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Abstract

This work presents a molecular dynamics simulation study of aragonite. Aragonite is a

naturally occurring crystal form of calcium carbonate found in shells of marine organ-

isms and sedimentary rocks. The vibration of atoms inside the crystal is fundamental

to mineral science and solid-state physics studies. Raman and infrared spectroscopy

are the two primary techniques for vibrational spectroscopy. These methods provide

unique molecular fingerprints for a sample that identifies crystal structures. The vi-

brational density of states (VDOS) is a key parameter accessible through simulations.

A VDOS is a histogram counting the number of the vibrational modes of a given

energy and depends on how interactions between atoms are modelled. A force field

represents these interactions. There are two recently developed force fields for arago-

nite. One includes explicit bonding terms between carbon and oxygen atoms within

carbonate units (Bond), and the other does not include the bond (No-Bond). These

aragonite force fields were developed to work with the OPLS-AA force field, which

is commonly used for aqueous and biological systems. In this thesis, our first goal is

to reproduce reported results in the literature for the No-Bond model, primarily unit

cell parameters, and to test the effect of including the C-O bond on these parameters

and on VDOS. As part of this goal, we study the impact of simulation details on the

results, including those related to the control of pressure and temperature. Having

determined a simulation protocol, we calculate VDOS for the two force field models.

The generated VDOS plot for the No-Bond model shows the qualitative agreement

with experimental data. Incorporating the spring bond between the carbon and oxy-

gen atoms significantly and detrimentally changes the overall VDOS structure and

mode energies.
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Chapter 1

Introduction

Calcium carbonate (CaCO3) is one of the most abundant materials on Earth, con-

stituting approximately 4% of the Earth’s crust [1]. This material has numerous

industrial applications, including construction, paper production, pharmaceuticals,

and biomedicine [2, 3, 4, 5]. There are three crystalline polymorphs of calcium car-

bonate: aragonite, calcite, and vaterite. These polymorphs have the same chemical

formula but different crystal structures. Aragonite is a mineral that is mainly found

in marine sediments. This crystal is the main component of the shells, pearls, coral

reefs, and other biominerals [6, 7].

Studying the vibrational properties of crystals has always been an interesting topic

in solid-state physics. The vibrational spectroscopic technique offers a non-destructive

way to measure the vibrational energy levels related to the oscillations of atoms within

the crystal. Two primary types of vibrational spectroscopy are infrared (IR) and

Raman spectroscopy. These techniques provide unique crystallographic fingerprints

for the sample that identify the crystal structure [8]. One of the key concepts in

this area is the vibrational density of states (VDOS). This quantity can be used to

study different properties of the materials, including vibrational, thermodynamic, and

transport properties [9].

VDOS is typically shown as a histogram of the number of vibrational modes for

each frequency. In this way, the peaks in a VDOS histogram correspond to collections

of normal modes with approximately the same frequency. VDOS is accessible through

simulations. GROMACS (Groningen Machine for Chemical Simulations) is a free

and open-source molecular dynamics (MD) software package that can be used to
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calculate the VDOS. This software solves Newton’s equation of motion for a system

that contains hundreds to millions of particles and includes tools to calculate VDOS

[10, 11, 12, 13, 14, 15, 16]. A VDOS enumerates the number of vibrational modes

of a given energy, and in simulations, it depends on how interactions between atoms

are modelled. These interactions are represented by a force field, which is a collection

of all the interactions in the system. Two recently developed force fields have been

used to study aragonite [17, 18]. In this thesis, these force fields are used to conduct

molecular dynamics simulations of aragonite and generate VDOS.

1.1 Atomic Vibration in Crystals

A simple classical mass-spring model can be used to study the vibrations of the atoms

in a crystal. Based on this model, the atoms in the crystal are the masses, and the

bonds between the atoms are the springs. Considering Hooke’s law for a system of

two masses, m1 and m2, which are separated by r, the potential energy is,

V =
1

2
K(r − r0)2, (1.1)

where K is the force constant and r0 is the equilibrium separation. For this system,

the frequency of vibration is,

ν =
1

2π

√
K

µ
, (1.2)

where µ indicates the reduced mass, which is given by,

µ =
m1 ·m2

m1 +m2

. (1.3)

A lattice can be considered a system of masses and springs in three dimensions.

Every two neighbouring masses are connected by a spring. The vibration of this

system is not as simple as the system of two masses; however, the fundamentals

are the same. In a crystal, atoms vibrate around their equilibrium positions, and the

chemical bonds between atoms act like springs with specific force constants. Therefore,

the frequencies of the oscillations can be determined using a similar approach to that

of a simple mass-spring system. However, we must consider the complexity of a

many-body system in three dimensions. For a harmonic solid such as the spring-mass
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systems, the vibrational motion of atoms can be decomposed into contributions from

independent modes of collective vibrations or normal modes [19].

In a real crystal, the vibrational energy of these modes is quantized. A phonon,

which is a quantum of lattice vibrational energy, has an energy that is proportional to

the frequency of vibration and that can be probed with spectroscopy [9]. Similar to

how a photon is a quantum of electromagnetic energy, a phonon represents the discrete

energy associated with atomic vibrations [9]. The normal mode frequencies obtained

from classical MD simulations thus provide a link to spectroscopic experiments.

1.2 Normal Mode Analysis

Normal modes of a system are vibrational modes in which all the system’s atoms

vibrate with the same frequency. To study the normal modes of a system, if the

generalized Cartesian coordinates of the system relative to the equilibrium are denoted

by qk, it is expedient to expand the potential energy of the system around equilibrium

[11, 19],

V (qk) = V (0) +
∑
k

(
∂V

∂qk

)
0

+
1

2

∑
j,k

qj

(
∂2V

∂qj∂qk

)
0

qk. (1.4)

For this system, the kinetic energy can be written as,

T =
1

2

∑
j

mj

(
dqj
dt

)2

, (1.5)

where mj is the mass associated with the jth coordinate. Considering the potential

at equilibrium to be zero, Eq. 1.4 can be written to leading order, since the first-order

derivatives are zero, as,

V =
1

2

∑
j,k

qjVjkqk. (1.6)

In this equation, Vjk indicates the second derivative of the potential energy. Using

Eqs. 1.5 and 1.6, we can calculate the equation of motion from the Lagrangian,

mj
d2qj
dt2

= −
∑
k

Vjkqk. (1.7)



4

Introducing the mass-weighted Cartesian coordinates as,

xj = qj
√
mj, (1.8)

Eq. 1.7 in this coordinate can be written as,

d2xj
dt2

= −
∑
k

Hjkxk. (1.9)

where Hjk =
Vjk√
mjmk

is called the mass-weighted Hessian matrix. Eq. 1.9 is an equation

for harmonic motion. Therefore, a solution for xj can be written as,

xj(t) =
∑
m

Ajm cos(ωmt), (1.10)

where Ajm is the coefficient of the contribution to the solution for xj(t) from the

normal mode of angular frequency ωm. Substitution of Eq. 1.10 into the Eq. 1.9

results in,

ω2
mAjm =

∑
k

HjkAkm. (1.11)

This equation indicates an eigenvalue equation. In matrix form, Eq. 1.11 can be

written as,

HA = λA. (1.12)

where λ is a diagonal matrix of eigenvalues with elements λm = ω2
m. In this equation,

each column of A represents an eigenvector corresponding to a particular normal

mode. The eigenvectors indicate the displacements of particles in the system with

respect to one another, and the eigenvalues are the squared angular frequencies of the

normal modes.

For a system of N atoms, there are 3N degrees of freedom. The number of non-

zero normal modes for this system is 3N − 6, since the translations and rotations

of the entire system are zero-frequency modes. In a solid like CaCO3, a carbonate

unit behaves like a molecule. Therefore, similar to a molecule, two important types

of vibrations can be considered for the system: stretching and bending. Stretching

vibrations involve changes in the bond length and are divided into two categories:

symmetric and asymmetric. Bending vibrational modes involve the angle changes

between bonds [20].
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1.3 Raman and Infrared Spectroscopy

Raman and IR spectroscopy are the two primary techniques for vibrational spec-

troscopy. Raman spectroscopy is a method based on the inelastic scattering of light

from a sample. This technique was introduced by Raman in 1928 [21]. In this method,

when light interacts with a sample, the frequency of the scattered light differs from

that of the incident light. The shift in the frequency corresponds to specific vibrational

modes.

In IR spectroscopy, infrared radiation passes through the sample, and the resulting

spectrum is analyzed using a spectrometer. In this method, the vibrational modes of

the sample are excited when infrared light is absorbed. Typically, the spectrum shows

the intensity of absorbed light versus wavenumber [8, 22]. In recent years, Raman

and IR spectroscopy have attracted more attention in structural studies. Examples of

uses of these techniques include the study of structural differences in mineral samples

[23, 24], and structural deformation [25].

1.4 Aragonite

Aragonite has an orthorhombic symmetry and belongs to the Pmcn space group. The

crystalline axes are perpendicular in this symmetry, but their lengths differ. The cell

parameters of aragonite at ambient conditions are a = 4.960 Å, b = 7.7964 Å, and

c = 5.5738 Å [26]. Figure 1.1 illustrates the unit cell of aragonite. The unit cell

contains four CaCO3 units, represented by blue (carbon atoms), red (oxygen atoms),

and green (calcium ions) spheres. This configuration results in a total of 20 atoms per

unit cell [27]. The carbonate unit in aragonite, CO3, is nearly planar. This means that

the carbon atom is not quite in the same plane as the oxygen atoms. It is positioned

0.020 Å out of the oxygen atoms plane [28].

1.5 Outline

This thesis presents a molecular dynamics (MD) simulation study of aragonite using

GROMACS to calculate the VDOS through normal mode analysis. It is organized
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Figure 1.1: Aragonite unit cell, which contains four CaCO3 molecules, totaling 20
atoms. Calcium ions are represented by green spheres, and CO3 ions are shown with
the blue and red spheres.

as follows. In Chapter 2, the methods used to simulate aragonite are explained: The

theory of MD simulations, the stages involved in performing MD simulations, and

the required input parameters are described. In Chapter 3, two recently developed

force fields for aragonite are tested. One force field does not include an explicit

harmonic bond term between the carbon and oxygen in carbonate units [17], referred

to as the No-Bond model in this thesis, and the other does explicitly include the

harmonic bond [18], referred to as the Bond model. In the first part of Chapter 3,

MD simulation is used to calculate the unit cell parameters of aragonite for both

models and to compare them with those reported in previous work [17]. In the second

part of Chapter 3, simulation input parameters are examined to determine a protocol

for calculating the VDOS for both the Bond and No-Bond models. In Chapter 4,
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VDOS is calculated through normal mode analysis, and the results are compared

with the published results of Carteret et al. [29], who used a density functional theory

that successfully recapitulated experimental data. Finally, conclusions and outlook

for future work are given in Chapter 5.



Chapter 2

Methodology

In this thesis, molecular dynamics (MD) simulations are used to study the vibrational

density of states (VDOS) of aragonite through normal mode analysis. A detailed

explanation of MD simulations is available in references [30, 31]. This chapter briefly

reviews MD simulations, including all necessary GROMACS input files and the stages

that MD simulations follow.

2.1 Molecular Dynamics Simulations

Molecular dynamics simulation is a method that models the interaction of particles

classically and uses Newton’s equations of motion. In a many-body system, if the

mass of particle i is mi, its position is ri, and the net force on it is fi, Newton’s

equations of motion can be written as [31],

mi
d2ri
dt2

= fi. (2.1)

We can use computer programs to solve this equation for a many-body system. In

this thesis, GROMACS [32] is used to integrate the equations of motion. This software

offers different algorithms to integrate the equations of motion, including the leap-frog

[33] (denoted as md in the GROMACS .mdp file described below) and velocity Verlet

(denoted as md-vv in the .mdp file) [11]. Both algorithms are variations of the Verlet

algorithm. Verlet is a simple algorithm that conserves mechanical energy. To study
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this algorithm, we can use the following Taylor series expansions [31],

x(t+ h) = x(t) + h
dx(t)

dt
+

1

2!
h2
d2x(t)

dt2
+

1

3!
h3
d3x(t)

dt3
+ . . . (2.2)

x(t− h) = x(t)− hdx(t)

dt
+

1

2!
h2
d2x(t)

dt2
− 1

3!
h3
d3x(t)

dt3
+ . . . (2.3)

By adding Eqs. 2.2 and 2.3 the second derivative can be written as,

d2x(t)

dt2
=
x(t+ h)− 2x(t) + x(t− h)

h2
+O(h2). (2.4)

Substituting Eq. 2.4 in Eq. 2.1 for the x direction results in,

xi(t+ h)− 2xi(t) + xi(t− h)

h2
=
fxi
m
. (2.5)

Using Eq. 2.5, Newton’s equation of motion in the x direction can be written as,

xi(t+ h) = 2xi(t)− xi(t− h) +
h2

m
fxi(t). (2.6)

The Verlet algorithm uses Eq. 2.6 to calculate the positions of the particles in the

system at any time step. In this algorithm, velocity is not directly used but is needed

to calculate kinetic energy. The velocity is calculated through,

v(t) =
1

2h
(x(t+ h)− x(t− h)) . (2.7)

Another algorithm GROMACS offers to solve Newton’s equations of motion is velocity

Verlet. To use this algorithm, considering the definition of velocity as the first-order

derivative of position and acceleration as the second-order derivative of position, the

following equations are obtained from Eq. 2.2 [31],

ri(t+ h) = ri(t) + hvi(t) +
h2

2m i
fi(t), (2.8)

vi(t+ h) = vi(t) +
h

2m i
(fi(t) + fi(t+ h)). (2.9)

The terms of order higher than h2 are neglected in these calculations, and the term
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fi(t + h) is added to the force. This term indicates the force at the next time step.

Calculating v(t+h) can not be performed in one step since f(t+h) depends on r(t+h).

In this thesis, the velocity Verlet integrator is used to solve Newton’s equations of

motion.

2.2 Force Field

The interactions between atoms in a system can be categorized into bonded and non-

bonded terms. The formula that describes all these interactions is called a force field.

A typical representation for a force field might take the following form [34],

U =
∑
bonds

1

2
kb(r − r0)2 +

∑
angles

1

2
ka(θ − θ0)2 +

∑
dihedral

Vn
2

[1 + cos(nφ− δ)]

+
∑

improper

Vimp +
∑
LJ

4εij

(
σ12
ij

r12ij
−
σ6
ij

r6ij

)
+
∑
elec

qiqj
rij

. (2.10)

The first four terms in Eq. 2.10 represent the bonded interactions, including bond

stretching, angle bending, dihedral, and improper dihedral interactions, respectively.

In this equation, kb is the bond force constant, r0 is the equilibrium bond length,

and r indicates the distance between two bonded atoms for a bond stretching term,

modelled by Hooke’s law with a harmonic potential. In the angle bending potential,

ka is the angle force constant, θ0 is the equilibrium angle between three bonded atoms,

and θ is the variable angle.

When four atoms (A, B, C, D) are connected, dihedral and improper dihedral

energies are introduced to calculate the potential energy. For atoms in a linear chain,

Vn is the potential barrier height, and the dihedral (or torsional) angle φ is defined as

the angle between planes (A, B, C) and (B, C, D). In this equation, n is the number

of minima or maxima in a period, and δ is the phase angle. For improper dihedral

interaction, Vimp is the potential energy. To describe this energy, using the carbonate

unit as an example, the improper dihedral angle is defined as the angle between the

planes formed by O1 − C−O2 and O2 − C−O3.

The non-bonded interactions are represented by the last two terms, which include
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the Lennard-Jones (LJ) potential and the Coulombic interactions. The LJ interaction

models the van der Waals forces between atoms, with σij as the distance with zero

potential energy and εij representing the depth of the potential well for the interaction

between atom pairs i and j. The LJ potential includes the repulsive (r−12) and

attractive (r−6) terms, with rij as the interatomic distance between atoms i and j.

The last term in Eq. 2.10 indicates the electrostatic interactions, where qi and qj are

the charges of atoms i and j. This term calculates the energy between two charged

particles using Coulomb’s law [34].

In this thesis, two recently developed force fields are used to study aragonite. The

first force field was developed by Xiao et al. [17]. Before this force field was introduced,

the Buckingham (BH) potential [35] was used to model the van der Waals interactions.

In the Xiao et al. model, the LJ potential replaced the BH potential. This modification

allowed for easier integration with existing force fields for proteins and water, making

it a practical choice for future studies involving these components. In addition, using

the LJ potential results in faster calculations than the BH potential, which includes

an exponential term [17]. The following equations represent BH and LJ potentials,

VBH = A exp

(
−r
ρ

)
− C

r6
, (2.11)

VLJ =
C12

r12
− C6

r6
. (2.12)

In these equations, r indicates the distance between atoms. A, ρ, C, C6, and C12 are

BH and LJ potentials parameters. The force field developed by Xiao et al. includes

the following terms [17],

Vtotal = Vnonbond + Vangle + Vdihedral (2.13)

=
N−1∑
i=1

N∑
i=j+1

{e2zizj
rij

+

(
c12
r12ij
− c6
r6ij

)}
+
∑
angles

1

2
kθ(θ − θ0)2

+
∑
plane

Kψ[1 + cos(2ψ)].

The first two terms indicate non-bonded electrostatic and LJ potentials. The last

two terms show bonded interactions, including angle potential, which includes θ, the

O−C−O angle, and improper dihedral potential with angle Ψ being the angle between
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planes O1 − C−O2 and O2 − C−O3.

In this model, there are no bond terms between carbon and oxygen atoms within

the carbonate unit, which is referred to as the No-Bond model in this thesis. To

confirm their model, Xiao et al. compared the bulk aragonite parameters with exper-

imental results. They studied unit-cell structural parameters, axial elastic modulus,

and shear modulus. These parameters were studied through calculations using GULP

[36] (general utility program designed for molecular dynamics simulations). The sec-

ond force field used in this thesis was introduced by Cruz-Chu et al. [18] and is referred

to as the Bond model in this thesis. This force field is a modified version of the Xiao

et al. force field and includes an explicit bond term between carbon and oxygen atoms

within carbonate units. This extra bond term is,

Vb(rCO) = 0.5× kb(rCO − bCO)2, (2.14)

where rCO is the separation between carbon and oxygen in the carbonate unit, and kb

and bCO are constants. The harmonic bond replaces the Coulombic and LJ interactions

between the bonded atoms. This force field was used to study the flaw insensitivity

of aragonite nacre. Nacre, known as the mother of pearl, is a natural material with

outstanding fracture resistance and toughness. These outstanding properties of nacre

are related to its composition, including 95% of aragonite and 5% of an organic layer.

Cruz-Chu et al. conducted MD simulations using GROMACS and reported that the

organic layer increases the mechanical stability of nacre at the nanoscale. Compared

to the Xiao et al. model, adding this stretching bond term between carbon and oxygen

preserves the structural integrity of aragonite slabs in nacre and makes the model more

suitable for mechanical investigations [18].

2.3 GROMACS Input Files

2.3.1 .top File

The topology (.top) file is one of the input files that GROMACS requires to initiate

molecular dynamics simulations. This file contains all the essential information about

the system, including the types of particles used in the simulated system and the
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parameters that describe the bonded and non-bonded interactions between atoms.

The topology file also specifies constraints, which indicate bonds that are treated as

rigid constraints during the simulation. Another consideration is exclusions, which

specify how many bonds apart two atoms must be before they interact with non-

bonded interactions. In GROMACS, the topology is formatted as a simple text file

that can be created using the pdb2gmx command [11] or from scratch by the user.

In this thesis, the topology file is created in two different ways. Firstly, the sup-

porting information from Cruz-Chu et al. [18], which includes all the initial files needed

to create a topology, is used. These files contain detailed information about atoms

and their interactions, specified within different text files with extensions like .atp

(general information about atom types), .itp file (which shows the bond types and

angles), and .rtp (residue topology parameter), which defines a single unit in a large

molecule [11]. The pdb2gmx tool generates the topology file from the initial files. The

topology generated in this way is used in most of the simulations in this thesis.

The second way topology files are created in this thesis is “by hand ”without using

the pdb2gmx command. We start with a single carbonate unit and a CaCO3 unit to

study how GROMACS calculates bonded and non-bonded energies. Using the infor-

mation from Cruz-Chu et al. [18], we generate the topology files for the carbonate

and CaCO3 units. Different energies for these systems are calculated using the GRO-

MACS energy tool. To help check how precisely the potential energy is calculated by

GROMACS, we wrote a Python code that calculates the system’s energies. Studying

the energies of the CO3 unit, we confirm that when the bond terms between carbon

and oxygen are presented, the LJ and Coulomb potentials (the non-bonded energies)

calculated by GROMACS are zero. For the CaCO3 unit, the results indicate that the

LJ and Coulomb energies are the sum of the energies between calcium and oxygen

atoms (Ca−O) and the calcium and carbon atoms (Ca−C). GROMACS calculates

the bond, angle, and improper dihedral energies, as detailed in Section 2.2.

In the No-Bond model, the LJ and Coulomb energies are non-zero. Therefore, the

carbon and oxygen atoms are still considered bonded in the sense that the Coulomb

and LJ interactions between them tend to keep an optimal separation, at least for

small amplitudes of motion. In this model, the bond, angle, and improper dihedral

energies are also calculated by GROMACS.

The topology file, which is created by hand, contains directives such as non-bonded
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parameters, atoms, bonds, angles, etc. This topology file is referred to as our.top

in this study and is included in Appendix B. The our.top file also has a simpler

structure compared to those from Cruz-Chu et al. [18]. The GROMACS files were not

provided by Xiao et al. [17]. Comparing the results we calculated from our topology

and the results from modifying the files by Cruz-Chu et al. helps confirm the correct

implementation by Xiao et al.

2.3.2 .gro File

One of the input files that GROMACS needs to start the simulations is the file with

the extension .gro. This file contains molecular structure information, including the

names and numbers of atoms, as well as their coordinates and velocities [11]. In this

thesis, to create the .gro file, we use the supporting information provided by Cruz-Chu

et al. [18]. This information includes a .pdb file, a standard format for storing atomic

coordinates. The .pdb file provided by Cruz-Chu et al. consists of the coordinates of

the atoms in a unit cell. Using the pdb2gmx command, we generate a .gro file from

the initial .pdb file.

Additionally, we create a .gro file for the aragonite unit cell using the crystal struc-

ture from the American Mineralogist Crystal Structure Database (AMCSD). Using

the symmetry of aragonite in the Pmcn space group and its structural information, we

create the .gro file for the aragonite unit cell. This file and the program to generate

the simulation box are included in Appendix B.

2.3.3 .mdp File

The molecular dynamic parameter (.mdp) file is another input for GROMACS sim-

ulations. This file contains different parameters and settings that describe how the

simulation should be conducted, including the integrator to be used, the pressure and

temperature control parameters, the time step, and the number of steps [11]. Typi-

cally, multiple simulation stages are performed to obtain equilibrium data, which are

outlined below. A different .mdp file is used for each simulation stage. The parame-

ters in each .mdp file are adjusted to meet the specific requirements of that particular

stage.
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2.4 Stages in Performing an MD Simulation

Conducting molecular dynamics (MD) simulations involves several key stages. These

stages include initialization, energy minimization, and two equilibration stages: NV T

and NPT . In the following sections, we will briefly review these stages and explain

how they are employed in our study.

2.4.1 Initialization

The first stage in an MD simulation is knowing the particles’ initial positions. For

a crystal, the initial positions of the particles are accessible in the crystallographic

database. After preparing the unit cell of the system, a larger system can be gen-

erated by combining multiple unit cells. As explained in Section 1.4, aragonite has

an orthorhombic crystal structure with space group Pmcn. The unit cell of arago-

nite contains four CaCO3 molecules, totalling 20 atoms, as shown in Figure 1.1. The

simulation box in this work contains 60 unit cells, five unit cells in the x direction,

three in the y direction, and four in the z direction (5× 3× 4), so that the simulation

box is almost cubic. To generate this box, supporting information from Cruz-Chu et

al. [18], which includes a script-based tool, and the program VMD [37] is used. We

also confirm this by writing our own scripts to generate initial atomic coordinates.

2.4.2 Energy Minimization

Before conducting MD simulations, the energy of the initial configuration should be

minimized to stabilize the system. Energy minimization prior to conducting MD sim-

ulations reduces numerical instability resulting from large forces that may be present

in the system after the initial placement of atoms. In a crystal, the experimentally

determined atomic positions may not correspond to the minimum potential energy for

the force field employed, which can result in large initial forces. Energy minimization

results in the forces on all the particles being zero to within a specified tolerance.

The energy function of a system that contains all bonded and non-bonded interac-

tions is related to the positions of the atoms. So, the energy changes by changing the

positions.
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To minimize the system’s energy, the atomic positions are iteratively optimized to

achieve a configuration with a lower energy state. In a many-body system such as a

crystal, if f is the energy function of the system and the coordinates of the atoms are

the xi, to minimize the energy, two following equations should be satisfied [38],

∂f

∂xi
= 0, (2.15)

and

∂2f

∂x2i
≥ 0. (2.16)

Different numerical methods can be used to minimize the energy function of a com-

plex system like a crystal. GROMACS offers three algorithms for energy minimization:

steepest descent (denoted as steep in the GROMACS .mdp file), conjugate gradients

(denoted as cg in the .mdp file), and the limited-memory Broyden-Fletcher-Goldfarb-

Shanno quasi-Newtonian minimizer (denoted as lbfgs in the .mdp file) [11]. The

energy minimization algorithms find a local energy minimum rather than a global

one, as they always proceed downhill on the energy surface. The process of mini-

mization determines a nearby low-energy state (local minimum), but in this state,

the configuration of the system is usually not in the absolute lowest energy (global

minimum).

In this thesis, the steepest descent algorithm is used to minimize the system’s

energy in the first minimization stage. We will also repeat energy minimization before

normal mode analysis using the conjugate gradient (cg) algorithm. Both techniques

iteratively minimize potential energy by adjusting atomic coordinates. The steepest

descent method reduces energy by moving in the direction of the steepest decrease,

but it is slow. The conjugate gradient algorithm is faster and more efficient.

During the minimization stage, the potential energy of the system decreases with

each iteration of the algorithm. Figure 2.1 shows the changes in potential energy

over time using the steepest descent algorithm. To stop the minimization algorithm,

the parameter emtol (maximum force tolerance) is defined in the .mdp file. This

parameter specifies the maximum force that should be met before the algorithm stops.

The typical value for this parameter, suggested in the GROMACS manual, is 10 kJ

mol−1nm−1 [11]. In this thesis, we fixed emtol at 0.01 kJ mol−1nm−1 during the first
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Figure 2.1: The potential energy of the system is minimized using the steepest descent
minimization algorithm.

minimization stage and 0.001 kJ mol−1nm−1 during the minimization stage before

normal modes analysis. A tighter tolerance is required for the normal mode analysis

since the algorithm assumes that the system is at a local energy minimum, while the

initial energy minimization is only used to reduce initial forces.

2.4.3 NVT

After preparing the system at a local potential energy minimum, it is necessary to

equilibrate it at the desired temperature and pressure. The equilibration is performed

in two separate phases. The first phase is carried out in the NV T ensemble, in

which the simulation proceeds at a constant number of particles N , volume V , and

temperature T . This stage adjusts the temperature to the desired value and calculates

the pressure. In this thesis, the desired temperature is 300 K and is specified in the

.mdp file. Different algorithms, known as thermostats, are offered by GROMACS to

perform NV T equilibration. Basic thermostats adjust the temperature by rescaling

the velocities. The temperature of the system is related to the average kinetic energy

through the equipartition theorem [39],
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〈K〉 =
3

2
NkBT, (2.17)

where kB is the Boltzmann constant. The kinetic energy is also related to the velocity

via,

K =
1

2

∑
i

miv
2
i . (2.18)

Considering Eqs. 2.17 and 2.18, the velocities of the particles should be modified to

keep the temperature of the system constant. This modification can be performed

using a rescaling factor λ. This factor for the simplest velocity rescaling algorithm is,

λ =

√
T0
T (t)

, (2.19)

where T0 is target temperature, and T (t) is the instantaneous temperature. This

thermostat applies sudden velocity adjustments to the system, which can introduce

non-physical fluctuations in the system. A gentler variation of velocity rescaling is

accomplished by the Berendsen thermostat. Conceptually, this thermostat couples

the system to an external bath. The bath is fixed at the desired temperature and

acts as a thermal energy source by adding or removing heat from the system. In this

algorithm, the scaling factor λ is given by [40],

λ =

√√√√1 +
δt

τ

(
T0

T
(
t− δt

2

) − 1

)
, (2.20)

where δt is the time step and τ is the coupling constant, determining how quickly the

thermostat acts. The main advantage of this algorithm is that the τ can be chosen

based on the system under study. If τ � δt, it results in λ = 1, which means no

change in the velocity and no coupling between system and bath. If τ = δt, it results

in a strong coupling. In this situation, the equilibration happens too fast. Generally

speaking, the Berendsen thermostat does not yield the energy fluctuations expected

for the NV T ensemble.

Another popular thermostat for adjusting temperature is the Nosé-Hoover thermo-

stat. The idea behind this thermostat is that the system is coupled to an external bath
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Figure 2.2: Using Nosé-Hoover thermostat, an NV T run is performed for 100 ps to
bring the system to the desired temperature of 300 K.

through an additional degree of freedom. This algorithm uses an extended Lagrangian

that includes an additional velocity term (technically a friction term) to adjust the

temperature by increasing or decreasing the particles’ velocities. This thermostat

controls the temperature smoothly and is an appropriate option for reproducing the

canonical ensemble.

In this thesis, we use the Nosé-Hoover thermostat to adjust the temperature during

the NV T stage. Figure 2.2 illustrates the temperature changes over time for a 100 ps

run, with a time step of 0.002 ps and a total of 50000 steps. The results indicate that

the system’s average temperature approaches the desired value of 300 K. At the next

phase of equilibration in this thesis, the NPT run, we use a stochastic variant of the

velocity rescaling thermostat (v-rescale) that also reproduces canonical fluctuations

to maintain the temperature at 300 K.
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2.4.4 NPT

The next stage in MD simulations is the NPT equilibration (constant N , P , and T ).

In this ensemble, the system’s pressure is adjusted by changing the system’s volume

while the temperature is also kept constant. The volume of the simulation box is

scaled to achieve the desired pressure. Berendsen (BR) and Parrinello-Rahman (PR)

are two common pressure coupling algorithms or barostats provided by GROMACS.

The BR barostat is analogous to the BR thermostat. The volume scaling factor is

represented by λ [41],

λ =

(
1− kδt

τ
(P0 − P (t))

)
, (2.21)

where P0 is the desired pressure, P (t) is the instantaneous pressure, k is an estimate

of the isothermal compressibility, and τ is the coupling constant. For isotropic scaling,

the scaling of the volume is,

Vf = Vi · λ, (2.22)

where the simulations box vectors and all particle coordinates are scaled by the same

factor in each of the x, y, and z directions. In this thesis, we use the BR barostat for

the first NPT run. This run is 100 ps with the time step 0.002 ps and the number

of steps 50000. The desired pressure is set to 1 bar. Figure 2.3 shows the change in

pressure over time using the BR barostat. It can be seen that the average pressure

approaches the desired value of 1 bar. The BR barostat is not constructed to yield

the volume fluctuations expected for the NPT ensemble.

Another barostat that is used to adjust the system’s pressure is the Parinello-

Rahman barostat. This pressure coupling uses a method similar to the Nosé-Hoover

thermostat detailed in Section 2.4.3. In this algorithm, the system is coupled to an

external pressure bath. An additional term in the equations of motion is responsible

for adjusting the system’s pressure. For a non-cubic crystal, isotropic volume scaling

will generally result in internal stresses, as quantified by the pressure tensor described

below. Both BR and PR allow for non-isotropic scaling of the system in order to

achieve a diagonal pressure tensor with equal diagonal terms (isotropic pressure).
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Figure 2.3: Using Berendsen barostat, an NPT run is conducted for 100 ps to adjust
the pressure of the system to the desired value of 1 bar.

2.5 Pressure Tensor

One of the quantities we study in this thesis is the pressure tensor. The pressure

tensor can be calculated using the virial, which is defined as [11, 41],

Ξ = −1

2

∑
i<j

rij ⊗ Fij, (2.23)

where rij is the separation between particles i and j and Fij is the force between

them. The pressure tensor is,

P =
2

V
(EK −Ξ), (2.24)

where EK is the kinetic energy tensor, and V is the volume of the simulation box.

Once the system is equilibrated, the pressure tensor elements are reported using the

GROMACS energy tool. These elements give the pressure exerted by the system

in each direction. The tensor is represented by a 3 × 3 matrix and contains six

independent elements: Pxx, Pyy, Pzz, Pxy = Pyx, Pxz = Pzx, and Pyz = Pzy. The
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diagonal components Pxx, Pyy, and Pzz indicate the normal pressures in the x, y, and

z directions.



Chapter 3

Optimizing the Simulation

Protocol

The goal of this chapter is to find an optimized simulation protocol for aragonite before

studying the vibrational density of states (VDOS). We examine two recently developed

force fields for aragonite, the models introduced by Xiao et al. [17] (No-Bond) and

Cruz-Chu et al. [18] (Bond), as explained in Section 2.2. We test different variants

of pressure control algorithms, including isotropic, semi-isotropic, and anisotropic, for

each model. We also confirm our understanding of the force fields by writing our own

GROMACS topology file. Table 3.1 summarizes the simulations carried out in an

effort to reproduce results on unit cell volume and shape reported by Xiao et al. [17].

Several other simulation details are then studied to find an optimized set of simulation

parameters that can be used for VDOS analysis.

3.1 Models Types

In this thesis, we study two recently developed force field models for aragonite, re-

ferred to as the No-Bond and Bond models. The No-Bond model follows the force field

developed by Xiao et al. [17]. In this model, there is no stretching bond term between

carbon and oxygen in the carbonate units. The Bond model includes explicit har-

monic bond terms between carbon and oxygen in the carbonate units [18]. Detailed
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System Force Field
Duration

(ps)
Compressibility

β (bar−1)
Reference

pressure (bar)

Aniso-no-bond-triclinic Xiao et al. 100

βxx = 5× 10−5

βyy = 5× 10−5

βzz = 5× 10−5

βxy/yx = 5× 10−5

βxz/zx = 5× 10−5

βyz/zy = 5× 10−5

pxx = 1
pyy = 1
pzz = 1

pxy/yx = 0
pxz/zx = 0
pyz/zy = 0

Aniso-bond-triclinic Cruz-Chu et al. 100

βxx = 5× 10−5

βyy = 5× 10−5

βzz = 5× 10−5

βxy/yx = 5× 10−5

βxz/zx = 5× 10−5

βyz/zy = 5× 10−5

pxx = 1
pyy = 1
pzz = 1

pxy/yx = 0
pxz/zx = 0
pyz/zy = 0

Aniso-no-bond-
orthorhombic

Xiao et al. 100

βxx = 5× 10−5

βyy = 5× 10−5

βzz = 5× 10−5

βxy/yx = βxz/zx =
= βyz/zy = 0

pxx = 1
pyy = 1
pzz = 1

pxy/yx = 0
pxz/zx = 0
pyz/zy = 0

Aniso-bond-
orthorhombic

Cruz-Chu et al. 100

βxx = 5× 10−5

βyy = 5× 10−5

βzz = 5× 10−5

βxy/yx = βxz/zx =
= βyz/zy = 0

pxx = 1
pyy = 1
pzz = 1

pxy/yx = 0
pxz/zx = 0
pyz/zy = 0

Semiiso-nobond Xiao et al. 100
βx−y = 5× 10−5

βz = 5× 10−5
px−y = 1
pz = 1

Semiiso-bond Cruz-Chu et al. 100
βx−y = 5× 10−5

βz = 5× 10−5
px−y = 1
pz = 1

Iso-no-bond Xiao et al. 100 β = 5× 10−5 p = 1

Iso-bond Cruz-Chu et al. 100 β = 5× 10−5 p = 1

Iso-no-bond-ourtop Xiao et al. 100 β = 5× 10−5 p= 1

Iso-bond-ourtop Cruz-Chu et al. 100 β = 5× 10−5 p = 1

Iso-bond-1ns Cruz-Chu et al. 1000 β = 5× 10−5 p = 1

Iso-bond-ourtop-1ns Cruz-Chu et al. 1000 β = 5× 10−5 p = 1

Table 3.1: Simulations carried out to test effects of pressure coupling. Two force fields,
No-Bond (Xiao et al. [17]) and Bond (Cruz-Chu et al. [18]), and three pressure algo-
rithms, isotropic, semi-isotropic, and anisotropic, are used to define the simulations.
For the anisotropic pressure algorithm, both triclinic and orthorhombic variants are
studied. For nine simulations, the topology file as described in [18] is used, and for
three simulations, we use a topology file that we generated, labelled as ‘ourtop’. The
simulation duration for most models is 100 ps, with two models having a duration of
1000 ps. The reference temperature is set to 300 K. The values for compressibility
and reference pressure components employed in the pressure coupling are indicated
in the table.
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descriptions of these two models are provided in Section 2.2. Three pressure algo-

rithm couplings are used for each model: isotropic, semi-isotropic, and anisotropic.

The anisotropic pressure coupling is further refined into two sub-cases that reflect

crystal structures with distinct symmetries: triclinic and orthorhombic. To study the

simulation box (unit cell), we introduce the box vectors. These vectors that define

the orthorhombic simulation cell are (bx, 0, 0), (0, by, 0), and (0, 0, bz). When the

triclinic pressure coupling is used, the zero elements can become non-zero. The results

that are reported as the box vectors for triclinic are still bx, by, and bz.

In isotropic pressure coupling, the box vectors are scaled uniformly in the x, y,

and z directions. This scaling requires one value for compressibility (β) and one value

for reference pressure [11]. In this thesis, these values are set to 5× 10−5 bar−1 and 1

bar, respectively (see the bottom six rows in Table 3.1).

In semi-isotropic coupling, the x and y directions scale uniformly, while the z direc-

tion changes independently. This means that the bx : by ratio is fixed, but bz changes

independently. The semi-isotropic coupling uses two values for compressibility and

reference pressure: one for the x/y direction and one for the z direction. In this thesis,

these values are set to 5 × 10−5 bar−1 and 1 bar, respectively. This compressibility

value is an appropriate order of magnitude for condensed matter systems.

In anisotropic pressure coupling bx, by, and bz vary independently. This algorithm

requires six values for the compressibility and reference pressure, corresponding to

the diagonal and off-diagonal components of the target pressure tensor: xx, yy, zz,

xy/yx, xz/zx, and yz/zy. In the orthorhombic version of the algorithm, the off-

diagonal components of compressibility and pressure are set to zero. In this case, the

off-diagonal elements of the target pressure do not affect the system; they are set to

zero only nominally. In this structure, the three axes can have different lengths, but

all the angles between them are 90 degrees. To allow for triclinic crystal structure

(under hydrostatic pressure), all components of the compressibility should be non-zero

(with the same value), and the off-diagonal elements of the target pressure should be

set to zero.

Using the Bond and No-Bond models with isotropic, semi-isotropic, and anisotropic

pressure coupling, twelve systems are defined. Information about these systems is

listed in Table 3.1. We use the supporting information from Cruz-Chu et al. for nine

systems to generate the topology file. This information includes the initial files that
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GROMACS uses through the pdb2gmx command to generate the topology file. For

the remaining three systems, specified in Table 3.1, we use “ourtop”, the topology file

we generated ourselves, as explained in Section 2.3.1. Our topology file is listed in

Appendix B.

3.1.1 The Simulated System

All the models listed in Table 3.1 are simulated in a box containing 60 unit cells of

aragonite. To construct the simulation box, with all atoms placed in the aragonite

structure, we use the supplemental files provided by Cruz-Chu et al. and the program

VMD [37]. Xiao et al. (No-Bond model) did not provide the files and scripts to set up

the system. Therefore, we use the Cruz-Chu et al. information to create a topology

for the No-Bond model. We remove the bond potential from the Cruz-Chu et al. force

field and use the pdb2gmx to create the topology for the No-Bond model.

To confirm this modification, we provide our own topology based on the No-Bond

model, as explained in Section 2.3.1, and use our own scripts to place the atoms. In

this way, we can double-check that the modifications required to change the Cruz-

Chu et al. topology file so that it yields the Xiao et al. force field were implemented

correctly. The results of using our own topology are presented as ‘ourtop’ in this

thesis. To set up the simulation box, the unit cells are placed in a configuration of

five in the x direction, three in the y direction, and four in the z direction (5×3×4) so

that the simulation box is almost cubic. Each aragonite unit cell contains 20 atoms,

as shown in Figure 1.1, resulting in 1200 atoms in the simulated system.

3.1.2 Comparing the Box Vectors with Different Models

Xiao et al. [17] used their model to examine several properties of aragonite, including

unit cell parameters. They compared their results with those from previous studies

and experiments. Xiao et al. reported the cell parameters for the aragonite as a =

4.96 Å, b = 7.97 Å, and c = 5.74 Å in the x, y, and z directions, respectively. The

unit cell parameters are not reported by Cruz-Chu et al. [18]. Based on the simulation

box size in this thesis, which contains 60 unit cells (5 × 3 × 4), the box vectors are

calculated to be 5×a = 2.48 nm in the x direction, 3×b = 2.39 nm in the y direction,

4 × c = 2.29 nm in the z direction. These values are labelled as the expected values
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Figure 3.1: Box vectors in the x direction for the simulations introduced in Table 3.1.
The No-Bond simulations show higher values, ranging from 2.50 nm to 2.52 nm, while
the Bond simulations display smaller box vectors, ranging from 2.48 nm to 2.49 nm.
The semi-isotropic Bond model indicates the smallest bx value, around 2.455 nm. The
expected value is based on the results reported by Xiao et al. [17].

in this thesis.

To calculate the box vectors, after the box preparation and energy minimization,

two equilibration stages, NV T and NPT , are performed. These two stages aim to

bring the system to the desired temperature at 300 K and the desired pressure at 1 bar.

The energy tool in GROMACS software is a comprehensive resource for analyzing

various system properties, such as box vectors, pressure, volume, temperature, and

potential energy. After the NPT run, the box vectors are reported using the energy

tool. The results are then compared with those reported by Xiao et al. [17].

Figure 3.1 shows the results for the box vectors in the x direction for the simula-

tions listed in Table 3.1. The graph displays bx for the second half of the time series

so as to avoid any transients at early times. As shown in Figure 3.1, the results for

bx in the No-Bond simulations range between 2.50 nm and 2.52 nm. When bonds are

included, bx decreases to a range between 2.48 nm and 2.49 nm. The semi-isotropic

pressure coupling for the Bond model results in the smallest box vector among all sim-

ulations, approximately 2.45 nm. These results indicate that adding bonds between

carbon and oxygen atoms leads to a reduction in bx in all simulations. The results

of the isotropic and anisotropic Bond simulations are, oddly, closer to the expected

value, which is the value reported by Xiao et al. for the No-Bond model [17]. The
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results of the y and z directions are presented in Appendix A, Figures A.1 and A.2.

3.1.3 Comparing Pressure Tensors with Box Vectors

After the NPT equilibration, the pressure tensor elements, as explained in Section

2.5, are reported using the GROMACS energy tool. These elements represent, in a

sense, the pressure acting on the system in each direction. The tensor is represented

by a 3× 3 matrix containing six independent components: Pxx, Pyy, Pzz, Pxy = Pyx,

Pxz = Pzx, and Pyz = Pzy. The diagonal components Pxx, Pyy, and Pzz indicate the

normal pressures in the x, y, and z directions, respectively.

The left panel in Figure 3.2 shows bx, and the right panel shows Pxx for the various

simulations. The results are calculated for the second half of the time series. The

error bars represent the standard deviation of the box vectors in each simulation.

The red open triangles show the results of the No-Bond runs, and the filled blue

circles represent the results of the Bond runs. The dashed black line is the expected

value based on the Xiao et al. [17]. In the left plot, adding the bond term results

in a reduction in bx for isotropic and anisotropic couplings. All No-Bond runs show

average bx ranging from 2.50 to 2.52 nm, while the results for Bond runs are between

2.48 to 2.49 nm. This decrease is more significant for the semi-isotropic pressure

coupling, where bx decreases from approximately 2.52 nm (No-Bond) to about 2.46

nm (Bond). The results indicate that adding the bond terms leads to a decrease in

the box vectors in all simulations.

The right plot in 3.2 shows the results for Pxx. The results indicate that adding

the bond term to the force field with an isotropic pressure algorithm results in a

significant deviation from 1 bar of pressure (which on the scale of pressures shown is

essentially zero), yielding Pxx to be approximately -6000 bar. Adding the bond and

assuming the same box shape as determined by Xiao et al. results in large stress in

the system. For the No-Bond case, the isotropic coupling results confirm that the cell

shape determined by Xiao et al. is correct since no stress is apparent, at least in the

x direction.

The anisotropic pressure algorithm, by design, allows the simulation box to adjust

to stress in the system. For the Bond model, Pxx is reduced as expected while bx

remains approximately unchanged despite the fact that the bond lies in the xy plane.
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The results show that anisotropic triclinic and anisotropic orthorhombic give the same

results. This means that adding the bond preserves the unit cell as orthorhombic as

expected.

The model with semi-isotropic pressure coupling behaves differently with the bond

term, exhibiting an average pressure in the x direction of approximately 8000 bar. This

indicates that the system is under compression, consistent with the lowest bx value in

the left plot. In contrast, the No-Bond models exhibit an average pressure variation

close to 1 bar, indicating no significant stress in the system. In this coupling, it is

insufficient to allow bz to vary while preserving the bx : by ratio. Adding the bond,

however, changes all three unit cell lengths.

The same graphs are plotted for the y and z directions and presented in Appendix

A, Figures A.3 and A.4. Regarding the results we calculated so far, none of the pres-

sure couplings for the No-Bond model reproduced the expected value for bx. However,

the No-Bond simulations confirm the shape of the unit cell, as reported by Xiao et

al., showing no stresses even when simulated with the isotropic pressure algorithm.

Therefore, for the next part of this thesis, we select the No-Bond model with an

isotropic pressure algorithm to study the impact of the simulation details on the box

vectors.

3.2 Isotropic No-Bond Model: Detailed Parame-

ters Study

Regarding the discussion in Section 3.1.2, the isotropic No-Bond model is chosen to

examine the impact of simulation details on the box vectors. These details were not

described in Xiao et al. [17]. We study the effect of different parameters in the .mdp

file on the box vectors. The results are compared to Xiao et al. [17]. For each test,

only one parameter is changed in the .mdp file during the NPT stage. The following

sections detail the parameters and explain the results.
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Figure 3.2: The error bars represent the standard deviation of the bx (left) and pressure
Pxx (right) for three pressure algorithms and two force fields. Filled blue circles
represent models with the bond term in the force field, and the red open triangles
show No-Bond models. The graphs indicate that adding bonds to the force field
decreases the box size but less stress on the systems with the No-Bond model. The
black dashed lines represent the expected values for bx (reported by Xiao et al. [17])
and pressure (1 bar), and the dotted lines the uncertainty that we infer from Ref. [17].
All of the simulations are conducted at a temperature of 300 K.

3.2.1 Dispersion Correction

For the non-bonded interactions, a cut-off distance is used to reduce the computational

cost. The cut-off specifies the distance within which the non-bonded interactions

are calculated, and interactions beyond this distance are ignored. Using the cut-

off distance introduces errors since the exact result would have an infinite cut-off

distance. Dispersion correction (DispCorr) is introduced in the .mdp file to address

these errors by applying long-range corrections. GROMACS offers three options for

this parameter: EnerPres, Ener, and no correction. To study the impact of this

parameter on box vectors, we compare the EnerPres correction with no correction.
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The EnerPres option applies correction to both energy and pressure [11]. Figure 3.3

indicates the changes in the bx due to adding a dispersion correction. The results show

that switching from the EnerPres correction to no correction does not significantly

change bx, and the results remain in the same range. The results for the y and z

directions are presented in Appendix A, Figure A.5.

3.2.2 Vdw-Modifier

As mentioned in Section 3.2.1, we use a cut-off for the non-bonded interactions (LJ and

Coulomb potential). This option introduces discontinuities in the potential energy and

force calculations at the cut-off point. To minimize the impact of these discontinuities,

GROMACS offers several approaches: potential shift, force switch, potential switch,

and none [11]. In the potential shift case, the potential energy function is shifted by

a constant so that it goes to zero at the cutoff distance. This should affect neither

the pressure calculation nor the box vectors. The force and potential switches are two

variations of a technique to smoothly transition both the forces and potentials to zero

over a specified range before reaching the cutoff distance. The default setting for this

parameter offered by GROMACS is the potential shift.

To study the impact of these options on the box vectors, we change the relevant

parameter in the .mdp file during the NPT stage. The results for the box vectors for

different vdw-modifier options are shown in Figure 3.3. The force switch and potential

shift option show similar results. However, the potential switch shows a small decrease

in the box vector. Overall, we can conclude that changing the vdw-modifier parameter

does not lead to substantial changes in the box vectors. To calculate the Coulomb

interactions, which converge conditionally and very slowly, we use the particle mesh

Ewald (PME) technique. In this technique, the calculation of interaction energies

between particles is divided into two parts. PME performs a direct sum for the short-

range interactions in real space; for the long-range interaction, a Fourier transform is

used [11].



32

Figure 3.3: The error bars represent the standard deviation of the box vector in
the x direction for the isotropic No-Bond model using different input parameters.
The results show that the average bx remains at around 2.510 nm for most of the
studied parameters. A significant change in bx is observed only with a reduction in
temperature. Our results indicate that bx decreases from approximately 2.510 nm at
300 K to 2.487 nm at 0 K. The dashed line indicates the expected value reported by
Xiao et al. [17].

3.2.3 Constraints

The constraints in the .mdp file determine how the lengths of certain bonds and the

angles between atoms are fixed throughout the simulation. Replacing bonded inter-

actions with constraints eliminates the need to integrate vibrational motion, typically

allowing a longer time step to be used. GROMACS provides different options for con-

straints, including all-bonds (constraints all bonds to be of fixed length), all-angles (all
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bonds and angles are converted to constraints), h-bonds (the bonds containing hydro-

gen atoms are converted to constraints), h-angles (all angles containing the hydrogen

atoms and bonds convert to constraints) and none [11]. We study the impact of all-

bonds, all-angles, and no constraints on the box vectors. This parameter is changed

in the .mdp file during the NPT stage, and the resulting box vectors are calculated.

Figure 3.3 shows the bx variations for the second half of the time series. It can be seen

that adding constraints to the system does not affect the box vectors. The all-angles

and all-bonds constraints illustrate results similar to those of the no-constraints.

3.2.4 Temperature

During the NV T and NPT stages, the temperature of the system is fixed to the

desired value, which is 300 K in this thesis. To study the impact of temperature

changes on box vectors, we carry out simulations at 300 K, 200 K, 100 K, and 0 K.

The resulting bx values from the second half of the time series of the NPT run are

reported in Figure 3.3. The results indicate that decreasing the temperature leads to a

decrease in bx. This result is consistent with the expectation that lower temperatures

result in a smaller volume. At 300 K, bx is approximately 2.515 nm, which decreases

to approximately 2.505 nm at 200 K and further to about 2.495 nm at 100 K. When

the temperature is reduced to 0 K, bx drops to approximately 2.487 nm; this result

is the closest to the value reported by Xiao et al. [17] (Expected value = 2.48 nm).

However, Xiao et al. did not specify the temperature used in their simulations nor

uncertainties in cell parameters, so we strongly suspect that their GULP calculations

were carried out at 0 K.

In conclusion, as shown in Figure 3.3, temperature is the only parameter signif-

icantly affecting the box vectors. Changes to other parameters in the .mdp file do

not significantly change the box vectors. The results for the y and z directions are

presented in Appendix 3.3, Figure A.5. We are satisfied that the discrepancy in bx

between our simulations of the No-Bond model and those of Xiao et al. is likely due

to temperature.
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Figure 3.4: Box vector in the x direction (bx) for the isotropic No-Bond model. The
results are plotted for the second half of the time series of the NPT simulation with
the Parrinello-Rahman barostat. The resulting box vectors for three tau-p values (1,
10, and 100 ps) are plotted. Increasing tau-p from 1 ps to 10 and 100 ps results in a
decrease in the fluctuations in bx. For tau-p= 10 ps and 100 ps, the fluctuations in bx
are still growing by the end of the simulation.

3.2.5 Tau-p

In MD simulations, tau-p refers to the pressure relaxation time constant within the

barostat algorithm; it indicates how long it takes for the algorithm to impose a target

pressure on the system. In this section, we study the impact of changing tau-p on the

box vectors. We start with the No-Bond model using an isotropic pressure algorithm

without constraints with tau-p = 1 ps. During the NPT run, the BR barostat is used

to stabilize the system’s pressure at 1 bar. After this equilibration, another NPT run

is conducted using the final configuration of the first NPT . In the new NPT run,

the PR barostat is used to adjust the system’s pressure. After the NPT run with the

PR barostat, the average box vectors are calculated. The result for the x direction is

shown in Figure 3.4.

We calculate the box vectors for tau-p = 1, 10, and 100 ps to study the impact

of changing tau-p on the box vectors. Figure 3.4 shows the results for bx during the

second half of the time series. It is observed that increasing the pressure coupling

time to 10 ps and 100 ps significantly reduces the fluctuations in bx. The results for

the simulation with tau-p = 10 ps and 100 ps demonstrate an increasing pattern over
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Figure 3.5: Box vectors in the x direction (bx) for the isotropic No-Bond model over
1000 ps. Equilibration begins with the Berendsen barostat, followed by a plottedNPT
run with the Parrinello-Rahman barostat. The resulting box vectors are plotted for
tau-p=1, 10, and 100 ps. The top plot corresponds to simulations with parameters
dt = 0.002 ps and nstep = 500000, and the bottom plot to parameters dt = 0.001
ps and nstep = 1000000. The results show that decreasing the time step results in
smaller fluctuations in bx.

time. To further analyze this increasing amplitude, we extend the simulation time to

1000 ps (one nanosecond) using two approaches.

In the first approach, the time step is kept at dt = 0.002 ps, with the number

of steps at nstep = 500000, extending the simulation time to 1000 ps (1 ns). In the

second approach, to extend the simulation time to 1000 ps, the parameters are set to

dt = 0.001 ps and nstep = 1000000. We analyze the fluctuations of the box vectors

after the second NPT run. Figure 3.5 (top) shows the results for the box vectors using

the first approach. The average box size remains around 2.51 nm for tau-p values 10

ps and 100 ps. For tau-p = 1 ps, the average box size is larger, approximately 2.53



36

nm. The results for tau-p = 10 ps and 100 ps show significant fluctuations.

The results obtained using the second approach are demonstrated in Figure 3.5

(bottom). The average bx for all three tau-p values is approximately 2.51 nm. A

comparison of the two plots reveals that reducing the time step to 0.001 ps leads to

significantly smaller fluctuations in the box vectors. The larger time step of 0.002 ps

leads to unphysically large fluctuations. Based on these results, we choose the time

step of dt = 0.001 ps and the tau-p = 10 ps for the optimized simulation protocol.

3.3 Anisotropic Orthorhombic Pressure Coupling

In this section, we study the anisotropic orthorhombic pressure coupling. As explained

in Section 3.1, in an anisotropic algorithm, bx, by, and bz can change independently,

which is physically more meaningful for an orthorhombic crystal. After the EM and

NV T stages, a 100 ps NPT run using the BR barostat is conducted. We conduct a

1000 ps NPT run using the last configuration of this stage. For the second NPT run,

PR and BR barostats are used in two separate simulations. We investigate various

parameters related to each barostat and calculate the box vectors. The results are

then compared with those reported by Xiao et al. [17].

3.3.1 Parrinello-Rahman Barostat

3.3.1.1 Comparing the System Size Effect

In this section, we study the anisotropic orthorhombic pressure coupling using the PR

barostat for two box sizes: 60 unit cells (5 × 3 × 4) and 480 unit cells (10 × 6 × 8).

After preparing the simulation box using the supplemental files from Cruz-Chu et

al. [18], three stages are conducted: EM , NV T , and two NPT runs. During the

first NPT , the following parameters are used: barostat = Berendsen, dt = 0.002 ps,

nstep = 50000, and tau-p = 1 ps, with constraints = all-angles. We conduct a second

NPT run for 1000 ps with the PR barostat using the last configuration of the first

NPT run. The parameters for this stage are selected based on the results of Section

3.2.5, including dt = 0.001 ps, nstep = 1000000, and tau-p = 10 ps. All constraints

are removed from the system (constraints = none). bx, by, and bz are reported using



37

Figure 3.6: The box vector in the x direction for the anisotropic 60 unit cells (5×3×4)
Bond and the 480 unit cells (10 × 6 × 8) No-Bond models. The Berendsen barostat
is initially employed to equilibrate the system during an NPT run. Another NPT
run is performed with the Parrinello-Rahman barostat using the last configuration of
the first NPT run. For this run, parameters are set to tau-p = 10 ps, dt = 0.001 ps,
and no constraints. The top plot shows the result for the 60 unit cells Bond model.
At around 200 ps, a jump in the box vector occurs, indicating a phase transition
to another crystal. The bottom plot shows the result for the 480 unit cells in the
No-Bond model. The phase transition happens at around 200 ps.

the energy tool. Figure 3.6 (top) displays the results for bx for a 60 unit cell Bond

model. From the beginning to around 200 ps, there is an increasing trend in bx. At

around 200 ps, a noticeable jump in bx occurs, indicating a phase transition. We

observe that the crystal structure changes at this time using VMD software.



38

(a) Bond model-taup 1 (b) No-Bond model-taup 1

After observing a phase transition for the 60 unit cells, the number of unit cells is

increased in each direction by a factor of two, resulting in a larger box containing 480

unit cells (10×6×8). Following a similar procedure with the same input parameters,

bx for this larger box is calculated. A similar phase transition is observed for this

larger box. Figure 3.6 (bottom) illustrates the results for bx of the No-Bond model.

Similar to the 60 unit cells, the phase transition occurs at around 200 ps, and the

crystal structure changes at this time. Phase transitions are also observed for the y

and z directions. These phase transitions are undesirable for the system under study

and likely the spurious result of the large box fluctuations that reemerge when the

anisotropic pressure coupling is used. Therefore, to stabilize the crystal structure and

prevent these phase transitions, we study the simulation parameters that can affect

the system’s behaviour.

3.3.1.2 Study of Other Input Parameters Affecting the Pressure Algo-

rithm

In this section, we study some GROMACS input parameters and their effect on the

phase transition observed in Section 3.3.1.1. The parameters studied are nstlist,

nsttcouple, nstpcouple, and tau-t. The nstlist specifies the number of steps for updat-

ing the neighbour list, which is a list of the particles whose interactions are considered

in the simulation. The number of steps to update pressure and temperature is called

nstpcouple and nsttcouple, respectively. The time constant for coupling the temper-

ature is called tau-t [11].
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(c) Bond model- taup 10 (d) No-Bond model- taup 10

Figure 3.7: bx for anisotropic orthorhombic pressure coupling. The Berendsen baro-
stat is initially employed for system equilibration during an NPT stage. Another
NPT run, shown, is conducted with the Parrinello-Rahman barostat using the
last configuration of the first NPT run. The input parameters for this stage are
nstlist = nstpcouple = nsttcouple = 1, tau-t = 1 ps. The box vectors are plotted for
two tau-p values: 1 and 10 ps. Panels (a) and (b) display the results for the Bond
and No-Bond models with tau-p = 1 ps, and panels (c) and (d) indicate the results
for tau-p = 10 ps. Compared to Figure 3.6, no phase transition occurs in the crystal
structure. The red lines indicate expected values reported by Xiao et al. [17].

The default values recommended for these parameters can be found in the GRO-

MACS manual. In this thesis, we use GROMACS version 2020.1, with the recom-

mended values of nstlist = nstpcouple = nsttcouple = 10 [11]. For the first NPT

stage, we use these recommended values and tau-t = 0.4 ps with the BR algorithm.

To study the impact of these parameters on the box vectors, we change the values of

these parameters in the second NPT stage, for which we use the PR barostat. During

the second NPT run, these parameters are set to nstlist = nstpcouple = nsttcouple

= 1, and the tau-t = 1 ps.

The results for bx for the Bond and No-Bond models are plotted for tau-p = 1

and 10 ps. In Figure 3.7, panels (a) and (b) show the results for tau-p = 1 ps, and

panels (c) and (d) illustrate the results for tau-p = 10 ps. The results indicate that

with the change in the mentioned parameters, there is no phase transition in the

crystal structure. Thus, for our system, the default of updating P , T , and neighbour

lists every 10 steps is insufficient. The average box vector for the Bond models is

approximately 2.465 nm. For the No-Bond models, the average bx is around 2.505
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nm. Although there is no phase transition in the new results, significant fluctuations

are still evident in the box vector. To investigate these fluctuations in the next section,

we study the compressibility of the system.

3.3.1.3 Compressibility Consistency

To study the volume fluctuations, we examine the compressibility of the system.

Isothermal compressibility, βT , is a quantity that describes how the volume changes

with pressure at a constant temperature. It is defined as,

βT =
−1

V

(
∂V

∂P

)
T

. (3.1)

If NPT simulations are carried out at several equally spaced pressures, we can ap-

proximate the derivative as,
∂V

∂P
=
Vi+1 − Vi−1

2∆P
. (3.2)

The compressibility can also be calculated from the volume fluctuations as [42],

βT =
1

kBT

〈∆V 2〉NPT
〈V 〉NPT

, (3.3)

where kB is Boltzmann’s constant, 〈∆V 2〉NPT is the variance of the volume,

〈∆V 2〉 = 〈V 2〉 − 〈V 〉2, (3.4)

and 〈V 〉NPT represents the average volume of the system. In this thesis, we calculate

the compressibility using two equations, 3.1 and 3.3, and we refer to the results as

the derivative and variance methods, respectively. Another way of approximating the

derivative is to fit the V (P ) data to a quadratic polynomial,

Vfit = V0 + V1P + V2P
2. (3.5)

Then, the system’s compressibility is calculated using the derivative,

∂Vi
∂P

= V1 + 2V2Pi. (3.6)



41

Figure 3.8: The compressibility-pressure (top) and volume-pressure (bottom) rela-
tionships for the anisotropic orthorhombic Bond model using the Parrinello-Rahman
barostat with parameters nstlist = nstpcouple = nsttcouple = 1, and tau-t = 1 ps.
The results are plotted for two pressure time constants: tau-p = 1 and 10 ps. Com-
pressibility is calculated using derivative, variance, and curve-fitting methods. The
compressibility calculated from the variance method is an order of magnitude larger
than the results from the derivative equation, both for tau-p = 10 ps and tau-p = 1
ps. On this scale, the derivative and curve-fitting methods overlap for both values
of tau-p. This indicates unphysically large volume fluctuations in the system. The
volume-pressure plot shows a decreasing trend, as expected. The average volume for
tau-p = 10 ps is slightly larger than that from tau-p = 1 ps.

We refer to βT obtained in this way as the “curve-fitting” method. After NPT equi-

libration with the Berendsen barostat for 100 ps, the second NPT run is performed

for the models described in Section 3.3.1.2. A series of eleven distinct NPT simu-

lations for each case are conducted to study the volume variations and to compute
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Figure 3.9: The compressibility-pressure (top) and volume-pressure (bottom) plots
for the anisotropic orthorhombic No-Bond model using Parrinello-Rahman barostat
with parameters nstlist = nstpcouple = nsttcouple = 1, and tau-t = 1 ps. The results
are plotted for two pressure time constants: tau-p = 1 and 10 ps. Compressibility is
calculated using derivative, variance, and curve-fitting methods. The compressibility
calculated from the variance method is larger than the results of the derivative method
by an order of magnitude. This indicates unphysically large volume fluctuations in
the system. The volume-pressure plot shows a decreasing trend, with the average
volume remaining consistent for both tau-p values.

compressibility. These simulations cover a range of target pressures from -999 to 1001

bar, including -999, -799, -599, -399, -199, 1, 201, 401, 601, 801, and 1001 bar. The

negative pressures in this range correspond to isotropic tension. The volume time se-

ries of each simulation is obtained using the energy tool in GROMACS. The system’s

compressibility is calculated using derivative, variance, and curve-fitting methods for
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the second half of the time series. For the Bond and No-Bond models, we calculate

compressibility for two tau-p values, 1 and 10 ps.

Figure 3.8 shows the compressibility-pressure (top) and volume-pressure (bottom)

results for the Bond model. The compressibility-pressure plots indicate that the com-

pressibility values obtained from the variance method are significantly higher than

those from the derivative method. Specifically, for tau-p = 10 ps, the compressibility

values from the variance method average around 2.5 × 10−5 bar−1, 10 times larger

than the average compressibility of 0.25 × 10−5 bar−1 obtained from the derivative

method. Similarly, for tau-p = 1 ps, the compressibility values from the variance

method average around 5.5 × 10−5 bar−1, 20 times larger than from the derivative

method.

Similar results are calculated for the No-Bond model. We calculate the com-

pressibility (top) and volume (bottom) versus pressure for two tau-p values in Figure

3.9, using the same target pressures. The compressibility values from the derivative

method average around 0.25 × 10−5 bar−1 for both tau-p values. For tau-p = 10

ps, the average compressibility calculated from the variance method is approximately

3 × 10−5 bar−1, 10 times larger than the derivative method. For tau-p = 1 ps, the

compressibility values from the variance method average around 5 × 10−5 bar−1, 20

times larger than those obtained from the derivative method. These results indicate

the volume fluctuations are too large, and they are not consistent with βT obtained

from the thermodynamic definition of βT .

The volume-pressure plots for both tau-p values exhibit similar decreasing trends

in Bond and No-Bond models. In the Bond model, Figure 3.8, the average volume

for tau-p = 10 ps is slightly larger than the tau-p = 1 ps for each target pressure.

In the No-Bond model, illustrated in Figure 3.9, the volumes for two tau-p values

are mostly the same. The overall average volume in the No-Bond model shows larger

magnitudes compared to the Bond model. Both models demonstrate that increasing

the pressure results in a decrease in volume, which is expected. However, the study

of compressibility demonstrates large fluctuations in volume. Strange oscillations are

observed when we visualize the system with VMD using the PR barostat. To further

study, we plot the volume over time for the simulated system.
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(a) PR -Bond model (b) BR -Bond model

3.3.1.4 Volume Time Series

In this section, we study the volume fluctuations over time for a target pressure of 1

bar to check the unphysical artifacts using the PR barostat. The results are calculated

for two tau-p values: 1 ps and 10 ps. In Figure 3.10, panels (a) and (c) display the

volume time series results for the Bond and No-Bond models introduced in Section

3.3.1.2. Looking at the two models, we observe similar volume changes over time for

both tau-p values. In the Bond model, fluctuations are larger initially but decrease

around 100 ps. The average volume for this system is approximately 13.85 nm3.

The No-Bond model shows consistent fluctuations throughout the simulation, with

an average volume of approximately 14.10 nm3. These results are consistent with the

volume-pressure plot in Figure 3.8, illustrating similar average volumes at a pressure

of 1 bar for both models. These plots show relatively long-period oscillations with the

PR barostat, particularly visible in Figure 3.10, which is not desirable.

3.3.2 Berendsen Barostat

3.3.2.1 Volume fluctuations

After observing the large volume fluctuations in the anisotropic orthorhombic model

using the PR barostat, we study the fluctuations when using the BR barostat. The

parameters for the initial 100 ps NPT run are as follows: dt = 0.002 ps, constraints

= all-angles, nstep = 500000, tau-p = 1 ps, and barostat = Berendsen. The final

configuration from this run is used to conduct a second NPT run for one nanosecond.
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(c) PR No-Bond model (d) BR No-Bond model

Figure 3.10: The volume-time plots for the anisotropic orthorhombic system using
Parrinello-Rahman (PR) and Berendsen (BR) barostats. For the simulation with
PR barostat, the parameters are set to nstlist = nstpcouple = nsttcouple = 1, and
tau-t = 1 ps. The results are plotted for two taup values, 1 and 10 ps, in a 1000
ps NPT run. Panels (a) and (c) show the results for the Bond models, and panels
(b) and (d) illustrate the results for the No-Bond models. The average volumes
for tau-p = 1 and 10 ps are similar in each plot. In the bond models using both
barostats, the volume averages around 13.85 nm3, while for the No-Bond models, it
is approximately 14.10 nm3. Significant volume fluctuations are evident when the
barostat is set to Parrinello-Rahman, compared with the Berendsen barostat.

The parameters for this stage are dt = 0.001 ps, nstep = 1000000, tau-p = 1 ps,

constraints = none, and barostat = Berendsen. Figure 3.10 shows the results for

V for the Bond model, panel (b), and the No-Bond model, panel (d), with good

convergence to average values in the second half of the time series. Comparing with

the PR results in Fig 3.10 (a) and Figure 3.10 (c) shows that using the BR barostat

significantly reduces the fluctuations in the volume with fluctuations decreasing with

increasing tau-p. In the next section, we find the value of tau-p yields consistency

between the derivative and variance routes to compressibility.

3.3.2.2 Compressibility Consistency

Following NPT equilibration with the BR barostat for 100 ps, a series of eleven dis-

tinct NPT runs are conducted. These simulations cover a range of target pressures

from -999 to 1001 bar, including -999, -799, -599, -399, -199, 1, 201, 401, 601, 801,

and 1001 bar, to study the volume variations and calculate the compressibility. The
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Figure 3.11: Compressibility-pressure (top) and volume-pressure (bottom) results for
the anisotropic orthorhombic Bond model using the Berendsen barostat for two pres-
sure time constants: tau-p = 1 and 10 ps. Compressibility is calculated using the vari-
ance, derivative, and curve-fitting methods. For tau-p = 10 ps, the results obtained
from the three methods are similar. However, using tau-p = 1 ps produces a larger
compressibility than with the variance. The volume-pressure plots show a decreasing
trend for both tau-p values. A larger average volume is obtained for tau-p = 10 ps.

following parameters are used for these simulations: dt = 0.001 ps, nstep = 1000000.

For this run, the barostat is set to Berendsen, and no constraints are applied (con-

straints = none), as detailed in Section 3.3.2. The compressibility of the system is

calculated for the second half of the time series using the derivative, variance, and

curve-fitting methods detailed in Section 3.3.1.3.

These stages are calculated for two values of tau-p: 1 ps and 10 ps. Figure 3.11

displays the plots of compressibility-pressure (top) and volume-pressure (bottom) for



47

Figure 3.12: Compressibility-pressure (top) and volume-pressure (bottom) results for
the anisotropic orthorhombic No-Bond model using the Berendsen barostat for two
pressure time constants: tau-p = 1 and 10 ps. Compressibility is calculated using
the variance, derivative, and curve-fitting methods. For tau-p = 10 ps, the results
obtained from the three methods show similar results. However, using tau-p = 1 ps
produces a larger compressibility than with the variance. The average volumes for
both tau-p values are mostly consistent. The results demonstrate that as pressure
increases, the volume decreases.

the Bond model. In the compressibility-pressure plot, the results of the derivative,

variance, and curve-fitting methods exhibit similar values for tau-p = 10 ps, all aver-

aging around 1.5× 10−6 bar−1. However, for tau-p = 1 ps, the variance method gives

a larger compressibility, averaging approximately 3.2 × 10−6 bar−1. Similar results

are observed in the No-Bond model presented in Figure 3.12. For the tau-p = 10 ps,
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the derivative, variance, and curve-fitting methods result in an average compressibil-

ity around 1.5 × 10−6 bar−1. However, for tau-p = 1 ps, the results of the variance

method indicate an average compressibility around 4.5× 10−6 bar−1. Comparing the

volume-pressure plots shows that, for the Bond model at tau-p = 10 ps, the average

volume is slightly larger than at tau-p = 1 ps, as observed for the PR algorithm.

The No-Bond model indicates very similar results for both tau-p values. The overall

average volume in the No-Bond model is larger than that in the Bond model.

It is concluded that using the Berendsen barostat with tau-p = 10 ps yields consis-

tency between βT calculated from fluctuations and that obtained from the derivative

of V (P ). We then use this barostat and this value of coupling time for simulations

that generate configurations for normal mode analysis in the next chapter.



Chapter 4

Normal Mode Analysis

4.1 VDOS Using the Anisotropic Orthorhombic

Berendsen Barostat

In this section, the vibrational density of states (VDOS) is calculated through the

normal mode analysis. We calculate VDOS for Bond and No-Bond models employing

the BR barostat with anisotropic orthorhombic pressure coupling as explained in

Section 3.3.2. The vibrational modes of the models are visualized, and the results are

compared with those reported by Carteret et al. [29]. They have used a combination

of experimental techniques, including IR and Raman spectroscopy and theoretical

quantum-mechanical calculations, to study the vibrational spectrum of aragonite.

They have studied the normal modes of aragonite, and their results are presented as

graphical animations on the Crystal website [43].

Other researchers have used vibrational analysis to study carbonates for various

purposes. Zhuravlev and Atuchin [44] studied the normal vibrations of various car-

bonate compounds using density functional theory (DFT). They compared the IR and

Raman spectra of these minerals with experimental results. Their analysis showed

that the intensities and wavenumbers of individual modes are consistent between the-

ory and experiment. La Pierre et al. [45] interpreted the Raman spectra of powder

and single crystals of calcite and aragonite using DFT. They compared the calculated

spectra with experimental measurements, which showed satisfactory agreement. The

simulations indicated differences between these two minerals in the powder spectra.
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Matas et al. [46] employed VDOS to study the thermodynamic properties of five

different carbonates. From the spectroscopic models, the thermodynamic properties

were calculated as a function of temperature and pressure. The results were compared

with available measurements to study the impact of pressure and temperature on the

vibrational modes, thermodynamic behaviour, and phase stability.

4.1.1 Normal Mode Analysis for the No-Bond Model

After completing the second NPT run for the No-Bond model using the Berendsen

barostat for 1000 ps (1 ns), as explained in Section 3.3.2, 100 configurations are

extracted from the NPT run trajectory at 10 ps intervals. This process aims to

average over the different volumes sampled by the system. It is expected that VDOS

would be the same for two configurations that have the same box vectors. Before

starting the normal mode analysis, another energy minimization is performed so that

the system is at a minimum in potential energy, as required for calculating the Hessian

matrix. For this EM run, we use the conjugate gradient (cg) integrator, which is

generally faster than the steepest descent. During this stage, each configuration is

quenched to the minimum potential energy with a tolerance factor, emtol, of 0.001

kJ mol−1 nm −1. There are no bond constraints used in this stage or in subsequent

stages.

Normal modes of each configuration can be calculated using GROMACS normal

mode analysis. Initially, to calculate the Hessian matrix H (explained in Section

1.2), the nm integrator is used. Normal mode analysis involves diagonalizing the

Hessian matrix. Using the nmeig tool, eigenvectors and eigenvalues are calculated

by diagonalizing H. During normal mode analysis, GROMACS sorts eigenvectors in

order of increasing eigenvalues. The eigenvalues obtained from normal mode analysis

represent the squared frequencies of the normal modes, ω2 = λ, as explained in Section

1.2. In this equation, ω is the angular frequency and related to frequency ν through

ω = 2πν. For ease of comparison with Raman and IR spectroscopy, GROMACS

reports the frequency of the normal modes in terms of the spectroscopic absorption

wavenumber k = ν/c reported in units of cm−1 [47, 48], and which is also proportional

to the energy.

The xmgrace tool is employed to visualize the distribution of normal mode wavenum-

bers. Figure 4.1 (top) shows the normal mode wavenumber plotted against the normal
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Figure 4.1: Normal mode wavenumber distributions for the anisotropic orthorhombic
No-Bond model using the Berendsen barostat. In the top panel, wavenumbers are
plotted in increasing order for a single configuration. A histogram of the vibrational
density of states (VDOS) was generated from data for 100 sampled configurations
(bottom panel). The first and the second prominent peaks are located at 1560 cm−1

and 821 cm−1, corresponding to asymmetric stretching modes. The peak at 1017 cm−1

corresponds to the symmetric stretching mode, and the peak at 941 cm−1 corresponds
to a bending vibrational mode.

mode index for one configuration. In this plot, regions with low slopes, such as for

indexes between 2300 and 2800, indicate many vibrational modes that are close in
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(a) Asymmetric streching (b) Symmetric streching

(c) Bending

Figure 4.2: Asymmetric (a), symmetric (b), and bending (c) normal modes of a
carbonate unit. In the asymmetric stretching mode, the oxygen atoms move towards
and away from the carbon atom in an out-of-phase manner. However, in the symmetric
stretching mode, all oxygen atoms move towards and away from the carbon atom in
phase. In the bending vibration mode, the carbon atom moves perpendicularly to the
plane of the oxygen atoms, as shown in two views.

energy. Conversely, regions with high slopes, such as around index 2200, indicate few

or no vibrational modes.

To better study the distribution of normal modes, we bin them in a histogram

and thus create a VDOS plot, Figure 4.1 (bottom). The nmtraj tool in GROMACS

is then used to generate trajectories from these eigenvectors, showing how atoms

oscillate around their equilibrium positions in different modes. The result is saved

in the .gro file, which can be viewed using VMD to create movies of the atomic

vibrations. To increase the motion amplitude and enhance the visibility, we can

adjust the temperature setting in nmtraj to a higher value [11].

For the No-Bond model, in order of decreasing energy, the most prominent peak is

located at 1560 cm−1. Visualizing this mode reveals that it resembles an asymmetric

stretching vibration mode but with carbon-oxygen-carbon angles changing during the
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motion. In this vibrational mode, the oxygen atoms remain stationary, and the carbon

atom moves towards and away from the oxygen atoms. The subsequent peak, at 1017

cm−1, represents a symmetric stretching mode of the carbonate unit. In this mode,

the carbon atom remains stationary, while the three oxygen atoms move towards and

away from the carbon atom in phase, as illustrated in Figure 4.2 (b). The peak at 821

cm−1 is an asymmetric stretching mode. In this vibrational mode, the carbon atom

remains stationary, and the oxygen atoms move toward and away from the carbon in

an out-of-plane manner, as illustrated in Figure 4.2 (a)

The peak at 941 cm−1 corresponds to a bending vibrational mode. In this mode,

the carbon moves perpendicular to the plane of the oxygen atoms, as shown in Fig-

ure 4.2 (c). In the low-energy region between 400 cm−1 and 50 cm−1, a collection

of weak peaks is seen. These peaks correspond to vibrational modes characterized

by low frequencies and, consequently, lower energies. These broad-spectrum peaks

represent less distinct and overlapping vibrational modes, which typically provide less

information about the structure of the material.

4.1.2 Normal Mode Analysis for the Bond Model

Using the approach explained in Section 4.1.1, we generate VDOS for the Bond model,

shown in Figure 4.3. A comparison of the VDOS plots of the Bond and No-Bond mod-

els indicates that adding bonds in the carbonate units affects the VDOS significantly.

Adding the bond terms results in a gap between the first and second prominent peaks

in the VDOS in the Bond model. In this model, the first prominent peak is located

at 1625 cm−1 and corresponds to an asymmetric stretching vibrational mode. The

second prominent peak at 737 cm−1 corresponds to the symmetric stretching vibra-

tional mode. However, the left side of this peak at 776 cm−1 contains asymmetric

stretching modes. We thus see a merging of two peaks that were well separated in the

No-Bond model. The next dominant peak, at 589 cm−1, corresponds to a bending

vibrational mode. In addition, some weak peaks appear in the Bond model in the

range of 600 cm−1 to 400 cm−1, which are not present in the No-Bond model. Similar

to the No-Bond model, a collection of weak peaks is present in the low-energy region

between 400 cm−1 to 50 cm−1.

Comparing the results for the No-Bond and Bond models, as shown in Figures

4.1 and 4.3, we observe that VDOS is sensitive to how the carbonate C-O bond is
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Figure 4.3: The vibrational density of states (VDOS) for the anisotropic orthorhombic
Bond model using the Berendsen barostat. The first prominent peak at 1625 cm−1

corresponds to an asymmetric stretching mode. The next prominent peak at 737 cm−1

indicates a symmetric stretching mode. This peak is merged with a peak at 776 cm−1,
which contains asymmetric stretching modes. The peak at 589 cm−1 corresponds to
a bending mode.

modelled. This sensitivity is evident in the shift in energy observed between the two

models. The peak corresponding to the asymmetric mode, located at 1560 cm−1 in

the No-Bond model, shifts by +65 cm−1 to 1625 cm−1 in the Bond model. The second

asymmetric mode, at 821 cm−1 in the No-Bond model, experiences a shift of -45 cm−1

to 776 cm−1 after adding explicit, harmonic bonds. The symmetric vibrational mode,

located at 1017 cm−1 in the No-Bond model, shows a significant shift to 737 cm−1

(-280 cm−1) with the introduction of bonds. The bending vibrational mode in the

No-Bond model, located at 941 cm−1, shifts downward by -352 cm−1 to 589 cm−1

after adding bonds.
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Figure 4.4: The vibrational modes calculated through GROMACS for the No-Bond
(left) and Bond (right) models compared with the results of density functional theory
(DFT). The peaks are identified with arrows: 1017 cm−1 for the No-Bond model
(left) and 737 cm−1 for the Bond model (right), both indicating symmetric stretching
vibrational modes. The results from the DFT, presented on the Crystal website [29],
show the same vibrational mode at 1095 cm−1. The No-Bond model shows closer
agreement with a small shift of -78 cm−1, while the Bond model shows a significant
shift of -358 cm−1.

4.2 Comparison with Density Functional Theory

(DFT)

In the last part of this thesis, we compare the results of the normal mode analysis

of aragonite, calculated using GROMACS, with those obtained through density func-

tional theory (DFT). We compare our results with the published work by Carteret

et al. [29]. After calculating VDOS for the Bond and No-Bond models, we visual-

ize the vibrational modes using the VMD software and compare our results with the

graphical animations on the Crystal website.

For the No-Bond model, the peak at 1017 cm−1 corresponds to a symmetric stretch-

ing vibrational mode, which is compatible with the mode at 1095 cm−1 presented on

the Crystal website [29], as shown in Figure 4.4 (left). It shows a shift of -78 cm−1 in

wavenumber. A similar vibrational mode for the Bond model is located at 737 cm−1,

which shows a large shift of -358 cm−1, shown in Figure 4.4 (right). Considering these

results, we can conclude that adding the bond terms in carbonate units significantly

changes the vibrational properties of aragonite.
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The VDOS analysis indicates that the inclusion of the bond terms in the force

field significantly changes the VDOS, particularly affecting the vibrational modes

corresponding to the frequencies between 1100 cm−1 to 400cm−1. After adding bonds,

some peaks are shifted downward, and some minor peaks show up in the range of 600

cm−1 to 400 cm−1. These changes can be attributed to the absence of LJ and Coulomb

interactions in the carbonate unit when the bond terms are included in the force field,

as detailed in Section 2.3.1. When the harmonic bond is added between carbon and

oxygen, the LJ and Coulomb energies in the carbonate unit are zero. The normal

mode analysis indicates that the No-Bond model, which includes LJ and Coulomb

interactions between C and O atoms in the carbonate unit, provides results that are

more consistent with experimental data.

We conclude that when Cruz-Chu et al. [18] added an explicit C-O bond to the No-

Bond model, they better recovered the unit cell parameters at ambient temperature

of aragonite but worsened the resulting Bond model’s VDOS.



Chapter 5

Conclusions and Future Work

This thesis focused on MD simulations of aragonite using GROMACS software. Our

goal was to find an optimized simulation protocol to study aragonite’s vibrational

density of states (VDOS). There are two related recently-developed force fields for

aragonite, the first of which excludes an explicit bond term between carbon and oxygen

atoms in the carbonate units (No-Bond) [17], and the second of which includes the

bond term (Bond) [18].

The first part of this thesis started by reproducing the results of the No-Bond

model using three pressure algorithms: isotropic, semi-isotropic, and anisotropic. The

anisotropic algorithm includes variants for triclinic and orthorhombic crystal struc-

tures. Using the GULP software, Xiao et al. [17] have reported aragonite’s primary

unit cell parameters for their No-Bond model. We confirmed their results by finding

no significant stress in the system when simulated with isotropic pressure coupling.

However, we were unable to reproduce unit cell parameters near standard conditions.

We thus tested the impact of several MD options on cell vectors, including details per-

taining to the truncation of short-range interactions. The results indicate that most

of these parameters do not significantly impact the cell vectors. The only parameter

that affected the cell vector was temperature. Our study indicated that the results

reported by Xiao et al. were obtained at T=0 K, which they did not mention in their

paper [17].

We also investigated the unit cell shape for the Bond model, and the results in-

dicated that adding bonds leads to a change in the unit cell shape. Another finding
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from the first part of the thesis was that both the Bond and No-Bond models pre-

serve the orthorhombic symmetry of aragonite. Therefore, we next chose anisotropic

orthorhombic pressure coupling to find an optimized simulation protocol before study-

ing the VDOS. We tested the Berendsen and Parrinello-Rahman barostats for the

anisotropic orthorhombic pressure coupling and the parameters that affect their func-

tioning. In our tests, we looked for consistency in calculating the isothermal compress-

ibility from the equation of state and fluctuations. The results indicated that using the

Parrinello-Rahaman barostat induces non-physical volume fluctuations. However, the

results using Berendsen baraostat allowed for more consistency with thermodynamics

with appropriately chosen parameters. The parameters that we finalized in our study

with the Berendesn barostat are tau-p=10 ps, tau-t = 1 ps, nstlist = nsttcouple =

nstpcouple =1, dt = 1 fs, and constraints = none. Using the optimized simulation

protocol, we determined the unit cell parameters. The calculated results for the Bond

model are a = 4.93 Å, b = 8.01 Å, and c = 5.83 Å, and for the No-Bond model

a = 5.01 Å, b = 8.31 Å, and c = 5.79 Å at 300 K and 1 bar. The experimental results

for the unit cell parameters reported by Xiao et al. [17] are a = 4.96 Å, b = 7.97 Å,

and c = 5.74 Å.

In the last part of this thesis, we calculated the VDOS for the Bond and No-Bond

models using normal mode analysis. The difference in the VDOS plots for the two

models indicated that adding the bond term changes the VDOS of the system. We

visualized the vibrational modes for the peaks in the models using the GROMACS

software and VMD. The results of the normal mode analysis were compared with the

results presented by Carteret et al. [29]. Our comparison showed that our simula-

tions reproduce the symmetric stretch peak but that the positions are quite different

between the No-Bond model (1017 cm−1) and the Bond model (737 cm−1), with the

former closest to the 1095 cm−1 peak position reported by Carteret et al. [29].

For future work, it would be wonderful if the C-rescale barostat could be used to

study the unit cell parameters. Unfortunately, this barostat has no anisotropic version

implemented in GROMACS yet. This barostat is similar to the Berendsen barostat.

The crucial difference is that the C-rescale barostat contains a stochastic term that

ensures correct fluctuations in the volume [47, 49]. The expectation is that using

this barostat offers more stable volume adjustments and reduces the non-physical

oscillations observed with other barostats.
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Additionally, VDOS analysis can be performed at various temperatures to investi-

gate the vibrational properties of aragonite. Our findings in this thesis indicate that

both increasing and decreasing the temperature lead to changes in the box vectors,

which will affect the VDOS of the system, as would pressure changes, defects, chem-

ical impurities and changes in the environment surrounding the aragonite such as

when the aragonite is part of a biocomposite. Consequently, the shifts in the VDOS

peaks can be examined at various conditions to understand how structural variations

influence the vibrational modes at different temperatures and pressures. This will aid

in interpreting spectroscopic results in terms of the microstructure of aragonite-based

materials.
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[17] Xiao, S., Edwards, S., & Gräter, F. (2011). A new transferable forcefield for

simulating the mechanics of CaCO3 crystals. The Journal of Physical Chemistry

C, 115, 20067–20075.
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Appendix A

The Simulation Results

A.1 Box Vectors

Figures A.1 and A.2 display the box vectors in the y and z directions for the models

introduced in Table 3.1. The results are plotted for the second half of the time series.

Figure A.1 shows that for the Bond models using the isotropic pressure algorithm, the

box vector ranges between 2.39 and 2.40 nm, which is smaller than in the No-Bond

models, where it ranges between 2.41 and 2.43 nm. For the anisotropic and semi-

isotropic algorithms, adding the Bond term results in a box vector smaller than the

expected value. For the semi-isotropic algorithm Bond model, the average box vector

is around 2.37 nm, and for the anisotropic algorithm Bond model, it ranges between

2.31 and 2.32 nm. However, for the No-Bond models, all the results are larger than

the expected value, ranging between 2.41 and 2.44 nm.

In the z direction, as shown in Figure A.2, the anisotropic and semi-isotropic

simulations exhibit an inverse behaviour in the No-Bond model compared to the y

direction. These pressure algorithms result in the largest box vector, with semi-

isotropic values ranging between 2.36 and 2.37 nm and anisotropic values between

2.38 and 2.39 nm. In contrast, the Bond model with the isotropic pressure algorithm

shows smaller values, ranging from 2.29 to 2.40 nm. For the No-Bond model, the semi-

isotropic and anisotropic pressure algorithms result in a smaller box vector (2.29-2.32

nm) compared to the isotropic algorithm (2.32-2.33 nm).
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Figure A.1: Comparison of box vector in the y direction (by) for the Bond and No-
Bond models using different pressure algorithms. The isotropic Bond models indicate
a smaller value(2.39–2.40 nm) than the No-Bond models (2.41–2.43 nm). For the semi-
isotropic and anisotropic algorithms, the Bond models show box vectors of around
2.37 nm and 2.31–2.32 nm, respectively, while the No-Bond models exhibit larger by
(2.41–2.44 nm).

Figure A.2: In the z direction, anisotropic and semi-isotropic simulations of the No-
Bond model show the largest box vector (2.36-2.37 nm for semi-isotropic, 2.38-2.39
nm for anisotropic), inversely compared to the y direction. The Bond model with
the isotropic pressure algorithm has smaller values (2.29-2.40 nm). For the No-Bond
model, the semi-isotropic and anisotropic algorithms yield smaller magnitudes (2.29-
2.32 nm) than the isotropic algorithm (2.32-2.33 nm).
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Figure A.3: Box vector in the y direction (left) and pressure tensor element Pyy
(right) for three pressure algorithms and two force fields are presented. Blue markers
represent models with the bond term in the force field, and the red markers show
no-bond models.

A.2 Pressure Tensor

Figures A.3 and A.4 show the box vector (left panel) and pressure tensor (right panel)

in the y and z directions. In the left graphs, it can be seen that for the No-Bond

models, the box vectors are larger than the expected value for all pressure algorithms.

However, adding the bond term for the isotropic pressure algorithm results in a smaller

box vector. Different behaviours are observed for anisotropic and semi-isotropic pres-

sure algorithms. In the y direction, adding the bond term results in a box vector

smaller than the expected value, while in the z direction, the box vector is larger than

the expected value.

Looking at pressure plots on the right (Pyy and Pzz), for both the Bond and No-

Bond models, when using an anisotropic pressure algorithm, the average pressure is

close to zero, indicating no stress on the system. For the semi-isotropic and isotropic



68

Figure A.4: Box vector in the z direction (left) and pressure tensor element Pzz
(right) for three pressure algorithms and two force fields are presented. Blue markers
represent models with the bond term in the force field, and the red markers show
no-bond models.

algorithms, the No-Bond models show pressure values closer to zero. In contrast,

adding the bond term results in a pressure deviation from zero, indicating stress on

the system.
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Figure A.5: Box vector in the y and z directions for the isotropic No-Bond model.
The results show that the average box vector remains constant for most of the studied
parameters. The only significant change observed in box size occurs with a reduction
in temperature. The results indicate that the average box vector decreases from
approximately 2.420 nm at 300 K to 2.398 nm at 0 K in the y direction and from
2.325 nm at 300 K to 2.305 nm at 0 K in the z direction.

A.3 Isotropic No-Bond Model: Detailed Parame-

ters Study

The input parameters in the .mdp file are studied, and the box vectors are calculated.

The results show that temperature is the only parameter significantly affecting the

box vectors. Decreasing the temperature from 300 K to 0 K results in a decrease of

the box vectors in the y and z directions. Changes to other parameters in the .mdp

file do not significantly alter the box vectors, as illustrated in Figure A.5.



Appendix B

Files to Generate the Simulation

Box

B.1 .gro File

Using the crystal structure of aragonite from the American Mineralogist Crystal Struc-

ture Database and the Pmcn space group, we generate a ’.gro’ file for aragonite unit

cell as follows:

ARAGONITE

20

1arag Ca 1 0.124 0.331 0.436

1arag C 2 0.124 0.607 0.525

1arag O1 3 0.124 0.735 0.519

1arag O2 4 0.235 0.543 0.525

1arag O3 5 0.483 0.254 0.050

2arag Ca 6 0.372 0.466 0.138

2arag C 7 0.372 0.190 0.050

2arag O1 8 0.372 0.062 0.055

2arag O2 9 0.261 0.254 0.050

2arag O3 10 0.013 0.543 0.525

3arag Ca 11 0.372 0.729 0.425

3arag C 12 0.372 0.209 0.337



71

3arag O1 13 0.372 0.337 0.342

3arag O2 14 0.261 0.144 0.337

3arag O3 15 0.013 0.653 0.238

4arag Ca 16 0.124 0.068 0.149

4arag C 17 0.124 0.588 0.238

4arag O1 18 0.124 0.460 0.232

4arag O2 19 0.235 0.653 0.238

4arag O3 20 0.483 0.144 0.337

0.49500 0.79600 0.57400

B.2 Program to Generate the Simulation Box

implicit real*8 (b-h,o-z)

character*12 a1,a2,a3

parameter (nmolx=5,nmoly=3,nmolz=4,nmax=nmolx*nmoly*nmolz)

parameter (nmaxmol=4000)

dimension rca(nmaxmol,3,4)

dimension rc(nmaxmol,3,4)

dimension ro(nmaxmol,3,3,4)

character*77 filename

open(unit=1,file="aragonite-OneMol.gro",status="old")

100 continue

read(1,*,end=999)

read(1,*)

do i=1,1

do j=1,4

read(1,*)a1,a2,a3,rca(i,1,j),rca(i,2,j),rca(i,3,j)

read(1,*)a1,a2,a3,rc(i,1,j),rc(i,2,j),rc(i,3,j)

read(1,*)a1,a2,a3,ro(i,1,1,j),ro(i,2,1,j),ro(i,3,1,j)
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read(1,*)a1,a2,a3,ro(i,1,2,j),ro(i,2,2,j),ro(i,3,2,j)

read(1,*)a1,a2,a3,ro(i,1,3,j),ro(i,2,3,j),ro(i,3,3,j)

enddo

enddo

read(1,*)box_a, box_b, box_c

goto 100

999 close(1)

ns=0

i=0

tconf=0.d0

facx=0.0d0

facy=0.0d0

facz=0.0d0

write(filename,'("aragonite-",i4.4,"unitcell.gro")')nmax

open(11,file=filename,status="unknown")

c write(11,99001)tconf

write(11,99001)

write(11,99002)nmax*20

do imol=1,nmolz

facy=0.d0

do jmol=1,nmoly

facx=0.d0

do kmol=1,nmolx

do j=1,4

i=i+1

ns=ns+1

write(11,99004)i,ns,rc(1,1,j)+facx*box_a,rc(1,2,j)+facy*box_b

x ,rc(1,3,j)+facz*box_c
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ns=ns+1

write(11,99005)i,ns,ro(1,1,1,j)+facx*box_a,ro(1,2,1,j)+facy*box_b

x ,ro(1,3,1,j)+facz*box_c

ns=ns+1

write(11,99006)i,ns,ro(1,1,2,j)+facx*box_a,ro(1,2,2,j)+facy*box_b

x ,ro(1,3,2,j)+facz*box_c

ns=ns+1

write(11,99007)i,ns,ro(1,1,3,j)+facx*box_a,ro(1,2,3,j)+facy*box_b

x ,ro(1,3,3,j)+facz*box_c

enddo

facx=facx+1.d0

enddo

facy=facy+1.d0

enddo

facz=facz+1.d0

enddo

facz=0.d0

do imol=1,nmolz

facy=0.d0

do jmol=1,nmoly

facx=0.d0

do kmol=1,nmolx

do j=1,4

i=i+1

ns=ns+1

write(11,99003)i,ns,rca(1,1,j)+facx*box_a,rca(1,2,j)+facy*box_b

x ,rca(1,3,j)+facz*box_c

enddo

facx=facx+1.d0

enddo

facy=facy+1.d0

enddo

facz=facz+1.d0
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enddo

print*, facx, facy, facz

write(11,99008)nmolx*box_a,nmoly*box_b,nmolz*box_c

close(11)

c99001 FORMAT ('aragonite t=',f13.5)

99001 FORMAT ('aragonite ')

99002 FORMAT (i5)

99003 FORMAT (i5,'calc CAM',i6,f8.3,f8.3,f8.3)

99004 FORMAT (i5,'carb CM0',i6,f8.3,f8.3,f8.3)

99005 FORMAT (i5,'carb OM1',i6,f8.3,f8.3,f8.3)

99006 FORMAT (i5,'carb OM2',i6,f8.3,f8.3,f8.3)

99007 FORMAT (i5,'carb OM3',i6,f8.3,f8.3,f8.3)

99008 FORMAT (f10.5,f10.5,f10.5)

c99001 FORMAT ('aragonite t=',f13.5)

c99002 FORMAT (i5)

c99003 FORMAT (i5,'aragonite Ca',i6,f8.3,f8.3,f8.3)

c99004 FORMAT (i5,'aragonite C ',i6,f8.3,f8.3,f8.3)

c99005 FORMAT (i5,'aragonite O1',i6,f8.3,f8.3,f8.3)

c99006 FORMAT (i5,'aragonite O2',i6,f8.3,f8.3,f8.3)

c99007 FORMAT (i5,'aragonite O3',i6,f8.3,f8.3,f8.3)

c99008 FORMAT (f10.5,f10.5,f10.5)

end
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B.3 .top File

The topology file can be generated by hand without using the pdb2gmx command.

This topology file is used for the simulation with the Bond model using the isotropic

pressure algorithm.

[ defaults ]

; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ

1 1 yes 0.5 0.5

[atomtypes]

;name mass charge ptype C6 C12

CA 40.08000 1.668 A 1.42E-003 2.52E-007

CM 12.01100 0.999 A 4.61E-003 1.44E-005

OM 15.99940 -0.889 A 2.03E-003 1.77E-006

[ nonbond_params ]

; C parameter below incorporates patch

CA OM 1 0 9.49E-007

CA CA 1 1.42E-003 2.52E-007

CA CM 1 2.55E-003 1.89E-006

CM CM 1 1.43E-002 4.61E-006

CM OM 1 3.08E-004 9.04E-010

OM OM 1 5.21E-005 5.94E-007

[moleculetype]

; name nrexcl

carb 3

[atoms]

; nr type resnr residu atom cgnr charge

1 CM 1 carb CM0 1 +0.999 12.01100

2 OM 1 carb OM1 1 -0.889 15.99940

3 OM 1 carb OM2 1 -0.889 15.99940

4 OM 1 carb OM3 1 -0.889 15.99940
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[ bonds ]

; i j func b0 kb

1 2 1 0.12940 263173.6

1 3 1 0.12940 263173.6

1 4 1 0.12940 263173.6

[ angles ]

; i j k type theta_0 K_theta

2 1 3 1 120 1852

3 1 4 1 120 1852

2 1 4 1 120 1852

[ dihedrals ]

;i j k l type phi_s K_phi multiplicity

2 3 1 4 4 180 28.9 2

[moleculetype]

; name nrexcl

calc 3

[atoms]

; nr type resnr residu atom cgnr charge

1 CA 1 calc CAM 1 1.668 40.08000

[system]

aragonite melting

[molecules]

carb 240

calc 240


