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Abstract

In some regions, health authorities may implement an elimination strategy involving

public health measures that apply to travelers and community members to control

infectious disease spread. Optimal control theory consists of mathematical results

that apply to epidemiological models and describe control strategies that maximize

or minimize an epidemiologically-relevant quantity given constraints. The previous

work of Hansen and Day (2011) has characterized optimal controls involving com-

munity isolation and vaccination with the objective of minimizing outbreak size. We

build on this previous work by considering epidemiological dynamics involving infec-

tion importation, traveler isolation as a control measure, and by characterizing the

optimal controls in the terminology of public health. We discuss a related theorem

from Hansen and Day (2011) in the context of our extensions of their modelling. We

numerically implement control measures and characterize the resulting epidemiology

and resource use as an elimination, mitigation, or circuit breaker strategy. We find

that which public health strategy the implemented control is characterized as depends

on parameter values that can be interpreted as corresponding to regional conditions.

When resources are not limited, the implemented strategy corresponds to: an elimi-

nation strategy, when the maximum daily isolation rate is high and the importation

rate is low; and a mitigation strategy, when the maximum daily isolation rate is low

and the importation rate is high. When resources are limited, the implemented strat-

egy corresponds to a circuit breaker strategy. No previous studies have provided a

general framework whereby elimination, mitigation, or circuit breaker strategies can

arise as solutions to optimal control problems for different epidemiological and re-

source use-related parameters, and such results show that different infectious disease

control strategies can be optimal in different regions.
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Chapter 1

Introduction

Optimal control theory is a mathematical framework for determining the application

of control measures to a dynamical system to achieve the best possible outcome. It

is an effective tool for decision-making in complex biological situations [47]. Optimal

control theory has been applied to epidemiology to identify the best strategies to

control and mitigate infectious diseases [1, 3, 10, 24, 32, 42, 47, 50, 57]. To the best

of our knowledge, optimal control theory has yet to be applied to problems involving

infection importation, where infection importation refers to infected travelers that

arrive at a destination from another region.

The arrival of an infected traveler into a susceptible destination population can trig-

ger the onset of a local outbreak if the local conditions (population density, public

health infrastructure, etc.) favour the spread of the disease [38]. Various approaches

to modelling importation have been developed [12, 67, 6, 46, 31, 9, 4]. Some pre-

vious work has found that imported infections are likely to contribute little to local

epidemics [64, 36, 30, 5, 15, 72]. As part of the control measures available to public

health authorities, some specifically aim to reduce the risk of importations, i.e., travel



restrictions or bans, self-isolation upon arrival and so forth. Since the effect of these

measures varies, it is important to understand the importation process to evaluate

the relative effectiveness of control measures that aim to reduce the importation rate

[4].

Our analysis bridges the mathematical framework of optimal control theory with ter-

minology used in public health to describe different types of infectious disease control

strategies. Elimination is a strategy which aims to bring the incidence of the disease

down to zero [8, 55, 35, 74]. The elimination strategy, together with its challenges,

has been studied in the context of vaccine-preventable diseases such as measles and

polio [25, 7, 56, 21]. Mitigation strategies aim to slow the spread of an infectious

disease to avoid overwhelming healthcare capacities [41, 74]. Research has demon-

strated the usefulness of mitigation strategies during flu pandemics, highlighting the

role of targeted measures such as antiviral distribution, prioritization of high-risk

groups, and public health communications [54]. A circuit breaker strategy involves

the implementation of public health measures for a fixed, short period to reduce com-

munity transmission of a disease [44, 11] with intermittent breaks from public health

measures to minimize the adverse impacts associated with extended restrictions [16].

The theoretical underpinnings of a circuit breaker strategy can be found in studies of

disease dynamics, which highlight the non-linear benefits of temporarily halting trans-

mission [43]. During the COVID-19 pandemic, short-term lockdowns implemented in

numerous countries, including the United Kingdom, demonstrated that circuit break-

ers could effectively reduce transmission rates and provide a crucial respite for drained

healthcare systems [17].

Significant progress has been made by proposing mathematical models, which offer

valuable information for decision-making in global health [32, 71, 75, 70, 76, 14, 61,

2



2, 65, 69]. One common aim when modelling resource constraints is to describe

how changes in intervention measures will affect the characteristics of the infection

dynamics and consequently affect disease control. Hansen and Day (2011) provided

optimal control policies for an isolation-only model, a vaccination-only model and a

combined isolation–vaccination model, with analytic solutions for the controls that

minimize the infectious burden under the assumption that there are limited control

resources [32]. Our research builds upon the framework and analysis developed by

Hansen and Day [32].

In this thesis, we extend the framework of Hansen and Day [32] by considering an

epidemic model with infection of community members due to importations. We aim

to determine the optimal control when the control measures are: community isolation

only; post-arrival isolation of infected travelers only; and the combination of both

community isolation and post-arrival isolation of infected travelers. We characterize

the optimal control as an elimination, mitigation, or circuit breaker strategy, and

quantify the outbreak size and duration for the optimal controls corresponding to

each strategy. Our work explores infectious disease control strategies using optimal

control theory to consider resource limitations and minimize the number of cases in

an outbreak. We answer the question of “when” and “how” control measures can be

implemented within resource constraints.
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Chapter 2

Basic fundamental properties of

ODEs and the PMP

This chapter considers the theoretical foundations for understanding and applying

differential equations and optimal control theory to infectious disease modelling [67].

We establish the existence of solutions for a particular type of optimization problem.

This problem involves an objective function, which is an integral of variables that

are described by a system of ordinary differential equations ODEs (see Section 2.2,

equations (2.5)-(2.6)). To establish the existence of the optimal control(s), we first

establish the existence and uniqueness of solutions to ODEs, with a particular focus on

Gronwall’s Inequality Theorem. This theorem ensures that the mathematical models

we employ in Chapter 3 are well-defined. We describe the Pontryagin Maximum

Principle (PMP), a cornerstone of optimal control theory, and a theorem which is

applied in Chapter 3. Finally, we examine the existence of optimal controls. In this

section, the Fillipov Existence Theorem is presented to describe the conditions under

which optimal solutions exist.



A reason for using ODEs for our modelling is their ability to capture the continuous

change in population compartments, which correspond to the disease states and other

variables [18]. This is achieved through rate equations that combine various processes,

including transmission rates, recovery rates, and death rates. The resulting systems

of ODEs can be studied analytically and numerically to determine disease trajectories

and evaluate the potential impact of health policies [34].

The mathematical properties of the existence and uniqueness of solutions ensure that,

for a given set of initial conditions and parameters, there is a well-defined and unique

trajectory that the model will follow [19, 63]. With the notion of admissibility of

control functions, we set a framework that ensures the system’s responses remain

within feasible bounds [47]. Verifying the solutions’ existence and uniqueness, which

we will consider in the upcoming section, is a step that ensures the model’s predictive

consistency and application to infectious disease modelling [58].

We state some essential characteristics of the solutions to ordinary differential equa-

tions, including existence, uniqueness, continuous dependence on initial conditions,

and continuous dependence on parameters. Consider the nonlinear dynamical control

system

ẋ(t) = f(t, x(t), u(t)); x(t0) = x0, (2.1)

where x(t) = (x1(t), · · · , xn(t)) ∈ Rn, u(t) = (u1(t), · · · , um(t)) ∈ Rm. For the mathe-

matical model to predict the system’s future state from its current state, the Initial-

Value Problem (IVP) (2.1) must have a unique solution. A trajectory of the system

(2.1) corresponding to a control u(t) is a continuous curve x(t) solving equation (2.1)

for almost all t, which means that the differential equation (2.1) is satisfied for all

(t) in a given set, ensuring that the property holds throughout the entire interval of

5



interest, except for finitely many points (an insignificant subset). We also refer to

x(t) ∈ Rn as the state. An admissible control u(t) will be a piecewise-continuous

vector-valued function such that u : [0, T ] → K for some compact K. We address the

question of existence and uniqueness in the next section.

2.1 Existence and uniqueness of solutions to ODEs

The first goal of this section is to establish the local existence and uniqueness of

solutions. Thus, we are interested in solutions to the differential equations (2.1) that

appear to take a more general form. Let I ⊂ Rn an interval of time, U ⊂ Rn and

Θ ⊂ Rm be open sets and let f : I×U ×Θ → Rn be a continuous function. We focus

on solutions to the initial value problem

ẋ = f(t, x, θ), x(t0) = x0, (2.2)

that is, the existence of a solution x : I → U such that t0 ∈ I, θ ∈ Θ and x(t0) = x0.

It is known from the theory of ordinary differential equations [33, 63] that under

certain regularity assumptions (i.e. f(t, x, θ) satisfies a global Lipschitz condition),

a (nonlinear) differential equation (2.2) has a unique solution passing through x0 at

t = t0.

Definition 2.1.1. Consider metric spaces (X, dX) and (Y, dY ). A function f : X →

Y is Lipschitz if there exists a real constant K ≥ 0 such that, for all x1, x2 ∈ X

dY (f(x1), f(x2) ≤ KdX(x1, x2)

The smallest K satisfying this inequality is denoted by Lip(f) := K and is called the

6



Lipschitz constant of f .

The corresponding existence and uniqueness theorem is as follows. The proofs can be

found in [37, 51, 66].

Theorem 2.1.2. Let I ⊂ R, U ⊂ Rn and Θ ⊂ Rm be open sets, and assume f :

I×U×Θ → Rn is a Lipschitz function. If (t0, x0, θ0) ∈ I×U×Θ, then there exists an

open neighbourhood of the form I0 ×U0 ×Θ0 of (t0, x0, θ0) and a Lipschitz continuous

function φ : I0 × U0 ×Θ0 → Rn such that for every (t, x, θ) ∈ I0 × U0 ×Θ0

φ(t0, x0, θ0) : I0 → Rn

is a solution to the initial value problem

ẋ = f(t, x, θ0), x(t0) = x0. (2.3)

Furthermore, if ψ(., t0, x0, θ0) is another solution to the initial value problem (2.3),

then ψ(t) = φ(t) on the intersection of their domains of definition.

By solving the relevant differential equation (2.3), we can use Gronwall’s inequality

(Theorem 2.1.3) to constrain a function known to satisfy integral inequalities [29] by

bounding the difference between two solutions and demonstrating this difference is

zero under the same initial conditions (i.e. the two solutions converge from the same

initial condition and remain identical). Gronwall’s inequality offers a comparison

theorem, which can be utilized to demonstrate the uniqueness of a solution to the

initial value problem (2.3).

Theorem 2.1.3. (Gronwall’s Inequality) Let α, β : (a, b) → [0,∞) be continuous

7



functions. Assume

α(t) ≤ C +

∣∣∣∣∫ t

t0

α(s)β(s)ds

∣∣∣∣ , t0, t ∈ (a, b)

for some constant C ≥ 0. Then,

α(t) ≤ C exp

(∣∣∣∣∫ t

t0

β(s)ds

∣∣∣∣)

Applying Gronwall’s inequality to our initial value problem (2.3), with α(t) := ∥φ(., x0)−

ψ(., y0)∥, C = ∥x0 − y0∥ and β(t) = K, we obtain the proposition below.

Proposition 2.1.4. Let U ⊂ Rn be an open set and assume f : U → Rn is a Lipschitz

continuous function with Lip(f) = K. If φ(., x0) : Ix0 → Rn and ψ(., y0) : Iy0 →

Rn are solutions to the initial value problem (2.3) with x(t0) = x0 and x(t0) = y0,

respectively, then

∥φ(t, x0, θ0)− ψ(t, y0, θ0)∥ ≤ ∥x0 − y0∥eK|t−t0| (2.4)

for all t ∈ Ix0 ∩ Iy0.

Remark 2.1.5. Proposition 2.1.4 guarantees the existence and uniqueness of solu-

tions. To show that two solutions to the same initial value problem (2.3) agree on

the intersection of their domains of definition, we let φ : I0 → Rn and ψ : I1 → Rn

denote two solutions to the initial value problem (2.3). Given that x(t0) = x0 = y0,

from equation (2.4) for all t ∈ I0 ∩ I1,

∥φ(t)− ψ(t)∥ = 0,

8



which establishes the uniqueness of the solution to the initial value problem (2.3).

2.2 Pontryagin Maximum Principle (PMP)

An optimal control problem for ordinary differential equations consists of finding a

control u(t) and the associated state variable x(t) to maximize the given objective

functional below [20]:

J :=

∫ T

t0

L(t, x(t), u(t)) dt (2.5)

subject to ẋ = f(t, x(t), u(t)), x(t0) = x0. (2.6)

where equation (2.6) models the system dynamics, and the term L(t, x(t), u(t)) is

referred to as the integral cost. The function L(t, x(t), u(t)) is assumed to be non-

negative and continuous in all arguments for t ∈ [t0, T ] [48]. To solve the optimal

control problem (2.5)-(2.6), we define the Hamiltonian as

H(t, x(t), u(t), λ(t)) = λ0L(t, x(t), u(t)) + λ(t)f(t, x(t), u(t)) (2.7)

where λ(t) is the adjoint variable and λ0 a constant.

Remark 2.2.1. λ0 = −1 if u(t) is feasible and the objective functional (2.5) is to

be minimized. λ0 = +1 if u(t) is feasible and the objective functional (2.5) is to be

maximized. λ0 = 0 if u(t) is unfeasible.

The set of admissible controls is given by

Uad = {u = (u1, u2, · · · , um) such that (u1, u2, · · · , um) measurable; (u1(t), u2(t), · · · ),

um(t) ∈ [0, n],where n ∈ R} (2.8)

9



being a compact convex subset of Rm and the controls are bounded and Lebesgue

measurable [48]. Thus, all possible sets u must be contained in the set of admissible

controls Uad.

Further, let u1, u2 ∈ Uad, then it follows that

bu1 + (1− b)u2 ∈ [0,∞)

for all b ∈ [0, 1]. Consequently bu1 + (1− b)u2 ∈ Uad, implying the convexity of Uad.

The Pontryagin Maximum Principle provides necessary conditions that an optimal

control (2.5) and corresponding state trajectory (2.6) must satisfy [59, 68].

The Pontryagin Maximum Principle is widely used to analyze and solve optimal con-

trol problems, where the goal is to find the best control strategy for the optimal

control problem defined in Chapter 3 [59].

Theorem 2.2.2. (PMP) If u∗(t) and x∗(t) are the optimal solution of the control

problem, then there exist piecewise differentiable adjoint variables λ(t) such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)) (2.9)

for all controls u at each time t, where H is the Hamiltonian and

λ̇(t) =
∂H(t, x∗(t), u∗(t), λ(t))

∂x
(2.10)

λ(T ) = 0 (2.11)

are the costate and transversality conditions, respectively.

We focus on the application of the PMP theorem, excluding detailed proof. We refer

10



to [3, 59] for the proof.

Definition 2.2.3. A triple (x∗, u∗, λ) is called extremal if (x∗, u∗) is admissible and

the equations ẋ = Hλ and λ̇ = −Hx hold along (x∗, u∗).

Theorem 2.2.4. Suppose that f(t, x, u) is a continuously differentiable function in

its three arguments and concave in u. Suppose u∗ is an optimal control with associated

state x∗, and λ a piecewise differentiable function with λ(t) ≥ 0 ∀ t. Suppose for all

t0 ≤ t ≤ T

0 = Hu(t, x
∗(t), u∗(t), λ(t)) (optimality condition). (2.12)

Then for all controls u and each t0 ≤ t ≤ T , we have

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)). (2.13)

The same essential conditions are derived through similar reasoning when the problem

involves minimizing rather than maximizing. In a minimization problem, we minimize

the Hamiltonian pointwise and the inequality in equation (2.2.4) is reversed [47].

Indeed, for a minimization problem with f being convex in u, we can derive

H(t, x∗(t), u(t), λ(t)) ≥ H(t, x∗(t), u∗(t), λ(t)) (2.14)

by the same argument as in Theorem 2.2.4.

11



2.2.1 Existence of optimal controls

The PMP only provides necessary conditions for optimality (2.9)-(2.12), and the ful-

filment of these conditions alone does not guarantee optimality [45]. For an optimal

control to exist, we want to have compactness of feasible solution sets [13]. We provide

a result stating the existence of at least one optimal solution to the optimal control

problem (2.5)-(2.6) under some appropriate compactness and convexity assumptions.

Precisely, we follow the standard Filippov’s approach [24]. Filippov’s existence the-

orem is a result of the theory of differential inclusions; which are generalizations of

ordinary differential equations that allow for multiple possible trajectories at a sin-

gle point in the state space. Filippov’s existence theorem addresses the existence of

solutions for differential inclusions [23, 24].

Theorem 2.2.5. (Filippov’s existence theorem) Consider an optimal control

problem defined by a differential inclusion ẋ ∈ f(t, x, u), where f : [t0, T ]×Rn×Rm →

Rn is a set-valued mapping representing the dynamics, t is time, x is the state variable

and u is the control input. Assume that the set-valued map f is upper semi-continuous

in x and continuous in u for each fixed t. If the optimal control problem has nonempty,

compact, and convex solution sets for all t, then an optimal control exists for almost

every initial point in Rn.

To establish the existence of the optimal control, we rely on findings presented in [26]

and [62]. Initially, we address the boundedness of the state variables in the system

(2.5)-(2.6). In other words, the state variables of the system should be bounded. The

assurance of the existence of an optimal control solution is ensured by satisfying the

following conditions:

(a) The set of control variables and corresponding state variables are not empty.

12



(b) The admissible control set Uad is compact and bounded.

(c) The vector function f(t, x, u) is continuous.

13



Chapter 3

Mathematical Model

Our modelling builds on that of Hansen and Day [32]. They considered an optimal

control problem involving the spread of an infectious disease, where public health

officials can isolate a fixed number of infected individuals. The aim of the optimal

control problem is to minimize the number of infections in the outbreak. In Hansen

and Day’s formulation, the outbreak is defined as over when infection prevalence

decreases to below a small value.

One of the situations that they considered is where the only public health measure

available is to isolate infected individuals. For this problem (isolation only), they

proved that the optimal control depends on whether isolation resources are sufficient

to last until the outbreak is over or not (see Theorem 1 in [32]). In the case when

resources are sufficient, it was showed that the optimal control is to isolate infected

individuals at the maximum rate until the end of the outbreak. In the case when

resources are limiting, the optimal control is to use all available resources, and to

isolate infected individuals at the maximum rate, or not at all; but that the timing

of the implementation of the control measures does not matter as long as all of the



isolation resources are used [32].

Our work builds on Hansen and Day, but only in so much as to motivate extensions

of the modelling framework (Problems 2-4 in this Chapter), and to numerically study

and interpret the results of the models in this Chapter in terms of public health

terminology (Chapter 4). In this Chapter, we discuss four problems. Problem 1

is identical to the isolation only scenario that is presented in [32], and we describe

some components of the proof of the nature of the optimal control as part of our

discussion of Problem 1. Problems 2-4 are extensions of the modelling framework

from Hansen and Day, and in addition to developing these models, we also describe

the likely features of the structure of the optimal controls for these problems, based

on the proof from the reference, and based on numerical exploration concerning the

structure of the optimal control.

The extension that we consider is to formulate an epidemiological model that includes

imported infections as a process that can produce infections in community members

and to consider post-arrival travel measures as a control. The isolation only scenario

from Hansen and Day is a special case of this more general model that we developed.

The motivation for this extension modelling is due to the importance of understanding

when travel measures are appropriate to control infectious disease outbreaks.
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3.1 Problem description and assumptions

The model that we consider is,

dS

dt
= −βS(I1 + cI2), (3.1)

dI1
dt

= βS(I1 + cI2)− (µ+ u1(t))I1, (3.2)

dI2
dt

= θ − (γ + u2(t))I2, (3.3)

with S(0) > 0, I1(0) > Imin (see Section 3.2 for an explanation), I2(0) ≥ 0, β, µ, θ, γ,

c > 0 where S is the number of susceptible community members. The extension from

Hansen and Day is to partition infections as infection prevalence in community mem-

bers, I1, and infection prevalence in travelers, I2. The force of infection term considers

that susceptible community members are either infected by community members at

rate β (per infected community member) or at rate cβ (per infected traveler), where

c is a constant that measures the relative transmissibility of infected travelers as com-

pared to infected community members. The rate that infected travelers arrive in the

community is θ > 0, and the rate that travelers become uninfectious, relative to their

arrival date at the community is γ. We consider post-arrival travel measures that

isolate infectious travelers from the community at a rate u2(t). The rate that infected

travelers become uninfectious is γ, with γ greater than µ, because community mem-

bers were in the community from their first day of infectiousness, while travelers may

have spent some time away from the community, while infectious before arriving, or

they may leave before their infectious period is over. The rate at which infectious

community members are isolated is u1(t).

There are several different ways that importations might be included in an epidemic

model. Our formulation assumes that travelers are a source of infection for susceptible
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members of the community, but does not explicitly consider the origin of the infected

travelers or any infectious disease dynamics at the origin. Further, our formulation

assumes that the community members themselves do not become travelers. This

model formulation was chosen because we can examine the risk of infection from a

non-community source without adding so much model complexity to the dynamics

of the number of susceptible community members that the optimal control analysis

becomes not possible. Further, we do not consider births and background mortality

of community members. Vaccination, as a control variable, was considered in the

analysis of Hansen and Day [32]; in this present work, vaccination is not considered.

3.2 Defining an outbreak end point

Hansen and Day [32] observed that after a control measure successfully lowers infection

prevalence to a very low level, releasing that control might lead to a second wave of

infection. This resurgence could be triggered by just a small fraction of individuals

and is not biologically plausible. This second wave of infection, which can be caused

by a ‘nano-individual’ [27], is an artifact of the ordinary differential equation model

formulation which necessarily describes infection prevalence as a continuous variable.

A discrete state model formulation, such as a branching process model, would not

have this limitation, however, optimal control for problems described as branching

processes are substantially more challenging to analyze [52]. We recognize the need

to prevent artificial waves of infection for our problem of interest as such waves could

lead to the incorrect conclusion that elimination is not the optimal strategy [53]. This

is necessary because we consider elimination strategies in Chapter 4.

To avoid this artificial second wave of infection, we use the approach of Hansen and

Day and define an outbreak as over at t = T if infection prevalence is less than some
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small value. Specifically, T is the smallest t such that I1(t) ≤ Imin where Imin ≤ 1, so

as to prevent artificial second waves attributable to a fraction of an individual, and

I1(0) needs to be chosen as bigger than Imin.

3.3 Resource constraints (Optimal control prob-

lem)

The control variables in equations (3.1)-(3.3) are u1(t) and u2(t), which are the

daily isolation rates per infected community member and per infected traveler, and

(u1(t), u2(t)) ∈ [0, u1max]× [0, u2max], where 0 corresponds to no control and u1max and

u2max corresponds to the maximum daily rate of community member isolation and

traveler isolation, respectively.

Let

U1[u1,u2](T ) =

∫ T

0

u1(t)I1[u1,u2] dt, (3.4)

and

U2[u1,u2](T ) =

∫ T

0

u2(t)I2[u1,u2] dt, (3.5)

denote the total number of community residents and travelers that have been isolated

up until time T respectively, where the square brackets represent the dependence

of this quantity on the controls, u1(t) and u2(t). This dependence occurs directly

due to the total resources used, and indirectly as the controls being implemented

impact infection prevalence. A quantity that appears in our subsequent analysis is

U1[u1max,u2max](T ) which is the total number of community members that are isolated if
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the isolation rate for community members and travelers is maximal for all time until

the outbreak ends, and where U2[u1max,u2max](T ) is defined similarly.

The control problem is constrained as U1max and U2max are defined as the total re-

sources available for community isolation and traveler isolation, respectively. Exam-

ples of such resources are funding to pay the staff employed in testing, tracing, and

isolating infected community members, as well as the resources, such as testing facil-

ities to complete these activities; and funding to pay the staff involved in developing,

implementing, and enforcing post-arrival travel measures, as well as the necessary

resources, such as isolation facilities or testing equipment to complete these activities.

In keeping with [32], we assume that these resources are limited, such that,

U1[u1,u2](T ) ≤ U1max, (3.6)

and

U2[u1,u2](T ) ≤ U2max. (3.7)

The aim of public health measures is to minimize the number of infections in the

outbreak,

J =

∫ T

0

βS[u1,u2](I1[u1,u2] + cI2[u1,u2]) dt, (3.8)

subject to the resource constraints (3.6)-(3.7).

To apply the PMP, we define the Hamiltonian as

H = λ0βS(I1 + cI2) + λI1
dI1
dt

+ λI2
dI2
dt

+ λU1

dU1

dt
+ λU2

dU2

dt
. (3.9)
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3.4 Bang-bang optimal controls

Equations (3.1)-(3.8) are a linear optimization problem, which is a class of optimal

control problems where the control function appears only linearly [28]. In these cases,

optimal solutions often incorporate discontinuities in the control variables [47]. Notice

that equations (3.1)-(3.3) and the integrand in (3.8) are both linear functions of the

controls u1(t) and u2(t). Thus, the Hamiltonian (3.9) is also a linear function of

the controls; hence, the optimality condition (2.12) contains no information on the

controls [47]. The PMP (Section 2.2), when applied to bounded control problems that

are linear in the control variable defines the bang-bang control.

Remark 3.4.1. Hansen and Day [32] show that the optimal control for our model

(i.e., see Problem 1 in Section 3.6) is bang-bang, where a bang-bang control is charac-

terized by switching between two extreme values. Specifically, for our model (3.1)-(3.8),

the Hamiltonian is given as:

H = λ0βS(I1 + cI2)− λSβS(I1 + cI2) + λI1(µ+ u1)I1 + λI2θ − λI2(γ + u2)I2+

λU1u1I1 + λU2u2I2. (3.10)

From equation (2.12), the optimality conditions are:

∂H

∂u1
= (λU1 − λI1)I1 = 0 (3.11)

∂H

∂u2
= (λU2 − λI2)I2 = 0 (3.12)

Let ψ1(t) = λU1(t)−λI1(t) and ψ2(t) = λU2(t)−λI2(t) where ψ1(t) and ψ2(t) are called

the switching functions, and the controls u1(t) and u2(t) switches between the upper

and lower bounds of the controls range (i.e. (u1(t), u2(t)) ∈ [0, u1max]× [0, u2max]). The
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times at which these switches occur are determined by the switching functions [47].

We use the notation ≡ to indicate that a function is equal to the same value for all

time, t ∈ [0, T ]. For example, u∗1(t) ≡ u1max means that the optimal control is to

isolate infected community members at the maximum rate for the entire outbreak.

Hence the controls are characterized as:

u∗1(t) =


u1max, if λU1(t) < λI1(t) maximum rate of community isolation,

0, if λU1(t) > λI1(t) no community isolation,

(3.13)

and

u∗2(t) =


u2max, if λU2(t) < λI2(t) maximum rate of traveler isolation,

0, if λU2(t) > λI2(t) no traveler isolation.

(3.14)

3.5 Problem classification

We classify our general problem (equations (3.1)-(3.8)) into the following four parts

as described in Table 3.1.

Table 3.1: The four problems that we analyze

Problem Description Special values of parameters

1 Community member isolation only, no importations. I2(0) = 0, θ = 0, and U2max = 0.

2 Community member isolation, with importations. U2max = 0.

3 Post-traveler isolation measures only. U1max = 0.

4 Both community member isolation and travel measures. None.
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3.6 Problem 1: Community Isolation Only (no case

importation)

Considering community isolation as the only control, and with no importations, our

model (3.1)-(3.3) with resource limitation now becomes,

dS

dt
= −βSI1, (3.15)

dI1
dt

= βSI1 − (µ+ u1(t))I1, (3.16)

U1[u1](T ) =

∫ T

0

u1(t)I1[u1] dt ≤ U1max. (3.17)

Our objective function is,

J =

∫ T

0

βS[u1]I1[u1] dt, (3.18)

subject to equations (3.15)-(3.17), T = inf{t | I1[u1](t) = Imin}, u1(t) ∈ [0, u1max] for

all t ∈ [0, T ].

Note that S[u1] = S, I1[u1] = I1 are the number of susceptibles and community in-

fections for a given u1(t) respectively, where the change in notation is to explicitly

denote the dependence of these variables on the control being considered. This com-

pletes the statement of Hansen and Day’s isolation only problem, which is equivalent

to our Problem 1.

The main result of the community isolation only problem is stated in the theorem

below.

Theorem 3.6.1. [32](Optimal Community Isolation Strategy) For Problem

1, if U1[u1max](T ) ≤ U1max, then the optimal community isolation strategy is u∗1(t) ≡
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u1max. If U1[u1max](T ) > U1max, then the optimal control u∗1(t) is any bang-bang control

such that U1[u∗
1]
(T ) = U1max.

The optimal isolation policy, as outlined in Theorem 3.6.1, is to implement maximal

isolation efforts throughout the epidemic, provided that sufficient resources are avail-

able. Without adequate resources, the optimal policy is any bang-bang control that

utilizes all available resources.

When resources are allocated in a manner that the optimal policy leads to a reduction

in infections (Theorem 3.6.1), the result is that a greater number of individuals remain

susceptible, as demonstrated in the claim below.

Claim 3.6.2. [32] Minimizing the total number of new infections, J , is equivalent to

maximizing the number of susceptible individuals S(T ) at the end of the outbreak.

Proof (Claim 3.6.2): From equation (3.15), we have

dS = −βSI1 dt. (3.19)

Integrating both sides of (3.19), we get

∫ T

0

dS = −
∫ T

0

βSI1 dt, (3.20)

S(T )− S(0) = −
∫ T

0

βSI1 dt, (3.21)

S(0)− S(T ) =

∫ T

0

βSI1 dt. (3.22)

Rearranging equation (3.15), we get

1

S
dS = −βI1 dt. (3.23)
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Taking the integral on both sides of (3.23), we have

∫ T

0

1

S
dS = −β

∫ T

0

I1 dt, (3.24)

− 1

β
ln

(
S(T )

S(0)

)
=

∫ T

0

I1 dt. (3.25)

From equations (3.18) and (3.22), we get

S(0)− S(T ) = J. (3.26)

We observe that the terms on the right-hand side of equations (3.25) and (3.26) are

both minimized by maximizing S(T ) since S(0) is a fixed quantity.

Again, from equation (3.15), we can write −Ṡ = βSI1 and I1 = − Ṡ
βS
. Substituting

these two expressions into equation (3.16) gives

İ1 = −Ṡ +
µ

β

Ṡ

S
− u1I1. (3.27)

Rearranging equation (3.27) and integrating from 0 to T , the total number of com-

munity members isolated during the outbreak for any u1(t) is,

U1[u1](T ) =

∫ T

0

u1I1[u1] dt = S(0)− S[u1](T ) + I1(0)− Imin +
µ

β
ln

(
S[u1](T )

S(0)

)
,

(3.28)

where we note that to satisfy the constraint U1[u1](T ) must be less than or equal to

U1max.
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The objective function (3.18) can be rewritten as

∫ T

0

βI1[u1]S[u1] dt = S(0)− S[u1](T ), (3.29)

and, therefore, minimizing the objective function is equivalent to maximizing S[u1](T ).

This completes the proof of Claim 3.6.2 as proved in Hansen and Day [32].

Equation (3.28) is illustrated in Figure 3.1. For S[u1](T ) > µ/β, resources are not

limiting. When S[u1](T ) < µ/β resources are limiting (U1[u1](T ) < U1[u1max](T )), and

then U1[u1](T ) and S[u1](T ) are positively related (equation (3.28); Figure 3.1), such

that increasing U1[u1](T ), increases S[u1](T ). Therefore, any bang-bang control u∗1(t)

that uses all available resources (see Remark 3.4.1), U1[u1](T ) = U1max, minimizes

equation (3.29) (see the proof of Theorem 1 on page 432 of Hansen and Day [32]).

Figure 3.1: Equation (3.28) (black curve) describes the total community members
isolated, U1[u1](T ), as a function of the final number of susceptible people, S[u1](T ).
Resources are limiting when S[u1](T ) < µ/β (left of the vertical line at µ/β), and
here S[u1](T ) and U1[u1](T ) are positively related such that any u1(t) that uses all the
resources is optimal. See Table 3.2 for parameter values.
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Table 3.2: Parameter values used for the figures in this chapter

Figure Parameter values

Figure 3.1 β = 0.0002 person−1 day−1, µ = 0.334 day−1, S(0) = 5000

people, I1(0) = 10 people.

Figure 3.2 As for Figure 3.1 but with u1max = 1 day−1 and θ = 1 people day−1.

No constraint is implemented. For the values of c = 0.4, 0.5 and 1,

T is 466, 614, and 925 days.

Figure 3.3 θ = 2 people day−1, U1max = 1500 people, Imin = 1 per-

son, I2(0) = θ
γ+u2max

people, and all other parameters are

the same as Figure 3.1. For the successively increasing values

of c = 0, 0.05, 0.1, 0.2, 0.5, and 1, the outbreak ends at T =

16, 36, 377, 717, 1044 and 1057 days.

Figure 3.4 c = 1, (a-b): β = 0.0002 person−1 day−1, U2max = 50 people,

(c-d): β = 0.00005 person−1 day−1, U2max = 500 people, and

all other parameters and initial conditions are as Figure 3.1 and

Figure 3.3. For the increasing values of u2max that are shown in

the upper panels (u2max = 0, 0.5, 1, 2, and 5), the outbreak end

times are T = 42.8, 41.1, 40.7, 42.9 and 43.4 days (a-b). For the

increasing values of u2max that are shown in the lower panels (u2max

= 0, 0.5, 1, 2, and 4.5) the outbreak end times are T > 2000 days

for u2max = 0, 0.5, 1 and 3 day−1, and T = 284 and 119 days for

u2max = 4.75 and 5 day−1 (c-d).

Figure 3.5 θ = 1 person day−1, u1max = 0.6 u2max = 1.3 day−1, U1max =

500 , U2max = 100 people (a-c), U1max = 2500 , U2max = 200 people,

u2max = 1.3 day−1 (d-f).
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3.7 Problem 2: Community isolation only (with

imported infections)

For Problem 2, we assume that there are imported infections and the only control

measure is community isolation. The epidemiological dynamics are

dS

dt
= −βS(I1 + cI2), (3.30)

dI1
dt

= βS(I1 + cI2)− (µ+ u1(t))I1, (3.31)

dI2
dt

= θ − γI2, (3.32)

dU1

dt
= u1(t)I1. (3.33)

Problem 2 still describes a linear optimization problem such that the control is bang-

bang as described by Remark 3.4.1. For Problem 2, the problem is to find the u1(t)

that minimizes the number of community members that are infected,

J =

∫ T

0

βS(I1 + cI2) dt, (3.34)

where susceptible community members (S) can be infected by either an infectious

community member (I1) or an infectious traveler (I2) and subject to the terminal

condition I1(T ) = Imin, and the constraint U1(T ) ≤ U1max.

Remark 3.7.1. As for Problem 1, for Problem 2 minimizing the total number of in-

fected people is equivalent to maximizing the number of susceptible community mem-

bers at the end of the outbreak.
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This is shown by integrating equation (3.30)

S(T )− S(0) = −
∫ T

0

βS(I1 + cI2) dt = −J. (3.35)

Next, we observe that from equation (3.30), we can write −Ṡ = βS(I1 + cI2) and

making I1 the subject, we get I1 = − Ṡ
βS

−cI2. Substituting these two expressions into

equation (3.31) gives,

İ1 = −Ṡ +
µ

β
(1 + cβI2)− u1I1. (3.36)

If we let I2(0) = θ/γ, then I2 ≡ θ/γ is constant, rearranging equation (3.36) and

integrating from 0 to T , we obtain the total number of isolated infected community

members,

U1[u1](T ) =

∫ T

0

u1I1[u1] dt,

= S(0)− S[u1](T ) + I1(0)− Imin +
µ

β
ln

(
S[u1](T )

S(0)

)
+
θ

γ
µcT[u1]. (3.37)

Equation (3.37) is identical to (3.28) except for the + θ
γ
µcT[u1] term, where T[u1] is

the duration of the outbreak and the subscript [u1] has been added to emphasize

that this duration depends on the control, u1(t). This new term is positive, and so

the impact of importations is to move the U1[u1](T ) curve (as shown in Figure 3.2)

upwards, although this upwards shift is not the same for all S[u1](T ) due to the co-

dependence of S[u1](T ) and T[u1] on the control strategy, u1(t). We do not know how

this additional term affects the optimal control.
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Figure 3.2: Equation (3.37) describes the total community members isolated,
U1[u1](T ), as a function of the final number of susceptible people, S[u1](T ), for dif-
ferent c. The black lines are identical to Figure 3.1 and parameter values are provided
in Table 3.2.

This concludes our analysis of Remark 3.7.1.

3.7.1 Numerical methods

In Figure 3.3, we present some numerical results that show the precautionary strategy

and the resulting epidemiological dynamics. The precautionary strategy is,

u∗∗1 (t) =


u1max, if 0 ≤ t ≤ t1max and

0, if t > t1max,

(3.38)

which is to use all resources at the maximum rate until they are used up at t =

t1max. For Theorem 3.6.1 (i.e., Theorem 1 in [32]), which applies to Problem 1, the
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precautionary principle is always optimal although it is not uniquely optimal when

resources are limiting. Problems 1 and 2 are closely related, and identical when c = 0,

so we numerically evaluate the epidemiological dynamics (Figure 3.3a) and resource

use (Figure 3.3b) given that the precautionary strategy is implemented. When c = 0,

we know that the precautionary strategy is an optimal control. We do not know this

for c > 0, but we present the epidemiological dynamics and resource use to build our

understanding of what the optimal control might be in this situation.

We produce numerical results by numerically integrating equations 3.30 to 3.33 using

the R package deSolve to implement the implicit Runge-Kutta method RADAU. To

implement the outbreak endpoint when I1(t) = Imin, we use the events and rootfun

options for the function ode() in the deSolve package. The event is terminalroot

= 1 and rootfun is Imin − I1(t). To implement the resource constraint, we evaluate

an if() clause for U1(t) < U1max where U1(t) is evaluated by numerically solving

equation (3.33). To implement the constraint, and the precautionary strategy, the

if() clause evaluates as false, then u1(t) is set to 0.

The simulation codes for all the figures in this thesis can be found here

https://github.com/King-Jorge/Thesis_Codes. Numerical methods for other fig-

ures in the thesis also build on the numerical methods described in this subsection,

with any other relevant details described in the relevant subsequent sections.

3.7.2 Numerical results

Figure 3.3a shows that the impact that infected travelers spreading infections to com-

munity members (c > 0) can have on the optimal control is that more community

infections occur, and this may mean that community isolation resources are not suf-

ficient (Figure 3.3b, c = 0.5 and 1). In this case, when resources are exhausted and
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u1(t) = 0 occurs, community infection prevalence can rebound (Figure 3.3b, c = 0.5

and 1). Further, when infected travelers spread infections to community members

more readily, the outbreak can last substantially longer (up to T = 1057 days for

c = 1, as compared to T = 16 when there is no infection spread from travelers). How-

ever, these substantial effects of infection spread from travelers occur when the com-

munity outbreak initially declines. When the community outbreak initially increases,

infection spread from travelers can have a negligible effect as will be discussed in the

next section.

Figure 3.3: The effect of the relative transmissibility of infected travelers, c, on com-
munity infection prevalence when the precautionary strategy (equation 3.38) is im-
plemented. All parameter values are in Table 3.2.
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3.8 Problem 3: Post-Arrival Traveler isolation Only

In Problem 3, we consider post-arrival isolation of infected travelers as the only public

health measure used to control infection prevalence in the community. Our model now

becomes

dS

dt
= −βS(I1 + cI2), (3.39)

dI1
dt

= βS(I1 + cI2)− µI1, (3.40)

dI2
dt

= θ − (u2(t) + γ)I2, (3.41)

dU2

dt
= u2(t)I2. (3.42)

The objective function is,

J =

∫ T

0

βS[u2](I1[u2] + cI2[u2]) dt, (3.43)

subject to equations (3.39)-(3.42), T = inf{t | I1[u2](t) = Imin}, u2(t) ∈ [0, u2max] for

all t ∈ [0, T ] and subject to the resource constraint,

U2[u2](T ) =

∫ T

0

u2I2 dt ≤ U2max. (3.44)

As for Problems 1 and 2, it is possible to show that min J is equivalent to maximizing

S[u1](T ), and Problem 3 is still a linear optimization problem such that u∗2(t) is a

bang-bang control as described by Remark 3.4.1. For u2(t) ≡ u2max and I2(0) =

θ/(γ + u2max), integrating equation (3.41) gives,

U2[u2max](T ) =
u2max θ T[u2max]

u2max + γ
, (3.45)
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and this expression can be evaluated to determine if resources are limiting.

3.8.1 Numerical results

The numerical methods are similar to as described in Section 3.7.1 for Problem 2. As

for Problem 2, we consider the precautionary strategy, which in this case is,

u∗∗2 (t) =


u2max, if 0 ≤ t ≤ t2max and

0, if t > t2max,

(3.46)

where t2max is the time when traveler isolation resources are used up, and evaluate

the epidemiological dynamics (Figure 3.4a,c) and resource use (Figure 3.4b,d) for

this precautionary strategy. The scenarios considered are when community infections

initially increase (Figure 3.4, upper panels) or decrease (Figure 3.4, lower panels).

The effect of post-arrival isolation of travelers is negligible for a community outbreak

where cases initially increase (Figure 3.4a), but can be substantial for outbreaks where

community cases initially decrease (Figure 3.4c). Figure 3.4a-b, where the transmis-

sion rate is β = 0.0002 person−1 such that community cases initially increase, shows

epidemiological dynamics that are very similar irrespective of the maximum rate that

travelers are isolated (u2max ranging from 0 to 5 day−1) and irrespective of whether

resources are limiting (u2max = 2, 3 or 5) or not (u2max = 0, 0.5 and 1; Figure 3.4b).

However, for Figure 3.4c-d, where the transmission rate is β = 0.00005 person−1

such that community cases initially decrease, the outbreak can be substantially pro-

longed when the maximum rate that travelers are isolated, u2max, is low. When the

post-arrival traveler isolation rate is high (i.e., u2max = 5 day−1) the outbreak ends

quickly (i.e., in 284 days or less, Figure 3.4c) and resources are sufficient to implement

u2(t) ≡ u2max for the entire outbreak (Figure 3.4d). However, when the post-arrival
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traveler isolation ratis low (i.e., u2max = 0, 1 or 4.5) then the community outbreak

decreases more slowly and does not reach the terminal condition, I1(t) = Imin before

all the resources for traveler isolation are used (Figure 3.4d). Community infection

prevalence, I1(t) then rebounds (Figure 3.4c) and the outbreak takes a very long time

to terminate. In Figure 3.4c, for u2max = 0, 1 and 4.5, the outbreak has still not con-

cluded after 2000 days. However, the outbreak will eventually terminate because S(t)

is always decreasing, and dI1/dt will be negative when S(t) becomes small enough.

Figure 3.4: The effect of the post-arrival traveler isolation rate (u2max) on community
infection prevalence, I1(t), when the precautionary strategy (equation 3.46) is imple-
mented, and the transmission rate is such that community infections increase initially
(a-b; β = 0.0002 person−1 day−1) or decrease initially (c-d; β = 0.00005 person−1

day−1). All parameter values are in Table 3.2.

34



3.9 Problem 4: Combined Strategies

The model for the combined strategies: isolation of infected community members,

u1(t), and post-arrival isolation of infected travelers, u2(t), is described by the system

of ordinary differential equations:

dS

dt
= −βS(I1 + cI2), (3.47)

dI1
dt

= βS(I1 + cI2)− (µ+ u1(t))I1, (3.48)

dI2
dt

= θ − (γ + u2)I2, (3.49)

dU1

dt
= u1(t)I1, (3.50)

dU2

dt
= u2(t)I2. (3.51)

Let the precautionary combined strategy be defined as,

u∗∗1 (t) =


u1max, if 0 ≤ t ≤ t1max and

0, if t > t1max,

(3.52)

and,

u∗∗2 (t) =


u2max, if 0 ≤ t ≤ t2max and

0, if t > t2max,

(3.53)

where t1max and t2max are the times when all resources are used if the controls are

implemented from t = 0 onwards. If resources are not limiting for [u∗∗1 , u
∗∗
2 ] then

set t1max = t2max = T ∗∗, which is the duration of the outbreak when [u∗∗1 , u
∗∗
2 ] is

implemented.
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Consider the resources used when u1(t) = u∗∗1 (t) and u2(t) = u∗∗2 (t) are implemented.

These are

U1[u∗∗
1 ,u∗∗

2 ](T
∗∗) =

∫ t1max

0

u∗∗1 I1 dt ≤ U1max, (3.54)

and

U2[u∗∗
1 ,u∗∗

2 ](T
∗∗) =

∫ t2max

0

u∗∗2 I2 dt ≤ U2max. (3.55)

We also consider alternative strategies, which are bang-bang controls and are different

from a precautionary strategy. These alternative strategies necessarily have a break

in the implementation measures that correspond to a control for which resources are

limiting. Our discussion of the optimal combined controls will consider four cases,

which are the four possible combinations of limiting and non-limiting resources for

the community isolation and the traveler isolation resources.

Definition 3.9.1. Optimal preferred strategy. If only one resource is limiting, we

note that a strategy that uses less of the non-limiting resource should be preferred if all

else is equal. We define an optimal preferred strategy, as satisfying the requirements of

an optimal control, but where this strategy is preferred because it uses the least amount

of the non-limiting resource.

Case 1: Both resources are not limited. We conjecture that the optimal combined

strategy is to use both resources at the maximum rate until the end of the outbreak.

Specifically, that the precautionary combined strategy when both resources are not

limiting is [u∗∗1 (t), u∗∗2 (t)] ≡ [u1max, u2max].
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Case 2: Community resources (limited); traveler resources (not limited). We conjec-

ture that the optimal combined strategy is to use all of the limited community isola-

tion resources, and to use the non-limiting traveler isolation resources at the maximum

rate until the end of the outbreak. Specifically, we conjecture the optimal combined

strategy is [u1(t), u2(t)] = [u∗1(t), u2max] where u
∗
1(t) denotes a strategy that uses all

the available resources for community isolation, and where u2(t) ≡ u2max means that

traveler isolation resources are implemented at the maximum rate for the duration of

the outbreak.

We further explore the potential structure of the optimal combined strategy for this

case by numerical evaluation of the objective function. Consider two strategies that

might meet the requirements for u∗1(t): the precautionary strategy, u∗∗1 (t), and ũ1(t),

where the latter is different from u∗∗1 (t) and uses all the available resources for com-

munity isolation. Let T̃ be the duration of the outbreak when [ũ1(t), u2max] is imple-

mented and let U2[ũ1,u2max](T̃ ) be the amount of traveler isolation resources used.

Consider whether the total number of community infections, J (see equation 3.34)

is smaller for [u∗∗1 (t), u2max] or [ũ1(t), u2max]. In general, we cannot determine this,

but we consider a numerical example where the alternative strategy is to have a

precautionary break where no community isolation measures are implemented from

time 5 to 15. The numerical example (Figure 3.5a) shows that J (dashed horizontal

line) is the same for the precautionary combined strategy, [u∗∗1 (t), u2max] (red line),

and the alternative strategy [ũ1(t), u2max] (blue line).

While both of these strategies satisfy the constraints and have the same value of

the objective function, [ũ1(t), u2max] is preferred. This is because less of the non-

limiting traveler isolation resource is used for [ũ1(t), u2max] (Figure 3.5c, blue line).

Less of the traveler isolation resource is used for [ũ1(t), u2max] because the outbreak
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ends more quickly (T̃=51 days, while T ∗∗=82 days for the precautionary strategy of

implementing community isolation resources.

This may be surprising because it may seem that the strategy with the earliest im-

plementation of community isolation measures (t = 0 for [u∗∗1 (t), u2max]) would end

first, however, this is not the case, likely because community infection prevalence is

low initially, so few community members are isolated at this time. The delayed im-

plementation of community isolation measures for ũ1(t) is timed to correspond with

high infection prevalence and results in an outbreak that ends more quickly.

Figure 3.5: Comparison of the precautionary combined strategy (red) and an alter-
native strategy (blue) when one resource is limiting: traveler isolation resources are
limiting (a-c; Case 2); and community isolation resources are limiting (d-f; Case 3).
Parameter values are listed in Table 3.2.
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Case 3: Community resources (not limited); traveler resources (limited). We conjec-

ture that the optimal combined strategy is to use the non-limiting community isolation

resource at the maximum rate for the duration of the outbreak, and to use all of the

limited traveler isolation resources. Specifically, we conjecture the optimal combined

strategy is [u1(t), u2(t)] = [u1max, u
∗
2(t)] where u1(t) ≡ u1max means that community

isolation resources are implemented at the maximum rate for the duration of the out-

break, and u∗2(t) denotes a strategy for that uses all the available resources for traveler

isolation.

As for Case 2, we further explore the potential structure of the combined optimal

control by numerical evaluation of the objective function. The two strategies that

might meet the requirements for u∗2(t), are the precautionary strategy, u∗∗2 (t), and the

alternative strategy, ũ2(t) where the latter is different from u∗∗2 (t), and uses all the

available resources for traveler isolation. Let T̃ be the duration of the outbreak when

[u1max, ũ2(t)] is implemented and let U1[u1max],ũ2(T̃ ) be the amount of community iso-

lation resources used. For the numerical example, the specific form of the alternative

strategy is to have a precautionary break where no traveler isolation measures are

implemented from time 200 to 300.

It is notable for Case 3, that traveler isolation measures do not noticeably impact

community prevalence, and so both strategies, [u1max, u
∗∗
2 ] (red line) and [u1max, ũ2]

(blue line) end at a similar time (T ∗∗ = T̃ = 1143 days; Figure 3.5d-f) and require the

same amount of the non-limiting resource (U2[u1max,ũ2](T̃ ) = U2[u1max,u∗∗
2 ](T

∗∗), Figure

3.5e).

Case 4: Both resources are limited. We cannot determine the structure of the optimal

control in this case.
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Chapter 4

Optimal controls and public health

strategies

4.1 Definitions of public health strategies

In this section, we provide mathematical definitions of the public health strategies so

that the results of Chapter 3 can be discussed using public health terminology. These

definitions are provided for community isolation measures (Table 4.1 and Figure 4.1)

and traveler isolation measures (Table 4.3 and Figure 4.2). The requirement that

the elimination strategy decreases infection prevalence shortly after the control is

implemented is because elimination strategies should involve control measures that

are sufficiently strong to decrease infection prevalence.



Table 4.1: Definition of public health strategies for community isolation u1(t).

Public Health

Strategy

Description Definition

Elimination Infection prevalence is reduced to

zero locally, but not in all regions,

such that there remains a risk of dis-

ease importation [8, 55].

(a) The outbreak is eliminated by

public health measures, i.e.,

U1[u1max](T ) ≤ U1max.

(b) dI1
dt

< 0 shortly after u∗1(t) is

implemented.

Mitigation Mitigation aims to slow the spread

of an infectious disease to avoid over-

whelming healthcare capacities and

to reduce overall morbidity and mor-

tality [41, 74].

(a) Public health measures are

implemented throughout

the entire outbreak, i.e.,

U1[u1max](T ) ≤ U1max.

(b) dI1
dt

≥ 0 shortly after u1(t) is

implemented.

Circuit

Breaker

Public health measures are intermit-

tent with breaks in between.

The control involves at least two

switches between public health mea-

sures of different intensities.

Another public health strategy not listed in Table 4.1 is suppression. Suppression

strategies aim to reverse epidemic growth [22] and bring the number of cases down to

a low-level [35, 41] noting that community transmission may still take place [74, 8, 35].

From a mathematical perspective, it is difficult to distinguish between suppression and

mitigation. The cited definitions imply that the difference is whether infection preva-

lence is eventually low (suppression), or reduced so as to not overwhelm healthcare

capacity (mitigation). These definitions imply that low infection prevalence cannot
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overwhelm healthcare capacity (which may not always be the case), and we opted to

use the terminology of mitigation rather than suppression because some of our sub-

sequent results (i.e. Figures 4.1b and 4.2b-c) show infection prevalences that can not

reasonably be referred to as low.

Given these definitions (Table 4.1), Theorem (3.6.1; i.e., Theorem 1 in [32]) can be

restated as:

(a) If resources for community isolation are not limited, then optimal control for

Problem 1 is: elimination, if community infections decrease initially; or mitiga-

tion, if community infections do not decrease initially.

(b) If resources for community isolation are limited, then an optimal control for

Problem 1 is any circuit breaker strategy that uses all of the available resources.

In this case, the circuit breaker strategy that uses all available resources is

equivalent to a non-circuit breaker strategy that uses all available resources (for

example, the precautionary strategy, i.e. equation 3.38).

Figure 4.1a-d shows the dynamics of community infection prevalence, I1(t), for Prob-

lem 1 given the definitions of the public health strategies (Table 4.1). Note that for

the elimination strategy, the outbreak is over more quickly (Figure 4.1a, less than

17 days) than any other public health strategy (Figure 4.1b-d, more than 45 days).

Figure 4.1e confirms numerically that any strategy that uses all available resources

is equivalent, in terms of J (equation 3.18), when resources are limiting, i.e., circuit

breakers 1 and 2 are two optimal controls that have the same number of cases in the

outbreak. Note that at any point during the outbreak, the cumulative number of

cases may be different for circuit breakers 1 and 2, but when the outbreak ends, this

total number of cases is the same.
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Figure 4.1: Visualization of the definitions of the different public health strategies.
The shaded regions correspond to u1(t) = u1max and the unshaded regions correspond
to u1(t) = 0 for the optimal controls for Problem 1, where different public health
strategies are optimal in each panel due to different parameter values (see Table 4.2
for parameter values).

For traveler isolation, the control strategies are categorized as either continuous or cir-

cuit breaker (Table 4.3). This is because the definitions of elimination and mitigation

are defined in terms of community prevalence.
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Table 4.2: Parameter values used for the figures in this chapter

Figure Parameter values

Figure 4.1 u1max = 0.7 day−1 (a) or 0.6 day−1 (b-e), U1max = 1500 people (a-b) or 500

people (c-d), β = 0.0002 person−1 day−1, µ = 0.334 person−1 day−1, θ = 2

people day−1, S(0) = 5000 people, I1(0) = 10 people, Imin = 1 person,

I2(0) =
θ

γ+u2max

Figure 4.2 u1max = 0.2 day−1, u2max = 1.3 day−1 for (a-b), u1max = 0.2 day−1, u2max =

1.8 day−1 for (c-d), u1max = 0.7 day−1, u2max = 1.3 day−1 for (e-f), u1max =

0.7 day−1, u2max = 1.8 day−1 for (g-h), and all other parameters and initial

conditions are the same as Figure 4.1.

Figure 4.3 U2max = 50 people, and all other parameters and initial conditions are the

same as Figure 4.1.

Figures 4.4,

4.5, and 4.6

Low importation (a) has θ = 1 and the high importation has θ = 2. All other

parameters and initial conditions are the same as in Figure 4.1.

Table 4.3: Definition of public health strategies for traveler isolation u2(t).

Public Health

Strategy

Description Definition

Continuous Public health measures are imple-

mented throughout the outbreak to

slow the spread of the disease, and to

avoid overwhelming healthcare ca-

pacities.

Public health measures are imple-

mented throughout the entire out-

break, i.e., U2[u2max](T ) ≤ U2max, and

u∗2(t) ̸= 0 at any point in time.

Circuit

Breaker

Public health measures are intermit-

tent with breaks in between.

An optimal control involves at least

two switches between public health

measures of different intensities.
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Figure 4.2: Illustration of three of the six possible combined strategies. The shading
overlayed on I1(t) shows where u1(t) = u1max and the unshaded regions show where
u1(t) = 0 (left columns), and the shading overlayed on I2(t) shows where u2(t) = u2max

with the unshaded regions corresponding to u2(t) = 0. Parameter values are provided
in Table 4.2.

The definitions from Table 4.1 are applicable to Problems 1 and 2 (Sections 3.6 and

3.7), and the definitions from Table 4.3 are applicable to Problem 3. For Problem 4, we
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need to specify whether the strategy corresponds to the community isolation control,

or the traveler isolation control, and this is indicated with the notation, [mit, circ] for

example, to indicate that the precautionary combined strategy involves community

measures implemented as a mitigation strategy, and the travel measures implemented

as a circuit breaker strategy that uses all of the available resources. The possible

combined controls are: [elim, cont], [elim, circ], [mit, cont], [mit, circ], [circ, cont], and

[circ, circ].

4.2 Effect of the parameter values on the charac-

terization of the controls

In this section, we will numerically investigate how the characterization of the controls,

as a type of public health strategy, changes for different values of the parameters.

These different parameter values might correspond to the situation in different regions,

and so in this respect, we are showing that the best public health response to an

infectious disease outbreak can depend on regional factors.

The results shown in this section are limited by having not been able to characterize

the optimal control for Problems 2-4 in the previous Chapter. Ideally, in this Chap-

ter, we would characterize the optimal control as a particular type of public health

strategy. As we do not know the optimal control for Problem 4, what we do instead is

implement the combined precautionary strategy (equations 3.52 and 3.53). Assuming

the combined precautionary strategy, the system of equations 3.47-3.51 is numerically

solved. Then the definitions, as described in Tables 4.1 and 4.3, are applied to the

resulting I1(t), U1(T ) and U2(T ) to characterize the resulting public health strategy.
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4.2.1 Resources are not limiting

We consider the case when resources are not limiting, such that the public health

strategy that the precautionary strategy implementation results in, is either an elim-

ination or mitigation strategy depending on whether infection prevalence decreases

initially or not. Figure 4.3 shows that the precautionary strategy results in elimina-

tion if both u1max and u2max are sufficiently large. Furthermore, Figure 4.3 shows

that an incremental increase in u1max results in a bigger decrease in the slope, dI1
dt
|t=0,

than an incremental change in u2max, such that increasing u1max by a fixed amount

is a more impactful action that can be taken such that the resulting public health

strategy changes from mitigation to elimination as indicated in the heatmap Figure

4.3d.

Figure 4.3: The effect of u1max and u2max on the initial change in the number of
community infections. Parameter values are described in Table 4.2.
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4.2.2 Without requiring that resources are not limiting

In Figure 4.3, we set the resource constraints, U1max and U2max to be large, such

that resources were never limiting. In this subsection, parameter values, and the

resulting epidemiological and resource consumption dynamics determine whether the

community isolation strategy is categorized as an elimination, mitigation, or circuit

breaker strategy (Table 4.1), and whether the traveler isolation strategy is categorized

as continuous or circuit breaker (Table 4.3). The strategy that is implemented is the

combined precautionary strategy (equations 3.52 and 3.53).

As described in Tables 4.1 and 4.3, the control implementation is categorized as circuit

breaker if U1(T ) = U1max for the community isolation control and U2(T ) = U2max for

the traveler isolation control. The values of U1(T ) and U2(T ) are determined by solving

equations 3.50 and 3.51. In the case where U2(T ) < U2max then the traveler isolation

strategy is categorized as continuous. In the case where UI(T ) < U1max the condition

for elimination dI1
dt
|t=0 is evaluated numerically as requiring that I1(t) ≤ I1(0) for all

time, and otherwise the community isolation control is categorized as mitigation.

Figure 4.4: The effect of the maximum daily isolation rate of community members,
u1max, and travelers, u2max on the precautionary combined control described in terms
of public health strategies, where the labels “elimination”, “mitigation”, and “circuit
breaker” refer to the community isolation component of the control. Parameter values
are shown in Table 4.2
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When both community measures and travel measures can be used in combination

to control the outbreak, if the maximum daily isolation rates for both community

members, u1max, and travelers, u2max, is high, then the precautionary combined con-

trol corresponds to the [elim, cont] strategy, whereby community isolation measures

are implemented continuously and achieve elimination, and traveler isolation is imple-

mented continuously (Figure 4.4a-b; red region). This elimination strategy is achieved

because the control measures are highly effective in decreasing community prevalence

and quickly ending the outbreak (Figure 4.5a-b; see the region labeled as [elim, cont]).

When the importation rate is high (Figure 4.4b), larger maximum daily isolation rates

are needed for the precautionary combined control to correspond to elimination (i.e.,

the red region is smaller in panel b of Figure 4.4). The regions corresponding to a

continuous strategy for travel measures (Figure 4.4, light green and yellow) become

smaller with higher importation rates.

When both of the daily maximum isolation rates, u1max and u2max are low, the pre-

cautionary combined strategy corresponds to a mitigation and continuous strategy

for community and traveler isolation measures respectively (Figure 4.4a-b; orange re-

gion). For these parameter values, the control measures have only a very small effect

on the outbreak, with only a few people isolated, so that the total resources available

are not used up.

Our categorization of the precautionary combined controls into different types of pub-

lic health strategies corresponds to substantial changes in the duration and number

of cases in the outbreak. If resources are not limited, and the control measures can

stay in place until the outbreak ends (i.e., an elimination, mitigation or continuous

strategy) then the outbreak is shorter (Figure 4.5). This is perhaps surprising in the

case of the mitigation strategy, however in this case the outbreak progresses rapidly
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due to lack of control because the maximum community isolation rates are low.

Figure 4.5: The duration of the outbreak, T , when the precautionary combined control
is implemented. All parameters are the same as 4.4, and for reference, the regions
where the community isolation strategy corresponds to “elimination”, “mitigation”,
and “circuit breaker” strategy are provided.

The longest duration outbreaks occur when resources are limited and a circuit breaker

strategy is needed, alternating between moderate intensity maximum community iso-

lation rates and no measures. In these situations, the outbreak is prolonged, especially

when the importation rate is high. This high importation rate slows down the decline

in community infection prevalence, such that it takes longer for infection prevalence

to reach the level needed to declare the outbreak over. Long outbreaks also occur

when the maximum daily infection rates are slightly below the threshold necessary

for elimination.

When the parameter values are such that the categorization of the precautionary

combined strategy is an elimination-continuous strategy (labeled as [elim, cont]) the

outbreak will be short (Figure 4.6) and consist of relatively few cases (Figure 4.6).

When the conditions are such that the community isolation strategy is categorized

as a mitigation strategy (labeled as [mit, cont] and [mit, circ]) the outbreak will be
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short (Figure 4.5) and consist of many cases (Figure 4.6). When the conditions are

such that the optimal strategy for community isolation is a circuit breaker strategy

(labeled as [circ, cont] and [circ, circ]) the outbreak will be long (Figure 4.5) and

consist of many cases (Figure 4.6).

Figure 4.6: The number of cases in the outbreak, J , when the precautionary combined
control is implemented. All parameters are the same as 4.4, and for reference, the
regions where the community isolation strategy corresponds to “elimination”, “miti-
gation”, and “circuit breaker” strategy are provided.

Finally, our results suggest that the maximum community isolation rate, u1max is

more important for determining the type of public health strategy that results from

implementing the precautionary combined strategy than the maximum traveler iso-

lation rate, u2max. This is evident because the slope of the boundary between [circ,

circ] and [elim, circ] is bigger than 1 in absolute value. This is not surprising as it

has often been stated that importations make a negligible contribution to outbreaks

when community spread is occurring [64, 36, 30, 5, 15, 72]. The boundary between

the community isolation strategies of mitigation and the circuit breaker is seemingly

vertical, which means that the traveler isolation rate has a negligible impact on the
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boundary between these regions. However, our results do not show that the importa-

tion rate, and traveler isolation measures are universally inconsequential. Rather, we

find that both the importation rate and the maximum rate that travelers are isolated

are impactful in determining whether elimination is possible, although we note that

the maximum community isolation rate also matters.

52



Chapter 5

Conclusion

We expanded on the work of Hansen and Day [32] by considering infection spread to

community members from travelers, and implementing post-arrival traveler isolation

as a control measure. Hansen and Day [32] had previously found that when isolation

resources are limited, any strategy that uses all available resources is optimal. This

thesis describes how the modelling framework of Hansen and Day [32] can be built

upon to consider importations and post-arrival travel measures. Furthermore, this

thesis explains how the results of this modelling can be framed in the terminology of

public health strategies. This contribution is valuable as we show how to formulate a

general modelling framework where different public health strategies might potentially

be optimal for different parameter values that might correspond to regional factors.

This dependence of best public health strategies on regional factors is consistent with

the World Health Organization’s ‘Technical considerations for implementing a risk-

based approach to international travel in the context of COVID-19: Interim guidance,

2 July 2021’ [73] that describes regional factors as necessary considerations for the

recommended implementation of travel measures.



We interpret the results of Hansen and Day ([32]; Theorem 1, which applies to our

Problem 1): that any strategy that uses all the available resources is optimal, as

support for a circuit breaker strategy. The circuit breaker strategy involves precau-

tionary breaks from public health restrictions [44]. Following Hansen and Day ([32];

Theorem 1), such a strategy is optimal as long as the delays to implementing public

health measures are not so long as to have the outbreak be nearly over by the time

measures are implemented. When lengthy delays to implementing measures occur,

too few individuals remain to potentially be infected and all of the isolation resources

cannot be used, which is not optimal.

While the precautionary strategy is always optimal for Problem 1 (as proved in [32]),

we do not know this to be the case for Problem 4, which involves implementing both

controls, although numerical exploration of two alternative combined strategies finds

that both are optimal (Figure 3.5) in terms of the objective function, J , which is

the total number of community cases in the outbreak. Nonetheless, we note some

differences between the precautionary and the alternative strategy that are not con-

sidered in the objective function. Particularly, we note a difference with regard to

defining a preferred strategy, which is one that uses less of a non-limiting resource.

Often this preferred strategy ends the outbreak more quickly while achieving the same

number of cases. We proceeded with a numerical exploration of the characterization

of the combined precautionary strategy in terms of different public health strategies

for Problem 4, but we do not know whether this is an optimal control as we did for

Problem 1 (although Figure 3.5 suggests that the precautionary combined control

may also always be optimal for Problem 4).

Our numerical exploration of public health strategies that result from implementing
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the precautionary combined control strategy found that a circuit breaker strategy re-

sults when resources are limited, and a mitigation strategy results when the maximum

isolation rates is low and/or the importation rate is high, but community isolation

resources are not limited. However, in the situations where an elimination strategy is

the characterization of the public health strategy that is implemented, the elimina-

tion strategy performs substantially better than any other strategy, both in terms of

shorter (Figure 4.5) and smaller (Figure 4.6) outbreaks. While not captured in our

objective function, there is a significant benefit to short duration outbreaks as this

means that public health interventions need to be in place for a shorter duration.

When the elimination strategy is possible, this strategy performs very well, suggesting

that future work might consider optimization problems where the control variables

may allow the situation to become favourable for elimination. For example, the max-

imum isolation rates are fixed values in our optimization problems, but future work

could consider the maximum isolation rate as a control variable. Similarly, in our

formulation the resource constraints are fixed, however, in some situations, all the

resources are used just before the outbreak is about to end. In this situation, releas-

ing the public health measures results in a second wave of infection (see Figure 3.3a)

that would have been avoided if more resources could have been made available, such

that the public health measures could have remained in place for just a short time

longer, and a second wave prevented, if just a few more resources could have been

made available.

A simple recommendation from our results, and that follows mostly from Theorem 1 as

was proved is Hansen and Day [32], is that initiating maximum isolation efforts as soon

as the outbreak is detected, i.e., ‘don’t wait, re-escalate’ [39], is likely always a very

good action that can be justified by a formal optimal control framework. Following
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from Theorem 1 in Hansen and Day [32], if the outbreak ends before resources are

exhausted, then this precautionary ‘don’t wait’ strategy is the best action when the

only available control is community isolation. If resources are exhausted before the

outbreak ends, then the ‘don’t wait’ strategy results in the same number of infections

in the outbreak as a circuit breaker strategy that uses all of the available resources.

However, even in this latter case, the ‘don’t wait’ strategy was still one of many

equivalent, and optimal, strategies. Further support for the ‘don’t wait’ strategy

comes from the precautionary principle, which states that even when information is

lacking, actions should be taken to prevent catastrophes [40]. In the context of our

problem, when the outbreak begins, it is likely not known if resources will be sufficient

to remain in place for the entire outbreak, the precautionary principle would then

suggest the early, precautionary, implementation of public health measures, and our

results further suggest that this approach would, at worst, perform the same as a

different strategy.

5.1 Study limitations and future directions

The formalizations of the optimization problems that we consider follow closely from

Hansen and Day [32], and are advantageous as the framework leads to clear descrip-

tions of the qualitative characteristics of the optimal controls that are likely applicable

in many general settings. However, some aspects of the problem formulation are likely

responsible for the results.

The model formulation does not consider a cost associated with resource use and

considers only a binary distinction between resources being limited or not limited.

In reality, less resource use is likely to cost less and be preferred. Further, it is

likely possible to increase the total resources available, although perhaps at some
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high cost. The conclusion that any strategy utilizing all available resources is optimal

under limited resources might stem from the assumption of a fixed constraint on these

resources (i.e., equations 3.6 and 3.7). Furthermore, the objective function does not

consider the duration of the outbreak, and shorter outbreaks may be more desirable

as public health measures do not need to remain in place for an extended period.

Our study uses a terminal condition which defines the outbreak as over when commu-

nity infection prevalence reaches some low value, Imin, which was necessary to prevent

artificial second waves of infection when measures are released, and which occurs due

to the formulation of the epidemiological dynamics modelled as ordinary differential

equations. For the reasons stated, this type of formulation is necessary, however con-

sidering the problem on a fixed interval of time may have been more instructive since

it is arguably not appropriate to compare the number of cases that occur for outbreaks

that occur for different lengths of time, and especially when it is possible that another

outbreak may occur after the end of a short outbreak.

The recent work of [53] contains important ideas on how to reconcile this challenge.

Fully stochastic models can be difficult to analyze and questions considering elim-

ination strategies can still be assessed if community outbreaks are modelled using

deterministic Susceptible-Infected-Recovered-type models that are ‘pieced together’

over some fixed time, with zero incidence in the between-outbreak periods, with in-

dividual outbreak termination conditions as defined Hansen and Day [32], and with

importations represented as discrete events that introduce infections and initiate the

community outbreak. We refer to this as the ‘community spread switch model’ be-

cause the community spread model is turned on when an importation occurs and

turned off when the terminal condition is met, and this occurs repeatedly across the

fixed period being considered.
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Our study has not considered any mechanisms, other than infection, whereby the num-

ber of susceptible individuals could change. Such mechanisms could be births, waning

immunity, vaccination, human behaviour, and the evolution of the pathogen. Note

that our optimal strategies require that if resources are limited, all available resources

need to be used. Therefore, if susceptible individuals are removed by a mechanism

other other infection, it is necessary to implement public health measures earlier, to

ensure that resources do not remain after the outbreak ends, which is not optimal.

This is similar to strategies implemented by some jurisdictions, i.e., Newfoundland

and Labrador, during the COVID-19 pandemic, where relatively strict public health

measures were implemented until the local community obtained substantial immunity

through vaccination and the ‘Together. Again’ a plan to relax these measures was

proposed [60].

If the pathogen evolves new epidemiological characteristics, as the SARS-CoV-2 virus

did during the pandemic, it remains an open problem to determine the optimal timing

of public health measures, such as the isolation of infected community members.

‘Pandemic fatigue’ [49] is a necessary consideration as compliance is likely to be lower

after already prolonged periods of restrictions. Further, the pathogen may evolve,

to be uncontrollable, for example evolving short generation times that make contact

tracing difficult, and this would be an evolutionary reason why measures are less

effective when timed later. Finally, public health measures are a component of the

selection pressure that acts on the pathogen, and so the characteristics that pathogens

evolve depend also on the public health strategy.

Our primary contributions have been to show that the model formulation of Hansen

and Day [32] generalizes to problems that consider infection of community members

from travelers. The framework of Hansen and Day [32] is amenable to novel insights,
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and we recommend that future work continues to expand on this problem set-up.

In this thesis, we also worked to unite the terminology used in public health with

the results of optimal control problems. The value of the optimal control problem

formulation is to tangibly describe the situations in which each public health strategy

is best. While the problem set-up involves the assumptions typically associated with

ordinary differential equation model formulations, the results are qualitative, i.e.,

elimination, mitigation or circuit breaker strategies result from the implementation of

a precautionary strategy. The specific details of any specific application might change

quantitative nuances of the best public health strategies, but the general principles

that we describe are likely applicable in many settings and contribute insights into

important public health problems.
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