j=1

b1j(ρ1), yt−k

)
= E

[
cov

(
yt−1∑
j=1

b1j(ρ1), yt−k|yt−1, dt−1, yt−k

)]

+ cov

[
E

(
yt−1∑
j=1

b1j(ρ1)|yt−1, dt−1, yt−k

)
, E (yt−k|yt−1, dt−1, yt−k)

]
= cov(ρ1yt−1, yt−k)

= ρ1cov(yt−1, yt−k).

Similarly,

cov

(
dt−1∑
j=1

b2j(ρ2), yt−k

)
= ρ2cov(dt−1, yt−k). (A.8)

The above relationship in (A.8) holds only when k = 1. Otherwise, when k > 1,

cov
(∑dt−1

j=1 b2j(ρ2), yt−k

)
= 0. Therefore, when k = 1, we get,

cov(yt, yt−k) = ρ1cov(yt−1, yt−k) + ρ2cov(dt−1, yt−k)

= ρ1cov(Yt−1, Yt−1) + ρ2cov(dt−1, yt−1)

= ρ1σt−1,t−1 + ρ2cov

(
dt−1,

yt−2∑
j=1

b1j(ρ1) +

dt−2∑
j=1

b2j(ρ2) + dt−1

)
= ρ1σt−1,t−1 + ρ2σdt−1,dt−1

= ρ1µt−1 + ρ2(µt−1 − ρ1µt−2 − ρ2µdt−2)

= (ρ1 + ρ2)µt−1 + ρ2(ρ1µt−2 + ρ2µdt−2).
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When k > 1,

cov(yt, yt−k) = ρ1cov(yt−1, yt−k)

= ρ21cov(yt−2, yt−k)

= ρ31cov(yt−3, yt−k) leading to

cov(yt, yt−k) = ρk1cov(yt−k, yt−k) = ρk1µt−k.

In general, for t = 1, 2, ..., T we get the following expression for covariance between yt

and yt−k for lag k = 1, 2, .., T − 1

cov(yt, yt−k) =

(ρ1 + ρ2)µt−1 − ρ2(ρ1µt−2 + ρ2µdt−2), for k = 1,

ρk1µt−k, for k > 1.

By using the following formula for correlation,

corr(yt, yt−k) =
cov(yt, yt−k)√
v(yt)

√
v(yt−k)

,

and plugging in the expressions for respective covariance and variances, we get corre-

lation between yt and yt−k given by,

corr(yt, yt−k) =


(ρ1 + ρ2)

√
µt−1
µt
− ρ1ρ2

µt−2√
µtµt−1

− ρ22
µdt−2√
µtµt−1

, for k = 1,

ρk1

√
µt−k

µt
, for k > 1.

A.2 Proof of Theorem 2.2.2

From the GQL estimation method discussed in section 2.2.2.1 we get the following

estimating equation,

XTUΣ−1 (y − µ) = 0

or, XTU(A
1
2C(ρ)A

1
2 )
−1

(y − µ) = 0,

or, XTUA−
1
2 (C(ρ))−1A−

1
2 (y − µ) = 0,
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where A
1
2 = diag(σ1, σ2, . . . , σT )

1
2 and C(ρ) is defined in (1.8).Also, let us consider,

(C(ρ))−1 = Q, then

(C(ρ))−1 =


q11 q12 . . . q1T

q21 q22 . . . q2T
...

...
...

qT1 qT2 . . . qTT

 andUA−
1
2 =



µ1

σ1
1
2

0 . . . 0

0 µ2

σ2
1
2

. . . 0

...
...

...

0 0 . . . µT

σT
1
2


Combining these two we get,

UA−
1
2 (C(ρ))−1 =



µ1

σ1
1
2

0 . . . 0

0 µ2

σ2
1
2

. . . 0

...
...

...

0 0 . . . µT

σT
1
2




q11 q12 . . . q1T

q21 q22 . . . q2T
...

...
...

qT1 qT2 . . . qTT



=



µ1q11

σ1
1
2

µ1q12

σ1
1
2

. . . µ1q1T

σ1
1
2

µ2q21

σ2
1
2

µ2q22

σ2
1
2

. . . µ2q2T

σ2
1
2

...
...

...
µT qT1

σT
1
2

µT qT2

σT
1
2

. . . µT qTT

σT
1
2
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This leads to,

UA−
1
2 (C(ρ))−1A−

1
2 (y − µ) =



µ1q11

σ1
1
2

µ1q12

σ1
1
2

. . . µ1q1T

σ1
1
2

µ2q21

σ2
1
2

µ2q22

σ2
1
2

. . . µ2q2T

σ2
1
2

...
...

...
µT qT1

σT
1
2

µT qT2

σT
1
2

. . . µT qTT

σT
1
2




1

σ1
1
2

0 . . . 0

0 1

σ2
1
2

. . . 0

...
...

...

0 0 . . . 1

σT
1
2




y1 − µ1

y2 − µ2

...

yT − µT



=



µ1q11(y1−µ1)
σ1

1
2 σ1

1
2

µ1q12(y2−µ2)
σ1

1
2 σ2

1
2

. . . µ1q1T (yT−µT )

σ1
1
2 σT

1
2

µ2q21(y1−µ1)
σ2

1
2 σ1

1
2

µ2q22(y2−µ2)
σ2

1
2 σ2

1
2

. . . µ2q2T (yT−µT )

σ2
1
2 σT

1
2

...
...

...
µT qT1(y1−µ1)

σT
1
2 σ1

1
2

µT qT2(y2−µ2)
σT

1
2 σ2

1
2

. . . µT qTT (yT−µT )

σT
1
2 σT

1
2



=


∑T

i=1
µ1q1i(yi−µi)
σ1

1
2 σi

1
2

...∑T
i=1

µT qTi(yi−µi)
σT

1
2 σi

1
2


Finally we can write,

XTUA−
1
2 (C(ρ))−1A−

1
2 (y − µ) =

[
X1 X2 . . . XT

]
∑T

i=1
µ1q1i(yi−µi)
σ1

1
2 σi

1
2

...∑T
i=1

µT qTi(yi−µi)
σT

1
2 σi

1
2


=
[∑T

i=1
X1µ1q1i(yi−µi)

σ1
1
2 σi

1
2

. . .
∑T

i=1
XTµT qTi(yi−µi)

σT
1
2 σi

1
2

]
=

T∑
j=1

T∑
i=1

Xjµjqji(yi − µi)
σj

1
2σi

1
2

Here, Xt is a vector of p covariates at time point t for t = 1, 2, ..., T . Now according

to the work conducted by Zeger (1988), since we can rewrite the GQL estimating

function of β as summations over T , as T →∞, then β̂ ∼ N(β, R∗). The covariance
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matrix, R∗ can be defined as

R∗ =

[
∂µT

∂β
Σ−1

∂µT

∂β

]
=
[
XTUΣ−1UX

]−1
.

A.3 Proof of Theorem 2.3.1

Based on the Assumption 2.2 outlined in section 2.3, E(y1) = v(y1) = µ1. Addition-

ally, E(d1) = v(d1) = µ1. From Assumption 2.3, E(dt) = v(dt) = µt − ntρ1µt−1 −
ρ2µdt−1 for t = 2, 3, ..., T .

Mean: Let, µt = exp(xt
Tβ) be the mean of yt and µdt be the mean of dt. We know,

E (yt) = Edt−1,yt−1 (E (yt|yt−1, dt−1)) (A.9)

By taking conditional expectation on 2.14 we get,

E (yt|Yt−1, dt−1) = ρ1ntyt−1 + ρ2dt−1 + E(dt) (A.10)

Eyt−1 (E (yt|yt−1, dt−1)) = ρ1ntE(yt−1) + ρ2dt−1 + E(dt) (A.11)

Edt−1,yt−1 (E (yt|yt−1, dt−1)) = ρ1ntE(yt−1) + ρ2E(dt−1) + E(dt) (A.12)

= ρ1ntE(yt−1) + ρ2E(dt−1) + µt − ρ1ntµt−1 − ρ2µdt−1

(A.13)

Therefore,

E(yt) = ρ1ntE(yt−1) + ρ2E(dt−1) + µt − ρ1ntµt−1 − ρ2µdt−1

For t = 2,

E(y2) = ρ1n2E(y1) + ρ2E(d1) + µ2 − ρ1n2µ1 − ρ2µd1
= ρ1n2µ1 + ρ2µ1 + µ2 − ρ1n2µ1 − ρ2µ1

= µ2
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For t = 3,

E(y3) = ρ1n3E(y2) + ρ2E(d2) + µ3 − ρ1n3µ2 − ρ2µd2
= ρ1n2µ2 + ρ2(µ2 − ρ1n2µ1 − ρ2µd1) + µ3 − ρ1n3µ2 − ρ2(µ2 − ρ1n2µ1 − ρ2µd1)

= µ3

Through the method of mathematical induction, if E(yt−1) = µt−1, E(dt−1) = µdt−1

then E(yt) = ρ1ntµt−1 + ρ2µdt−1 + µt − ρ1ntµt−1 − ρ2µdt−1 = µt.

Therefore, E(yt) = µt = exp(xt
Tβ) for all t = 1, 2, 3, ..., T

Variance: Let, v(yt) = σt,t and v(dt) = σdt,dt for all t = 1, 2, ..., T . Additionally,

v(dt) = E(dt) = µt−ρ1ntµt−1−ρ2µdt−1 . From Assumption 2.4 of the model in (2.14),

cov(yt−1, dt) = 0. Now by taking conditional variance on 2.14

v(yt|yt−1, dt−1) = yt−1v(b1j) + dt−1v(b2j) + v(dt)

= ρ1(1− ρ1)ntyt−1 + ρ2(1− ρ2)dt−1 + µt − ρ1ntµt−1 − ρ2µdt−1

(A.14)

Let, v(Yt−1) = σt−1,t−1 and v(dt−1) = σdt−1,dt−1 . Then,

v(yt|dt−1) = Eyt−1 (v (yt|yt−1, dt−1)) + vyt−1 (E (yt|yt−1, dt−1))

= Eyt−1(ρ1(1− ρ1)ntyt−1 + ρ2(1− ρ2)dt−1 + µdt)

+ vyt−1(ρ1ntyt−1 + ρ2dt−1 + µt − ρ1ntµt−1 − ρ2µdt−1)

[using (A.10)]

= ρ1(1− ρ1)ntµt−1 + ρ2(1− ρ2)dt−1 + µdt + ρ21n
2
tσt−1,t−1

Now,

v (yt) =Edt−1 (v (yt| dt−1)) + vdt−1 (E (Yt| dt−1))

=Edt−1

(
ρ1(1− ρ1)ntµt−1 + ρ2(1− ρ2)dt−1 + µdt + ρ21n

2
tσt−1,t−1

)
+ vdt−1

(
µt + ρ2dt−1 − ρ2µdt−1

)
[using (A.11)]

=ρ1(1− ρ1)ntµt−1 + ρ2(1− ρ2)µdt−1 + µt − ρ1ntµt−1−

ρ2µdt−1 + ρ21n
2
tσt−1,t−1 + ρ22v(dt−1)

=µt − ρ21ntµt−1 − ρ22µdt−1 + ρ21n
2
tσt−1,t−1 + ρ22σdt−1,dt−1
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=µt − ρ21ntµt−1 + ρ21n
2
tσt−1,t−1

[Since from Assumption 2.2, µdt−1 = σdt−1,dt−1 ]

Therefore, we get the following expression for variance of yt,

v(yt) = σt,t = µt − ρ21ntµt−1 + ρ21n
2
tσt−1,t−1 (A.15)

Again, v(y1) = µ1. For T = 2, 3, ...T , using equation (A.15) we get,

when t = 2,

v(y2) = µ2 − ρ21n2µ1 + ρ21n
2
2v(y1)

= µ2 − ρ21n2µ1 + ρ21n
2
2µ1

= µ2 + ρ21n2(n2 − 1)µ1

when t = 3,

v(y3) = µ3 − ρ21n3µ2 + ρ21n
2
3v(y2)

= µ3 − ρ21n3µ2 + ρ21n
2
3(µ2 + ρ21n2(n2 − 1)µ1)

when t = 4,

v(y4) = µ4 − ρ21n4µ3 + ρ21n
2
4v(y3)

= µ4 − ρ21n4µ3 + ρ21n
2
4(µ3 + ρ21n3(n3 − 1)µ2 + ρ41n3n2(n2 − 1)µ1)

= µ4 + ρ21n4(n4 − 1)µ3 + ρ41n
2
4n3(n3 − 1)µ2 + ρ61n

2
4n

2
3n2(n2 − 1)µ1

If we calculate for t = 5, 6, ... and so on we get a general expression for the variance

of yt which is given by,

v(yt) =



µ1, for t = 1

µ2 + ρ21n2(n2 − 1)µ1, for t = 2

µt + ρ21nt(nt − 1)µt−1+
t−2∑
l=1

[
ρ
2(l+1)
1 nt−l(nt−l − 1)

(
l−1∏
j=0

n2
t−j

)
µt−(l+1)

]
, for t = 3, .., T
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Covariance and Correlation: To derive the lag k covariance between yt and yt−k,

we use the following formula as, for k = 1, 2, ..., T − 1,

cov(yt, yt−k) = cov

(
yt−1∑
j=1

b1j(nt, ρ1), yt−k

)
+ cov

(
dt−1∑
j=1

b2j(ρ2), yt−k

)
+ cov(dt, yt−k)

= cov

(
yt−1∑
j=1

b1j(nt, ρ1), yt−k

)
+ cov

(
dt−1∑
j=1

b2j(ρ2), yt−k

)
[since cov(dt, yt−k) = 0]

Considering the first part of the above formula we get, The covariance and correlation

between yt and yt−k for t = 1, 2, ..., T are obtained as,

cov

(
yt−1∑
j=1

b1j(nt, ρ1), yt−k

)
= E

[
cov

(
yt−1∑
j=1

b1j(nt, ρ1), yt−k|yt−1, dt−1, yt−k

)]

+ cov

[
E

(
yt−1∑
j=1

b1j(nt, ρ1)|yt−1, dt−1, yt−k

)
, E (yt−k|yt−1, dt−1, yt−k)

]
= cov(ρ1ntyt−1, yt−k)

= ρ1ntcov(yt−1, yt−k).

Similarly, for the second part we get the same expression as in (A.8) given by,

cov

(
dt−1∑
j=1

b2j(ρ2), yt−k

)
= ρ2cov(dt−1, yt−k). (A.16)

The above relationship in (A.16) holds only when k = 1. Otherwise, when k > 1,

cov
(∑dt−1

j=1 b2j(ρ2), yt−k

)
= 0. Therefore, when k = 1, we get,

cov(yt, yt−k) = ρ1ntcov(yt−1, yt−k) + ρ2cov(dt−1, yt−k)

= ρ1ntcov(yt−1, yt−1) + ρ2cov(dt−1, yt−1)

= ρ1ntσt−1,t−1 + ρ2cov

(
dt−1,

yt−2∑
j=1

b1j(ρ1) +

dt−2∑
j=1

b2j(ρ2) + dt−1

)
= ρ1ntσt−1,t−1 + ρ2σdt−1,dt−1
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When k > 1,

cov(yt, yt−k) = ρ1ntcov(yt−1, yt−k)

= ρ21ntnt−1cov(yt−2, yt−k)

= ρ31ntnt−1nt−2cov(yt−3, yt−k) leading to

cov(yt, yt−k) =

(
k−1∏
l=0

nt−l

)
ρk1cov(yt−k, yt−k) =

(
k−1∏
l=0

nt−l

)
ρk1σt−k

In general, for t = 1, 2, ..., T we get the following expression for covariance between yt

and yt−k for lag k = 1, 2, .., T − 1

cov(yt, yt−k) =

ntρ1σt−1,t−1 + ρ2σdt−1,dt−1 , for k = 1,(∏k−1
l=0 nt−l

)
ρk1σt−k,t−k, for k > 1.

By using the following formula for correlation,

corr(yt, yt−k) =
cov(yt, yt−k)√
v(yt)

√
v(yt−k)

and plugging in the expressions for respective covariance and variances, we get corre-

lation between yt and yt−k given by,

corr(yt, yt−k) =


ρ1nt

√
σt−1,t−1
σt,t

+ ρ2
σdt−1,dt−1√
σt,tσt−1,t−1

, for k = 1,(∏k−1
l=0 nt−l

)
ρk1

√
σt−k,t−k

σt,t
, for k > 1.

A.4 Proof of Theorem 2.3.2

Based on the Assumption 3.2 outlined in section 2.3.4, E(y1) = v(y1) = µ1. Addition-

ally, E(d1) = v(d1) = µ1. From Assumption 3.3, E(dt) = v(dt) = µt−nρ1µt−1−ρ2µdt−1

for t = 2, 3, ..., T .

Mean: Let, µt = exp(xt
Tβ) be the mean of yt and µdt be the mean of dt. We know,

E (yt) = Edt−1,yt−1 (E (yt|yt−1, dt−1)) (A.17)
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By taking conditional expectation on (2.19) we get,

E (yt|Yt−1, dt−1) = ρ1nyt−1 + ρ2dt−1 + E(dt) (A.18)

Eyt−1 (E (yt|yt−1, dt−1)) = ρ1nE(yt−1) + ρ2dt−1 + E(dt) (A.19)

Edt−1,yt−1 (E (yt|yt−1, dt−1)) = ρ1nE(yt−1) + ρ2E(dt−1) + E(dt) (A.20)

= ρ1nE(yt−1) + ρ2E(dt−1) + µt − ρ1nµt−1 − ρ2µdt−1

(A.21)

Therefore,

E(yt) = ρ1nE(yt−1) + ρ2E(dt−1) + µt − ρ1nµt−1 − ρ2µdt−1

For t = 2,

E(y2) = ρ1nE(y1) + ρ2E(d1) + µ2 − ρ1nµ1 − ρ2µd1
= ρ1nµ1 + ρ2µ1 + µ2 − ρ1nµ1 − ρ2µ1

= µ2

For t = 3,

E(y3) = ρ1nE(y2) + ρ2E(d2) + µ3 − ρ1nµ2 − ρ2µd2
= ρ1nµ2 + ρ2(µ2 − ρ1nµ1 − ρ2µd1) + µ3 − ρ1nµ2 − ρ2(µ2 − ρ1nµ1 − ρ2µd1)

= µ3

Through the method of mathematical induction, if E(yt−1) = µt−1, E(dt−1) = µdt−1

then E(yt) = ρ1nµt−1 + ρ2µdt−1 + µt − ρ1nµt−1 − ρ2µdt−1 = µt.

Therefore, E(yt) = µt = exp(xt
Tβ) for all t = 1, 2, 3, ..., T .

Variance: Let, v(yt) = σt,t and v(dt) = σdt,dt for all t = 1, 2, ..., T . Additionally,

v(dt) = E(dt) = µt− ρ1nµt−1− ρ2µdt−1 . From Assumption 3.4 of the model in (2.19),

cov(yt−1, dt) = 0. Now by taking conditional variance on (2.19),

v(yt|yt−1, dt−1) = yt−1v(b1j) + dt−1v(b2j) + v(dt)

= ρ1(1− ρ1)nyt−1 + ρ2(1− ρ2)dt−1 + µt − ρ1nµt−1 − ρ2µdt−1 .
(A.22)
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Let, v(Yt−1) = σt−1,t−1 and v(dt−1) = σdt−1,dt−1 . Then,

v(yt|dt−1) = Eyt−1 (v (yt|yt−1, dt−1)) + vyt−1 (E (yt|yt−1, dt−1))

= Eyt−1(ρ1(1− ρ1)nyt−1 + ρ2(1− ρ2)dt−1 + µdt)

+ vyt−1(ρ1nyt−1 + ρ2dt−1 + µt − ρ1nµt−1 − ρ2µdt−1)

[using (A.18)]

= ρ1(1− ρ1)nµt−1 + ρ2(1− ρ2)dt−1 + µdt + ρ21n
2σt−1,t−1.

Now,

v (yt) =Edt−1 (v (yt| dt−1)) + vdt−1 (E (Yt| dt−1))

=Edt−1

(
ρ1(1− ρ1)nµt−1 + ρ2(1− ρ2)dt−1 + µdt + ρ21n

2σt−1,t−1
)

+ vdt−1

(
µt + ρ2dt−1 − ρ2µdt−1

)
[using (A.19)]

=ρ1(1− ρ1)nµt−1 + ρ2(1− ρ2)µdt−1 + µt − ρ1nµt−1−

ρ2µdt−1 + ρ21n
2σt−1,t−1 + ρ22v(dt−1)

=µt − ρ21nµt−1 − ρ22µdt−1 + ρ21n
2σt−1,t−1 + ρ22σdt−1,dt−1

=µt − ρ21nµt−1 + ρ21n
2σt−1,t−1

[Since from Assumption 3.2, µdt−1 = σdt−1,dt−1 ].

Therefore, we get the following expression for variance of yt,

v(yt) = σt,t = µt − ρ21nµt−1 + ρ21n
2σt−1,t−1. (A.23)

Again, v(y1) = µ1. For T = 2, 3, ...T , using the equation in (A.23) we get,

when t = 2,

v(y2) = µ2 − ρ21nµ1 + ρ21n
2v(y1)

= µ2 − ρ21nµ1 + ρ21n
2µ1

= µ2 + ρ21n(n− 1)µ1
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when t = 3,

v(y3) = µ3 − ρ21nµ2 + ρ21n
2v(y2)

= µ3 + n(n− 1)(ρ21µ2 + ρ41n
2µ1)

when t = 4,

v(y4) = µ4 − ρ21nµ3 + ρ21n
2v(y3)

= µ4 − ρ21nµ3 + ρ21n
2(µ3 + n(n− 1)(ρ21µ2 + ρ41n

2µ1))

= µ4 + n(n− 1)(ρ21µ3 + ρ41n
2µ2 + ρ61n

3µ1)

If we calculate for t = 5, 6, ... and so on we get a general expression for the variance

of yt which is given by,

v(yt) =


µ1, for t = 1,

µt + n(n− 1) +
t−1∑
l=1

ρ
2(l)
1 n2(l−1µt−l, for t = 2, 3, .., T.

Covariance and Correlation: To derive the lag k covariance between yt and

yt−k, we use the following formula as, for k = 1, 2, ..., T − 1,

cov(yt, yt−k) = cov

(
yt−1∑
j=1

b1j(n, ρ1), yt−k

)
+ cov

(
dt−1∑
j=1

b2j(ρ2), yt−k) + cov(dt, yt−k

)

= cov

(
yt−1∑
j=1

b1j(n, ρ1), yt−k

)
+ cov

(
dt−1∑
j=1

b2j(ρ2), yt−k

)
[since cov(dt, yt−k) = 0]

Considering the first part of the above formula we get, The covariance and correlation

between yt and yt−k for t = 1, 2, ..., T are obtained as,

cov

(
yt−1∑
j=1

b1j(n, ρ1), yt−k

)
= E

[
cov

(
yt−1∑
j=1

b1j(n, ρ1), yt−k|yt−1, dt−1, yt−k

)]

+ cov

[
E

(
yt−1∑
j=1

b1j(n, ρ1)|yt−1, dt−1, yt−k

)
, E (yt−k|yt−1, dt−1, yt−k)

]
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= cov(ρ1nyt−1, yt−k)

= ρ1ncov(yt−1, yt−k)

Similarly, for the second part we get the same expression as in (A.8) given by

cov

(
dt−1∑
j=1

b2j(ρ2), yt−k

)
= ρ2cov(dt−1, yt−k) (A.24)

The above relationship in (A.24) holds only when k = 1. Otherwise, when k > 1,

cov
(∑dt−1

j=1 b2j(ρ2), yt−k

)
= 0. Therefore, when k = 1, we get,

cov(yt, yt−k) = ρ1ncov(yt−1, yt−k) + ρ2cov(dt−1, yt−k)

= ρ1ncov(yt−1, yt−1) + ρ2cov(dt−1, yt−1)

= ρ1nσt−1,t−1 + ρ2cov

(
dt−1,

yt−2∑
j=1

b1j(ρ1) +

dt−2∑
j=1

b2j(ρ2) + dt−1

)
= ρ1nσt−1,t−1 + ρ2σdt−1,dt−1 .

When k > 1,

cov(yt, yt−k) = ρ1ncov(yt−1, yt−k)

= ρ21n
2cov(yt−2, yt−k)

= ρ31n
3cov(yt−3, yt−k) leading to

cov(yt, yt−k) =
k−1∏
l=0

(nρ1)
kcov(yt−k, yt−k) =

k−1∏
l=0

(nρ1)
kσt−k,t−k.

In general, for t = 1, 2, ..., T we get the following expression for covariance between yt

and yt−k for lag k = 1, 2, .., T − 1

cov(yt, yt−k) =

nρ1σt−1,t−1 + ρ2σdt−1,dt−1 , for k = 1,∏k−1
l=0 (nρ1)

kσt−k,t−k, for k > 1.

By using the following formula for correlation,

corr(yt, yt−k) =
cov(yt, yt−k)√
v(yt)

√
v(yt−k)

,
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and plugging in the expressions for respective covariance and variances, we get corre-

lation between yt and yt−k given by,

corr(yt, yt−k) =


ρ1n

√
σt−1,t−1
σt,t

+ ρ2
σdt−1,dt−1√
σt,tσt−1,t−1

, for k = 1,

k−1∏
l=0

(nρ1)
k

√
σt−k,t−k
σt,t

, for k > 1.


