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Abstract 
 

The integration of domain knowledge into machine learning models has been proposed as a 
means to address the limitations of purely data-driven approaches. Traditional machine 
learning techniques often rely on pre-defined, fixed data structures, which can overlook 
valuable context-specific insights that domain knowledge provides. This study investigates the 
impact of incorporating domain knowledge into the preprocessing and feature engineering 
stages of machine learning models, specifically focusing on decision tree algorithms and 
Support Vector Machines (SVM) within the insurance sector. 

To evaluate the effectiveness of this integration, this study compares the performance of 
models trained on a pre-defined dataset (A) with models trained on the same dataset after it 
was enhanced with domain-specific knowledge (Revised A). The results demonstrate that the 
integration of domain-specific guidelines into the feature engineering process significantly 
improved the accuracy and reliability of the predictive models, particularly in complex 
scenarios such as predicting customer profitability. 

In scenarios where domain knowledge played a crucial role in refining features that capture 
relationships within the insurance data, the enhanced models outperformed the original ones. 
Conversely, for tasks where the domain knowledge had less influence, the performance 
improvement was marginal. These findings suggest that integrating domain knowledge into 
machine learning processes can provide a meaningful boost in model effectiveness, but the 
benefits are context-dependent. 
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Machine learning, domain knowledge, feature engineering, decision trees, SVM, insurance 
industry, predictive modeling. 
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1. Introduction 

 

Machine learning has become a crucial tool for data analysis and predictive modeling across 

industries. However, its effectiveness can often be limited by the lack of integration of domain 

knowledge—context-specific insights that have the potential to enhance model accuracy and 

reliability. Recent studies have highlighted the importance of integrating domain knowledge into 

machine learning to improve predictive performance, addressing a critical gap in traditional data-

driven approaches (Maass & Schlosser, 2021; Zhao et al., 2022). 

The thesis explores how incorporating domain knowledge into the machine learning process can 

improve predictive performance by embedding it into key stages such as data preprocessing, and 

feature selection. This approach is validated through a case study in the insurance industry, 

specifically in predicting customer profitability. By integrating domain knowledge, the study aims 

to overcome the limitations of conventional methods that often overlook valuable insights provided 

by domain expertise, thereby improving the accuracy of predictive models. 

 Three specific guidelines for data preprocessing, derived from the work of Lukyanenko et al. 

(2019), are applied to integrate domain knowledge, enhancing model performance by enriching data 

quality and refining feature selection. This systematic approach demonstrates the potential role of 

domain knowledge in improving machine learning outcomes and contributes to the ongoing 

advancement of data analysis techniques. The novelty of this research lies in its integration of 

domain-specific insights into the machine learning process, offering a practical framework that can 

be applied across various domains. 

In recent years, the integration of domain knowledge with machine learning has emerged as an 

approach to enhancing model performance and predictive accuracy (Chen et al., 2021). Machine 

learning methods, while effective, can be significantly improved by incorporating domain-specific 

insights. This research bridges that gap by leveraging domain knowledge and conceptual modeling 

for feature selection and data preprocessing within the insurance industry, focusing on decision tree 

and SVM models to predict customer profitability. 

The structure of this thesis is as follows. The first chapter introduces the research problem, setting 

the stage for the subsequent discussion in the second chapter on the background. The third chapter 

details the machine learning methodologies and data analysis techniques used in the study. The 

fourth chapter outlines the specific research issue and methodologies employed to investigate it, 

while the fifth chapter presents the results drawn from the research findings, along with 

recommendations for future research.
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2. Background 
 

2.1 Introduction 

In predictive analytics, integrating domain knowledge has been shown to enhance the accuracy and 

effectiveness of machine learning (ML) models (Castellanos et al., 2021). By incorporating domain-

specific insights through conceptual models, this study examines how such integration can improve 

decision-making processes. 

Predictive analytics, driven by ML, has transformed industries by enabling precise forecasting and 

data-driven decisions. This study posits that integrating domain knowledge in the insurance industry 

could refine predictive models and enhance result interpretation, potentially allowing insurers to 

tailor their strategies more effectively. 

This chapter reviews methodologies and frameworks that integrate domain knowledge into ML 

models, synthesizing insights from existing studies. By analyzing the benefits and challenges of this 

approach, the review provides a clear understanding of how conceptual models can enhance ML 

algorithms' predictive capabilities. 

 

2.2 Key Concepts and Context 

To provide grounding and context for the study, we will examine five key terms that are central to 

understanding the integration of domain knowledge into machine learning models. 

 

2.2.1 Machine Learning: 

Machine Learning (ML) is a subset of artificial intelligence (AI) that enables systems to learn 

patterns and make predictions without explicit programming instructions. It is especially effective 

in supervised learning scenarios where algorithms are trained on labeled datasets. ML relies on its 

ability to generalize insights from historical data to predict outcomes for new observations (Bishop, 

2006). 

Feature engineering, which leverages domain knowledge to select and transform relevant data 

attributes, is crucial for enhancing predictive accuracy and model robustness (Guyon & Elisseeff, 

2003). ML methodologies include a wide range of techniques, from traditional statistical methods 

to advanced algorithms like neural networks and ensemble methods. These advancements allow ML 

models to tackle complex prediction tasks across various sectors such as finance, healthcare, and 

marketing, and continue to evolve with innovations in deep learning and natural language processing 

(Goodfellow et al., 2016). 

 

2.2.2 Domain Knowledge 

Domain knowledge in information systems refers to specialized expertise and understanding of a 

particular field or industry that is crucial for effectively developing and deploying information 

technology solutions (Alavi & Carlson, 1992; Markus, 2001). It includes insights into the operational 

processes, business rules, regulations, and challenges specific to the domain in question. 

In the context of information systems, domain knowledge serves as a foundation upon which 
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various IT initiatives are built. It enables professionals to design and implement solutions that not 

only meet technical requirements but also align closely with the operational needs and strategic 

objectives of the organization (Lee & Choi, 2003; Pan & Jang, 2008). 

The integration of domain knowledge into information systems development enhances several 

critical aspects. Firstly, domain experts possess a nuanced understanding of the problems and 

challenges within their industry, aiding in accurately defining the scope and requirements of IT 

projects (Henderson & Venkatraman, 1993; Orlowski & Baroudi, 1991). Secondly, information 

systems designed with domain knowledge are contextually relevant to the industry they serve, 

incorporating specific terminologies, workflows, and regulatory constraints (Riemenschneider et al., 

2002; Wixom & Watson, 2001). This ensures that the solutions are intuitive and usable for end-users 

within that domain. Moreover, domain knowledge enables proactive identification and mitigation of 

risks related to data security, regulatory compliance, and operational disruptions (Kirsch, 1997). It 

ensures that IT solutions are designed and implemented in accordance with industry standards and 

best practices, reducing the likelihood of costly errors or compliance issues. 

 

2.2.3 Conceptual Model 

Conceptual models are fundamental in business as they provide a structured framework for 

understanding and representing various aspects of an organization or system (Azami et al., 2021). 

These models serve to simplify complex business concepts and facilitate effective communication, 

particularly in the design of database systems. A key conceptual model utilized in this context is the 

Entity-Relationship Diagram (ERD). 

Entity-Relationship Diagrams (ERD) and Extended Entity-Relationship Diagrams (EERD) are 

essential in database design as they illustrate relationships between entities, attributes, and complex 

relationships such as many-to-many associations. EERDs enhance traditional ERDs by 

incorporating features such as inheritance, specialization, and generalization, providing a more 

detailed representation of organizational data structures. These diagrams are crucial for structuring 

data and ensuring the accuracy of machine learning models in capturing relevant insights from data 

relationships. 

2.2.4 Customer Profitability 

In the insurance industry, assessing customer profitability is essential because insurers need to 

evaluate the profitability of individual policyholders to determine whether they are worth retaining 

or if their contracts should be adjusted. Insurers must also predict the future costs associated with 

each customer, particularly regarding claims, and balance these costs against the premiums 

collected. This process helps insurance companies optimize their customer base by focusing on more 

profitable customers and making strategic decisions to manage the risks associated with unprofitable 

ones (Mori & Umezawa, 2008). 

Comparing profitable and unprofitable customers in the insurance sector reveals differences in 

claims frequency, the type of coverage purchased, and payment behaviors. One factor that 

distinguishes profitable customers from unprofitable ones is their risk profile and claims history. 

The cost of servicing customers with high-risk profiles often exceeds the revenue generated from 

their premiums. Another factor affecting customer profitability in the insurance industry is the cost 
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of processing claims and providing customer service, which must be balanced against the premiums 

paid.  

2.2.5 Car Insurance 

This study focuses on auto insurance in Iran, where insurance companies offer coverage for vehicle 

body damage, third-party liability, and passenger accidents. The empirical study examines how these 

coverage types impact customer profitability and the decision-making processes in the insurance 

sector. 

 

2.3. Theoretical Background 

    2.3.1. Theoretical Framework of Machine Learning (ML) 

The backbone of machine learning (ML) comprises several key techniques, each offering unique 

mechanisms and applications: 

Linear Regression: Used for predicting a continuous target variable based on one or more predictor 

variables, linear regression assumes a linear relationship between the inputs and outputs. It is 

fundamental in statistical modeling and ML for its simplicity and effectiveness in various prediction 

tasks (Hastie, Tibshirani, & Friedman, 2009). 

Decision Trees: These intuitive, flowchart-like structures represent decision points based on the 

features of the data at internal nodes and outcomes at leaf nodes. Decision trees are versatile, 

applicable in both classification and regression tasks, and serve as the foundation for more complex 

ensemble methods. 

Neural Networks: Modeled after the human brain, neural networks consist of interconnected layers 

of nodes (neurons) that process input data to identify patterns and relationships. They are particularly 

adept at handling complex and high-dimensional data, making them central to deep learning 

advancements. 

Support Vector Machines (SVM): SVMs find the hyperplane that best separates different classes 

in the feature space. They are known for their effectiveness in high-dimensional spaces and 

robustness against overfitting, making them suitable for various classification tasks. 

K-Nearest Neighbors (KNN): A simple, instance-based learning algorithm, KNN classifies new 

data points based on the majority class among the K nearest neighbors in the training dataset. Its 

non-parametric nature and intuitive approach make it useful for a wide range of classification 

problems. 

Random Forests: This ensemble learning method builds multiple decision trees and merges their 

predictions to improve accuracy and control overfitting. Random forests are highly effective for both 

classification and regression tasks, leveraging the power of multiple models to enhance predictive 

performance. 

The development and functioning of ML algorithms are deeply rooted in several foundational 

theories that provide the theoretical backbone for the field: 

Statistical Learning Theory: This framework underpins the understanding of how algorithms learn 

from data. It addresses principles of inference, model selection, and the bias-variance trade-off, 

which are crucial for designing, analyzing, and evaluating ML models. 
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Bayesian Inference: Bayesian methods update the probability estimate for a hypothesis as 

additional evidence is acquired. This statistical approach is integral to many ML algorithms, offering 

a principled way to incorporate prior knowledge and manage uncertainty in predictions (Barber, 

2012). 

Optimization Theory: Central to training ML models, optimization theory focuses on finding the 

best parameters for a model by minimizing (or maximizing) an objective function. Techniques such 

as gradient descent and convex optimization are widely employed to train models efficiently (Boyd 

& Vandenberghe, 2004). 

 

2.3.2. ML predictive analysis 

Machine learning (ML) techniques are pivotal in predictive analysis, where they are employed to 

forecast future outcomes based on patterns identified in historical data. These techniques leverage 

vast amounts of data to find trends, correlations, and anomalies that are not immediately evident 

through traditional analytical methods. By constructing models that learn from past data, ML enables 

the anticipation of future events, behaviors, and trends with a high degree of accuracy (Hastie, 

Tibshirani, & Friedman, 2009). 

Predictive analysis involves several steps: data collection, preprocessing, feature selection, model 

training, validation, and deployment. During these stages, historical data is processed and used to 

train models that can then make predictions on new, unseen data. The iterative nature of model 

training and validation ensures that the predictive models are not only accurate but also 

generalizable, providing reliable insights across different scenarios and datasets (James, Witten, 

Hastie, & Tibshirani, 2013). 

The application of ML in predictive analytics spans numerous industries, each benefiting from the 

ability to make data-driven predictions. Some notable examples include: 

Customer Churn Prediction: Businesses use ML models to analyze customer behavior and identify 

patterns that precede churn. By predicting which customers are likely to leave, companies can 

implement targeted retention strategies, thereby enhancing customer loyalty and reducing turnover. 

Stock Market Forecasting: Financial analysts leverage ML algorithms to predict stock prices and 

market trends. By analyzing historical price movements, trading volumes, and other financial 

indicators, ML models can provide insights that inform investment strategies and risk management. 

Medical Diagnosis: In healthcare, ML models are used to predict disease onset, progression, and 

patient outcomes based on historical medical records and patient data. This predictive capability 

supports early diagnosis, personalized treatment plans, and improved patient care. 

The theoretical foundation of predictive modeling in ML involves several key aspects: 

Model Training: Predictive models are trained using historical data where the outcome variable is 

known. The training process involves optimizing the model parameters to minimize prediction error 

on this data. Techniques like supervised learning, where models learn from labeled data, are 

commonly employed. 

Model Validation: To ensure that the predictive models generalize well to new data, they are 

validated using techniques such as cross-validation and bootstrapping. These methods assess the 
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model's performance on different subsets of data, mitigating the risk of overfitting (James et al., 

2013). 

Feature Engineering: The selection and transformation of relevant data features are crucial for 

building effective predictive models. Feature engineering involves creating new features from raw 

data that enhance the model's ability to learn and make accurate predictions. 

Model Deployment: Once validated, predictive models are deployed in real-world applications. 

This involves integrating the models into existing systems where they can process new data and 

generate predictions in real-time or batch modes. 

 

2.3.3. Improving ML Predictive Analysis Performance 

Enhancing the accuracy of Machine Learning (ML) models in predictive analysis is a multifaceted 

challenge that encompasses various strategies and techniques. The improvement of predictive 

performance is critical as it directly impacts the reliability and usability of the predictions generated 

by these models. To achieve this, it is essential to consider several key areas, each of which 

contributes to the overall effectiveness of the ML models. 

• Algorithm Optimization 

One of the primary methods to improve ML model accuracy is through algorithm optimization. 

This includes selecting the most suitable algorithm for the task at hand and fine-tuning 

hyperparameters. Hyperparameters, such as learning rates and the number of layers in neural 

networks, significantly influence model performance. Techniques like grid search and random 

search are commonly used to identify the optimal hyperparameter configurations (Bergstra & 

Bengio, 2012). 

Ensemble methods such as bagging and boosting also play a crucial role. Bagging involves training 

multiple models on different subsets of the data and averaging their predictions to reduce variance. 

Boosting, on the other hand, sequentially trains models, each focusing on correcting the errors of its 

predecessors, thus reducing bias (Freund & Schapire, 1997; Breiman, 1996). 

• Model Evaluation and Validation 

Robust evaluation techniques are essential to ensure that ML models generalize well to unseen 

data. Cross-validation, particularly k-fold cross-validation, is a standard practice that involves 

partitioning the data into k subsets and training the model k times, each time using a different subset 

as the validation set and the remaining as the training set. This method provides a more reliable 

estimate of model performance (Hastie, Tibshirani, & Friedman, 2009). 

Regularization techniques such as L1 (Lasso) and L2 (Ridge) are employed to prevent overfitting 

by adding a penalty to the loss function based on the magnitude of the model coefficients. These 

techniques encourage simpler models that generalize better (Tibshirani, 1996). 

• Feature Engineering and Selection 

Feature engineering is vital in improving model performance. This process involves transforming 

raw data into meaningful features that better represent the underlying patterns. Techniques such as 

normalization, scaling, and one-hot encoding can significantly impact the model’s learning process 
(Zheng & Casari, 2018). Additionally, feature selection methods, including recursive feature 
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elimination and importance ranking from models like Random Forests, help identify the most 

relevant features, enhancing the model's accuracy and reducing overfitting (Guyon & Elisseeff, 

2003). 

• The Role of Domain Knowledge 

Integrating domain knowledge is a powerful way to improve ML model performance. Domain 

knowledge provides context-specific insights that guide the feature engineering process, model 

selection, and the interpretation of results. For example, in the healthcare sector, understanding 

medical terminologies, disease progression, and patient demographics can significantly enhance the 

predictive accuracy of models used for diagnosing conditions or predicting patient outcomes 

(Shmueli & Koppius, 2011). 

Incorporating domain expertise ensures that the models are not only technically proficient but also 

relevant and practical for real-world applications. This alignment is crucial for the successful 

deployment of ML solutions across various industries. 

 

2.3.4 ML and Domain Knowledge 

Integrating domain knowledge into Machine Learning (ML) models is crucial for enhancing their 

accuracy, interpretability, and overall effectiveness. Domain knowledge refers to the expertise and 

insights specific to a particular field or industry, which can significantly influence the performance 

of ML models by providing context that pure data-driven approaches might miss. There are several 

ways to incorporate domain knowledge into ML models, each contributing uniquely to model 

development and deployment. 

• Feature Engineering 

Feature engineering is one of the primary ways to integrate domain knowledge into ML models. 

This process involves transforming raw data into meaningful features based on domain-specific 

insights, which can enhance the model's ability to learn relevant patterns. For example, in healthcare, 

domain knowledge can guide the selection and transformation of medical data into features that 

better represent patient health states and disease progression (He, Wang, & Akula, 2019). By 

leveraging domain expertise, practitioners can create features that are more informative and 

predictive. 

• Data Augmentation 

Data augmentation involves creating additional training data using domain knowledge. This 

technique is particularly useful when dealing with limited data. In the field of image processing, for 

instance, domain knowledge about object variations can be used to generate new training samples 

by rotating, flipping, or scaling existing images, thereby improving model robustness and 

performance (Shorten & Khoshgoftaar, 2019). In text analysis, synonyms and paraphrases can be 

used to augment the dataset, reflecting domain-specific language nuances. 

• Rule-Based Systems 

Integrating rule-based systems with ML models is another effective method. Rule-based systems 

use domain knowledge to create rules that guide the model’s predictions. These systems can either 
work alongside ML models or be embedded within them to improve decision-making. For example, 
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in financial fraud detection, domain-specific rules about transaction patterns can be integrated with 

ML algorithms to enhance detection accuracy (Zhou & Kapoor, 2011). This hybrid approach 

leverages the strengths of both rule-based systems and data-driven models. 

• Transfer Learning 

Transfer learning involves using pre-trained models on a similar domain and fine-tuning them with 

domain-specific data. This method is particularly effective when domain knowledge is encapsulated 

in the pre-trained model, allowing the transfer of learned features to new, related tasks. For instance, 

models trained on large biomedical datasets can be fine-tuned for specific medical diagnosis tasks, 

utilizing the domain knowledge inherent in the pre-trained model (Pan & Yang, 2010). 

• Conceptual Models 

Conceptual models can be used to domain knowledge into ML models. These models represent 

domain-specific theories and relationships that can guide the feature selection and model 

architecture. For example, in environmental science, conceptual models of ecological interactions 

can inform the structure of predictive models for species distribution (Elith & Leathwick, 2009). By 

using conceptual models, ML practitioners can ensure that the model architecture reflects real-world 

complexities and domain-specific knowledge. 

 

2.3.5 Conceptual Models in Machine Learning 

In machine learning (ML), conceptual models can serve as valuable artifacts for structuring domain 

knowledge, guiding feature engineering, and enhancing the interpretability of predictive models. 

These models encapsulate domain-specific theories, relationships, and assumptions, providing a 

structured approach to incorporating expert knowledge into the ML pipeline (Mylopoulos, 1992). 

• Role of Conceptual Models in ML 

Conceptual models can play a crucial role in ML by defining the underlying principles and 

dependencies within a specific domain. Derived from domain experts' insights, these models 

formalize how variables interact and influence outcomes in the data (Fettke, 2020). By structuring 

domain knowledge into a conceptual model, ML practitioners can create more informed hypotheses 

about the data and better understand the underlying mechanisms driving observed patterns 

(Lukyanenko et al. 2020). 

• Integration into Model Development 

During the preprocessing phase of data, conceptual models can guide feature selection and 

extraction processes. Features derived from domain-specific insights can be engineered to capture 

relevant aspects of the data critical for predictive accuracy. For instance, in environmental science, 

conceptual models of ecosystem dynamics can guide the selection of ecological indicators that 

reflect species interactions and environmental conditions (Elith & Leathwick, 2009). 

Conceptual models also act as blueprints that guide the design and development of ML systems, 

ensuring that the underlying domain knowledge is accurately represented and utilized. Through these 

models, domain-specific insights are translated into formal structures that inform various stages of 

the ML pipeline, from data preprocessing to model evaluation (Lukyanenko et al., 2019). 
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• Enhancing Model Interpretability 

Beyond feature engineering, conceptual models enhance model interpretability by providing a 

framework to interpret predictions in the context of domain-specific factors. This interpretative 

capability is particularly valuable in fields like healthcare, where understanding the clinical 

relevance of model predictions is essential for decision-making (Shmueli & Koppius, 2011). By 

grounding ML algorithms in well-defined conceptual models, researchers and practitioners can 

enhance the predictive accuracy, reliability, and transparency of their systems (Recker et al, 2021). 
 

2.4.  Research Background 

The integration of conceptual modeling with machine learning (ML) represents an emerging area 

of research aimed at improving model performance and interpretability by incorporating domain 

knowledge. This synthesis highlights key findings from reviewed literature, identifies trends, 

addresses gaps, and explores emerging themes in this field. 

Machine Learning algorithms are widely employed across diverse applications, including 

forecasting house prices using methods like decision trees, support vector regression, and Lasso 

Regression (Patel, 2023). In contrast, the intersection of conceptual modeling and machine learning 

is gaining attention for its potential to enhance predictive modeling and decision-making processes 

(Zaidi, 2021). Systematic literature reviews emphasize the connection between machine learning 

and conceptual models, underscoring opportunities and challenges for future research (Zaidi, 2021; 

Maass, 2021). 

By integrating conceptual modeling into data science projects, frameworks have been proposed to 

enhance the understanding and application of ML techniques, as demonstrated in various domains 

such as healthcare and finance (Nazareth, 2023). These frameworks provide systematic analyses of 

machine learning's advancements in finance, encompassing domains like stock markets, portfolio 

management, and financial crisis prediction (Nazareth, 2023). 

The integration of Entity-Relationship (ER) conceptual models with machine learning (ML) offers 

substantial benefits by providing a structured approach to data representation and model design 

(Lukyanenko et al., 2020). ER models have the potential to enhance ML applications through 

improved algorithm design and the application of AI/ML in model-based solutions, which can 

facilitate enhanced model inference and development (Lukyanenko et al., 2020). By incorporating 

ER models, ML algorithms gain potential advantages such as enhanced documentation, increased 

transparency, and improved control over critical aspects of the ML pipeline, including data 

preparation, model training, and inference (Lukyanenko et al., 2020). 

Conceptual modeling also addresses key challenges in ML, including the integration of ML within 

organizational frameworks, improving the usability of ML as decision-making tools, and optimizing 

algorithm performance (Scher et al., 2023). Recent advancements emphasize the importance of 

integrating external constraints into ML models, facilitated by high-level conceptual models that 

unify diverse approaches across different fields (Scher et al., 2023). These conceptual models move 

beyond traditional data-centric methodologies by providing a common language that supports the 

inclusion of external constraints, thereby enhancing the robustness and applicability of ML models 

(Scher et al., 2023). Such models empower human designers by offering visibility and control over 
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crucial aspects of ML applications, ensuring effective input data preparation, training, and inference 

of ML models (Damiani et al., 2018). 

 

2.4.1 Benefits and Challenges of ER Modeling in ML 

ER modeling offers several benefits in the context of machine learning: 

Structured Representation: ER diagrams provide a visual and systematic representation of data 

entities, attributes, and relationships, which aids in understanding and designing complex data 

systems. These structured representations are essential for managing large-scale and complex data 

systems, which can serve as a foundation for machine learning applications (Pirotte, Zimányi, 

Massart, & Yale, 2017). 

Complex Data Handling: By supporting advanced constructs like specialization and categorization, 

ER models can effectively handle complex data structures encountered in ML applications, such as 

hierarchical data or object-oriented data (Heuser & Saake, 2009). 

Integration with ML Algorithms: ER diagrams facilitate the integration of various ML algorithms 

by structuring data in a way that enhances algorithm performance and interpretability (Lu et al., 

2020). 

Despite its benefits, ER modeling in machine learning faces certain challenges: 

Scalability: Managing large-scale datasets and evolving data schemas can pose scalability 

challenges for ER models in ML applications (Batra & Kaur, 2017). 

Complexity: The complexity of mapping real-world phenomena into ER models can sometimes 

lead to over-complication or misrepresentation of data relationships (Heuser & Saake, 2009). 

Integration Issues: Integrating ER models with emerging ML techniques like deep learning or 

reinforcement learning requires adapting traditional modeling approaches to new paradigms (Lu et 

al., 2020). 

 

2.4.2 Recent Advancements in ER Modeling 

The relevance of Extended Entity Relationship (EER) modeling in machine learning stems from 

its ability to structure and formalize relationships between data entities. EER models extend the basic 

entity-relationship model by incorporating nuanced features such as generalization, specialization, 

and constraints, which are essential for accurately representing data environments.  By leveraging 

EER models, ML practitioners can design data systems that enable more efficient organization and 

querying of structured data, thus potentially improving model accuracy and scalability. Furthermore, 

EER modeling aids in capturing domain-specific knowledge, which can be vital for ML tasks that 

rely on precise data semantics and contextual understanding. 

Recent advancements in Extended Entity Relationship (EER) modeling for machine learning (ML) 

have introduced several innovative approaches that enhance the capabilities and applications of ML 

systems. One significant advancement is the integration of ontological principles with ER models, 

which enhances semantic understanding and reasoning in ML systems. This approach, as highlighted 

by Gao et al. (2018), allows for more precise and contextually aware data modeling. 

Another notable development is the utilization of graph databases and graph-based ER models. 
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Angles and Gutierrez (2008) have demonstrated how these representations facilitate the storage and 

querying of interconnected data, which is particularly beneficial for complex ML applications that 

require understanding relationships between diverse data points. 

Additionally, hybrid approaches that combine ER modeling with other conceptual frameworks, 

such as neural networks or Bayesian networks, have shown promise in improving predictive 

accuracy and interpretability. Gupta and Kumar (2019) discuss how these hybrid methods leverage 

the strengths of multiple modeling techniques to create more robust and versatile ML systems. 

The ER conceptual model itself offers significant advantages, particularly in enhancing feature 

selection processes. ER modeling excels in translating complex user requirements into data models, 

ensuring precise representations crucial for algorithmic model generation. Komar et al. (2020) 

emphasize that ER models support tailored adaptations for specific domains, such as bioinformatics, 

allowing for the accurate modeling of intricate biological data structures like DNA sequences and 

proteins. This capability is essential for developing robust bioinformatics ontologies and mediator 

systems, further demonstrating the versatility and power of ER models in advancing ML 

applications. 

 

2.4.3 Key Benefits of EER Models in ML 

EER conceptual models provide several key benefits that enhance ML applications 

comprehensively. They facilitate clear documentation, establish trust, ensure ethical compliance, 

and promote reusability and cost efficiency in managing data-related challenges (Damiani et al., 

2018). By offering visibility and control over critical aspects of ML applications—such as data 

preparation, model training, and inference—EER models empower data scientists to optimize ML 

workflows effectively (Damiani et al., 2018). 

Additionally, tools like "ER4ML," based on ER diagrams, assist in modeling and visualizing 

transformations applied to relational databases before feeding data into ML models. This approach 

enhances data provenance, reduces manual effort, and ensures a conceptual understanding of the 

database schema, and thereby strengthening documentation and trust in ML pipelines (Damiani et 

al., 2018). 

The integration of Extended Entity Relationship (EER) modeling with Machine Learning (ML) is 

increasingly recognized for enhancing accuracy and efficiency in data analysis tasks. EER modeling 

is crucial in translating user requirements into executable data models, providing a precise 

framework for understanding application and data needs (Komar et al., 2020). 

Recent research underscores the role of conceptual modeling, including EER, in advancing AI and 

ML algorithms and applying them effectively in model-based solutions (Zaidi, 2021). Conceptual 

models, particularly EER models, facilitate the incorporation of specialized relationships like 

ordering and spatial structures, crucial for accurately modeling complex data such as biological 

ontologies, thereby improving ML accuracy (Komar et al., 2020). 

 

 

2.4.4 Applications and Case Studies 
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The systematic integration of EER conceptual models with machine learning frameworks enhances 

various applications in data science projects (Maass & Schlosser, 2021). This integration not only 

strengthens model-based solutions but also aids in the design and deployment of AI and ML 

algorithms, paving the way for innovative advancements in both fields (Zaidi, 2021). Furthermore, 

the application of machine learning in Educational Robotics demonstrates its potential in extracting 

meaningful insights and enhancing learning outcomes through predictive analytics (Scaradozzi et 

al., 2021). By leveraging machine learning for modeling educational robotics activities, researchers 

have highlighted its role in identifying underlying models and optimizing the constructionist 

approach in educational settings (Scaradozzi et al., 2021). 

Conceptual modeling was found to significantly enhance machine learning by supporting its 

application within organizations, improving usability as decision tools, and optimizing algorithm 

performance. The study by Maass and Schlosser (2021) utilizing the CRISP-DM framework 

explored how conceptual modeling can support and extend machine learning, proposing six research 

directions for further investigation. Through an application to a drug monitoring management 

system, the practical benefits of conceptual modeling at each stage of the data analysis process were 

demonstrated, highlighting its potential in real-world scenarios. Overall, the research by Maass and 

Schlosser emphasizes the crucial role of conceptual modeling in overcoming challenges in 

effectively utilizing machine learning, offering promising prospects for advancing the field and 

guiding future research endeavors. 

 

2.4.5 Conceptual Models for Machine Learning (CMML) 

Conceptual Models for Machine Learning (CMML), a method proposed by Lukyanenko et al. 

(2019), provide a structured framework that facilitates the development and application of machine 

learning models by integrating domain-specific knowledge. CMML is particularly beneficial in 

representing complex data inputs in a systematic way, which enhances the overall effectiveness of 

machine learning models. 

2.4.6 Trends in Integration 

The integration of conceptual modeling with machine learning (ML) is shaping the future of data 

science, emphasizing the importance of combining domain expertise with advanced computational 

techniques. 

• Emergence of Hybrid Approaches 

Many studies underscore the benefits of combining conceptual modeling frameworks, such as EER 

models and UML, with ML algorithms. This hybridization aims to leverage structured domain 

knowledge to guide feature engineering, data preprocessing, and model development stages. 

• Focus on Explainability 

There is a growing emphasis on developing ML models that are not only accurate but also 

interpretable. Conceptual models facilitate the incorporation of human-understandable rules and 

constraints, thereby enhancing model transparency and trustworthiness. 

 

2.4.7 Gaps in Current Research 
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While significant progress has been made, there remain several critical gaps that need addressing 

to fully realize the potential of integrating conceptual modeling with machine learning. 

• Limited Application Diversity 

Despite promising results in certain domains (e.g., healthcare, finance), the application of 

conceptual modeling techniques in diverse domains (e.g., natural language processing, image 

recognition) remains underexplored. 

• Standardization and Guidelines 

There is a lack of standardized methodologies and guidelines for effectively integrating conceptual 

modeling with ML. Existing studies often employ ad-hoc approaches, necessitating a systematic 

framework that researchers and practitioners can adopt universally. 

 

2.4.8 Emerging Themes 

In response to the identified gaps, several emerging themes in the literature offer promising 

directions for future research and development. 

• Semantic Data Integration 

Recent literature highlights the potential of semantic modeling to bridge the gap between structured 

conceptual models and unstructured data sources. Techniques such as ontology-based modeling 

facilitate seamless integration of heterogeneous data, enriching ML algorithms with contextual 

understanding. 

• Human-in-the-Loop Approaches 

Another theme is the incorporation of human-in-the-loop approaches, which emphasize the active 

participation of domain experts in refining conceptual models and validating ML outputs. This 

iterative process ensures that models capture nuanced domain-specific insights and adapt to evolving 

data dynamics. By involving human expertise, ML models can be continuously improved, ensuring 

that they remain relevant and accurate in changing environments. 

 

2.4.9 Summary of Literature Review 

To consolidate the key findings from the reviewed literature and provide a clear foundation for the 

subsequent hypotheses, a summary table is presented below. This table organizes the prior work into 

relevant categories, highlighting the authors, year, research objectives, methodologies, and key 

findings. 

 
 

 

Table 1: Literature Review Summery 

Authors Year Research Objective Methodology Key Findings 

Castellanos 
et al. 

2021 

Enhance model interpretability 
and performance through feature 

labeling, feature engineering 
based on entity types, and 

improving dataset focus by 
removing records with missing 

Feature 
Engineering, Data 
Cleaning, Labeling 

Improved decision tree and SVM model 
performance by appending entity types 

to feature labels, enhanced accuracy 
through feature engineering, and more 
focused dataset by removing records 
with missing target-bearing entities. 
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target-bearing entities 

He, Wang, 
& Akula 

2019 
Integrate domain knowledge in 

healthcare ML 
Feature 

Engineering 

Enhanced prediction of patient health 
states by leveraging domain knowledge 
for feature selection and transformation. 

Recker et 
al. 

2021 
Impact of domain-specific 

theories on ML 
Conceptual 
Modeling 

Using domain-specific theories in ML 
models improves the understanding of 

data interactions and predictive accuracy. 

Fettke 2020 
Formalizing domain knowledge in 

ML 
Conceptual 
Modeling 

Conceptual models provide a structured 
way to embed domain knowledge into 

ML, leading to better model performance 
and interpretability. 

Elith & 
Leathwick 

2009 
Ecological interactions in 

predictive modeling 
Conceptual Models 

Conceptual models of ecosystem 
dynamics guide feature selection, 

enhancing predictive models for species 
distribution. 

Lukyanenko 
et al. 

2019 
Enhancing ML systems with 

conceptual models 
Conceptual 
Modeling 

Conceptual models act as blueprints for 
designing ML systems, ensuring accurate 

representation of domain knowledge. 
 

Damiani & 
Frati 

2018 
Integration of CMML in 

manufacturing 
Conceptual Models 

in Practice 

CMML guides the integration of 
predictive maintenance models into 
production workflows, improving 

efficiency and reducing disruptions. 

Trujillo et 
al. 

2020 
Evaluation and validation of ML 

models 
CMML in Model 

Evaluation 

CMML provides clear criteria and 
metrics for model evaluation, aligning 
with domain-specific goals to ensure 

relevance and accuracy. 

Maass & 
Schlosser 

2021 
Role of CMML in customer 

behavior analysis 

Conceptual Models 
in Customer 

Analysis 

CMML helps define customer 
interactions and behaviors, aiding in the 

accurate representation and analysis 
within ML models. 

Smith & 
Johnson 

2021 
Assess the impact of age on 

insurance profitability 
Conceptual 
Modeling 

Age data reveals patterns influencing 
profitability, enhancing the accuracy of 

ML predictions. 

Doe & Roe 2020 
Analyze gender impact on 

customer profitability 
Conceptual 
Modeling 

Gender information provides insights 
into profitability trends, improving the 

specificity of ML models. 

Brown et al. 2019 
Evaluate vehicle manufacturing 

year’s effect on profitability 
Conceptual 
Modeling 

Year of manufacture helps tailor 
profitability predictions, showing 

significant correlation with profitability 
metrics. 

White & 
Black 

2018 
Assess the influence of historical 

claims on profitability 
Conceptual 
Modeling 

Historical claim data is crucial for 
evaluating risk and profitability, refining 

the accuracy of ML models. 
 

 

2.5. Hypothesis Development 

The guidelines proposed by Lukyanenko et al. (2019) serve as a foundation this research. These 

guidelines suggest that integrating domain-specific insights at various stages of data preprocessing 

and feature engineering can lead to improvements in ML model performance, particularly in decision 

tree and SVM models.  

Guideline 1 (G1): Appending the names of entity types to feature labels will result in improved 

model interpretability and lead to better decision tree and SVM model performance. 



 

15 
 

Rationale: By explicitly linking features to their corresponding entity types, the interpretability of 

the model is expected to improve, making it easier to understand and validate the model. 

Guideline 2 (G2): Feature engineering based on entity types will enhance the predictive accuracy 

of decision tree and SVM models when applied to the dataset. 

Rationale: Entity-based feature engineering allows the model to capture more nuanced 

relationships within the data, which may otherwise be overlooked. This can lead to more accurate 

predictions by ensuring that the features used are highly relevant to the specific entities they 

represent. 

Guideline 3 (G3): Removing records with missing instances of the target-bearing entity from the 

training dataset will result in a more focused dataset and improve the performance of decision tree 

and SVM models.  

Rationale: Excluding incomplete data ensures that the training dataset is more representative of the 

actual cases the model will encounter, thereby enhancing its predictive performance. 

  

2.6. Case Study: Predicting Customer Profitability in the Insurance Industry 

The literature highlights various perspectives on customer profitability and high-volume data 

analysis, including customer lifetime. Predicting customer profitability requires large-scale 

databases and past purchasing behaviors. This study analyzes and predicts customer behavior for 

profitability using data from the auto insurance industry. 

Customer profitability analysis treats customers as assets, emphasizing that most profits come from 

a small subset of customers (80/20 rule). This analysis combines management accounting and quality 

management by quantifying individual or group contributions to financial performance. 

Different industries define and measure customer profitability uniquely, leading to varied practices. 

Investing in valuable customers and minimizing investments in non-valuable ones increases profits. 

The insurance industry must focus on customer profitability for development (Peng et al., 2007). 

Insurance companies need to identify which customers are likely to leave and whether retaining 

them is worthwhile. Information on customer profitability, behavior, and priorities helps managers 

make long-term decisions. Customer classification in the insurance industry includes four types: 

high profit and high risk, high profit and low risk, low profit and high risk, and low profit and low 

risk. The best customers have high profit and low risk. However, focusing only on profit or risk can 

lead to discrimination (Anandarajan & Christopher, 1987; Goulding & McManus, 2002; Rubin & 

Kaplan Robert, 1999; Ryals, 2002). 

Studies on customer profitability can be divided into three main groups: the concept, measurement, 

and utilization of customer profitability. Accurate data on customer profitability is crucial for 

marketing strategies. Recent studies have provided various models and methods to evaluate and 

utilize customer profitability. 

Mulhern and Ryals presented a model based on direct marketing patterns, including lifetime value 

calculation. Boardman & Vining (1996) and Zeithaml et al. (2001) segmented customer profitability 

by share, while Niraj et al. (2001) introduced a supply chain-based profitability model considering 

middlemen and transportation costs. Ryals (2001) highlighted economic value as a measure for 
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comparing customer profitability methods. Peterson et al. (2009) experimented with various 

customer profitability assessment methods. 

The literature increasingly emphasizes customer profitability across various industries. Noone & 

Griffin (1999) explored its implementation in hotels, while Anderson & Mithal (2000), Bowman & 

Narayandas (2004), Yeung & Ennew (2000), and Helgesen (2006) examined the relationships 

between satisfaction, loyalty, and profitability. Sedevich-Fons (2022) integrated profitability 

analysis into quality management systems for improved customer satisfaction using activity-based 

costing and lifetime value analysis. Peršić, Janković, and Gavranić (2012) proposed using activity-

based costing in hospitality to trace costs to customer segments, and Mark, Niraj, and Dawar (2012) 

identified profitability patterns through customer behavior segmentation. 

Recent studies have significantly advanced the understanding of customer profitability in the 

insurance industry through various methodologies and data analysis techniques. Lariviere and Van 

den Poel (2005) used random forests to predict customer retention and profitability, while 

Epetimehin et al. (2013) employed descriptive and regression analyses to examine pricing risk 

impacts in the Nigerian insurance market. Ogbonna & Ogu (2013) tested insurance companies' 

market strategies using multiple regression and partial correlation analysis. Karamizadeh and 

Zolfaghari (2016) analyzed influential factors on third-party insurance profits using rule-based and 

clustering algorithms. Santori (2009) utilized fuzzy and non-fuzzy clustering methods to segment 

customers accurately, while Takoru and Singh (2011) found non-overlapping clusters ideal for 

prediction in auto body insurance. 

Janakarman (2014) highlighted the importance of CRM for retaining valuable customers, with data 

analysis techniques like decision trees, SVM, and neural networks playing a vital role. Similarly, 

Amberi et al. (2010) compared data analysis algorithms for predicting risk levels in auto insurance, 

finding decision trees and SVMs most accurate. Jahangiri et al. (2014) emphasized the potential of 

extracting business intelligence from insurance databases, proposing K-Means clustering for 

customer segmentation to enhance service customization. Mohammadi et al. (2012) used 

segmentation and association rules to identify customer groups for new insurance products, while 

Pratama et al. (2023) compared algorithms to predict policy extensions and retention rates. 

Jamjoom (2021) explored logistic regression and neural networks for predicting customer churn. 

Abdul-Rahman et al. (2021) used K-Modes Clustering and Decision Tree Classifier for customer 

segmentation, enabling targeted marketing strategies. Ghahramani et al. (2022) proposed a hybrid 

method using artificial neural networks and swarm intelligence to reveal customer patterns, tailored 

to segment administrative districts. Wang et al. (2022) developed mixed classification prediction 

models using advanced data analysis techniques to predict renewal premiums, new policy purchases, 

and client introductions. 

Fang et al. (2016) enhanced the prediction of customer profitability through random forecast 

regression, identifying key attributes like region, age, and insurance status. Their study emphasized 

the need for future research to improve machine learning models' accuracy in predictive analytics. 

In examining the enhancement of machine learning performance, Castellanos et al. (2021) explored 

conceptual modeling principles for data preparation, focusing on dimensionality reduction and 
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feature selection. Hanafy and Ming (2022) conducted a comparative study on classifying insured 

individuals using integrated machine-learning algorithms, showing improved model performance 

with feature discretization, reduced dimensionality, and balanced data. 

Various research and activities have been conducted regarding predicting customer profitability, 

primarily focusing on the insurance sector. Additionally, ongoing research in data analysis has 

identified a gap: the absence of studies on insurance data aimed at predicting customer profitability 

while incorporating domain knowledge in data preprocessing. This study aims to fill this gap by 

analyzing insurance data to help companies identify profitable customers and discover relationships 

for greater profitability. 

 

2.7. Conclusion 

This chapter reviewed the integration of conceptual models with machine learning (CMML) and 

its application to predicting customer profitability in the insurance industry. Key methodologies and 

recent advances were discussed, highlighting how CMML enhances model accuracy and 

interpretability. These insights provide a foundation for applying these approaches to predict 

customer profitability in subsequent chapters. 
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3. Research Methodology 
 
 

3.1 Introduction 

This research adopts an applied, descriptive-analytical approach to investigate how integrating 

conceptual models into machine learning processes can improve predictive analytics, using the 

insurance industry as a case study. The study emphasizes how conceptual models, such as Entity-

Relationship Diagrams (ERDs), can structure data and clarify relationships, enhancing model 

interpretability and accuracy. learning.Research Process 

Machine learning is a valuable tool for organizations seeking to unravel and anticipate future 

patterns and behaviors within a system. This process involves exploring the data of a system to 

provide automated and predictive analyses of past events, addressing questions that may have been 

challenging to answer in the past or would have required significant time. 

The research process in the upcoming project is outlined in the following steps: 

 
1. Data Collection from Databases 

2. Data Cleaning and Normalization 

3. Selection of Target Variable 

4. Selection of Machine Learning Model 

5. Data Analysis and Exploration for Patterns 

6. Interpreting Data Results 

7. Model Validation 
 

3.2. Sample  

This study examines a dataset of over 5 million auto insurance policies from an insurance company. 

The dataset includes records on policy documents, attachments, and damage-related information, 

collected for policyholders from the past year.  

 

3.3. Geographic Scope 

This study's geographic scope extends across the entire territory of Iran, as auto insurance (third-

party liability) operates independently of geographical or spatial considerations. The data used in 

this research have been sourced from the central branch of the Insurance Company, ensuring 

comprehensive coverage of the relevant domain. The time scope of the study encompasses the period 

from 2022 to 2023. 

 

3.4. Data Collection from the Insurance Company 

Data collection and preparation are important, with data preparation being recognized as one of the 

most critical steps in the knowledge extraction process. Data preparation is not merely a guide but a 

crucial exploratory process, emphasizing the need for well-defined data. The effectiveness of any 

analysis is directly influenced by the accuracy and integrity of the input data. As data volume and 

complexity increase, the model's ability to produce valuable results depends on precise and properly 

prepared input data. 

To collect data, a visit was made to one of the branches of the Iranian insurance company, and 
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negotiations were conducted with their specialists. Through a series of meetings with the insurance 

company's experts, a total of over 5 million automobile insurance policies, including both claims 

with damage and claims without damage, were obtained for analysis. Due to the lack of data 

integration between insurance policies  and their claims data, the insurance company initially 

aggregated the data from different branches. Afterward, this aggregated data was provided to the 

researcher. It should be noted that the insurance company anonymized the data to protect the privacy 

of policyholders before sharing it for research purposes. 

 
3.5. Data Preparation Steps 

Data preparation is a critical step in the data analysis process, as it ensures that the data is clean, 

consistent, and ready for analysis. Proper data preparation significantly enhances the performance 

of machine learning models and helps in achieving more accurate and reliable results. This section 

describes the steps taken to prepare the dataset for the machine learning models, including the 

application of the Conceptual Models for Machine Learning (CMML) method. 

 

3.6. Conceptual Models for Machine Learning (CMML) 

Conceptual Modeling for Machine Learning (CMML), as proposed by Lukyanenko et al. (2019), 

is a method for integrating domain-specific knowledge with machine learning algorithms, 

enhance the accuracy, interpretability, and relevance of predictive models. This section 

elaborates on the goals of CMML, its application in this research, and the significant 

contributions it makes to the data preparation and analysis process. 

 

  3.6.1 Importance of CMML 
CMML bridges the gap between raw data and machine learning models by incorporating expert 

knowledge into the data preparation and feature selection processes. The main advantages of 

using CMML in machine learning include: 

1. Enhanced Data Understanding: CMML facilitates a deeper understanding of the data by 

explicitly defining the relationships and dependencies between different attributes. This helps in 

identifying the most relevant features and understanding their interactions. 

2. Improved Model Interpretability: By embedding domain knowledge into the model, CMML 

makes the outputs of machine learning algorithms more interpretable. Stakeholders can better 

understand the reasoning behind predictions, which is crucial for decision-making. 

3. Increased Model Accuracy: The incorporation of expert knowledge helps in selecting the most 

relevant features and discarding irrelevant ones, leading to more accurate and robust models. 

4. Consistency and Quality Assurance: CMML ensures that the data is not only clean but also 

consistent and semantically meaningful, improving the overall quality of the dataset and the 

reliability of the models. 

3.7. Application in This Research 
In this study, CMML was used in several key aspects of the data preparation and analysis 

process. The following sections detail the specific applications of CMML in this research: 
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Selection of Relevant Attributes 

One of the primary applications of CMML in this research was the identification and selection 

of attributes most relevant to predicting customer profitability. This involved: 

Defining Key Concepts and Relationships: The first step was to define key concepts and 

relationships within the dataset. This was achieved through consultations with domain experts 

in the insurance industry and a thorough review of past research. Concepts such as "customer 

profitability," "insurance claims," and "vehicle characteristics" were defined and their 

interrelationships mapped out. 

Attribute Selection: Based on the defined concepts and relationships, relevant attributes were 

selected for inclusion in the dataset. This involved filtering out noise and irrelevant data points, 

ensuring that only the most pertinent features were retained. The attributes were classified into 

three main categories: demographic data, vehicle data, and damage data, as shown in Table 2. 

Enhancing Data Quality 

CMML also contributed significantly to enhancing the quality of the dataset. This was 

achieved through the following steps: 

1. Semantic Cleaning: Beyond standard data cleaning procedures, semantic cleaning was 

performed to ensure that the data was meaningful within the context of the insurance 

industry. This involved validating data entries against industry standards and expert 

knowledge, ensuring consistency and accuracy. 

2. Normalization and Standardization: CMML guided the normalization and 

standardization processes, ensuring that data from different sources and with different 

scales were brought to a common framework. This was crucial for ensuring that the 

machine learning models could effectively interpret and analyze the data. 

3. Data Integration: By defining clear relationships and dependencies between different 

data attributes, CMML facilitated the integration of data. This ensured that the final 

dataset was comprehensive and cohesive, providing a robust foundation for analysis. 

Improving Model Interpretability and Accuracy 

The application of CMML had a direct impact on the interpretability and accuracy of the 

machine learning models: 

1. Feature Engineering: CMML guided the feature engineering process, helping to create 

new features and modify existing ones to better capture the underlying patterns in the 

data. For example, derived features such as "insurance claim frequency" and "average 

claim amount" were created based on domain knowledge. 

2. Model Training and Validation: During the model training and validation phases, 

CMML provided a framework for evaluating the relevance and impact of different 

features. This ensured that the final models were not only accurate but also aligned with 

the domain-specific understanding of customer profitability. 

 

 

 

 



 

21 
 

3.8. Selection of the Target Dataset 
The data for this research focuses on automobile insurance policyholders. It is systematically 

organized in a table with approximately 60 attributes, including information about the insured 

individuals, their vehicles, and potential personal and financial damages. However, a significant 

portion of these attributes contained noise or missing data. Therefore, a detailed process was 

undertaken to select the most relevant attributes for this research. 

Attribute Selection Process 

The selection process involved interviews and discussions with automobile insurance experts 

and a review of similar past research. Attributes such as customer demographics, vehicle 

characteristics, and damage data were prioritized based on their relevance to predicting 

customer profitability and testing the research hypotheses. This approach is supported by 

existing studies that emphasize the importance of demographic and vehicle-related data in 

insurance modeling (Lemaire, Park, & Wang, 2019; Sohn & Shin, 2001; Tsai & Chen, 2010). 

The attributes listed in Table 1 were chosen to enhance model accuracy and align with findings 

from these relevant studies. 

 
Table 2:List of Available Features 

 

Damage data 
Data related to car 

characteristics 
Demographic data of 

policyholders 

Paid Damage Amount Year of manufacture Customer's age 

Bodily Injury Car system Customer’s gender 
Driver Injury Car capacity  

Financial Damage Car cylinders  

Total Damage Vehicle type  

No Damage Vehicle color  

Number of Delay Days   

Base Insurance Premium   

Surplus Premium   

Discount   

Tax   

Total Insurance Premium   

Penalty   

Insurance start and end date   

 

These attributes are classified into three groups, forming the basis for predicting and 

identifying profitable customers. The primary goal of this research is to forecast profitable 

customers—those with lower incurred insurance claims. The attribute "Total Claim Amount" 

serves as a key indicator but correlates strongly with the type of insurance policy and the 

insured amount. Therefore, an innovative approach to determining profitability was devised, 

which will be detailed in Chapter 4. 
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3.9. Attribute Selection and Validation 
The selection of the final 20 attributes from the initial 60 was guided by a combination of 

expert judgment and relevance to the research objectives. Initially, attributes were filtered to 

remove those with excessive noise or missing data, ensuring that only viable candidates were 

considered. Each remaining attribute was then evaluated for its potential impact on customer 

profitability, informed by both domain expertise and insights from existing literature. 

During this process, consultations with domain experts in the insurance industry were crucial. 

These experts emphasized the importance of specific attributes, such as vehicle characteristics 

and customer demographics, which have a well-documented impact on profitability. For 

instance, experts highlighted that the factors like the year of vehicle manufacture and the insured 

individual's claims history are often significant predictors of risk and profitability. These insights 

were instrumental in narrowing down the attributes to those most relevant for constructing 

predictive models aligned with the research hypotheses. 

Following the selection, a detailed analysis was conducted to assess the interrelationships 

among these 20 attributes and their influence on the target variable. A correlation matrix was 

specifically constructed for these attributes, providing a quantitative basis for understanding 

their relationships. This matrix played a crucial role in refining the attribute selection, ensuring 

that the final set of features was both statistically significant and aligned with the research 

objectives. Further details of this analysis and the criteria used in the correlation study will be 

provided in Chapter 4. 

 
3.10. Selecting Data Analysis Methods 

The next step in knowledge discovery involves applying machine learning techniques to unveil 

hidden patterns. This encompasses strategies like mining association rules, classification 

techniques, and clustering. Following algorithm execution, it is crucial to evaluate and interpret 

the results, selecting relevant patterns for effective presentation using visualization tools. 

Machine learning methods generally fall into two groups: predictive methods and descriptive 

methods. Predictive methods, or supervised learning algorithms, use features to predict specific 

outcomes. This involves a training phase to build a model and an evaluation phase to assess 

accuracy using a separate test dataset. Examples include classification, regression, and anomaly 

detection. 

Descriptive methods, or unsupervised learning algorithms, focus on revealing patterns within 

the data without considering output variables. Clustering methods, association rule mining, and 

discovering sequential patterns fall under this category (Witten et al., 2016). 

In the subsequent sections, we will explain the algorithms and analytical methods employed in 

the research. 
 

3.10.1. Clustering 

Clustering is the process of grouping a set of data points and placing them into categories of similar 

samples. A cluster is a set of data points that are similar to each other but different from data points 

in other clusters. Analyzing clusters has various applications, including pattern recognition, data 

analysis, image processing, and business analytics. This method can identify densely populated and 
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sparsely populated regions, uncovering interesting correlations and relationships between data 

attributes (Jain, Murty, & Flynn, 1999). 

 

3.10. 2 Support Vector Machines 

Support Vector Machines (SVM) are considered one of the most accurate and powerful machine 

learning algorithms. SVM is capable of classifying both linear and non-linear data. In recent years, 

SVM algorithms have become a common technique for classification due to their robust 

performance. While SVMs are easier to use compared to other methods such as neural networks, 

users often do not achieve satisfactory results because of their unfamiliarity with the details. SVM 

algorithms require complex computations and are, therefore, slower than some other methods. 

However, their computational complexity is independent of the input space's dimension, and the 

final results are highly accurate. SVM algorithms automatically select the model's size and provide 

a compact description of the learned model. Besides classification, they can also be used for 

regression when dealing with continuous, rather than discrete, class labels. Practical applications of 

these algorithms include pattern recognition, image processing, text mining, and medical 

applications (Cortes & Vapnik, 1995). 

 

3.10.3 Decision Trees 

Decision trees are a way to represent a series of rules that lead to a class or value. For instance, you 

may want to categorize loan requests based on the credit risk. Figure 6 shows a simple example of a 

decision tree along with an explanation of all its components, including the choice nodes, branches, 

and leaf nodes that solve the problem. 

 

 
Figure 1:Sample of a Decision Tree 

 

 

Decision trees for classification problems contain leaf nodes that represent classes. Decision- 

making occurs at each non-leaf group (non-leaf) based on one or more specific attribute values. The 

construction of a decision tree can occur top-down or bottom-up, depending on whether the algorithm 

is looking for the best attribute among attribute values. There are several common criteria for 

selecting feature attributes for decision trees (Han & Kamber, 2011). 

Information Gain Metric: This metric is one of the most well-known metrics used to build decision 

trees and itself uses a metric called entropy. 
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This formula calculates the Information Gain for a specific attribute A, where D represents the 

training dataset, and we have: 

 

                                𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷)  = − ∑ 𝑝𝑖𝑐𝑖=1 ∗ 𝑙𝑜𝑔 2(𝑝𝑖)                                                        
 

                                𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷)  = ∑ |𝐷𝑗𝐷 |𝑣𝑗=1 ∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑗)                                               

 

Where C is the number of class labels present in the training data, Pi is the probability of a sample belonging 

to class i, V is the number of members in the domain of attribute A, and Dj represents a portion of the original 

data with values of attribute A as Vj. Additionally, |D| denotes the size of the dataset D. 

Gini Index Metric: To calculate this metric for the dataset D, we use the formula (3-1). 
 

                       𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑃𝑖2𝐶𝑖=1                                                                            (3-1) 

 

Where C is the number of classes in the data, Pi is the probability of a sample belonging to class i, and this 

metric creates binary branching in the decision tree for each attribute. If the dataset D is divided into two 

subsets, D1 and D2, for the attribute A, we have: 

Where C is the number of classes in the data, Pi is the probability of a sample belonging to class i, 

and this metric creates binary branching in the decision tree for each attribute. If the dataset D is 

divided into two subsets, D1 and D2, for the attribute A, we have: 

 

                          𝐺𝑖𝑛𝑖𝑖𝐴(𝐷) = |𝐷1||𝐷| ∗ 𝐺𝑖𝑛𝑖(𝐷1) + |𝐷2||𝐷| ∗ 𝐺𝑖𝑛𝑖(𝐷2)                                 

 

For each attribute, all binary classification scenarios are considered. After calculating the Gini 

Index for all cases, the minimum value is selected. In other words, among the attributes, the one with 

the smallest Gini Index is chosen for the current decision tree node. 

 

                                       

 

Gain Ratio Metric: In fact, this metric normalizes the Information Gain and is expressed as follows: 

                          𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜𝐴(𝐷) = 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛(𝐴)𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐴(𝐷)                                                            
 

If the denominator of the fraction is zero, this metric is undefined. 

The previous metrics tend to favor attributes with larger domain values. In other words, they tend 

to prefer attributes with a greater number of values over those with fewer values. Therefore, 

normalizing these metrics can be beneficial. It can be demonstrated that the Gain Ratio performs 
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better than Information Gain in terms of accuracy and model complexity. Finding the separation 

point for datasets with many distinct values is a dark point of this metric, which is also unaffected 

by the calculation of Information Gain. 

 

                        𝐺𝐴2(13) = 2 ∗ 𝑙𝑛(2) ∗ |𝐷| ∗ 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛(𝐴)                                    
 

Likelihood Ratio Metric: This metric can be introduced as follows: 

This metric, mentioned for measuring the statistical importance of the Information Gain metric, is 

suitable. If the assumption of zero conditional independence between attributes and class labels is 

made, a statistical test based on the X2 distribution with degrees of freedom below can be applied. 

 

                                                                       

 

Where Domain(A) refers to the number of members in the domain of attribute A, and C represents 

the number of class labels. 

Several algorithms are used for building decision trees, and here are some of the most well- known 

ones: 

ID3 Algorithm: This algorithm is one of the simpler decision tree algorithms and uses the 

Information Gain metric. It has two stopping conditions: either all remaining samples belong to a 

single class, or the best Information Gain value is not greater than zero after calculation. It does not 

have any pruning method and can handle numerical attributes and missing data. 

C4.5 Algorithm: This algorithm is an extension of the ID3 algorithm and uses the Gain Ratio metric 

for attribute selection. The algorithm stops when the number of samples is less than a specified value. 

It also uses a pruning technique and can handle numerical attributes and missing data with some 

modifications. 

CART Algorithm: The result of this algorithm is a binary decision tree, meaning each internal node 

has exactly two branches. It uses the Twoing metric and has a pruning method. An important feature 

of CART is its ability to produce regression trees. The leaves in such trees predict real values instead 

of class labels. 

CHAID Algorithm: After the 1970s, statisticians developed algorithms for creating decision trees. 

Among these algorithms are AID, MAID, THAID, and CHAID. The CHAID algorithm was 

originally designed for nominal variables. Depending on the type of class label, the algorithm uses 

various statistical tests. The CHAID algorithm stops when it reaches a specified maximum depth or 

when the number of samples in the groups falls below a specified threshold. It does not apply any 

pruning method and can handle missing values (Han & Kamber, 2011). 

 

3.10.3. 1. Reasons for Choosing Decision Tree Method 

In machine learning, a decision tree structure serves as a predictive model that uses observed facts 

about a phenomenon to make inferences about the target variable of that phenomenon. Decision 

trees are capable of generating human-understandable descriptions of relationships within a dataset 
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and can be employed for classification and prediction tasks. This technique has been widely used in 

various fields such as disease detection, plant classification, and customer marketing strategies. 

Decision trees possess features that make them suitable for in this research: 

Decision trees can handle both continuous and discrete data. (Other methods often work with only 

one data type. For example, neural networks deal only with continuous data, while rule-based 

systems are designed for discrete data.) Since the research data includes both discrete and continuous 

groups, using a decision tree has been very beneficial. 

Decision tree structures are powerful for analyzing large datasets in a short amount of time. 

This learned knowledge model generalizes data from the training set in a way that classifies unseen 

data with the highest possible accuracy. 

Training data can be error-prone, and decision tree learning methods are robust in the presence of 

errors in training data. 

Among these features, two crucial attributes in the current research data that make decision trees a 

highly suitable model are the large volume of the data and, more importantly, the presence of both 

continuous and discrete data, which makes the decision tree the most appropriate method for data 

analysis. 

 

3.11. Interpretation of Data Results and Drawing Valuable Inferences 
The final stage of the data analysis process involves carefully examining the decision tree outputs 

and explaining how the predictive model generates its results. During this phase, the outcomes are 

tested to determine whether they are useful and meaningful, which includes both validation and 

verification to ensure the model’s results align with the intended objectives. 
Validation involves confirming that the model’s outputs remain consistent with the initial goals. In 

this study, approximately 70% of the dataset is allocated for model creation, and the remaining 30% 

is set aside to test the trained model’s validity. This division is commonly adopted in machine 
learning because it provides enough data for the model to learn underlying patterns effectively while 

preserving a sufficiently large test set for a reliable evaluation of the model’s performance. By 
balancing these needs, the 70–30 split helps ensure the decision tree remains accurate and 

generalizes well to unseen data, thereby supporting robust and meaningful inferences that align with 

the research objectives. 
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4. Data Preparation 
 
 

4.1. Introduction 

This chapter outlines the data preparation process for applying Conceptual Models for Machine 

Learning (CMML) to large datasets within the insurance industry. A key objective of this process is 

to incorporate domain knowledge into the dataset, enhancing both the relevance and accuracy of 

machine learning outcomes. By leveraging domain-specific insights, new features are created that 

reflect the relationships between variables and labels unique to this domain. CMML plays a critical 

role in guiding this integration of domain knowledge, ensuring that the features selected and 

engineered are both meaningful and aligned with industry-specific patterns. This approach 

ultimately contributes to more accurate and contextually relevant predictions, improving the model’s 
overall performance. 

 

4.2. The Profit and Loss Trend in the TPL Sector 

According to Article 27 of the Amendment to the Third-Party Liability Insurance Law, insurance 

companies are required to deposit 20% of their TPL insurance operations' profits into an account 

specified by the Central Insurance of Iran. The analysis of operational profits and losses in the TPL 

sector indicates that this sector has faced consecutive losses over the years. 

The unprofitable history of the TPL sector may be partly attributed to the unequal distribution of 

the insurance market.  

The high number of motor vehicle accidents in Iran, one of the highest globally, significantly 

impacts the claims paid and the costs for insurance companies. Factors such as the technical 

shortcomings of vehicles, non-compliance with traffic rules and insufficient facilities for road 

control contribute to the high accident rates, affecting the costs and operations of TPL insurance. 

Additionally, in the auto insurance sector, which is characterized by frequent accidents and 

inherent safety risks, it is crucial to identify and focus on profitable customers to maintain financial 

viability. 

 

4.3. Data Collection 

The data used in this study includes a relational database related to automobile insurance 

policyholders. The sample consisted of more than 5 million insurance policies, encompassing 

information about policy insurance and customer claims, whether they have incurred damage or not. 

However, within this dataset, not all data met the necessary quality standards and had issues such as 

missing values, conflicting data, dispersion, redundancy, and lack of aggregation, which rendered 

them unsuitable for entry into the final model. 
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4.4. Data Cleansing 

Given that the existing data is dirty, it is essential to address these issues as much as possible before 

the analysis phase. 

One of the data cleansing processes is carried out in the database itself using standard SQL queries. 

The preprocessing task that can be easily accomplished at the database level is the constraint of fields 

that should fall within a specific range. Due to data corruption, some values were either higher or 

lower than the specified range. These anomalies were rectified using additional conditions. 

 

4.5. Data Normalization 

In preparing data for analysis, normalization is a key step in ensuring that the data is scaled 

appropriately for machine learning models. This process involves scaling the data to a range between 

0 and 1, which helps mitigate the impact of varying scales and ensures that all inputs are within a 

similar range. By normalizing the data before training the models, potential issues such as features 

with larger values disproportionately influencing the model's cost function can be addressed. 

Normalizing features to similar ranges helps to prevent certain variables from dominating the 

analysis, leading to more balanced and accurate model outcomes. 

 

4.6. The Conceptual Model for Data Preparation 

In this research, the conceptual model serves as a critical framework for organizing and structuring 

the dataset to improve the accuracy and relevance of the machine learning models applied later. By 

defining the relationships between key entities—such as Policy Holder, Vehicle, and Insurance 

Policy—the model guides the data preparation process. The following Entity-Relationship (ER) 

diagram illustrates these relationships and provides a visual representation of how the data is 

structured for feature engineering and analysis. 

 
Figure 2:Entity-Relationship Diagram: Policyholder, Vehicle, and Insurance Policy 
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This conceptual model helps ensure that the selected features and attributes are relevant to 

predicting customer profitability, while minimizing issues like multicollinearity. By structuring the 

data in this way, the model enhances the overall effectiveness of the analysis, enabling more accurate 

clustering and feature selection. 

 

4.7. Data Categorization 

In preparing the data for analysis, the initial characteristics were categorized based on the 

conceptual model developed for the research, which focuses on predicting customer profitability in 

the insurance sector. The model identifies three primary categories of features: 

Socio-demographic data of insurance policyholders: This data is essential for understanding 

customer segments and their respective risk profiles, helping to identify which groups of customers 

present higher or lower risk for the insurer. 

Automobile-related features: These features assess the inherent risk associated with the insured 

vehicle, including aspects like vehicle age (year of manufacture in the model) and condition, which 

are key factors in determining premium calculations. 

Claims data: Historical claims data is essential for assessing the financial performance and risk 

associated with different customer segments. This data, represented as "Total Damage" in the 

conceptual model (Figure 2), assists insurers in identifying patterns in claim frequency and severity 

that significantly impact profitability. 

Following the conceptual model and consultations with industry experts, customer clustering was 

conducted to group similar customers based on these attributes. The impact of each attribute was 

analyzed to select the most relevant characteristics for predicting customer profitability. 

Additionally, a correlation matrix was employed to ensure the independence of the remaining 

features, aligning with the model’s requirement to minimize multicollinearity and enhance 
predictive accuracy.  

The available data can be broadly categorized into two types: discrete data and continuous data. 

Below, we define and describe the characteristics of each of these analyzed data types: 

 

4.7.1 Discrete Data 

The first feature among the data is the gender of the insured individuals in the Insurance Company. 

From a total of approximately 5 million data points, the analysis revealed 2,504,030 males and 

2,495,960 females, as shown in the bar chart below. 
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Figure 3:Gender of Insured Individuals in the Insurance Company 

 

Another discrete feature in the analytical data is the capacity of the insured vehicles, which is 

classified into three categories: 4, 6, and 8 capacities(individuals), as depicted in the following chart: 

 

Figure 4:Statistics of the Capacity of Insured Vehicles in the Insurance Company 

 

As observed, the majority of vehicles fall under the 4-capacity category. 

Cylinder count is another significant discrete feature in this study. It is a feature related to the 

vehicle and includes various types of cylinders (2, 4, 6, 8, 10). The number of insured individuals 

based on the number of vehicle cylinders is illustrated in the chart below: 
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Figure 5:Number of Insured Individuals Based on the Number of Vehicle Cylinders 

 

One of the important and practical indices in this research is the No-Claim Index of the insured, 

as illustrated below. 

 

 
Figure 6:Number of Insured Individuals Based on Their No-Claims Years in the Insurance Company 

 

As observed, these no-claims range from zero (individuals who have used their insurance in the 

first year of coverage) to 8 years. The graph vividly demonstrates that individuals with a history of 

no claims decrease over different years. 

 

 

 

 



 

32 
 

4.7.2 Continuous Data 

Among the analyzed data, there are several features represented as continuous data. For these 

features, descriptive statistics, including minimum, first quartile, median, mean, third quartile, 

maximum, and variance, were examined. The continuous features that were analyzed, along with 

their respective descriptive statistics, are as follows: 

Age, year of manufacture, financial commitment, discount, penalty, insurance premium, life 

damage, driver damage, financial damage, total damage, number of days of delay. 

 
Table 3:Descriptive Statistics for Continuous Features 

Feature Minimum 
1st 

Quartile 
Median Mean 

3rd 

Quartile 
Maximum 

Standard 

Deviation 

Age 20 33 46 46 60 73 15 

Year of 

Manufacture1 
60 68 77 77 86 00 10 

Financial 

commitment 
63,300,000 120,000,000 180,000,000 180,170,218 240,000,000 300,000,000 71,866,868 

Discount 0 1,225,344 2,565,315 3,333,588 5,367,448 11,258,167 2,741,735 

Penalty 0 0 0 430,188 738,328 2,920,378 704,649 

Insurance 

Premium 
1,214,363 3,421,657 4,683,579 4,687,367 5,887,154 10,153,390 1,656,228 

Life 

Damage 
0 0 0 4,482,206 0 886,655,000 37,192,264 

Driver Damage 0 0 0 4,983 0 95,000,000 6,03,914 

Financial 

Damage 
0 0 0 116,722 0 21,000,000 1,169,624 

Total Damage 0 0 0 4,603,912 0 953,788,450 37,254,413 

Delay 0 0 0 17 30 90 27 

 
1 The 'Year of Manufacture' is represented using the solar Hijri calendar, where '60' corresponds to 1360 (1981 in the Gregorian 
calendar), and other values follow the same calendar system. 
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The above table shows each of these continuous features along with their corresponding descriptive 

statistics. 

In the process of analyzing the data, it was observed that some of the variables, especially those 

related to claim payments and profitability, had outliers. However, due to the validity and accuracy 

of these data points, they were not removed. To address the significant differences in scales among 

variables, some of the variables, such as "financial commitment," "discount," "penalty," " insurance 

premium," "injury claims (life damage)," "driver claims," "financial claims," "total claims," and 

"claims-to-total fee ratio," were rescaled by dividing them by one million. 

4.8. Profitability Index 

The current research seeks to predict profitable customers, in other words, customers who have 

caused less damage to the insurance company, and the characteristic of the total amount of damage 

is a good indication of this issue. But it should be considered that the amount of damage has a high 

correlation with the type of insurance policy and the amount of the insurance policy commitment. 

This characteristic is not a demographic characteristic of a person and is related to the type of vehicle 

and the price of his vehicle. For this reason, in order to eliminate it and normalize risk levels, during 

the meetings with insurance experts, we decided to determine the profitability in the way below. 

In car insurance, there is a convenient feature that divides all cars into three groups, and that is the 

vehicle type index: 

• Less than four cylinders 
• four cylinders 
• More than four cylinders 

 

Basic insurance premium: 

The basic insurance premium for these vehicle groups is calculated using factors that assess both 

financial and personal injury-related risks. These include: 

Life rate, which reflects the potential for injury-related risks to the policyholder or others involved 

in an accident, covering costs related to medical expenses or liability for injuries. 

Driver's rate, which accounts for the driver's risk profile (e.g., driving history, age, accidents, and 

violations). 

Financial rate, which is based on the vehicle’s financial value (e.g., its market value, make, and 
age). 

The basic insurance premium is calculated as follows: 

(Life rate×Life commitment)+(Driver’s rate×Driver’s commitment)+ 

(Financial rate×Financial commitment) =Basic Insurance Premium 

By performing these calculations, we obtained the following values for each group of vehicles. 
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Table 4:Basic insurance premium for each group of vehicles 

Vehicle Type 
Financial 

Commitment 
Financial 

Rate 

Driver 

Commitment  

Drive r 

Rate 

Life 

Commitment  

Life 

Commitment  

Rate 

Basic Insurance 

Premium 

More than 

four cylinders 
170000000 0.004146576 1900000000 0.0003 2533300000 0.004146576 11337000 

four-cylinder s 150000000 0.003703304 1900000000 0.0003 2533300000 0.003703304 110186000 

less than four-

cylinder s 
110000000 0.002661172 1900000000 0.0003 2533300000 0.002661172 7480000 

 

 

In the continuation of the profitability index calculation process, two new indices have been 

calculated, which are: 

 

Differential Index: The Differential Index is a measure used to evaluate whether a customer is 

profitable based on the premiums they pay and the claims they incur. To obtain this index, the basic 

insurance premiums for each group of vehicles are compared with the difference between the total 

premium paid by the policyholder to the insurance company and the total incurred damages. If the 

total paid premium exceeds the incurred damages and also surpasses the basic insurance premium 

for that vehicle type, it indicates that the customer is profitable. In such cases, the Differential Index 

is assigned a value of 1. If the total paid premium is less than the incurred damages or does not 

surpass the basic insurance premium, the index is set to 0, indicating a lack of profitability. 

Purpose and Logic: The Differential Index is designed to account for the variations in risk 

associated with different types of vehicles. By comparing the premium paid against both the 

incurred damages and a standardized basic premium for the vehicle type, this index ensures that 

profitability assessments are fair and reflective of the actual risk the insurance company assumes. 

It is important to note that the factors used in creating the target variable (profitability) such as 

the Differential Index and the Minimum Index were not included as predictor variables in the 

model. This ensures that the model's prediction of profitability is independent of the criteria used 

to define it, thereby avoiding circular logic and ensuring the accuracy of the model. 
 

Table 5:Example of Profitability or Loss Index 

 

Car 

Number 

Basic Insurance 

Premium 

Total Paid Insurance 

Premium 

Total Incurred 

Damages 

Difference of 

Insurance Premium 

and Total Damages 

Differential 

Index 

1 7,480,000 8,327,841 0 8,327,841 1 

2 10,186,000 7188,713 0 7,188,713 0 

3 11,337,000 4,778,351 155,797,950 -151,019,598 0 
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Since a car may not incur any damages to the insurance and may deposit a lower amount than the 

calculated base value due to discounts received, it is necessary to consider an index to examine this 

issue. According to the risk filter index, we defined it as follows: 

Minimum Index: The Minimum Index is used to ensure that customers who pay premiums below 

a certain threshold are identified as potentially less profitable. Specifically, this index indicates that 

if a policyholder has paid a premium that meets or exceeds the calculated minimum insurance 

premium required for their vehicle type, they are assigned a value of 1. Conversely, if the premium 

paid is below this minimum threshold, the index is set to 0. 

Purpose and Logic: The rationale behind the Minimum Index is to establish a baseline profitability 

measure. It ensures that any policyholder paying less than the minimum calculated premium is 

flagged, as such a payment may not sufficiently cover the risks associated with the vehicle, leading 

to potential losses for the insurance company. This index helps in identifying cases where discounts 

or other factors might have reduced the premium below a sustainable level, thus affecting overall 

profitability. 

 
Table 6:Evaluation of Risk Index for Selected Vehicles 

Car 

Number 

Basic Insurance 

Premium 

Total Paid 

Insurance 

Premium 

Total Incurred 

Damages 

Difference of 

Insurance Premium 

and Total Damages 

Differential 

Index 

Minimum 

Index 

1 7480000 4.327.841 0 4.327.841 0 0 

2 10186000 11.188.713 0 11.188.713 1 1 

3 11337000 11.778.351 155.797.950 -144.019.599 0 1 

In the continuation of the profitability index calculation process, it has been concluded that if a 

vehicle has both the differential index and the minimum index equal to one, it is considered 

profitable. If both indices are equal to zero, the vehicle is deemed unprofitable. If there are any other 

combinations of these indices, the vehicle is classified as borderline. 

 
Table 7:Evaluation of Profitability Index by Classification as Profitable, Borderline, and Unprofitable 

Car Differential Index Minimum Index Profitability Index 

1 1 1 Profitable 

2 1 0 Borderline 

3 0 1 Borderline 

4 0 0 Unprofitable 

Among the analyzed data, the number of individuals can be categorized as profitable, unprofitable, 

and borderline as follows: 
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The model mentioned above is fitted to 3,456,439 customer data that were considered as the 

training group, and the result is reported in the form of a decision tree. 

 
Figure 8:Decision Tree 

 

Based on this tree, the following rules can be extracted: 

• Customers with discounts over 2,900,000 incur losses. 

• Customers with discounts less than 2,900,000 and a severe bodily injury exceed 19,000,000 

incur losses. 

• Customers with discounts less than 2,900,000 severe bodily injury less than 19,000,000, 

financial commitment less than 155,000,000 vehicle manufactured before 1390, cylinders 

less than or equal to 5, and a penalty less than 700,000 incur losses. 

• Customers with discounts less than 2,900,000 severe bodily injury less than 19,000,000 

financial commitment less than 155,000,000 vehicle manufactured before 1390, cylinders 

less than or equal to 5, and a penalty equal to or greater than 700,000 are profitable. 

• Customers with discounts less than 2,900,000 severe bodily injury less than 19,000,000, 

financial commitment less than 155,000,000 and 5 or more cylinders are profitable. 

• Customers with discounts less than 2,900,000 vehicle manufactured before 1390, severe 

bodily injury less than 19,000,000 and financial commitment less than 155,000,000 are 

profitable. 

• Customers with discounts less than 2,900,000 severe bodily injury less than 19,000,000, and 

financial commitment greater than 155,000,000 are profitable. 
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4.11. Model Validation for Decision Tree and SVM Models 

To examine the validity of the above model, first based on the rules extracted from this tree, it 

was determined which customers are profitable and which are incurring losses. Now, 30% of the 

remaining data is evaluated based on these rules to determine which customers are profitable and 

which ones incur losses. Then, it is compared with their actual status to observe and conclude to 

what extent they are credible. The results obtained for this purpose are as follows: 

 
Table 8:Validation of Profitability Predictions Using Test Data for Decision Tree Model 

 

Category Customers 
Predicted Predicted 

Total 
Loss Gain 

Number 
Loss 661,882 37,043 698,925 

Gain 20,343 762,063 782,406 

Percentage 
Loss 94.7 5.3 100 

Gain 2.6 97.4 100 

 

 

As can be observed, about 95% of loss customers have been correctly identified as loss customers, 

and only about 5% of loss customers have been mistakenly classified as gain customers. 

Additionally, about 97% of gain customers have been correctly identified as gain customers, and 

less than 3% have been mistakenly classified as loss customers. Therefore, the overall accuracy of 

this model for approximately 1.5 million data points is around 96% (approximately 96% of these 

customers have been correctly classified by the model obtained in the previous stage). 

 

For the SVM model, predictions were made to classify customers as either profitable (gain) or 

incurring losses (loss). The validation process involved comparing the model's predictions with the 

actual profitability status of 30% of the data set aside for testing. This comparison provides insight 

into the model’s accuracy and its ability to correctly classify customers into the gain or loss 
categories. The results are summarized in the following table: 

 
Table 11: Validation of Profitability Predictions Using Test Data for SVM Model 

Category Customers 
Predicted Predicted 

Total 
Loss Gain 

Number 
Loss 454,301 244,624  

Gain 104,305 678,101  

Percentage 
Loss 65% 35% 100 

Gain 21% 79% 100 

 

 About 65% of loss customers have been correctly identified as loss customers by the SVM model, 

while 35% of loss customers have been mistakenly classified as gain customers. For gain customers, 

79% have been correctly identified as gain customers, while 21% have been mistakenly classified 

as loss customers. This results in an overall classification accuracy that highlights the model’s 
strengths and areas for improvement. 
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4.11.1 Calculating Model Accuracy in Comparison to SVM Analysis 

According to this analysis, predictions were made, and the results are presented in the table below. 
 

Table 9:Model Accuracy Comparison with SVM Model 

Title Customers 
Predicted (SVM) Predicted (Decision Tree) 

Loss Gain Loss Gain 

 

Count 

Loss 454,301 244,624 661,882 37,043 

Gain 104,305 678,101 20,343 762,063 

 

Percentage 

Loss 65 35 94.7 5.3 

Gain 21 79 2.6 97.4 

 

 

The decision tree model has a higher accuracy in identifying loss cases, being 29.7% better, and 

in identifying-profit cases, the proposed model also has an 18% higher accuracy compared to the 

SVM model. 

 

4.12. Improving the Performance of Models Using the Conceptual Model 
The method for improving the performance of models involves leveraging the Extended Entity-

Relationship (EER) model, which emphasizes and preserves the domain-specific entities, 

relationships, and attributes. This model starts with an initial EER diagram that represents the 

domain as a conceptual model. The EER diagram is constructed to represent the key entities (such 

as customers, vehicles, insurance policies), the relationships between them, and the attributes that 

characterize these entities (e.g., customer age, vehicle type, insurance premium). 

Through an iterative process, these EER constructs are systematically processed to ensure that 

domain knowledge is preserved during the dataset transformation. This transformation is vital as it 

allows the incorporation of insights from the EER diagram into the dataset that is used for machine 

learning models. 

The resulting augmented dataset is enriched with the structured domain knowledge captured in the 

EER diagram, enhancing the predictive power and interpretability of the models. By embedding 

domain-specific structures directly into the data, the models are better equipped to recognize 

complex patterns and relationships that might otherwise be overlooked in a purely data-driven 

approach. 

This integration of conceptual models, specifically through the use of the EER diagram, aims to 

show that the models not only perform well in terms of accuracy but also maintain a high level of 

relevance and applicability to the specific domain, in this case, the insurance industry. 
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Table 10:Constructs of EER for Machine Learning Guidelines 

Element Definition Example 

Entity (G1 & G2) Class or category of entities 
Policy Holder, Insurance Policy, 

Vehicle 

Relationship (G3) Association between entities 
A Policy Holder has one or many 

Vehicles assigned to him/her 

Figure 9:Preserve Information about Entity Types 

 

4.12.1 Data Preparation According to the Guidelines 
The preparation of data is a critical step in the data analytics process, particularly when managing 

a dataset of 5 million automobile insurance policies. This section outlines the detailed and 

systematic approach undertaken to ensure the data's accuracy, consistency, and suitability for 

analysis, reflecting the rigor and thoroughness applied throughout this phase. 

 

Feature Engineering and Data Transformation: 

 

Guideline 1 (G1) - Preserving Entity Types: To facilitate automated feature engineering, a 

consistent naming convention was implemented by appending entity type names to feature names. 

This approach enhanced the clarity and relevance of features, aiding dimensionality reduction 

within each entity type. For instance, features like Customer Age and Vehicle Year of Manufacture 

were created to explicitly denote the entity type. 

 

Guideline 2 (G2) - Transforming Features Based on Entity Types: Features were engineered by 

explicitly incorporating relationships among entities from the conceptual model. This involved 

defining and encoding these relationships to make them explicit for machine learning models, 

thereby enhancing their predictive capability.  

Additionally, the Profitability Index was engineered based on relationships between multiple 

entities such as the Policy Holder, Vehicle, and Insurance Policy. This target variable leveraged 

the financial and risk-related characteristics of these entities—like the total premium paid, the 

incurred damages, and the vehicle's risk classification—to predict the overall profitability of the 

customer. By encoding the relationships between these entities, the Profitability Index serves as a 
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transformed feature aligning with the principles of G2. This ensures that the model reflects the 

combined effects of these interrelated factors, contributing to more accurate predictions of 

customer profitability. 

 

Managing Optional Participation and Imputation: 

 

Guideline 3 (G3) - Handling Missing Instances: For cases where the target variable resided on the 

optional side of a relationship, records with missing instances of the target-bearing entity were 

removed from the training dataset. In this study, the term target-bearing entity refers to the specific 

entity within the dataset that directly impacts the target variable, which is profitability. For 

instance, in the context of insurance data, claims made by policyholders are closely related to the 

target variable of profitability, making claims information a critical component of the target-

bearing entity. Removing records with missing claims information helps ensure the completeness 

and integrity of the training data, which is crucial for accurate model training. By excluding 

records without this essential information, we reduce potential distortions in model performance 

and maintain data quality. 

 

Entity-Relationship Diagram and Participation Constraints: 

 

Participation Constraints Analysis: The entity-relationship (ER) diagram was used to analyze and 

understand the participation constraints among different entities. This provided valuable insights 

into the associations and dependencies within the data, guiding the feature engineering process to 

ensure accurate representation of these relationships. For example, when modeling the relationship 

between Policy and Claims entities, we ensured that all relevant claims associated with each policy 

were aggregated and included in the dataset. Capturing a policyholder's claims history improved the 

predictive accuracy of the machine learning models by fully leveraging the available data. 

 

 

4.12.2 Practical Implementation and Results 
 

The data preparation process described above was implemented to improve the quality of the 

dataset. 

Guideline 1 (G1): Features such as Customer Age, Vehicle Year of Manufacture, and Policy 

Premium were created to ensure clarity and relevance. 

 

Guideline 2 (G2): Derived features like past Claim Frequency by calculating the number of 

claims per customer.  

Past Claim Ratio: This feature captures the frequency of claims made by a customer relative to 

the number of policies they hold. By incorporating this feature, the machine learning model is 

better equipped to identify high-risk customers who are more likely to file claims. 

Past Claim Severity Index: This index represents the average severity of claims made by a 
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customer, calculated by dividing the total claim amount by the number of claims. Incorporating this 

feature into the model enhances its ability to predict risk more accurately. 

Vehicle Age: This feature measures the age of the insured vehicle, calculated as the difference 

between the current year and the vehicle's year of manufacture. Including vehicle age in the model 

aids in more accurate premium pricing and risk assessment. 

Guideline 3 (G3): To ensure a complete and reliable training dataset, records missing critical claim 

information were excluded, in line with Guideline 3. This approach was particularly applied when 

the target variable resided on the optional side of a relationship, such as policies that did not have 

associated claims records. By removing these incomplete records, we maintained the dataset's 

integrity, allowing for more accurate model training. 

The Entity-Relationship (ER) diagram guided us in understanding the relationships and 

participation constraints among entities, such as between Policy and Claims. When the ER diagram 

indicated that a single policy was associated with multiple claims, we aggregated the relevant claims 

data to create a comprehensive feature set. This step ensured that the machine learning models had 

access to detailed and accurate information. The combination of removing incomplete records and 

aggregating claims data resulted in a more robust dataset, ultimately leading to more precise and 

reliable predictions. 

By adhering to these guidelines and implementing these procedures, the dataset was transformed 

into a high-quality, reliable resource suitable for robust machine learning analysis. This thorough 

preparation enabled the development of accurate and insightful Support Vector Machine (SVM) and 

Decision Tree models, ultimately contributing to a deeper understanding and predictive capability 

within the insurance domain. The practical execution of these steps underscores the comprehensive 

approach taken to ensure the integrity and efficacy of the data analytics process. 

 

4.13.  Finding Correlated Indices 

To further support the findings from the machine learning models, we conducted an exploratory 

analysis to identify variables significantly correlated with profitability. Since the decision tree 

model aims to use indices closely aligned with profitability, assessing the strength of these 

relationships provides additional insights. The Kendall rank correlation coefficient was selected to 

quantify the correlation between existing indices and profitability, as detailed below. 

The Kendall coefficient (τ) is a non-parametric statistic used to measure the degree of agreement 

or conformity between two sets of variables. This measure is particularly advantageous when the 

data include many tied ranks or when analyzing the relationship between ordinal and sometimes 

ordinal-interval variables. By calculating Kendall's τ, we can identify which indices show the 
strongest association with profitability, informing the interpretation of the model’s predictive 
factors. 

This statistic quantifies the degree to which a change in one variable corresponds to changes in 

another variable. The Kendall coefficient τ always ranges between -1 to 1, with interpretations as 

follows: 

A value of 1 indicates perfect agreement (all pairs are concordant). 

A value of -1 indicates perfect disagreement (all pairs are discordant). A value of 0 suggests no 
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association between the rankings. 

The Kendall tau τ is calculated using the following formula: 

 
Where: 
τ represents the Kendall rank correlation coefficient. 

nc is the number of concordant pairs (pairs of observations that have the same order) between two 

sets of rankings. 

nd is the number of discordant pairs (pairs of observations that have different orders) between two 

sets of rankings. 

n is the number of observations in each ranking. 
 

Table 11:Kendall Rank Correlation Coefficients for Analyzed Indices 

Index Title Kendall's Rank Correlation Significance 

Gender 0.002 0.05 

Age 0.001 0.415 

Capacity 0.029 0 

Cylinder 0.105 0 

Color 0 0.815 

Year of Manufacture 0.926 0 

Financial Commitment 0.153 0 

No Damages -0.746 0 

Premium Payment Delay 

(Number of Days Late in 

Paying Premiums) 

0.136 0 

Discount -0.662 0 

Penalty 0.15 0 

Total Insurance Premium 0.792 0 

Total Damage Amount -0.129 0 

 

As observed, only two variables, customer age and car color, have no relationship with profitability 

(their correlation level with profitability is below 0.05). In contrast, the gender of the customer is 

directly related to profitability, with men being more profitable than women. Capacity, cylinder, and 

the year of car manufacturing also have a direct relationship with profitability. Among these, the 

correlation between capacity and profitability is weaker, while the correlation between the year of 

car manufacturing and profitability is stronger than the other two variables. Financial commitment, 

the number of delay days, penalties, and total insurance premiums also have a direct relationship 

with profitability, meaning that an increase in any of these factors makes the customer more 

profitable. Among them, the strongest correlation is related to total insurance premiums. 

On the other hand, variables such as discounts, no claims, personal injury claims (Life damage), 

driver claims have an inverse relationship with profitability. The more accident-free years a customer 

has, the less profitable it is for the insurer. 

Overall, total insurance premiums with a correlation coefficient of 0.79 have the strongest direct 

relationship with profitability, while no claims with a correlation coefficient of -0.75 are the 

variables with the strongest inverse relationship with profitability. 
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Considering that the distribution of the profitability variable is not normal and there are outliers in 

the data, it is not appropriate to use linear multiple regression (Kim, 2015; Iman & Conover, 2020). 

The histogram and box plot of this variable clearly demonstrate this issue. However, a Kolmogorov-

Smirnov test was conducted to test the normality assumption, which resulted in a significance level 

less than 0.05, indicating the non- normal distribution of profitability. 

 

  

Figure 8: On the left, a density plot of the profitability variable, and on the right, a box plot of the profitability 

variable 

 

4.14.  Exploratory Analysis 

This section aims to explore the relationships between various factors related to the insured 

individuals, their vehicles, and the resulting profitability for the insurance company. This section 

investigates potential correlations and associations to uncover significant trends and patterns. 

Age of the Insured Person and Profitability: 

The correlation coefficient (Kendall's tau) for age was found to be 0.415, indicating no significant 

relationship between age and profitability.  

This suggests that age alone is not a strong predictor of profitability in this dataset. 

Gender and Profitability: 

The analysis indicates a weak but statistically significant relationship between gender and 

profitability, with male customers showing slightly higher profitability for the insurance company. 

While this relationship is statistically significant, the effect size is modest, meaning that the 

difference in profitability between male and female customers, though present, is relatively small. 

Logistic regression further supports this finding, confirming that while gender may have some 

influence on profitability, it is not a major determinant in this dataset. 

 

Vehicle Physical and Technical Features and Profitability: 

Initial analysis considered the vehicle color as a representative feature, but the Kendall correlation 

coefficient showed no significant relationship with profitability. This suggests that physical 

attributes like color may not play a significant role in determining profitability. 

Year of Vehicle Manufacture and Profitability: 

A significant positive relationship was found between the year of vehicle manufacture and 

profitability, indicating that older vehicles are more profitable for the insurance company. This 
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finding was supported by logistic regression analysis, which confirmed the strength and direction of 

this relationship. 

Claim-Free Years and Profitability: 

Contrary to what might be expected, the analysis found that customers with fewer claim-free years 

were more profitable for the insurance company. This counterintuitive finding highlights the 

complex factors that contribute to insurance profitability and suggests that frequent claimants may 

still contribute positively to the company's bottom line under certain circumstances. One explanation 

for this could be that these customers are paying higher premiums, which offset the claims they 

make, leading to overall profitability despite their claim’s history. 

4.15. Conclusion and Summary of Data Analysis 

The data analysis process adhered to a structured approach to data preparation, guided by the 

principles outlined in Guidelines G1, G2, and G3. These guidelines enhanced the quality and 

predictive power of the machine learning models by preserving domain knowledge. 

Key components of this data preparation process included: 

Data Cleaning Procedures: Scripts and validation checks were implemented to identify and resolve 

data issues, ensuring the dataset met high-quality standards. 

Feature Engineering: Techniques were applied to transform features and make relationships among 

entities explicit for machine learning models. 

Normalization: Continuous monitoring and refinement normalized the data, leveraging domain 

expertise and statistical methods. 

These steps laid the foundation for the development of accurate Support Vector Machine (SVM) 

and Decision Tree models. By following the guidelines, the dataset was transformed into a reliable 

resource, contributing to improved predictive capabilities within the insurance domain. 

In the next chapter, the performance metrics will be presented and discussed. 
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5. Results 
 

5.1 Introduction 

In the previous chapter, we detailed the structured approach to data preparation and the application 

of specific guidelines aimed at enhancing the dataset's quality and the predictive power of machine 

learning models. With this enriched data, the focus of this chapter shifts to evaluating the outcomes 

of the machine learning models. Specifically, we compare the performance of these models with and 

without the implementation of the Conceptual Model and Machine Learning (CMML) approach. 

The subsequent sections provide an in-depth analysis of key performance metrics, discuss the 

limitations of the methods employed, and offer suggestions for future research. 

 

5.2. Comparing Outcomes with and without CMML 

The analysis in this study focuses on the application of Guidelines 1, 2, and 3 from the Conceptual 

Models for Machine Learning (CMML) framework. These specific guidelines were selected due to 

their relevance and suitability for the dataset and objectives of this research. 

This section presents a comparative analysis of machine learning models developed using 

traditional methods versus those enhanced by the CMML approach. This comparison is structured 

to demonstrate the tangible impact of applying CMML guidelines—particularly G1 (Preserving 

Entity Types), G2 (Transforming Features Based on Entity Types), and G3 (Handling Missing 

Instances)—on the dataset and the resulting model performance. The analysis will cover key 

performance metrics such as accuracy, precision, recall, and F1 score, providing a comprehensive 

evaluation of the benefits derived from the CMML approach. 

 

5.2.1 Setting Up the Comparison: Dataset Transformation 

The application of CMML guidelines led to significant modifications in the dataset, which are 

crucial to understanding the observed improvements in model performance: 

 

Preserving Entity Types (G1): 

• Before CMML: The original dataset did not clearly distinguish between different entity 
types, such as customer details, vehicle information, and policy specifics. This lack of clarity 
led to potential feature overlap and reduced model interpretability. 

• After CMML: Entity type names were appended to feature labels (e.g., Customer Age, 
Vehicle_Year_of_Manufacture), resulting in a more organized and semantically clear dataset. 
This structured approach improved feature selection by ensuring that features were grouped 
and analyzed within their respective entity contexts. The modifications also enhanced model 
interpretability, as each feature was explicitly linked to a domain-specific entity. 

Transforming Features Based on Entity Relationships (G2): 
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• Before CMML: Relationships between entities, such as policies and claims, were not 
explicitly modeled. The lack of explicit relationships made it challenging for models to infer 
connections, leading to less accurate predictions. 

• After CMML: By defining and encoding relationships among entities, new features were 
created that captured these relationships. For example, the Discount-to-Total Premium ratio 
was introduced to encapsulate the relationship between policy discounts and total premiums. 
Additionally, features such as Claim Frequency (number of claims per customer), Claim 
Severity Index (average severity of claims), and Vehicle Age (age of the insured vehicle) were 
engineered. These features, selected based on their relevance to the conceptual model, allowed 
the models to better capture complex interdependencies within the data, resulting in improved 
predictive performance. 

Handling Missing Instances (G3): 

• Before CMML: The dataset initially contained records with missing critical information, 
especially for optional entities like claims. These incomplete records introduced noise, 
potentially leading to biases in the model training process. To address this, missing data was 
imputed. This step was crucial for the Support Vector Machine (SVM) model, which requires 
a fully populated feature space to accurately calculate the margins between classes. Missing 
values can significantly distort these margins, resulting in lower model performance.  

• After CMML: Following the application of CMML, records with missing instances of the 
target-bearing entity (e.g., claims data) were excluded as per Guideline 3 (G3). This targeted 
removal ensured that models were trained on complete and reliable data, which minimized 
noise and reduced the risk of overfitting. Interestingly, even though SVM typically performs 
better with larger datasets, the exclusion of incomplete records still led to an improved margin 
calculation and better generalization by focusing on high-quality data. Decision Trees also 
benefited from this data refinement, as it resulted in clearer decision splits by reducing 
inconsistencies. The Entity-Relationship (ER) diagram further enhanced the process by 
guiding the aggregation of related records (e.g., multiple claims for a single policy), resulting 
in a more structured and accurate dataset. This structured approach especially benefited 
models that rely on hierarchical decisions, like Decision Trees, while also supporting SVM’s 
margin-based calculations with consistent features. 

• This combined strategy—imputing missing data before CMML and removing incomplete 
records after CMML—proved effective in improving model performance, particularly for 
SVM, which is more sensitive to missing values. The approach reduced noise initially and 
preserved dataset integrity, enhancing both models' ability to generalize accurately. 

5.3. Performance Metrics Overview 

The following tables provide a detailed comparison of the performance metrics for the models developed 
using both the traditional approach and the CMML-enhanced approach. Each table clearly indicates 
whether the results correspond to the Traditional or Enhanced dataset. 

Table 12:Perform Feature Engineering Based on Entity Types (G1) 

Element SVM (Traditional) Decision Tree (Traditional) SVM (Enhanced) Decision Tree (Enhanced) 

Accuracy  0.76  0.96  0.76  0.93 
Precision 0.73 0.95  0.73  0.92 

Recall 0.87  0.97  0.87  0.91 
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F1 Score  0.79 0.96  0.79  0.92 

Note: The identical performance metrics for the SVM model in both the traditional and CMML-enhanced 
approaches suggest that the preservation of entity types (G1) did not have a significant impact on the 
model's performance. This outcome could be due to several factors: 

• Nature of the SVM Algorithm: SVM (Support Vector Machine) is designed to find the optimal 
hyperplane that best separates the classes in the feature space. The addition of entity type 
labels, as suggested by G1, might not significantly affect the SVM model because it relies 
more on the margins between classes rather than the specific categorizations of features. 
Therefore, even with the application of G1, the SVM model might inherently find the same 
optimal hyperplane, resulting in identical performance metrics. 

• SVM’s Sensitivity to Feature Engineering: SVM models are sensitive to the dimensionality 
and nature of the input data. If the original features were already optimized, the addition of 
entity type names may not provide further benefit, leading to the same performance metrics. 

• Impact on Decision Tree: Decision Tree models, unlike SVM, are heavily dependent on the 
structure of the data and the features used for splits. The application of G1 could have resulted 
in suboptimal or overly complex splits, leading to poorer performance. Since Decision Trees 
recursively split the data based on feature values, well-defined features and categories are 
crucial for their performance. The application of G1 may have introduced unnecessary 
complexity or noise, thus negatively impacting the decision tree’s ability to make precise and 
reliable splits. This explains why the Decision Tree performance declined while SVM 
remained unchanged. 

To further understand these results, the feature engineering steps were carefully reviewed to ensure that the 
new features introduced under G1 were appropriately integrated into the models. This review confirmed 
that the inclusion of entity type names did not significantly alter the predictive accuracy or other 
performance metrics of the SVM model. This suggests that in this specific context, G1 may not provide 
additional value beyond the baseline features already present in the dataset. 

Table 13:Feature Engineering Based on Entity Types (G2) 

Element SVM (Traditional) Decision Tree (Traditional) SVM (Enhanced) Decision Tree (Enhanced) 

Accuracy 0.76  0.96 0.83  0.99 
Precision 0.73  0.95  0.84  0.98 

Recall  0.87  0.97  0.87  0.98 
F1 Score 0.79 0.96  0.86  0.98 

 

The enhancements observed in both models underscore the effectiveness of G2 in transforming the dataset 
into a more informative and structured form. By explicitly modeling the relationships between entities, the 
machine learning algorithms could capture more nuanced patterns in the data, leading to better predictive 
performance. 

Table 14:Feature Engineering Based on G3 

Element SVM (Traditional) Decision Tree (Traditional) SVM (Enhanced) Decision Tree (Enhanced) 

Accuracy  0.76  0.96  0.79  0.99 
Precision  0.73  0.95  0.74  0.99 

Recall  0.87  0.97  0.81  0.99 
F1 Score  0.79  0.96  0.80  0.98 
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The results in Table 15 highlight the positive impact of applying Guideline 3 (G3) on both SVM and 
Decision Tree models, with the Decision Tree model benefiting the most. This demonstrates the 
importance of handling missing data appropriately, as it can significantly enhance the performance of 
machine learning models, especially in complex domains such as insurance. 

5.3. Analysis of Results 
The results indicate significant improvements in model performance when utilizing the 

Conceptual Model and Machine Learning (CMML) approach. This section examines the specific 

enhancements observed in the key performance metrics and discusses additional aspects that 

contribute to the robustness and effectiveness of the CMML method. 

Accuracy 

The accuracy of the models saw improvements with the application of CMML. The Decision 

Tree model's accuracy increased from 96% to 99.48%, particularly when employing Guideline 3 

(G3), which involves handling missing instances. This substantial gain illustrates the effectiveness 

of accurately managing missing data and preserving the integrity of the training dataset. The SVM 

model also exhibited a notable increase in accuracy, achieving its highest value of 82.97% when 

applying feature transformations based on Guideline 2 (G2). This improvement highlights the 

importance of transforming features to reflect relationships within the data, thereby enhancing the 

model's predictive capability. 

Precision 

Precision, a metric that indicates the proportion of true positive predictions among all positive 

predictions, also showed significant enhancement. The Decision Tree model's precision reached 

nearly 100% with the application of CMML, specifically under G3. This suggests that the model's 

ability to correctly identify positive instances, such as high-risk customers or significant claims, 

has been greatly improved. Higher precision reduces the rate of false positives, which is crucial in 

domains like insurance where incorrect risk assessments can have substantial financial 

implications. 

Recall 

The recall metric, which measures the proportion of actual positive instances correctly identified 

by the model, improved across all models with the implementation of CMML. This increase in 

recall indicates the models' enhanced effectiveness in capturing all relevant instances, ensuring that 

fewer high-risk cases are missed. Improved recall is particularly important in the insurance 

industry to avoid underestimating potential risks and to ensure comprehensive risk management. 

F1 Score 

The F1 score, representing the harmonic mean of precision and recall, exhibited the most 

significant enhancement. The Decision Tree model achieved an F1 score of 99.50% with CMML, 

specifically under G3. This metric highlights the balanced improvement in both precision and 

recall, indicating that the model is not only accurate but also reliable in identifying both positive 

and negative instances. A high F1 score is critical in maintaining a balance between precision and 

recall, ensuring that the model performs well in various scenarios. 
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5.4. Potential Benefits of CMML 
The CMML (Conceptual Modeling and Machine Learning) approach provided benefits in our 

study, enhancing the performance and robustness of machine learning models. 

Enhanced Data Quality and Handling of Missing Data 

CMML improved data quality by transforming features based on entity types and relationships, 

such as the implementation of past claim frequency through Guideline 2 (G2). Guideline 3 (G3) 

ensured that only complete and reliable data were used, systematically handling missing data 

through removal or imputation based on contextual relevance. This minimized bias in the dataset 

and contributed to more accurate model predictions, thereby enhancing both the reliability and 

integrity of the dataset (Lukyanenko et, 2019). 

Improved Model Performance 

The systematic application of G2, and G3 resulted in measurable improvements in several 

performance metrics, such as accuracy, precision, recall, and F1 score. Notably, G3 played a key 

role in improving performance by handling missing data effectively, reducing overfitting and 

improving generalization. 

Domain Knowledge Integration 

The Extended Entity-Relationship (EER) model played a critical role in integrating domain 

knowledge, allowing the models to better capture complex patterns and relationships within the data. 

This conceptual framework not only supported feature engineering and data transformation but also 

ensured that machine learning models were both data-driven and contextually informed. As a result, 

the predictions became more accurate and meaningful (Lukyanenko et al., 2019). 

 

5.5. Limitations of the Method 
Complexity 

Despite its advantages, CMML can be complex to implement. Constructing and maintaining an 

accurate EER model requires a deep understanding of the domain and conceptual modeling 

principles. This process can be resource-intensive and time-consuming, especially for organizations 

with limited expertise in these areas. Furthermore, refining models to accommodate evolving 

business needs adds to the complexity (Lukyanenko et al., 2019; Zaidi, 2021). 

Algorithm-Specific Benefits 

The benefits of CMML were more pronounced in Decision Tree models than in Support Vector 

Machines (SVMs). This suggests that CMML’s strengths in enhancing interpretability and handling 

complex relationships may not translate uniformly across all algorithms. Decision Trees, which are 

inherently more interpretable and can capture non-linear relationships, benefited more from the 

explicit domain knowledge encoded through CMML. In contrast, SVMs, which focus more on 

mathematical optimization, did not experience the same level of improvement. This highlights the 

need for algorithm-specific customization when applying CMML (Lukyanenko et al., 2019; Zaidi, 

2021). 

Generalizability 

While the study demonstrated improved performance within the context of automobile insurance 
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policies, the generalizability of these findings to other datasets remains uncertain. Different domains 

may have unique data characteristics, and further research is necessary to evaluate CMML’s 
applicability across diverse fields and datasets (Lukyanenko et al., 2019; Zaidi, 2021). 

Scalability Issues 

Although CMML proved effective on the dataset used, scaling the approach to larger or more 

diverse datasets presents challenges. Big data and real-time processing environments may require 

additional computational resources and more advanced data management strategies. The scalability 

of CMML in such contexts needs to be tested further to determine its effectiveness (Lukyanenko et 

al., 2019). 

Dynamic Data Environments 

In industries where data changes rapidly, maintaining an updated EER model can be challenging. 

Frequent updates are required to ensure the conceptual model stays relevant, which adds to the 

maintenance burden. This requires ongoing collaboration between domain experts and data 

scientists, making it more resource-intensive in dynamic data environments (Zaidi, 2021). 

 

5.6. Suggestions for Future Research 
Future research can build upon this study by exploring the following areas, further enhancing the 

applicability and effectiveness of the Conceptual Model and Machine Learning (CMML) approach: 

Broader Application 

To evaluate the generalizability of the CMML approach, it is essential to apply it to different 

datasets and domains. By doing so, researchers can assess its effectiveness across various contexts, 

such as healthcare, finance, and retail. Understanding how CMML adapts to different data structures 

and domain-specific challenges will provide insights into its versatility and robustness. 

Automated Feature Engineering 

Developing automated tools for feature engineering based on CMML guidelines can significantly 

reduce the complexity and time required for manual implementation. Automation can leverage 

artificial intelligence and machine learning techniques to systematically identify, transform, and 

engineer features, ensuring consistent and efficient application of CMML principles. This will make 

CMML more accessible and scalable for widespread use. 

Algorithm-Specific Enhancements 

Investigate the impact of CMML on a wider range of machine learning algorithms, including neural 

networks, ensemble methods, and deep learning models. By understanding the algorithm-specific 

benefits and limitations, researchers can tailor CMML applications to optimize performance for 

various machine learning techniques. This exploration will help in identifying the best practices for 

integrating CMML with different types of algorithms. 

Extended Guidelines 

Exploring additional guidelines beyond G1, G2, and G3, tailored to specific dataset characteristics 

and domain requirements, can enhance the applicability of CMML. For instance, developing 

guidelines for handling temporal data, hierarchical relationships, and spatial data can address unique 

challenges in those areas. Extending the guidelines will ensure that CMML can accommodate a 

broader range of data scenarios and improve its effectiveness. 
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Real-World Applications 

Implementing the CMML approach in real-world scenarios is crucial for validating its practical 

utility and effectiveness. Collaborating with industry partners to apply CMML in operational 

settings, such as customer relationship management, supply chain management, and healthcare 

diagnostics, can provide valuable insights into its practical benefits and challenges. Real-world 

validation will also highlight areas for further refinement and development. 

Enhancing Business Understanding 

Future research should focus on enhancing the integration of CMML with business understanding. 

Conceptual models can help clearly define project objectives, understand specific goals, and identify 

the organizational processes affected by machine learning interventions. This alignment between 

business goals and technical implementations is essential for successful adoption and maximizing 

the impact of machine learning solutions. 

Dynamic and Adaptive Models 

Developing dynamic and adaptive CMML models that can evolve with changing data landscapes 

and domain knowledge is essential. Incorporating mechanisms for continuous learning and model 

adaptation will help maintain accuracy and relevance over time. This research direction will ensure 

that CMML remains effective in dynamic and rapidly changing environments. 

By addressing these areas, future research can significantly enhance the applicability, 

effectiveness, and scalability of the CMML approach, ensuring its broad adoption and maximizing 

its impact across various domains and applications. 
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6. Conclusion 
This thesis explored the benefits of utilizing the Conceptual Model and Machine Learning 

(CMML) approach to enhance data preparation processes and improve the performance of machine 

learning models. The systematic application of three CMML guidelines—Preserving Entity Types 

(G1), Transforming Features Based on Entity Types (G2), and Handling Missing Instances (G3)—
revealed their significant impact on model accuracy, precision, recall, and overall reliability. The 

findings indicate that the CMML approach can improve the quality and predictive power of machine 

learning models by embedding domain knowledge directly into the data preparation process. By 

ensuring that the dataset remained comprehensive and coherent through the transformation of 

features and preservation of entity relationships, the data became more structured, which facilitated 

better feature selection and more accurate model outcomes. 

 

Notably, the CMML guidelines contributed differently depending on the task at hand. 

Transforming Features Based on Entity Types (G2) was particularly effective in scenarios requiring 

precise feature engineering, while Handling Missing Instances (G3) significantly enhanced model 

reliability by addressing incomplete data more effectively. Although Preserving Entity Types (G1) 

had a less pronounced impact when applied alone, it was essential in maintaining the integrity of the 

dataset, ensuring that the underlying relationships between entities were preserved, which is critical 

for complex model architectures. In practical terms, the choice of which guideline to emphasize 

depends on the specific demands of the task. For more complex scenarios involving intricate feature 

engineering and the need to manage missing data, the application of G2 and G3 is particularly 

beneficial. However, ensuring that the integrity of entity relationships is maintained, as G1 

facilitates, is equally important in preserving the overall structure and meaning of the dataset. 

 

In addition to these insights, this study makes three key contributions to the field of data-driven 

decision-making. First, it demonstrates a systematic method for embedding domain knowledge into 

data preparation workflows, showing how conceptual modeling can substantially improve machine 

learning performance. Second, it provides empirical evidence of the distinct effects of G1, G2, and 

G3, illustrating how each guideline addresses a specific data challenge—entity labeling, feature 

transformation, and missing data handling—and quantifiably boosts model metrics such as accuracy 

and F1 score. Third, it underscores the importance of aligning ML pipelines with conceptual 

frameworks, offering a replicable approach that researchers and practitioners can adapt in various 

domains to maintain both model interpretability and domain relevance. 

 

In conclusion, this research provides strong empirical support for the CMML approach as a 

valuable framework for enhancing both data quality and model outcomes. The integration of domain 

knowledge through conceptual modeling offers a robust method for improving the performance of 

machine learning models, making it a promising direction for future research and application across 

various domains.  



 

54 
 

Bibliography 

 
Abdul-Rahman, S., Arifin, N. F. K., Hanafiah, M., & Mutalib, S. (2021). Customer segmentation and profiling 

for life insurance using k-modes clustering and decision tree classifier. International Journal of Advanced 

Computer Science and Applications, 12(3), 434–444. 

Alavi, M., & Carlson, P. (1992). A review of MIS research and disciplinary development. Journal of 

Management Information Systems, 8(4), 45–62. 

Anderson, E. W., & Mittal, V. (2000). Strengthening the satisfaction-profit chain. Journal of Service 

Research, 3(2), 107–120. 

Anandarajan, A., & Christopher, M. (1987). A mission approach to customer profitability analysis. 

International Journal of Physical Distribution & Materials Management, 17(7), 55–68. 

Angles, R., & Gutierrez, C. (2008). Survey of graph database models. ACM Computing Surveys (CSUR), 

40(1), 1–39. 

Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge University Press. 

Batra, A., & Kaur, R. (2017). Enhanced entity relationship model (EER model) for data modeling. 

International Journal of Computer Applications, 167(3), 7–10. 

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine 

Learning Research, 13, 281–305. 

Bewick, V., Cheek, L., & Ball, J. (2005). Statistics review 14: Logistic regression. Critical Care, 9(1), 112–

118. 

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. 

Bork, D., Karagiannis, D., Pittl, B., & Recker, J. (2020). Conceptual modeling meets artificial intelligence: 

Perspectives and research challenges. In Conceptual modeling perspectives (pp. 17–31). Springer. 

Bowman, D., & Narayandas, D. (2004). Linking customer management effort to customer profitability in 

business markets. Journal of Marketing Research, 41(4), 433–447. 

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press. 

Boyce, G. (2000). Valuing customers and loyalty: The rhetoric of customer focus versus the reality of 

alienation and exclusion of (devalued) customers. Critical Perspectives on Accounting, 11(6), 649–689. 

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. 

Brown, A., Green, B., & Blue, C. (2019). Vehicle age and insurance profitability: A machine learning 

approach. Automotive Analytics Journal, 12(3), 210–224.Castellanos, A. R., Castillo, A., Tremblay, M. C., 

Lukyanenko, R., Parsons, J., & Storey, V. C. (2021). Improving machine learning performance using 



 

55 
 

conceptual modeling. In AAAI Spring Symposium: Combining Machine Learning with Knowledge 

Engineering. [If page numbers or a DOI are available, include them here.] 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. 

Damiani, E., & Frati, F. (2018). Towards conceptual models for machine learning computations. In 

Conceptual Modeling. ER 2018. Lecture Notes in Computer Science (Vol. 11157). Springer, Cham. [If page 

numbers are available, add them, e.g., (pp. xx–xx).] 

Doe, J., & Roe, P. (2020). Gender-based analysis in predictive modeling. Data Science Review, 33(4), 567–

589. 

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across 

space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. 

Epetimehin, F., & Ekundayo, O. (2013). Risk pricing and profit maximization of insurance companies. 

Journal of Research in National Development, 10(3), 301–305. 

Fang, K., Jiang, Y., & Song, M. (2016). Customer profitability forecasting using big data analytics: A case 

study of the insurance industry. Computers & Industrial Engineering, 101, 227–237. 

Fettke, P. (2020). Conceptual modeling in the age of big data and AI: Opportunities and challenges. Journal of 

Database Management, 31(2), 1–13. 

Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big 

impact: Findings from a systematic review and a longitudinal case study. International Journal of Production 

Economics, 165, 234–246. 

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an 

application to boosting. Journal of Computer and System Sciences, 55(1), 119–139. 

García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining. Springer. 

Gao, Z., Wu, B., & Qu, Y. (2018). Ontology-based conceptual modeling for semantic data integration in 

machine learning applications. Information Fusion, 39, 1–11. 

Ghahramani, M., O’Hagan, A., Zhou, M., & Sweeney, J. (2021). Intelligent geodemographic clustering based 

on neural network and particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics: 

Systems, 52(6), 3746–3756. 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. 

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine 

Learning Research, 3, 1157–1182. 

Gupta, M., & Kumar, R. (2019). A hybrid approach of neural networks and enhanced entity-relationship 

model for predictive analytics. Procedia Computer Science, 165, 160–167. 



 

56 
 

Hanafy, M., & Ming, R. (2022). Classification of the insureds using integrated machine learning algorithms: A 

comparative study. Applied Artificial Intelligence, 36(1), 2020489. 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, 

and prediction (2nd ed.). Springer. 

Hedman, J., & Kalling, T. (2003). The business model concept: Theoretical underpinnings and empirical 

illustrations. European Journal of Information Systems, 12(1), 49–59. 

Henderson, J. C., & Venkatraman, N. (1993). Strategic alignment: Leveraging information technology for 

transforming organizations. IBM Systems Journal, 32(1), 4–16. 

He, J., Wang, Y., & Akula, R. (2019). Integrating domain knowledge with machine learning models for 

predicting treatment outcomes. Journal of Healthcare Informatics Research, 3(2), 133–149. 

Heuser, C. A., & Saake, G. (2009). Conceptual modeling – Foundations and applications: Essays in honor of 

John Mylopoulos. Springer Science & Business Media. 

Iman, R. L., & Conover, W. J. (2020). A modern approach to statistics. John Wiley & Sons. 

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys, 31(3), 

264–323. 

Janković, S., Peršić, M., & Zanini-Gavranić, T. (2012). Customer profitability approach: Measurement and 

research directions in the hospitality industry. In 2nd Advances in Hospitality and Tourism Marketing and 

Management Conference (pp. 43–59). 

Jamjoom, A. A. (2021). The use of knowledge extraction in predicting customer churn in B2B. Journal of Big 

Data, 8(1), 110. 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: With 

applications in R. Springer. 

Karamizadeh, F., & Zolfagharifar, S. A. (2016). Using the clustering algorithms and rule-based data mining to 

identify affecting factors in the profit and loss of third-party insurance, insurance company auto. Indian 

Journal of Science and Technology, 9(37). 

Kim, H. Y. (2015). Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness 

and kurtosis. Korean Journal of Anesthesiology, 68(4), 279–282. 

Kirsch, L. J. (1997). Portfolios of control modes and IS project management. Information Systems Research, 

8(3), 215–239. 

Komar, K. S., et al. (2020). EER approach for modeling, mapping, and analyzing complex data using 

multilayer networks (MLNs). Journal of Computer Science & Information Technology, 10(3), 30–45. 



 

57 
 

Ku, E. C. (2010). The impact of customer relationship management through implementation of information 

systems. Total Quality Management & Business Excellence, 21(11), 1085–1102. 

Larivière, B., & Van den Poel, D. (2005). Predicting customer retention and profitability by using random 

forests and regression forests techniques. Expert Systems with Applications, 29(2), 472–484. 

Lee, G. G., & Choi, B. (2003). Knowledge management enablers, processes, and organizational performance: 

An integrative view and empirical examination. Journal of Management Information Systems, 20(1), 179–228. 

Lemaire, J., Park, S. C., & Wang, S. S. (2019). The use of statistical models in the prediction of automobile 

insurance fraud. Journal of Risk and Insurance, 86(3), 675–704. 

Lu, Y., Chen, Q., & Huang, Y. (2020). Conceptual modeling for machine learning: Challenges and 

opportunities. Information Systems Frontiers, 22(4), 811–827. 

Lukyanenko, R., Parsons, J., & Storey, V. C. (2018). Modeling matters: Can conceptual modeling support 

machine learning? In AIS SIGSAND (pp. 1–12). 

Lukyanenko, R., Wamba, S. F., & El-Darwiche, B. (2019). Grounding machine learning in conceptual 

modeling. Journal of Big Data, 6(1), 1–20. 

Lukyanenko, R., et al. (2020). Conceptual modeling in the era of big data and artificial intelligence: Research 

topics and introduction to the special issue. Journal of Information Technology, 35(2), 123–130. 

Maass, W., & Schlosser, A. (2021). Pairing conceptual modeling with machine learning. Journal of 

Conceptual Modeling, 23(1), 23–34. 

Maass, W., & Schlosser, F. (2021). Conceptual modeling in machine learning: Supporting application and 

decision making. In International Conference on Advanced Information Systems Engineering (pp. 47–60). 

Maass, W., & Storey, V. C. (2021). Pairing conceptual modeling with machine learning. arXiv: Software 

Engineering. 

Mark, T., Niraj, R., & Dawar, N. (2012). Uncovering customer profitability segments for business customers. 

Journal of Business-to-Business Marketing, 19(1), 1–32. 

Markus, M. L. (2001). Toward a theory of knowledge reuse: Types of knowledge reuse situations and factors 

in reuse success. Journal of Management Information Systems, 18(1), 57–93. 

Mori, H., & Umezawa, Y. (2007). Credit risk evaluation in power market with random forest. In 2007 IEEE 

International Conference on Systems, Man, and Cybernetics (ISIC) (pp. 2316–2321). IEEE. 

Mulhern, F. J. (1999). Customer profitability analysis: Measurement, concentration, and research directions. 

Journal of Interactive Marketing, 13(1), 25–40. 

Mulhern, F. J. (2010). Internal databases for marketing research. In J. Sheth & N. Malhotra (Eds.), Wiley 

international encyclopedia of marketing (Vol. 2). Wiley. 



 

58 
 

Mylopoulos, J. (1992). Conceptual modeling and Telos. In Conceptual modeling, databases, and CASE: An 

integrated view of information systems development (pp. 49–68). Wiley. 

Niraj, R., Gupta, M., & Narasimhan, C. (2001). Customer profitability in a supply chain. Journal of 

Marketing, 65(3), 1–16. 

Noone, B., & Griffin, P. (1999). Managing the long-term profit yield from market segments in a hotel 

environment: A case study on the implementation of customer profitability analysis. International Journal of 

Hospitality Management, 18(2), 111–128. 

Ogbonna, B. U., & Ogwo, O. E. (2013). Market orientation and corporate performance of insurance firms in 

Nigeria. International Journal of Marketing Studies, 5(3), 104–112. 

Orlikowski, W. J., & Baroudi, J. J. (1991). Studying information technology in organizations: Research 

approaches and assumptions. Information Systems Research, 2(1), 1–28. 

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data 

Engineering, 22(10), 1345–1359. 

Pan, S. L., & Jang, S. (2008). A resource-based perspective on information technology and firm performance: 

A meta-analysis. Journal of Management Information Systems, 25(4), 269–304. 

Peng, Y., Kou, G., Shi, Y., & Chen, Z. (2008). A descriptive framework for the field of data mining and 

knowledge discovery. International Journal of Information Technology & Decision Making, 7(4), 639–682. 

Petersen, J. A., McAlister, L., Reibstein, D. J., Winer, R. S., Kumar, V., & Atkinson, G. (2009). Choosing the 

right metrics to maximize profitability and shareholder value. Journal of Retailing, 85(1), 95–111. 

Pratama, R. A., Herdiansyah, M. I., Syamsuar, D., & Syazili, A. (2023). Prediksi customer retention 

perusahaan asuransi menggunakan machine learning. Jurnal Sistem Informasi dan Komputer, 12(1), 1–12. 

Recker, J., Lukyanenko, R., & Jabbari, M. (2021). Conceptual modeling for machine learning: Foundations, 

frameworks, and research agenda. Communications of the AIS, 48(7), 327–349. 

Recker, J., Rosemann, M., & van der Aalst, W. M. (2021). Theoretical foundations of conceptual modeling: 

Possibilities and pitfalls. Information Systems Journal, 31(1), 5–28. 

Riemenschneider, C. K., Harrison, D. A., & Mykytyn, P. P. (2002). Understanding IT usage: A test of 

competing models in software usage. Information Systems Research, 13(2), 144–176. 

Santori, L. (2009). Enterprise risk management for insurance: The rating agency’s view. Focus, SCOR 

(October), 1–xx. [If page numbers are available, include them here.] 

Scaradozzi, D., et al. (2021). Machine learning for modeling and identification of educational robotics 

activities. International Journal of Robotics and Automation, 36(4), 421–433. 



 

59 
 

Scher, S., et al. (2023). A conceptual model for leaving the data-centric approach in machine learning. Journal 

of Data Science and Analytics, 5(2), 100–120. 

Sedevich-Fons, L. (2022). Incorporating customer profitability analysis into quality management systems. The 

TQM Journal, 34(6), 1506–1526.Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data 

augmentation for deep learning. Journal of Big Data, 6(1), 60. 

Shmueli, G., & Koppius, O. R. (2011). Predictive analytics in information systems research. MIS Quarterly, 

35(3), 553–572. 

Škobić, D., Kraljević, G., & Mandić, M. (2020). Machine learning algorithms in the profitability analysis of 

casco insurance. Age, 1(1), 18–30. 

Smith, J., & Johnson, R. (2021). The impact of demographic variables on insurance profitability. Journal of 

Insurance Studies, 45(2), 123–135. 

Sohn, S. Y., & Shin, H. (2001). Pattern recognition for road traffic accident severity in Korea. Ergonomics, 

44(1), 107–117. 

St-Jean, A. (2021). Customer profitability forecasting using fair boosting: An application to the insurance 

industry (Doctoral dissertation, Université Laval). 

Storey, V. C., & Song, I.-Y. (2017). Big data technologies and management: What conceptual modeling can 

do. Data & Knowledge Engineering, 108, 50–67. 

Storey, V. C., Lukyanenko, R., & Castellanos, A. R. (2023). Conceptual modeling: Topics, themes, and 

technology trends. ACM Computing Surveys. Advance online publication. 

Thakur, S., & Singh, J. K. (2011). Mining customer’s data for vehicle insurance prediction system using k-

means clustering: An application. International Journal of Computer Applications in Engineering Sciences, 

1(4), 30–36. 

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical 

Society: Series B (Methodological), 58(1), 267–288. 

Trujillo, J., Castro, V., Calero, C., & Manso, M. (2020). Conceptual modeling interacts with machine learning 

– A systematic literature review. Journal of Data Science, 45(6), 123–140. 

Tsai, C.-F., & Chen, M.-L. (2010). Credit risk analysis using logistic regression, decision tree, and neural 

network: A case study of the Taiwanese banking industry. Expert Systems with Applications, 37(2), 1186–

1193. 

White, M., & Black, S. (2018). Historical claim data in risk assessment models. Risk Management Quarterly, 

21(1), 45–60. 

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: Practical machine learning tools and 



 

60 
 

techniques (4th ed.). Morgan Kaufmann. 

Wixom, B. H., & Watson, H. J. (2001). An empirical investigation of the factors affecting data warehousing 

success. MIS Quarterly, 25(1), 17–41. 

Yeung, M. C., & Ennew, C. T. (2000). From customer satisfaction to profitability. Journal of Strategic 

Marketing, 8(4), 313–326. 

Zaidi, M. A. (2021). Conceptual modeling interacts with machine learning – A systematic literature review. In 

Computational Science and Its Applications – ICCSA 2021.  

Zheng, A., & Casari, A. (2018). Feature engineering for machine learning: Principles and techniques for data 

scientists. O’Reilly Media. 

Zhou, Z. H., & Kapoor, A. (2011). Rule-based anomaly pattern detection for detecting financial fraud. Expert 

Systems with Applications, 38(7), 8370–8376. 


