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Abstract

This thesis explores the time evolution of quantum potentials in financial time

series by developing novel technical indicators based on these quantum potentials. It

starts with an introduction to de Broglie-Bohm’s pilot wave theory and its application

in financial market analysis, detailing the derivation of quantum potential and quan-

tum force from the probability density function (PDF) of logarithmic price changes.

The research employs the sliding window technique to observe the temporal evolution

of these quantum potentials and quantum forces and their corresponding features,

while also examining correlations with traditional technical and statistical indicators.

A significant part of the study involves comparing real financial markets to a theo-

retical Gaussian system defined by random walk theory, revealing notable differences

in the number of equilibrium states and the shape of constraining walls. Strong cor-

relations are found between the new features-particularly the length and depth of

quantum potentials-and other indicators like standard deviation.

Ultimately, this research advances the use of the pilot wave model in finance by

introducing the “widening” behavior of quantum potentials and providing fully func-

tional indicators for future research.
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Chapter 1

Introduction

In March 1900 a French mathematician, Louis Bachelier, presented the first for-

malization of a random walk theory in his doctoral thesis. He believed the movements

of the stock exchange are influenced by countless factors, both natural and artificial,

making it impossible to mathematically predict market fluctuations with complete ac-

curacy. Although conflicting viewpoints coexist, complicating the use of probability

theory for understanding price movements, it’s still feasible to conduct a mathemat-

ical analysis of the market’s static condition at a specific point by determining the

likelihood of certain price variations. His work aimed to explore and develop a mathe-

matical formula for understanding these probabilities, building on theoretical insights

related to stock exchange operations. He laid the foundation for the absolute Brow-

nian motion model in finance by determining the probability of prices through the

introduction of what is now known as the Chapman-Kolmogorov equation and by

recognizing that a Wiener process satisfies the diffusion equation. This led to the es-

timation of a normal or Gaussian probability density function for price values, which

was later found to be inaccurate. Despite several errors, Bachelier’s thesis remains a

pioneering work in finance[1, 2]. It is regrettable that his work went unnoticed for so

many years until Paul Samuelson, an American economist, brought it to light.

In 1947, Samuelson released a book derived from his doctoral work at Harvard[3].

Unlike Bachelier’s thesis, Samuelson’s publication was revolutionary. His book, along

with a later textbook[4] that eventually became the best-selling economics text ever,

enabled others to recognize the significance of Bachelier’s contributions, nearly fifty
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years after they were made. Paul Samuelson expanded upon Louis Bachelier’s pio-

neering work on financial modeling by introducing a more sophisticated framework

that better captured the dynamics of asset prices. While Bachelier’s model utilized

absolute Brownian motion with normally distributed returns, Samuelson’s model in-

troduced the concept of geometric Brownian motion (GBM), which assumes that asset

prices follow a log-normal distribution. This innovation accounted for the fact that

prices cannot fall below zero and reflected the compounding nature of returns, which

was a key limitation in Bachelier’s original approach. His model laid the foundation

for modern financial theory[5].

The second correction to Bachelier’s model was made by a physicist named Maury

Osborne[6]. He proposed that the prices of common stocks and the value of money

can be considered as a collection of decisions in statistical equilibrium, resembling an

ensemble of particles in statistical mechanics. Assuming that two prices for a security

at times t, t+ τ are p(t) and p(t+ τ) where τ is the time step, if we define the price

change (price log-return) as

q(t) = ln (p(t+ τ))− ln (p(t)) , (1.1)

then the steady-state distribution function of q is f(q) = exp(−q2/2σ2τ)/
√
2πσ2τ ,

which is the same as the probability distribution for a particle undergoing geometric

Brownian motion, where σ represents the dispersion after one unit of time. In other

words, Osborne believed it is the “rate of return” of prices, not the price itself that

exhibits a geometric Brownian motion[7].

Another major correction to the stochastic model of financial time series was intro-

duced by the renowned mathematician, Benoit Mandelbrot[8]. In order to understand

the significance of Mandelbrot’s work we need to first learn a bit about a kind of distri-

butions that are known as “fat-tailed” distributions. Normal and fat-tailed distribu-

tions are two types of probability distributions that describe the likelihood of different

outcomes in a dataset, or in our case the frequency of price returns. Normal distri-

bution, often referred to as the Gaussian distribution, is symmetric and bell-shaped.

It is characterized by a single peak at the mean, with the tails of the distribution

approaching zero as they move away from the mean. Meanwhile, a fat-tailed distri-

bution has heavier tails than the normal distribution, meaning that it has a higher

probability of extreme outcomes (values far from the mean) than would be expected
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in a normal distribution. This results in a distribution that appears more spread out

and has more probability mass in the tails. Also, the tails of a normal distribution

decrease exponentially, meaning that the probability of observing values further from

the mean decreases rapidly while the tails of a fat-tailed distribution decrease more

slowly than in a normal distribution, indicating that extreme values are more likely to

occur in the dataset. In 1963, Mandelbrot proposed to replace the Gaussian distribu-

tion of price returns with “stable Paretian” probability distributions, which were first

introduced by Paul Lévy[9]. Stable Paretian or “Lévy stable” distributions include a

broader range of probability density functions (PDFs), including those with fat tails.

Mandelbrot argued that this family of distributions does a better job in explaining

the sharp peaks and extreme events observed in empirical price changes compared to

the Gaussian distribution[8].

Building on the GBM model of Bachelier and Osborne, the American mathemati-

cian, Edward Thorp, pioneered the concept of “hedging” for the first time[10]. Thorp’s

methods led to the development of additional strategies involving convertible securi-

ties (financial instruments) similar to options, which can be exchanged for another

type of security, such as bonds or preferred shares that can be converted into common

stock.

A few years later, inspired by Thorp’s groundbreaking work, Myron Scholes and

Fischer Black introduced their famous option pricing model. This model allowed

traders to determine the fair price of an option contract, assuming a fixed volatility (σ)

for the underlying asset. Black and Scholes formulated a partial differential equation

(PDE), which, when solved, provides the fair price of an option contract. This well-

known equation is referred to as the Black-Scholes PDE[11].

The Black-Scholes model is based on the principles of random walk theory and ge-

ometric Brownian motion. Although the model is built on the assumption of normally

distributed returns, empirical data often exhibit fat tails, indicating very high kurtosis

values. This discrepancy means that if a model is over-fitted to historical data, it may

not produce reliable predictions. To address this, researchers such as Lisa Borland[12]

have sought to enhance the Black-Scholes model using non-Gaussian distributions,

leading to progressively better estimates. Since the 1950s, there has been a growing

interest among mathematicians and physicists in modeling stock markets, leading to

the development of new financial models, or the refinement of existing ones[1].
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1.1 New approaches to financial markets

Within the past couple of decades, several new approaches to financial time se-

ries have emerged, with those explored by physicists falling under the field known as

“econophysics”. Econophysics is an interdisciplinary field referred to as a science and

methodology that studies financial markets and economic events as physical systems.

It uses theories and techniques initially created by physicists to address economic prob-

lems and covers study areas such as climate economics, economic networks, emergent

phenomena, financial time-series, image processing, adaptive behavior, market mi-

crostructure, risk management, social dynamics, quantum social science, and wealth

and income inequality. The term econophysics was coined by Eugene Stanley, an

American physicist, in the mid-1990s, and the field has grown as a branch of both

physics and economics. One of the newest models employed by econophysicists is

David Bohm’s causal interpretation of quantum mechanics, well known as pilot wave

theory[13, 14, 15].

Pilot wave theory1 presents a quasi-deterministic framework for interpreting quan-

tum phenomena within quantum mechanics. This theory, formulated by Louis de

Broglie and David Bohm, provides a causal explanation for the behavior of particles

at the quantum level. At the heart of pilot wave theory is the idea that particles

have well-defined positions and velocities at all times, guided by an underlying wave

function. Unlike the conventional Copenhagen interpretation, which views quantum

mechanics as inherently probabilistic and wave functions as representing mere prob-

abilities, pilot wave theory treats the wave function as a real physical entity that

directs the motion of particles. In pilot wave theory, the wave function is considered

a guiding field that influences the trajectory of particles. This field, often referred to

as the “pilot wave,” propagates through space and time, determining multiple paths

that particles might take. The wave function evolves according to Schrödinger’s equa-

tion, while particles follow an ensemble of possible paths governed by the guidance

equation[14].

In 2007 O. Choustova[16] and again in 2015 F. Tahmasebi et al. [17] presented a

new approach for studying fat-tailed distributions of log-returns. These studies ap-

plied de Broglie-Bohm’s pilot wave theory for studying financial markets, finding that

price return fluctuations were influenced by the entanglement between current and

1Also known as de Broglie-Bohm theory.
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prior-day prices. Using the Bohmian quantum approach, Tahmasebi et al. showed

that the quantum potential confined price returns in a scale-invariant manner, indi-

cating that the extent of confinement varies with the time scale of the observations.

They attributed this confinement of log-returns to the entanglement between the cur-

rent and past states of the market. This perspective directly contradicts the efficient

market hypothesis (EMH), which assumes that market data consists of independent

and identically distributed (i.i.d) random variables. Analysis of oil and gold markets

revealed short-term effectiveness of quantum potential, while long-term influences re-

sembled white noise.

Two years later in another study Chen Shen and Emmanuel Haven[18] estimated

real and quantum potentials from financial commodities by analyzing the log returns

of six common commodities. By comparing quantum and classical potentials, they

demonstrated differing information, suggesting quantum potentials may reflect so-

cial and psychological factors, while classical potentials indicate market conditions.

They also estimated the Pearson correlation between the potential forces, indicating

a medium or weak interaction effect. Recent studies have underscored the impor-

tance of quantum potentials in risk management. For instance, a research by Hossein

Khaksar et al. introduces the concept of quantum risk and analyzes portfolio op-

timization using quantum potentials. The results demonstrate that quantum risk

exhibits a power-law behavior over time, similar to standard deviation but with a

different (smaller) exponent[19].

There are many emerging works being done in the field of quantum finance. Some

of them demonstrate that Hamiltonians and operators, traditionally used in physics,

can effectively model financial systems, particularly in analyzing the dynamics of

information exchange between traders and portfolio management[20].

Other works extend microeconomics by introducing a statistical approach akin

to the transition from classical to statistical mechanics, modeling market prices and

quantities as stochastic processes and proposing a specific model to analyze the dy-

namics of these market variables through an “action functional”[21].

One of the oldest examples of employing physical interpretations in finance is a

research in 1985 by Albert S. Kyle that presents a dynamic model of insider trad-

ing using sequential auctions to explore the informational content of prices, market

liquidity, and the value of private information, showing that in a continuous trading
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limit, prices follow geometric Brownian motion, market depth remains constant, and

all private information is eventually reflected in prices[22].

In a very recent research, David Orrell develops a quantum model for financial

time series, where energy levels correspond to transaction counts, addressing limita-

tions of classical oscillators by incorporating quantum features like non-zero volatility

and capturing the non-Gaussian nature of financial statistics, accurately predicting

phenomena such as the square-root law of price impact[23].

1.2 Our model

This project builds upon the foundational works of Choustova[16], Shen et al.[18],

and Tahmasebi et al.[17] by investigating the characteristics of newly identified quan-

tum potentials in finance. Our primary objective is to explore the time evolution of

quantum potentials and quantum forces using numerical methods rather than relying

on analytical solutions.

In the next chapter, we establish the mathematical and methodological founda-

tions of our research by adapting de Broglie-Bohm’s pilot wave theory to suit our

purposes. We will guide you through the methods used in this study, from estimating

the probability density functions (PDFs) of price changes to computationally deriving

the quantum potentials and creating the corresponding technical indicators.

Chapter 3 outlines the entire process of extracting, developing, and analyzing

the time evolution of new technical indicators based on the properties of quantum

potentials and quantum forces. After estimating the PDFs of price changes for a

selected set of assets, and utilizing other computational techniques such as numerical

differentiation, we construct steady-state quantum potentials and quantum forces.

These physical entities reveal significant differences between real markets and GBM

models, such as the variation in the number of equilibrium states and the shape of

the constraining walls of quantum potentials.

By varying the time frame τ 2 we observe notable differences in the structure of

quantum potentials, quantum forces, and the overall system. This experiment shows

that, over longer time frames (e.g., monthly versus daily), the market tends to behave

2τ may also be referred to as the time step, time scale, or resolution, depending on the community
(traders, financial analysts, or scientists) and the relevant literature.
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more like a normal system.

To study the time evolution of quantum potentials and quantum forces, we as-

sign specific features to them and employ a sliding window technique to develop new

technical indicators. These indicators enable us to monitor the evolution of features

and their associated entities with each step τ . By examining the Pearson correlations

between the new indicators and several well-known technical and statistical indica-

tors, we identify a strong correlation with standard deviation, which we attribute

to volatility and market risk, referring to it as the “widening” behavior of quantum

potentials. These findings will be discussed in more detail in Chapter 4.

Appendix A provides open-source Python scripts and a set of fully functional tech-

nical indicators with adjustable window sizes for the reader’s use. Figure 1.1 provides

a detailed schematic representation of the model we have developed. This figure il-

lustrates the key components and their interconnections, offering a comprehensive

overview of the structure and functionality of our designed model.
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Figure 1.1: Schematic representation of our developed model



Chapter 2

Mathematical and computational

tools

This chapter delves into the mathematical and computational tools employed

throughout this project. We start by presenting the mathematical and computational

techniques used to estimate the probability density functions governing distributions

(i.e., histograms) of logarithmic price returns. Moving on, we introduce de Broglie-

Bohm’s pilot wave theory, an alternative interpretation of quantum mechanics. Next,

we explore the concept of quantum potentials and demonstrate how a financial time

series can be modeled within this framework, drawing on the works of F. Tahmasebi

et al.[17] and C. Shen et al.[18] Finally, we present our own model and the computa-

tional methods used to study the time evolution of quantum potentials and quantum

forces.

2.1 Estimating probability density functions

Probability density functions (PDFs) offer high-resolution statistical insights into

a data set. Consider a random variable Q. The probability associated with Q taking

values within an interval can be expressed by the PDF f , satisfying the relation[24]

P (a < Q < c) =

∫︂ c

a

f(q)dq ∀a < c.
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Now, suppose we have a set of n independent, identically distributed (i.i.d.) ran-

dom variables Q1, Q2, . . . , Qn. These random variables could be the logarithmic price

changes of a financial time series obtained from Eq. 1.1. The PDF of these ran-

dom variables can be estimated using both parametric and non-parametric methods.

Estimating the density function for this data set offers several computational advan-

tages, including differentiability and increased precision. This section will explore the

mathematical procedures for estimating the best-fit PDF for a given data set.

2.1.1 Gaussian density estimation (GDE)

A Gaussian fit is a parametric approach and one of the simplest methods for

estimating a PDF. Given a dataset of i.i.d. data with mean µ and variance σ2, the

underlying density f̂ can be estimated by first computing the sample mean µ and

variance σ2 from the data, and then using these estimates in the formula for the

normal distribution as

GDE : f̂G(q) =
1

σ
√
2π

exp

(︃
−(q − µ)2

2σ2

)︃
. (2.1)

This technique, known as “Gaussian density estimation” or GDE, fits a normal dis-

tribution N (µ, σ2) to any data set. We will apply this method to model the market

as a normal system, where price changes are simulated as following geometric Brown-

ian motion. Note that when estimating PDF of log-returns, µ represents the average

log-return, and σ is the standard deviation.

2.1.2 Histogram

The histogram is the oldest and most widely used non-parametric density esti-

mator. It provides a realistic approximation of distributions, as it involves minimal

smoothing. The histogram is defined as[24]

f̂(q) =
Ni

nb
,

where Ni is the number of Qi in the same bin as q and n is the total number of

observations. The bins of the histogram are defined as the intervals [q0 + mb, q0 +
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(m+ 1)b), where q0 and b are the origin and bin width and m ∈ Z.

Selecting the right origin and bin width are important for constructing histograms.

Note that increasing the number of bins results in a less smoothed data representation,

and vice versa. Figure 2.1 shows an example histogram of daily log-returns of AAPL.

Figure 2.1: Histogram of daily log-returns of AAPL from 28/09/2013 to 23/09/2023.

By defining the probability density f of a random variable Q as

f(q) = lim
b→0

1

2b
P (q − b < q < q + b),

for a given b, the probability P (q−b < q < q+b) can be estimated by the proportion of

sample points within the interval (q− b, q+ b). Therefore, a straightforward estimator

f̂ of the density can be defined by selecting a small value for b as below[24]

f̂(q) =
NP

2bn
,

where NP is the number of Qi falling within (q − b, q + b). This estimator is referred

to as the “naive estimator”. We can also define the weight function w as

w(q) =

⎧⎨⎩1
2

if |q| < 1

0 otherwise
. (2.2)
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Using this definition, the naive estimator can be expressed as[24]

f̂(q) =
1

n

n∑︂
i=1

1

b
w

(︃
q −Qi

b

)︃
.

By using each data point as the center, this method eliminates the need to specify a

position q0. However, selecting the appropriate value for b remains necessary.

Histograms and Naive estimates are well known for their “stepwise” look which

doesn’t allow differentiation. To address this issue, as well as for additional technical

reasons discussed later, we will explore a more advanced estimation method in the

following section.

2.1.3 Kernel density estimation (KDE)

We can improve the naive estimator to address some of the previously mentioned

challenges. Initially, we can substitute the weight function w with a kernel function

that meets the requirement

∫︂ ∞

−∞
K(q) dq = 1. (2.3)

The kernel K can be any probability density function, but in this case, we will use

N (0, 1), which represents a normal distribution with mean µ = 0 and variance σ2 = 1.

Referring to the naive estimator definition, the kernel estimator using kernelK is given

by[24]

f̂(q) =
1

nb

n∑︂
i=1

K

(︃
q −Qi

b

)︃
. (2.4)

Here, b denotes the window width, also known as the “smoothing parameter” or

“bandwidth”. Unlike the naive estimator, which sums “boxes” centered on the ob-

servations, the kernel estimator sums individual “probability densities” centered on

each data point. The kernel function K defines the shape of these small PDFs, while

the window width b controls their size. Figure 2.2 demonstrates the KDE method,

displaying both the individual probability densities and the estimate f̂ obtained by

summing them.
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Figure 2.2: Kernel estimates showing individual kernels.

Figure 2.3 illustrates the effect of varying the window width. As b decreases

towards zero, the small PDFs become sharply peaked, while a larger b produces flatter

PDFs, leading to a loss of detail.

Figure 2.3: Kernel estimates showing individual kernels with smaller window width
b = 0.004. Compare with Fig. 2.2 where b = 0.008

The kernel estimator f̂ has key properties based on its definition. If the kernel K is
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non-negative and meets the normalization condition (i.e., it acts as a probability den-

sity function), then f̂ will also be a valid probability density function. Furthermore, f̂

will reflect the continuity and smoothness of K; for instance, a normal density kernel

results in a smooth estimator with derivatives of all orders. Despite its widespread

use, the kernel estimator faces challenges with long-tailed distributions. A fixed win-

dow width can add noise to the tails, and excessive smoothing to reduce this noise

may mask important features of the main distribution. Adaptive methods to address

this issue will be explored in the following section.

2.1.4 Choosing the right bandwidth

Several methods exist to quantify the error between the density estimator f̂ and

the true density f . A widely recognized metric for assessing this at a specific point is

the mean squared error (MSE), which is defined as

MSEq(f̂) = E[(f̂(q)− f(q))2]. (2.5)

This can be further broken down into[24]

MSEq(f̂) = (E[f̂(q)]− f(q))2 +Var[f̂(q)], (2.6)

which represents the sum of the squared bias (E[f̂(q)] − f(q) = biasq(f̂ , f)) and the

variance at point q. Using a kernel defined as f̂(q) = 1
n

∑︁n
i=1w(Qi, q), with a weight

function set to

w(y, q) =
1

b
K

(︃
q − y

b

)︃
,

the mean and the variance will look like

E[f̂(q)] =

∫︂
1

b
K(

q − y

b
)f(y)dy,

n Var[f̂(q)] =

∫︂
1

b2
K(

q − y

b
)2f(y)dy −

(︃
1

b

∫︂
K(

q − y

b
)f(y)dy

)︃2

.

It is evident that by adjusting the degree of smoothing, one can trade off between

reducing bias and increasing variance, or vice versa.
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To measure the error across the entire dataset, we use the mean integrated squared

error (MISE) method[25]. The MISE is defined as

MISE(f̂) = E

[︃∫︂
(f̂(q)− f(q))2dq

]︃
. (2.7)

By moving the expectation inside the integral and substituting the integrand with

Eq. 2.6, we get

MISE(f̂) =

∫︂
E[(f̂(q)− f(q))2]dq

=

∫︂
MSEq(f̂)dq,

or more explicitly as

MISE(f̂) =

∫︂
(E[f̂(q)]− f(q))2dq +

∫︂
Var[f̂(q)]dq, (2.8)

which expresses the MISE as the sum of the integrated squared bias and the inte-

grated variance. This method provides a comprehensive evaluation of the estimator’s

accuracy by integrating the squared difference between the estimated density f̂(q)

and the true density f(q) over the entire range of q.

Based on the detailed mathematical derivations by Silverman, 1986[24], Equation

2.8 can be transformed and minimized to determine the optimal bandwidth in terms

of the expected density f and the kernel function K. Result of this minimization

is[24]

bopt = k2
−2/5

{︃∫︂
K(y)2dy

}︃1/5{︃∫︂
f ′′(q)2dq

}︃−1/5

n−1/5, (2.9)

where k2 is the second moment of the kernel function (k2 =
∫︁
y2K(y)dy).

Selecting the appropriate amount of smoothing is crucial in density estimation and

is particularly important for our project. It is essential to remember that the choice

of smoothing parameter should always align with the intended use of the density

estimate. In our model, which involves differentiating estimated density functions, it

is imperative to find a bandwidth that minimizes additional noise without leading to
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overfitting. To achieve this, we plotted several curves and selected the estimate that

best aligned with our prior expectations of the density. This trial-and-error approach

is satisfactory for many applications. Ultimately, we opted to use the “Silverman’s

rule of thumb” method, which provides appropriately smoothed densities by adjusting

the bandwidth based on the sample size n and standard deviation σ. This method

is also endorsed by C. Shen and E. Haven in their work, where they employed it to

estimate the optimal bandwidth for the amplitude of a pilot wave[18].

Silverman’s rule of thumb

Silverman’s rule of thumb[24] uses a Gaussian distribution to assign a value to the

term
∫︁
f ′′(q)2dq in the expression 2.9 for the ideal window width. Doing so and by

using a normal kernel with µ = 0 and σ2 = 1

K(y) =
1√
2π

exp(−y
2

2
), (2.10)

the window width will be[24]

bopt =

(︃
4

3

)︃1/5

σn−1/5 = 1.06σn−1/5. (2.11)

In our model, we simply used the standard deviation (σ) of our log-return data

set and then substituted it into Eq. 2.11 to get the right bandwidth. Substituting

Eq. 2.10 and Eq. 2.11 into Eq. 2.4 yields the final form of the KDE

KDE : f̂ b(q) =
1

σ
√
2π

(︃
3

4n4

)︃1/5 n∑︂
i=1

exp

(︄
−
(︃
3n

4

)︃2/5
(q −Qi)

2

2σ2

)︄
, (2.12)

which is the density estimation formula that we used in our project. The Qi data

points represent the individual log-returns, q is a uniform grid that spans the entire

range of the dataset, and σ denotes the standard deviation of the log-returns. The

use of Eq. 2.12 produces a well-smoothed curve that more accurately represents the

underlying PDF of the dataset compared to a simple Gaussian fit (see Fig. 2.4 for

comparison).
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Figure 2.4: Compariosn of Gaussian (GDE) and kernel (KDE) estimates of daily
log-returns of AAPL from 28/09/2013 to 23/09/2023.

2.2 Symmetric derivatives

Symmetric derivatives are a concept in mathematics, particularly in the study of

differential equations and calculus of variations. The purpose of using this approach

in our work was to provide a method for finding derivatives without requiring the ana-

lytical form of a PDF, such as those estimated using KDE1. The symmetric derivative

of a function f at a point q is defined as

f
′
(q) = lim

h→0

f(q + h)− f(q − h)

2h
,

where h is a small increment. This definition differs from the standard derivative in

that it uses the average rate of change between q + h and q − h rather than just the

rate of change at q.

Given a function f , the second order symmetric derivative at a point x is defined

by

f
′′
(q) = lim

h→0

f(q + h)− 2f(q) + f(q − h)

h2
.

1In this research, we treated histograms as non-continuous, while considering KDE and GDE
estimates of PDFs as continuous and differentiable functions.
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This definition represents the average concavity of the function over the interval [q −
h, q+h]. The first symmetric derivative is called Lebesgue’s derivative and the second

one is Schwarz’s derivative[26, 27, 28].

For the purpose of this project and in order to be able to numerically differentiate

estimated PDFs, we need to design an algorithm that takes the derivative of any given

function made of uniform q and f arrays. The designed algorithms for 1st and 2nd

order derivatives that are suitable for our work look like below

f
′ |q=qi =

∂f

∂q
|q=qi =

f(qi + δq)− f(qi − δq)

2δq
, (2.13)

and

f
′′ |q=qi =

∂2f

∂q2
|q=qi =

f(qi + δq)− 2f(qi) + f(qi − δq)

(δq)2
, (2.14)

where δq is the average spacing between every two grid points, which for a uniform

grid is constant, in other words

δq = δqij = qi − qj ∀i, j ∈ [1, n], i ̸= j.

The algorithm that we designed (see Appendix A, subsection 5.1.3) takes a 2D

array containing q and f values, checks the uniformity of data based on condition

above, and computes the 1st or 2nd derivative of the given array2.

2.3 Pilot wave theory

In Pilot Wave theory, the wave function acts as a guiding field which influences the

paths of particles. The wave function evolves according to the Schrödinger equation,

and particles follow deterministic trajectories based on the guidance equation. For

a single object in 1 dimensional space with a position representation q, the pilot or

2This method disregards the first and last data points. In our use case, since we employ density
estimation methods, the curves remain smooth at the endpoints without any significant jumps or
discontinuities. As a result, omitting these points does not lead to any loss of critical information.
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guiding wave function ψ looks like[14, 29]

ψ(q, t) = R(q, t) exp

(︃
i
S(q, t)

ℏ

)︃
, (2.15)

where S and R are the phase and amplitude of the wave function. S(q, t) is also

the solution of the Hamilton-Jacobi equation in classical mechanics and it is called

Hamilton’s principal function[29].

The wave function 2.15 is the solution of time-dependent Schrödinger partial dif-

ferential equation

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂q2
+ V (q, t)ψ(q, t), (2.16)

where ℏ is the Planck constant, V (q, t) represents the real potential, and m is mass.

Substituting Eq. 2.15 into Eq. 2.16 yields a system of real and imaginary field

equations. After separating real and imaginary parts we obtain 3

∂R2

∂t
+

1

m

∂

∂q

(︃
R2∂S

∂q

)︃
= 0, (2.17)

∂S

∂t
+

1

2m

(︃
∂S

∂q

)︃2

+

(︃
V − ℏ2

2mR

∂2R

∂q2

)︃
= 0, (2.18)

where R and S are the real valued amplitude and phase parameters of the wave

function. In classical events when ℏ2
2m

→ 0, the term S(q) will be the solution of

classic Hamilton-Jacobi equation. If we consider an ensemble of particle trajectories,

i.e. sequences of log-returns, which are solutions of the equations of motion, if all

of these trajectories are normal to any given surface of constant S(q), then they are

normal to all surfaces of constant S(q), and ∇S(q)/m will represent the velocity, v(q),

for any particle passing the point q. In classical mechanics, these paths converge into

a single trajectory, where Newton’s laws of motion apply.

3Refer to [30, 29] for more detailed derivations.
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2.3.1 Quantum potential

Equation 2.17 illustrates how the amplitude R2 = |ψ|2 of the quantum field evolves

over time. Knowing initial state of the wave function (ψ(q, 0)) is necessary for de-

termining R(q, t) and S(q, t), though we will not cover the analytical solutions of

Hamilton-Jacobi equation in this project.

Equation 2.18 is the Hamilton-Jacobi equation in quantum framework. The last

term in Eq. 2.18 is called the quantum potential and it is defined as

Q(q, t) =
ℏ2

2m

∇2R

R
. (2.19)

Note that in classical limits the quantum potential vanishes and we achieve the classic

Hamilton-Jacobi equation.

Based on Bohm, 1952[14], it is also convenient to write R2(q) = f(q), or R = f
1
2

where f(q) is the true or estimated probability density. This is because the amplitude

of a pilot wave is equivalent to R2 = |ψ|2, meaning that R2 can be regarded as a

probability density. Using this analogy we used the probability density of log-returns

as R2. To fit the PDF in Eq. 2.19 and simplify our calculations, we substituted R

with
√
f and assumed ℏ2

2m
= 1. Equation 2.19 was then simplified as below:

Q(q) =
1√︁
f(q)

∂2
√︁
f(q)

∂q2
. (2.20)

Equation 2.20 will be used frequently and we might refer to it as quantum potential

or market potential.

2.3.2 Quantum force

Rearranging Eq. 2.18 we can obtain

∂S/∂t+ (∇S)2/2m = −(−Q+ V ). (2.21)

Given the classical and quantum field functions, we can determine the force acting

on a particle. With the knowledge of particle’s initial position and momentum, this

allows us to calculate its complete trajectory. Taking the gradient of Eq. 2.21 from
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both sides gives

(∂/∂t+ (1/m)∇S · ∇)∇S = −∇(−Q+ V ), (2.22)

and by substituting ∇S/m = q̇[29] we get the following equation of motion for a

particle under the influence of both the classical potential V (q) and the quantum

potential Q(q)
d

dt
(mq̇) = −∇(−Q+ V ), (2.23)

where

d/dt = ∂/∂t+ q̇ · ∇ (2.24)

describes the rate of change over time relative to a point moving along with the

particle.

Equation 2.23 takes the form of Newton’s second law, indicating that the particle

is influenced by both a quantum force FQ⃗ = −∇Q and other classical forces FV⃗ =

−∇V [29]. This indicates that the force experienced by an object is equal to the

negative gradient of the potential energy function. In simpler terms, it means that

the force points in the direction of the steepest decrease in potential energy. From

now on, we shall refer to FQ⃗ as quantum force or market force. Equation 2.23 will

now take the form
d

dt
(mq̇) = FV − FQ, (2.25)

which differs somewhat from David Bohm’s explanation4. The decision to take the

negative sign outside of the quantum potential and quantum force is rooted in the

interpretations of our model, which will be detailed in the following section.

2.3.3 Bohmian mechanics in finance

In this section, we will explore how to model a financial time series within the

framework of Bohmian Mechanics. The majority of the assumptions and general

concepts are drawn from the works of Tahmasebi et al[17]. and Shen et al[18].

Consider a financial asset such as TSLA. When we observe the market tomorrow,

4In Bohm’s paper (see [14, 15]), the quantum potential is defined as Q(q, t) = − ℏ2

2m
∇2R
R , differing

from our version of the quantum potential by a negative sign.
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the return on this asset, compared to the previous day, could vary by a fraction. How-

ever, suppose that tomorrow’s return is somehow influenced by the returns of the past

N days (N is called the “window” size). In this case, if we construct the probability

density function (PDF) of the log-returns over the past N days, as demonstrated in

section 2.1, tomorrow’s log-return is likely to follow the same distribution. In other

words, similar to the concept in Bohmian Mechanics, there exists an ensemble of log-

return configurations described by a probability distribution P = R2 = f(q), where

f represents the PDF (or its estimate) of the log-returns. There are several reasons

to why we use the quantum pilot wave to address a financial asset and not a classi-

cal wave. Some studies suggest that the pilot wave function can be viewed as a wave

function carrying information [30, 13]. Additionally, as we will see in the next section,

the quantum force derived from a pilot wave is independent of the wave’s amplitude

and instead depends on the field itself and its characteristics, such as mean and stan-

dard deviation. Also, an essential characteristic of a quantum potential is its role in

giving rise to non-locality. This non-locality arises from the fact that the pilot wave,

which directs the motion of particles, is defined in configuration space, a space that

encompasses all possible positions of every particle in the system. Consequently, if we

extend our model to include multiple financial assets, represented by an expanded pi-

lot wave function ψ(q1, q2, . . . , qM , t), even a minor change in the price of one asset can

immediately influence the trend of another asset elsewhere[31]. This is because the

trajectories of the assets are governed by the wave function’s global structure. Such

behavior is frequently observed in economics; for example, during the global financial

crisis of 2008, the collapse of the housing market in the United States triggered a

worldwide economic downturn. These observations lead to the logical conclusion that

the pilot wave is, in fact, an information wave. Based on these interpretations, we can

construct the quantum potential and quantum force for the log-returns. For Gaussian

estimation of log-returns, where R2(q, t) = fG(q, t), the quantum potential and quan-

tum force can be derived analytically using Equations 2.1 and 2.20. Therefore, the

quantum potential QG(q, t) and the market force FQG(q, t) for a Normal distribution

N (µ, σ2) are given by

QG(q, t) =
(q − µ)2

4σ4
− 1

2σ2
, (2.26)
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and

FQG(q, t) = −∂QG

∂q
= −q − µ

2σ4
, (2.27)

where q represents the logarithmic price return at time t, and µ and σ are the mean

and standard deviation of the log-returns over the past N days. For kernel estimation

of log-returns, numerical methods, such as Schwarz’s derivative, provide an efficient

way to calculate the corresponding potential and force. A more detailed algorithm will

be presented in the next chapter. Examining QG reveals a parabolic shape, indicating

the presence of an equilibrium state where the system’s quantum potential energy

is minimized. For a normal distribution, this equilibrium point corresponds to the

mean, µ. Additionally, the market force FQG is linear, taking a zero value precisely

at this mean. This suggests that the expected log-return corresponds to a state of

equilibrium in the system, where the energy is at its lowest possible level, and no net

quantum force (in this case market force) is acting on it. Essentially, this is the point

where the system is most stable, with forces balanced and energy minimized. Further

exploration and interpretation of these findings are discussed in Chapter 4. These

characteristics and interpretations are a result of moving the negative sign outside the

quantum potential. Without this minor modification, stable equilibrium points and

constraining walls for quantum potentials would not exist. Additionally, in Chapter

3, we will explore how this method aids in extracting and interpreting the features of

quantum potentials and quantum forces. Note that the primary aim of this research

has been to investigate the characteristics of quantum potentials and quantum forces

within financial time series. The general framework of Bohmian mechanics remains

undeveloped for financial markets, with numerous undefined parameters and constants

(such as the classical potential V , ℏ, and m) that would need specification to establish

a comprehensive Bohmian mechanics theory for financial time series. At this stage,

it is more practical to accept a few necessary simplifications to achieve the study’s

objectives.

2.4 Sliding window technique

A time series can represent financial data or physical metrics, such as temperature

or pressure, for a machine over a period of time. One approach to studying these

metrics is to apply mathematical or statistical calculations (mean, standard deviation,
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etc.) to the entire month’s data, yielding a single, fixed result. Alternatively, we can

analyze a small time window, such as the first week, and calculate the metrics for that

period. We then move the window forward by one day, gather another set of metrics,

and repeat this process until we reach the end of the month. By examining these

results, we can create a new time series showing the evolution of the metrics over the

month. This technique, which enables the study of a system’s time evolution using

any set of metrics, is known as the “sliding window technique”. The metrics that are

used to smooth data or identify trends and patterns are called “technical indicators”.

To demonstrate how technical indicators and the sliding window technique work,

we’ll use one of the basic indicators: the simple moving average (SMA). In financial

analysis, the SMA represents the unweighted average of the last k data points. Con-

sidering a sequence of price data P = [p1, p2, . . . , pN ], the SMA indicator calculates

the average across a fixed number of consecutive points, known as the window size k.

For the SMA at position i, the windowWi = [pi, pi+1, . . . , pi+k−1] represents the values

included in the calculation. Mathematically, the SMA for each window is computed

as

SMAk
i+1(p) =

1

k

i+k−1∑︂
j=i

pj. (2.28)

To efficiently compute the SMA across the sequence, we utilize the sliding window

technique, which reduces redundant calculations as the window shifts. For each new

windowWi+1, we adjust the previous sum by subtracting the element pi that is leaving

the window and adding the new element pi+k that is entering it. This allows us to

compute the SMA as follows

SMAk
i+1(p) = SMAk

i (p)−
pi
k
+
pi+k

k
. (2.29)

By applying this incremental update, the SMA for each new window is calculated in

constant time, O(1), rather than recalculating the full sum for each window, which

would be O(k). This technique demonstrates how sliding windows enhance computa-

tional efficiency, particularly in time series analysis and real-time applications where

quick updates to the moving average are crucial.

For N sequence of price data and the window size k = 3, the SMA indicator will
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look like

SMA3
1(p), SMA3

2(p), · · · , SMA3
N−3(p), SMA3

N−2(p),

where the last window is

SMA3
N−2(p) =

1

3

N∑︂
j=N−2

pj.

A visual representation of this indicator and the sliding window technique is shown

in Fig. 2.5.

Figure 2.5: Sliding Window Technique for Making Technical Indicators (Example:
Simple Moving Average with Window Size 3)

Throughout the following chapter we will select a number of famous indicators,

in addition to SMA, in order to study the time evolution of closing prices, just as

represented on Fig. 2.5. These set of indicators include: relative strength index (RSI)

and moving average convergence/divergence (MACD). The Relative Strength Index

(RSI) gauges the speed and magnitude of price changes, evaluating the recent gains of

a security against its losses over a given period, usually 14 days. The RSI ranges from

0 to 100. Based on empirical facts in technical analysis, values above 70 often signal

that the security may be overbought and could face a price decline, whereas values

below 30 suggest that it might be oversold and potentially due for a price increase.

The Moving Average Convergence Divergence (MACD) is another key trend-following

tool in technical analysis that helps identify shifts in a trend’s strength, direction, and

duration. The MACD consists of two lines: the MACD line, which is the difference

between the 12-day and 26-day exponential moving averages (EMAs), and the signal

line, which is the 9-day EMA of the MACD line. A cross of the MACD line above the
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signal line indicates a upward price movement, while a cross below signals a downward

movement.

In what follows we will calculate a few statistical measures such as mean, standard

deviation, skewness, and kurtosis associated with the daily log-returns within the same

window as for technical indicators. The most exciting part of the next chapter is when

we create our own indicators using the features extracted from market potentials and

market forces. Finally we will analyze the correlations of our new indicators with other

technical and statistical ones and show the results in a correlation matrix. Given the

insights from the correlation matrix and the understanding that the selected technical

and statistical indicators capture essential market characteristics (such as volatility,

trend, and reversal) we can uncover the role of quantum potentials, quantum forces,

and their associated indicators in studying financial markets.
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Model and results

This chapter outlines our methodology and procedures for generating quantum

potentials of log-returns and analyzing their time evolution using the sliding window

technique. Each section details the methods and algorithms utilized to achieve this

objective. After thoroughly analyzing the results and extracting features from these

new structures, we will present our conclusions and highlight the key points of this

project.

3.1 Price time series

The initial step in studying a financial asset involves obtaining its real-time or

historical price time series. Financial markets consist of various assets, including

stocks, options, futures contracts, bonds, and currencies. A broker facilitates the

trading of these assets. When a buyer and a seller agree on a price, the transaction

is recorded in the broker’s system, and the asset and money are transferred between

traders. These transactions are updated within fractions of a second and are visible to

all, providing real-time information on the asset’s value. Since these data are recorded

continuously, they form a time series. Each component of a time series provides

a detailed record of every transaction (or “tick”), including the price, volume, and

timestamp of each trade. If this data is not filtered, it is referred to as “tick data”.

Tick data offers the highest resolution of financial information, ensuring that ev-

ery single trade is captured in the dataset. This unprocessed and raw form of data
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allows traders and analysts to apply their own filtering methodologies. Due to the

challenges of recording and maintaining such detailed and extensive datasets, tick

data is typically expensive to obtain and requires substantial computing resources for

pre-processing. A sample of this type of raw data is shown on Table 3.1. These are

the information of every single trade within a single day (12/05/2023) on Microsoft’s

stock shares. Each row presents information about a single trade that occurred at a

2023-05-12 04:00:00.004,309.77,200,1,310.41,200,1
2023-05-12 04:00:00.156,309.8,200,1,310.41,200,1
2023-05-12 04:00:00.696,309.8,200,1,310.8,200,8
2023-05-12 04:00:01.008,309.8,200,1,310.37,200,1
2023-05-12 04:00:02.518,309.8,100,1,310.26,100,1
2023-05-12 04:00:02.518,309.8,100,1,310.06,100,1

.

.

.
2023-05-12 19:59:15.384,308.29,400,7,308.37,700,8
2023-05-12 19:59:35.601,308.29,400,7,308.37,600,8

Table 3.1: Tick data sample, Microsoft.

specific point in time. The first two columns indicate the date and time of each trade,

while the remaining columns contain ambiguous data that requires classification and

filtering.

To effectively employ computational techniques, it is crucial to filter the tick data,

extract important information, and arrange these extractions in a consistent format.

Ideally, the data should be structured in a form commonly referred to as “bars”. Bars

are created by filtering and sampling the raw tick data according to time, volume, or

other specific criteria. While several bar construction techniques are widely used in

finance, we’ll focus on the most straightforward type known as “time bars”. These

bars are generated by sampling data at consistent time intervals, such as once per

minute. Generally, the gathered data usually includes information such as[32]:

• date or timestamp,

• opening and closing price,

• highest and lowest price,
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• volume-weighted average price (VWAP),

• and other related information such as traded volume, etc.

Date Open High Low Close VWAP
2023-05-12 310.549988 310.649994 306.600006 308.970001 306.454865

Table 3.2: Daily bar data sample, Microsoft.

Table 3.2 shows the filtered and structured daily bar data for the same day and

asset as presented in Table 3.1. By comparing Table 3.2 with Table 3.1, it is clear

that bar data provides a more organized and manageable format, though it comes

at some cost. Firstly, time bars naturally oversample information during periods

of low activity and undersample during periods of high activity, as the number of

recorded activities in a high-activity minute differs from that in a low-activity period.

Additionally, time-sampled series often display poor statistical properties, such as

serial correlation[32]. For more simplicity in our work, from now on, we rely only on

the closing prices of daily time bars.

3.1.1 Data access

Tick and bar data can be accessed through various Application Programming In-

terfaces (APIs). These APIs may be provided either for free or for a fee, depending

on the provider and the quality of the data. To access daily bar data for various

securities, we used a free Python library called yfinance, which connects to the ya-

hoo!finance API (see Appendix A, subsection 5.1.1). We selected Tesla and Bitcoin

for their high volatility, while S&P500 ETF Trust and Johnson&Johnson were chosen

for their stability, exhibiting low volatility. Figure 3.1 illustrates the historical daily

closing prices for the selected securities over nearly two years. The horizontal axis rep-

resents time t, while the vertical axis denotes the price p. Given the daily time frame,

we set the time step τ to 1 day. Although intraday data, such as hourly or minute

intervals, can be accessed through various APIs, we opted for the daily format due

to its widespread use among traders and researchers. As discussed, the function p(t)

will form the basis of our model. In the following sections, we will demonstrate how

to estimate the probability density of price changes using Eq. 1.1 and curve estima-

tion methods like Gaussian density estimation (GDE) and kernel density estimation
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(KDE) (see subsection 2.1.1 and subsection 2.1.3).

Figure 3.1: Daily close prices of (a) Tesla, (b) Bitcoin, (c) S&P500 ETF Trust, and
(d) Johnson&Johnson from 28/09/2021 to 23/09/2023

3.2 Estimating probability density functions

After obtaining the daily close prices, we calculate the price changes of all four

time series and create their histograms as initial representations of the distributions.

To do this we use Eq. 1.1 and determine the logarithmic price change for each day

compared to the previous day, then we organize this data into bins to construct our

histograms. Figure 3.2 shows the obtained histograms of log-returns for the chosen

financial assets. As the plots clearly show, the width of each histogram is directly

related to the standard deviation σ of log-returns.

The data related to a histogram is typically not differentiable. A histogram rep-

resents discrete data by counting occurrences within specified bins or intervals. The

resulting bar heights indicate the frequency of data points within each bin, forming
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Figure 3.2: Distribution of log-returns of daily close prices of (a) Tesla, (b) Bitcoin,
(c) S&P500 ETF Trust, and (d) Johnson&Johnson from 28/09/2021 to 23/09/2023

a step-like function. Differentiability requires a smooth, continuous function where

derivatives exist at every point within its domain.

As we discussed in previous chapter, we used two methods for finding the associ-

ated PDFs with the histograms of log-returns.
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3.2.1 GDE

To estimate a Gaussian distribution for the log-returns, we follow the approach out-

lined in subsection 2.1.1. We developed a function that performs this task by accepting

the log-returns of each time series as input. This function outputs a dataframe object

containing the values of quniform and fG. The quniform represents uniformly generated

data points based on the original log-returns q. By using these uniform log-returns

along with the parameters mu and sigma, which are derived from the original q data,

we apply them to a Gaussian function (defined as Eq. 2.1) and get the result in

a dataframe format (see the source code in Appendix A, subsection 5.2.1 for more

detail).

3.2.2 KDE

Following from the description of KDE method in subsection 2.1.3, to perform

kernel estimation on the log-returns, we utilized the seaborn.kdeplot() function,

which takes an array of log-returns as input, generates N (0, 1) distributions at each q

point, and sums them to form the final distribution curve. We specified "silverman"

for the bw_method and set common_norm to True. These parameters ensure a smooth

and normalized probability density function (PDF). Once the data points for the

estimated PDF are generated, they can be stored in a pandas dataframe for future

use (see the source code in Appendix A, subsection 5.2.2 for more detail).

Figure 3.3 shows the estimated PDFs of the original histograms presented in Fig.

3.2. These continuous curves, plotted on a uniform grid along the log-return axis,

facilitate numerical differentiation. The differences between the Gaussian estimate

(dashed curve) and the kernel estimate (solid curve) are clear. Notably, the kernel

estimate responds better to extreme events, as seen in the tails of the TSLA data. Ad-

ditionally, the KDE method more accurately captures the highs and lows without over-

smoothing the data, unlike the GDE. These plots effectively highlight the differences

between fat-tailed distributions and Gaussian ones. They provide enough evidence for

why log-returns cannot be assumed to follow a normal distribution. These differences

have also been pointed out by other researchers such as Benoit Mandelbrot[8]. In the

next section, we will further explore the differences between these two types of PDFs

by analyzing their quantum potentials and quantum forces.
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Figure 3.3: Gaussian density estimation (GDE) and kernel density estimation (KDE)
of log-returns of daily close prices for (a) Tesla, (b) Bitcoin, (c) S&P500 ETF Trust,
and (d) Johnson&Johnson from 28/09/2021 to 23/09/2023

3.3 Quantum potentials

In this section, we demonstrate how the quantum potentials of log-returns are

constructed using pilot wave theory and other numerical methods discussed in earlier

sections. As outlined in subsection 2.3.1 and subsection 2.3.3, quantum potentials
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represent the likelihood of certain log-returns occurring based on energy terms. Ac-

cording to the reformulated definition of quantum potentials, to obtain the quantum

potential of an estimated PDF, we simply need to substitute the estimated f func-

tions from Fig. 3.3 into the reshaped format of quantum potentials as Eq. 2.20. We

can create a function to handle the numerical derivatives of f , following the approach

described in section 2.2. For a distribution estimated using a Gaussian function, we

can utilize the analytical form of the PDF to develop a Python function based on Eq.

2.26 and apply it to the quniform data points (for more details, see the source code in

Appendix A, subsection 5.2.1 and subsection 5.2.2).

Figure 3.4 shows quantum potentials related to GDE and KDE fits of daily log-

returns for the same collection of symbols. As before, the dashed and solid lines

show the potential made from Gaussian and kernel density estimates. As we can

see, the quantum potentials made from KDE are very different than Gaussian ones.

The Gaussian quantum potential is simply a parabola with a minimum at average

log-return (µ). Derived from Eq. 2.26 we get

QG|q=µ =
(µ− µ)2

4σ4
− 1

2σ2
= − 1

2σ2
,

which is the expected value of a Gaussian quantum potential at point q = µ.

The domain of the quantum potentials driven from KDE distributions, appearing

as walls, are related to the range of motion of every asset at the moment, or well

know as “volatility”. Any log-return outside these walls are very unlikely to happen.

These plots clearly illustrate why almost no one anticipates massive returns from the

market. For instance, if the walls of a quantum potential are situated at -0.05 and

0.05, they set the boundaries for an investor’s risk and potential return, meaning it is

unrealistic to expect a return of 0.1 or a loss of 0.15.

Unlike Gaussian potentials, there are more that one local minimum points in non-

Gaussian quantum potentials, indicating multiple equilibrium states. In other words,

in a real market, traders don’t want the market to stay still. This creates other

equilibrium states other than average return that are really important. Whenever

an asset falls in one of its equilibrium points, it is unlikely to leave that state unless

there is a significant market movement. In such a scenario, the asset is likely to shift

to the nearest equilibrium state in the direction of the market. Unlike the Gaussian

model, which predicts a stable, converging market with expected return of µ, a more
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Figure 3.4: GDE and KDE quantum potentials of log-returns of daily close prices
for (a) Tesla, (b) Bitcoin, (c) S&P500 ETF Trust, and (d) Johnson&Johnson from
28/09/2021 to 23/09/2023

realistic model of financial markets suggests a dynamic system with multiple equilib-

rium states, which are not apparent in density functions. These multiple equilibrium

points could provide profitable opportunities for investors. This property of quantum

potentials contradicts the principles of the “efficient market hypothesis” or “EMH”.

It is important to note that these equilibrium points should not be mistaken for any

noise arising from our numerical methods. Readers can easily compare the numerical
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and analytical derivatives of the Gaussian PDF and observe a very high degree of

agreement. In other words, no noise was detected from our numerical methods.

Another key characteristic of KDE quantum potentials is their ability to emphasize

data in the tails. The deep minima located at the ends of the quantum potentials

represent extreme events in fat-tailed distributions. Due to their significant depth,

these minima serve as prominent equilibrium points. Thus, overlooking these states

would be a critical error in any financial model. We will further explore these behaviors

in the following sections.

3.4 Market forces

As described in subsection 2.3.2, the quantum force FQ is defined as the negative

gradient of the potential, indicating that the force directs the system towards the

steepest decrease in potential energy. This implies that the force is zero at local min-

ima of the potential, which correspond to equilibrium states. The market force drives

the market toward these equilibrium states. From the expression for the quantum

force of a Gaussian system in Eq. 2.27, we can observe that

FQG|q=µ = −µ− µ

2σ4
= 0,

indicating that the market force for a Gaussian quantum potential is a flat line, with

a value of zero at the average log-return (µ). This further suggests that a Gaussian

model aligns with EMH, predicting a single expected return for market participants.

In a fair game (normal system), the dynamics of the market push players towards a

single equilibrium state, which is the average return, meaning no one can outperform

the average. Creating a python function that constructs market forces is quite easy.

All we did was to feed the dataframes containing the uniform log-returns and quantum

potential values to our first order symmetric derivative function and multiply it by -1

(see the source code in Appendix A, subsection 5.3.5 for more detail).

Figure 3.5 illustrates the market forces derived from the quantum potentials shown

in Fig. 3.4. These plots clearly demonstrate that a real market is more dynamic and

complex than a normal system. It is evident that multiple forces influence the market.

Unlike the Gaussian model, which results in a single equilibrium point with zero force,
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in a more realistic model, the force crosses the zero line multiple times, indicating

multiple minima in the quantum potential plots. An interesting feature to consider is

the value of the quantum force at q = µ. Comparing this with the expected value from

Gaussian model (FQ(µ) = 0) could provide insights into the fairness of the market

and measure deviations from the Gaussian model. Specifically, if |FQ(µ)| >> 0, it

suggests that the market is unlikely to yield no returns.

Figure 3.5: GDE VS KDE market force comparison, generated from log-returns of
daily close prices for (a) Tesla, (b) Bitcoin, (c) S&P500 ETF Trust, and (d) John-
son&Johnson from 28/09/2021 to 23/09/2023
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3.5 Multi-time frame analysis

Studying markets in various time frames provides valuable insights into both the

short-term and long-term behavior of an asset. Financial markets usually start to

Figure 3.6: Gaussian and kernel density estimations for the log-returns of Tesla Inc.
in multiple time frames (from 28/09/2013 to 23/09/2023)

act like a Gaussian system when studied in longer time frames. In this section, we

examine the quantum potential and quantum force of log-returns across daily, weekly,

monthly, and quarterly time frames to analyze in detail the deviations of our selected
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assets from normal systems. We select Tesla and S&P500 ETF Trust for this purpose.

Figure 3.7: Gaussian and kernel density estimations for the log-returns of S&P500
ETF Trust in multiple time frames (from 28/09/2013 to 23/09/2023)

The initial observation of probability density functions across various time frames

in Fig. 3.6 and Fig. 3.7 indicates that the kurtosis κ tends to decrease as the time

frame lengthens1 (note the values of κ for different time frames). In statistical terms,

1Note that the size of the datasets shrinks for longer time frames. When performing multi-
time frame analysis for a fixed time window, a reduction in granularity and dataset size can pose
challenges. But in technical analysis, it is widely recognized that gaining long-term insights often
requires sacrificing precision, and vice versa.
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this means that the “tailedness” of the distributions diminishes over greater time

frames, implying that extreme values or outliers become less frequent. As a result,

the kernel estimates of these distributions begin to resemble Gaussian distributions

more closely, characterized by their bell-shaped curve and lack of heavy tails. This

Figure 3.8: Quantum potentials of Tesla Inc. in multiple time frames (from
28/09/2013 to 23/09/2023)

trend suggests that longer time frames provide more stable and predictable data

patterns, where random fluctuations and outliers exert less influence on the overall

distribution. These figures also show that the estimated PDFs become increasingly
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skewed towards positive log-returns over longer time frames. This trend suggests the

potential for greater returns for long-term investors. However, it is important to note

that this may not apply to every asset, especially those that have historically proven

to be unprofitable.

Figure 3.9: Quantum potentials of S&P500 ETF Trust in multiple time frames (from
28/09/2013 to 23/09/2023)

Figures 3.8 and 3.9 illustrate the structural differences in quantum potentials

across various time frames. Similar to the probability density functions, the quantum

potentials derived from KDE method tend to resemble those formed from Gaussian
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distributions. Notably, for larger time frames, the quantum potentials exhibit a sim-

pler structure. This indicates that, over the long term, quantum potentials converge

to a fewer number of equilibrium points that are more dominant. Based on these two

Figure 3.10: Market forces of Tesla Inc. in multiple time frames (from 28/09/2013 to
23/09/2023)

figures, the dominant equilibrium states in longer time frames, which are associated

with weak returns (i.e., those in the middle of the plots), become deeper and more

stable as the time frame extends. This may be related to the tendency of long-term

investors to seek small but consistent returns. Another point to note is the widening
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of the constraining walls. Observing both axes of the plots, it is evident that the

quantum potentials are becoming shallower and wider. We will refer to this as the

“widening” behavior and will discuss it further in the following sections.

Figure 3.11: Market forces of S&P500 ETF Trust in multiple time frames (from
28/09/2013 to 23/09/2023)

The changes we observed in the structures of probability density functions and

quantum potentials are also evident when examining market forces across multiple

time frames. As shown in Fig. 3.10 and Fig. 3.11, it is clear that over longer time

frames, market forces exhibit simpler but more dominant structures. This indicates
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that minor sources of force tend to converge into a smaller number of more influential

ones.

In this section, we examined the behavior of our new tools over both short and long-

term periods.We observed that over longer time frames, particularly with quarterly

price changes, the quantum potentials and quantum forces of real markets become

simpler in structure, displaying fewer but more definite features. Most of our findings

are consistent with Tahmasebi’s original research[17]. That study suggested that

quantum potentials tend to resemble Gaussian white noise (N (µ, σ2)) as we analyze

larger time scales. It was proposed that short-term price fluctuations are primarily

influenced by market supply and demand, whereas long-term trends are shaped by

political and natural factors[17].

Figure 3.12 illustrates the behavior of kurtosis of distributions of log-returns across

various time frames and the number of local critical points on the potential graphs.

It is evident from these figures that as the time frame increases and kurtosis values

decrease, the number of local minima and maxima in the potential graphs also declines,

thereby confirming our earlier conclusions.

(a) S&P500 ETF Trust (b) Tesla Inc.

Figure 3.12: Kurtosis and number of equilibrium points of S&P500 ETF Trust and
Tesla Inc. in multiple time frames (from 28/09/2013 to 23/09/2023)
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3.6 Features

By observing Figures 3.4 and 3.5 we can detect a couple of unique features of

quantum potentials and market forces that may carry some information about the

current state of the market. We selected and measured a number of features and

using the sliding window technique, created new technical indicators based on them.

These are the features that were selected and examined:

• length (width) of the quantum potential

• depth of the quantum potential

• number of local minima (stable equilibrium points)

• number of local maxima (unstable equilibrium points)

• market force at the theoretical equilibrium point (q = µ).

To determine the width of the quantum potentials, we measured the distance between

the first and last data points in the log-return grid. The depth of the quantum

potentials was defined as the difference between their maximum and minimum values.

For calculating the remaining three features, we applied numerical and algorithmic

techniques2.

3.6.1 Time evolution of features

The sliding window technique is commonly used in time series analysis and finan-

cial data processing to calculate technical indicators. This method involves computing

indicators over a fixed subset of data points (a “window”) that moves or slides through

the entire dataset. We used this technique to make our own new indicators that reveal

the time evolution of quantum potentials and market forces. We applied this method

to our selected financial assets and examined the correlations between newly made

indicators with other famous statistical and technical indicators.

Figures 3.13 to 3.16 display daily close price and time evolution of the newly made

indicators based on quantum potentials and quantum forces of four selected assets

with a sliding 30 days window.
2Refer to subsections 5.3.1, 5.3.2, 5.3.3, 5.3.4, and 5.3.5 in Appendix A for more detail.
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Figure 3.13: Daily close price and indicators based on market potential and market
force of Tesla Inc. from 28/09/2021 to 23/09/2023 (window size = 30 days)
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Figure 3.14: Daily close price and indicators based on market potential and market
force of Bitcoin (USD). from 28/09/2021 to 23/09/2023 (window size = 30 days)
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Figure 3.15: Daily close price and indicators based on market potential and market
force of S&P500 ETF Trust. from 28/09/2021 to 23/09/2023 (window size = 30 days)
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Figure 3.16: Daily close price and indicators based on market potential and market
force of Johnson&Johnson. from 28/09/2021 to 23/09/2023 (window size = 30 days)

Tables 3.3 to 3.6 present the Pearson correlation coefficients between new indica-

tors and several well-known statistical and technical indicators. Correlations above

50% are highlighted in green. The Pearson correlation coefficient, denoted by ρ, quan-

tifies the linear correlation between two variables. This coefficient ranges from -1 to 1,

where values close to 1 or -1 indicate strong correlation, and values close to 0 indicate

weak or no linear correlation.

The Pearson correlation coefficient between two sets of random variables, X and

Y , is defined as

ρX,Y =
cov(X, Y )

σXσY
,
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where σX and σY are the standard deviations of X and Y , respectively, and cov(X, Y )

represents their covariance. Covariance itself is calculated as

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])],

where E[X] and E[Y ] are the expected values of X and Y . We used the functionality

of the pandas library in Python to efficiently compute these correlations.

p q SMA RSI MACD MEAN STDEV SKEW KURT Length Depth N Min N Max F (µ)
p 1.00 0.08 0.88 0.50 -0.12 0.40 -0.12 0.09 0.17 0.01 0.04 0.16 0.16 0.21
q 0.08 1.00 -0.10 0.23 0.21 0.15 0.01 -0.05 -0.03 -0.00 0.03 -0.09 -0.09 0.02
SMA 0.88 -0.10 1.00 0.09 -0.42 -0.00 -0.02 0.06 0.18 0.12 -0.08 0.19 0.19 0.11
RSI 0.50 0.23 0.09 1.00 0.25 0.89 -0.41 -0.06 0.18 -0.32 0.43 0.06 0.06 0.30
MACD -0.12 0.21 -0.42 0.25 1.00 0.16 0.09 0.20 -0.34 -0.06 0.03 -0.22 -0.22 -0.07
MEAN 0.40 0.15 -0.00 0.89 0.16 1.00 -0.28 -0.03 0.14 -0.21 0.27 0.06 0.06 0.34
STDEV -0.12 0.01 -0.02 -0.41 0.09 -0.28 1.00 0.00 -0.16 0.91 -0.88 -0.07 -0.07 -0.08
SKEW 0.09 -0.05 0.06 -0.06 0.20 -0.03 0.00 1.00 -0.31 -0.08 -0.11 -0.09 -0.09 -0.15
KURT 0.17 -0.03 0.18 0.18 -0.34 0.14 -0.16 -0.31 1.00 0.22 0.11 0.25 0.25 -0.29
Length 0.01 -0.00 0.12 -0.32 -0.06 -0.21 0.91 -0.08 0.22 1.00 -0.84 0.07 0.07 -0.17
Depth 0.04 0.03 -0.08 0.43 0.03 0.27 -0.88 -0.11 0.11 -0.84 1.00 0.02 0.02 0.03
N Min 0.16 -0.09 0.19 0.06 -0.22 0.06 -0.07 -0.09 0.25 0.07 0.02 1.00 1.00 0.00
N Max 0.16 -0.09 0.19 0.06 -0.22 0.06 -0.07 -0.09 0.25 0.07 0.02 1.00 1.00 0.00
F (µ) 0.21 0.02 0.11 0.30 -0.07 0.34 -0.08 -0.15 -0.29 -0.17 0.03 0.00 0.00 1.00

Table 3.3: Correlation matrix of indicators (normalized to [0,1]) with daily close prices
(p) and log-returns (q) of Tesla Inc., window size = 30 days, green numbers represent
correlations greater than 0.5 or less than -0.5

p q SMA RSI MACD MEAN STDEV SKEW KURT Length Depth N Min N Max F (µ)
p 1.00 0.04 0.97 0.15 -0.21 0.06 0.14 0.04 -0.35 0.03 -0.22 -0.08 -0.08 0.13
q 0.04 1.00 -0.07 0.23 0.16 0.19 -0.02 0.14 -0.03 -0.02 0.01 -0.01 -0.01 0.01
SMA 0.97 -0.07 1.00 -0.04 -0.34 -0.13 0.18 -0.10 -0.32 0.07 -0.23 -0.07 -0.07 0.14
RSI 0.15 0.23 -0.04 1.00 0.20 0.86 -0.30 0.69 -0.32 -0.34 0.07 -0.12 -0.12 -0.04
MACD -0.21 0.16 -0.34 0.20 1.00 0.18 0.08 0.20 0.06 0.10 -0.01 -0.17 -0.17 0.03
MEAN 0.06 0.19 -0.13 0.86 0.18 1.00 -0.37 0.71 -0.23 -0.39 0.13 -0.09 -0.09 -0.07
STDEV 0.14 -0.02 0.18 -0.30 0.08 -0.37 1.00 -0.18 0.08 0.97 -0.78 0.08 0.08 0.28
SKEW 0.04 0.14 -0.10 0.69 0.20 0.71 -0.18 1.00 -0.47 -0.23 -0.09 -0.16 -0.16 -0.10
KURT -0.35 -0.03 -0.32 -0.32 0.06 -0.23 0.08 -0.47 1.00 0.28 0.21 0.24 0.24 -0.02
Length 0.03 -0.02 0.07 -0.34 0.10 -0.39 0.97 -0.23 0.28 1.00 -0.72 0.16 0.16 0.27
Depth -0.22 0.01 -0.23 0.07 -0.01 0.13 -0.78 -0.09 0.21 -0.72 1.00 -0.01 -0.01 -0.40
N Min -0.08 -0.01 -0.07 -0.12 -0.17 -0.09 0.08 -0.16 0.24 0.16 -0.01 1.00 1.00 0.02
N Max -0.08 -0.01 -0.07 -0.12 -0.17 -0.09 0.08 -0.16 0.24 0.16 -0.01 1.00 1.00 0.02
F (µ) 0.13 0.01 0.14 -0.04 0.03 -0.07 0.28 -0.10 -0.02 0.27 -0.40 0.02 0.02 1.00

Table 3.4: Correlation matrix of indicators (normalized to [0,1]) with daily close prices
(p) and log-returns (q) of Bitcoin, window size = 30 days, green numbers represent
correlations greater than 0.5 or less than -0.5
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p q SMA RSI MACD MEAN STDEV SKEW KURT Length Depth N Min N Max F (µ)
p 1.00 0.09 0.88 0.57 0.02 0.41 -0.63 -0.10 -0.12 -0.64 0.58 -0.05 -0.05 0.32
q 0.09 1.00 -0.08 0.22 0.18 0.16 -0.01 0.08 -0.07 -0.01 0.00 -0.02 -0.02 -0.02
SMA 0.88 -0.08 1.00 0.18 -0.34 0.00 -0.52 -0.28 -0.08 -0.53 0.48 0.01 0.01 0.31
RSI 0.57 0.22 0.18 1.00 0.34 0.80 -0.65 0.20 0.01 -0.63 0.68 -0.02 -0.02 0.41
MACD 0.02 0.18 -0.34 0.34 1.00 0.27 0.21 0.20 -0.29 0.15 -0.17 -0.24 -0.24 -0.19
MEAN 0.41 0.16 0.00 0.80 0.27 1.00 -0.46 0.35 0.06 -0.43 0.40 0.03 0.03 0.16
STDEV -0.63 -0.01 -0.52 -0.65 0.21 -0.46 1.00 0.03 0.04 0.98 -0.85 0.02 0.02 -0.34
SKEW -0.10 0.08 -0.28 0.20 0.20 0.35 0.03 1.00 0.05 0.08 -0.08 0.11 0.11 -0.17
KURT -0.12 -0.07 -0.08 0.01 -0.29 0.06 0.04 0.05 1.00 0.20 0.05 0.32 0.32 0.20
Length -0.64 -0.01 -0.53 -0.63 0.15 -0.43 0.98 0.08 0.20 1.00 -0.84 0.11 0.11 -0.32
Depth 0.58 0.00 0.48 0.68 -0.17 0.40 -0.85 -0.08 0.05 -0.84 1.00 0.06 0.06 0.61
N Min -0.05 -0.02 0.01 -0.02 -0.24 0.03 0.02 0.11 0.32 0.11 0.06 1.00 1.00 0.22
N Max -0.05 -0.02 0.01 -0.02 -0.24 0.03 0.02 0.11 0.32 0.11 0.06 1.00 1.00 0.22
F (µ) 0.32 -0.02 0.31 0.41 -0.19 0.16 -0.34 -0.17 0.20 -0.32 0.61 0.22 0.22 1.00

Table 3.5: Correlation matrix of indicators (normalized to [0,1]) with daily close prices
(p) and log-returns (q) of S&P500 ETF Trust, window size = 30 days, green numbers
represent correlations greater than 0.5 or less than -0.5

p q SMA RSI MACD MEAN STDEV SKEW KURT Length Depth N Min N Max F (µ)
p 1.00 0.12 0.77 0.69 0.15 0.55 0.33 0.17 -0.03 0.20 -0.35 -0.31 -0.31 0.39
q 0.12 1.00 -0.09 0.26 0.18 0.18 0.05 0.13 0.05 0.03 0.01 -0.12 -0.12 0.02
SMA 0.77 -0.09 1.00 0.12 -0.36 0.01 0.16 -0.13 -0.18 0.02 -0.35 -0.09 -0.09 0.28
RSI 0.69 0.26 0.12 1.00 0.47 0.88 0.29 0.41 0.24 0.30 -0.08 -0.35 -0.35 0.26
MACD 0.15 0.18 -0.36 0.47 1.00 0.32 0.12 0.30 0.05 0.07 0.04 -0.33 -0.33 0.08
MEAN 0.55 0.18 0.01 0.88 0.32 1.00 0.34 0.41 0.25 0.37 -0.13 -0.25 -0.25 0.27
STDEV 0.33 0.05 0.16 0.29 0.12 0.34 1.00 0.47 0.48 0.94 -0.82 0.06 0.06 0.47
SKEW 0.17 0.13 -0.13 0.41 0.30 0.41 0.47 1.00 0.39 0.47 -0.12 -0.16 -0.16 0.08
KURT -0.03 0.05 -0.18 0.24 0.05 0.25 0.48 0.39 1.00 0.70 -0.04 0.12 0.12 0.23
Length 0.20 0.03 0.02 0.30 0.07 0.37 0.94 0.47 0.70 1.00 -0.66 0.17 0.17 0.43
Depth -0.35 0.01 -0.35 -0.08 0.04 -0.13 -0.82 -0.12 -0.04 -0.66 1.00 -0.13 -0.13 -0.45
N Min -0.31 -0.12 -0.09 -0.35 -0.33 -0.25 0.06 -0.16 0.12 0.17 -0.13 1.00 1.00 -0.12
N Max -0.31 -0.12 -0.09 -0.35 -0.33 -0.25 0.06 -0.16 0.12 0.17 -0.13 1.00 1.00 -0.12
F (µ) 0.39 0.02 0.28 0.26 0.08 0.27 0.47 0.08 0.23 0.43 -0.45 -0.12 -0.12 1.00

Table 3.6: Correlation matrix of indicators (normalized to [0,1]) with daily close prices
(p) and log-returns (q) of Johnson&Johnson, window size = 30 days, green numbers
represent correlations greater than 0.5 or less than -0.5
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3.6.2 Analysis

Looking at the new indicators (e.g., Figures 3.13-3.16 and Tables 3.3-3.6), we can

identify a couple of general behaviors that consistently appear regardless of the asset

or time series.

Correlations between length and depth of quantum potentials and STDEV

The correlation matrices reveal a strong positive correlation between the standard

deviation and the length of the quantum potentials, and a strong negative correlation

between the depth of the quantum potential and the other two. Figure 3.17 displays

this correlation for all four assets in more detail.

(a) Tesla Inc. (b) Bitcoin

(c) S&P500 ETF Trust (d) Johnson&Johnson

Figure 3.17: The correlations between Length and Depth of Potential and STDEV
(normalized to [0,1], window size = 30 days)
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As we can see the depth and length of quantum potentials are positive and neg-

atively correlated with standard deviation. Based on this fact, for a volatile market,

the well shaped quantum potentials must be shallower and wider. Figure 3.18 com-

pares two quantum potentials from Tesla Inc. within the most and least volatile 14

day windows. This suggests that in a volatile market, the likelihood of prices breaking

through the boundaries of the shallower potential is higher, indicating increased risk.

Conversely, in a low-volatility and trending market, price changes are confined within

a specific range.

Figure 3.18: Comparison of two Potentials with different STDEV (σ) values (Example:
TSLA, window size = 14 days)

Number of minima and number of maxima

As discussed before, the local minima in quantum potentials represent the dom-

inating log-returns for the current state of any asset within a specified time frame

(window). This means that instead of just one equilibrium state for a normally dis-

tributed system, we get multiple dominating equilibrium points. The system can fall

into any of these points and will need the push from the market to jump to the other

ones. Number of maxima is and should be always one less than number of minima to

maintain the structure of the local quantum potential wells.
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Force at theoretical equilibrium

In section 3.4, we discussed that the market force for a Gaussian system vanishes

at the average log-return, expressed as FQG(µ) = 0. We computed the market force

at the average log-return for each sliding window using the KDE-fitted data. We hy-

pothesized that this feature might indicate a system’s divergence from a Gaussian one.

In a Gaussian system, regardless of the statistical values (mean, STDEV, skewness,

kurtosis, etc.), the system forces individual players towards a converging point—the

average point, the global equilibrium. However, a more realistic model suggests that

the system tends to deviate from this equilibrium. This deviation varies over time

and could signify the failure of the efficient market hypothesis (EMH). According to

EMH, if markets are efficient, price changes should follow a random walk, implying

that future price changes are independent of past price changes. The random walk

theory often leads to the assumption that price changes are normally distributed, par-

ticularly in the weak form of EMH. However, in practice, financial returns frequently

exhibit fat tails, deviating from the normal distribution. The value of market force

at the average point could serve as another indicator of the validity of EMH at any

given moment.



Chapter 4

Conclusion

This work was built upon two original studies on quantum potentials of log-returns

of financial time series[17, 18]. According to F. Tahmasebi et al. and Shen et al.,

the quantum potentials of financial time series are due to the entanglement between

an asset’s price and its previous day’s price. Based on this original model, we set

to study the time evolution of quantum potentials. Quantum potentials are made

using an estimated or defined probability density function of logarithmic price returns

(see Eq. 2.20). To estimate the probability density function of log-returns, we used

Gaussian and kernel density estimates. Having created quantum potentials, we were

then prepared to concentrate on the two primary objectives of this research. These

goals were:

• Investigating deviations of financial markets from normal (Gaussian) Systems,

• Studying time evolution of quantum potential and quantum force based indica-

tors and finding any correlations with other technical and statistical indicators.

As we advanced through the project, we obtained intriguing results in both do-

mains. The following sections of this chapter will explore these achievements in greater

detail and discuss the potential future directions for this project.
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4.1 Deviations of real markets from random walk

theory

The earliest models of financial markets treated them as fair games, similar to

a coin toss. According to the EMH, a fair game implies that each player has an

equal chance of winning under the same conditions, with outcomes often modeled by

a normal distribution when influenced by many independent factors, as suggested by

the central limit theorem. This results in a distribution of outcomes approximating a

normal distribution over time. In processes following a normal distribution, it makes

sense to envision a single minimum point in potential, aligning with the expected

value, implying that no one emerges as the ultimate winner in a fair game. In systems

governed by conservative forces, like gravity or electrostatic forces, the force acting on

an object relates to the system’s potential energy. At equilibrium, where the force is

zero, the potential energy is at a minimum (stable equilibrium) or maximum (unstable

equilibrium), indicating how the system will respond to changes in configuration. In

a fair game, market forces drive every player to an equilibrium state, which is the

expected value of log-returns. The concepts of market force, market potential, and

equilibrium states are interconnected through potential energy, where equilibrium

corresponds to points of minimum or maximum potential energy. Differences between

price trends and a Wiener process reveal distinct characteristics in quantum potential,

including multiple local minima and unstable equilibrium points, indicating a complex

and dynamic market force.

4.2 Correlations between technical, statistical, and

quantum-based indicators

A very surprising finding is the strong correlation between moving standard de-

viation and the length and depth of quantum potentials. The results suggest that

in a highly volatile market, the quantum potentials tend to be shallower and wider.

This implies a higher likelihood of the price escaping beyond the constraining walls.

There might be additional technical or statistical indicators that could correlate with

our quantum-based indicators. The quest to identify an indicator based on pilot wave

theory that captures market trends is ongoing. Our goal is to develop a structure that
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effectively maps two of the most important characteristics of any market: trend and

volatility.

4.3 The future

One of the primary objectives in designing indicators is to develop predictive ma-

chine learning models and trading strategies. To effectively design a model for financial

purposes, it is crucial to access unfiltered raw tick data. This necessity arises because

you must filter this data yourself to ensure accuracy and relevance. The basic log-

return formula shown in Eq. 1.1 could be replaced with more advanced techniques,

such as fractional differentiation, as proposed by Marcos López de Prado[32]. Addi-

tionally, using dollar or volume bars is often considered a better alternative to time

bars. These initial data pre-processing steps are intensive and require substantial com-

putational resources. Following this, the process involves creating quantum potentials

and indicators for the newly processed data. Subsequently, a machine learning model

is designed, which includes determining the feature importance of each indicator and

fine-tuning the model to optimize its predictive capabilities.



Chapter 5

Appendix A: Code Snippets

This chapter lists all the Python algorithms, functions, and code snippets used

throughout the project.

5.1 Download and pre-processing historical data

5.1.1 yahoo!finance API

1 class yahoodata:

2 """

3 Imports histroical data from yahoo finance for the given

parameters:

4

5 ticker: symbol

6 period1 &2: starting and ending dates

7 time_frame: time frame ("1d": daily , "1mo": monthly)

8

9 The getdata () method gives the entire historical data (OHLCV)

10 """

11

12 def __init__(self , ticker , period1 , period2 , time_frame):

13 self.ticker = ticker

14 self.period1 = period1

15 self.period2 = period2

16 self.time_frame = time_frame

17
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18 def getdata(self):

19 history = yf.download(

20 tickers=self.ticker ,

21 start=self.period1 ,

22 end=self.period2 ,

23 interval=self.time_frame ,

24 )

25 return history.dropna ().reset_index ().set_index("Date")

Listing 5.1: A class that stores historical financial data

5.1.2 Log-returns

1 def log_returns(historical_data):

2 """

3 Historical data must be a numpy array of prices (Open , High , Low ,

or Close)!

4 """

5 returns = np.log(historical_data) - np.log(historical_data.shift

(1))

6 return returns

Listing 5.2: A function that calculates log-returns of a given time series

5.1.3 Numerical differentiation

1 def symmdiff(q, f, firstDer=False , secondDer=True):

2 """

3

4 Takes the 2nd and first derivatives of f(q) with respect to q (i.

e. d^2f/dq^2 and df/dq).

5 Arguments:

6 f: the function f(q)

7 q: the base q

8

9 """

10

11 # Calculating the average grid spacing dq

12 dq = (q - q.shift (1)).mean()

13

14 # calculating the second derivative of f(q) with respect to q

15 if secondDer and not firstDer:
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16 d2f = (f.shift (1) + f.shift(-1) - (f * 2)) / (dq**2)

17 return d2f # D2 is 2 variables shorter than q => len(q) =

len(D2) + 2

18

19 # calculating the first derivative of f(q) with respect to q

20 elif firstDer and not secondDer:

21 d1f = (f.shift(-1) - f.shift (1)) / (dq * 2)

22 return d1f # D1 is 1 variable shorter than q => len(q) =

len(D1) + 1

Listing 5.3: A function that finds the fisrt or 2nd symmetrical derivative of any 2

dimensional dataset.

5.2 Creating density, quantum potentials, and quan-

tum forces

5.2.1 GDE

1 def gaussian_fit(returns):

2 """

3 Calculates the gaussian function for a given dataset:

4 returns: original return values for obtaining

5 mean and standard deviation

6 """

7 mu = returns.mean()

8 sigma = returns.std()

9

10 q_uniform = density_function(

11 returns , size=len(returns), common_norm=True , bw_method="

silverman", clf=True).index.values

12

13 a = 1 / (sigma * np.sqrt(2 * np.pi))

14 power = (-1 * (( q_uniform - mu) ** 2)) / (2 * (sigma **2))

15 f = a * np.exp(power)

16

17 return pd.DataFrame(

18 {"Rephurbished Returns (q)": q_uniform , "GDE": f}

19 ).set_index("Rephurbished Returns (q)")

Listing 5.4: A function that fits a Gaussian density function to a given distribution



61

5.2.2 KDE

1 def density_function(

2 returns , size , common_norm=True , bw_method="silverman", clf=True ,

*args , ** kwargs

3 ):

4 """

5 Constructs the pdf , f(q), of a given distribution ,

6 q (price returns) using Kernel Density Estimation method.

7 Arguments:

8 q: the grid (price returns)

9 N: the size of the reconstructed data

10 bw_method: bandwidth (smoothing factor)

11 of Kernel Density Estimator.

12 Default is set to ’silverman ’.

13 """

14 graph_data = sns.kdeplot(

15 data=returns ,

16 bw_method=bw_method ,

17 common_norm=True ,

18 gridsize=size ,

19 *args ,

20 **kwargs ,

21 )

22 q = graph_data.get_lines ()[0]. get_xdata ()

23 f = graph_data.get_lines ()[0]. get_ydata ()

24 if clf:

25 plt.clf()

26 return pd.DataFrame(

27 {"Rephurbished Returns (q)": q, "KDE": f}

28 ).set_index("Rephurbished Returns (q)")

Listing 5.5: A function that estimates the density function of a given distribution

using KDE method

5.2.3 Quantum potential and quantum force

1 def potential(pdf):

2 """

3 Calculates the quantum potential of a given distribution , f(q)

4 The theoretical definition of quantum potential is:

5 U = 1/f(q) * d^2f/dq^2
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6 """

7 q = pdf.index.to_series ()

8

9 quantum_potential = symmdiff(q, np.sqrt(pdf)) / np.sqrt(pdf)

10 return pd.DataFrame(

11 {"q": q.to_numpy ().squeeze (), "f(q)": quantum_potential.

to_numpy ().squeeze ()}

12 ).set_index("q")

Listing 5.6: A function that gives the quantum potential of a given quantum field

amplitude/probability density

1 def market_force(returns , grid_size =100, dist_type=None):

2 """

3 Calculates the market force of a Q-Potential

4 The theoretical definition of the market force is:

5 F = -dU/dq

6 Arguments:

7 returns: rate of returns

8 grid_size: size of the rephurbished returns (set to 100

by default).

9 """

10 if dist_type == "GDE":

11 dens_temp = gaussian_fit(returns)

12 elif dist_type == "KDE":

13 dens_temp = density_function(returns=returns , size=grid_size)

14 elif dist_type == None:

15 dens_temp = density_function(returns=returns , size=grid_size)

16 else:

17 return None

18

19 pot_temp = potential(pdf=dens_temp)

20

21 MF = -symmdiff(

22 q=pot_temp.index.to_series (), f=pot_temp , firstDer=True ,

secondDer=False

23 )

24

25 return MF

Listing 5.7: A function that computes the market force of any given log-returns (with

GDE and KDE options).
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5.3 Features (technical indicators)

5.3.1 Potential depth

1 def potential_depth(returns , grid_size =100):

2 """

3 Calculates the depth of a Q-Potential for given rates of returns

4 Arguments:

5 returns: rate of returns

6 grid_size: size of the rephurbished returns (set to 100

by default).

7 """

8 dens_temp = density_function(returns=returns , size=grid_size)

9 pot_temp = potential(dens_temp)

10

11 maxHeight = pot_temp.max()[0]

12 minDepth = pot_temp.min()[0]

13 return maxHeight - minDepth

Listing 5.8: A function that measures the depth of a quantum potential.

5.3.2 Potential length (width)

1 def potential_width(returns , grid_size =100):

2 """

3 Calculates the width of a Q-Potential for given rates of returns

4 Arguments:

5 returns: rate of returns

6 grid_size: size of the rephurbished returns (set to 100

by default).

7 """

8 dens_temp = density_function(returns=returns , size=grid_size)

9

10 maxWidth = dens_temp.index.to_series ().to_numpy ()[-2]

11 minWidth = dens_temp.index.to_series ().to_numpy ()[1]

12

13 return maxWidth - minWidth

Listing 5.9: A function that measures the width (length) of constraining walls of

quantum potentials.
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5.3.3 Local maximum points

1 def local_maxima(returns , grid_size =100):

2 """

3 Finds the local maxima of a Q-Potential for given rates of

returns

4 Arguments:

5 returns: rate of returns

6 grid_size: size of the rephurbished returns (set to 100

by default).

7 """

8 dens_temp = density_function(returns=returns , size=grid_size)

9 pot_temp = potential(pdf=dens_temp)

10

11 localMax = pot_temp.shift (-1).rolling(window=3, axis =0).apply(np.

argmax)

12

13 Maxima = pot_temp[localMax == 1]. dropna ()

14

15 return Maxima

Listing 5.10: A function that finds local maximum points known as unstable

equilibrium points.

1 def maxima_count(returns , grid_size =100):

2 """

3 Finds the counts of the local maxima of a Q-Potential for given

rates of returns

4 Arguments:

5 returns: rate of returns

6 grid_size: size of the rephurbished returns (set to 100

by default).

7 """

8 Maxima = local_maxima(returns=returns , grid_size=grid_size)

9 return len(Maxima)

Listing 5.11: A function that counts the number of local maxima.

5.3.4 Local minimum points

1 def local_minima(returns , grid_size =100):

2 """
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3 Finds the local minima of a Q-Potential for given rates of

returns

4 Arguments:

5 returns: rate of returns

6 grid_size: size of the rephurbished returns (set to 100

by default).

7 """

8 dens_temp = density_function(returns=returns , size=grid_size)

9 pot_temp = potential(pdf=dens_temp)

10

11 localMin = pot_temp.shift (-1).rolling(window=3, axis =0).apply(np.

argmin)

12

13 Minima = pot_temp[localMin == 1]. dropna ()

14

15 return Minima

Listing 5.12: A function that finds local minimum points known as stable equilibrium

points.

1 def minima_count(returns , grid_size =100):

2 """

3 Finds the counts of the local minima of a Q-Potential for given

rates of returns

4 Arguments:

5 returns: rate of returns

6 grid_size: size of the rephurbished returns (set to 100

by default).

7 """

8 Minima = local_minima(returns=returns , grid_size=grid_size)

9 return len(Minima)

Listing 5.13: A function that counts the number of local minima.

5.3.5 Market force at q = µ

1 def force_at_mu(returns , grid_size =100):

2 """

3 Calculates the market force of a Q-Potential at avrage log -return

(or very close to average log -return)

4 Mathematically:

5 F(q=mu) = -dU/dq | q=mu



66

6 Arguments:

7 returns: rate of returns

8 grid_size: size of the rephurbished returns (set to 100

by default).

9 """

10 MF = market_force(returns=returns , grid_size=grid_size)

11 return MF.iloc[abs(MF.index.to_series ()).argmin ()]. to_numpy ().

squeeze ()

Listing 5.14: A function that finds the value of market force at average log-return.
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